
A Secret-Sharing Based MPC Protocol for Boolean
Circuits with Good Amortized Complexity

Ignacio Cascudo1 and Jaron Skovsted Gundersen2

1 IMDEA Software Institute, Madrid, Spain, ignacio.cascudo@imdea.org
2 Department of Mathematical Sciences, Aalborg University, Denmark, jaron@math.aau.dk

Abstract We present a new secure multiparty computation protocol that allows for
evaluating a number of instances of a boolean circuit in parallel, with a small online
communication complexity per instance of 10 bits per party and multiplication gate.
Our protocol is secure against an active adversary corrupting a dishonest majority.
The protocol uses an approach introduced recently in the setting of honest major-
ity and information-theoretically security, based on the algebraic notion known as
reverse multiplication friendly embeddings, which essentially transforms a batch of
evaluations of an arithmetic circuit over a small field into one evaluation of another
arithmetic circuit over a larger field. To obtain security against a dishonest majority,
we combine this approach with the well-known SPDZ protocol that provides security
against a dishonest majority but operates over a large field. As SPDZ and its vari-
ants, our protocol operates in the preprocessing model. Structurally our protocol is
most similar to MiniMAC, a protocol which bases its security on the use of error-
correcting codes, but our protocol has a communication complexity which is half of
that of MiniMAC when the best available binary codes are used. With respect to
certain variant of MiniMAC that utilizes codes over larger fields, our communication
complexity is slightly worse; however, that variant of MiniMAC needs a much larger
preprocessing than ours. We also show that our protocol also has smaller amortized
communication complexity than Committed MPC, a protocol for general fields based
on homomorphic commitments, if we use the best available constructions for those
commitments. Finally, we construct a preprocessing phase from oblivious transfer
based on ideas from MASCOT and Committed MPC.

1 Introduction

The area of secure multiparty computation (MPC) studies how to design protocols that
allow for a number of parties to jointly perform computations on private inputs in such a
way that each party learns a private output, but nothing else than that.

In the last decade efficient MPC protocols have been developed that can be used in
practical applications. In particular, in this work we focus on secret-sharing based MPC
protocols, which are among the most used in practice. In secret-sharing based MPC, the
target computation is represented as an arithmetic circuit consisting of sum and multiplic-
ation gates over some algebraic ring; each of the parties initially shares her input among
the set of parties, and the secure computation proceeds gate by gate, where at every gate a
sharing of the output of the gate is created; in this manner eventually parties obtain shares
of the output of the computation, which can be then reconstructed.

A common practice is to use the preprocessing model, where the computation is divided
in two stages: a preprocessing phase, that is completely independent from the inputs and

whose purpose is to distribute some correlated randomness among the parties; and an on-
line phase, where the actual computation is performed with the help of the preprocessing
data. This approach allows for pushing much of the complexity of the protocol into the
preprocessing phase and having very efficient online computations in return.

Some secret sharing based MPC protocols obtain security against any static adversary
which actively corrupts all but one of the parties in the computation, assuming that the
adversary is computationally bounded. Since in the active setting corrupted parties can
arbitrarily deviate from the protocol, some kind of mechanism is needed to detect such
malicious behaviour, and one possibility is the use of information-theoretic MACs to au-
thenticate the secret shared data, which is used in protocols such as BeDOZa [2] and SPDZ
[13].

In SPDZ this works as follows: the computation to be performed is given by an arithmetic
circuit over a large finite field F. There is a global key α ∈ F which is secret shared among
the parties. Then for every value x ∈ F in the computation, parties obtain not only additive
shares for that value, but also for the product α · x which acts as a MAC for x. The idea is
that if a set of corrupt parties change their shares and pretend that this value is x+ e, for
some nonzero error e, then they would also need to guess the correction value α · e for the
MAC, which amounts to guessing α since F is a field. In turn this happens with probability
1/|F| which is small when the field is large.

Unfortunately, the same strategy does not work for other domains: over other rings of
interest, for example over the modular ring Z/2kZ of integers modulo 2k, this fails because
of the ring having many divisors of zero (guessing α · e for a chosen e is much easier than
guessing α) so alternative authentication methods have been developed, see [11].

Over small fields, for example F = F2 the problem is simply that the cheating success
probability 1/|F| is large. Of course, one can always take a large enough field L which is an
extension field of F and embed the whole computation into that field. But this is wasteful: if
we want to securely compute a boolean circuit, and we want the cheating success probability
to be 2−s, we need to do all our computations in the field of size 2s, so communication is
blown up by a factor of s.

An alternative was proposed in MiniMAC [14]. MiniMAC uses a batch authentication
idea, that we describe now: if we are willing to securely compute k instances of the same
arithmetic circuit over a small field at once, we can bundle these computations together
and see them as a computation of an arithmetic circuit over the ring Fk, where the sum
and multiplication operations are considered coordinatewise. Note the same authentication
technique as in SPDZ does not however directly work over this ring, again because of it
having divisors of zero: now share data are vectors x in Fk, and if we define their MACs as
α ∗ x where the key α is now also a vector in Fk and * is the coordinatewise product, this
authentication method can be fooled with probability 1/|F|, since the adversary only needs
to introduce an error in one coordinate, which can be achieved successfully by guessing the
corresponding coordinate of α. In order to solve this, MiniMAC first encodes every vector
x as a larger vector C(x) by means of a linear error-correcting code C with large minimum
distance d, and then defines the MAC as α∗C(x). The point is that now introducing an error
in the vector x requires to change at least d coordinates of the corresponding encoding to
stay within the error correcting code. Therefore fooling this MAC requires to guess at least
d different coordinates of α, which can be successfully done with probability only 1/|F|d, so
we can make this probability as small as we want by increasing d. An important observation,
however, is that, when processing multiplication gates, some data needs to be temporarily
authenticated with the so-called square C∗ (or Schur square) of the code C and hence we

2

also need the minimum distance d∗ of this other code to be large. These requirements on
the minimum distance of these two codes have an effect on the communication overhead of
the protocol, because the larger the distance of a code is, the worse the relation between
dimension (the length of messages k) and length (the length of the encoding) of the code.

At this point, one can wonder why not to just to “see the vector x in Fk as an element
in a extension field of F of degree k” and use SPDZ in that extension. That is, fixing from
now on F = F2 for simplicity, the ring Fk2 consisting of vectors of k elements in F2 (with
coordinatewise sum) and the field F2k (with its usual field sum) are isomorphic as vector
spaces over F2. So one can fix such an isomorphism ι satisfying that ι(x) + ι(y) = ι(x+ y).
Unfortunately, however, this map cannot “preserve” multiplications, i.e., the two sets are not
isomorphic as rings (for example, the ring Fk2 has divisors of zero, while F2k does not). This
causes that ι(x) · ι(y) (where · is the field product) will necessarily “destroy” information
about x ∗ y (where ∗ is coordinatewise product on vectors), which would be our target
computation when we are to compute k instances of a boolean multiplication gate in parallel.

However, an idea recently introduced in the honest majority, information-theoretically
secure setting [7], can provide us with an alternative approach. The point is that while Fk2
is not isomorphic as a ring to F2k , one can instead embed Fk2 into a slightly larger field F2m

with some dedicated linear “embedding” map φ, that satisfies that for any two vectors x,y
in Fk2 the field product φ(x) · φ(y) contains all information about x ∗ y, in fact there exists
a “recovery” linear map ψ such that x ∗ y = ψ(φ(x) · φ(y)). The pair (φ, ψ) is called an
(k,m)-reverse multiplication friendly embedding (RMFE). With such tool, [7] proceeds to
embed a simultaneous computation of k evaluation of a boolean circuit (i.e. an evaluation
of an arithmetic circuit over Fk2 with coordinatewise operations) into one evaluation of a
related circuit over F2m , which is securely computed via an MPC protocol for arithmetic
circuits over that larger field (more precisely the Beerliova-Hirt protocol [1]). The use of that
MPC protocol over F2m is not black-box, however, as there a number of modifications that
need to be done, which we will explain later, and that require certain additional correlated
information to be created in the preprocessing phase. Note that the motivation for the
introduction of this technique in the information-theoretical setting [7] was not related to
authentication via MACs: the goal of that paper was to match, over small fields and in an
amortized sense, the communication complexity of the Beerliova-Hirt protocol which uses
two tools (Shamir secret sharing and hyperinvertible matrices) which are only available when
the size of the field is at least the number of parties involved in the protocol.

1.1 Our contributions

In this paper we construct a new secure computation protocol in the dishonest majority
setting that allows to compute several instances of a boolean circuit at an amortized cost.1
We do this by combining the embedding techniques from [7] with the SPDZ methodology. As
opposed to [7], where one of the points of the embedding was to use Shamir secret sharing, in
our construction, vectors x ∈ Fk2 are additively shared in Fk2 , and it is only the MACs which
are constructed and shared in the field F2m . More precisely, the MAC of x will be α · φ(x)
where φ is the embedding map from the RMFE. Only when processing a multiplication gate,
authenticated sharings where the data are shared as elements in F2m are temporarily used.
Throughout most of the online phase, authenticated sharings are partially opened (i.e. only
the data values, not the MACs, are revealed). Only at the output phase, MACs are checked
in a batched fashion, at which point the protocol aborts if discrepancies are found.
1 Our ideas can of course be extended to arithmetic circuits over other small fields.

3

By this method we obtain a very efficient online phase where processing multiplication
gates need each party to communicate around 10 bits2 per evaluation of the circuit, for
statistical security parameters like s = 64, 128 (meaning the adversary can succcessfully
cheat with probability at most 2−s, for which in our protocols we need to set m ≥ s).

Our online phase ends up following a similar pattern to that of MiniMAC. Up to the
output phase, every partial opening of a value in Fk2 takes place when a partial opening of
a C-encoding occurs in MiniMAC. Respectively, we need to open values in F2m whenever
MiniMAC opens C∗-encodings. At every multiplication gate, both protocols need to apply
reencoding functions to convert encodings back to the base authentication scheme, which
requires a preprocessed pair of authenticated sharings of random correlated elements.

However, the encoding via RMFE we are using is more compact than using binary linear
error correcting codes with large minimum distance of the Schur square, and the comparison
boils down to comparing the “expansion factor” m/k of RMFEs with the ratio k∗/k between
the dimensions of C∗ and C for the best binary codes with good distances of C∗ [6]. We find
that we can cut the communication cost of multiplication gates by about half with respect
to MiniMAC where those binary codes are used. We achieve even better savings in the case
of the output gates since in this case MiniMAC needs to communicate full vectors of the
same length as the code, while the input and addition gates have the same cost.

We also compare the results with a modified version of MiniMAC proposed by Damgård,
Lauritsen and Toft [12], that allows to save communication cost of multiplication gates, by
essentially using MiniMAC over the field of 256 elements, at the cost of a much larger amount
of preprocessing that essentially provides authenticated sharings of bit decompositions of the
F256-coordinates of the elements in a triple, so that parties can compute bitwise operations.
This version achieves a communication complexity that is around 80% of that of our protocol,
due to the fact that this construction can make use of Reed-Solomon codes. However, it
requires to have created authenticated sharings of 19 elements, while ours need 5 and as
far as we know there is no explicit preprocessing protocol that has been proposed for this
version of MiniMAC.

Finally we compare the results with Committed MPC, a secret-sharing based pro-
tocol which uses (UC-secure) homomorphic commitments for authentication, rather than
information-theoretical MACs. In particular, this protocol can also be used for boolean cir-
cuits, given that efficient constructions of homomorphic commitments [16,9,8] over F2 have
been proposed. These constructions of homomorphic commitments also use error-correcting
codes. We find that, again, the smaller expansion m/k of RMFE compared to the relations
between the parameters for binary error-correcting codes provides an improvement in the
communication complexity, of about a factor 3 for security parameter 64.

