
Neural Aided Statistical Attack for
Cryptanalysis

Yi Chen and Hongbo Yu ?

Department of Computer Science and Technology, Tsinghua University, P.R. China,
chenyi19@mails.tsinghua.edu.cn

yuhongbo@mail.tsinghua.edu.cn

Abstract. Gohr improved attacks on 11-round Speck32/64 using deep
learning [17] at Crypto 2019, which is the first work of neural aided
cryptanalysis. But we find that the key recovery attack model proposed
by Gohr is limited by several properties. It relies heavily on the neu-
tral bit which doesn’t always exist in the attacked cipher. Besides, the
data complexity, computation complexity, and success rate can only be
estimated through the practical attack.
In this paper, we propose a neural aided statistical attack that can be as
generic as the differential cryptanalysis. It has no special requirements
about the attacked cipher and allows us to estimate the theoretical com-
plexities and success rate. For reducing the key space to be searched,
we propose a Bit Sensitivity Test to identify which ciphertext bit is in-
formative. Then specific key bits can be recovered by building neural
distinguishers on related ciphertext bits. Applications to round reduced
Speck32/64, Speck48/72, Speck48/96, DES prove the correctness and
superiorities of our neural aided statistical attack.

Keywords: Cryptanalysis · Neural network · Normal distribution · Sta-
tistical attack · Bit sensitivity · Speck families · DES.

1 Introduction

1.1 Background and motivation

Block ciphers are the most widely used class of symmetric-key primitives nowa-
days. Our confidence in the security of block ciphers stems from analyzing their
resistance with respect to all known cryptanalytic techniques. Developing generic
cryptanalysis techniques with great potential is the main way for further under-
standing the practical security of block ciphers.

Differential cryptanalysis [8] is one of the generic cryptanalysis techniques.
In the key recovery attack for a cipher with a block size of L, a differential with
a probability p0 higher than 2−L is the only requirement. The data complexity,
computation complexity, and success rate can be directly calculated once the
needed differential is found. Besides, the adversary can focus on specific key bits

? Corresponding author.

2 Yi Chen and Hongbo Yu

instead of the complete subkey. These good properties make it generic and result
in many advanced developments such as truncated differential [22], higher-order
differential [22].

Neural aided cryptanalysis is another cryptanalysis technique that has re-
ceived much expectation since the last century. Deep learning has shown its
superiorities in various fields including computer vision [23], natural language
processing [7], smart medical [12], and so on. But the application of deep learn-
ing in the field of cryptography has been stagnant.

A few valuable applications are only concentrated in the side-channel analysis
[11][5][21]. Few researchers have also tried to apply deep learning to conventional
cryptanalysis. Rivest in [27] reviewed various connections between machinne
learning and cryptography. Some possible directions of research in cryptanalytic
applications of machine learning were also suggested. Greydanus proved that a
simplified version of Enigma can be simulated by recurrent neural networks [18].

At Crypto 2019, Gohr firstly proposed a distinguisher model based on deep
learning [17]. By prepending a differential before neural distinguishers, Gohr im-
proved the key recovery attack on 11-round Speck32/64. Gohr’s attack requires
enough neutral bits [14] in the prepended differential. The neural distinguisher’s
output for ciphertext pairs is directly linked with the rank score for key guesses
in [17]. A key guess is returned as a candidate when its rank score exceeds a
threshold. However, a clear theoretical basis isn’t provided for the choice of the
threshold in [17]. Then the attack complexities and success rate can only be
estimated by practical attacks. These properties limit its application.

In this paper, our target is to develop a new neural aided cryptanalysis tech-
nique that is as generic as the differential cryptanalysis. Our neural aided sta-
tistical attack can achieve this target. Applications of our attack also prove its
superiorities.

1.2 Our Contribution

In this paper, we mainly explore neural aided cryptanalysis.
The neural aided statistical attack. From a Bayesian perspective, a neu-

ral network solving binary classification problems can be viewed as a stable pos-
terior probability estimation[24]. Once we set a posterior probability threshold,
it’s equivalent to create a stable classification hyperplane in the input space.
Thus the probability that the posterior probability of samples coming from a
certain distribution is higher than the threshold is stable and estimable.

Inspired by the fact above, we propose a neural aided statistical distinguisher
based on a statistic related to multiple samples’ classification results instead of
the network’s raw outputs (Section 3). In the key recovery setting, the distribu-
tion of the statistic resulted from the right key is different from that resulted from
the wrong keys. Thus a basic attack model based on the statistical distinguisher
for key recovery is proposed and verified (Section 4).

Our attack model has no extra requirements (eg. neutral bits) about the
attacked cipher. The distinguishing of two distributions provides a theoretical
framework for calculating the attack complexities and expected success rate.

Neural Aided Statistical Attack for Cryptanalysis 3

Reduce key guess space by identifying informative bits. The input
of Gohr’s neural distinguisher is a complete ciphertext pair. In the key recovery
setting, the adversary needs to guess all the bits of the subkey at the same time.
This is a serious bottleneck when the subkey has a large size.

In order to significantly reduce the key guess space, a Bit Sensitivity Test is
designed to identify which ciphertext bit is informative for neural distinguishers
(Section 5). Identified informative bits can guide us build new neural distinguish-
ers on partial ciphertext bits for recovering specific subkey bits. An improved
attack model adopting this technique is proposed and verified (Section 6). This
technique can also be applied to improving Gohr’s work.

Applications to round reduced Speck. Speck [6] is a family of block ci-
phers containing 10 variants. We have performed attacks on three round-reduced
variants. The summary of our attacks together with the previous best ones is
shown in Table 1.

Table 1. Summary of key recovery attacks on round reduced Speck. SD: neural aided
statistical distinguisher. CP: Chosen-Plaintext

cipher Distinguisher Type Rounds Complexity1 Data Source

Speck32/64

Differential Distinguisher 11 246.7 230.1CP [2]

Differential Distinguisher 11 246 214CP [13]

Neural Distinguisher 11 238 214.5CP [17]

SD 11 232.29 223.44CP Section 7.3

Differential Distinguisher 12 251 219CP [13]

Neural Distinguisher 12 -2 - [17]

SD 12 240.35 227.93CP Section 7.3

Differential Distinguisher 13 257 225CP [13]

SD 13 258 228.7CP Section 7.3

Speck48/72

Differential Distinguisher 12 243 243CP [9]

SD 12 250.91 237.32CP Section 7.4

Differential Distinguisher 14 265 241CP [13]

Speck48/96

Differential Distinguisher 12 243 243CP [9]

SD 13 275.19 237.77CP Section 7.4

Differential Distinguisher 15 289 241CP [13]

For Speck32/64 reduced to 11, 12 rounds, we can obtain the best attack.
Gohr’s attack model can’t attack 13-round Speck32/64, but we can attack that
with similar complexities as in [13]. For Speck48/72 reduced to 12 rounds, we can
reduce the data complexity compared to the attack[9]. For reduced Speck48/96,
our attack model can attack one more round than the attack[9].

Applications to round reduced DES. The previous best attack on 6-
round DES is presented in [8]. The previous best attack on 8-round DES is

1 Complexity is given in terms of the full decryption of the attacked cipher.
2 Gohr also provided an attack on 12-round Speck32/64, but the data, computation

complexity were not presented in [17].

4 Yi Chen and Hongbo Yu

presented in [4]. We have also performed attacks on DES reduced to 6, 7, 8
rounds. Table 2 summarizes the attack results.

Table 2. Summary of key recovery attacks on round reduced DES

Distinguisher Type Rounds Complexity Data Source

Differential Distinguisher 6 practical 240 CP [8]

SD 6 practical 136 CP Section 7.2

SD 7 practical 5052 CP Section 7.2

Differential-Linear Distinguisher 8 practical 20000 CP [4]

SD 8 250.3 5052 CP Section 7.2

All the code used in this paper will be released on the Github.

2 Review of Gohr’s Key Recovery Attack

Complete information about Gohr’s work can refer to [17]. We first review the
neural distinguisher model which is also the basis of constructing our neural
aided statistical distinguisher. Taking the key recovery with 1-round decryption
as an example, we then review the core idea of Gohr’s key recovery attack.

2.1 Neural Distinguisher Model

Let (P0, P1) denote a plaintext pair. Corresponding intermediate states, cipher-
texts are (S0, S1), (C0, C1). The target of the neural distinguisher [17] is to
distinguish two classes of ciphertext pairs

Y (C0, C1) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(1)

If the difference between S0 and S1 is the target difference ∆S, the pair (C0, C1)
is regarded as a positive sample drawn from the target distribution. Or (C0, C1)
is regarded as a negative sample that comes from a uniform distribution. Y = 1
or Y = 0 is the corresponding label of (C0, C1).

A neural network is trained over N
2 positive samples and N

2 negative samples.
The neural network can be used as a distinguisher if the distinguishing accuracy
over a testing database is higher than 0.5. Given a sample (C0, C1), the output
of the neural distinguisher is used as the posterior probability

Pr(Y = 1 |(C0, C1)) = Z = F (C0, C1), Z ∈ [0, 1] (2)

where F (·) stands for the neural distinguisher. A neural distinguisher against
the cipher reduced to r rounds is also denoted as NDr.

2.2 Gohr’s Key Recovery Attack on 11-round Speck32/64

Algorithm 1 summarizes the core idea of Gohr’s key recovery attack.

Neural Aided Statistical Attack for Cryptanalysis 5

Algorithm 1 Gohr’s key recovery attack model

Require: k neutral bits [14] that exist in the prepended differential ∆P → ∆S;
A neural distinguisher F (·) built from ∆S;
A key rank score threshold, c1;
A maximum number of iterations.

Ensure: A possible key candidate.
1: repeat
2: Random generate a plaintext pair (P 1

0 , P
1
1), P 1

0 ⊕ P 1
1 = ∆P ;

3: Create a plaintext structure consisting of 2k plaintext pairs by k neutral bits;
4: Collect corresponding ciphertext pairs, (Ci

0, C
i
1), i ∈ [1, 2k];

5: for each key guess kg do
6: Partially decrypt 2k ciphertext pairs with kg;
7: Feed decrypted ciphertext pairs to F (·) and collect the outputs Zi, i ∈ [1, 2k];
8: Calculate the key rank score vkg based on collected outputs;
9: if vkg > c1 then

10: stop the key search and return kg as the key candidate;
11: end if
12: end for
13: until a key candidate is returned or the maximum number of iterations is reached.

