
Neural Aided Statistical Attack for
Cryptanalysis

Yi Chen and Hongbo Yu

Department of Computer Science and Technology, Tsinghua University, P.R. China,
chenyi19@mails.tsinghua.edu.cn

yuhongbo@mail.tsinghua.edu.cn

Abstract. At CRYPTO’19, Gohr first proposed a Neural Distinguisher
(ND) built on a plaintext difference. Based on the ND, Gohr developed a
key recovery attack model and applied it to Speck32/64. The ND achieves
a distinguishing accuracy higher than pure differential distinguishers at
certain rounds. However, Gohr’s attack model only works when there
are plenty of neutral bits and relies purely on experiments for complex-
ity evaluations. Taking a deeper analysis of the attack model, we find
the above limitations are caused by one aspect of the black-box nature
of neural networks. Can we take advantage of neural networks while
avoiding their shortcomings?
In this paper, we prove that the above target can be achieved even if
we take neural networks as a black-box. By exploiting the deterministic
property of neural networks, we propose a neural aided statistical distin-
guisher. It not only exploits the advantage of the ND in accuracy, but also
avoids the negative influence of its black-box nature. Then we develop a
Neural Aided Statistical Attack (NASA) that is a universal attack model
for neural aided cryptanalysis. It has no special requirements about the
attacked cipher and allows us to estimate the theoretical complexities
and success rate. For reducing the key space to be searched, we propose
a Bit Sensitivity Test to identify which ciphertext bit is informative.
Then specific key bits are recovered by building neural distinguishers
on related ciphertext bits. Furthermore, since NASA is a universal at-
tack model, it can be improved by properties related to the cipher, such
as neutral bits. Applications in round reduced Speck32/64, Speck48/72,
Speck48/96 demonstrate the correctness and superiorities of NASA.

Keywords: Cryptanalysis · Neural network · Normal distribution · Sta-
tistical attack · Bit sensitivity · Speck.

1 Introduction

Neural aided cryptanalysis is an interesting cryptanalysis technique that
has received much expectation since the last century [16, 23]. Deep learning
has shown its superiorities in various fields including computer vision [9, 19],
natural language processing [5], and so on. But its application in the field of
conventional cryptanalysis has been stagnant. A few valuable applications are
only concentrated in the side-channel analysis [2, 18].

At CRYPTO’19, Gohr proposed a Neural Distinguisher (ND) and developed
the first neural aided key recovery attack on 11-round Speck32/64 [15]. However,
the attack proposed by Gohr is far from a generic cryptanalysis tool. Specifically,
both the required data complexity and the number of key guesses to be searched
are uncertain until practical experiments are finished. It leads to the fact that
Gohr’s attack can be applied only when the total time complexity is not high. To
extend the encryption rounds of the attacked cipher, a differential can be placed
before the ND. But Gohr’s attack works only when enough neutral bits [12]
exist in the differential. This further limits Gohr’s attack. Furthermore, there
is another open problem. Gohr proved that NDs against Speck32/64 captured
some new features from ciphertext pairs. However, these new features are still
unknown.

Here we need to introduce two properties of neural networks that are resulted
from the black-box nature [8, 10,21].

Property 1. Given an input X, we can not predict the precise output Z of a
neural network.

Property 2. Given an input X and the output Z of a neural network, we do not
know why the output of the neural network is Z.

The second property leads to the above open problem. Benamira et al [4] are
still figuring out what new features are learned by the ND.

In fact, we can put this open problem aside for now. We find the limitations
of Gohr’s attack model are only related to Property 1. This finding implies that
the limitations can be avoided since there is another important property.

Property 3. from a Bayesian perspective, solving binary classification problems
with a neural network is equivalent to a posterior probability estimation [20].

We treat the output Z of the ND as a posterior probability. Once we choose a
posterior probability threshold c, we create a stable classification hyperplane in
the input space. For samples coming from a certain distribution, the probability
Pr(Z > c) that the posterior probability Z is higher than the threshold is stable
and estimable.

Taking the ND as a black box, Gohr directly built the attack model on the
output Z. Since Z is unpredictable, Gohr’s attack model is limited seriously.
Since Z is not related to the distinguishing accuracy, the advantage of the ND
is not exploited either.

Our Contributions. In this paper, we still take the ND as a black box. It means
that we do not focus on the features learned by the ND. We show how to build
a new attack model by exploiting the deterministic property (the probability
Pr(Z > c)) of the ND.

We propose a neural aided statistical distinguisher in Section 3. Based on
this new distinguisher, we develop a Neural Aided Statistical Attack (NASA)
for the key recovery in Section 4. NASA transforms the key recovery into the
distinguishing between two different normal distributions. This transformation

2

provides a theoretical framework to estimate the data complexity without per-
forming practical experiments. Furthermore, NASA works without any extra
requirements about the attacked cipher.

Gohr proposed a highly selective key search policy at a cost of not being
able to estimate the number of key guesses to be searched. To make it feasible
to estimate the theoretical computation complexity, we choose to traverse all
possible key guesses. To significantly reduce the key guess space, a Bit Sensitivity
Test (BST) is proposed to identify which ciphertext bit is informative for NDs
(Section 5). Informative bits guide us build new NDs on partial ciphertext bits
for recovering specific key bits.

To verify the performance of our NASA, we apply it to three round reduced
Speck variants. The final results are listed in Table 1. Since the NASA is a
universal but basic attack model, it can be enhanced by exploiting some special
tricks related to the attacked cipher. Taking the neutral bits as an example, we
present a method to reduce the data complexity of NASA. The improved attacks
are also listed in Table 1.

Table 1. Summary of key recovery attacks on round reduced Speck. SD: neural aided
statistical distinguisher. DD: differential distinguisher. CP: Chosen-Plaintext. DT: dis-
tinguisher type. DC: decryption complexity. PC: prediction complexity. The complex-
ities of Gohr’s attack on 11-round Speck32/64 are estimated again using our metrics.

cipher DT Rounds DC PC Data Time Source

Speck32/64

DD 11 246 - 214CP 246 [11]

ND 11 218.36 220.82 214.5CP 224.3 [15]

SD 11 232.29 234.75 223.44CP 238.23 Section 6

SD 11 225.5 227.96 220.39CP 231.44 Section 8

DD 12 251 - 219CP 251 [11]

ND 12 - - - - [15]

SD 12 240.35 242.93 227.93CP 246.41 Section 6

SD 12 237.39 239.97 224.92CP 243.45 Section 8

DD 13 257 - 225CP 257 [11]

SD 13 258 260.7 228.7CP 264.18 Section 6

SD 13 255.17 257.87 225.87CP 261.35 Section 8

Speck48/72
Speck48/96

DD 12 243 - 243CP 243 [6]

SD 12 250.91 253.49 237.32CP 256.97 Section 6

SD 12 244.86 247.44 232.37CP 250.92 Section 8

To fairly compare the complexity of various attacks, we introduce two new
concepts: (1) Decryption Complexity (DC), (2) Prediction Complexity (PC).
The total time complexity is DC +ρ× PC. In this article, 4.9 6 ρ 6 11. More
information can refer to Section 6.1.

Table 1 shows that NASA is more generic than Gohr’s attack. Compared
with classic attacks on 12-round Speck32/64 or Speck48/72 (Speck48/96), NASA
significantly reduce the decryption complexity or data complexity.

3

2 Review of Gohr’s Work

We briefly review Gohr’s work and analyze the causes of limitations.

2.1 Neural Distinguisher

Let (P0, P1) denote a plaintext pair with difference ∆P . The corresponding in-
termediate states, ciphertexts are (S0, S1), (C0, C1). The target of the ND [15]
is to distinguish two classes of ciphertext pairs (C0, C1)

Y =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(1)

Y = 1 or Y = 0 is the label of (C0, C1). If the difference between S0 and S1

is the target difference ∆S, the pair (C0, C1) is regarded as a positive sample
drawn from the target distribution. Or (C0, C1) is regarded as a negative sample
that comes from a uniform distribution.

A neural network is trained over N
2 positive samples and N

2 negative samples.
The neural network is used as a distinguisher if the distinguishing accuracy over
a testing database is higher than 0.5. Let NDh denotes a ND against the cipher
reduced to h rounds. Given a sample (C0, C1), the ND will output a score Z
which is used as the posterior probability

Pr(Y = 1 |(C0, C1)) = Z = F (C0, C1), 0 6 Z 6 1, (2)

where F (·) stands for the posterior probability estimation function learned by
the ND. When Z > 0.5, the predicted label of (C0, C1) is 1 [15]. For convenience,
we also use F (·) to denote the ND in some cases.

2.2 Gohr’s Key Recovery Attack Model

Algorithm 1 summarizes the core idea of the basic version (unaccelerated version)
of Gohr’s key recovery attack.

To understand Gohr’s key recovery attack, we focus on ciphertext pairs with
the label Y = 1. Decrypt such a ciphertext pair with a subkey guess kg, and
feed the decrypted ciphertext pair into a neural distinguisher ND. If kg is the
right subkey, denote the output of ND as Zr. Or denote the out of ND as Zw.
According to the description of the ND, we know that Zr > Zw will hold with
a high probability. Then the subkey guesses are linked to the output signal of
ND.

To increase the gap between the signal related to the right subkey and that
related to the wrong subkeys, Gohr uses the following formula

vkg =

N∑
i=1

log2

(
Zi

1− Zi

)
(3)

to combine the signals Zi of N decrypted ciphertext pairs into a rank score vkg
for the subkey guess kg. These N ciphertext pairs should satisfy ∆P → ∆S

4

Algorithm 1 Basic version of Gohr’s key recovery attack model

Require: k neutral bits [12] that exist in the differential transition ∆P → ∆S;
A ND built from ∆S, F (·);
A key rank score threshold, c1; A maximum number of iterations.