We also provide a preprocessing phase producing all authenticated sharings of random
correlated data that we need. The preprocessing follows the steps of MASCOT [19] (see
also [17]) based on OT extension, with some modifications due to the slightly different au-
thentication mechanisms we have and the different format of our preprocessing. All these
modifications are easily to carry out based on the fact that φ and ψ are linear maps over
F2. Nevertheless, using the “triple sacrificing steps” from MASCOT that assure that pre-
processed triples are not malformed presents problems in our case for a number of reasons.
Instead, we use the techniques from Committed MPC [15] in that part of the triple genera-
tion.
2 Here we assume that broadcasting messages of M bits requires to send M bits to every other
player, which one can achieve with small overhead that vanishes for large messages [13, full
version]

4

1.2 Related Work

The use of information-theoretical MACs in secret-sharing based multiparty computation
dates back to BeDOZa (Bendlin et al., [2]), where such MACs where established between
every pair of players. Later SPDZ (Damgård et al., [13]) introduced the strategy consisting
of a global MAC for every element of which every party has a share, and whose key is likewise
shared among parties. Tiny OT (Nielsen et al., [21]), a 2-party protocol for binary circuits,
introduced the idea of using OT extension in the preprocessing phase. Larraia et al. [20]
extended these ideas to a multi-party protocol by using the SPDZ global shared MAC ap-
proach. MiniMAC (Damgård and Zakarias, [14]), as explained above, used error-correcting
codes in order to authenticate vectors of bits, allowing for efficient parallel computation
of several evaluations of the same binary circuits on possibly different inputs. Damgård et
al. [12] proposed several improvements for the implementation of MiniMAC, among them
the use of an error correcting code over an extension field, trading smaller communication
complexity for a larger amount of preprocessing. Frederiksen et al. [17] gave new protocols
for the construction of preprocessed multiplication triples in fields of characteristic two,
based on OT extension, and in particular provided the first preprocessing phase for Min-
iMAC. MASCOT (Keller et al., [19]) built on some of these ideas to create preprocessing
protocols for SPDZ based on OT extension. Committed MPC (Frederiksen et al. [15]) is
a secret-sharing based secure computation protocol that relies on UC-secure homomorphic
commitments instead of homomorphic MACs for authentication, but other than that, it
follows a similar pattern to the protocols above. Efficient constructions of UC-secure homo-
morphic commitments from OT have been proposed by Frederiksen et al. [16] and Cascudo
et al. [9] based on error correcting codes. Later, Cascudo et al. [8] proposed a modified
construction from extractable commitments, still using error-correcting codes, that presents
an important advantage for its use in Committed MPC, namely the commitment schemes
are multi-verifier, see [8].

The notion of reverse multiplication friendly embedding was first explicitly defined and
studied in the context of secure computation by Cascudo et al. in [7] and independently
by Block et al. in [4]. The former work is in the context of information-theoretically secure
protocols, as explained above, while the latter studied 2-party protocols over small fields
where the assumed resource is OLE over an extension field. This latter work is partially based
on a previous one by the same authors [3] where (asymptotically less efficient) constructions
of multiplication friendly embeddings were implicitly used.

2 Preliminaries and Notation

Let Fq denote a finite fields with q elements. Vectors are denoted with bold letters as
x = (x1, x2, . . . , xn) and componentwise products of two vectors are denoted by x ∗ y =
(x1 · y1, x2 · y2, . . . , xn · yn). Fixing an irreducible polynomial f of degree m in Fq[X], the
elements in the finite field with qm elements can be represented as polynomials with degree
lower than m and coefficients from Fq, i.e α = α0+α1 ·X+ · · ·+αm−1 ·Xm−1 ∈ Fqm , where
the sums and products are defined modulo f .

In our protocols we will assume a network of n parties who communicate by secure point-
to-point channels, and an static adversary who can actively corrupt up to n − 1 of these
parties. Our proofs will be in the universal composable security model [5] (see Appendix A
for a brief description of that model).

5

2.1 Reverse multiplication friendly embeddings

Our goal is a protocol that simultaneously evaluates k instances of a given boolean circuit
securely against up to (n − 1) actively corrupted parties where n is the number of parties
participating in the protocol.

For this we will bundle up together the k instances of the boolean circuit and embed
them in one instance of an arithmetic circuit over F2m , which we will compute securely using
the structure of SPDZ. In order to do this, we will use the notion of reverse multiplication
friendly embeddings from [7].

Definition 1. Let Fq be the finite field with q elements, and let k,m ∈ Z+. A pair of
Fq-linear maps (φ, ψ), where φ : Fkq → Fqm and ψ : Fqm → Fkq is called a (k,m)q-reverse
multiplication friendly embedding (RMFE) if they satisfy

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ Fkq .

In other words, this tool allows to multiply coordinatewise two vectors over Fq by first
embedding them in a larger field with φ, multiplying the resulting images and mapping the
result back to a vector over Fq with the other map ψ.

The following results about the existence of such pairs can be found in [7].

Theorem 1 ([7]).

1. (Concrete parameters, q = 2). For all r ≤ 33, there exists a (3r, 10r − 5)2 -RMFE
2. (Concrete parameters, general q). For all 1 ≤ k ≤ q+1, where q is a prime power, there

exists a (k, 2k − 1)q-RMFE.
3. (Asymptotic parameters, q = 2). There exists a family of (k,m)2-RMFE where k →∞

and m/k → 4.92...
4. (Asymptotic parameters, general q). For every prime power q, there exists a family of

(k,m)q-RMFE where m = Θ(k).

We remark that while the asymptotic results require algebraic geometry, the results 1 and
2 are constructed from elementary interpolation techniques.

2.2 The MPC embedding technique in [7]

The protocol follows the embedding strategy of the information-theoretically secure protocol
from [7], and it is important to understand the general idea of that work, and the hurdles
that are overcome there.

A parallel evaluation of k instances of a boolean circuit can equivalently be seen as
one evaluation of an arithmetic circuit over the ring Fk2 , where sums and products are
componentwise (and additions with the constant 1 are mapped to additions with the constant
all-one vector). Call this circuit C. Now we want to construct an arithmetic circuit C̃ over
the field F2m so that we can later embed an evaluation of C into an evaluation of C̃ using
the RMFE, meaning that we would take the inputs to C, map them into F2m using the map
φ from the RMFE and evaluate C̃ on them. Replacing (coordinatewise) sum and product
gates in Fk2 by sum and products gates in F2m would fall short. The reason is that the
multiplication property of the RMFE only works for products of exactly two elements. So

6

for example, in general x ∗ y ∗ z 6= ψ(φ(x) · φ(y) · φ(z)) (and this naturally extends to more
factors). Moreover, generally x 6= ψ(φ(x)). See [7] for more details.

The solution to this is to replace every multiplication gate in Fk2 by a “multiplication
gadget” that consists of the concatenation of a multiplication gate in F2m , followed by a
“refreshing” gate computing the concatenation map φ ◦ ψ : F2m → F2m . The addition gates
over Fk2 are simply replaced by addition gates over F2m . This constitutes our new arithmetic
circuit C̃.

The evaluation strategy is then as follows: the inputs (as well as the constant all-one
vectors) are mapped from Fk2 into F2m with φ. We evaluate the circuit C̃ over F2m described
above, and in the last step we apply φ−1. The rationale is that, in such an evaluation,
every wire of this circuit over F2m (consisting of additive gates and multiplication gadgets)
contains a value of the form φ(x) where x is the value that would travel in that wire for the
corresponding evaluation of the circuit C over Fk2 . The justification for this invariant is that
in the case of additive gates this holds by linearity of φ, and in the case of multiplication
gadgets,

φ(x ∗ y) = φ(ψ(φ(x) · φ(y))) = (φ ◦ ψ)(φ(x) · φ(y)),
the first equality being a consequence of the RMFE definition.

Applying a secure computation protocol for an arithmetic circuit over F2m presents two
obstacles, as discussed in [7]: one is computing the map φ◦ψ from the multiplication gadgets,
because this map is only linear over F2, and not over F2m ; the other is that parties need to
prove that they have embedded their inputs correctly in F2m using φ, as a standard MPC
protocol over F2m is oblivious to whether the inputs are in a particular subset of the field
(in this case the image of φ). Both issues can be solved efficiently by use of an involved
preprocessing step with generates randomness in F2-linear subspaces of F2m , which involves
the combination of hyperinvertible matrices [1] and tensoring of vector spaces.

3 The online phase

3.1 General idea

In this paper, we want to apply the ideas from [7] in order to construct a MPC protocol
secure against an active adversary corrupting a majority (up to all but one) of the parties.
As a basis we want to use the online phase of the SPDZ protocol. We have briefly discussed
the authentication technique in SPDZ and the protocol is well known, so we refer the reader
to [13] for more details, and we now explain how we combine both aforementioned elements.

Recall that our goal is to compute k instances of a boolean circuit in parallel, which
we can in turn see as computing an instance of an arithmetic circuit over the ring Fk2 with
coordinatewise sum and product, as explained above. While in [7], the inputs x ∈ Fk2 would
be immediately mapped into F2m via the map φ from the RMFE, and shared there (and
subsequently the same would happen to all intermediate values in the computation), in
our case this is not necessary, it is wasteful in communication, and in fact complicates the
computation of multiplication gates. Instead, we will have mixed authenticated sharings,
where inputs and intermediate values x are additively shared as vectors over Fk2 , but in
addition the MAC value α · φ(x) ∈ F2m will be additively shared in the field F2m , where
α ∈ F2m is a global key. We will call this authentication 〈x〉. The additivity of φ guarantees
that linear operations can still be computed locally.

The question is how to process multiplication gates; given 〈x〉, 〈y〉 we need to compute
〈x ∗ y〉 which implies not only obtaining an additive sharing of x ∗ y but also of its MAC

7

α ·φ(x ∗ y). Now if try to apply directly Beaver’s technique we have the following problem.
Suppose we have obtained a random triple 〈a〉, 〈b〉, 〈a ∗ b〉 from the preprocessing phase
and, proceeding as usual, we open the values ε = x− a, δ = y − b. From here, computing
sharings for x ∗ y is easy; however, the obstacle lies in computing shares of α · φ(x ∗ y).
Indeed

α · φ(x ∗ y) = α · φ(a ∗ b) + α · φ(a ∗ δ) + α · φ(ε ∗ b) + α · φ(ε ∗ δ),

and while computing the last term is trivial (since it is public) and a sharing for the first
term would have been created in the preprocessing, computing sharings for the middle terms
is not possible with the information we have: by the properties of the RMFE

α · φ(a ∗ δ) = α · φ(ψ(φ(a) · φ(δ))) = α · (φ ◦ ψ)(φ(a) · φ(δ))

Now the same problem as in [7] arises: if φ ◦ ψ : F2m → F2m were linear over F2m we could
“take α inside the argument” and use the additive sharing of α ·φ(a) given in 〈a〉 to compute
a sharing of the expression above. However, φ ◦ ψ is only linear over F2, not over F2m , so
this does not work.

Instead, we compute product gates using a two step process, for which we need to
introduce authenticated sharings of elements in x ∈ F2m . These are just regular SPDZ
sharings: x and α · x are both additively shared in F2m . We denote those by [x]. In the
first step of the multiplication we use a preprocessed triple which has the form (〈a〉, 〈b〉, [c])
where c = φ(a) · φ(b). It can be readily seen that by using this triple, and opening two
values as above, parties can create [φ(x) · φ(y)], because all it requires is the F2-linearity of
φ (details will be given later). In the second step, we create 〈x ∗ y〉 from [φ(x) · φ(y)]. We
use the fact that x ∗y = ψ(φ(x) ·φ(y)) from the definition of the RMFE. Computing ψ can
be done with the aid of a preprocessed pair of the form [r], 〈ψ(r)〉, by opening one value in
F2m .

