
1

Neural Aided Statistical Attack for Cryptanalysis
Yi Chen, Yantian Shen, Hongbo Yu

Abstract—In CRYPTO’19, Gohr proposed the first key recov-
ery attack based on deep learning, which opens the direction of
neural aided cryptanalysis. Up to date, neural aided cryptanalysis
still faces two problems: (1) its attack complexity estimations
rely purely on practical experiments. There is no theoretical
framework for estimating theoretical complexity. (2) it can not
work when there are no enough neutral bits that exist in the
prepended differential. To our best knowledge, we are the first
to solve these two problems. In this paper, our work contains
three aspects: (1) we propose a Neural Aided Statistical Attack
(NASA) that is a generic neural aided cryptanalysis technique.
NASA allows us to estimate the theoretical complexities without
performing practical experiments. Moreover, NASA does not rely
on any special properties including the neutral bit. (2) we propose
three methods for reducing the attack complexities of NASA. One
of the methods is based on a newly proposed concept named
Informative Bit that reveals an important phenomenon related
to neural distinguishers. (3) We prove the superiorities of NASA
based on applications to round reduced DES and Speck32/64.
Our work arguably raises a new direction for neural aided
cryptanalysis.

Index Terms—Neural Aided Statistical Attack, Deep Learning,
Cryptanalysis, Informative Bit, DES, Speck

I. INTRODUCTION

Deep learning has received much expectation in the cryp-
tography community since the last century. Rivest in [1]
reviewed various connections between machine learning and
cryptography. Some possible directions of research in crypt-
analytic applications of machine learning were also suggested.
Greydanus proved that a simplified version of Enigma can be
simulated by recurrent neural networks [2].

Although deep learning has shown its superiorities in var-
ious fields such as computer vision [3], natural language
processing [4], and smart medical [5], its application in the
field of conventional cryptanalysis has been stagnant. A few
valuable applications are only concentrated in the side-channel
analysis [6]–[8].

In CRYPTO’19, Gohr proposed a deep learning-based dis-
tinguisher [9] that is also called neural distinguisher (ND).
By placing a differential before ND, Gohr developed a key
recovery attack on 11-round Speck32/64. Gohr’s attack shows
considerable advantages in terms of attack complexities over
the traditional differential attack, which opens the direction of
neural aided cryptanalysis.

However, Gohr’s attack faces two problems. First, it can not
be applied to the theoretical security analysis of a cipher. More
exactly, we do not know what the required data complexity
is to attack a specific cipher. We can estimate the attack
complexities and success rate empirically only if the attack is
finished within an acceptable running time. Second, when we
add a differential before ND for attacking a cipher covering
more rounds, it requires that enough neutral bits [10] must

exist in the prepended differential. Up to date, there are no
solutions for these two problems.

In this paper, we have explored neural aided cryptanalysis
and made contributions as follows.
• We figure out the reason why Gohr’s attack does not allow

the adversary to estimate the theoretical complexities.
In [9], each key guess corresponds to a key rank score that
is directly determined by the output of ND. A key guess
is returned as a candidate when its key rank score exceeds
a threshold. Since the output of ND is unpredictable,
the threshold is set without any theoretical basis. Then
it is impossible to estimate the attack success rate and
theoretical complexities unless practical experiments are
executed.

• We propose a Neural Aided Statistical Attack (NASA),
which supports theoretical complexity estimation and
does not rely on neutral bits. The theoretical basis of
NASA is as follows. By analyzing the key recovery
process, we find that there are only four different sce-
narios. A statistic designed in this article obeys a normal
distribution in each scenario. Based on this statistic,
the key recovery is transformed into the distinguishing
between two normal distributions, which tells the required
data complexity of NASA.

• We propose three methods to reduce the attack complex-
ities of NASA. The first one is reducing the key space
by building ND on partial ciphertext bits. The initial
ND proposed by Gohr takes the complete ciphertext
pair as input, which forces the adversary to guess all
the key bits simultaneously. Adopting the new ND, the
adversary guesses partial key bits at a time. The second
one is a highly selective Bayesian key search algorithm. It
allows the adversary to search key guesses that are most
likely to be the right key instead of traversing all the key
guesses. The third one is reducing the data complexity by
exploiting neutral bits. When there are available neutral
bits, the data complexity of NASA can also be reduced.

• We perform experiments on DES and Speck32/64 to
fully analyze NASA. First, experiments on DES prove
that NASA can attack a cipher covering more rounds
than Gohr’s attack when there are no enough neutral
bits. Second, the experiment on Speck32/64 shows that
NASA can achieve comparable performance with Gohr’s
attack when the proposed three optimization methods are
available.

Organization Section III presents the neural aided statisti-
cal distinguisher. Section IV summarizes NASA and provides
the correctness verification. The three optimization methods
are introduced in Section V, VI, VII. Applications to DES
and Speck32/64 are presented in Section VIII, IX.

2

II. RELATED WORK

Let (P0, P1) denote a plaintext pair with difference ∆P . The
corresponding intermediate states, ciphertexts are (S0, S1),
(C0, C1).

A. Neutral Bit

Consider a differential ∆P → ∆S. Let E denote the
encryption function covering the differential. For any plaintext
pair (P0, P1) conforming to the differential, if the following
condition always holds

E(P0 ⊕ ej)⊕ E(P1 ⊕ ej) = ∆S, ej = 1� j,

the j-th bit is called a neutral bit [10].
Based on k neutral bits {j1, · · · , jk} and a plaintext pair

(P0, P1)|P0⊕P1 = ∆P , we can generate a plaintext structure
consisting of 2k plaintext pairs. Once (P0, P1) satisfies the
differential, the remaining 2k− 1 plaintext pairs also conform
to the differential.

B. Neural Distinguisher

The target of ND [9] is to distinguish two classes of
ciphertext pairs

Y (C0, C1) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

, (1)

where Y = 1 or Y = 0 is the label of (C0, C1). If the
difference between S0 and S1 is the target difference ∆S,
the pair (C0, C1) is regarded as a positive sample drawn from
the target distribution. Or (C0, C1) is regarded as a negative
sample that comes from a uniform distribution.

A neural network is trained over N
2 positive samples and

N
2 negative samples. The neural network can be used as an
ND if the distinguishing accuracy over a testing database is
higher than 0.5.

Let NDh denotes a neural distinguisher against the cipher
reduced to h rounds. Given a sample (C0, C1),ND will output
a score Z which is used as the posterior probability

Pr(Y = 1 |(C0, C1)) = Z = ND(C0, C1), 0 6 Z 6 1
(2)

When Z > 0.5, the predicted label of (C0, C1) is 1 [9].
In [9], a Residual Network (ResNet) is adopted by Gohr.

The training pipeline can refer to [9].

C. Gohr’s Key Recovery Attack

Algorithm 1 summarizes the core idea of the basic version
(unaccelerated version) of Gohr’s key recovery attack [9].

Decrypting 2k ciphertext pairs drawn from the target or
uniform distribution with a key guess kg, the adversary uses
the following formula

vkg =

2k∑
i=1

log2

(
Zi

1− Zi

)
(3)

to combine the scores Zi of individual decrypted ciphertext
pairs into a rank score for kg. When the rank score vkg exceeds
a threshold c1, kg is regarded as a key candidate.

Algorithm 1 Basic version of Gohr’s key recovery attack
Require: k neutral bits that exist in ∆P → ∆S;

An ND built over ∆S;
A key rank score threshold, c1;
A maximum number of iterations.

Ensure: A possible key candidate.
1: repeat
2: Random generate a plaintext pair (P 1

0 , P
1
1)|P 1

0 ⊕P 1
1 =

∆P ;
3: Create a plaintext structure consisting of 2k plaintext

pairs by k neutral bits;
4: Collect corresponding ciphertext pairs, (Ci0, C

i
1), i ∈

{1, · · · , 2k};
5: for each key guess kg do
6: Partially decrypt 2k ciphertext pairs with kg;
7: Feed decrypted ciphertext pairs to ND and collect

the outputs;
8: Calculate the key rank score vkg based on collected

outputs;
9: if vkg > c1 then

10: stop the key search and return kg as the key
candidate;

11: end if
12: end for
13: until a key candidate is returned or the maximum number

of iterations is reached.

The rank score is likely to exceed c1 only when the plaintext
structure passes the prepended differential and kg is the right
key. If the plaintext structure does not pass the differential or
the key guess is wrong, the rank score should be very low.
Thus, the right key can be identified by comparing the rank
score with a threshold. When the performance of ND is weak,
2k needs to be large. Then more neutral bits are required.