Ensure: A possible key candidate.
1: repeat
2: Random generate a plaintext pair (P 1

0 , P
1
1), P 1

0 ⊕ P 1
1 = ∆P ;

3: Create a plaintext structure consisting of 2k plaintext pairs by k neutral bits;
4: Collect corresponding ciphertext pairs, (Ci

0, C
i
1), i ∈ {1, · · · , 2k};

5: for each key guess kg do
6: Partially decrypt 2k ciphertext pairs with kg;
7: Feed decrypted ciphertext pairs to F (·) and collect the outputs;
8: Calculate the key rank score vkg based on collected outputs;
9: if vkg > c1 then

10: stop the key search and return kg as the key candidate;
11: end if
12: end for
13: until a key candidate is returned or the maximum number of iterations is reached.

simultaneously. Neutral bits [12] are adopted for gathering such N ciphertext
pairs. When the rank score vkg exceeds a threshold c1, kg is very likely to be
the right subkey.

It’s clear that c1, Zr, Zw determine the numberN of required ciphertext pairs.
However, the values of Zr, Zw are unpredictable. This further makes the choice
of c1 lack a theoretical basis. Then N is set to an experimental value. The final
negative influence is that the theoretical data complexity N of Gohr’s attack
can not be estimated.

The above analysis brings two important inspirations. First, it’s possible to
break the limitations even if we do not figure out new features captured by NDs.
Second, we should recover the right key by exploiting the determinstic properties
of the ND.

3 Neural Aided Statistical Distinguisher

3.1 A Chosen Plaintext Statistical Distinguisher

Generate N chosen-plaintext pairs (P i0, P
i
1), P i0 ⊕ P i1 = ∆P, i ∈ {1, · · · , N} ran-

domly and collect corresponding ciphertext pairs
(
Ci0, C

i
1

)
, i ∈ {1, · · · , N} using

a cipher with a block size of L. Given a neural ND F (C0, C1), the adversary
needs to distinguish between this cipher and a random permutation.

The concrete process is as follows. For each ciphertext pair
(
Ci0, C

i
1

)
, the

adversary feeds it into the neural distinguisher and obtains its output Zi. Setting
a threshold value c2, the adversary calculates the statistic T

T =

N∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

(4)

5

When the probability of the differential transition ∆P → ∆S is higher than 2−L,
it’s expected that the value of the statistic T for the cipher is higher than that
for a random permutation. In a key recovery setting, the right key will result
in the statistic T being among the highest values for all candidate keys if N is
large enough. In the sequel, we give this a theoretical analysis.

Remark 1. The value of the posterior probability threshold c2 is selected exper-
imentally in this paper. The value of c2 has an indirect influence on the data
complexity. Besides, the deep residual network [15] proposed by Gohr is also
used to built NDs. But the depth of the residual block is set 1.

3.2 Distribution of the Statistic under Right and Wrong keys

First, we regard a ciphertext pair as a point in a high-dimensional space. For
a given threshold, it’s equivalent to creating a stable classification hyperplane
in this space using a ND. Thus the classification over a random ciphertext pair
is modeled as a Bernoulli experiment. It provides us with a theoretical analysis
framework.

Fig. 1. Four situations of decrypting a ciphertext pair with a key guess.

According to the key recovery process, there are four possible situations when
we decrypt a ciphertext pair with a key guess as shown in Fig.1:

(1) Decrypting a positive sample with the right key: the ciphertext
pair satisfies the differential transition and the key guess is right.

(2) Decrypting a positive sample with wrong keys: the ciphertext pair
satisfies the differential transition but the key guess is wrong.

(3) Decrypting a negative sample with the right key: the ciphertext
pair does not satisfy the differential transition but the key guess is right.

(4) Decrypting a negative sample with wrong keys: the ciphertext
pair does not satisfy the differential transition and the key guess is wrong.

Given a ND, we denote the probability of Z > c2 as p1, p2, p3, p4 for the
four situations respectively. Then the distributions of the statistic (formula (4))

6

in these four situations are

T1 ∼ N (µ1, σ1), µ1 = N1 × p1, σ1 =
√
N1 × p1 × (1− p1)

T2 ∼ N (µ2, σ2), µ2 = N2 × p2, σ2 =
√
N2 × p2 × (1− p2)

T3 ∼ N (µ3, σ3), µ3 = N3 × p3, σ3 =
√
N3 × p3 × (1− p3)

T4 ∼ N (µ4, σ4), µ4 = N4 × p4, σ4 =
√
N4 × p4 × (1− p4)

(5)

if N1, N2, N3, N4 are high enough. N (µi, σi) is a normal distribution with mean
µi and standard deviation σi, i ∈ {1, 2, 3, 4}. An empirical condition is

Ni × pi > 5, Ni × (1− pi) > 5, i ∈ {1, 2, 3, 4} (6)

Now come back to the key recovery attack. If the probability of the differential
transition ∆P → ∆S is p0 and N ciphertext pairs are collected randomly, then

N1 = N2 = N × p0, N3 = N4 = N × (1− p0) (7)

Besides, the distributions of the statistic (formula (4)) under the right key and
wrong keys are both a mixture of two normal distributions.

Right key guess. This case contains two situations in which corresponding
distributions are N (µ1, σ1) and N (µ3, σ3). Since a mixture of two independent
normal distributions is still a normal distribution, the distribution of the statistic
(formula (4)) under the right key guess is:

Tr = T1 + T3 ∼ N (µr, σr) (8)

µr = N × (p0p1 + (1− p0) p3) (9)

σr =
√
N × p0 × p1 × (1− p1) +N (1− p0)× p3 × (1− p3) (10)

Wrong key guess. This case also contains two situations in which correspond-
ing distributions are N (µ2, σ2) and N (µ4, σ4). Then the distribution of the
statistic (formula (4)) under wrong key guesses is:

Tw = T2 + T4 ∼ N (µw, σw) (11)

µw = N × (p0p2 + (1− p0) p4) (12)

σw =
√
N × p0 × p2 × (1− p2) +N (1− p0)× p4 × (1− p4) (13)

Negative samples in the high-dimensional space approximately obey uniform
distribution, thus p3 and p4 are theoretically equal. p3 ≈ p4 are also verified by
experiments. Since the accuracy of NDs is higher than 0.5, p1 > p2 also holds
with a high probability. When we set c2 = 0.5, we can ensure p1 > p2. Thus
µr > µw also holds.

From the analysis above, we know that the distributions of Tr, Tw are differ-
ent. Then the key recovery attack is performed based on this finding.

7

3.3 Distinguishing between Two Normal Distributions

The distinguishing between two normal distributions is also adopted in zero
correlation cryptanalysis [7]. Here, we still give the details.

Consider two normal distributions: N (µr, σr), and N (µw, σw). A sample s is
sampled from either N (µr, σr) or N (µw, σw). We have to decide if this sample
is from N (µr, σr) or N (µw, σw). The decision is made by comparing the value
s to some threshold t. Without loss of generality, assume that µr > µw. If s > t,
the decision is s ∈ N (µr, σr). If s < t, the decision is s ∈ N (µw, σw). Then
there are error probabilities of two types:

βr = Pr {N (µw, σw) |s ∈ N (µr, σr)} ,
βw = Pr {N (µr, σr) |s ∈ N (µw, σw)} .

(14)

When a sample s is sampled from N (µr, σr), the probability that the decision
is s ∈ N (µw, σw) is βr.

Here a condition is given on µr, µw, σr, σw such that the error probabilities
are βr and βw. The proof can refer to related research [13,14].

Proposition 1. For the test to have error probabilities of at most βr and βw, the
parameters of the normal distribution N (µr, σr) and N (µw, σw) with µr 6= µw
have to be such that

z1−βr × σr + z1−βw × σw
|µr − µw|

= 1 (15)

where z1−βr and z1−βw are the quantiles of the standard normal distribution.

3.4 Data Complexity of the Statistical Distinguisher

Based on Proposition 1, one obtains the condition:

z1−βrσr + z1−βwσw
µr − µw

= 1 (16)

where the values of µr, σr, µw, σw refer to formula (9), (10), (12), (13) respec-
tively. In a key recovery setting, 1 − βr is the minimum probability that the
right key survives, βw is the maximum probability that wrong keys survive.

Since we can not know the real classification hyperplane learned by the ND,
p1, p2, p3, and p4 are estimated experimentally. Then the estimated values of p3
and p4 will be slightly different even they should be theoretically equal. When
the probability p0 of the differential transition is very low, the slight distinction
p3 − p4 may dominate µr − µw, which is wrong. Thus we neglect the minor
difference and replace p3, p4 with pn.

Then the final condition can be simplified:

√
N =

z1−βr ×
√
p0a1 + (1− p0)a3 + z1−βw ×

√
p0a2 + (1− p0)a3

(p1 − p2)× p0
, (17)

a1 = p1(1− p1), a2 = p2(1− p2), a3 = pn(1− pn). (18)

8

The data complexity N is directly calculated when βr and βw are set. N is
affected by p0, p1, p2, pn simultaneously. The impacts of p0, p1, p2, pn on N are
O(p−20), O((p1 − p2)−2), O(pn) respectively. The proof can be found in Supple-
mentary Materials.

The decision threshold t is:

t = µr − z1−βrσr = µw + z1−βwσw. (19)

3.5 Estimation of p1, pn

Consider a ND F (·) against a cipher reduced to h rounds, the values of p1, pn
are estimated as:

1. Randomly generate M positive (negative) samples and decrypt them for 1
round with the right (random) subkeys.

2. Feed partially decrypted samples into F (·).
3. Calculate the final ratio of Z > c2.

The ratio is the statistical expectation of p1 or pn. A large M can help make the
statistical expectation accurate enough.