The whole multiplication gate will cost 2 openings of sharings of vectors in Fk2 and one
opening of a share of an element in F2m . We remark that only sharings of the data are
opened and not those of their MACs. Every multiplication gate requires fresh preprocessed
correlated authenticated sharings (〈a〉, 〈b〉, [φ(a) · φ(b)]) and [r], 〈ψ(r)〉 for random a,b, r.

On the other hand, input gates are easily handled if we have created in the preprocessing
phase an authenticated sharing of a random value 〈r〉 and opened r to the party that will
provide the input. This party can just broadcast the difference between r and her input.

The output gate is handled as in SPDZ: the parties do a MAC check on a random linear
combination of all opened values that ensures that parties have not cheated except with
probability at most 2−m (we need that m ≥ s if s is the statistical security parameter);
then, they will open the result of the computation and will also check that the MAC of the
result is correct and accept the result if that is the case.

We differ the description of the preprocessing for later, but we point out that due to
the fact that φ and ψ are F2-linear maps, the creation of the needed elements (including
their authentication) is well suited to be accomplished through the techniques from [17,19]
relying on OT extension.

In comparison again to the information-theoretical protocol from [7] we avoid altogether
the problem that parties need to prove that their inputs are computed correctly as images
of φ (since here we keep the computation on Fk2 and the final opening will ensure that
the MAC is correctly computed); while the obstacle occurring at multiplication gates as a
consequence that φ ◦ψ is not F2m-linear resurfaces in our case, but we overcome this with a

8

different preprocessing requirement. Finally, we do not have a need for the involved tensoring
techniques from [7], which were needed because of the use of hyperinvertible matrices which
were defined over the extension field F2m . Here OT-extension based preprocessing techniques
such as MASCOT are amenable to work with F2-linear operations directly.

3.2 Authenticated sharings and operations

We describe more precisely the two types of authenticated sharings we used, and the algeb-
raic operations involving them.

In the case of vectors x ∈ Fk2 , we define

〈x〉 =
(
(x(1),x(2), . . . ,x(n)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)
, (1)

where each party Pi will hold an additive share x(i) ∈ Fk2 and a MAC share m(i)(x) ∈ F2m ,
such that

n∑
i=1

m(i)(x) = α ·
n∑
i=1

φ(x(i)),

where φ : Fk2 → F2m is the map from the RMFE.
On the other hand, in the case of the secret being a field element x ∈ F2m , we define

[x] =
(
(x(1), x(2), . . . , x(n))), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)
, (2)

where Pi will hold x(i) ∈ F2m and m(i)(x) ∈ F2m such that

n∑
i=1

m(i)(x) = α ·
n∑
i=1

x(i).

Namely, this is the SPDZ authenticated sharing.
We remark that we use the notation m(i) in both cases but the “input” tells what case we

are in. Furthermore, we denote m(x) =
∑n
i=1m

(i)(x) and similarly m(x) =
∑n
i=1m

(i)(x).
Note that the MAC shares in 〈x〉 and [φ(x)] are distributed in the same way. However,

the data shares of the former are vectors in Fk2 while the shares of the latter are in F2m ,
and they are not even restricted to be in the image of φ (so there is more entropy in them).
However, given y ∈ F2m , if we define the following operation:

〈x〉+ [y] =
(
(φ(x(1)) + y(1), . . . , φ(x(n)) + y(n)),

(m(1)(x) +m(1)(y), . . . ,m(n)(x) +m(n)(y))
)

then we can write 〈x〉+ [y] = [φ(x) + y] in the sense that the data sharings are now equally
distributed.

9

As usual (because [·] is the regular SPDZ MAC) we can also define the following opera-
tions involving only [·]:

[x] + [y] =
(
(x(1) + y(1), . . . , x(n) + y(n)),

(m(1)(x) +m(1)(y), . . . ,m(n)(x) +m(n)(y))
)

a+ [x] =
(
(x(1) + a, x(2), . . . , x(n)),

(α(1) · a+m(1)(x), . . . , α(n) · a+m(n)(x))
)

a · [x] =
(
(a · x(1), . . . , a · x(n)), (a ·m(1)(x), . . . , a ·m(n)(x))

)
.

for elements x, y, a ∈ F2m , where we recall that α(1), . . . , α(n) are the additive shares for the
global MAC key α.

In the case of vectors authenticated with 〈·〉, we can in first place define the following
operations:

〈x〉+ 〈y〉 =
(
(x(1) + y(1), . . . ,x(n) + y(n)),

(m(1)(x) +m(1)(y), . . . ,m(n)(x) +m(n)(y))
)

= 〈x+ y〉,

a+ 〈x〉 =
(
(x(1) + a,x(2), . . . ,x(n)),

(α(1) · φ(a) +m(1)(x), . . . , α(n) · φ(a) +m(n)(x))
)

= 〈a+ x〉,

for vectors x,y,a ∈ Fk2 . Finally, we need the following operations:

y · 〈x〉 =
(
(y · φ(x(1)), . . . , y · φ(x(n))), (y ·m(1)(x), . . . , y ·m(n)(x))

)
,

a ∗ 〈x〉 =
(
(φ(a) · φ(x(1)), . . . , φ(a) · φ(x(n))),

(φ(a) ·m(1)(x), . . . , φ(a) ·m(n)(x))
)

for vectors x,a ∈ Fk2 and an element y ∈ F2m . These expressions are “almost” equal respect-
ively to [y · φ(x)] and [φ(a) · φ(x)] except that again the data sharings of the corresponding
elements are not uniform in F2m . However, given an element z ∈ F2m we have:

y · 〈x〉+ [z] = [y · φ(x) + z]

a ∗ 〈x〉+ [z] = [φ(a) · φ(x) + z].
(3)

By a partial opening, we will mean that only the shared values and not the MACs are
opened. To partially open 〈x〉 party Pi sends x(i) to P1 who can reconstruct and broadcast
x. Opening [x] is analogous.

3.3 Functionalities and protocols for the online phase

We describe now more formally the functionalities and protocols involved in the online
phase.

10

As we described before, for each input vector from party Pi we need to have obtained from
the preprocessing a pair (r, 〈r〉) where r ∈ Fk2 is a random vector known by Pi; furthermore,
in order to process multiplication gates we need pairs (〈ψ(r)〉, [r]) for random elements
r ∈ F2m and multiplication triples (〈a〉, 〈b〉, [c]) where c = φ(a) · φ(b). The functionality
constructing the required preprocessed randomness is given in Figure 2, and relies on the
authentication functionality in Figure 1. The latter augments the one in MASCOT [19]
allowing to also authenticate vectors and to compute linear combinations involving the two
different types of authenticated values (which capture the operations described above for
the SPDZ-like MACs). We will later realize this authentication functionality by means of
the [·]- and 〈·〉-representations, which allow for this type of algebraic operations as described
before.

Functionality FAuth

The functionality maintains two dictionaries Val and ValField, to keep track of authenticated values.
We remark that we can store elements from Fk2 in Val and elements from F2m in ValField. Entries
in the dictionaries cannot be changed.

1. Input: On input

(Input, (id1, id2, . . . ids), (id
′
1, id

′
2, . . . id

′
t), (x1,x2, . . . ,xs), (x1, x2, . . . , xt), Pi)

from Pi and (Input, (id1, id2, . . . ids), (id
′
1, id

′
2, . . . id

′
t), Pi) from all other parties, set Val[idj] =

xj for j = 1, 2, . . . , s and ValField[id′j] = xj for j = 1, 2, . . . , t.
2. Add: On input (Add, īd, id, a)) from all parties. If a is an id store Val[īd] = Val[id] + Val[a]. If

a is a vector in Fk2 store Val[īd] = Val[id] + a.
3. LinComb: On input

(LinComb, īd, (id1, id2, . . . ids), (id
′
1, id

′
2, . . . id

′
t), a1, a2, . . . , as+t, a)

from all parties, where aj is in F2m or Fk2 and t ≥ 1. Define ãj to be aj if aj ∈ F2m , and φ(aj)
if aj ∈ Fk2 , and store ValField[īd] =

∑s
j=1 ãj · φ(Val[idj]) +

∑t
j=1 ãs+j ·ValField[id′j] + ã.

4. Open: On input (Open,Dict, id, S) from all parties, where S is a non-empty subset of parties.
If Dict = Val and Val[id] 6= ⊥ wait for an x from the adversary and send x to the honest parties
in S. If Dict = ValField and ValField[id] 6= ⊥ wait for an x from the adversary and send x to
the parties in S.

5. Check: On input

(Check, (id1, id2, . . . , ids), (id
′
1, id

′
2, . . . , id

′
t), (x1,x2, . . . ,xs), (x1, x2, . . . , xt))

from every party wait for an input from the adversary. If they input OK, Val[idj] = xj for
j = 1, 2, . . . , s and ValField[id′j] = xj for j = 1, 2, . . . , t return OK to all parties. Otherwise
abort.

Notation: We will use the notation 〈x〉 to refer to a value x ∈ Fk2 stored in Val, and the notation
[x] to refer to a value x ∈ F2m stored in ValField.

Figure 1. Functionality – Authentication

11

Functionality FPrep

This functionality has the same features as FAuth along with the following commands.

1. InputTuple: On input (InputTuple, id, Pi) from all parties let Pi choose r ∈ Fk2 at random
and call FAuth with input (Input, id, r, Pi) to obtain 〈r〉. Output 〈r〉 to all parties and r to Pi.

2. ReEncodeTuple: On input (ReEncodeTuple, id1, id2) sample a random field element r ∈ F2m

and set Val[id1] = ψ(r) and ValField[id2] = r.
3. Triple: On input (Triple, ida, idb, idc) from all parties, sample two random vectors a,b ∈ Fk2

and set (Val[ida],Val[idb],ValField[idc]) = (a,b, φ(a) · φ(b)).

Figure 2. Functionality – Preprocessing

As explained before, at every wire of the circuit parties hold authenticated sharings 〈x〉
of the vectors x whose coordinates would be the bits in that wire in each of the k instances
of the boolean computation. To have a party Pi input a value 〈x〉 we use a preprocessed
authenticated sharing of a random element 〈r〉 known by Pi, who can then broadcast x− r
to allow the parties to obtain 〈x〉 from 〈r〉. Note that this way of proceeding ensures that
the shared MAC of 〈x〉 is well constructed as long as 〈r〉 is.

Additions 〈x〉 + 〈y〉 = 〈x + y〉 can be performed locally due to linearity of the secret
sharing and MAC, as it is usual for this type of protocols.

The two-step process to handle multiplications 〈x〉 ∗ 〈y〉 is described next. For a pre-
processed multiplication triple (〈a〉, 〈b〉, [c]), using linearity parties can locally compute and
partially open 〈ε〉 = 〈x〉 − 〈a〉 and 〈δ〉 = 〈y〉 − 〈b〉 publicly. Once again linearity allows
parties to compute

[c] + ε ∗ 〈y〉+ δ ∗ 〈x〉 − φ(ε) · φ(δ) = [φ(x) · φ(y)],

assuming all operations have been done honestly.
Now, parties take a tuple (〈ψ(r)〉, [r]) and partially open [σ] = [φ(x) · φ(y)] − [r]. To

complete the conversion back to 〈·〉 they compute ψ(σ) + 〈ψ(r)〉 = 〈x ∗ y〉.
From this description we present the functionality for our MPC protocol in Figure 3 and

the protocol implementing the online phase in Figure 4.

Theorem 2. ΠOnline securely implements FMPC in the FPrep-hybrid model.