The application of Gohr’s attack is limited by two aspects:

• The adversary can not estimate the required attack com-
plexities and success rate theoretically. Since the output
Z of ND is unpredictable, the threshold c1 is set without
any clear theoretical basis. Then it is unknown how many
plaintext pairs a plaintext structure should contain. As a
result, the success rate under an attack setting is also
unknown.

• If the number of neutral bits is not large enough, Gohr’s
attack does not work.

D. Distinguishing between Two Normal Distributions

Here, we present the details of the distinguishing between
two normal distributions.

Consider two normal distributions: N (µr, σr), and
N (µw, σw). A sample s is sampled from either N (µr, σr)
or N (µw, σw). We have to decide if this sample is from
N (µr, σr) orN (µw, σw). The decision is made by comparing
the value s to some threshold t. Without loss of generality,
assume that µr > µw. If s > t, the decision is s ∈ N (µr, σr).

3

If s < t, the decision is s ∈ N (µw, σw). Then there are error
probabilities of two types:

βr = Pr {N (µw, σw) |s ∈ N (µr, σr)} ,
βw = Pr {N (µr, σr) |s ∈ N (µw, σw)} .

(4)

When a sample s is sampled from N (µr, σr), the probability
that the decision is s ∈ N (µw, σw) is βr.

Here a condition is given on µr, µw, σr, σw such that the
error probabilities are βr and βw. The proof can refer to related
research [11], [12].

Proposition 1: For the test to have error probabilities of at
most βr and βw, the parameters of the normal distribution
N (µr, σr) and N (µw, σw) with µr 6= µw have to be such
that

z1−βr × σr + z1−βw × σw
|µr − µw|

= 1 (5)

where z1−βr and z1−βw are the quantiles of the standard
normal distribution.

Proposition 1 is the theoretical basis of our work in this
article.

III. NEURAL AIDED STATISTICAL DISTINGUISHER

A. A Chosen Plaintext Statistical Distinguisher

Consider a cipher E with a block size of m, and a
differential ∆P

p0−→ ∆S|∆P,∆S ∈ Fm2 where p0 is the
transition probability. Build an ND over ∆S. Randomly
generate N plaintext pairs with a difference ∆P , and col-
lect corresponding ciphertext pairs. The adversary needs to
distinguish between this cipher and a random permutation.

The concrete process is as follows. For each ciphertext pair(
Ci0, C

i
1

)
, i ∈ {1, · · · , N}, the adversary feeds it into ND

and obtains its output Zi. Setting a threshold value c2, the
adversary calculates the statistic T

T =

N∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

. (6)

When p0 > 2−m holds, it’s expected that the value of the
statistic T for the cipher is higher than that for a random
permutation. In a key recovery setting, the right key will
result in the statistic T being among the highest values for
all candidate keys if N is large enough. In the sequel, we give
this a theoretical analysis.

B. Distribution of the Statistic under Right and Wrong keys

First, we regard a ciphertext pair as a point in a high-
dimensional space. For a given threshold c2, it’s equivalent to
creating a stable classification hyperplane in this space using
an ND. Thus the classification over a random ciphertext pair
is modeled as a Bernoulli experiment. It provides us with a
theoretical analysis framework.

According to the key recovery process, there are four
possible situations when we decrypt a ciphertext pair with a
key guess as shown in Fig. 1:
• Decrypting a positive sample with the right key: the

ciphertext pair satisfies the differential and the key guess
is right.

Fig. 1. Four situations of decrypting a ciphertext pair with a key guess.

• Decrypting a positive sample with wrong keys: the
ciphertext pair satisfies the differential but the key guess
is wrong.

• Decrypting a negative sample with the right key: the
ciphertext pair does not satisfy the differential but the key
guess is right.

• Decrypting a negative sample with wrong keys: the
ciphertext pair does not satisfy the differential and the
key guess is wrong.

Given an ND, we denote the probability of Z > c2 as
p1, p2, p3, p4 for the four situations respectively. Then the
distributions of the statistic (formula 6) in these four situations
are

T1 ∼ N (µ1, σ1), µ1 = N1 × p1, σ1 =
√
N1 × p1(1− p1)

T2 ∼ N (µ2, σ2), µ2 = N2 × p2, σ2 =
√
N2 × p2(1− p2)

T3 ∼ N (µ3, σ3), µ3 = N3 × p3, σ3 =
√
N3 × p3(1− p3)

T4 ∼ N (µ4, σ4), µ4 = N4 × p4, σ4 =
√
N4 × p4(1− p4)

(7)
if N1, N2, N3, N4 are high enough. N (µi, σi) is a normal
distribution with mean µi and standard deviation σi, i ∈
{1, 2, 3, 4}. An empirical condition is

Ni × pi > 5, Ni × (1− pi) > 5, i ∈ {1, 2, 3, 4} (8)

Now come back to the key recovery attack. If the probability
of the differential ∆P → ∆S is p0 and N ciphertext pairs are
collected randomly, then

N1 = N2 = N × p0, N3 = N4 = N × (1− p0) . (9)

Besides, the distributions of the statistic (formula 6) under the
right key and wrong keys are both a mixture of two normal
distributions.

1) Right key guess: This case contains two situations
in which corresponding distributions are N (µ1, σ1) and
N (µ3, σ3). Since a mixture of two independent normal dis-
tributions is still a normal distribution, the distribution of the
statistic (formula 6) under the right key guess is:

Tr = T1 + T3 ∼ N (µr, σr) (10)

µr = N × (p0p1 + (1− p0) p3) (11)

σr =
√
N × p0 × p1 (1− p1) +N (1− p0) p3 (1− p3)

(12)

4

2) Wrong key guess: This case also contains two situa-
tions in which corresponding distributions are N (µ2, σ2) and
N (µ4, σ4). Then the distribution of the statistic (formula 6)
under wrong key guesses is:

Tw = T2 + T4 ∼ N (µw, σw) (13)

µw = N × (p0p2 + (1− p0) p4) (14)

σw =
√
N × p0 × p2 (1− p2) +N (1− p0) p4 (1− p4)

(15)
Negative samples in the high-dimensional space approxi-

mately obey uniform distribution, thus p3 = p4 holds theo-
retically and experiments also verify it. Since the accuracy
of NDs is higher than 0.5, p1 > p2 also holds with a high
probability. When we set c2 = 0.5, we can ensure p1 > p2.
Thus µr > µw also holds.

Since the distributions of Tr, Tw are different, the key
recovery attack can be performed based on Proposition 1.

C. Data Complexity of the Statistical Distinguisher

Based on Proposition 1, one obtains the condition:

z1−βrσr + z1−βwσw
µr − µw

= 1 (16)

where the values of µr, σr, µw, σw refer to for-
mula 11, 12, 14, 15 respectively. In a key recovery setting,
1−βr is the minimum probability that the right key survives,
βw is the maximum probability that wrong keys survive.

Since we can not know the real classification hyperplane
learned by the ND, p1, p2, p3, and p4 are estimated ex-
perimentally. Then the estimated values of p3 and p4 will
be slightly different even they should be theoretically equal.
When the probability p0 of the differential transition is very
low, the slight distinction p3 − p4 may dominate µr − µw,
which is wrong. Thus we neglect the minor difference and
replace p3, p4 with pn.

Then the condition (formula 16) is simplified

√
N =

z1−βr ×X1 + z1−βw ×X2

(p1 − p2)× p0
, (17)

where

X1 =
√
p0a1 + (1− p0)a3, (18)

X2 =
√
p0a2 + (1− p0)a3, (19)

a1 = p1(1−p1), a2 = p2(1−p2), a3 = pn(1−pn). (20)

The decision threshold t is:

t = µr − z1−βrσr = µw + z1−βwσw. (21)

The data complexity N is directly calculated when βr and
βw are set. The impacts of p0, p1, p2, pn on N are about
O(p−20), O((p1 − p2)

−2), O(pn) respectively. The proof is
presented in Appendix.

D. Estimation of p1, pn
Consider an ND against a cipher, the values of p1, pn are

estimated as:
1) Randomly generate M positive / negative samples and

decrypt them for 1 round with the right / wrong subkeys.
2) Feed partially decrypted samples into ND.
3) Calculate the final ratio of Z > c2.

The ratio is the statistical expectation of p1 or pn. A large M
can make the statistical expectation accurate enough.

E. Further Analysis and Estimation of p2
When we decrypt a positive sample with a wrong key guess

(Fig. 1(2)), the final value of p2 is related to the Hamming
distance between the wrong key guess and the right key. Such
a phenomenon is based on Property 1 and Property 2.

Property 1: Decrypt a ciphertext for one round with two
different subkeys,

C1
h−1 = DecOneRound(Ch, kg1)

C2
h−1 = DecOneRound(Ch, kg2).