3.6 Further Analysis and Estimation of p2

When we decrypt a positive sample with a wrong key guess (Fig.1(2)), the final
value of p2 is rather complex and related to characteristics of the wrong key
guess. Such a phenomenon is based on Property 1 and Property 2.

Property 4. Decrypt a ciphertext for one round with two different subkeys,

C1
h−1 = DecOneRound(Ch, kg1), C2

h−1 = DecOneRound(Ch, kg2).

If kg1 and kg2 are only different at a few bits (e.g. just 1 bit or 2 bits), the
Hamming distance between C1

h−1 and C2
h−1 will be very small in high probability.

Property 5. Consider a neural network F (·) solving a binary classification prob-
lem. If two input samples X1, X2 are very close to each other in the input space,
two outputs F (X1), F (X2) of the neural network may satisfy F (X1) ≈ F (X2)
with a high probability.

Although the distance metric in the input space of neural networks is com-
plex and unknown, the Hamming distance is still a good alternative. Thus it is
expected that p2 is related to the Hamming distance between the right key and
wrong key guesses.

Suppose we decrypt a positive sample (Ch+x,0, Ch+x,1) with x subkey guesses
simultaneously

Ch+j−1,0/1 = DecOneRound(Ch+j,0/1, kgh+j), j ∈ [1, x] (20)

9

where kgh+j is the key guess of the (h+ j)-th round. (Ch,0, Ch,1) is fed into an
h-round ND for estimating p2.

When the last x−1 key guesses kgh+j , j ∈ [2, x] are all right, (Ch+1,0, Ch+1,1)
is a positive sample. The probability of Z > c2 is p2. If kgh+j , j ∈ {2, · · · , x}
are not all right, then (Ch+1,0, Ch+1,1) is not a positive sample anymore. The
resulted probability of Z > c2 is closer to pn.

Since x key guesses have different influences on the probability of Z > c2,
we consider x Hamming distances for estimating p2. Let dj denotes the Ham-
ming distance between the right key and key guess in the (h+ j)-th round, and
p2|d1,··· ,dx denotes the probability of Z > c2. Algorithm 2 is proposed for the
estimation of p2|d1,··· ,dx .

Algorithm 2 Estimation of p2|d1,··· ,dx
Require: a cipher with a subkey size of L;

a ND against this cipher reduced to r rounds, F (·);
M random plaintext pairs, (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ {1, · · · ,M};

M random master keys, MKi, i ∈ {1, · · · ,M};
The threshold c2.

Ensure: p2|d1,··· ,dx .
1: Encrypt each plaintext pair (P i

0 , P
i
1) with a master key MKi for h+ x rounds;

2: Save resulting ciphertext pair (Ci
0, C

i
1);

3: Save the (h+ j)-th subkey skih+j , j ∈ {1, · · · , x};
4: for d1 = 0 to L, · · · , dx = 0 to L do
5: for i = 1 to M do
6: Randomly draw x key guesses kgij , j ∈ {1, · · · , x} where the Hamming distance

between kgij and skih+j is dj ;

7: Decrypt (Ci
0, C

i
1) with kgij , j ∈ {1, · · · , x} for x rounds;

8: Feed the decrypted ciphertext pair into F (·) and save the output as Zi|d1,··· ,dx ;
9: end for

10: Count the number of Zi|d1,··· ,dx > c2, and denote it as Td1,··· ,dx ;

11: Save p2|d1,··· ,dx =
Td1,··· ,dx

M
.

12: end for

Verification. We have performed tests on 5 NDs against round reduced
Speck32/64. The difference constraint is ∆S = (0x0040, 0). Let M = 107, Table
2 and Table 3 show the estimation results of p2|d1 and p2|d1,d2 respectively.

Tests above have verified the analysis of p2. Besides, when two subkeys are
guessed simultaneously, p2|d1,d2 will decrease sharply even if the key guess of the
last round is wrong at only 1 bit.

Thus, the choice of p2 depends on the target of the key recovery
attack. If we think the attack is successful as long as the Hamming distance
between the key guess and the right key is not higher than a threshold d, the
value of p2 should be

p2 = max
{
p2|d1,··· ,dx |d1 + · · ·+ dx > d

}
(21)

10

Table 2. The estimation of p2|d1 of the NDs against round reduced Speck32/64. For
ND4, ND5, ND6, ND7, c2 = 0.55. For ND8, c2 = 0.5. p2|d1=0 = p1.

ND4
d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.995 0.5065 0.2815 0.1686 0.1088 0.0735 0.0521 0.039 6 0.0301

ND5
d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.8889 0.5151 0.3213 0.2168 0.1556 0.1189 0.0956 0.08 6 0.0694

ND6
d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.6785 0.4429 0.3135 0.2384 0.1947 0.1684 0.1518 0.1408 6 0.1334

ND7
d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.4183 0.3369 0.2884 0.2607 0.2442 0.234 0.2276 0.2236 6 0.2211

ND8
d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.5184 0.5056 0.4993 0.4957 0.4939 0.4927 0.4925 0.4918 6 0.4917

Table 3. The estimation of p2|d1,d2 of the 7-round ND against Speck32/64. c2 = 0.55.
The columns correspond to d2. The rows correspond to d1. All results only retain two
decimal places. The same value is replaced by an uppercase letter. Y = 0.21, E = 0.22,
J = 0.23, U = 0.25, and V = 0.26.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0.42 V E E Y Y Y Y Y Y Y Y Y Y Y Y Y

1 0.33 U E Y Y Y Y Y Y Y Y Y Y Y Y Y E

2 0.29 J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

3 V J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

4 J J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

5 E E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

6 E Y E Y Y Y Y Y Y Y Y Y Y Y Y Y Y

7 E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y E

8 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

9 ∼ 16 6 Y

This choice is based on the following truth. By setting a proper threshold c2
such as c2 > 0.5, we can ensure

p2|d1,··· ,dx 6 0.5, if d1 + · · ·+ dx > d (22)

According to formula (18), the higher p2 is, the higher the required data com-
plexity is. The decision threshold also increases when p2 increases. Thus we only
need to focus on the highest data complexity needed for filtering wrong keys.

Take the 7-round ND as an example. Let d = 2, it means that the attack
is successful if the recovered key is different from the right key at most 2 bits.
Then p2 = p2|3 = 0.2607 or p2 = p2|0,1 = p2|3,0 = 0.26.

4 Neural Aided Statistical Attack

4.1 Key Recovery Model

This neural aided statistical distinguisher can be used to determine whether a
key guess may be the right key. This is done by the Statistical Test as shown
in Algorithm 3. Algorithm 4 summarizes the basic attack model based on the
neural aided statistical distinguisher.

11

Algorithm 3 Statistical test for a key guess

Require: A ND; A key guess, kg;
A posterior probability threshold, c2; The decision threshold, t;
N ciphertext pairs (Ci

0, C
i
1) encrypted from (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ [1, N].

1: Decrypt N ciphertext pairs with kg;
2: Feed decrypted ciphertext pairs into the ND, and collect the outputs Zi, i ∈ [1, N];
3: Calculate the statistic T in formula (4);
4: if T > t then
5: Return kg as a key candidate.
6: end if

Algorithm 4 The general model of our neural aided statistical attack

Require: The attacked cipher;
The differential transition with a probability of p0, ∆P → ∆S;
Two maximum error probabilities, βr, βw;
A posterior probability threshold, c2.

Ensure: All possible key candidates.
1: Train a ND based on ∆S, F (C0, C1);
2: Estimate p1, pn, p2 using F (C0, C1) (Section 3.5, Algorithm 2);
3: Calculate the data complexity N and the decision threshold t (Section 3.4);
4: Randomly generate N plaintext pairs (P i

0 , P
i
1), P i

0 ⊕ P i
1 = ∆P, i ∈ {1, · · · , N};

5: Collect corresponding N ciphertext pairs, (Ci
0, C

i
1), i ∈ {1, · · · , N};

6: for each key guess kg do
7: Perform the statistical test (Algorithm 3);
8: end for
9: Test surviving key candidates against a necessary number of plaintext-ciphertext

pairs according to the unicity distance for the attacked cipher.

4.2 Verification

To verify our NASA, various practical attacks on Speck32/64 have been per-
formed. NASA should work as long as the ND has a distinguishing accuracy
higher than 0.5. Besides, the data complexity should be correctly estimated

once ∆P
p0−→ ∆S, ND, d, βr, and βw are provided.

Thus, the verification plan consists of three steps:

1. Set the value of βr and βw. Calculate the data complexity N .
2. Perform the NASA 100 times with N samples.
3. Check the following observation indexes:

(a) The ratio that the right key (d1 = 0) passes the statistical test.
(b) The average number of surviving keys in 100 trails.
(c) The ratio that the number of surviving keys is smaller than the expected

upper bound.

Attack 1: recover sk10 of 10-round Speck32/64. Table 4 summarizes the
attack setting. It’s expected that returned key guesses are different from the
right key at most d = 2 bits.

12

Table 4. The attack setting of Attack 1.

∆P
p0−→ ∆S ND c2 p1 d p2 pn βr βw

0x211/0xa04
p0=2−2

−−−−−→ 0x2800/0x10 ND7 0.55 0.4183 2 0.2607 0.2162 0.005 2−16

The prepended differential is a 1-round differential with a probability of 2−2.
Since no key addition happens in Speck before the first nonlinear operation, this
differential is extended to a 2-round differential without probability loss. The
ND adopted in this attack is ND7.

In this attack setting, we get N = 5274 ≈ 212.34 and t = 1325 (see formula
(18)). The decision threshold is t = 1325. The right key (d1 = 0) should survive
with a 1 − βr = 0.995 probability at least. Wrong keys (d1 > 3) should survive
with a βw = 2−16 probability at most. The number of surviving keys shouldn’t
exceed 137× 0.995 + (216 − 137)× 2−16 = 137.31.