Plaintext structure created from k neutral bits. In order to extend the
neural distinguishers for key recovery, a 3-round differential ∆P → ∆S extended
from a 2-round differential 0x211/0xa04→ 0x0040/0 is prepended.

There are 6 high probabilistic neutral bits {14, 15, 20, 21, 22, 23} in this 2-
round differential. Neutral bits don’t influence the differential transition. Thus a
plaintext structure consisting of 64 plaintext pairs can be generated. These plain-
text pairs can pass the prepended differential together. Such a good property is
the main reason why Gohr’s attack model can attack 11-round Speck32/64.
The link between key guess and score from a neural distinguisher.
Decrypt 2k ciphertext pairs drawn from the target distribution with the same
key guess kg, the following formula

vkg =

2k∑
i=1

log2

(
Zi

1− Zi

)
(3)

is used to combine the scores Zi of individual decrypted ciphertext pairs into a
rank score for kg. When the rank score vkg exceeds a threshold c1, kg is regarded
as a key candidate.

The rank score is likely to be very high only when the plaintext structure
passes the prepended differential and the key guess is right. If the plaintext
structure doesn’t pass the differential or the key guess is wrong, the rank score
would be very low. Then the right key can be told from the wrong keys by
comparing the rank score with a threshold. When the performance of the neural
distinguisher is weak, N needs to be large. Then there should be more neutral
bits in the prepended differential.

Since Gohr’s attack model recovers the right key based on a subset that is
from the same distribution, such a strategy is too dependent on neutral bits. If

6 Yi Chen and Hongbo Yu

the number of neutral bits is not large enough, Gohr’s attack can’t attack longer
rounds by prepending a differential. The key rank score threshold is set without
any clear theoretical basis. Thus we can’t estimate the attack complexities and
success rate in advance.

2.3 Comparison between Gohr’s Attack Model and Classic
Differential Cryptanalysis

Compared with the differential cryptanalysis, there are three following properties
in Gohr’s attack model

1. Enough neutral bits must exist in the prepended differential ∆P → ∆S.
2. The data complexity, computation complexity, and final success rate can

only be obtained by performing practical attacks.
3. All the decryption key bits are considered at the same time.

These three properties lead to the fact that Gohr’s attack model can’t be applied
as generic as the differential cryptanalysis. We guess this is also the main reason
why Gohr argued ’we do not think that machine learning methods will supplant
traditional cryptanalysis’ in [17]. However, we will show that our neural aided
statistical attack can do better.

3 Neural Aided Statistical Distinguisher

In this paper, all the neural distinguishers to be used are built based
on Gohr’s distinguisher model(Section 2.1). Besides, the neural network
is the residual network used by Gohr in [17]. But the depth of the residual block
is set 1. The size of the input layer is adjusted according to the concrete cipher.
If there are no special instructions, the number of training samples is 107. Other
settings about the training can refer to [17]. These changes don’t influence the
conclusions of our work.

3.1 A Chosen Plaintext Statistical Distinguisher

Generate N chosen-plaintext pairs (P i0, P
i
1), P i0 ⊕ P i1 = ∆P, i ∈ [1, N] randomly

and collect corresponding ciphertext pairs
(
Ci0, C

i
1

)
, i ∈ [1, N] using a cipher

with a block size of L. Given a neural distinguisher F (C0, C1), the adversary
needs to distinguish between this cipher and a random permutation.

The concrete process is as follows. For each ciphertext pair
(
Ci0, C

i
1

)
, the

adversary feeds it into the neural distinguisher and obtain its output Zi. Setting
a threshold value c2, the adversary calculates the statistic T

T =

N∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

(4)

When the probability of the prepended differential ∆P → ∆S is higher than
2−L, it’s expected that the value of the statistic T for the cipher is higher than

Neural Aided Statistical Attack for Cryptanalysis 7

that for a random permutation. In a key recovery setting, the right key will
result in the statistic T being among the highest values for all candidate keys if
N is large enough. In the sequel, we give this a theoretical analysis.

3.2 Distribution of the Statistic under Right and Wrong keys

First, let’s regard a ciphertext pair as a point in a high-dimensional space. For
a given threshold, it’s equivalent to create a stable classification hyperplane in
this space using a neural distinguisher. Thus the classification over a random
ciphertext pair can be modeled as a Bernoulli experiment. It provides us with a
theoretical analysis framework.

Fig. 1. Four situations of Decrypting a ciphertext pair with a key guess.

According to the key recovery process, there are four possible situations when
we decrypt a ciphertext pair with a key guess as Figure 1 shows:

(1) Decrypting a positive sample with the right key: the ciphertext
pair passes the prepended differential and the key guess is right.

(2) Decrypting a positive sample with wrong keys: the ciphertext pair
passes the prepended differential but the key guess is wrong.

(3) Decrypting a negative sample with the right key: the ciphertext
pair does not pass the prepended differential but the key guess is right.

(4) Decrypting a negative sample with wrong keys: the ciphertext
pair does not pass the prepended differential and the key guess is wrong.

Given a neural distinguisher, we denote the probability of Z > c2 as p1, p2,
p3, p4 for the four situations respectively. Then the distributions of the statistic
(formula (4)) in these four situations are

T1 ∼ N (µ1, σ1), µ1 = N1 × p1, σ1 =
√
N1 × p1 × (1− p1)

T2 ∼ N (µ2, σ2), µ2 = N2 × p2, σ2 =
√
N2 × p2 × (1− p2)

T3 ∼ N (µ3, σ3), µ3 = N3 × p3, σ3 =
√
N3 × p3 × (1− p3)

T4 ∼ N (µ4, σ4), µ4 = N4 × p4, σ4 =
√
N4 × p4 × (1− p4)

(5)

if N1, N2, N3, N4 are high enough. N (µi, σi) is a normal distribution with mean
µi and standard deviation σi, i ∈ [1, 4]. An empirical condition is

Ni × pi > 5, Ni × (1− pi) > 5, i ∈ [1, 4] (6)

8 Yi Chen and Hongbo Yu

Now come back to the key recovery attack. If the probability of the prepended
differential ∆P → ∆S is p0 and N ciphertext pairs are collected randomly, then

N1 = N2 = N × p0, N3 = N4 = N × (1− p0) (7)

Besides, the distributions of the statistic (formula (4)) under the right key and
wrong keys are both a mixture of two normal distributions.

Right key guess. This case contains two situations in which corresponding
distributions are N (µ1, σ1) and N (µ3, σ3). Since a mixture of two independent
normal distributions is still a normal distribution, the distribution of the statistic
(formula (4)) under the right key guess is:

Tp = T1 + T3 ∼ N (µp, σp) (8)

µp = N × (p0p1 + (1− p0) p3) (9)

σp =
√
N × p0 × p1 × (1− p1) +N (1− p0)× p3 × (1− p3) (10)

Wrong key guess. This case also contains two situations in which correspond-
ing distributions are N (µ2, σ2) and N (µ4, σ4). Then the distribution of the
statistic (formula (4)) under wrong key guesses is:

Tn = T2 + T4 ∼ N (µn, σn) (11)

µn = N × (p0p2 + (1− p0) p4) (12)

σn =
√
N × p0 × p2 × (1− p2) +N (1− p0)× p4 × (1− p4) (13)

Negative samples in the high-dimensional space approximately obey uniform
distribution, thus p3 and p4 are theoretically equal. p3 ≈ p4 can also be verified
by experiments. Since the accuracy of neural distinguishers is higher than 0.5,
p1 > p2 also holds with a high probability. When we set c2 = 0.5, we can ensure
p1 > p2. Thus µp > µn also holds.

From the analysis above, we know that the distributions of Tp, Tn are differ-
ent. Then the key recovery attack can be performed based on this finding.

3.3 Distinguishing between Two Normal Distributions

The distinguishing between two normal distributions is also adopted in zero
correlation cryptanalysis [10]. Here, we still give the details.

Consider two normal distributions: N (µp, σp), and N (µn, σn). A sample s is
sampled from either N (µp, σp) or N (µn, σn). We have to decide if this sample
is from N (µp, σp) or N (µn, σn). The decision is made by comparing the value
s to some threshold t. Without loss of generality, assume that µp > µn. If s > t,
the decision is s ∈ N (µp, σp). If s < t, the decision is s ∈ N (µn, σn). Then there
are error probabilities of two types:

βp = Pr {s ∈ N (µn, σn) |s ∈ N (µp, σp)}
βn = Pr {s ∈ N (µp, σp) |s ∈ N (µn, σn)}

(14)

Here a condition is given on µp, µn, σp, σn such that the error probabilities
are βp and βn. The proof can refer to related research [15][16].

Neural Aided Statistical Attack for Cryptanalysis 9

Proposition 1. For the test to have error probabilities of at most βp and βn, the
parameters of the normal distribution N (µp, σp) and N (µn, σn) with µp 6= µn
have to be such that

z1−βp
× σp + z1−βn

× σn
|µp − µn|

= 1 (15)

where z1−βp
and z1−βn

are the quantiles of the standard normal distribution.

3.4 Data Complexity of the Statistical Distinguisher

Based on Proposition 1, one obtains the condition:

z1−βp
σp + z1−βn

σn

µp − µn
= 1 (16)

where the values of µp, σp, µn, σn refer to formula (9), (10), (12), (13) respectively.
In a key recovery setting, 1 − βp is the probability that the right key survives,
βn is the probability that the wrong keys survive.

Since we can’t know the real classification hyperplane learned by the neural
distinguisher, p1, p2, p3, and p4 can only be estimated experimentally. Then
the estimated values of p3 and p4 will be slightly different even they should be
theoretically equal. When the probability p0 of the prepended differential is very
low, the slight distinction p3 − p4 may dominate µp − µn, which is wrong. Thus
we neglect the minor difference and replace p3, p4 with pn.