If kg1 and kg2 are only different at a few bits (e.g. just 1 bit
or 2 bits), the Hamming distance between C1

h−1 and C2
h−1

will be very small in high probability.

Property 2: Consider a neural network F (·) solving a
binary classification problem. If two input samples I1, I2
are very close to each other in the input space, two outputs
F (I1), F (I2) of the neural network may satisfy F (I1) ≈
F (I2) with a high probability.

Although the distance metric in the input space of neural
networks is complex and unknown, the Hamming distance is
still a good alternative. Thus it is expected that p2 is related to
the Hamming distance between the right key and wrong key
guesses.

Suppose we decrypt a positive sample (Ch+x,0, Ch+x,1)
with x subkey guesses simultaneously

Ch+j−1,0/1 = DecOneRound(Ch+j,0/1, kgh+j), j ∈ [1, x]

where kgh+j is the key guess of the (h + j)-th round.
(Ch,0, Ch,1) is fed into an NDh for estimating p2.

When the last x − 1 key guesses kgh+j , j ∈ [2, x] are all
right, (Ch+1,0, Ch+1,1) is a positive sample. The probability
of Z > c2 is p2. If kgh+j , j ∈ {2, · · · , x} are not all right,
then (Ch+1,0, Ch+1,1) is not a positive sample anymore. The
resulted probability of Z > c2 is closer to pn.

Since x key guesses have different influences on the prob-
ability of Z > c2, we consider x Hamming distances for
estimating p2. Let dj denotes the Hamming distance between
the right key and key guess in the (h + j)-th round, and
p2|d1,··· ,dx denotes the probability of Z > c2. Algorithm 2
is proposed for the estimation of p2|d1,··· ,dx .

Verification. Gohr provided ND5, ND6, ND7, ND8

against Speck32/64 [9], which are built over a plaintext
difference (0x0040, 0). We have performed tests on these four
distinguishers. Let M = 107, Table I and Table II show the
estimation results of p2|d1 and p2|d1,d2 respectively.

5

TABLE I
THE ESTIMATION OF p2|d1 OF 4 NEURAL DISTINGUISHERS AGAINST ROUND REDUCED SPECK32/64. FOR ND5 , ND6 , ND7 , c2 = 0.55. FOR ND8 ,

c2 = 0.5. p2|d1=0 = p1 .

ND5
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.8889 0.5151 0.3213 0.2168 0.1556 0.1189 0.0956 0.08 6 0.0694

ND6
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.6785 0.4429 0.3135 0.2384 0.1947 0.1684 0.1518 0.1408 6 0.1334

ND7
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.4183 0.3369 0.2884 0.2607 0.2442 0.234 0.2276 0.2236 6 0.2211

ND8
d1 0 1 2 3 4 5 6 7 8 ∼ 16

p2|d1 0.5184 0.5056 0.4993 0.4957 0.4939 0.4927 0.4925 0.4918 6 0.4917

TABLE II
THE ESTIMATION OF p2|d1,d2 OF ND7 AGAINST SPECK32/64. c2 = 0.55. THE COLUMNS CORRESPOND TO d2 . THE ROWS CORRESPOND TO d1 . ALL

RESULTS ONLY RETAIN TWO DECIMAL PLACES. THE SAME VALUE IS REPLACED BY AN UPPERCASE LETTER. Y = 0.21, E = 0.22, J = 0.23, U = 0.25,
AND V = 0.26.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0.42 V E E Y Y Y Y Y Y Y Y Y Y Y Y Y
1 0.33 U E Y Y Y Y Y Y Y Y Y Y Y Y Y E
2 0.29 J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y
3 V J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y
4 J J E Y Y Y Y Y Y Y Y Y Y Y Y Y Y
5 E E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y
6 E Y E Y Y Y Y Y Y Y Y Y Y Y Y Y Y
7 E E Y Y Y Y Y Y Y Y Y Y Y Y Y Y E
8 E Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

9 ∼ 16 6 Y

Algorithm 2 Estimation of p2|d1,··· ,dx
Require: a cipher with a subkey size of m;

M random plaintext pairs, (P i0, P
i
1), P

i
0 ⊕ P i1 = ∆P, i ∈

{1, · · · ,M};
an NDh built over ∆P .
M random master keys, MKi, i ∈ {1, · · · ,M};
The threshold c2.

Ensure: p2|d1,··· ,dx .
1: Encrypt each plaintext pair (P i0, P

i
1) with a master key

MKi for h+ x rounds;
2: Save resulting ciphertext pair (Ci0, C

i
1);

3: Save the (h+ j)-th subkey skih+j , j ∈ {1, · · · , x};
4: for d1 = 0 to m, · · · , dx = 0 to m do
5: for i = 1 to M do
6: Randomly draw x key guesses kgij , j ∈ {1, · · · , x}

where the Hamming distance between kgij and skih+j
is dj ;

7: Decrypt (Ci0, C
i
1) with kgij , j ∈ {1, · · · , x} for x

rounds;
8: Feed the decrypted ciphertext pair into NDh and

save the output as Zi|d1,··· ,dx ;
9: end for

10: Count the number of Zi|d1,··· ,dx > c2, and denote it as
Td1,··· ,dx ;

11: Save p2|d1,··· ,dx =
Td1,··· ,dx

M .
12: end for

The test results have verified the analysis of p2. Besides,

when two subkeys are guessed simultaneously, p2|d1,d2 will
decrease sharply even if the key guess of the last round is
wrong at only 1 bit.

Thus, the choice of p2 depends on the target of the key
recovery attack. If we think the attack is successful as long
as the Hamming distance between the key guess and the right
key is not larger than a threshold d, the value of p2 should be

p2 = max
{
p2|d1,··· ,dx |d1 + · · ·+ dx > d

}
(22)

This choice is based on the following truth. By setting a proper
threshold c2 such as c2 > 0.5, we ensure

p2|d1,··· ,dx 6 0.5, if d1 + · · ·+ dx > d (23)

According to formula 17, the higher p2 is, the higher the
required data complexity is. The decision threshold also in-
creases when p2 increases. Thus we only need to focus on the
highest data complexity required for filtering wrong keys.

Take ND7 as an example. Let d = 2, it means that the
attack is successful if the recovered key is different from the
right key at most 2 bits. Then p2 = p2|3 = 0.2607 or p2 =
p2|0,1 = p2|3,0 = 0.26.

IV. NEURAL AIDED STATISTICAL ATTACK

A. Key Recovery Attack Model

This neural aided statistical distinguisher is used to deter-
mine whether a key guess may be the right key. This is done
by the Statistical Test as shown in Algorithm 3. Algorithm 4
summarizes the Neural Aided StatisticalAttack (NASA) based
on the statistical distinguisher.

6

Algorithm 3 Statistical test for a key guess
Require: An ND; A key guess, kg;

A posterior probability threshold, c2; The decision
threshold, t;
N ciphertext pairs (Ci0, C

i
1) encrypted from (P i0, P

i
1), P

i
0⊕

P i1 = ∆P, i ∈ [1, N].
1: Decrypt N ciphertext pairs with kg;
2: Feed decrypted ciphertext pairs into ND, and collect the

outputs Zi, i ∈ [1, N];
3: Calculate the statistic T in formula 6;
4: if T > t then
5: Return kg as a key candidate.
6: end if

Algorithm 4 Neural Aided Statistical Attack
Require: The attacked cipher;

The differential with a probability of p0, ∆P
p0−→ ∆S;

Two maximum error probabilities, βr, βw;
A posterior probability threshold, c2.

Ensure: All possible key candidates.
1: Train an ND over ∆S;
2: Estimate p1, pn, p2 using ND (Section III-D, Algo-

rithm 2);
3: Calculate the data complexity N and the decision thresh-

old t (Section III-C);
4: Randomly generate N plaintext pairs (P i0, P

i
1), P

i
0⊕P i1 =

∆P, i ∈ {1, · · · , N};
5: Collect corresponding N ciphertext pairs, (Ci0, C

i
1), i ∈

{1, · · · , N};
6: for each key guess kg do
7: Perform the statistical test (Algorithm 3);
8: end for
9: Test surviving key candidates against a necessary num-

ber of plaintext-ciphertext pairs according to the unicity
distance for the attacked cipher.

B. Verification of the Key Recovery Attack Model

In order to verify NASA, four practical attacks on round
reduced Speck32/64 are performed. For Speck32/64 reduced
to h rounds, our target is to recover the last subkey skh. It’s
expected that returned key guesses are different from the right
key at most d = 2 bits.