Proof. The correctness follows from the explanation above. We argue security in Appendix C
but we note that the online phase from this protocol is similar to the online phases of
protocols such as [13,14,19,15], except that in every multiplication we additionally need to
use the tuple (〈ψ(r)〉, [r]) in order to transform [φ(x) ·φ(y)] into 〈x∗y〉. Since r is uniformly
random in the field F2m , the opened value σ masks any information on x, y.

4 Comparison with online phases of MiniMAC and Committed
MPC

In this section we compare the communication complexity of our online phase with that of
MiniMAC [14] and Committed MPC [15], two secret-sharing based MPC protocols which

12

Functionality FMPC

1. Initialize: On input Init from all players setup an empty dictionary Val.
2. Input: On input (Input, id,x, Pi) from Pi and (Input, id, Pi) from all other parties where x ∈ Fk2

and Val[id] = ⊥ set Val[id] = x.
3. Add: On input (Add, id1, id2, id3) from all parties where Val[id1] 6= ⊥ and Val[id2] 6= ⊥, set

Val[id3] = Val[id1] + Val[id2].
4. Multiply: On input (Mult, id1, id2, id3) from all parties where Val[id1] 6= ⊥ and Val[id2] 6= ⊥,

set Val[id3] = Val[id1] ∗Val[id2].
5. Output: On input (Output, id) from all parties when Val[id] 6= ⊥ retrieve z = Val[id] and send

z to the adversary. Wait for an input from the adversary, if the adversary inputs OK send z to
the honest parties. Otherwise abort.

Figure 3. Functionality – MPC

Protocol ΠOnline

1. Initialize: The parties call the preprocessing functionality FPrep to obtain input tuples (r, 〈r〉)
for each party, re-encode tuples (〈ψ(r)〉, [r]), and multiplication triples (〈a〉, 〈b〉, [c]).

2. Input: For an input gate belonging to Pi having input x ∈ Fk2 the parties do the following
(a) Pi takes a tuple (r, 〈r〉) and broadcasts ε = x− r.
(b) The parties compute 〈x〉 = ε + 〈r〉.

3. Add: To compute componentwise addition of 〈x〉 and 〈y〉 the parties locally compute 〈x+y〉 =
〈x〉+ 〈y〉.

4. Multiply: To compute a componentwise multiplication of 〈x〉 and 〈y〉, take the next available
multiplication triple (〈a〉, 〈b〉, [c]) and tuple (〈ψ(r)〉, [r]).
(a) Set 〈ε〉 = 〈x〉 − 〈a〉 and 〈δ〉 = 〈y〉 − 〈b〉 and partially open ε and δ.
(b) Compute3 [c] + ε ∗ 〈y〉+ δ ∗ 〈x〉 − φ(ε) · φ(δ) = [φ(x) · φ(y)].
(c) Compute [σ] = [φ(x) · φ(y)]− [r] and partially open this value to obtain σ.
(d) Compute ψ(σ) + 〈ψ(r)〉 = 〈x ∗ y〉 and output this value.

5. Output: This stage is entered when the players have an unopened sharing 〈z〉 which they want
to output. Let x1,x2, . . . ,xs be all opened 〈·〉-sharings, i.e. xj ∈ Fk2 and let x1, x2, . . . , xt be all
opened [·]-sharings, i.e. xj ∈ F2m . The parties do the following:
(a) Call FAuth.Check with inputs (x1,x2, . . . ,xs) and (x1, x2, . . . , xt).
(b) If the check passes, partially open z.
(c) Call FAuth.Check with input z
(d) If the check passes, output z to all parties.

Figure 4. Online phase

are well-suited for simultaneously evaluating k instances of the same boolean circuit. We
will count broadcasting a message of M bits by a party as having that party communicate

3 Throughout the protocol, operations with authenticated sharings are formally executed by calling
FAuth.LinComb and FAuth.Add on the appropriate inputs. E.g. the step [c]+ε∗〈y〉+δ∗〈x〉−φ(ε)·φ(δ)
is shorthand for calling FAuth on input (LinComb, id, (id1, id2), (id′), ε, δ, c,−φ(ε) · φ(δ)), where
id1, id2 are the indices corresponding to 〈x〉 and 〈y〉, id′ is the index corresponding to [c] and īd
is a still unused index in ValField. Similarly, 〈ε〉 = 〈x〉− 〈a〉 is computed by calling FAuth.Add on
input (Add, īd, id1, id2) where id1 and id2 are the indices corresponding to x and a.

13

M(n − 1) bits (M bits to each other party). In an amortized sense, this can be achieved
using point-to-point channels by a technique described in the full version of [13].

Communication complexity of our protocol.

Partially opening a 〈·〉-authenticated secret involves 2k(n−1) bits of communication, since we
have one selected party receive the share of each other party and broadcast the reconstructed
value. Likewise, partially opening a [·]-authenticated value communicates 2m(n− 1) bits. In
our online phase, every input gate requires k(n − 1) bits of communication. Multiplication
gates require the partial opening of two 〈·〉-authenticated values and one [·]-authenticated
value, hence (4k + 2m)(n − 1) bits of communication. An output gate requires to do a
MAC-check on (a linear combination of) previously partially opened values, then partially
opening the output, and finally doing a MAC check on the output. A MAC check require
every party to communicate a MAC share in F2m , for a total of mn bits communicated.
Hence output gates require 2k(n− 1) + 2mn bits of communication.

MiniMAC.

We have described in the introduction the idea of MiniMAC and for reference a more detailed
description is in the Appendix B. In short, MiniMAC utilizes a linear error correcting code C
with parameters [`, k, d] (i.e., it allows for linear encoding of messages from Fk2 into F`2 with
minimum Hamming distance d). It is also important to consider another code, C∗ defined
as C∗ = span{x ∗ y | x,y ∈ C}, the smallest linear code containing the coordinatewise
product of every pair of codewords in C∗. This is another code with parameters [`, k∗, d∗]. We
always have d ≥ d∗, and the cheating success probability of the adversary in the MiniMAC
protocol is 2−d

∗
, so we need d∗ ≥ s for the statistical parameter s. In MiniMAC, parties

have additive shares of encodings C(x), where the shares are also codewords, and shares
of the MAC α ∗ C(x), which can be arbitrary vectors in F`2. In addition, at multiplication
gates C∗-encodings of information are temporarily created. The online phase of MiniMAC
has a very similar communication pattern to our protocol: in particular, a multiplication
requires to partially open two elements encoded with C (coming from the use of Beaver’s
technique) and one element encoded with C∗. Since shares of C-(resp C∗-)encodings are
codewords in C (resp C∗), and describing such codewords require k bits (resp. k∗ bits)4 the
total communication complexity is (4k + 2k∗)(n − 1), so the difference with our protocol
depends on the difference between the achievable parameters for their k∗ and our m, which
we compare later. Input gates require k(n − 1) bits, as in our case, and for output gates,
since MAC shares are arbitrary vectors in F`2, a total of 2k(n− 1) + 2`n bits are sent.

Committed MPC.

Committed MPC [15] is a secret-sharing based MPC protocol that relies on UC-secure
additively homomorphic commitments for authentication, rather than on MACs. Efficient
commitments of this type have been proposed in works such as [16,9,8], based on OT (in the
first two cases) and extractable commitments (in the third), primitives that are only used in
the preprocessing. The main ingredient of the construction is again a linear error correcting
4 We observe that this is more lenient than the description of MiniMAC in [14,12] where it is
implied that parties need to send vectors of ` bits in order to do these openings

14

code C with parameters [`, k, d]. In committed MPC, for every data vector x ∈ Fk2 , each party
Pi holds an additive share xi ∈ Fk2 to which she commits towards every other party Pj (in
the multi-receiver commitment from [8], this can be accomplished by only one commitment).
During most of the online phase there are only partial openings of values (where only the
shares are revealed) and only at output gates the commitments are checked. Multiplication
is done through Beaver’s technique. In this case only two values ε, δ need to be partially
opened. In exchange, parties need to communicate in order to compute commitments to
δ ∗ a (resp. ε ∗ b) given ε, and commitments to a (resp. ε and commitments to b) at least
with current constructions for UC-secure homomorphic commitments. [15, full version, fig.
16] provides a protocol where each of these products with known constant vectors requires
to communicate one full vector of length ` and two vectors of k∗ components (again ` is
the length of C and k∗ is the dimension of C∗. In total the communication complexity of a
multiplication is (4k+2k∗+`)(n−1) bits. Output gates require to open all the commitments
to the shares of the output. Since opening a commitments in [16,9,8] requires to send two
vectors of length ` to every other party, which has a total complexity of 2`(n − 1)n. Input
gates have the same cost as for the other two protocols.

Concrete parameters Summing up we have the communication costs given in Table 1.

MiniMAC Committed MPC Our protocol
Input k(n− 1) k(n− 1) k(n− 1)
Add 0 0 0
Multiply (4k + 2k∗)(n− 1) (4k + 2k∗ + `)(n− 1) (4k + 2m)(n− 1)
Output 2 · ` · n+ 2k(n− 1) 2 · ` · (n− 1)n 2 ·m · n+ 2k(n− 1)

Table 1. Bits sent in the different gates in the online phases, when computing k instances of a
boolean circuit in parallel.

We see that the comparison between the different protocols depends on the relation
between m/k (in our case) and k∗/k and `/k in the other two protocols. While the possible
parameters `, k, d of linear codes have been studied exhaustively in the theory of error-
correcting codes, relations between those parameters and k∗, d∗ are much less studied, at
least in the case of binary codes. As far as we know, the only concrete non-asymptotic results
are given in [6,10]. In particular, the parameters in Table 2 are achievable.

` k d ≥ k∗ d∗ ≥ k∗/k `/k
511 31 219 232 73 7.48 16.48
1023 46 439 441 147 9.59 22.24
2047 210 463 1695 67 8.07 9.75
4095 338 927 3293 135 9.74 12.11

Table 2. Parameters for C and C∗2 from [6].

k m m/k
21 65 3.10
24 75 3.13
42 135 3.21
45 145 3.22

Table 3. Parameters for RMFE from
[7].

15

On the other hand, the parameters for our protocol depend on parameters achievable
by RMFEs. By Theorem 1 for all 1 ≤ r ≤ 33, there exists a RMFE with k = 3r and
m = 10r − 5. Some specific values are shown in Table 3.

For security parameter s = 64, we need to select a RMFE where m ≥ 64 in the case of
our protocol (we choose the first entry), and a code for which d∗ ≥ 64, in the case of the
other two protocols. The best selection for optimizing multiplication gates is the first code
for MiniMAC and the third one for Committed MPC. The communication complexity per
computed instance of the boolean circuit is then given in Table 4.

MiniMAC Committed MPC Our protocol
Input (n− 1) (n− 1) (n− 1)
Add 0 0 0
Multiply 20.96 · (n− 1) 29.89 · (n− 1) 10.2 · (n− 1)
Output 32.96n+ 2(n− 1) 19.5 · (n− 1)n 6.2 · n+ 2(n− 1)

Table 4. number of bits per instance sent in the different gates in the online phases, for s = 64.

We can see that the communication complexity of computing multiplication gates in our
protocol is less than half of that of MiniMAC and Committed MPC. Similar numbers are
obtained for security parameter s = 128.

Comparison with an online communication-efficient version of MiniMAC In [12],
a version of MiniMAC is proposed which uses linear codes over the extension field F256. The
larger field enables to use a Reed-Solomon code, for which k∗ = 2k − 1. However, because
this only gives coordinatewise operations in Fk256, the protocol needs to be modified in order
to allow for bitwise operations instead. The modified version requires the opening of two
C∗-encodings at every multiplication gate and a more complicated and much larger prepro-
cessing, where in addition to creating certain type of multiplication triple, the preprocessing
phase needs to provide authenticated sharings of 16 other vectors created from the bit de-
compositions of the coordinates of the two “factor” vectors in the triple5. As far as we know,
no preprocessing phase that creates these authenticated elements has been proposed.