After performing this attack 100 times with 5274 plaintext pairs, we find:

1. The right key (d1 = 0) has passed the test in 99 experiments.
2. The average number of surviving keys is 63.54 that is smaller than 137.31.
3. The number of surviving keys is smaller than 137.31 in 98 experiments.

Attack 2: recover sk10 of 10-round Speck32/64. Table 7 summarizes the
attack setting. ND8 is a very weak distinguisher. Its distinguishing accuracy is
only about 0.518.

Table 5. The attack setting of Attack 2.

∆P
p0−→ ∆S ND c2 p1 d p2 pn βr βw

- ND8 0.5 0.5184 2 0.4957 0.4914 0.001 2−16

In this attack setting, N = 25680 ≈ 214.65 and t = 13064. The number of
surviving keys shouldn’t exceed 137.998. After performing this attack 100 times
with 25680 plaintext pairs, we find:

1. The right key (d1 = 0) has passed the test in all the 100 experiments.
2. The average number of surviving keys is 77.47 that is smaller than 137.998.
3. The number of surviving keys is smaller than 137.998 in 85 experiments.

5 Reduce the Key Space

So far we still need to guess all the bits of the subkey simultaneously, since the
ND takes the complete ciphertext pairs (C0, C1) as the input. When the subkey
has a large size, this is a serious bottleneck.

5.1 An Intuitive Method for Reducing the Key Space

An intuitive method for reducing the key space is building the ND on partial
ciphertext bits

Ci = Ci[L− 1]|| · · · ||Ci[0], i ∈ [0, 1] (23)

Γ = {x1, x2, · · · , xk}, x1 > · · · > xk, k <= L (24)

ϕ(Ci, Γ) = Ci[x1]||Ci[x2]||Ci[xk], i ∈ [0, 1] (25)

13

Y (ϕ(C0, Γ), ϕ(C1, Γ)) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(26)

Pr(Y = 1 |(ϕ(C0, Γ), ϕ(C1, Γ))) = Z = f(ϕ(C0, Γ), ϕ(C1, Γ)) (27)

where Ci[0] is the least significant bit of the ciphertext Ci, Γ is the subscript set
of selected ciphertext bits, f(·) is the ND built on selected ciphertext bits.

Such a method significantly reduces the key space to be searched. But which
ciphertext bits should we select for building f(·)? Can we develop a
generic and efficient framework for guiding this selection? In order to
better introduce our work for solving these problems, three new concepts are
proposed first.

Definition 1 An informative bit is the ciphertext bit that is helpful to distin-
guish the cipher and a pseudo-random permutation.

Definition 2 For a cipher reduced to h rounds, the ND F (·) trained on the
complete ciphertexts (C0, C1) is denoted as the teacher distinguisher NDt

h,
the ND f(·) trained on the selected ciphertext bits (ϕ(C0, Γ), ϕ(C1, Γ)) is denoted
as the student distinguisher NDs

h. The teacher distinguisher is viewed as a
special student distinguisher.

5.2 Identify Informative Bits by Bit Sensitivity Test

It’s clear that student distinguishers should be built on informative bits. How-
ever, it’s hard to identify informative bits according to Definition 1. Thus we
propose an approximate definition of the informative bit.

Definition 3 For a teacher distinguisher F (C0, C1), if the distinguishing ac-
curacy is greatly affected by the j-th bit of C0, C1, the j-th ciphertext bit is an
informative bit.

A teacher distinguisher works since it has learned knowledge from ciphertext
bits. According to Definition 1, only the informative bit can provide knowledge.
Thus the ciphertext bit that has a significant influence on the distinguishing
accuracy of the teacher distinguisher must be the informative bit.

Definition 3 can not ensure each informative bit that obeys the Definition
1 is identified successfully. But we only care about informative bits that are cap-
tured by a teacher distinguisher. This approximate definition can help develop
a simple but effective framework for identifying informative bits.

The proposed framework is named Bit Sensitivity Test (BST). Its core
idea is to test whether the teacher distinguisher’s distinguishing accuracy drops
after we remove some knowledge related to the specific bit.

Gohr in [15] has proved that teacher distinguishers capture the knowledge
about the ciphertext difference and some unknown features. Consider the j-th ci-
phertext bit. We remove the knowledge about the j-th ciphertext bit’s difference
by

C0 = C0 ⊕ (η << j) or C1 = C1 ⊕ (η << j) (28)

14

where η is a random mask that could be 0 or 1.
We have performed an extreme test on teacher distinguishers against Speck32/64

reduced to 4/5/6/7/8 rounds. If we XOR each bit of C0 or C1 with a random
mask, teacher distinguishers can not distinguish positive samples and negative
samples anymore. These tests imply that knowledge about unknown features is
also removed by one of the two operations above.

After the knowledge related to a ciphertext bit is removed, the decrease of
the teacher distinguisher’s accuracy is named Bit Sensitivity, which is used to
identify informative bits. Algorithm 5 summarizes the BST.

Algorithm 5 Bit Sensitivity Test

Require: a cipher with a block size of L;
a teacher distinguisher against this cipher, F (C0, C1);
a test dataset consisting of M

2
positive samples and M

2
negative samples.

Ensure: An array sen that saves the bit sensitivity of L ciphertext bits.
1: Test the distinguishing accuracy of the ND on the test dataset. Save it to sen[L];
2: for j = 0 to L− 1 do
3: for i = 1 to M do
4: Generate a random mask η ∈ {0, 1};
5: Ci,new

0 = Ci
0 ⊕ (η << j);

6: Feed the new sample (Ci,new
0 , Ci

1) to the ND;
7: end for
8: Count the current accuracy cp;
9: sen[j] = sen[L]− cp;

10: end for

Examples and analysis. We have applied the BST to three teacher dis-
tinguishers against Speck32/64. Table 10 shows the results sen0, sen1, sen0,1 of
the bit sensitivity test under three scenarios.

According to Table 10, we observe that sen0 ≈ sen1. This proves that C0 ⊕
(η << j) is equivalent to C1 ⊕ (η << j). Besides, we know

1. If sen0[j] > 0, the j-th ciphertext bit is an informative bit.
2. If sen0,1[j] > 0, the j-th ciphertext bit provides some useful unknown fea-

tures. Since the knowledge about the bit difference is not removed, then only
useful unknown features can lead to a decrease in the accuracy.

3. If sen0[j] ≈ sen0,1[j], the j-th ciphertext bit’s difference has little influence
on the ND.

Reverse verification about identified informative bits. To further ver-
ify Definition 3, a reverse verification about identified informative bits is per-
formed. First, select some informative bits. Second, train a student distinguisher
on selected informative bits and observe the distinguishing accuracy.

Taking the NDt
7 against Speck32/64 as an example, we have performed the

reverse verification based on results in Table 10. Table 11 shows the distinguish-
ing accuracies under two settings. For Speck32/64, the j-th and (j + 16)-th bit
are directly related to the same subkey bit. Thus the 8-th and 1st ciphertext
bits are also considered.

15

Table 6. Results of Bit Sensitivity Test of teacher distinguishers against Speck32/64
under three scenarios, M = 106. sen0 is the results of performing C0 ⊕ (η << j), sen1

is the results of performing C1 ⊕ (η << j), sen0,1 is the results of performing two
operations simultaneously, j ∈ {0, · · · , 31}. All results are only to three decimal places.

Bit index
NDt

7 NDt
6 NDt

5

sen0 sen1 sen0,1 sen0 sen1 sen0,1 sen0 sen1 sen0,1

0 0 0 0 0 0 0 0.001 0.001 0

1 0 0 0 0 0 0 0.004 0.004 0

2 0.001 0.001 0.001 0.028 0.028 0.018 0.168 0.169 0.071

3 0.006 0.006 0.003 0.111 0.111 0.022 0.222 0.221 0.119

4 0.054 0.053 0.004 0.15 0.15 0.017 0.174 0.174 0.028

5 0.056 0.056 0.001 0.006 0.006 0.003 0.142 0.141 0

6 0 0 0 0 0 0 0 0 0

7 0.001 0.001 0 0 0 0 0 0 0

8 0 0 0 0.001 0.001 0.001 0.002 0.003 0.002

9 0.002 0.002 0.001 0.007 0.007 0.007 0.021 0.021 0.005

10 0.006 0.006 0.006 0.039 0.039 0.022 0.205 0.205 0.043

11 0.023 0.023 0.021 0.138 0.138 0.034 0.167 0.167 0.061

12 0.054 0.054 0.022 0.116 0.116 0.041 0.162 0.162 0.037

13 0.053 0.053 0.016 0.084 0.084 0.028 0.098 0.098 0.031

14 0.045 0.045 0 0.075 0.075 0 0.089 0.089 0

15 0 0 0 0 0 0 0 0 0

16 0 0 0 0.026 0.026 0 0.058 0.058 0

17 0.001 0.001 0 0.082 0.082 0 0.216 0.216 0

18 0.007 0.007 0.001 0.096 0.096 0.018 0.2 0.2 0.071

19 0.014 0.014 0.003 0.134 0.134 0.023 0.223 0.223 0.119

20 0.054 0.054 0.004 0.15 0.15 0.017 0.174 0.174 0.028

21 0.056 0.056 0 0.112 0.112 0 0.142 0.141 0

22 0 0 0 0.001 0.001 0 0 0.001 0

23 0.001 0.001 0 0.002 0.002 0.001 0.002 0.002 0

24 0.002 0.002 0.001 0.009 0.009 0.002 0.018 0.018 0.002

25 0.015 0.015 0.003 0.047 0.047 0.009 0.088 0.089 0.005

26 0.038 0.038 0.011 0.102 0.102 0.022 0.214 0.214 0.043

27 0.058 0.058 0.02 0.154 0.154 0.034 0.188 0.188 0.06

28 0.072 0.072 0.022 0.136 0.136 0.04 0.18 0.18 0.037

29 0.053 0.053 0.016 0.084 0.084 0.028 0.098 0.098 0.031

30 0.045 0.045 0 0.075 0.075 0 0.089 0.089 0

31 0 0 0 0 0 0 0 0 0

Table 7. Accuracies of NDs trained on selected ciphertext bits

Γ {30 ∼ 23, 14 ∼ 7} {30 ∼ 23, 21 ∼ 17, 14 ∼ 7, 5 ∼ 1} {31 ∼ 0}
Accuracy 0.5414 0.6065 0.6067

The accuracy of the teacher distinguisher is 0.6067. When all the identified
informative bits are considered, the resulted student distinguisher obtains a dis-
tinguishing accuracy of 0.6065, which is almost the same as 0.6067. Such an
experiment shows that Definition 3 can help identify all the ciphertext bits
that have a significant influence on teacher distinguishers.