NASA should work as long as the adopted ND has a
distinguishing accuracy higher than 0.5. Besides, the data
complexity should be correctly estimated once ∆P

p0−→ ∆S,
ND, d, βr, and βw are provided. Thus, different settings about
these factors are considered.

Three distinguishers ND5, ND7, ND8 provided by
Gohr [9] are adopted. Table III shows two different dif-
ferentials of Speck32/64 adopted in the verification. Since
no key addition happens in Speck before the first nonlinear
operation, these two differentials can be extended to a 2/3-
round differential respectively.

The verification plan consists of three steps:
1) Set the value of βr, βw. Calculate the data complexity N .
2) Perform NASA 100 times with N samples.

TABLE III
TWO OPTIONS OF THE PREPENDED DIFFERENTIAL OF SPECK32/64. nr IS
THE NUMBER OF ENCRYPTION ROUNDS COVERED BY THE DIFFERENTIAL.

ID ∆P → ∆S p0 nr

1 (0x2800, 0x10)→ (0x0040, 0) 2−2 1
2 (0x211, 0xa04)→ (0x0040, 0) 2−6 2

3) Check the following observation indexes:
a) The ratio that the right key (d1 = 0) passes the

statistical test.
b) The average number of surviving keys in 100 trails.
c) The ratio that the number of surviving keys is smaller

than the expected upper bound.
Table IV summarizes the settings related to four attacks.

Table I shows the estimations of p2|d1 related to ND5, ND7,
ND8. The value of p2 should be p2|d1=3 in four attacks.

1) Attack 1: recover sk10 of 10-round Speck32/64: In
the first attack setting, we get N = 3309 ≈ 211.69 (see
formula 17). The decision threshold is t = 818. The right key
(d1 = 0) should survive with a 1− βr = 99.5% probability at
least. Wrong keys (d1 > 3) should survive with a βw = 0.3%
probability at most. The number of surviving keys should not
exceed 137 + (216 − 137)× 0.003 = 333.197.

After performing this attack 100 times, we find:
• The right key (d1 = 0) has survived in all the 100

experiments.
• The average number of surviving keys is 124.21 that is

smaller than 333.197.
• The number of surviving keys is smaller than 333.197

in 97 experiments.

Based on the Hamming distance between the right key
and key guess, the whole subkey space is divided into 17
subspaces. We further calculate the average ratio that keys in
each subspace survive the attack. Table V shows the average
surviving ratios of 17 key subspaces.

2) Attack 2: recover sk10 of 10-round Speck32/64: In the
second attack setting, N = 5274 ≈ 212.34 and t = 1325. The
number of surviving keys should not exceed 137 + (216 −
137)× 2−16 ≈ 137.998.

After performing this attack 100 times, we find:
• The right key (d1 = 0) has survived in 99 experiments.
• The average number of surviving keys is 63.54 that is

smaller than 137.998.
• The number of surviving keys is smaller than 137.998

in 98 experiments.

Table VI shows the average surviving ratios of 17 subspaces.

3) Attack 3: recover sk10 of 10-round Speck32/64: ND8 is
a very weak distinguisher. Its distinguishing accuracy is only
about 0.518. In the third attack setting, N = 25680 ≈ 214.65

and t = 13064. The number of surviving keys should not
exceed 137 + (216 − 137)× 2−16 ≈ 137.998.

7

TABLE IV
SETTINGS OF THE FOUR ATTACKS AGAINST ROUND REDUCED SPECK32/64. DID IS THE DIFFERENTIAL TRANSITION’S ID IN TABLE 4.

Attack ID Attack rounds ND DID p0 c2 p1 d p2 pn βr βw

1 10 ND7 1 2−2 0.55 0.4183 2 0.2607 0.2162 0.005 0.003
2 10 ND7 1 2−2 0.55 0.4183 2 0.2607 0.2162 0.005 2−16

3 10 ND8 - 1 0.5 0.5184 2 0.4957 0.4914 0.001 2−16

4 9 ND5 2 2−6 0.55 0.8889 2 0.2168 0.0384 0.005 2−16

TABLE V
AVERAGE SURVIVING RATIOS (SR) OF KEY GUESSES IN ATTACK 1.

d1 0 1 2 3 4 5 ∼ 16

SR 1 0.4706 0.1786 0.0591 0.017 6 0.0041

TABLE VI
AVERAGE SURVIVING RATIOS (SR) OF KEY GUESSES IN ATTACK 2.

d1 0 1 2 3 4 5 ∼ 16

SR 0.99 0.3788 0.1245 0.0343 0.008 6 0.0014

After performing this attack 100 times, we find:
• The right key (d1 = 0) has survived in all the 100

experiments.
• The average number of surviving keys is 77.47 that is

smaller than 137.998.
• The number of surviving keys is smaller than 137.998

in 85 experiments.

Table VII shows the average surviving ratios of 17 sub-
spaces.

TABLE VII
AVERAGE SURVIVING RATIOS (SR) OF KEY GUESSES IN ATTACK 3.

d1 0 1 2 3 4 5 ∼ 16

SR 1 0.4444 0.1459 0.0406 0.0095 6 0.0019

4) Attack 4: recover sk9 of 9-round Speck32/64: In the
fourth attack setting, N = 15905 ≈ 213.957 and t = 758. The
number of surviving keys should not exceed 137 + (216 −
137)× 2−16 ≈ 137.998.

After performing this attack 100 times, we find:
• The right key (d1 = 0) has survived in all the 100

experiments.
• The average number of surviving keys is 18.41 that is

smaller than 137.998.
• The number of surviving keys is smaller than 137.998 in

100 experiments.
Table VIII shows the average surviving ratios of 17 sub-

spaces.
It’s clear that these four attacks have achieved the most

important two targets of NASA. Although the ratio that keys
of each subset survive is not strictly consistent with the
theoretical value, the total number of surviving keys is within
the upper bound. This shows the Hamming distance is a good

TABLE VIII
AVERAGE SURVIVING RATIOS (SR) OF KEY GUESSES IN ATTACK 4.

d1 0 1 2 3 4 5 ∼ 16

SR 1 0.2781 0.0562 0.0082 0.0007 6 0.0001

distance metric for the estimation of p2. The correctness of
NASA is also well verified.

V. REDUCE THE KEY SPACE

So far we still need to guess all the bits of the subkey
simultaneously, since ND takes the complete ciphertext pairs
(C0, C1) as input. When the subkey has a large size, this is a
serious bottleneck.

A. An Intuitive Method for Reducing the Key Space

An intuitive method for reducing the key space is building
ND on partial ciphertext bits

Ci = Ci[L− 1]|| · · · ||Ci[0], i ∈ [0, 1] (24)

Γ = {x1, x2, · · · , xk}, x1 > · · · > xk, k <= L (25)

ϕ(Ci, Γ) = Ci[x1]||Ci[x2]||Ci[xk], i ∈ [0, 1] (26)

Y (ϕ(C0, Γ), ϕ(C1, Γ)) =

{
1, if S0 ⊕ S1 = ∆S
0, if S0 ⊕ S1 6= ∆S

(27)

Pr(Y = 1 |(ϕ(C0, Γ), ϕ(C1, Γ))) = ND(ϕ(C0, Γ), ϕ(C1, Γ))
(28)

where Ci[0] is the least significant bit of the ciphertext Ci, Γ
is the subscript set of selected ciphertext bits.

Such a method significantly reduces the key space to be
searched. But which ciphertext bits should we select for
building ND? Can we develop a generic and efficient
framework for guiding this selection? In order to better
introduce our work for solving these problems, three new
concepts are proposed first.

Definition 1: An informative bit is the ciphertext bit that is
helpful to distinguish between the cipher and a pseudo-random
permutation.

Definition 2: For a cipher reduced to h rounds, the neural
distinguisher trained on the complete ciphertexts (C0, C1) is
denoted as the teacher distinguisher NDth, the neural distin-
guisher trained on partial ciphertext bits (ϕ(C0, Γ), ϕ(C1, Γ))
is denoted as the student distinguisher NDsh. The teacher
distinguisher is viewed as a special student distinguisher.

8

B. Identify Informative Bits by Bit Sensitivity Test

It’s clear that student distinguishers should be built on
informative bits. However, it’s hard to identify informative bits
according to Definition 1. Thus we propose an approximate
definition of the informative bit.

Definition 3: For an NDt, if the distinguishing accuracy is
greatly affected by the j-th bit of C0 or C1, the j-th ciphertext
bit is an informative bit.

An NDt works since it has learned knowledge from ci-
phertext bits. According to Definition 1, only informative
bits provide knowledge. Thus the ciphertext bit that has a
significant influence on the distinguishing accuracy of NDt
must be an informative bit.