Then the final condition can be simplified:
√
N =

z1−βp
×√a1 + z1−βn

×√a2
(p1 − p2)× p0

(17)

a1 = p0p1(1− p1) + (1− p0)pn(1− pn) (18)

a2 = p0p2(1− p2) + (1− p0)pn(1− pn) (19)

p1, p2, pn are all constant values that are only related to the neural distinguisher.
p0 is the probability of the prepended differential. The data complexity N can
be directly calculated when βp and βn are set.

The decision threshold t is:

t = µp − z1−βpσp = µn + z1−βnσn (20)

3.5 Estimation of p1, pn

Consider a neural distinguisher F (·) against a cipher reduced to r rounds, the
calculation of p1, pn can be performed as:

p1 : Randomly generate M positive samples and decrypt them for 1 round
with the right subkeys. Feed partially decrypted samples into F (·). The final
ratio of Z > c2 is the statistical expectation of p1.

pn : Randomly generate M negative samples and decrypt them for 1 round
with random subkeys. Feed partially decrypted samples into F (·). The final ratio
of Z > c2 is the statistical expectation of pn.

A large M can help make the statistical expectation accurate enough.

10 Yi Chen and Hongbo Yu

3.6 Further Analysis and Estimation of p2

When we decrypt a positive sample with a wrong key guess (Figure 1(2)), the
final value of p2 is rather complex and related to characteristics of the wrong
key guess. Such a phenomenon is based on Property 1 and Property 2.

Property 1. Decrypt a ciphertext for one round with two different subkeys,

C1
r−1 = DecOneRound(Cr, skr), C2

r−1 = DecOneRound(Cr, kg) (21)

where skr is the right subkey, and kg is the key guess. If kg and skr are only
different at a few bits (e.g. just 1 bit or 2 bits), C1

r−1 and C2
r−1 will be very

similar. In other words, the Hamming distance between C1
r−1 and C2

r−1 will be
very small.

Property 2. Given a neural network F (·) for solving a binary classification prob-
lem, if two input samples X1, X2 are very close to each other in the input space,
two outputs F (X1) and F (X2) obtained from the neural network may satisfy
F (X1) ≈ F (X2) with a high probability.

Although the distance metric in the input space of neural networks is com-
plex and unknown, the Hamming distance is still a good alternative. Thus it is
expected that p2 is related to the Hamming distance between the right key and
wrong key guesses. Besides, we need to consider multiple Hamming distances
when the decryption covers multiple rounds.

For example, we decrypt a positive sample (Cr+x,0, Cr+x,1) with x subkey
guesses at the same time

Cr+j−1,0/1 = DecOneRound(Cr+j,0/1, kgr+j), j ∈ [1, x] (22)

where kgr+j is the key guess of the (r + j)-th round. (Cr,0, Cr,1) is fed into an
r-round neural distinguisher for estimating p2.

When the last x−1 key guesses kgr+j , j ∈ [2, x] are all right, (Cr+1,0, Cr+1,1)
is a positive sample. The probability of Z > c2 is p2. If kgr+j , j ∈ [2, x] are not
all right, then (Cr+1,0, Cr+1,1) isn’t a positive sample anymore. The resulted
probability of Z > c2 is closer to pn.

Since x key guesses have different influences on the probability of Z > c2,
we need to consider x Hamming distances for estimating p2. Let dj denotes the
Hamming distance between the right key and key guess in the (r+ j)-th round,
and p2|d1,··· ,dx denotes the probability of Z > c2. Algorithm 2 is proposed for
the estimation of p2|d1,··· ,dx .

Verification. We have performed tests on five neural distinguishers against
round reduced Speck32/64. The difference constraint is ∆S = (0x0040, 0). We
train four neural distinguishers ND4, ND5, ND6, ND7 from scratch. The 8-
round neural distinguisher ND8 has been provided in [17]. Let M = 107, Table
3, 4 show the estimation results of p2|d1 and p2|d1,d2 respectively.

Tests above have verified the analysis of p2. Besides, when two subkeys are
guessed at the same time, p2|d1,d2 will decrease sharply even if the key guess of
the last round is wrong at only 1 bit.

Neural Aided Statistical Attack for Cryptanalysis 11

Algorithm 2 Estimation of p2|d1,··· ,dx
Require: a cipher with a subkey size of L;

a neural distinguisher against this cipher reduced to r rounds, F (·);
M random plaintext pairs, (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ [1,M];

M random master keys, MKi, i ∈ [1,M];
The threshold c2;

Ensure: p2|d1,··· ,dx .
1: Encrypt each plaintext pair (P i

0 , P
i
1) with a master key MKi for r + x rounds.

2: Save resulting ciphertext pair (Ci
0, C

i
1);

3: Save the (r + j)-th subkey skir+j , j ∈ [1, x];
4: for d1 = 0 to L, · · · , dx = 0 to L do
5: for i = 1 to M do
6: Randomly draw x key guesses kgij , j ∈ [1, x] where the Hamming distance

between kgij and skir+j is dj ;

7: Decrypt (Ci
0, C

i
1) with kgij , j ∈ [1, x] for x rounds;

8: Feed the decrypted ciphertext pair into F (·) and save the output as Zi|d1,··· ,dx ;
9: end for

10: Count the number of Zi|d1,··· ,dx > c2, and denote it as Td1,··· ,dx ;

11: Save p2|d1,··· ,dx =
Td1,··· ,dx

M
;

12: end for

Table 3. The estimation of p2|d1 of the neural distinguishers against round reduced
Speck32/64. For ND4, ND5, ND6, ND7, c2 = 0.55. For ND8, c2 = 0.5.

ND4

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.995 0.5065 0.2815 0.1686 0.1088 0.0735 0.0521 0.039 0.0301
d1 9 10 11 12 13 14 15 16
p2|d1 0.0239 0.0198 0.0169 0.0146 0.0129 0.0117 0.0107 0.01

ND5

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.8889 0.5151 0.3213 0.2168 0.1556 0.1189 0.0956 0.08 0.0694
d1 9 10 11 12 13 14 15 16
p2|d1 0.0617 0.056 0.0516 0.0483 0.0456 0.0436 0.0419 0.0407

ND6

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.6785 0.4429 0.3135 0.2384 0.1947 0.1684 0.1518 0.1408 0.1334
d1 9 10 11 12 13 14 15 16
p2|d1 0.1283 0.1247 0.1219 0.1201 0.1183 0.117 0.1171 0.1188

ND7

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.4183 0.3369 0.2884 0.2607 0.2442 0.234 0.2276 0.2236 0.2211
d1 9 10 11 12 13 14 15 16
p2|d1 0.2193 0.2183 0.2175 0.2172 0.2167 0.2159 0.2161 0.209

ND8

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.5184 0.5056 0.4993 0.4957 0.4939 0.4927 0.4925 0.4918 0.4917
d1 9 10 11 12 13 14 15 16
p2|d1 0.4914 0.4913 0.4913 0.4911 0.4913 0.4914 0.491 0.4914

Thus, the choice of p2 depends on the target of the key recovery
attack. If we think the attack is successful as long as the Hamming distance
between the key guess and the right key is not higher than a threshold d, the

12 Yi Chen and Hongbo Yu

Table 4. The estimation of p2|d1,d2 of the 7-round distinguisher [17] against
Speck32/64. c2 = 0.55. Elements in the same column have the same Hamming dis-
tance d2. Elements in the same row have the same Hamming distance d1. Limited to
the width of the table, all results only retain two decimal places. The same value is
replaced by a uppercase letter. Y = 0.21, E = 0.22, J = 0.23, U = 0.25, and V = 0.26.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.42 V E E Y Y Y Y Y Y Y Y Y Y Y Y Y

1 0.33 U E Y Y Y Y Y Y Y Y Y Y Y Y Y E

2 0.29 J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

3 V J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

4 J J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

5 E E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

6 E Y E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

7 E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y E

8 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

9 ∼ 16 6 Y

value of p2 should be

p2 = max
{
p2|d1,··· ,dx |d1 + · · ·+ dx > d

}
(23)

This choice is based on the following truth. By setting a proper threshold c2
such as c2 > 0.5, we can ensure

p2|d1,··· ,dx 6 0.5, if d1 + · · ·+ dx > d (24)

According to formula (21), the higher p2 is, the higher the required data com-
plexity is. Thus we only need to focus on the highest data complexity needed for
filtering wrong keys.

Take the 7-round neural distinguisher as an example. Let d = 2, it means
that the attack is successful if the recovered key is different from the right key
at most 2 bits. Then p2 = p2|3 = 0.2607 or p2 = p2|0,1 = p2|3,0 = 0.26.

4 Neural Aided Statistical Attack

Algorithm 3 Statistical test for a key guess

Require: A neural distinguisher; A key guess, kg;
A posterior probability threshold, c2; The decision threshold, t;
N ciphertext pairs (Ci

0, C
i
1) encrypted from (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ [1, N].

1: Decrypt N ciphertext pairs with kg;
2: Feed decrypted ciphertext pairs into the neural distinguisher;
3: Collect the neural distinguisher’s outputs Zi, i ∈ [1, N];
4: Calculate the statistic T in formula (4);
5: if T > t then
6: Return kg as a key candidate
7: end if

This neural aided statistical distinguisher can be used to determine whether
a key guess may be the right key. This is accomplished by the Statistical Test as
Algorithm 3 shows.

Neural Aided Statistical Attack for Cryptanalysis 13

4.1 Basic Attack Model

Let’s take the key recovery with 1-round decryption as the example, Algorithm
4 summarizes the basic attack model based on the neural aided statistical dis-
tinguisher.

Algorithm 4 Basic model of our neural aided statistical attack

Require: The attacked cipher;
The prepended differential with a probability of p0, ∆P → ∆S;
Two maximum error probabilities, βp, βn;
A posterior probability threshold, c2.