16

5.3 Verification

Attack 3: recover sk9, sk10 of 10-round Speck32/64. By setting Γ =
{30 ∼ 23, 14 ∼ 7}, we have trained two student distinguishers NDs

7, ND
s
6. Let

c2 = 0.55, Table 8 shows the estimation of p2|d1 of two student distinguishers.

Table 8. The estimation of p2|d1 of NDs
6, ND

s
7 against Speck32/64.

NDs
6

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.5132 0.4057 0.3402 0.3025 0.2817 0.2706 0.265 0.2617 0.2594

NDs
7

d1 0 1 2 3 4 5 6 7 8
p2|d1 0.3576 0.3230 0.3036 0.2940 0.2893 0.2873 0.2866 0.2863 0.2862

Then this attack is divided into four stages. Table 9 summarizes the attack
settings of four stages.

Table 9. Attack settings of the key recovery attack on 10-round Speck32/64. SDt
i/SD

s
i :

the neural aided statistical distinguisher built on NDt
i/ND

s
i .

stage SD βr βw d c2 p0 p1 p2 pn N t Related keys

1 SDs
7 0.005 2−8 2 0.55 2−2 0.3576 0.2940 0.2863 22540 6677 sk10[7 ∼ 0]

2 SDt
7 0.005 2−16 2 0.55 2−2 0.4183 0.2607 0.2162 5274 1325 sk10

3 SDs
6 0.001 2−14 1 0.55 2−2 0.5132 0.3402 0.2603 5228 1589 sk10, sk9[7 ∼ 0]

4 SDt
6 0.001 2−16 1 0.55 2−2 0.6785 0.3135 0.1164 830 181 sk10, sk9

In stage 1, we guess the 8 key bits sk10[7 ∼ 0]. In stage 2, we guess the
complete sk10 based on each surviving sk10[7 ∼ 0]. Based on Attack 1, we know
the number of surviving sk10 is about 26. In stage 3, we guess sk9[7 ∼ 0] and
test each possible pair (sk10, sk9[7 ∼ 0]). After stage 4, it’s expected that sk10
is recovered and sk9 has at most 1 wrong bit. Finally, the number of surviving
(sk10, sk9) shouldn’t exceed 1 + 16 + (216− 17)× 2−16 ≈ 18. In stage 2, 3, 4, the
required samples are randomly drawn from 22540 samples.

After performing the attack 100 times with 22540 plaintext pairs, we find:

1. The right subkey pair (sk10, sk9) survives in 99 experiments.
2. In four stages, the average numbers of surviving subkey guesses are 12.53,

50.43, 20.52, and 14.73 respectively. Due to the student distinguishers, the
average key space (in stage 1 and 2) is reduced from 216 to 28 + 12.53×28 ≈
211.76. In stage 3 and 4, the average key space is reduced from 51×216 ≈ 221.67

to 51× 28 + 20.52× 28 ≈ 214.16.
3. In 99 cases, only the pair which has the right sk10 survives the attack. In the

remining 1 case, 1 pair which the guess of sk10 has 1 wrong bit also survives.

6 Applications

Our NASA is applied to round-reduced Speck32/64, Speck48/72, Speck48/96.
To attack the Speck32/64 or Speck48/96, we need to recover the last 4 subkeys.
As for Speck48/72, we need to recover 3 subkeys. This is based on the key
schedule inversion algorithm [11].

17

6.1 Time Complexity

The basic operation of a key recovery attack usually contains two parts: (1) the
decryption of a ciphertext with a key guess, (2) the verification of a decrypted ci-
phertext. In classic cryptanalysis, the verification (eg. finding the right ciphertext
pair) is usually much simpler than the decryption. Then the time consumption
of the second part is neglected.

For neural aided cryptanalysis, the verification is performed by neural net-
works that contain massive computations. Table 10 shows the time consumption
of NDs against round-reduced Speck32/64. A SIMD-parallelized implementation
of Speck32/64 is used.

Table 10. Time consumption of NDs against round reduced Speck32/64. M : the num-
ber of tested ciphertexts. t1: the average time of decrypting M ciphertexts for 1 round.
t2: the average time of distinguishers’ verification for M ciphertexts. The CPU is In-
tel(R) Core(TM) i5-7500. One graphics card (NVIDIA GeForce GTX 1060(6GB)) is
used. The number(batch size) of ciphertext pairs fed into a ND each time is 218. All
the results are based on 100 experiments.

M 221 223 232

t1(seconds) 0.029 0.121 60.392

t2(seconds, NDt) 1.779 7.091 3643.392

t2(seconds, NDs) 0.945 3.725 1935.36

The time consumption of neural networks is higher than that of the decryp-
tion. However, except for the hardware, neural networks can be accelerated by
many techniques [17,22]. Some techniques are not applicable to the decryption.

To fairly evaluate the time complexity of the attack on a h-round cipher,
we focus on two basic operations: (1) decrypting a ciphertext for h rounds, (2)
making a prediction for an input using a ND. If an attack needs to perform the
first operation N1 times, we define N1 as the Decryption Complexity (DC). If
an attack needs to perform the second operation N2 times, we define N2 as the
Prediction Complexity (PC). The final time complexity is N1 +N2 × ρ where ρ
is a constant.

Take Table 10 as an example. One time unit related to DC is x1 = t1×h
M and

one time unit related to PC is x2 = t2×2
M . We should notice that the input of

NDs is a ciphertext pair. Then ρ = x2

x1
= 2×t2

t1×h . In this paper, h ∈ {11, 12, 13}
and 5 6 ρ 6 11.

It’s clear that N1, N2 are determined by the data complexity and the key
space. Thus, they are deterministic. Actually, the real time consumption is also
determined by N1, N2.

6.2 Key Recovery Attacks on Round Reduced Speck32/64.

To attack Speck32/64 reduced to 11, 12, 13 rounds, the following 8 neural aided
statistical distinguishers are built as Table 11 shows.

NDs
7, ND

s
6, ND

s
5 are trained using Algorithm 6. The subscript set of selected

ciphertext bits is Γ = {30 ∼ 23, 14 ∼ 7}. The number of encryption rounds
covered by ∆P → ∆S is 2. It is extended to 3 rounds without loss of probability.

18

Table 11. Eight neural aided statistical distinguishers for attacking Speck32/64. p2 is
selected based on d, Table 2/12. p1, pn are estimated with M = 107(Section 3.5).

SD ∆P
p0−→ ∆S ND c2 p1 d p2 pn

SDt
8

(0x211, 0xa04)
p0=2−6

−−−−−→ (0x0040, 0)

NDt
8 0.5 0.5184 1 0.4993 0.4914

SDs
7 NDs

7 0.55 0.3576 2 0.2940 0.2863

SDt
7 NDt

7 0.55 0.4183 2 0.2607 0.2162

SDs
6 NDs

6 0.55 0.5132 1 0.3402 0.2603

SDt
6 NDt

6 0.55 0.6785 1 0.3135 0.1161

SDs
5 NDs

5 0.55 0.7192 0 0.5498 0.1291

SDt
5 NDt

5 0.55 0.8889 0 0.5151 0.0384

SDt
4 NDt

4 0.55 0.995 0 0.5065 0.0069

Key recovery attack on 11-round Speck32/64. To recover the last 4 sub-
keys, the attack is divided into seven stages. Table 12 shows the attack settings.

Table 12. Settings of the key recovery attack on 11-round Speck32/64. EUB: expected
upper bound.

stage SD βr βw N key space related keys surviving key space

1 SDs
7 0.005 2−8 222.44 28 sk11[7 ∼ 0] 24(Attack 1)

2 SDt
7 0.005 2−16 220.28 24+8 sk11 26(Attack 1)

3 SDs
6 0.001 2−14 220.28 26+8 sk11, sk10[7 ∼ 0] 24(EUB)

4 SDt
6 0.001 2−16 217.37 24+8 sk11, sk10 24(EUB)

5 SDs
5 0.001 2−12 219.43 24+8 sk11, sk10, sk9[7 ∼ 0] 2(EUB)

6 SDt
5 0.001 2−16 215.89 21+8 sk11, sk10, sk9 2(EUB)

7 SDt
4 0.001 2−17 213.04 21+16 sk11, sk10, sk9, sk8 2(EUB)

The probability that the right master key survives is about (1 − 0.005)2 ×
(1− 0.001)5 ≈ 0.985. In stages 2, 3, 5, the DC is (221.28 × (214 + 212) + 220.43 ×
212)× 1

11 = 232.29. the PC is 220.28 × (214 + 212) + 219.43 × 212 = 234.75 In stage
1, 4, 6, 7, the DC and PC are negligible. Thus the total DC is 232.29, the total
PC is 234.75, and the data complexity is 223.44.