Definition 3 can not ensure each informative bit that obeys
the Definition 1 is identified successfully. But we only care
about informative bits that are captured by an NDt. This
approximate definition helps develop a simple but effective
framework for identifying informative bits.

The proposed framework is named Bit Sensitivity Test
(BST). Its core idea is to test whether the distinguishing
accuracy of an NDt drops after we remove some knowledge
related to the specific bit.

Gohr in [9] has proved that NDth, h ∈ {5, 6, 7, 8} against
Speck32/64 captures the knowledge about the ciphertext differ-
ence and some unknown features. Consider the j-th ciphertext
bit. We remove the knowledge about the j-th ciphertext bit
difference by

C0 = C0 ⊕ (η � j) or C1 = C1 ⊕ (η � j) (29)

where η is a random mask that could be 0 or 1.
We have performed an extreme test on NDth, h ∈

{5, 6, 7, 8} against Speck32/64. If we XOR each bit of C0

or C1 with a random mask, NDth, h ∈ {5, 6, 7, 8} can not
distinguish positive samples and negative samples anymore.
These tests imply that knowledge about unknown features
is also removed by one of the two operations presented in
formula 29.

After the knowledge related to a ciphertext bit is removed,
the accuracy decrease of NDt is named Bit Sensitivity, which
is used to identify informative bits. Algorithm 5 summarizes
the BST.

Examples and analysis. We have applied the BST to
NDth, h ∈ {5, 6, 7} against Speck32/64. The results of the
BST under three scenarios are shown in Fig. 2, Fig. 3, and
Fig. 4 respectively.

We observe that sen0 ≈ sen1. This proves that C0 ⊕ (η �
j) is equivalent to C1 ⊕ (η � j). Besides, we know

• If sen0[j] > 0, the j-th ciphertext bit is an informative
bit.

• If sen0,1[j] > 0, the j-th ciphertext bit provides some
useful unknown features. Since the knowledge about the
bit difference is not removed, then only useful unknown
features can lead to a decrease in the accuracy.

• If sen0[j] ≈ sen0,1[j], the j-th ciphertext bit difference
has little influence on NDth.

Algorithm 5 Bit Sensitivity Test
Require: a cipher with a block size of m;

an NDt against this cipher;
a test dataset consisting of M

2 positive samples and M
2

negative samples.
Ensure: An array sen that saves the bit sensitivity of m

ciphertext bits.
1: Test the distinguishing accuracy of NDt on the test

dataset. Save it to sen[m];
2: for j = 0 to m− 1 do
3: for i = 1 to M do
4: Generate a random mask η ∈ {0, 1};
5: Ci,new0 = Ci0 ⊕ (η � j);
6: Feed the new sample (Ci,new0 , Ci1) to NDt;
7: end for
8: Count the current accuracy cp;
9: sen[j] = sen[m]− cp;

10: end for

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sen-0 sen-1 sen-01

Fig. 2. Results of BST of NDt
5 against Speck32/64, M = 106. sen0 is the

results of performing C0⊕ (η � j), sen1 is the results of performing C1⊕
(η � j), sen0,1 is the results of performing two operations simultaneously,
j ∈ {0, · · · , 31}.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sen-0 sen-1 sen-01

Fig. 3. Results of BST of NDt
6 against Speck32/64, M = 106.

Reverse verification about identified informative bits.
To further verify Definition 3, a reverse verification about
identified informative bits is performed. First, select some
informative bits. Second, train anNDs on selected informative
bits and observe the distinguishing accuracy.

Taking NDt7 against Speck32/64 as an example, we have
performed the reverse verification based on results in Fig. 4.
Table IX shows the distinguishing accuracies under two set-
tings. For Speck32/64, the j-th and (j+16)-th bit are directly

9

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sen-0 sen-1 sen-01

Fig. 4. Results of BST of NDt
7 against Speck32/64, M = 106.

related to the same subkey bit. Thus the 8-th and 1st ciphertext
bits are also considered.

TABLE IX
ACCURACIES OF NEURAL DISTINGUISHERS TRAINED ON SELECTED

CIPHERTEXT BITS

Γ Accuracy
{30 ∼ 23, 14 ∼ 7} 0.5414

{30 ∼ 23, 21 ∼ 17, 14 ∼ 7, 5 ∼ 1} 0.6065
{31 ∼ 0} 0.6067

The accuracy of NDt7 is 0.6067. When all the identified
informative bits are considered, the resulted NDs7 obtains a
distinguishing accuracy of 0.6065, which is almost the same as
0.6067. Such an experiment shows that Definition 3 can help
identify all the ciphertext bits that have a significant influence
on teacher distinguishers.

Once informative bits are identified by the Bit Sensitiv-
ity Test, the whole key space can be divided into several
subspaces. In each subspace, NASA is performed to recover
specific key bits.

This informative-bit-based method is the first generic tech-
nique for reducing the attack complexities of NASA.

VI. SELECTIVE KEY SEARCH

In the basic NASA as shown in Algorithm 4, each possible
key guess kg is tested. Inspired by the analysis of p2 in
Section III-E, we develop a highly selective key search strategy
for further reducing the attack complexity.

Specifically, we do not need to traverse all the key guesses.
Some key guesses that are most likely to be the right key are
recommended based on the keys that have been tested.

A. Distribution of the Statistic Under Different Keys

In this section, we first discuss the distribution of the statistic
(formula 6) under different keys again.

Here we still take Fig. 1 as the example. Suppose that the
size of the key guess kg is m. According to the analysis
in Section III-E, we know there are the following m + 1
probabilities

p2|d1 = Pr{z > c2|S0 ⊕ S1 = ∆S}, 0 6 d1 6 m,

where d1 is the Hamming distance between kg and the right
key.

Then there are m+ 1 resulting distributions of the statistic
(formula 6)

Td1 ∼ N (µd1 , σd1), (30)

µd1 = N × (p0 × p2|d1 + (1− p0)pn),

σd1 =
√
N × p0 × p2|d1

(
1− p2|d1

)
+N (1− p0) pn (1− pn).

The parameters of these m + 1 distributions are obtained
off-line. These distributions are used as prior knowledge to
improve the key search strategy of NASA.

B. Bayesian Key Search Strategy

Algorithm 6 summarizes the newly proposed Bayesian key
search algorithm, which is the second technique for reducing
the attack complexities of NASA.

Algorithm 6 Bayesian Key Search Algorithm
Require: Ciphertext pairs, (Ci0, C

i
1), i ∈ {1, · · · , N};

A neural distinguisher, ND;
Prior knowledge µd1 and σd1 , d1 ∈ {0, · · · ,m};
The number of key guess candidates to be generated
within each iteration, ncand;
The number of iterations, niter.

Ensure: The list L of tuples of recommended keys and
corresponding statistics.

1: K = {kg1, · · · , kgcand} ← choose ncand values at
random without replacement from the set of all subkey
candidates.

2: L← {}
3: for t = 1 to niter do
4: for each kg ∈ K do
5: for i = 1 to N do
6: Decrypt Ci0, C

i
1 with kg.

7: Feed partially decrypted ciphertext pair into ND.
8: Collect the output Zi,kg of ND.
9: end for

10: Compute the statistic T kg (formula 6).
11: L← L||(kg, T kg).
12: end for
13: for sk ∈ {0, · · · , 2m − 1} do
14: λsk =

∑
kg∈K

(
T kg − µhd(kg⊕sk)

)2
/σ2

hd(kg⊕sk).
/* hd(kg⊕sk) is the Hamming distance between kg
and sk */

15: end for
16: K ← argsortsk(λ)[0 : ncand − 1].

/* Pick ncand key guesses with the ncand smallest score
to form the new set of key guess candidates K */

17: end for
18: Return L

VII. REDUCE THE DATA COMPLEXITY

Consider the prepended differential ∆P
p0−→ ∆S. As we

have presented in Section III-C, the impact of p0 on the data
complexity is about O(p−20).

Neutral bits seldom exist in a long differential character-
istic. But there usually are numerous neutral bits in a short

10

differential characteristic. This section shows how to reduce
the data complexity of NASA by neutral bits.

A. Improved Neural Aided Statistical Attack

We still take the key recovery attack with 1-round decryp-
tion as an example. Fig. 5 shows the scheme of the improved
NASA.

Fig. 5. The scheme of the improved neural aided statistical attack. The
statistical distinguisher only covers the second differential ∆B → ∆S.
Neutral bits that exist in ∆P → ∆B are exploited.

Its core idea is dividing the initial long differential into two
short ones: ∆P

q−→ ∆B, and ∆B
p−→ ∆S where p0 = q × p.