Ensure: All possible key candidates.
1: Train a teacher distinguisher F (C0, C1) based on ∆S;
2: Estimate p1, pn, p2 using F (C0, C1) (Section 3.5, Algorithm 2);
3: Calculate the data complexity N and the decision threshold t (Section 3.4);
4: Randomly generate N plaintext pairs (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ [1, N];

5: Collect corresponding N ciphertext pairs, (Ci
0, C

i
1), i ∈ [1, N];

6: for each key guess kg do
7: Perform the statistical test (Algorithm 3);
8: end for
9: Test surviving key candidates against a necessary number of plaintext-ciphertext

pairs according to the unicity distance for the attacked cipher.

4.2 Verification of Basic Attack Model

In order to verify our neural aided statistical attack, four practical key recovery
attacks on round reduced Speck32/64 are performed. For Speck32/64 reduced to
r rounds, our target is to recover the last subkey skr. It’s expected that returned
key guesses are different from the right key at most d = 2 bits.

Our attack model should work as long as the neural distinguisher has an
accuracy higher than 0.5. Besides, the data complexity should be correctly esti-
mated once ∆P → ∆S, ND, d, βp, and βn are provided. Thus, different settings
about these factors are considered.

Three neural distinguishers ND5, ND7, ND8 are adopted. Table 5 shows
two different differentials of Speck32/64 adopted in the verification. Since no
key addition happens in Speck before the first nonlinear operation, these two
differentials can be extended to a 2/3-round differential respectively.

Table 5. Two options of prepended differential of Speck32/64. nr is the number of
encryption rounds covered by the prepended differential.

ID ∆P → ∆S p0 nr

1 (0x2800, 0x10)→ (0x0040, 0) 2−2 1

2 (0x211, 0xa04)→ (0x0040, 0) 2−6 2

The verification plan consists of three steps:
1. Set the value of βp and βn. Calculate the data complexity N .
2. Perform the neural aided statistical attack 100 times with N samples.
3. Check the following observation indexes:

(a) The ratio that the right key passes the statistical test.

14 Yi Chen and Hongbo Yu

(b) The average number of surviving keys in 100 trails.
(c) The ratio that the number of surviving keys is smaller than the expected

upper bound.
Table 6 summarizes the settings related to four attacks.

Table 6. Settings of the four attacks against round reduced Speck32/64. DID is the
prepended differential’s ID in Table 5.

Attack ID Attack rounds ND DID p0 c2 p1 d p2 pn βp βn
1 10 ND7 1 2−2 0.55 0.4183 2 0.2607 0.2162 0.005 0.003

2 10 ND7 1 2−2 0.55 0.4183 2 0.2607 0.2162 0.005 2−16

3 10 ND8 - 1 0.5 0.5184 2 0.4957 0.4914 0.001 2−16

4 9 ND5 2 2−6 0.55 0.8889 2 0.2168 0.0384 0.005 2−16

Table 3 shows the estimations of p2|d1 related to ND5, ND7, ND8. The value
of p2 should be p2|d1=3 in four attacks.

Attack 1: recover sk10 of 10-round Speck32/64. In the first attack setting,
we get N = 3309 ≈ 211.69 according to formula (17). The decision threshold is
t = 818. The right key should survive with a 1−βp = 99.5% probability while the
wrong keys should survive with a βn = 0.3% probability. Since d = 2, the number
of surviving keys shouldn’t exceed 137× 0.995 + (216 − 137)× 0.003 = 332.512.

We have performed this attack 100 times with N = 3309 plaintext pairs.
Corresponding results are:

1. The right key has passed the test in all the 100 experiments.
2. The average number of surviving keys is 124.21 that is far smaller than

332.512.
3. The number of surviving keys is smaller than 332.512 in 97 experiments.

Based on the Hamming distance between the right key and key guess, the
whole subkey space can be divided into 17 subspaces. We further calculate the
average ratio that keys in each subspace survive the attack. Table 7 shows the
average surviving ratios of 17 key subspaces.

Table 7. Average surviving ratios (SR) of key guesses in 17 subspaces.

d1 0 1 2 3 4 5 6 7 8

SR 1 0.47063 0.17858 0.05911 0.01697 0.00412 0.00097 0.00025 0.00008

d1 9 10 11 12 13 14 15 16

SR 0.00003 0.00002 0.00001 0.00001 0 0 0 0

Attack 2: recover sk10 of 10-round Speck32/64. In the second attack
setting, N = 5274 ≈ 212.34 and t = 1325. The number of surviving keys shouldn’t
exceed 137× 0.995 + (216 − 137)× 2−16 ≈ 137.31.

We have performed this attack 100 times with N = 5274 plaintext pairs.
Corresponding results are:

1. The right key has passed the test in 99 experiments.
2. The average number of surviving keys is 63.54 that is far smaller than 137.31.
3. The number of surviving keys is smaller than 137.31 in 98 experiments.

Table 8 shows the average surviving ratios of 17 subspaces.

Neural Aided Statistical Attack for Cryptanalysis 15

Table 8. Average surviving ratios (SR) of key guesses in 17 subspaces.

d1 0 1 2 3 4 5 6 7 8 ∼ 16

SR 0.99 0.37875 0.1245 0.03429 0.00795 0.00144 0.00018 0.00001 0

Attack 3: recover sk10 of 10-round Speck32/64. In the third attack set-
ting, N = 25680 ≈ 214.65 and t = 13064. The number of surviving keys shouldn’t
exceed 137× 0.999 + (216 − 137)× 2−16 ≈ 138.

We have performed this attack 100 times with N = 25680 plaintext pairs.
Corresponding results are:

1. The right key has passed the test in all the 100 experiments.
2. The average number of surviving keys is 77.47 that is far smaller than 138.
3. The number of surviving keys is smaller than 138 in 85 experiments.

In the other 15 experiments, the ratio that keys with d1 = 3 survive is a
little higher than that in the 85 experiments.

Table 9 shows the average surviving ratios of 17 subspaces.

Table 9. Average surviving ratios (SR) of key guesses in 17 subspaces.

d1 0 1 2 3 4 5 6 7 8 9 ∼ 16

SR 1 0.44438 0.14592 0.04055 0.00949 0.00194 0.00032 0.00006 0.00001 0

Attack 4: recover sk9 of 9-round Speck32/64. ND8 is a very weak dis-
tinguisher. Its accuracy is only about 0.518. In the fourth attack setting, N =
15905 ≈ 213.957 and t = 758. The number of surviving keys shouldn’t exceed
137× 0.995 + (216 − 137)× 2−16 ≈ 137.31.

We have performed this attack 100 times with N = 15905 plaintext pairs.
Corresponding results are:

1. The right key has passed the test in all the 100 experiments.
2. The average number of surviving keys is 18.41 that is far smaller than 137.31.
3. The number of surviving keys is smaller than 138 in 100 experiments.

Table 10 shows the average surviving ratios of 17 subspaces.

Table 10. Average surviving ratios (SR) of key guesses in 17 subspaces.

d1 0 1 2 3 4 5 6 7 ∼ 16

SR 1 0.27813 0.05617 0.0082 0.00071 0.00006 0.00001 0

It’s clear that these four attacks have achieved the most important two targets
of the basic attack model. Although the ratio that keys of each subset pass the
test is not strictly consistent with the theoretical value, the total number of
surviving keys is within the upper bound. This shows the Hamming distance is
a good distance metric for the estimation of p2. The correctness of our neural
aided statistical distinguisher can be also well verified.

Our neural aided statistical attack doesn’t care about which samples pass the
prepended differential ∆P → ∆S. Thus neutral bits are not needed. Once we set
two maximum error probabilities βp, βn, the data complexity can be estimated
correctly in advance. Our neural aided statistical attack is almost as generic as
the differential attack.

16 Yi Chen and Hongbo Yu

5 Reduce the Key Space

So far we still need to guess all the bits of the subkey at the same time, since the
neural distinguisher takes the complete ciphertext pairs (C0, C1) as the input.
When the subkey has a large size, this is a serious bottleneck.

5.1 An Intuitive Method for Reducing the Key Space

An intuitive method for reducing the key space is building the neural distin-
guisher on partial ciphertext bits

Ci = Ci[L− 1]|| · · · ||Ci[0], i ∈ [0, 1] (25)

Γ = {x1, x2, · · · , xk}, x1 > · · · > xk, k <= L (26)

ϕ(Ci, Γ) = Ci[x1]||Ci[x2]||Ci[xk], i ∈ [0, 1] (27)

Y (ϕ(C0, Γ), ϕ(C1, Γ)) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(28)

Pr(Y = 1 |(ϕ(C0, Γ), ϕ(C1, Γ))) = Z = f(ϕ(C0, Γ), ϕ(C1, Γ)) (29)

where Ci[0] is the least significant bit of the ciphertext Ci, Γ is the subscript
set of selected ciphertext bits, f(·) is the neural distinguisher built on selected
ciphertext bits.

Such a method can significantly reduce the key space to be searched. But
which ciphertext bits should we select for building f(·)? Can we de-
velop a generic and efficient framework for guiding this selection? In
order to better introduce our work for solving these problems, three new concepts
are proposed first.

Definition 1 An informative bit is the ciphertext bit that is helpful to distin-
guish the cipher and a pseudo-random permutation.

Definition 2 For a cipher reduced to r rounds, the neural distinguisher F (·)
trained on the complete ciphertexts (C0, C1) is denoted as the teacher dis-
tinguisher NDt

r, the neural distinguisher f(·) trained on selected ciphertext
bits (ϕ(C0, Γ), ϕ(C1, Γ)) is denoted as the student distinguisher NDs

r. The
teacher distinguisher can be viewed as a special student distinguisher.

5.2 Identify Informative Bits by Bit Sensitivity Test

It’s clear that student distinguishers should be built on informative bits. How-
ever, it’s hard to identify informative bits according to Definition 1. Thus we
propose an approximate definition of the informative bit.

Definition 3 For a teacher distinguisher F (C0, C1), if the distinguishing ac-
curacy is greatly affected by the j-th bit of C0, C1, the j-th ciphertext bit is an
informative bit.