Key recovery attack on 12-round Speck32/64. Table 13 shows the attack
settings.

Table 13. Settings of the key recovery attack on 12-round Speck32/64.

stage SD βr βw N key space related keys surviving key space

1 SDt
8 0.005 2−16 226.93 216 sk12 24(EUB)

2 SDs
7 0.005 2−12 222.86 24+8 sk12, sk11[7 ∼ 0] 27(EUB)

3 SDt
7 0.005 2−16 220.28 27+8 sk12, sk11 28(EUB)

4 SDs
6 0.001 2−16 220.41 28+8 sk12, sk11, sk10[7 ∼ 0] 24(EUB)

5 SDt
6 0.001 2−16 217.37 24+8 sk12, sk11, sk10 24(EUB)

6 SDt
5 0.001 2−20 216.12 24+16 sk12, sk11, sk10, sk9 2(EUB)

19

The probability that the right master key survives is about (1 − 0.005)3 ×
(1− 0.001)3 ≈ 0.982. The total DC is about 240.35, the total PC is about 42.93,
and the data complexity is 227.93.

Key recovery attack on 13-round Speck32/64. Table 23 shows the attack
settings.

Table 14. Settings of the key recovery attack on 13-round Speck32/64.

stage SD βr βw N key space related keys surviving key space

1 SDt
8 0.005 2−32 227.7 232 sk12, sk11 25(EUB)

2 SDt
7 0.005 2−21 220.58 25+16 sk12, sk11, sk10 28(EUB)

3 SDt
6 0.001 2−24 217.78 28+16 sk12, sk11, sk10, sk9 25(EUB)

The probability that the right master key survives is about (1 − 0.005)2 ×
(1− 0.001) ≈ 0.989. The total DC is about 258, the total PC is about 260.7 and
the data complexity is 228.7.

6.3 Key Recovery Attacks on Round Reduced Speck48/X.

To attack round-reduced Speck48/X, we train three teacher distinguishers NDt
5,

NDt
4, NDt

3. The number of training sample is 2×107. The difference constraint
is ∆S = (0x808000, 0x808004) [1].

After performing the BST against three teacher distinguishers, we obtain
two student distinguishers NDs

5, ND
s
4 by letting Γ = {47 ∼ 32, 23 ∼ 8}. Let

c3 = 0.55, Table 15 shows the estimation of p2|d1 of the five NDs.

Table 15. The estimation of p2|d1 of five neural distinguishers against Speck48/X

NDt
3

d1 0 1 2 3 4 5 6 7 8 ∼ 24
p2|d1 0.9871 0.5885 0.3508 0.2158 0.1397 0.095 0.0678 0.051 < 0.05

NDt
4

d1 0 1 2 3 4 5 6 7 8 ∼ 24
p2|d1 0.7494 0.5531 0.4189 0.329 0.2688 0.2299 0.2035 0.1849 < 0.18

NDs
4

d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.6555 0.5057 0.4152 0.3588 0.323 0.3 0.2849 0.2747 < 0.27

NDt
5

d1 0 1 2 3 4 5 6 7 8 ∼ 24
p2|d1 0.3304 0.2906 0.2629 0.2448 0.2312 0.2226 0.2162 0.2106 < 0.21

NDs
5

d1 0 1 2 3 4 5 6 7 8 ∼ 16
p2|d1 0.2942 0.2696 0.2545 0.2454 0.2407 0.2369 0.2354 0.2334 < 0.2334

Based on these five NDs above, the following 5 neural aided statistical dis-
tinguishers are built as Table 16 shows.

Key recovery attack on 12-round Speck48/72. Table 17 shows the attack
settings.

The probability that the right master key survives is about (1−0.005)× (1−
0.001)4 ≈ 0.991. The total DC is about 250.91, the total PC is about 253.49, and
the data complexity is 237.32.

20

Table 16. Five neural aided statistical distinguishers for attacking Speck48/X. ∆P →
∆S = 0x400052/0x504200→ 0x808000/0x808004.

SD p0 ND c3 p1 d p2 pn

SDs
5

2−12

NDs
5

0.55

0.2942 1 0.2545 0.2304

SDt
5 NDt

5 0.3304 1 0.2629 0.1999

SDs
4 NDs

4 0.6555 1 0.4152 0.2352

SDt
4 NDt

4 0.7494 0 0.5531 0.1349

SDt
3 NDt

3 0.9871 0 0.5885 0.0102

Table 17. Settings of the key recovery attack on 12-round Speck48/72 with p0 =
2−12.EUB: expected upper bound.

stage SD βp βn N key space related keys surviving key space

1 SDs
5 0.005 2−16 236.32 216 sk12[15 ∼ 0] 24(EUB)

2 SDt
5 0.001 2−24 235.27 24+8 sk12 25(EUB)

3 SDs
4 0.001 2−21 231.64 25+16 sk12, sk11[15 ∼ 0] 25(EUB)

4 SDt
4 0.001 2−24 231.73 25+8 sk12, sk11 2(EUB)

5 SDt
3 0.001 2−25 226.21 21+24 sk12, sk11, sk10 2(EUB)

Key recovery attack on 12-round Speck48/96. The 12-round Speck48/96
can be attacked by recovering the last 4 subkeys. The attack setting for 12-
round Speck48/72 is adopted for recovering the last 3 subkeys of Speck48/96. We
recover sk9 by adopting a teacher distinguisherNDt

2. And the extra computation
complexity is negligible.

Thus, the total DC is about 250.91, the total PC is about 253.49, and the data
complexity is 237.32.

7 Reduce the Data Complexity

NASA is a universal attack model. But some unique properties related to the
attacked cipher can be used to enhance NASA. In this section, we provide an
instance.

The impact of p0 on the data complexity is O(p−20), which is one of the main
bottlenecks for the raw NASA. Actually, we can reduce the data complexity by
exploiting neutral bits.

7.1 Overview of the Idea

Similarly, we also take the key recovery attack with 1-round decryption as an
example. Figure 2 summarizes the scheme of reducing the data complexity of
the NASA.

The core idea is dividing the differential transition into two parts: ∆P → ∆S1

with a probability of p, ∆S1 → ∆S2 with a probability of q. Suppose that
p0 = p× q. The statistical distinguisher only covers the second part.

When we perform a key recovery attack using the statistical distinguisher,
the data complexity is calculated based on q and the ND. Let’s denote the data

21

Fig. 2. The scheme of reducing the data complexity of NASA.

complexity as N1. Now, the first task is collecting N1 samples that pass the first
differential transition ∆P → ∆S1.

To solve this task, we propose a concept named Homogeneous Set.

Definition 4 Consider a differential transition ∆P → ∆S1. A homogeneous set
is a special set S consisting of M plaintext pairs

S = {(P 0
0 , P

0
1), · · · , (PM0 , PM1)}, P i0 ⊕ P i1 = ∆P, i ∈ [1,M] (29)

Without loss of generality, we assume that the M plaintext pairs are derived from
(P 0

0 , P
0
1) using a certain rule. After encryption, these M plaintext pairs can pass

the differential transition together in a high probability if (P 0
0 , P

0
1) passes the

differential transition.

It’s clear that neutral bits can be used to generate homogeneous sets. In fact,
there are more techniques that are also applicable, such as the affine subspace
introduced for improving the differential-linear attack [3]. If the homogeneous
set passes the differential, we denote it as a valid homogeneous set. Or we
denote it as an invalid homogeneous set. Then the target of gathering N1

samples becomes gathering enough valid homogeneous sets.

7.2 Identify the Valid Homogeneous Set

Adopting the idea of NASA, the valid homogeneous set is identified as:

1. Generate a homogeneous set S randomly.
2. Encrypt S with the attacked cipher.
3. Collect corresponding ciphertext pairs (Ci0, C

i
1), i ∈ [1,M].

4. Decrypt M ciphertext pairs with a subkey guess kg.
5. Feed partially decrypted ciphertext pairs into a ND.
6. Collect the ND’s outputs and calculate the statistic T (formula (4)).

After the statistic T is obtained, we can identify homogeneous sets.

22

Distribution of the statistic under valid homogeneous sets. The prob-
ability of the differential ∆S1 → ∆S2 is q. Then there are about M × q positive
samples and M × (1− q) negative samples.

When kg is the right subkey, the distribution of the statistic is

TV1 = T1 + T3 ∼ N (µV1 , σV1) (30)

µV1 = M(qp1+(1−q)p3), σV1 =
√
Mqp1(1− p1) +M(1− q)p3(1− p3). (31)

If kg is a wrong subkey guess, the distribution of the statistic is

TV0 = T2 + T3 ∼ N (µV0 , σV0) (32)

µV0 = M(qp2+(1−q)p3), σV0 =
√
Mqp2(1− p2) +M(1− q)p3(1− p3). (33)

For convenience, we denote p1, p2 as the same parameter pV . Then TV1
/TV0

is represented in the same form

TV ∼ N (µV , σV) (34)

µV = M [qpV +(1−q)p3], σV =
√
MqpV (1− pV) +M(1− q)p3(1− p3) (35)

Distribution of the statistic under invalid homogeneous sets. When S
is an invalid homogeneous set, the distribution of the statistic(formula (4)) is

TI = T3 ∼ N (µI , σI) (36)

µI = Mp3, σI =
√
Mp3(1− p3) (37)

Distinguishing between TV and TI . Since TV and TI are two different
normal distributions, the technique in Section 3.3 is used to distinguish these
two distributions. According to Proposition 1, the condition for distinguishing
TV and TI is

z1−βV × σV + z1−βI × σI
µV − µI

= 1 (38)

where

βV = Pr {s ∈ N (µI , σI) |s ∈ N (µV , σV)}
βI = Pr {s ∈ N (µV , σV) |s ∈ N (µI , σI)}

(39)

For invalid homogeneous sets, the maximum probability that subkey guesses
survive the NASA is βI . For valid homogeneous sets, the minimum probability
that subkey guesses survive the NASA is 1− βV .