The statistical distinguisher only covers the second differential
∆B → ∆S. Neutral bits that exist in the first part ∆P →
∆B are exploited. Algorithm 7 summarizes the details of the
improved NASA.

Algorithm 7 Improved neural aided statistical attack
Require: The attacked cipher;

The prepended differential, ∆P
q−→ ∆B

p−→ ∆S;
Neutral bits that exist in ∆P → ∆B;
Two maximum error probabilities, βr, βw;
A posterior probability threshold, c2.

Ensure: All possible key candidates.
1: Train an ND over ∆S;
2: Estimate p1, pn, p2 using ND (Section III-D, Algo-

rithm 2);
3: Calculate the data complexity N1 based on p, p1, pn, p2

(Section III-C);
4: for j from 1 to 1

q do
5: Based on ∆P and neutral bits, randomly generate a

plaintext structure P consisting of N1 plaintext pairs.
6: Perform the basic NASA based on P (Algorithm 4).
7: end for
8: Test surviving key candidates against a necessary num-

ber of plaintext-ciphertext pairs according to the unicity
distance for the attacked cipher.

Now, only the impact of p on the total data complexity
is O(p−2). The impact of q on the total data complexity is
O(q−1). Thus, the total impact of the prepended differential
is O(q−1p−2) instead of O(p−20) = O(q−2p−2). The data
complexity is reduced by a factor of about q−1.

B. Further Improvement Based On Early Stopping

In Algorithm 7, 1
q plaintext structures are generated. But

only one plaintext structure P is expected to satisfy the
differential ∆P → ∆B.

This plaintext structure is called valid plaintext structure
while other plaintext structures are called invalid plaintext
structures. If a valid plaintext structure is identified once it
arises, Algorithm 7 can be early stopped at step 4.

We propose an identification method that does not change
the process of Algorithm 7. At a high level, the identification
method is as follows:

1) Generate a plaintext structure P consisting of M plaintext
pairs.

2) Filter key guesses based on the statistic T (formula 6)
and a decision threshold tM .

3) If the number of surviving key guesses exceeds a thresh-
old tP , P is a valid plaintext structure.

By setting proper parameters tM , the number of surviving key
guesses exceeds tP only when P is a valid plaintext structure.

Next, we present an theoretical analysis of M, tM , tP . For
convenience, we rewrite the statistic T (formula 6) as

T =

M∑
i=1

φ (Zi), φ (Zi) =

{
1, if Zi > c2
0, if Zi 6 c2

. (31)

The four situations shown in Fig. 1 also exist in the improved
NASA (see Fig. 5). The following notations introduced in
Section III are adopted again:
• p2|d1 : the probability Pr(Z > c2|S0 ⊕ S1 = ∆S) when

the Hamming distance between the key guess and the
right key is d1 ∈ [0,m].

• pn : the probability Pr(Z > c2|S0 ⊕ S1 6= ∆S).

1) Distribution of the statistic under valid plaintext struc-
tures: When P is a valid plaintext structure that satisfies
∆P → ∆B, there are M×p positive samples and M×(1−p)
negative samples.

When d1 is not set clearly, we denote p2|d1 as pV . The
distribution of the statistic(formula 31) is

TV ∼ N (µV , σV), (32)

µV =M [p× pV + (1− p)pn], (33)

σV =
√
M × p× pV (1− pV) +M(1− p)pn(1− pn).

(34)
Select a specific d1, we have pV = p2|d1 . Let KV denote

the set of key guesses with a Hamming distance d1 from the
right key. Then only kg ∈ KV makes the above TV hold.

2) Distribution of the statistic under invalid plaintext struc-
tures: When P is an invalid plaintext structure, all the M
samples are negative samples.

The distribution of the statistic(formula 31) is

TI ∼ N (µI , σI) (35)

µI =M × pn, σI =
√
M × pn(1− pn) (36)

Let K denote the set of all possible key guesses. Then any
kg ∈ K makes the above TI hold.

11

3) Distinguishing between TV and TI : Since TV and
TI are two different normal distributions, the technique in
Section II-D is used to distinguish these two distributions.
According to Proposition 1, the condition for distinguishing
TV and TI is

z1−βV × σV + z1−βI × σI
µV − µI

= 1 (37)

where
βV = Pr {N (µI , σI) |s ∈ N (µV , σV)} ,
βI = Pr {N (µV , σV) |s ∈ N (µI , σI)} ,

(38)

and s stands for a sample.
Here, we present an explanation about the two error prob-

abilities βI , βV . When P is an invalid plaintext structure,
the maximum probability that key guesses kg ∈ K survive
the attack is βI . When P is a valid plaintext structure, the
minimum probability that key guesses kg ∈ KV survive the
attack is 1− βV .

By simplifying formula 37, the data complexity M is

aV = pV (1− pV), an = pn(1− pn), (39)

√
M =

z1−βV ×
√
p× aV + (1− p)an + z1−βI ×

√
an

(pV − pn)× p
.

(40)
And the decision threshold tM is

tM = µV − z1−βV σV = µI + z1−βIσI , (41)

where z1−βV and z1−βI are the quantiles of the standard
normal distribution.

4) Identify valid plaintext structures by counting surviving
keys: When P is a valid plaintext structure, The lower bound
of the number of surviving subkeys is |KV |× (1−βV). When
P is an invalid plaintext structure, The upper bound of the
number of surviving subkeys is |K| × βI .

By setting two proper error probabilities βV , βI , we ensure
the following condition always holds

|KR| × (1− βV) >> |K| × βI . (42)

Let tS satisfy the following condition

|KR| × (1− βV) > tS >> |K| × βI . (43)

Then valid plaintext structures is identified by by comparing
the number of surviving subkey guesses with tS .

Algorithm 8 summarizes the concrete identification process.
Since the identification is also based on the same statistic as
the key recovery, Algorithm 8 and Algorithm 7 are able to
be performed simultaneously. The necessary condition is that
the size of a plaintext structure P should exceed N1 and M .

5) Further analysis about pV .: The data complexity M is
related to pV . And pV is related to the Hamming distance d1.

When pV increases, M (Equation 40) decreases since

√
M =

z1−βV ×
√
p× aV + (1− p)an + z1−βI ×

√
an

(pV − pn)× p

=
z1−βV ×

√
p(1− pV) + (1−p)an

pV
+

z1−βI×
√
an

pV

(
√
pV − pn√

pV
)× p

.

Algorithm 8 Identify valid plaintext structures
Require: a plaintext structure P with a size of

M (formula 40);
an ND trained over ∆S;
the posterior probability threshold c2;
a decision threshold tM for filtering subkey guesses;
a decision threshold tP for identifying valid plaintext
structures.

Ensure: the classification of P .
1: Collect the M ciphertext pairs corresponding to P;
2: Initialize a counter cp← 0;
3: for each possible subkey guess kg do
4: Decrypt M ciphertext pairs with kg;
5: Feed partially decrypted ciphertext pairs into ND;
6: Save the outputs of ND, Zi, i ∈ [1,M];
7: Count the number of Zi > c, and denote it as TM ;
8: if TM > tM then
9: cp← cp+ 1;

10: end if
11: end for
12: if cp > tP then
13: Return 1 (P is a valid plaintext structure).
14: else
15: Return 0 (P is an invalid plaintext structure).
16: end if

If pV increases, the numerator will decrease and the denomi-
nator will increase. Then M will decrease.

When the Hamming distance d1 increases, p2|d1 will de-
crease in high probability. But the number of subkey guesses
in the subspace may increase sharply when d1 increases. As
long as the condition (formula 42) holds, we advise pV = p2|d1
where d1 should be as small as possible.

VIII. APPLICATION TO DES

This section proves that NASA surpasses Gohr’s attack
when enough neutral bits do not exist in the prepended long
differential.

DES [13] is a block cipher with a block size of 64 bits. The
structure of DES is the classical Feistel structure as shown in
Fig. 6. Its round function f is composed of eight different
S-boxs. More details refer to [13], please. We perform key
recovery attacks on round reduced DES.

Fig. 6. A round of encryption of DES.

12

A. Prepended Differentials
Two optimal 2-round iterative differentials found in [14] are

0x19600000/0
Pr= 1

234−−−−−→ 0x19600000/0,

0x1B600000/0
Pr= 1

234−−−−−→ 0x1B600000/0.
(44)

Based on these 2-round differentials, we can get the iterative
differential of any even-numbered round. These iterative dif-
ferentials are used as the prepended differential ∆P → ∆S
for attacking round reduced DES.

According to the definition of the neutral bit, We measure
the neutrality of each ciphertext bit experimentally. We find
that 18 neutral bits {33, · · · , 50} exist in the above 2-round
iterative differentials. As for 4-round iterative differentials, no
neutral bits exist anymore.