Neural Aided Statistical Attack for Cryptanalysis 17

The reason why a teacher distinguisher can work is that it has learned knowl-
edge from ciphertext bits. According to Definition 1, only the informative bit
can provide knowledge. Thus the ciphertext bit that has a significant influence
on the performance of the teacher distinguisher must be the informative bit.

Definition 3 can’t ensure each informative bit that obeys the Definition
1 is identified successfully. But we only care about informative bits that can
be captured by a teacher distinguisher. This approximate definition can help
develop a simple but effective framework for identifying informative bits.

The proposed framework is named Bit Sensitivity Test. Its core idea is to
test whether the teacher distinguisher’s accuracy drops after we remove some
knowledge related to the specific bit. This framework is based on the following
property

Property 3. Let X denote a variable which has the following distribution.

Pr(X = 1) = p; Pr(X = 0) = 1− p (30)

By XOR X with a random mask η ∈ [0, 1], X can be randomized since

Pr(X ⊕ η = 1) = Pr(X ⊕ η = 0) = 0.5× (p+ 1− p) = 0.5 (31)

Property 3 provides a way to remove the knowledge related to a specific
ciphertext bit. The input of a teacher distinguisher is a ciphertext pair (C0, C1).
Gohr in [17] has proved that teacher distinguishers can capture the knowledge
about the ciphertext difference and some unknown features. We can remove the
knowledge about the j-th ciphertext bit’s difference by

C0 = C0 ⊕ (η << j) or C1 = C1 ⊕ (η << j) (32)

where η is a random mask that could be 0 or 1. We have performed an extreme
test on teacher distinguishers against 4/5/6/7/8-round Speck32/64. If we XOR
each bit of C0 or C1 with a random mask, teacher distinguishers can’t distinguish
positive samples and negative samples anymore. These tests imply that knowl-
edge about unknown features can also be removed by one of the two operations
above. Subsequent reverse verification can further prove it.

After we remove the knowledge related to a specific ciphertext bit, the de-
crease of the teacher distinguisher’s accuracy is denoted as the bit sensitivity,
which is used to identify informative bits. Algorithm 5 shows the details of Bit
Sensitivity Test.

Bit sensitivity test against 7-round Speck32/64. Let∆S = (0x0040, 0),
we have trained NDt

7 from scratch. The final distinguishing accuracy is 60.67%.
Let M = 107, Table 11 shows the results sen0, sen1, sen0,1 of the bit sensitivity
test under three scenarios.

According to Table 11, we can observe that sen0 ≈ sen1. This can prove that
C0 ⊕ (η << j) is equivalent to C1 ⊕ (η << j). Besides, we can know

1. If sen0[j] > 0, the j-th ciphertext bit is an informative bit, such as {12, 13}.
2. If sen0,1[j] > 0, the teacher distinguisher has learned unknown features from

the j-th ciphertext bit, such as {2 ∼ 4}.

18 Yi Chen and Hongbo Yu

Algorithm 5 Bit Sensitivity Test

Require: a cipher with a block size of L;
a teacher distinguisher against this cipher, F (C0, C1);
a test dataset consisting of M

2
positive samples and M

2
negative samples;

Ensure: An array sen that saves the bit sensitivity of L ciphertext bits.
1: Test the distinguishing accuracy of the neural distinguisher on the test dataset.

Save it to sen[L].
2: for j = 0 to L− 1 do
3: for i = 1 to M do
4: Generate a random mask η ∈ [0, 1];
5: Ci,new

0 = Ci
0 ⊕ (η << j);

6: Feed the new sample (Ci,new
0 , Ci

1) to the neural distinguisher;
7: end for
8: Count the current accuracy cp;
9: sen[j] = sen[L]− cp;

10: end for

Table 11. Results of Bit Sensitivity Test of NDt
7 against 7-round Speck32/64 under

three scenarios. sen0 is the results of performing Ci
0 ⊕ (η << j), sen1 is the results of

performing Ci
1 ⊕ (η << j), sen0,1 is the results of performing two operations at the

same time, i ∈ [1, 106], j ∈ [0, 31]. All results are only to three decimal places.

Bit index sen0 sen1 sen0,1 Bit index sen0 sen1 sen0,1

0 0 0 0 16 0 0 0

1 0 0 0 17 0.001 0.001 0

2 0.001 0.001 0.001 18 0.007 0.007 0.001

3 0.006 0.006 0.003 19 0.014 0.014 0.003

4 0.054 0.053 0.004 20 0.054 0.054 0.004

5 0.056 0.056 0.001 21 0.056 0.056 0

6 0 0 0 22 0 0 0

7 0.001 0.001 0 23 0.001 0.001 0

8 0 0 0 24 0.002 0.002 0.001

9 0.002 0.002 0.001 25 0.015 0.015 0.003

10 0.006 0.006 0.006 26 0.038 0.038 0.011

11 0.023 0.023 0.021 27 0.058 0.058 0.02

12 0.054 0.054 0.022 28 0.072 0.072 0.022

13 0.053 0.053 0.016 29 0.053 0.053 0.016

14 0.045 0.045 0 30 0.045 0.045 0

15 0 0 0 31 0 0 0

3. If sen0[j] ≈ sen0,1[j], then the j-th ciphertext bit’s difference has little
influence on the neural distinguisher, such as {2, 10}

It’s clear that this framework doesn’t need any human knowledge except for the
teacher distinguisher itself. In fact, it can help us understand what knowledge
has been learned by the neural distinguisher. But the related work has gone
beyond the subject of this paper, so we leave it to future reports.

Reverse verification about identified informative bits. In order to
further verify Definition 3, a reverse verification about identified informative
bits (Table 11) is performed for 7-round Speck32/64.

Neural Aided Statistical Attack for Cryptanalysis 19

First, select some informative bits. Second, train a student distinguisher on
selected informative bits and observe the distinguishing accuracy. Table 12 shows
the corresponding distinguishing accuracies under two settings. For Speck32/64,
the j-th and (j + 16)-th bit are directly related to the same subkey bit. Thus
the 8-th and 1-th ciphertext bits are also considered.

Table 12. Accuracies of neural distinguishers trained on selected ciphertext bits

Γ {30 ∼ 23, 14 ∼ 7} {30 ∼ 23, 21 ∼ 17, 14 ∼ 7, 5 ∼ 1} {31 ∼ 0}
Accuracy 0.5414 0.6065 0.6067

The accuracy of the teacher distinguisher is 0.6067. When all the identified
informative bits are considered, the resulted student distinguisher can obtain
a distinguishing accuracy of 0.6065, which is almost the same as 0.6067. Such
an experiment shows that the Bit Sensitivity Test can successfully identify all
informative bits that obey Definition 3.

5.3 Improve the Student Distinguisher

Student distinguishers are trained on selected ciphertext bits which only provide
partial knowledge about the attacked cipher. One way to improve student dis-
tinguishers is pretraining the student distinguisher with the help of the teacher
distinguisher.

This is inspired by the idea of knowledge distillation [20]. Hinton in [20] found
that the output of a neural network contains the knowledge learned by itself.
More details about knowledge distillation can refer to [20][3][25][29]. If we take
the output of the teacher distinguisher as the sample label for pretraining the
student distinguisher, the student distinguisher is likely to learn extra knowl-
edge that isn’t involved in selected ciphertext bits. Algorithm 6 summarizes the
training method.

Algorithm 6 Training of the student distinguisher

Require: A training dataset consisting of M
2

positive samples and M
2

negative samples,
(Ci

0, C
i
1, Y

i), i ∈ [1,M], Y i is the real sample label;
The subscript set of selected ciphertext bits Γ ;
A teacher distinguisher, F (·).

Ensure: The student distinguisher trained on selected ciphertext bits, f(·).
1: for i = 1 to M do
2: get the prediction of (Ci

0, C
i
1) from the teacher distinguisher, F (Ci

0, C
i
1);

3: Ỹ i = F (Ci
0, Ci

1) > 0.5 ? 1 : 0;
4: end for
5: pretrain the student distinguisher on (ϕ(Ci

0, Γ), ϕ(Ci
1, Γ), Ỹ i), i ∈ [1,M]

6: train the student distinguisher on (ϕ(Ci
0, Γ), ϕ(Ci

1, Γ), Y i), i ∈ [1,M]

We have tested Algorithm 6 on several ciphers. For Speck32/64 reduced to
5/6/7 rounds, if we don’t adopt the pretraining, the accuracies of the student
distinguisher are 0.7981, 0.6388, 0.5419 respectively. By adopting the pretraining,
the accuracies are 0.7982, 0.6391, 0.5437 respectively. The training/test dataset,
the cyclic learning rate scheme, and other learning parameters are the same.

20 Yi Chen and Hongbo Yu

For Speck128/128 reduced to 8 rounds, the teacher distinguisher built with
∆S = (0, 0x80) [2] has an accuracy of 0.8304. Let Γ = {93 ∼ 72, 29 ∼ 8}, if
pre-training is not adopted, we have encountered a problem that the training is
very unstable. Even if the training epoch is set to 200, it is difficult to obtain
a student distinguisher with an accuracy higher than 0.5. After restarting the
training many times, we finally get a student distinguisher with an accuracy of
0.6281. If we adopt the pretraining, we can easily obtain a student distinguisher
with an accuracy of 0.6406. The training epochs in two stages are both 10.

6 Improved Neural Aided Statistical Attack

6.1 Improved Attack Model

The technique in Section 5 can be used to improve the basic attack model (Al-
gorithm 4). Here we still take the key recovery with 1-round decryption as the
example for explanation. Algorithm 7 summarizes the improved attack model.