The amortized communication complexity of that protocol is of 8(n − 1) bits per mul-
tiplication gate, per instance of the circuit, which is slightly less than 80% of ours. On the
other hand, we estimate that the complexity of the preprocessing would be at least 4 times
as that of our protocol and possibly larger, based on the number of preprocessed elements
and their correlation. It is an interesting question whether we can adapt our protocol to
enjoy a similar trade-off between communication complexity and amount of preprocessing.

5 Preprocessing phase

In the preprocessing phase we need to generate input tuples (r, 〈r〉), re-encoding pairs (of
the form (〈ψ(r)〉, [r])), and multiplication triples (〈a〉, 〈b〉, [c]) where c = φ(a) · φ(b). We

5 Namely if a = (a1, ..., ak) ∈ Fk256 is one of these vectors the preprocessing needs to create
authentications for all aj = (aj1, ...a

j
k) ∈ Fk256, j = 1, ..., 7, where if {1, Y, Y 2, . . . , Y 7} is a basis of

F256 over F2 and ai =
∑7
j=0 ai,jY

j then aji is defined as ai,jY j .

16

use the ideas from [19] and [15] to create this preprocessing data from oblivious transfer.
Small modifications of these protocols suffice for this, the underlying reason being that the
F2-linearity of φ and ψ fit well with the OT-extension based techniques in these papers.

We use the following basic ideal functionalities. In first place parties can generate uniform
random elements in a finite set, using the functionality FRand (for the sake of notational
simplicity we will omit referring to FRand in protocols). Moreover, parties have access to a
commitment functionality FComm.

Functionality FRand

1. Upon receiving (Rand, S) from all parties, where S is a finite set, choose a uniform random
number r ∈ S and send it to all parties.

Functionality FComm

1. Upon receiving (Comm, x, Pi) from Pi and (Comm, Pi) from all other parties the functionality
stores x. When receiving an opening command from all parties, the functionality sends x to all
parties.

Figure 5. Functionalities – Randomness generation and Commitment

We will also make use of a random 1-out-of-2 oblivious transfers functionality outputting
k-bit strings. We use the notation Fn,kROT to denote n instances of this functionality which is
presented in Figure 6.

Functionality Fn,kROT

1. Upon receiving (ROT, Pi, Pj) from party Pi and (ROT, Pi, Pj ,b) from party Pj , where b ∈
{0, 1}n, the functionality chooses rl0, r

l
1 ∈ {0, 1}k uniformly at random and sends these to Pi,

while it sends rlbl to Pj for l = 1, 2, . . . , n.

Figure 6. Functionality – Random OT

We adapt the correlated oblivious product evaluation functionality FCOPEe defined in
MASCOT [19]. We recall how this functionality works: we see the field F2m as F2[X]/(f) for
some irreducible polynomial f ∈ F2. Then as a vector space over F2 the set {1, X,X2, . . . , Xm−1}
constitutes a basis for F2m . The functionality as described in [19] takes an input α ∈ F2m

from one of the parties PB in the initialization phase; then there is an arbitrary number of
extend phases where on input x ∈ F2m from PA, the functionality creates additive sharings
of α · x for the two parties. However, if PA is corrupted it may instead decide to input a
vector of elements (x0, x1, . . . , xm−1) ∈ (F2m)

m, and in that case the functionality outputs
a sharing of

∑m−1
i=0 xi · αi ·Xi (where αi are the coordinates of α in the above basis). The

honest case would correspond to all xi being equal to x. This functionality from MASCOT
corresponds to the steps Initialize and ExtendField in our version Figure 8.

17

We add the step ExtendVector, where party PA can input a vector x ∈ Fk2 and the
functionality outputs an additive sharing of α · φ(x) ∈ F2m . If party PA is corrupted it may
instead input (x0,x1, . . . ,xm−1) ∈ (Fk2)m. In that case the functionality outputs an additive
sharing of

∑m−1
i=0 φ(xi) · αi · Xi, and note that this is more restrictive for the corrupted

adversary than ExtendField since the values φ(xi) are not free in F2m but confined to the
image of φ.

We define the functionality FCOPEe in Figure 7 and present a protocol implementing the
functionality in Figure 8.

Functionality FCOPEe

This functionality runs with two parties PA and PB and an adversary A. The Initialize phase is
run once first. The ExtendVector and ExtendField may be run an arbitrary number of times, in
arbitrary order.

1. Initialize: On input α ∈ F2m from PB the functionality stores this value. We identify α by the
vector (α0, α1, . . . , αm−1) ∈ Fm2 , s.t. α =

∑m−1
i=0 αi ·Xi.

2. ExtendVector: PA inputs a vector x ∈ Fk2 .
(a) If PA is corrupt receive t ∈ F2m and (x0,x1, . . . ,xm−1) ∈ (Fk2)m from A, where the numbers

indicate that xi might be different from x. Then compute q such that

q + t =

m−1∑
i=0

φ(xi) · αi ·Xi

(b) If both parties are honest sample t ∈ F2m at random and compute q such that

q + t = α · φ(x)

(c) If only PB is corrupt then receive q ∈ F2m from A and compute t s.t.

q + t = α · φ(x)

(d) Output t to PA and q to PB .
3. ExtendField: PA inputs a field element x ∈ F2m .

(a) If PA is corrupt receive t ∈ F2m and (x0, x1, . . . , xm−1) ∈ (F2m)m from A, where the
numbers indicate that xi might be different from x. Then compute q such that

q + t =

m−1∑
i=0

xi · αi ·Xi

(b) If both parties are honest sample t ∈ F2m at random and compute q such that

q + t = α · x

(c) If only PB is corrupt then receive q ∈ F2m from A and compute t s.t.

q + t = α · x

(d) Output t to PA and q to PB .

Figure 7. Functionality – Correlated oblivious product evaluation with errors.

18

Protocol ΠCOPEe

The protocol is a two party protocol with parties PA and PB that uses PRFs F : {0, 1}λ×{0, 1}λ →
Fk2 and FField : {0, 1}λ × {0, 1}λ → F2m , has access to the ideal functionality Fm,λROT, and maintains
a global counter j := 0. The Initialize phase is run once first, and then the ExtendVector and
ExtendField may be run an arbitrary number of times, in arbitrary order.

1. Initialize: On input α ∈ F2m from PB :
(a) The parties engage in Fm,λROT where PB inputs (α0, α1, . . . , αm−1) ∈ Fm2 s.t. α =

∑m−1
i=0 αi ·

Xi ∈ F2m . PA receives
{

(ki0,k
i
1)
}m−1

i=0
and PB receives kiαi for i = 0, 1, . . . ,m− 1.

2. ExtendVector: On input x ∈ Fk2 from PA:
(a) For i = 0, 1, . . . ,m− 1:

i. Define

ti0 = F (ki0, j) ∈ Fk2 , ti1 = F (ki1, j) ∈ Fk2 ,

so PA knows (ti0, t
i
1) and PB knows tiαi .

ii. PA sends ui = ti0 − ti1 + x to PB .
iii. PB computes

qi = αi · ui + tiαi

= ti0 + αi · x ∈ Fk2 .

(b) j := j + 1
(c) PB outputs q =

∑m−1
i=0 φ(qi) ·Xi and PA outputs t = −

∑m−1
i=0 φ(ti0) ·Xi

It holds that t+ q = α · φ(x)
3. ExtendField: On input x ∈ F2m from PA:

(a) For i = 0, 1, . . . ,m− 1:
i. Define

ti0 = FField(ki0, j) ∈ F2m , ti1 = FField(ki1, j) ∈ F2m ,

so PA knows (ti0, t
i
1) and PB knows tiαi .

ii. PA sends ui = ti0 − ti1 + x to PB .
iii. PB computes

qi = αi · ui + tiαi

= ti0 + αi · x ∈ F2m .

(b) j := j + 1
(c) PB outputs q =

∑m−1
i=0 qi ·Xi and PA outputs t = −

∑m−1
i=0 ti0 ·Xi

It holds that t+ q = α · x

Figure 8. Correlated oblivious product evaluation with errors.

Proposition 1. ΠCOPEe securely implements FCOPEe in the Fm,λOT -hybrid model.

Proof. The commands Initialize and ExtendField are as in [19] (the latter being called
Extend there). The proof for our ExtendVector command is analogous to the one for the
ExtendField. For completeness we give more details in Appendix C.

19

5.1 Authentication

In the next protocol, ΠAuth in Figure 9, 10, and 11, we use FCOPEe to implement FAuth

from Figure 1.

Protocol ΠAuth – Part 1

This protocol additively shares and authenticates elements in Fk2 or F2m , and allows linear operations
and openings to be carried out on these shares. Note that the Initialize procedure only needs to
be called once, to set up the MAC key. We assume access to the ideal functionalities FRand, FComm,
and FCOPEe.

1. Initialize: Each party Pi samples a MAC key share α(i) ∈ F2m . Each pair of parties (Pi, Pj)
for i 6= j calls FCOPEe.Initialize where Pi inputs α(i).

2. Input: On input x1,x2, . . . ,xs ∈ Fk2 and x1, x2, . . . , xt ∈ F2m from Pj the parties do the
following:
(a) Pj samples random element xt+1 ∈ F2m .
(b) For h = 1, 2, . . . , s, Pj generates additive sharing

∑n
i=1 x

(i)
h = xh and sends x

(i)
h to Pi.

Similarly, for l = 1, 2, . . . , t+1, Pj generates additive sharing
∑n
i=1 x

(i)
l = xl and sends x(i)l

to Pi.
(c) For every i 6= j, Pi and Pj call FCOPEe.ExtendVector s times where Pj inputs x1,x2, . . . ,xs

and FCOPEe.ExtendField t+ 1 times with inputs x1, x2, . . . , xt+1.
(d) Pi receives q(i,j)h ∈ F2m and Pj receives t(j,i)h ∈ F2m such that

q
(i,j)
h + t

(j,i)
h = α(i) · φ(xh), for h = 1, 2, . . . , s

q
(i,j)
l+s + t

(j,i)
l+s = α(i) · xl, for l = 1, 2, . . . , t+ 1

(e) Each Pi, i 6= j defines the MAC shares m(i)(xh) = q
(i,j)
h for h = 1, 2, . . . , s and m(i)(xl) =

q
(i,j)
l+s for l = 1, 2, . . . , t+ 1. Pj computes MAC share

m(j)(xh) = α(j) · φ(xh) +
∑
i6=j

t
(j,i)
h for h = 1, 2, . . . , s

m(j)(xl) = α(j) · xl +
∑
i6=j

t
(j,i)
l+s for l = 1, 2, . . . , t+ 1

This implies that we have 〈xh〉 for h = 1, 2, . . . , s and [xl] for l = 1, 2, . . . , t+ 1
(f) The parties call FRand(Fs+t+1

2m) to obtain (r1, . . . , rs+t+1).
(g) Compute [y] =

∑s
h=1 rh · 〈xh〉 +

∑t+1
l=1 rs+l · [xl] by calling ΠAuth.LinComb and open y by

calling ΠAuth.Open.
(h) Call ΠAuth.Check on y. If the check succeeds output 〈xh〉 for h = 1, 2, . . . , s, and [xl] for

l = 1, 2, . . . , t.

Figure 9. Authenticated shares – Part 1.