B. Build Neural Distinguishers Against DES
Let ∆S = 0x19600000/0, we build teacher distinguishers

against DES up to 5 rounds. The distinguishing accuracy of
the 5-round teacher distinguisher is 0.58.

The Bit Sensitivity Test identifies 12 informative bits
{39, 50, 56, 61, 59, 37, 43, 49, 42, 32, 53, 52}. The 4 bits
{39, 50, 56, 61} are related to the fifth S-box S5, and
{59, 37, 43, 49} are related to the eighth S-box S8.

In order to introduce the next experiment more clearly,
we focus on the student distinguisher NDs

5 built over the
bits {39, 50, 56, 61} for now. Let the posterior probability
threshold be c2 = 0.5, we get p1 = 0.6032 and pn = 0.4883.
Table X shows the estimation of p2|d1 .

TABLE X
THE ESTIMATION OF p2|d1 OF NDs

5 AGAINST ROUND REDUCED DES.
c2 = 0.5. NDs

5 IS BUILT OVER 4 BITS {39, 50, 56, 61}.

d1 0 1 2 3 4 5 6
p2|d1 0.6034 0.505 0.507 0.509 0.5101 0.504 0.496

C. Gohr’s Attack on DES

By placing the 2-round differential 0x19600000/0
234−1

−−−−→
0x19600000/0 before the student distinguisher NDs

5, with
the help of the 18 neutral bits {33, · · · , 50}, 8-round DES
is broken by Gohr’s attack. The 6 key bits related to S5 of
the last round are recovered.

Since no neutral bits exist in the 4-round iterative differen-
tial 0x19600000/0 234−2

−−−−→ 0x19600000/0, 10-round DES can
not be attacked by Gohr’s attack.

D. Neural Aided Statistical Attack on DES
Consider the basic NASA (Algorithm 4). The 4-round

differential 0x19600000/0
234−2

−−−−→ 0x19600000/0 is the
prepended differential. The target is also recovering the 6 key
bits related to S5 of the last round by NDs5.

Let p2 = 0.5101, βr = 0.005, and βw = 2−6. Since p0 =
234−2, the required data complexity is N = 240.814 chosen-
plaintext pairs. Thus, 10-round DES is broken.

If we adopt the improved NASA, the data complexity is
smaller. Thus, when there are no enough neutral bits, NASA
surpasses Gohr’s attack.

E. Time Complexity

Since the output of an S-box only contains 4 bits,
we build a look-up table off-line for saving the tuple
((C0, C1),NDs5(C0, C1)). Then the time complexity is not
related to NDs5 anymore. In other words, the time complexity
of the basic NASA is N × 26 = 246.814.

By building NDs5 over outputs of different S-box and
guessing partial key bits, the complete master key is recovered.

IX. APPLICATION TO SPECK32/64

When there are enough neutral bits in the prepended differ-
ential ∆P

p0−→ ∆S, the attack complexities of Gohr’s attack
are much lower than the differential attack. For Gohr’s attack,
the impact of p0 on the data complexity is only O(p−10).
For basic NASA, the impact of p0 on the data complexity
is O(p−20).

In this section, we prove that NASA can achieve comparable
performance as Gohr’s attack when the three optimisation
techniques introduced in Section V, VI, VII are available.

Speck32/64 is one variant of the Speck family that is
designed by the NSA Research Directorate [15]. Fig. 7 shows
the round function of Speck.

Fig. 7. The round function of Speck32/64. SKi+1 : the round key.
Li+1||Ri+1 : the state of the (i+1)-th round. For Speck32/64, α = 7, β =
2.

A. Prepended Differential

To attack 11-round Speck32/64, Gohr adopted the following
2-round prepended differential

∆P = (0x211, 0x204)
p0=2−6

−−−−−→ ∆S = (0x40, 0x0).

There are only 3 neutral bits {20, 21, 22} that exist in
∆P → ∆S. Besides, there are 2 high probabilistic neutral
bits {14, 15} whose neutrality exceeds 0.95.

Dividing this differential into two 1-round differentials

∆P = (0x211, 0x204)
q=2−4

−−−−→ ∆B = (0x2800, 0x10)

∆B = (0x2800, 0x10)
p=2−2

−−−−→ ∆S = (0x40, 0),

we measure the neutrality of each ciphertext bit. There are 8
neutral bits {0, 11, 14, 15, 20, 21, 22, 26, } that exist in ∆P →
∆B. Moreover, there are 8 high probabilistic neutral bits
{1, 3, 4, 5, 23, 24, 27, 28} whose neutrality exceeds 0.95.

13

B. Build Neural Distinguishers Against Speck32/64

Two teacher distinguishers NDt6,ND
t
7 built by Gohr over

∆S = (0x40, 0) are adopted in this section. Table I shows the
estimation of p2|d1 of NDt6,ND

t
7 when c2 = 0.55.

Based on the bit sensitivity test results of NDt6,ND
t
7 as

shown in Fig. 3 and Fig. 4 (see Section V), we build 2 student
distinguishers NDs6,ND

s
7 by setting Γ = {30 ∼ 23, 14 ∼ 7}.

These 16 ciphertext bits are related to the least significant 8
subkey bits. Later,NDs6,ND

s
7 are used to recover sk10[7 ∼ 0]

and sk11[7 ∼ 0] respectively. Let c2 = 0.55, Table XI shows
the estimation of p2|d1 of NDs6,ND

s
7.

TABLE XI
THE ESTIMATION OF p2|d1 OF NDs

6,NDs
7 AGAINST SPECK32/64.

c2 = 0.55. THE SUBSCRIPT SET OF SELECTED CIPHERTEXT BITS IS
Γ = {30 ∼ 23, 14 ∼ 7}

NDs
6

d1 0 1 2 3 ∼ 8

p2|d1 0.5132 0.4057 0.3402 6 0.3025

NDs
7

d1 0 1 2 3 ∼ 8

p2|d1 0.3576 0.3230 0.3036 6 0.2940

Let c2 = 0.55, Table XII summarizes the estimation of
p1, pn of NDs6,ND

s
7,ND

t
6,ND

t
7 against Speck32/64.

TABLE XII
THE ESTIMATION OF p1, pn OF NDs

6,NDs
7,NDt

6,NDt
7 AGAINST

SPECK32/64. c2 = 0.55.

NDs
6 NDs

7 NDt
6 NDt

7

p1 0.5129 0.3575 0.6787 0.4183
pn 0.2604 0.2865 0.1162 0.2162

C. Gohr’s Attack on Speck32/64

Based on the 2-round prepended differential ∆P → ∆S
and NDt7, NDt6, Gohr presented a key recovery attack on 11-
round Speck32/64. By adopting some optimization techniques
for accelerating the basic key (Section II-C), Gohr broken 11-
round Speck32/64 with a time complexity of 238.

The target is to recover the last two subkeys sk10, sk11.
Gohr counted a key guess as successful if the last subkey was
guessed correctly and if the second subkey was at hamming
distance at most two of the real key sk10. Finally, the success
rate of Gohr’s attack is about 52%.

We have performed this accelerated attack again based on
the code provided by Gohr. By adopting an Intel(R) Core(TM)
i5-7500 CPU and one graphics card (NVIDIA GeForce GTX
1060(6GB)), we find that the average time consumption of
performing this attack one time is 45 seconds.

D. Neural Aided Statistical Attack on Speck32/64

We also perform the key recovery attack on 11-round
Speck32/64 by adopting NASA. At a high level, the attack
is composed of five stages:
• stage 1: Identify the valid plaintext structure P that

satisfies ∆P → ∆B by NDs7 (Algorithm 8). The subkey
to be searched is sk11[7 ∼ 0].

• stage 2: Recover sk11[7 ∼ 0] by NDs7 (Algorithm 4).

• stage 3: Recover sk11 by NDt7 (Algorithm 4).
• stage 4: Recover (sk11, sk10[7 ∼ 0]) by NDs6 (Algo-

rithm 4).
• stage 5: Recover (sk11, sk10) by NDt6 (Algorithm 4).

In stage 1, we set pV = p2|d1=1, βV = 0.1, βI = 2−8. It
means that the number of surviving subkey guess kg11[7 ∼ 0]
should exceed 8(1 − 0.1) = 7.2 when P is a valid plaintext
structure. Or the number of surviving subkey should not
exceed 28 × 2−8 = 1. Based on this setting, each plaintext
structure P should contain M = 215.235 plaintext pairs. The
decision threshold for filtering subkey guess is tM = 11285.
When the number of surviving subkey guess is greater than
or equal to tP = 8, P is a valid plaintext structure.