Algorithm 7 Improved model of our neural aided statistical attack

Require: The attacked cipher;
The prepended differential with a probability of p0, ∆P → ∆S;

Ensure: All possible key candidates.
1: Train a teacher distinguisher F (C0, C1) based on ∆S;
2: Perform the Bit Sensitivity Test (Algorithm 5) for identifying informative bits;
3: Design several stages for the entire key recovery;
4: The maximum number of generated ciphertext pairs, Nmax ← 0;
5: for each stage do
6: Determine the attack target in current stage;
7: Find the subscript set Γ of ciphertext bits related to current attack target;
8: Train the student distinguisher f(ϕ(C0, Γ), ϕ(C1, Γ)) (Algorithm 6);
9: Estimate p1, pn, p2 using the student distinguisher (Section 3.5, 3.6);

10: Set βp, βn;
11: Calculate the data complexity N and the decision threshold t (Section 3.4);
12: if N 6 Nmax then
13: Randomly draw N ciphertext pairs from Nmax ciphertext pairs;
14: else
15: Add N −Nmax plaintext pairs that have the difference ∆P ;
16: Collect corresponding ciphertext pairs, (Ci

0, C
i
1), i ∈ [1, N −Nmax];

17: Nmax ← N ;
18: end if
19: for each key guess kg in the key space do
20: Perform the statistical test (Algorithm 3);
21: end for
22: end for
23: Test surviving key candidates against a necessary number of plaintext-ciphertext

pairs according to the unicity distance for the attacked cipher.

6.2 Verification of Improved Attack Model

Two practical key recovery attacks are performed on round reduced Speck32/64
using the improved attack model.

Neural Aided Statistical Attack for Cryptanalysis 21

Attack 5: recover sk10 of 10-round Speck32/64. In order to improve
Attack 2 in Section 4.2, we have trained a student distinguisher NDs

7 using
Algorithm 5. The subscript set of selected ciphertext bits is Γ = {30 ∼ 23, 14 ∼
7}. Related subkey bits are the 8 bits sk10[7 ∼ 0]. Let c2 = 0.55, Table 13 shows
the estimation of p2|d1 of NDs

7.

Table 13. The estimation of p2|d1 of NDs
7 when Γ = {30 ∼ 23, 14 ∼ 7}

d1 0 1 2 3 4 5 6 7 8

p2|d1 0.3576 0.3230 0.3036 0.2940 0.2893 0.2873 0.2866 0.2863 0.2862

Then this attack is divided into two stages. Table 14 summarizes the at-
tack settings of two stages. The expected maximum Hamming distance between
surviving keys and the right key is d = 2.

Table 14. Settings of the improved key recovery attack on 10-round Speck32/64.
SDt

7/SD
s
7: the neural aided statistical distinguisher built on NDt

7/ND
s
7.

stage SD βp βn d c2 p0 p1 p2 pn N t Related keys

1 SDs
7 0.005 2−8 2 0.55 2−2 0.3576 0.2940 0.2863 22540 6677 sk10[7 ∼ 0]

2 SDt
7 0.005 2−16 2 0.55 2−2 0.4183 0.2607 0.2162 5274 1325 sk10

In the first stage, we guess the 8 key bits sk10[7 ∼ 0]. The number of surviving
keys shouldn’t exceed (1+8+28)×0.995+(256−37)×2−8 = 37.67. In the second
stage, we guess the complete sk10 based on each surviving key in the first stage.
5274 samples are randomly sampled from 22540 samples. Finally, The number
of surviving keys shouldn’t exceed 137.31.

We have performed the attack 100 times with 22540 plaintext pairs, the
results are:
1. The right key has passed the whole test in 99 experiments.
2. In the first stage, the average number of surviving keys is only 12.79 that is

far smaller than 37.67. In the second stage, the average number of surviving
keys is 50.74 that is far smaller than 137.31.

3. The number of surviving keys is smaller than 137.31 in 100 experiments.
Compared with Attack 2, the average key space is reduced from 216 to

28 + 12.79× 28 = 211.78.

Attack 6: recover sk11 of 11-round Speck32/64. The attack settings for
Attack 5 can be used to attack 11-round Speck32/64. Now the prepended 3-
round differential is the second differential in Table 5. Table 15 summarizes the
settings of the two-stage attack.

Table 15. Settings of the key reovery attack on 11-round Speck32/64.

stage SD βp βn d c2 p0 p1 p2 pn N t Related keys

1 SDs
7 0.005 2−8 2 0.55 2−6 0.3576 0.2940 0.2863 5678510 1629087 sk11[7 ∼ 0]

2 SDt
7 0.005 2−16 2 0.55 2−6 0.4183 0.2607 0.2162 1275708 278679 sk11

In the first stage, the number of surviving keys shouldn’t exceed 37.67. In
the second stage, the number of surviving keys shouldn’t exceed 137.31. We
have performed the attack 100 times with 5678510 plaintext pairs, corresponding
results are:

22 Yi Chen and Hongbo Yu

1. The right key has passed the whole test in 100 experiments.
2. In the first stage, the average number of surviving keys is only 13.23 that is

far smaller than 37.67. In the second stage, the average number of surviving
keys is 55.21 that is far smaller than 137.31.

3. The number of surviving keys is smaller than 137.31 in 96 experiments.
Similarly, the average key space is reduced from 216 to 28+13.23×28 ≈ 211.83.

7 Applications

Our neural aided statistical attack is applied to round-reduced DES(practical
attacks) and Speck(theoretical security analysis). The master key of r-round
Speck2n/mn can be directly recovered once the last m subkeys are recovered.
This is based on the key schedule inversion algorithm [13].

Given a sequence ofm subkey words skj−m, · · · , skj−1 for any j ∈ {m,m+ 1, · · · , r},
we can determine skj−m−1 using the following key schedule equations

`j+m−3 = skj−1 ⊕ (skj−2≪ β) (33)

`j−2 = ((`j+m−3 ⊕ (j − 2))� skj−2)≪ α (34)

skj−m−1 = (skj−m ⊕ `j−2)≫ β (35)

Next, given skj−m−1, · · · , skj−2, we iteratively continue the inversion of the key
schedule and derive the master key.

7.1 Computation Complexity

The basic operation of a key recovery attack usually contains two parts. The first
is the decryption of a ciphertext with a key guess. The second is the verification of
a decrypted ciphertext. The key guess space and data complexity determine the
total computation complexity. In conventional cryptanalysis, the verification (eg.
finding the right ciphertext pair) is usually much simpler than the decryption.
Then the time consumption of the second part is neglected.

For neural aided cryptanalysis, the verification is performed by neural net-
works that contain massive computations. Although there are many efforts about
speed optimization[1][26][28][19], the time consumption of neural networks is
higher than that of the decryption. Table 16 shows the time consumption of
teacher distinguishers against round-reduced Speck32/64. A SIMD-parallelized
implementation of Speck32/64 is used.

The neural network for implementing our teacher distinguishers is not too
complex (Section 3). If we adopt neural networks that contain more computa-
tions, the time difference will be larger.

For neural aided cryptanalysis, we recommend the time consumption of neu-
ral distinguishers should be put aside. First, from the perspective of cryptanaly-
sis, we should spend our effort on reducing the data complexity or the key guess
space. Second, the verification of neural distinguishers can be executed in par-
allel if there are more graphics cards. Third, a neural network’s inference speed
can be optimizied by many methods that are not related to cryptography.

Thus in the sequel attacks, the complexity is in terms of the full decryption
of the attacked cipher. This is consistent with previous research.

Neural Aided Statistical Attack for Cryptanalysis 23

Table 16. Time consumption of neural distinguishers against round reduced
Speck32/64. M : the number of tested ciphertexts. t1: the average time of decrypt-
ing M ciphertexts for 1-round. t2: the average time of distinguishers’ verification for
M ciphertexts. The CPU is Intel(R) Core(TM) i5-7500. One graphics card (NVIDIA
GeForce GTX 1060(6GB)) is used. The number(batch size) of ciphertext pairs fed into
a neural distinguisher each time is 218. All the results are based on 100 experiments.

M 221 223 232

t1(seconds) 0.029 0.121 60.392

t2(seconds, NDt) 1.779 7.091 3643.392

t2(seconds, NDs) 0.945 3.725 1935.36

7.2 Key Recovery Attacks on Round Reduced DES

Key recovery attack on 6-round DES. In order to attack 6-round DES, we
have trained a 5-round teacher distinguisherNDt

5 with∆S = (0x200008, 0x0400)
[8]. The distinguishing accuracy is 0.6289.

Table 17 shows the the result of Bit Sensitivity Test. Here we try to recover
the 6 bits sk6[23 ∼ 18] that will affect the 4-th Sbox’s output in the 6-th round.
Then Γ = {63, 54, 44, 38, 31, 22, 12, 6}, and we have trained a student distin-
guisher NDs

5 using Algorithm 6. The accuracy of the student distinguisher is
0.62. Let c2 = 0.55, Table 18 shows the estimation of p2|d1 .

Table 17. Results of Bit Sensitivity Test against NDt
5 for 5-round DES.

Index 0 ∼ 31 32 33 34 35 36 37 38 39 40 41

sen0 0 0.008 0.002 0 0.021 0.018 0.001 0.021 0.005 0.004 0.001

Index 42 43 44 45 46 47 48 49 50 51 52

sen0 0.005 0.001 0.019 0.008 0.012 0.001 0 0.001 0.004 0.005 0.006

Index 53 54 55 56 57 58 59 60 61 62 63

sen0 0.015 0.024 0.002 0.004 0.004 0 0.001 0.012 0.005 0.005 0.018

Table 18. The estimation of p2|d1 of NDs
5 against 5-round DES when Γ =

{63, 54, 44, 38, 31, 22, 12, 6}.
d1 0 1 2 3 4 5 6

p2|d1 0.3036 0.0857 0.0745 0.0748 0.0747 0.0836 0.0823

In this attack, we try to recover the right key. Then p2 = p2|d1=1 since
d = 0. After test, p1 = 0.3036, pn = 0.0631. Let βp = 0.005, βn = 2−6. we get
N = 68 ≈ 26.09 and the decision threshold is t = 10.69. The number of surviving
keys shouldn’t exceed 1× 0.995 + (64− 1)× 2−6 = 1.98. We have performed the
attack 100 times, the results are:

1. The right key has passed the test in 100 experiments.
2. The average number of surviving keys is 2.18 that is a little higher than 1.98.
3. The number of surviving keys is 1 or 2 in 65 experiments. The number of

surviving keys is 3 in 20 experiments.