In the initialize phase each pair of parties (Pi, Pj) call the initialize phase from FCOPEe

where Pi inputs a MAC key. Afterwards Pj can create authenticated sharings to the desired
values, both of boolean vectors and of elements in the larger field: namely Pj constructs
additive random sharings of the individual values and uses the appropriate extend phase

20

Protocol ΠAuth – Part 2

3. Add: On input (Add, īd, id, a) the parties do the following. If a is an index of Val they retrieve
shares and MAC shares x(i),y(i),m(i)(x),m(i)(y) where x corresponds to id and y corresponds
to the index a in Val. Pi computes

x(i) + y(i) and m(i)(x) +m(i)(y)

and store these under īd. If a is a vector, i.e. a = a, they retrieve the share and MAC share
x(i),m(i)(x) where x corresponds to id in Val. Pi computes

x(i) +

{
a if i = 1

0 if i 6= 1
and m(i)(x) + α(i) · φ(a).

and store these under Val[īd].
4. LinComb: On input

(LinComb, īd, (id1, id2, . . . ids), (id
′
1, id

′
2, . . . id

′
t), c1, c2, . . . , cs+t, c)

where t ≥ 1, the Pi retrieves its shares and MAC shares
{
x
(i)
j ,m(i)(xj)

}
j=1,2,...,s

corresponding

to idj in Val and
{
x
(i)
j ,m(i)(xj)

}
j=1,2,...,t

corresponding to id′j in ValField. Pi computes

y(i) =

s∑
j=1

cj · φ(x
(i)
j) +

t∑
j=1

cs+j · x(i)j +

{
c if i = 1

0 if i 6= 1

m(i)(y) =

s∑
j=1

cj ·m(i)(xj) +

t∑
j=1

cs+j ·m(i)(xj) + c · α(i)

and stores these under īd in ValField.

Figure 10. Authenticated shares – Part 2.

of FCOPEe to obtain additive sharings of the MACs. At last, a random linear combination
of the values chosen by Pj is checked. Here privacy is achieved by letting Pj include a
dummy input xt+1 to mask the other inputs. Note that we have already described how to
compute linear combinations involving both authenticated sharings of boolean vectors and
of elements in F2m .

Proposition 2. ΠAuth securely implements FAuth in the (FCOPEe,FRand,FComm)-hybrid
model

Proof. Since the proof is similar to the proof of security for Π[[·]] in [19], we point out the
differences and argue why it does not have an impact on the security in Appendix C.

5.2 Input tuples and reencoding pairs

The two functionalities FCOPEe and FAuth are the building blocks for the preprocessing.
They are in shape very similar to the MASCOT functionalities but with some few corrections
to include that sharings can be of vectors instead of field elements in F2m . With these building

21

Protocol ΠAuth – Part 3

5. Open: On input (Open,Dict, id, S) party Pi retrieves the share corresponding to the dictionary
and index, sends the share to Pj (the party with lowest index in S) who sums the shares and
sends the sum back to the other parties in S.

6. Check:
(a) On input

(Check, (id1, id2, . . . , ids), (id
′
1, id

′
2, . . . , id

′
t), (x1,x2, . . . ,xs), (x1, x2, . . . , xt))

parties sample a random vector (r1, r2, . . . , rs+t) ∈ Fs+t2m . Pi retrieves its MAC shares
m(i)(xj) for j = 1, 2, . . . , s corresponding to idj in Val and m(i)(xj) for j = 1, 2, . . . , t
corresponding to id′j in ValField. Define

y =

s∑
j=1

rj · φ(xj) +

t∑
j=1

rs+j · xj

and let Pi compute

m(i)(y) =

s∑
j=1

rj ·m(i)(xj) +

t∑
j=1

rs+j ·m(i)(xj)

(b) Pi calls FComm to commit to σ(i) = m(i)(y)−α(i) ·y and afterwards open the commitment.
(c) The parties check if σ(1) + σ(2) + · · ·+ σ(n) = 0 and abort otherwise.

Figure 11. Authenticated shares – Part 3.

blocks we can produce the randomness needed for the online phase. First of all, we produce
input tuples with protocol ΠInputTuple in Figure 12. Proposition 3 is straightforward.

Proposition 3. ΠInputTuple securely implements FPrep.InputTuple in the FAuth-hybrid model.

Protocol ΠInputTuple

The protocol generates (r, 〈r〉) where r ∈ Fk2 is chosen randomly by Pi, the party calling the protocol.

1. Construct:
(a) Pi chooses r ∈ Fk2 uniformly at random.
(b) Pi calls FAuth to obtain 〈r〉 and output this authenticated share.

Figure 12. Creating input tuples.

We also need to construct tuples to re-encode [·]-sharings to 〈·〉-sharings after a multiplic-
ation. A protocol ΠReEncodeTuple for producing the tuples (〈ψ(r)〉, [r]) for random r ∈ F2m

are shown in Figure 13.

22

Proposition 4. ΠReEncodeTuple securely implements FPrep.ReEncodeTuple in the (FAuth,FRand)-
hybrid model with statistical security parameter s.

Proof. Clearly the values rj are random. The correctness of the output is based on the fact
that the sacrificing step guarantees that if after the Construct Phase, there are values [rj],
〈sj〉 with ψ(sj) 6= rj this will be detected with probability 1 − 2−s in the sacrificing part.
We prove this in Appendix C.

Protocol ΠReEncodeTuple

The protocol generates (〈ψ(rj)〉, [rj]) for j = 1, 2, . . . , t, where rj is random in F2m and unknown
to all parties. We assume access to the functionality FRand.

1. Construct:
(a) Pi chooses r(i)j for j = 1, 2, . . . , t+ s uniformly at random in F2m .
(b) Pi calls FAuth to obtain [r

(i)
j] and 〈ψ(r

(i)
j)〉.

(c) Compute [rj] =
∑n
i=1[r

(i)
j] and 〈ψ(rj)〉 =

∑n
i=1〈ψ(r

(i)
j)〉 for j = 1, 2, . . . , t+ s.

2. Sacrifice:
(a) Call FRand(Ft2) to obtain a′i for i = 1, 2, . . . , s and define ai = (a′i, ei) where ei is the i’th

canonical basis vector of length s.
(b) Compute [bi] =

∑t+s
j=1 aij [rj] and 〈bi〉 =

∑t+s
j=1 aij〈ψ(rj)〉 and partially open bi and bi.

(c) If ψ(bi) 6= bi for some i ∈ {1, 2, . . . , s} then abort.
(d) Call FAuth.Check on the opened values bi and bi

3. Output: Output (〈ψ(rj)〉, [rj]) for j = 1, 2, . . . , t

Figure 13. Re-encode tuples.

We go more into details about the multiplication triples in the next section.

5.3 Multiplication triples

Our protocol ΠTriple for constructing triples is given in Figure 15. We note that c = φ(a) ·
φ(b) =

∑
i,j φ(a

(i))φ(b(j)) and hence sharings of c can be obtained by adding sharings of
the summands, where each of the summands only require two parties Pi and Pj to interact.
Again, the construction step is much like the construction step from the protocol ΠTriple in
[19]. where we have modified the protocol such that it produces triples (〈a〉, 〈b〉, [c]) instead
of ([a], [b], [c]).

However, after authentication, we use some techniques from [15] to check correctness
and avoid leakage on the produced triples. Indeed using the combine and sacrifice steps
in MASCOT presents some problems in our case: for example, in the sacrificing step in
MASCOT parties take two triples ([a], [b], [c]) and ([â], [b], [ĉ]) and start by opening a random
combination s · [a]− [â] to some value ρ, so that they can later verify that s · [c]− [ĉ]− ρ · [b]
opens to 0. Since the second triple will be disregarded, and s · a − â completely masks a
since â is uniformly random, no information is revealed about a. In our case we would have
triples (〈a〉, 〈b〉, [c]) and (〈â〉, 〈b〉, [ĉ]) and sample a random s ∈ F2m , it would not be the

23

Protocol ΠTripleConstruct

The protocol produces N multiplication triples.

1. Construction:
(a) Pi samples a(i)

l ,b
(i)
l ∈ Fk2 for l = 1, 2, . . . , N and let φ(a

(i)
l) =

∑m−1
h=0 a

(i)
h,l ·X

h.
(b) For l = 1, 2, . . . , N every ordered pair (Pi, Pj) does the following:

i. The pair call Fm,kROT where Pi inputs a(i)h,l for the h’th instance.
ii. Pj receives t(j,i)0,h,l, t

(j,i)
1,h,l ∈ Fk2 and Pi receives t(j,i)

a
(i)
h,l
,h,l

for h = 0, 1, . . . ,m− 1.

iii. Pj sends u(j,i)
h,l = t

(j,i)
0,h,l − t

(j,i)
1,h,l + b

(j)
l for h = 0, 1, . . . ,m− 1.

iv. Pi sets q(j,i)
h,l = t

(j,i)

a
(i)
h,l
,h,l

+ a
(i)
h,l · u

(j,i)
h,l = t

(j,i)
0,h,l + a

(i)
h,l · b

(j)
l . Set t(j,i)h,l = t

(j,i)
0,h,l.

v. Pi sets c(i)i,j,l =
∑m−1
h=0 φ(q

(j,i)
h,l) ·Xh and Pj sets c(j)i,j,l = −

∑m−1
h=0 φ(t

(j,i)
h,l) ·Xh

Now we have c(i)i,j,l + c
(j)
i,j,l = φ(a

(i)
l) · φ(b

(j)
l)

(c) Each party Pi computes c(i)l = φ(a
(i)
l) · φ(b

(i)
l) +

∑
j 6=i c

(i)
i,j,l + c

(i)
j,i,l

Now we have cl =
∑n
i=1 c

(i)
l =

∑n
i=1 φ(a

(i)
l) ·

∑n
i=1 φ(b

(i)
l) = φ(al) ·φ(bl) for l = 1, 2, . . . , N

2. Authenticate:
(a) Pi calls FAuth to obtain 〈a(i)

l 〉, 〈b
(i)
l 〉, and [c

(i)
l].

(b) Parties compute 〈al〉 =
∑n
i=1〈a

(i)
l 〉 and similarly to obtain 〈bl〉 and [cl].

Figure 14. Multiplication triples.

case that φ(â) would act as a proper one-time pad for s · φ(a)6. A similar problem would
arise for adapting the combine step in [19].

Therefore, we use instead a combine and sacrifice step more similar to [15]. In the protocol
ΠTriple we start by constructing additive sharings of N = τ1+τ1 ·τ22 ·T triples. Then some of
these triples are opened and it is checked that they are correct. This guarantees that most
of the remaining triples are correct. The remaining triples are then organized in buckets
and for each bucket all but one of the triples are sacrified in order to guarantee that the
remaining triple is correct with very high probability. However, this step opens the door
for a selective failure attack, where the adversary can guess some information about the
remaining triples from the fact that the sacrifice step has not aborted (see Appendix D), so
a final combining step is used to remove this leakage.

Proposition 5. ΠTriple securely implements FPrep.Triple in the (FAuth,Fm,kROT,FRand)-hybrid
model.

Proof. The proof uses similar arguments as the one from [15]. For completeness we include
the proof in Appendix D.

Proposition 6. ΠInputTuple, ΠReEncodeTuple, and ΠTriple securely implements FPrep in the
(FAuth,Fm,kROT,FRand)-hybrid model.

Proof. This follows directly from Propositions 3, 4, and 5.
6 Sampling s ∈ Fk2 instead would not solve the problem since s∗〈a〉−〈â〉 is not a proper [·]-sharing
as described before (3)

24

Protocol ΠTriple

The protocol generates T multiplication triples (〈a〉, 〈b〉, [c]) where a,b ∈ Fk2 are random vectors and
c = φ(a)·φ(b). The integers τ1, τ2 are bucket sizes and are for security reasons. Let N = τ1+τ1 ·τ22 ·T .