23

The lower bound of the homogeneous set’s size. According to the dis-
tinguishing condition presented in Equation (38), the lower bound of the homo-
geneous set’s size M and the decision threshold tM are

aV = pV (1− pV), a3 = p3(1− p3) (40)

√
M =

z1−βV ×
√
qaV + (1− q)a3 + z1−βI ×

√
a3

(pV − p3)× q
(41)

tM = µV − z1−βV σV = µI + z1−βIσI (42)

If there are no enough neutral bits, the distinguishing between TV and TI
will fail. Besides, the choice of pV is related to p2|d1 as p2. A deeper analysis
about pV is presented later.

Identify valid homogeneous sets by counting surviving keys. Let K
denote the set of all possible subkey guesses

K = KR +KW

where KR is the set of subkey guesses in the target subspace, and KW is the set
of subkey guesses in other subspaces. Then the lower bound of the number of
surviving subkeys is |KR| × (1 − βV) when S is a valid homogeneous set. The
upper bound of the number of surviving subkeys is |K|×βI when S is an invalid
homogeneous set.

By setting two proper error probabilities βV , βI , we ensure the following
condition always holds

|KR| × (1− βV) >> |K| × βI (43)

Then we set another decision threshold tS that satisfies the condition

|KR| × (1− βV) > tS >> |K| × βI (44)

It’s expected that we can always identify valid homogeneous sets by comparing
the number of surviving subkey guesses with tS . Algorithm 6 summarizes the
concrete process of identifying valid homogeneous sets.

Further analysis about pV . When pV increases, M (Equation (41)) will
decrease since

√
M =

z1−βV ×
√
qpV (1− pV) + (1− q)a3 + z1−βI ×

√
a3

(pV − p3)× q

=
z1−βV ×

√
q(1− pV) + (1−q)a3

pV
+

z1−βI×
√
a3

pV

(
√
pV − p3√

pV
)× q

.

If pV increases, the numerator will decrease and the denominator will increase.
Then M will decrease.

24

Algorithm 6 Identify valid homogeneous sets

Require: a homogeneous set S with a size of M(formula 23);
a statistical distinguisher that covers a differential and a neural distinguisher ND;
the posterior probability threshold c;
a decision threshold tM for filtering subkey guesses;
a decision threshold tS for identifying valid homogeneous sets.

Ensure: the classification of the homogeneous set S.
1: Encrypt M plaintext pairs of the homogeneous set S and collect the ciphertexts;
2: Initialize a counter cp← 0;
3: for each possible subkey guess kg do
4: Decrypt M ciphertext pairs with kg;
5: Feed partially decrypted ciphertext pairs into the neural distinguisher ND;
6: Save the outputs of the neural distinguisher, Zi, i ∈ [1,M];
7: Count the number of Zi > c, and denote it as TM ;
8: if TM > tM then
9: cp← cp+ 1;

10: end if
11: end for
12: if cp > tS then
13: Return 1 (S is a valid homogeneous set).
14: else
15: Return 0 (S is an invalid homogeneous set).
16: end if

When the Hamming distance d1 between the right subkey sk and subkey
guess kg increases, p2|d1 will decrease in high probability. But the number of
subkey guesses in the subspace may increase sharply when d1 increases. As long
as the condition (formula (44)) holds, we advise pV = p2|d1 where d1 should be
as small as possible.

8 Improved Applications

8.1 Improved Attacks on Round Reduced Speck32/64

To improve the three key recovery attacks presented in Section 6.2, the 2-round
differential is divided into two 1-round differentials:

∆P = (0x211, 0xa04)
p=2−4

−−−−→ ∆S1 = (0x2800, 0x10)
q=2−2

−−−−→ ∆S2 = (0x0040, 0).

Compared with the attacks in Section 6.2, the technique for reducing the
data complexity brings two following changes:

1. In each stage, N, t need to be estimated based on q instead of p0 = pq.

2. The total data complexity and computation complexity contains two parts:
gathering enough valid homogeneous sets, key recovery.

25

Table 18. Improved data complexity in each stage of attacks on Speck32/64. Nr: the
number of encryption rounds.

Nr stage 1 2 3 4 5 6 7

11

N

214.94 212.94 212.2 29.7 211.73 28.78 26.98

12 218.93 215.44 212.94 212.2 29.7 29.03 -

13 219.7 213.28 29.97 - - - -

Other settings including the surviving key space are unchanged. Table 18 sum-
marizes the improved data complexity in each stage of three attacks.

Table 19 summarizes the settings for identifying valid homogeneous sets that
pass the 1-round differential ∆P → ∆S1.

Table 19. The settings used in Algorithm 6 for identifying valid homogeneous sets.

Nr ND c d pV = p2|d1=d p3 βV βI M tM ts

11 NDs
7 0.55 1 0.323 0.2863 0.1 2−8 215.21 11096 8

12 NDt
8 0.5 1 0.5056 0.4914 0.1 2−16 219.17 291188 16

13 NDt
8 0.5 1 0.5056 0.4914 0.1 2−32 220.09 553207 16

Taking the first row as an example, we explain the settings presented in
Table 19. pV , p3 are related to NDs

7. M is the size of homogeneous sets, which is
calculated based on Equation (41). Since d = 1, it’s expected that the Hamming
distance between subkeys belonging to KR and the right subkey is d = 1. Thus,
the lower bound of the number of surviving subkey guesses for valid homogeneous
sets is |KR|× (1−βV) = 8× (1−0.1) = 7.2 ≈ 8. Thus, let the decision threshold
for distinguishing valid homogeneous sets be tS = 8.

Look at Table 18 and Table 19 simultaneously. We find that 214.94 < 215.21,
218.93 < 219.17, and 219.7 < 220.09. This means that we just need to find one
valid homogeneous set.

In order to generate homogeneous sets, three sets of probabilistic neutral bits
are adopted respectively

B1 = {0, 1, 3 ∼ 5, 11, 14, 15, 20 ∼ 24, 26 ∼ 28}, |B1| = 16;
B2 = {0, 1, 3 ∼ 7, 11, 14, 15, 20 ∼ 24, 26 ∼ 30}, |B2| = 20;
B3 = {0, 1, 3 ∼ 8, 11, 14, 15, 20 ∼ 24, 26 ∼ 30}, |B3| = 21.

(45)

Generate homogeneous sets based on ∆P and Bi, i ∈ [1, 3]. The correspond-
ing probabilities that a homogeneous set is a valid homogeneous set are about
2−4.18, 2−4.75, 2−5.17 respectively. These three probabilities are experimentally
estimated.

Improved key recovery attack on 11-round Speck32/64. Thus the total
theoretical data complexity is

N = 24.18 ×M = 24.18+15.21+1 = 220.39 (46)

The complexities both contain two parts. The DC of finding a valid homogeneous
set is about 220.39× 28× 1

11 ≈ 224.93. The corresponding PC is about 227.39. It’s

26

worth noticing that sk11[7 ∼ 0] has already been filtered during the process of
gathering the valid homogeneous set. Thus, the DC of recovering the right key
is about 223.89. The corresponding PC is about 226.35. Then the total DC is
224.93 + 223.89 ≈ 225.5, and the total PC is about 227.96.

Practical experiments. To verify the theoretical analysis of the improved key
recovery attack on 11-round Speck32/64, we have performed practical experi-
ments according to the attack setting above. The target is to recover sk10, sk11,
which contains the first 4 stages. For each experiment, we first find a valid ho-
mogeneous set using algorithm 6. After performing this experiment 100 times,
we find

1. In 48 experiments, there are no survivng subkey guess pairs (kg10, kg11).
2. In the remaining 52 experiments, the right subkeys (sk10, sk11) survives.
3. If we consider all the 100 experiments, the average numbers of surviving

subkey guesses are 6.38 (stage 1), 24.31 (stage 2), 13.93 (stage 3), 9.8 (stage
4). If we focus on the 52 experiments, the average numbers of surviving
subkey guesses are 11.01 (stage 1), 46.03 (stage 2), 26.46 (stage 3), 18.84
(stage 4).

The sampling randomness is a very important point. When we generate ho-
mogeneous sets with neutral bits, the sampling randomness is likely to be de-
creased when the first differential covers 1 founds. Thus, for a valid homogeneous
set, resulting N intermediate state pairs (Si1,0, S

i
1,1), i ∈ {1, · · · , N} will be very

close to each other in the high-dimensional space.
This will cause a chain reaction. First, corresponding ciphertext pairs may

also be close to each other. When we decrypt these ciphertext pairs using sev-
eral subkey guesses, partially decrypted ciphertext pairs may also possess the
similarity. The resulting negative influence is that these subkey guesses will si-
multaneously survive the attack or be filtered in a high probability.

Although this negative influence exists, it doesn’t break the correctness of
our improved NASA. This is based on following clues

1. The estimation of data complexity for recovering the right subkey is accurate.
2. The number of surviving keys basically meets expectations when all the 100

experiments are considered.

We have performed more experiments about the negative influence presented
above. Generally speaking, the negative influence will be alleviated (even tackled)
when the first differential or the statistical distinguisher covers more rounds.
Thus when we estimate theoretical complexities of attacks based on the improved
NASA, it’s acceptable to neglect the negative influence.

Improved key recovery attack on 12-round Speck32/64. The total the-
oretical data complexity is

N = 24.75 ×M × 2 = 24.75+19.17+1 = 224.92 (47)

27

The DC of finding a valid homogeneous set is about 224.92 × 216 × 1
12 ≈ 237.34.