Although the average number of surviving keys is a little higher than the
upper bound, actually we still achieve the attack target. If we choose Γ =
{60, 53, 45, 35, 28, 21, 13, 3}, the student distinguisher can obtain an accuracy
of 0.619. The 6 key bits sk6[35 ∼ 30] that affect the 6-th Sbox’s output can

24 Yi Chen and Hongbo Yu

also be recovered using 68 chosen-plaintext pairs. Then the left 56 − 12 = 44
key bits can be recovered through two stages. First, filter the wrong key guesses
for each Sbox using the 68 samples. Second, test surviving key guesses with sev-
eral plaintext-ciphertext pairs. Thus, the 6-round DES can be practically broken
with 68× 2 = 136 chosen plaintexts.

The best key recovery attack against 6-round DES provided in [8] needs 240
chosen plaintexts. Our attack can reduce the data complexity of this attack of
[8] by a factor of about 1.76.

Key recovery attack on 7-round DES. In order to attack 7-round DES, we
have trained a 6-round teacher distinguisherNDt

6 with∆S = (0x200008, 0x0400)
[8]. The distinguishing accuracy is 0.5499.

Table 19 shows the the result of Bit Sensitivity Test. Here we try to recover
the 6 bits sk7[5 ∼ 0] that will affect the 1-th Sbox’s output in the 7-th round.
Then Γ = {55, 47, 41, 33, 23, 15, 9, 1}, and we have trained a student distinguisher
using Algorithm 5. The distinguishing accuracy is 0.5249. Let c2 = 0.55, Table
20 shows the estimation of p2|d1 .

Table 19. Results of Bit Sensitivity Test of NDt
6 for 6-round DES.

Index 0 ∼ 31 32 33 34 35 36 37 38 39 40 41

sen0 0 0 0.018 0.007 0 0.001 0.008 0 0.005 0.011 0.018

Index 42 43 44 45 46 47 48 49 50 51 52

sen0 0.001 0.008 0 0 0.001 0.018 0.011 0.007 0.004 0.001 0.001

Index 53 54 55 56 57 58 59 60 61 62 63

sen0 0 0 0.018 0.005 0.001 0.01 0.009 0 0.005 0.001 0

Table 20. The estimation of p2|d1 of NDs
6 against 6-round DES when Γ =

{55, 47, 41, 33, 23, 15, 9, 1}.
d1 0 1 2 3 4 5 6

p2|d1 0.0908 0.0655 0.0648 0.0645 0.0644 0.0641 0.0642

In this attack, we try to recover the right key. Thus p2 = p2|d1=1 since
d = 0. After test, p1 = 0.0908, pn = 0.0624. Let βp = 0.005, βn = 2−6, we get
N = 2526 ≈ 211.3 and t = 192. The number of surviving keys shouldn’t exceed
1.98. We have performed the attack 100 times, the results are:
1. The right key has passed the test in 99 experiments.
2. The average number of surviving keys is 1.67 that is smaller than 1.98.
3. The number of surviving keys is 1 or 2 in 84 experiments. The number of

surviving keys is 3 in 10 experiments.

If we choose Γ = {58, 48, 40, 34, 26, 16, 8, 2}, the corresponding student dis-
tinguisher can obtain an accuracy of 0.519. The 6 key bits sk7[17 ∼ 12] that
affect the 3-th Sbox’s output can also be recovered using 2526 chosen-plaintext
pairs. Then the left 44 key bits can also be recovered through two stages.

This attack can be extended to the attack on 8-round DES. We just need to
guess 36 bits of the subkey in 8-th round. The data complexity is still N = 2526.
The best key recovery attack on 8-round DES presented in [4] needs 20000 chosen
plaintexts. Our attack can reduce the data complexity of this attack of [8] by a
factor of about 3.96.

Neural Aided Statistical Attack for Cryptanalysis 25

7.3 Key Recovery Attacks on Round Reduced Speck32/64.

To attack Speck32/64 reduced to 11, 12, 13 rounds, the following 8 neural aided
statistical distinguishers are built as Table 21 shows.

Table 21. Eight neural aided statistical distinguishers for attacking Speck32/64. d is
the expected maximum Hamming distance between the right key and surviving keys.
p2 is selected based on d and Table 3. p1, pn are estimated with M = 107(Section 3.5).

SD ∆P → ∆S p0 ND c2 p1 d p2 pn

SDt
8 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDt

8 0.5 0.5184 1 0.4993 0.4914

SDs
7 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDs

7 0.55 0.3576 2 0.2940 0.2863

SDt
7 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDt

7 0.55 0.4183 2 0.2607 0.2162

SDs
6 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDs

6 0.55 0.5132 1 0.3402 0.2603

SDt
6 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDt

6 0.55 0.6785 1 0.3135 0.1161

SDs
5 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDs

5 0.55 0.7192 0 0.5498 0.1291

SDt
5 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDt

5 0.55 0.8889 0 0.5151 0.0384

SDt
4 (0x211, 0xa04)→ (0x0040, 0) 2−6 NDt

4 0.55 0.995 0 0.5065 0.0069

NDs
7, ND

s
6, ND

s
5 are trained using Algorithm 6. The subscript set of selected

ciphertext bits is Γ = {30 ∼ 23, 14 ∼ 7}. The number of encryption rounds
covered by ∆P → ∆S is 2. It is extended to 3 rounds without loss of probability.

Key recovery attack on 11-round Speck32/64. In order to recover the
last 4 subkeys, the whole attack is divided into seven stages. Table 22 shows the
corresponding attack settings.

Table 22. Settings of the key recovery attack on 11-round Speck32/64. EUB: expected
upper bound.

stage SD βp βn N key space related keys surviving key space

1 SDs
7 0.005 2−8 222.44 28 sk11[7 ∼ 0] 24(Attack 6)

2 SDt
7 0.005 2−16 220.28 24+8 sk11 26(Attack 6)

3 SDs
6 0.001 2−14 220.28 26+8 sk11, sk10[7 ∼ 0] 24(EUB)

4 SDt
6 0.001 2−16 217.37 24+8 sk11, sk10 24(EUB)

5 SDs
5 0.001 2−12 219.43 24+8 sk11, sk10, sk9[7 ∼ 0] 2(EUB)

6 SDt
5 0.001 2−16 215.89 21+8 sk11, sk10, sk9 2(EUB)

7 SDt
4 0.001 2−17 213.04 21+16 sk11, sk10, sk9, sk8 2(EUB)

The probability that the right master key can survive is about (1−0.005)2×
(1−0.001)5 ≈ 0.985. The computation complexity contains seven parts. In stage
2, 3, 5,(221.28 × (214 + 212) + 220.43 × 212) × 1

11 = 232.29. In stage 1, 4, 6, 7, the
computation complexity is negligible. Thus the total complexity is 232.29 and the
data complexity is 223.44.

In Attack 6, the time for decryption is about (223.44+8 + 221.28+12)×2−32×
60.392 ≈ 187.62 seconds. The time for neural distinguishers’ verification is about
(223.44+8×1935.36+221.28+12×3643.392)×2−32 ≈ 10160 seconds. The complexity
is very low, but the time consumption of neural distinguishers is too high.

26 Yi Chen and Hongbo Yu

Key recovery attack on 12-round Speck32/64. Table 23 shows the attack
settings.

Table 23. Settings of the key recovery attack on 12-round Speck32/64.

stage SD βp βn N key space related keys surviving key space

1 SDt
8 0.005 2−16 226.93 216 sk12 24(EUB)

2 SDs
7 0.005 2−12 222.86 24+8 sk12, sk11[7 ∼ 0] 27(EUB)

3 SDt
7 0.005 2−16 220.28 27+8 sk12, sk11 28(EUB)

4 SDs
6 0.001 2−16 220.41 28+8 sk12, sk11, sk10[7 ∼ 0] 24(EUB)

5 SDt
6 0.001 2−16 217.37 24+8 sk12, sk11, sk10 24(EUB)

6 SDt
5 0.001 2−20 216.12 24+16 sk12, sk11, sk10, sk9 2(EUB)

The probability that the right master key can survive is about (1−0.005)3×
(1 − 0.001)3 ≈ 0.982. The computation complexity contains six parts. In stage
1, 227.93 × 216 × 1

12 = 240.35. In stage 2, 3, 4, 5, 6, the computation complexity is
negligible. Thus the total complexity is 240.35 and the data complexity is 227.93.

Key recovery attack on 13-round Speck32/64. Table 24 shows the attack
settings.

Table 24. Settings of the key recovery attack on 13-round Speck32/64.

stage SD βp βn N key space related keys surviving key space

1 SDt
8 0.005 2−32 227.7 232 sk12, sk11 25(EUB)

2 SDt
7 0.005 2−21 220.58 25+16 sk12, sk11, sk10 28(EUB)

3 SDt
6 0.001 2−24 217.78 28+16 sk12, sk11, sk10, sk9 25(EUB)

The probability that the right master key can survive is about (1−0.005)2×
(1 − 0.001) ≈ 0.989. The computation complexity contains four parts. In stage
1, 228.7× 232× 2

13 = 258. In stage 2, 3, the computation complexity is negligible.
Thus the total complexity is 258 and the data complexity is 228.7.

7.4 Key Recovery Attacks on Round Reduced Speck48/X.

In order to attack round-reduced Speck48/X, we have trained three teacher
distinguishers NDt

5, ND
t
4, ND

t
3. The difference constraint we used is ∆S =

(0x808000, 0x808004) [2]. Experiments show that the subtle distinction of the
key schedules for Speck48/X does not affect the performance of teacher dis-
tinguishers. Table 25 summarizes the distinguishing accuracy of three teacher
distinguishers.

Table 25. Distinguishing accuracies of 3 teacher distinguishers against Speck48/X

round accuracy round accuracy round accuracy

3 0.9889 4 0.8089 5 0.5729

We performed the Bit Sensitivity Test against three teacher distinguishers.
Let Γ = {47 ∼ 32, 23 ∼ 8}, we can obtain two student distinguishers NDs

5, ND
s
4.