1. Construction: Call ΠTripleConstruct to produce N multiplication triples.
2. Cut-and-choose:

(a) Call FRand to obtain (l1, l2, . . . , lτ1), where li 6= lj when i 6= j.
(b) Open 〈alj 〉, 〈blj 〉, and [clj] for j = 1, 2, . . . , τ1. Abort if clj 6= φ(alj) · φ(blj) for some j.

3. Sacrifice:
(a) Use FRand to randomly divide the remaining N − τ1 triples into τ22 · T buckets with τ1

triples in each.
(b) In each bucket we denote the triples by (〈al〉, 〈bl〉, [cl]) for l = 1, . . . , τ1 and do the following:

i. Compute 〈εl〉 = 〈al〉 − 〈a1〉 and 〈δl〉 = 〈bl〉 − 〈b1〉 and open εl and δl for l = 2, . . . , τ1
ii. Compute [σl] = [cl]−[c1]−εl∗〈b1〉−δl∗〈a1〉−φ(εl)·φ(δl) and open σl for l = 2, . . . , τ2.

Abort if σl 6= 0. Otherwise, call (〈a1〉, 〈b1〉, [c1]) a correct triple.
4. Combine:

(a) Combine on a: Use FRand to randomly divide the remaining τ22 · T non-malformed triples
into τ2 · T buckets with τ2 in each. Denote the triples in each bucket by (〈al〉, 〈bl〉, [cl]) for
l = 1, . . . , τ2. Combine the triples in each bucket in the following way:
i. Compute 〈a′〉 =

∑τ2
l=1〈al〉 and 〈b

′〉 = 〈b1〉
ii. For l = 2, 3, . . . τ2: Compute 〈εl〉 = 〈b1〉 − 〈bl〉 and open εl
iii. Compute [c′] = [c1] +

∑τ2
l=2 εl ∗ 〈al〉 + [cl] = [φ(a′) · φ(b′)] and call (〈a′〉, 〈b′〉, [c′]) a

good triple.
(b) Combine on b: Use FRand to randomly divide the remaining τ2 · T non-malformed triples

into T buckets with τ2 in each. Denote the triples in each bucket by (〈al〉, 〈bl〉, [cl]) for
l = 1, . . . , τ2. Combine the triples in each bucket in the following way:
i. Compute 〈b′〉 =

∑τ2
l=1〈bl〉 and 〈a

′〉 = 〈a1〉
ii. For l = 2, 3, . . . τ2: Compute 〈εl〉 = 〈a1〉 − 〈al〉 and open εl
iii. Compute [c′] = [c1] +

∑τ2
l=2 εl ∗ 〈bl〉 + [cl] = [φ(b′) · φ(a′)] and call (〈a′〉, 〈b′〉, [c′]) a

good triple.
(c) Call FAuth.Check on all opened values so far. If the check succeeds output the T good triples.

Figure 15. Multiplication triples.

Complexity of Preprocessing

We briefly describe the communication complexity for producing the randomness needed
for the online phase. Starting by considering the construction of an input tuple the only
communication we have to consider here is a single call to FAuth. The main cost of authen-
tication is the call to ΠCOPEe where the parties needs to send mk(n−1) bits for each vector
authenticated. In the case where a field element is authenticated instead they need to send
m2(n−1) bits. Furthermore, the party who is authenticating needs to send the shares of the
vector authenticating but this has only a cost of k(n− 1) bits. At last, the check is carried
out but we assume that the parties authenticate several vectors/values in a batch and hence
this cost is amortized away.

For the re-encoding pairs we assume that t is much larger than s. This means that in
order to obtain a single pair the parties need to authenticate n field elements and n vectors.
Once again we assume that the check is amortized away, so this gives a total cost of sending
(m2 +mk)n(n− 1) bits.

25

Regarding the communication in order to obtain a single multiplication triple we make
τ1τ

2
2n(n− 1) calls to Fm,kROT and sends τ1τ22mkn(n− 1) bits in the construction step. After-

wards, we authenticate 2τ1τ
2
2n vectors and τ1τ22n field elements. The cost in the remaining

steps are not close to be as costly as this, so we ignore these.
In [15] it is suggested to use τ1 = τ2 = 3, and we can see in Table 3 that we can achieve

m ≈ 3.1k. Thus, using these parameters and adding the cost of producing a re-encode pair
and a multiplication triple, the communication complexity for preparing a multiplication
gate is 27 calls to Fm,kROT and sending

(9.61 + 3.1)k2n(n− 1) + (1 + 2)83.7k2n(n− 1) + 259.47k2n(n− 1) bits

= 523.28k2n(n− 1) bits.

References

1. Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear communica-
tion complexity. In Theory of Cryptography, pages 213–230, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

2. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Advances in Cryptology – EUROCRYPT 2011, pages
169–188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

3. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure computation based on leaky
correlations: High resilience setting. In Advances in Cryptology – CRYPTO 2017, pages 3–32,
Cham, 2017. Springer International Publishing.

4. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure computation with con-
stant communication overhead using multiplication embeddings. In Progress in Cryptology –
INDOCRYPT 2018, pages 375–398, Cham, 2018. Springer International Publishing.

5. Ran Canetti. Universally composable security: a new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145, 10
2001.

6. Ignacio Cascudo. On squares of cyclic codes. IEEE Transactions on Information Theory,
65(2):1034–1047, 02 2019.

7. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amortized complexity of
information-theoretically secure MPC revisited. In Advances in Cryptology – CRYPTO 2018,
pages 395–426, Cham, 2018. Springer International Publishing.

8. Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, Rafael Dowsley, and Irene
Giacomelli. Efficient uc commitment extension with homomorphism for free (and applica-
tions). In Advances in Cryptology – ASIACRYPT 2019, pages 606–635, Cham, 2019. Springer
International Publishing.

9. Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling, and Jesper Buus Nielsen.
Rate-1, linear time and additively homomorphic uc commitments. In Advances in Cryptology
– CRYPTO 2016, pages 179–207, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

10. Ignacio Cascudo, Jaron Skovsted Gundersen, and Diego Ruano. Squares of matrix-product
codes. Finite Fields and Their Applications, 62:101606, 2020.

11. Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPDZ2k :
Efficient MPC mod 2k for dishonest majority. In Advances in Cryptology – CRYPTO 2018,
pages 769–798, Cham, 2018. Springer International Publishing.

12. Ivan Damgård, Rasmus Lauritsen, and Tomas Toft. An empirical study and some improvements
of the minimac protocol for secure computation. In Security and Cryptography for Networks,
pages 398–415, Cham, 2014. Springer International Publishing.

13. Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology – CRYPTO 2012, pages 643–
662, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

26

14. Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In Theory of Cryptography, pages 621–641, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

15. Tore K. Frederiksen, Benny Pinkas, and Avishay Yanai. Committed MPC. In Public-Key
Cryptography – PKC 2018, pages 587–619, Cham, 2018. Springer International Publishing.

16. Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti. On
the complexity of additively homomorphic uc commitments. In Theory of Cryptography, pages
542–565, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

17. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified ap-
proach to MPC with preprocessing using OT. In Proceedings, Part I, of the 21st International
Conference on Advances in Cryptology – ASIACRYPT 2015 - Volume 9452, page 711–735,
Berlin, Heidelberg, 2015. Springer-Verlag.

18. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-
party computation for malicious adversaries and an honest majority. In Advances in Cryptology
– EUROCRYPT 2017, pages 225–255, Cham, 2017. Springer International Publishing.

19. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’16, pages 830–842, New York, NY,
USA, 2016. ACM.

20. Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest majority multi-party com-
putation for binary circuits. In Advances in Cryptology – CRYPTO 2014, pages 495–512, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

21. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Advances in Cryptology –
CRYPTO 2012, pages 681–700, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

27

A Universal Composability

We will use the universal composability model by Canetti [5]. The model follows a real world-
ideal world simulation paradigm. In order to prove security of a protocol in this model, we
roughly need to show that for any adversary taking control of an allowed set of parties
in Π, there exists a simulator, interacting with the ideal functionality F and corrupting
the same parties, that produces an indistinguishable view towards any “environment”, as
described below. The environment (which intuitively captures everything that happens out-
side of the protocol) provides inputs and reads the outputs of individual parties, and can
communicate with the adversary/simulator during the protocol. At the end of the protocol,
the environment tries to distinguish whether it has interacted with the real protocol and
the real adversary or with the ideal world and simulator, based on the view it has received.
Π UC-securely implements F if the environment cannot distinguish with non-negligible
probability.

In the ideal model, parties simply relay inputs from the environment to the functionality,
and outputs from the functionality to the environment. On the other hand, the order of
quantifiers indicates that the simulator needs to be constructed for a specific adversary, we
can have the simulator interact in a black-box way with an internal copy of the adversary
and so by abuse of language we say in the proofs that the simulator is interacting with the
adversary.

In addition to these two worlds, the UC-composability framework also considers a G-
hybrid model, where the real protocol π makes use of one or more calls to an ideal function-
ality G. We can extend the definition above and say that π UC-securely implements F if for
any adversary for that protocol there is a simulator in the ideal world that can produce the
same view for any environment. Then the fundamental result in the UC-framework asserts
that if there is another protocol ρ that UC-securely implements G, we can replace the calls
in π to the functionality G by calls to ρ without affecting the security.

B MiniMAC

In this section, we describe the online phase of MiniMAC.
We use the notation πk in this section to denote the projection map onto Fk2 . Hence, for

a vector x ∈ Fk∗2 where k∗ ≥ k let πk(x) be the vector consisting of the first k entries of x.
The MACs make use of an [`, k, d] linear code C and its square C∗ with parameters

[`, k∗, d∗]. The code C∗ is defined as

C∗ = span{x ∗ y | x,y ∈ C}

If x ∈ Fk2 we use the notation 〈x〉 to denote that x is secretly shared along with MACs. I.e.

〈x〉 =
(
(x(1),x(2), . . . ,x(m)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)
,

where Pi holds x(i) and m(i)(x) and it holds that

x =

n∑
i=1

x(i),

28

m(x) =

n∑
i=1

m(i)(x) = α ∗
n∑
i=1

C(x(i)) = α ∗ C(x),

where C(x(i)) is the encoding of x(i) in C.
Similarly, by 〈y〉∗, for y ∈ Fk∗2 , we represent the same type of authentication but using

C∗ instead of C.
We now describe the online phase of the MiniMAC protocol. The protocol is also presen-

ted in Figure 16. For an input gate corresponding to an input from Pi, the party takes a
preprocessed tuple (r, 〈r〉) and broadcasts ε = x− r. All the parties can by local computa-
tions compute ε+ 〈r〉 = 〈x〉. Parties do linear operations locally according to the following
rules:

〈x〉+ 〈y〉 =
(
(x(1) + y(1), . . . ,x(n) + y(n)),

(m(1)(x) +m(1)(y), . . . ,m(n)(x) +m(n)(y))
)

= 〈x+ y〉,

a+ 〈x〉 =
(
(x(1) + a,x(2), . . . ,x(n)),

(α(1) ∗ C(a) +m(1)(x), . . . ,α(n) ∗ C(a) +m(n)(x))
)

= 〈a+ x〉,

a ∗ 〈x〉 =
(
(C∗−1(C(a) ∗ C(x(1))), . . . , C∗−1(C(a) ∗ C(x(n))),

(C(a) ∗m(1)(x), . . . , C(a) ∗m(n)(x))
)

= 〈t〉∗,

where πk(t) = a∗x and C∗−1(y) means the vector in Fk∗2 which is encoded to y. Notice that
this also describes how the parties locally can compute an addition gate and furthermore, it
shows that when multiplying by a constant vector we end up with a 〈·〉∗-sharing. This is what
happens in the multiply step, where we end up with 〈ρ〉∗. Notice that πk(ρ) = x∗y. However,
we need to transform it back to a 〈·〉-sharing and this is what we need the preprocessed re-
encode tuple for. To see that the steps in the protocol make this transformation correctly
notice that

πk(σ) + r = πk(ρ)− πk(s) + r = x ∗ y − r+ r = x ∗ y.