The DC of the key recovery is about 232.39. Thus the total DC is 237.34+232.39 ≈
237.39, the total PC is about 239.97.

Improved key recovery attack on 13-round Speck32/64. Thus the the-
oretical data complexity is

N = 25.17 ×M × 2 = 25.17+19.7+1 = 225.87 (48)

The DC of finding a valid homogeneous set is about 225.87 × 232 × 2
13 ≈ 255.17.

The DC of the key recovery is about 232.65. Thus the total DC is 255.17+232.65 ≈
255.17, and the total PC is about 257.87.

8.2 Improved Attacks on Round Reduced Speck48/X

To improve the two attacks presented in Section 6.3, the 5-round differential is
divided into a 1-round differential and 4-round differential

∆P = (0x400052, 0x504200)
p=2−5

−−−−→ ∆S1 = (0x820200, 0x1202)

∆S1 = (0x820200, 0x1202)
q=2−7

−−−−→ ∆S2 = (0x808000, 0x808004)
(49)

Based on q = 2−7, we estimate the data complexity in each stage of Table
17 again. The improved data complexities are 226.32, 225.27, 221.64, 221.74, 216.36

respectively.

Improved Key Recovery Attack on 12-round Speck48/72 The student
distinguisher NDs

5 is adopted for identifying valid homogeneous sets.
The following settings are used to run Algorithm 6

c = 0.55, d = 1, pV = p2|d1=d = 0.2696, p3 = 0.2304, βV = 0.1, βI = 2−16

Besides, M = 56194311 ≈ 225.74.
SinceM > 225, we need to select 26 neutral bits for generating a homogeneous

set. Since M < 226.32 < 2 ×M , we need to gather 2 valid homogeneous sets.
However, by exploiting a plaintext bit which has a neutrality of 1, we can generate
226.32 samples with 1 valid homogeneous set. Let the set of probabilistic neutral
bits be

B4 = {0 ∼ 4, 10 ∼ 12, 18, 19, 21, 23, 25 ∼ 27, 29, 31 ∼ 37, 42 ∼ 44}.

The probability that a homogeneous set is a valid homogeneous set is about
2−5.62.

It’s worth noticing that the ninth plaintext bit has a neutrality of 1. After
one valid homogeneous set is found, we generate the left 226.32 − M samples

28

by flipping the ninth plaintext bit of M plaintext pairs. Thus the total data
complexity is

N = 25.62 ×M × 2 + (226.32 −M)× 2 ≈ 232.37 (50)

The DC of finding a valid homogeneous set is about 25.62 ×M × 2 × 216 ×
1
12 ≈ 244.78. The DC of the key recovery is about 240.58. Thus the total DC is
244.78 + 240.58 ≈ 244.86, the total PC is about 247.44.

Improved Key Recovery Attack on 12-round Speck48/96. All the attack
settings related to the attack on 12-round Speck48/72 is applied to this attack.
Thus, the data complexity is N ≈ 232.37, the total DC is about 244.86, and the
total PC is about 247.44.

9 Conclusions

In this paper, we propose a neural aided statistical attack (NASA) that is a
universal framework for neural aided cryptanalysis. It has no extra requirements
about the attacked cipher except for a high probabilistic differential transition.
Besides, it provides a theoretical framework for estimating the needed attack
complexities and success rate. In order to reduce the key space to be searched
in the key recovery attack, a bit sensitivity test is proposed to help build NDs
flexibly. Applications to round reduced Speck and DES have proved the correct-
ness and superiorities of our NASA. Special properties related to the attacked
cipher can also be used to improve NASA. Experiments based on neutral bits
prove it successfully. This implies that NASA is a cryptanalysis technique with
great potential.

But there is still more work to do. The first is exploring the properties of
the ND. If we know how to build NDs against more rounds, the statistical at-
tack model can be greatly improved. The second is understanding the knowledge
learned by the ND. It can help us get rid of the dependence on neural distin-
guishers and improve the theoretical framework. The practical time consumption
can also be reduced significantly. Besides, the concept of the informative bit is
full of potential. We believe neural aided cryptanalysis has great potential for
better assessing the security of ciphers.

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
simon and speck. In: International Workshop on Fast Software Encryption. pp.
525–545. Springer (2014)

2. Batina, L., Bhasin, S., Jap, D., Picek, S.: Poster: Recovering the input of neu-
ral networks via single shot side-channel attacks. computer and communications
security pp. 2657–2659 (2019)

29

3. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with ap-
plications to arx ciphers. In: Annual International Cryptology Conference. pp.
329–358. Springer (2020)

4. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine
learning-based cryptanalysis. IACR Cryptol. ePrint Arch 287, 2021 (2021)

5. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model.
Neural Information Processing Systems (NeurIPS) pp. 932–938 (2000)

6. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers simon
and speck. In: International Workshop on Fast Software Encryption. pp. 546–570.
Springer (2014)

7. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. fast software encryption pp. 29–48 (2012)

8. Castelvecchi, D.: Can we open the black box of ai? Nature News 538(7623), 20
(2016)

9. Chen, Y., Yu, L., Ota, K., Dong, M.: Robust activity recognition for aging society.
IEEE Journal of Biomedical and Health Informatics 22(6), 1754–1764 (2018)

10. Dayhoff, J.E., DeLeo, J.M.: Artificial neural networks: opening the black box.
Cancer: Interdisciplinary International Journal of the American Cancer Society
91(S8), 1615–1635 (2001)

11. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. international
conference on selected areas in cryptography pp. 147–164 (2014)

12. Eli, B., Rafi, C.: Near-collisions of sha-0. Annual International Cryptology Confer-
ence pp. 290–305 (2004)

13. Feller, W.: An introduction to probability theory and its applications. vol. ii. Pop-
ulation 23(2), 375 (1968)

14. Gisselquist, R., Hoel, P.G., Port, S.C., Stone, C.J.: Introduction to probability
theory. American Mathematical Monthly 81(9), 1041 (1974)

15. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
international cryptology conference pp. 150–179 (2019)

16. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv: Neural
and Evolutionary Computing (2017)

17. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: Eie:
efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News 44(3), 243–254 (2016)

18. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
cryptographic hardware and embedded systems 2019(3), 148–179 (2019)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Neural Information Processing Systems (NeurIPS) pp.
1097–1105 (2012)

20. MacKay, D.J.: Introduction to gaussian processes. NATO ASI Series F Computer
and Systems Sciences 168, 133–166 (1998)

21. Olden, J.D., Jackson, D.A.: Illuminating the “black box”: a randomization ap-
proach for understanding variable contributions in artificial neural networks. Eco-
logical modelling 154(1-2), 135–150 (2002)

22. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in neural information processing
systems. pp. 8026–8037 (2019)

23. Ronald, L.R.: Cryptography and machine learning. International Conference on
the Theory and Application of Cryptology pp. 427–439 (1991)

30

A Analysis of the Data Complexity

For the conventional differential cryptanalysis, the data complexity is only re-
lated to the differential. For the NASA, the data complexity is also related to
the neural distinguisher. In this appendix, we present the analysis of each part’s
impact on the data complexity.

A.1 The Differential’s Impact on the Data Complexity

According to formula (17), the data complexity N is affected by the probability
p0 of the differential transition as

√
N =

z1−βr ×
√
p0a1 + (1− p0)a3 + z1−βw ×

√
p0a2 + (1− p0)a3

(p1 − p2)× p0

∝
z1−βr ×

√
a3 + (a1 − a3)p0 + z1−βw ×

√
a3 + (a2 − a3)p0

p0

∝
√
a3 + (a1 − a3)p0 + a4 ×

√
a3 + (a2 − a3)p0

p0

where a4 =
z1−βw
z1−βr

. We further know

N ∝ p−20

[
a3 + a2

4a3 + (a1 − a3 + a24a2 − a24a3)p0 + a5
]

where a5 = 2 × a4 ×
√
a3 + (a1 − a3)p0 ×

√
a3 + (a2 − a3)p0. Thus the impact

of the probability p0 of the differential transition is O(p−20).

A.2 The Neural Distinguisher’s Impact on the Data Complexity

Three probabilities p1, p2, pn are related to the neural distinguisher. Since pn is
related to negative samples and p1, p2 are related to positive samples, we can
discuss pn separately.

The impact of pn. In formula (17), only a3 is related to pn.

√
N =

z1−βr ×
√
p0a1 + (1− p0)a3 + z1−βw ×

√
p0a2 + (1− p0)a3

(p1 − p2)× p0
∝
√
p0a1 + (1− p0)a3 + a4 ×

√
p0a2 + (1− p0)a3

⇒ N ∝ p0 × a1 + a24 × p0 × a2 + (1− p0)(1 + a24)a3 + a5

Next, we will focus on attack scenarios where the p0 is very low. This can
make the discussion easier and more concise. This simplification is also reason-
able. Because when we attack a cipher for more rounds, the probability of the
differential transition is generally small.

When p0 → 0, a5 → 2×a4×a3. Thus the impact of a3 on the data complexity
is O(a3). Since pn < 1 always holds and a3 = pn − p2n, the impact of pn on the
data complexity is also O(pn).

31

The impact of p1, p2. In formula (17), a1, a2 are related to p1, p2 respectively.
The impacts of a1, a2 are adjusted by the differential transition’s probability p0.
Due to this property, we can also focus on attack scenarios where p0 → 0.

√
N =

z1−βr ×
√
p0a1 + (1− p0)a3 + z1−βw ×

√
p0a2 + (1− p0)a3

(p1 − p2)× p0

≈
z1−βr ×

√
(1− p0)a3 + z1−βw ×

√
(1− p0)a3

(p1 − p2)× p0
∝ (p1 − p2)−1

Thus the impact of p1, p2 on the data complexity is O((p1 − p2)−2).

32