Neural Aided Statistical Attack for Cryptanalysis 27

Table 26. The estimation of p2|d1 of five neural distinguishers against Speck48/X

NDt
3

d1 0 1 2 3 4 5 6 7 8 ∼ 24
p2|d1 0.9871 0.5885 0.3508 0.2158 0.1397 0.095 0.0678 0.051 < 0.05

NDt
4

d1 0 1 2 3 4 5 6 7 8 ∼ 24
p2|d1 0.7494 0.5531 0.4189 0.329 0.2688 0.2299 0.2035 0.1849 < 0.18

NDs
4

d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.6555 0.5057 0.4152 0.3588 0.323 0.3 0.2849 0.2747 < 0.27

NDt
5

d1 0 1 2 3 4 5 6 7 8 ∼ 24
p2|d1 0.3304 0.2906 0.2629 0.2448 0.2312 0.2226 0.2162 0.2106 < 0.21

NDs
5

d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.2942 0.2696 0.2545 0.2454 0.2407 0.2369 0.2354 0.2334 < 0.2334

The number of training samples is 2 × 107. Let c2 = 0.55, Table 26 shows the
estimation of p2|d1 of the five neural distinguishers.

Based on these five neural distinguishers above, the following 5 neural aided
statistical distinguishers are built as Table 27 shows.

Table 27. Five neural aided statistical distinguishers for attacking Speck48/X.

SD p0 ND c2 p1 d p2 pn

SDs
5 2−12 NDs

5 0.55 0.2942 1 0.2545 0.2304

SDt
5 2−12 NDt

5 0.55 0.3304 1 0.2629 0.1999

SDs
4 2−12 NDs

4 0.55 0.6555 1 0.4152 0.2352

SDt
4 2−12 NDt

4 0.55 0.7494 0 0.5531 0.1349

SDt
3 2−12 NDt

3 0.55 0.9871 0 0.5885 0.0102

Key recovery attack on 12-round Speck48/72. Table 28 shows the attack
settings.

Table 28. Settings of the key recovery attack on 12-round Speck48/72 with p0 = 2−12.

stage SD βp βn N key space related keys surviving key space

1 SDs
5 0.005 2−16 236.32 216 sk12[15 ∼ 0] 24(EUB)

2 SDt
5 0.001 2−24 235.27 24+8 sk12 25(EUB)

3 SDs
4 0.001 2−21 231.64 25+16 sk12, sk11[15 ∼ 0] 25(EUB)

4 SDt
4 0.001 2−24 231.73 25+8 sk12, sk11 2(EUB)

5 SDt
3 0.001 2−25 226.21 21+24 sk12, sk11, sk10 2(EUB)

The probability that the right master key can survive is about (1− 0.005)×
(1−0.001)4 ≈ 0.991. The computation complexity contains five parts. In stage 1,
237.32×216× 1

12 = 249.74. In stage 3, 232.64×221× 1
12 = 250.06. The computation

complexity in stage 2, 4, 5 is negligible. Thus the total complexity is 250.91 and
the data complexity is 237.32.

Key recovery attack on 13-round Speck48/96. Table 29 shows the attack
settings.

The probability that the right master key can survive is about (1− 0.005)×
(1−0.001)3 ≈ 0.992. The computation complexity contains four parts. In stage 1,
237.77×240× 2

12 = 275.19. The computation complexity of the last three stages is
negligible. Thus the total complexity is 275.19 and the data complexity is 237.77.

28 Yi Chen and Hongbo Yu

Table 29. Settings of the key recovery attack on 12-round Speck48/72 with p0 = 2−12.

stage SD βp βn N key space related keys surviving key space

1 SDs
5 0.005 2−24 236.77 240 sk13, sk12[15 ∼ 0] 216(EUB)

2 SDt
5 0.001 2−24 235.27 216+8 sk13, sk12 25(EUB)

3 SDt
4 0.001 2−29 231.93 25+24 sk13, sk12, sk11 2(EUB)

4 SDt
3 0.001 2−25 226.21 21+24 sk13, sk12, sk11, sk10 2(EUB)

8 A Special Case Caused by Continuous Non-informative
Bits

The connection between the guessed subkey bits and selected ciphertext bit
includes direct connection and indirect connection. Take the XOR and modular
addition as the example, Figure 2 shows the two kinds of connection.

Fig. 2. The blue bit Cr[j] is the informative bit in the r-th round ciphertext. Cr[j−1 ∼
0] are not informative bits. The blue subkey bit skr+1[j] is direct related to Cr[j]. The
red subkey bits skr+1[j − 1 ∼ 0] are indirect related to Cr[j].

In the modular operation, key bits skr+1[j − 1 ∼ 0] are also related to the
informative bit Cr[j]. Such a connection is an indirect connection. Since Cr[j −
1 ∼ 0] are not informative bits, Cr[j] may not be influenced even some bit guesses
of skr+1[j − 1 ∼ 0] are wrong. When the number of continuous non-informative
bits is too large, the data complexity for recovering key bits (eg. skr+1[0]) that
have very little influence on Cr[j] may be underestimated.

So far, we find this phenomenon occurs in the Speck128/128 reduced to 8
rounds. Let the difference constraint be ∆S = (0x0, 0x80) [2], we have trained
a 8-round teacher distinguisher. C8[29 ∼ 22] are informative bits but C8[21 ∼ 8]
are non-informative bits. A student distinguisher is built by setting Γ = {93 ∼
86, 29 ∼ 22}. The data complexity is estimated by considering sk9[21 ∼ 0]. Then
sk9[21 ∼ 5] can be recovered successfully. But the 5 key bits sk9[4 ∼ 0] that are
related to C8[12 ∼ 8] can’t be recovered. Until now, this special case can only be
solved by an x-round attack where x > 1. As we have proved in the estimation
of p2|d1,··· ,dx , all the bits of skr+1 have a significant influence on Cr−1.

9 Conclusions

In this paper, we have proposed a neural aided statistical attack for cryptanal-
ysis. It has no extra requirements about the attacked cipher except for a high
probabilistic differential. Besides, it provides a theoretical framework for estimat-
ing the needed attack complexities and success rate. In order to reduce the key
space to be searched in the key recovery attack, a bit sensitivity test is proposed

Neural Aided Statistical Attack for Cryptanalysis 29

to help build neural distinguishers flexibly. Applications to round reduced Speck
and DES have proved the correctness and superiorities of our attack model.

Although our neural aided statistical attack is already as generic as the differ-
ential cryptanalysis, there is still more work to do. The first is filtering random
ciphertext pairs. It is helpful for reducing attack complexities. The second is
understanding the knowledge learned by the neural distinguisher. It can help us
get rid of the dependence on neural distinguishers and improve the theoretical
framework. The practical time consumption can also be reduced significantly.
The third is exploring the properties of the neural distinguisher. If we know
how to build neural distinguishers against more rounds, the statistical attack
model can be greatly improved. We believe neural aided cryptanalysis has great
potential for better assessing the security of ciphers.

Acknowledgement

This work is supported by the National Key Research and Development Program
of China (2018YFB0803405, 2017YFA0303903).

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16). pp. 265–283 (2016)

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
simon and speck. In: International Workshop on Fast Software Encryption. pp.
525–545. Springer (2014)

3. Aguilar, G., Ling, Y., Zhang, Y., Yao, B., Fan, X., Guo, C.: Knowledge distillation
from internal representations. In: AAAI. pp. 7350–7357 (2020)

4. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: Dlct: a new tool for
differential-linear cryptanalysis. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 313–342. Springer (2019)

5. Batina, L., Bhasin, S., Jap, D., Picek, S.: Poster: Recovering the input of neu-
ral networks via single shot side-channel attacks. computer and communications
security pp. 2657–2659 (2019)

6. Beaulieu, R., Shors, D., Smith, J., Treatmanclark, S., Weeks, B., Wingers, L.: The
simon and speck lightweight block ciphers. design automation conference p. 175
(2015)

7. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model.
Neural Information Processing Systems (NeurIPS) pp. 932–938 (2000)

8. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. Journal
of CRYPTOLOGY 4(1), 3–72 (1991)

9. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers simon
and speck. In: International Workshop on Fast Software Encryption. pp. 546–570.
Springer (2014)

10. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. fast software encryption pp. 29–48 (2012)

30 Yi Chen and Hongbo Yu

11. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 45–68. Springer (2017)

12. Chen, Y., Yu, L., Ota, K., Dong, M.: Robust activity recognition for aging society.
IEEE Journal of Biomedical and Health Informatics 22(6), 1754–1764 (2018)

13. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. international
conference on selected areas in cryptography pp. 147–164 (2014)

14. Eli, B., Rafi, C.: Near-collisions of sha-0. Annual International Cryptology Confer-
ence pp. 290–305 (2004)

15. Feller, W.: An introduction to probability theory and its applications. vol. ii. Pop-
ulation 23(2), 375 (1968)

16. Gisselquist, R., Hoel, P.G., Port, S.C., Stone, C.J.: Introduction to probability
theory. American Mathematical Monthly 81(9), 1041 (1974)

17. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
international cryptology conference pp. 150–179 (2019)

18. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv: Neural
and Evolutionary Computing (2017)

19. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: Eie:
efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News 44(3), 243–254 (2016)

20. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

21. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
cryptographic hardware and embedded systems 2019(3), 148–179 (2019)

22. Knudsen, L.R.: Truncated and higher order differentials. In: International Work-
shop on Fast Software Encryption. pp. 196–211. Springer (1994)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Neural Information Processing Systems (NeurIPS) pp.
1097–1105 (2012)

24. MacKay, D.J.: Introduction to gaussian processes. NATO ASI Series F Computer
and Systems Sciences 168, 133–166 (1998)

25. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh,
H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 34, pp. 5191–5198 (2020)

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in neural information processing
systems. pp. 8026–8037 (2019)

27. Ronald, L.R.: Cryptography and machine learning. International Conference on
the Theory and Application of Cryptology pp. 427–439 (1991)

28. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE 105(12), 2295–2329
(2017)

29. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation
via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 3903–3911 (2020)