We will not go into details about the MAC check for MiniMAC but we will mention that
they do a batch check where they check random F`2-linear combinations of the encodings of
all opened vectors. For more information about the check see [14].

C Proofs

Proof (Theorem 2). The initialization phase is just communication with FPrep. For simu-
lating an input by a party Pi, if the party who inputs the value is not corrupted, then the
simulator samples and broadcasts a random ε. If it is corrupted, then when the adversary
broadcasts ε, then the simulator extracts x = ε + r and inputs (Input, id,x, Pi) to FMPC.
Additions consist of local computations and are trivial to simulate. For every multiplica-
tion, the simulator generates uniformly random vectors ε and δ and a uniformly random

29

Protocol ΠMiniMAC

1. Initialize: The parties call the preprocessing functionality FPrep to obtain input tuples
(r, 〈r〉) for each party, re-encode tuples (〈r〉, 〈s〉∗), where πk(s) = r, and multiplication triples
(〈a〉, 〈b〉, 〈c〉∗), where πk(c) = a ∗ b.

2. Input: For an input gate belonging to Pi having input x ∈ Fk2 the parties do the following
(a) Pi takes a tuple (r, 〈r〉) and broadcasts ε = x− r.
(b) The parties compute 〈x〉 = ε + 〈r〉.

3. Add: To compute componentwise addition of 〈x〉 and 〈y〉 the parties locally compute 〈x+y〉 =
〈x〉+ 〈y〉.

4. Multiply: To compute a componentwise multiplication of 〈x〉 and 〈y〉, take the next available
multiplication triple (〈a〉, 〈b〉, 〈c〉∗) and tuple (〈r〉, 〈s〉∗).
(a) Set 〈ε〉 = 〈x〉 − 〈a〉 and 〈δ〉 = 〈y〉 − 〈b〉 and partially open ε and δ.
(b) Compute 〈ρ〉∗ = 〈c〉∗ + ε ∗ 〈y〉+ δ ∗ 〈x〉 − ε ∗ δ
(c) Compute 〈σ〉∗ = 〈ρ〉∗ − 〈s〉∗ and partially open this value to obtain σ ∈ Fk

∗
2 .

(d) Compute πk(σ) + 〈r〉 = 〈x ∗ y〉 and output this value.
5. Output: This stage is entered when the players have an unopened sharing 〈z〉 which they want

to output. The parties do the following:
(a) Execute a MAC check on all opened vectors.
(b) If the check passes, partially open z.
(c) Execute a MAC check on z
(d) If the check passes, output z to all parties.

Figure 16. Online phase of MiniMAC

field element σ. The simulator sends these values to the (internal copy of the) adversary
who opens (ε′, δ′, σ′). If for some multiplication, the tuple (ε′, δ′, σ′) is different from the
one sent by the simulator, the simulator will abort when simulating the first check in the
output phase. If not, the simulator receives the output z from FMPC.Output and sends this
to the adversary. If the adversary replies with a value z′ which is different from z then the
simulator aborts at the second check.

Proof (Proposition 1). The commands Initialize and ExtendField are as in [19] (the latter
being called Extend there). The proof for our ExtendVector command is analogous to the
one for the ExtendField except, as explained, because the ideal functionality restricts the
choice by a corrupt PA of the element that is secret shared. We briefly show the simulation
of ExtendVector together with Initialize.

If PB is corrupted, the simulator receives (α0, . . . , αm−1) from the adversary, and simu-
lates the initialization phase by sampling the seeds at random, and sending the corresponding
one to the adversary. It simulates the ExtendVector phase by choosing ui, uniformly at ran-
dom in the corresponding domain, computes q as an honest PB would do and inputs this
to the functionality. Indistinguishability holds by the pseudorandomness of F , as shown in
[19].

If PA is corrupted then the simulator receives the seeds from the adversary in the Initialize
phase, and from there it computes all the tib in the ExtendVector phase. Then when the
adversary sends ui, the simulators extract xi = ui−ti0+ti1 and inputs t = −

∑m−1
i=0 φ(ti0)·Xi

and (x1,x2, . . . ,xm) to FCOPEe.

30

In this case all outputs are clearly computed as in the real world and indistinguishability
follows.

Proof (Proposition 2). First of all note that our functionality, in contrary to Π[[·]] from [19],
has an Add command and a LinComb command. This is because we reserve the LinComb
command for linear combinations which output [·]-sharings, while Add outputs a 〈·〉-sharing.
In any case, the Add and LinComb command consist of local computations so it is trivial to
argue their security. The Initialize command only invokes the Initialize command from the
ideal functionality FCOPEe, which is exactly the same as in [19]. Since the Open command
lets the adversary choose what to open to there is not much to discuss here either.

Therefore, what we need to discuss is the Input and Check commands. The idea is that
if the check in the input phase is passed and the adversary opens to incorrect values later
on, then the probability to pass a check later on will be negligible. In comparison to [19], we
have both values in F2m and vectors in Fk2 , but we can still use the same arguments there,
because the check in the Input phase and all further checks are in F2m and therefore the
simulation and indistinguishability is following by the exact same arguments as in [19].

Proof (Proposition 4). First notice that at least one of the parties is honest and hence
rj =

∑n
i=1 r

(i)
j is random because one of the terms is. Suppose that at the end of the

Combine phase parties have created (〈sj〉, [rj]), where possibly sj 6= ψ(rj).
Let εj = sj − ψ(rj) for all j. By F2-linearity of ψ, bi − ψ(bi) =

∑t+s
j=1 aijεj . Hence if all

εj = 0, the check passes for all i. While if there is some εj 6= 0, j = 1, . . . , t, then for every
i the probability that

∑t+s
j=1 aijεj = 0 is at most 1/2.

Since the checks are independent we obtain that if some εj 6= 0, j = 1, . . . , t then the
protocol will abort except with probability at most 2−s. Note also that bi = rt+i+

∑t
j=1 aijrj ,

so opening the bi reveals no information about the output values r1, . . . , rt.

D Triple creation

Denote by a
(j,i)
h,l and b

(j,i)
h,l the actual values sent by a corrupt party to an honest party

where it should have sent a(j)h,l and b
(j)
l in the Construction step. We can fix some a(j)h,l and

b
(j)
l to be considered as the “input” for some specific instance (for example lowest index

of honest party i, and lowest h for b
(j)
l) and define the errors e

(j,i)
bh,l

= b
(j,i)
h,l − b

(j)
l and

e
(j,i)
ah,l = a

(j,i)
h,l − a

(j)
h,l . Denoting the set of corrupt parties by A, we define e

(i)
bh,l

=
∑
j∈A e

(j,i)
bh,l

and e(i)ah,l =
∑
j∈A e

(j,i)
ah,l . Summing up the shares c(i)l we see that we end up with

cl = φ(al) · φ(bl) +
∑
i/∈A

φ(b
(i)
l) ·

m−1∑
h=0

e(i)ah,l ·X
h +

∑
i/∈A

m−1∑
h=0

a
(i)
h,l · φ(e

(i)
bh,l

) ·Xh,

where the adversary controls e(i)ah,l and e
(i)
bh,l

. Denoting by ea,l =
∑
i/∈A φ(b

(i)
l)·

∑m−1
h=0 e

(i)
ah,l ·Xh

and eb,l =
∑
i/∈A

∑m−1
h=0 a

(i)
h,l · φ(e

(i)
bh,l

) ·Xh we see that

cl = φ(al) · φ(bl) + ea,l + eb,l

31

after the construction step. Additionally, the adversary can add an extra error by authen-
ticating to another value. That is, the adversary can introduce an error eauth,l such that

cl = φ(al) · φ(bl) + ea,l + eb,l + eauth,l.

We call the triple malformed if ea,l + eb,l + eauth,l 6= 0.
We now discuss that the bucketing technique in [15] guarantees that after the cut-and-

choose and sacrifice steps, if the protocol does not abort then the surviving triples are not
malformed with very large probability. This is based in the following lemma.

Lemma 1 ([15],[18]). Let N = τ1 + τ1 · τ22 · T be the number of constructed triples where
the statistical security parameter satisfies s < log2

(
N !

τ2
2 ·T ·τ1!·(τ1·τ2

2 ·T)!

)
. If τ1 random triples

are opened and all are correct, splitting the remaining τ1 · τ22 · T into buckets of size τ1 will
ensure that except with probability 2−s either all buckets consist of correct triples or there
will be at least one bucket with both correct and malformed triples.

The lemma states that if the cut-and-choose step passes, we will be in one of the two
situations described with large probability. Notice that in the first case the sacrifice step
will pass and we end up with τ22 · T correct triples. In the second case there will be some
bucket where the protocol aborts in the sacrifice step. To see that the sacrifice step aborts
notice that if there is a pair of triples where one is malformed and the other is not, then
there exists an index l such that either the first or the l-th triple, but not both, is malformed.
Then when opening

σl = cl − c1 + φ(a1) · φ(b1)− φ(al) · φ(bl),

this will not open towards 0.
However, after the cut-and-choose and sacrifice phases passes, the adversary may now

have information about some of the triplets. This is because of the following selective failure
attacks.

Denote by e
(i)
a,l =

∑m−1
h=0 e

(i)
ah,l · Xh and notice that ea,l =

∑
i/∈A e

(i)
a,l · φ(b

(i)
l). Assume

that the adversary has chosen e(i)ah,l 6= 0 for some h’s and a single i. This implies that e(i)a,l
is nonzero, and then ea,l is only zero if b(i)

l = 0, which happens with probability 2−k. This
means that even though the adversary has introduced some error, the check will pass with
relatively high probability (recall that in our case we consider 2−k too large, as we want the
success probability to be at most 2−m), and in that case the adversary has obtained some
information about b(i)

l . The argument generalizes to the case where the adversary chooses
e
(i)
ah,l 6= 0 for several i’s.

Analogously, assume that the adversary has chosen e
(i)
bh,l
6= 0 for a single h and i. Then

eb,l = 0 if and only if a(i)h,l = 0 for the same h and i, which happens with probability 1
2 . Note

that the probability decreases if e(i)bh,l
6= 0 for several h’s and that the argument generalizes

to the case where the adversary chooses e(i)bh,l
6= 0 for several i’s.

In this way, the adversary can be lucky to introduce some errors which cancel out and
cause the triples to be correct, and this fact will give the adversary information about some
parts of a and b, when the protocol does not abort when opening values in the sacrifice step.

32

To make sure that this leakage is cleaned, we execute a combine step in order to re-establish
the randomness.

We call the l-th triple leaky if the adversary has introduced some errors, i.e. if e(j,i)ah,l

or e
(j,i)
bh,l

is nonzero, but the resulting triple is correct (not malformed). With very high
probability, at most s triples will be leaky if the sacrifice phase has succeeded.

In order to remove the leakage we apply the Combine steps. For this we need to ensure
that after the sacrifice step there is at least one non-leaky triple in each bucket. This is
ensured by the following lemma.

Lemma 2 ([15]). Inputting at least τ2−1

√
(s·e)τ2 ·2s

τ2
triples to the combine step where at

most s of them are leaky in the component being combined on, we have that every bucket
of τ2 triples contains at least one non-leaky triple (in the component) with overwhelming
probability in s.

Notice that if a bucket contains at least one non-leaky triple in the component being com-
bined on the outputted triple cannot be leaky in that component and hence a and b are
random in Fk2 after the combine steps.

33

	A Secret-Sharing Based MPC Protocol for Boolean Circuits with Good Amortized Complexity