In stage 2, we set p2 = p2|d1=3, βr = 0.005, βw = 2−8.
Then the number of surviving subkey guess kg11[7 ∼ 0]
should not exceed 37. The required data complexity is N =
214.465 plaintext pairs, and the decision threshold for filtering
subkey guess is t = 6703.

In stage 3, we filter kg11 based on each surviving kg11[7 ∼
0]. Let p2 = p2|d1=2, βr = 0.005, βw = 2−16, the number of
surviving subkey guess kg11 should not exceed 137. Besides,
we have N = 212.373, t = 1333.

In stage 4, we filter (kg10[7 ∼ 0], kg11) based on each
surviving kg11. Let p2 = p2|d1=1, βr = 0.001, βw = 2−14, the
number of surviving subkey guess kg11 should not exceed 16.
Besides, we have N = 212.36, t = 1598.

In stage 5, we filter (kg10, kg11) based on each surviving
(kg10[7 ∼ 0], kg11). Let p2 = p2|d1=1, βr = 0.001, βw =
2−16, the number of surviving subkey guess kg11 should not
exceed 16. Besides, we have N = 29.694, t = 180.

We use 16 high probabilistic neutral bits {0, 1, 3 ∼
5, 11, 14, 15, 20 ∼ 24, 26 ∼ 28} that exist in ∆P → ∆B
to generate plaintext structures P consisting of M = 215.235

plaintext pairs with a difference ∆P = (0x211, 0xa04). The
probability that P is a valid plaintext structure is about 2−4.2.
In stage 1, if no valid plaintext structures occur after 32
plaintext structures are generated, the attack is stopped and
viewed as a failure.

Once one valid plaintext structure P is found, the remaining
4 stages are performed based on this structure P . More exactly,
214.465, 212.373, 212.36, 29.694 plaintext pairs are randomly se-
lected from this valid plaintext structure respectively.

In stage 1 ∼ 5, we do not traverse each possible subkey
guess. The proposed Bayesian key search strategy (Algo-
rithm 6) is applied in each stage, which does not influence
the above attack setting.

The settings related to the Bayesian key search strategy are
as follows. In stage 1 and stage 2, the number of iterations is
niter = 3. For each iteration, we search ncand = 32 subkey
guesses. In stage 3, we set niter = 4, ncand = 32. In stage 4
and stage 5, we set niter = 32, ncand = 32.

We count a key guess as successful if the right subkey pair
(sk10, sk11) survives and if the average number of surviving
key guesses in stage 5 does not exceed 16. Under these
conditions, the attack was successful 585 out of 1000 trials.
The average number of generated plaintext structures is 18.
For comparison, under the same hardware environment, the

14

average time consumption of this attack one time is 87
seconds.

E. Time Complexity

Once the valid plaintext structure is found, the key recovery
process is very fast. Compared with the time consumption of
recovering (sk10, sk11), the time consumption of recovering
the remaining subkeys is negligible.

Under the same hardware environment, the average time
consumption of NASA is about twice as long as that of Gohr’s
attack. The time complexity of Gohr’s attack is 238. Thus, the
time complexity of NASA is 239.

X. CONCLUSION

In this article, we propose a Neural Aided Statistical Attack
(NASA) and three methods for reducing the complexity of
NASA. NASA recovers the right key based on distinguishing
between two different normal distributions. NASA is the
first deep learning-based cryptanalysis technique that supports
theoretical complexity estimation and does not rely on any
special properties such as neutral bits. Applications to round
reduced DES and Speck32/64 also prove that NASA is full of
potential.

Our work in this article also provides many inspirations
for neural aided cryptanalysis. First, if we replace the neural
network with other machine learning models, NASA still
works. Compared with neural networks, other shallow machine
learning models such as logistic regression are far faster.
Thus, it is possible to further accelerate NASA by adopting
other machine learning-based distinguishers. Second, when
we try to reduce the key space, we find that ciphertext bits
have a different influence on the neural distinguisher. This
finding is not only useful for neural aided cryptanalysis. The
traditional differential attack may be improved by exploiting
knowledge extracted from neural distinguishers. Third, the
data complexity for distinguishing two normal distributions is
very high, which makes the data complexity of basic NASA
is also high. If some new probability distributions are more
suitable for simulating the key recovery process, new neural
aided attacks with a lower complexity are able to be developed.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (2018YFB0803405,
2017YFA0303903).

APPENDIX

For the conventional differential cryptanalysis, the data
complexity is only related to the differential. For NASA, the
data complexity is also related to the neural distinguisher. In
this appendix, we present the analysis of each part’s impact
on the data complexity.

A. The Differential’s Impact on the Data Complexity

According to formula 17, the data complexity N is affected
by the probability p0 of the differential as

√
N =

z1−βr
√
p0a1 + (1− p0)a3 + z1−βw

√
p0a2 + (1− p0)a3

(p1 − p2)× p0

∝
z1−βr

√
a3 + (a1 − a3)p0 + z1−βw

√
a3 + (a2 − a3)p0

p0

∝
√
a3 + (a1 − a3)p0 + a4 ×

√
a3 + (a2 − a3)p0

p0

where a4 =
z1−βw
z1−βr

. We further know

N ∝ p−20

[
a3 + a2

4a3 + (a1 − a3 + a24a2 − a24a3)p0 + a5
]

where a5 = 2 × a4 ×
√
a3 + (a1 − a3)p0 ×√

a3 + (a2 − a3)p0. Thus the impact of the probability
p0 of the differential is O(p−20).

B. The Neural Distinguisher’s Impact on the Data Complexity

Three probabilities p1, p2, pn are related to the neural dis-
tinguisher. Since pn is related to negative samples and p1, p2
are related to positive samples, we can discuss pn separately.

1) The impact of pn: In formula 17, only a3 is related to
pn.

√
N =

z1−βr
√
p0a1 + (1− p0)a3 + z1−βw

√
p0a2 + (1− p0)a3

(p1 − p2)× p0
∝
√
p0a1 + (1− p0)a3 + a4 ×

√
p0a2 + (1− p0)a3

⇒ N ∝ p0 × a1 + a24 × p0 × a2 + (1− p0)(1 + a24)a3 + a5

Next, we focus on attack scenarios where the p0 is very
small. This can make the discussion easier and more concise.
This simplification is also reasonable. Because when we attack
a cipher for more rounds, the probability of the differential is
generally small.

When p0 → 0, a5 → 2 × a4 × a3. Thus the impact of a3
on the data complexity is O(a3). Since pn < 1 always holds
and a3 = pn − p2n, the impact of pn on the data complexity
is also O(pn).

2) The impact of p1, p2: In formula 17, a1, a2 are related
to p1, p2 respectively. The impacts of a1, a2 are adjusted by
p0. Due to this property, we also focus on attack scenarios
where p0 → 0.

√
N =

z1−βr
√
p0a1 + (1− p0)a3 + z1−βw

√
p0a2 + (1− p0)a3

(p1 − p2)× p0

≈
z1−βr

√
(1− p0)a3 + z1−βw

√
(1− p0)a3

(p1 − p2)× p0
∝ (p1 − p2)−1

Thus the impact of p1, p2 on the data complexity is O((p1 −
p2)
−2).

REFERENCES

[1] L. R. Ronald, “Cryptography and machine learning,” International
Conference on the Theory and Application of Cryptology, pp. 427–439,
1991.

[2] S. Greydanus, “Learning the enigma with recurrent neural networks.”
arXiv: Neural and Evolutionary Computing, 2017.

15

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information Process-
ing Systems (NeurIPS), pp. 1097–1105, 2012.

[4] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic lan-
guage model,” Neural Information Processing Systems (NeurIPS), pp.
932–938, 2000.

[5] Y. Chen, L. Yu, K. Ota, and M. Dong, “Robust activity recognition
for aging society,” IEEE Journal of Biomedical and Health Informatics,
vol. 22, no. 6, pp. 1754–1764, 2018.

[6] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures,” in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 45–68.

[7] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Poster: Recovering the input
of neural networks via single shot side-channel attacks.” computer and
communications security, pp. 2657–2659, 2019.

[8] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make
some noise: Unleashing the power of convolutional neural networks for
profiled side-channel analysis,” cryptographic hardware and embedded
systems, vol. 2019, no. 3, pp. 148–179, 2019.

[9] A. Gohr, “Improving attacks on round-reduced speck32/64 using deep
learning,” international cryptology conference, pp. 150–179, 2019.

[10] B. Eli and C. Rafi, “Near-collisions of sha-0,” Annual International
Cryptology Conference, pp. 290–305, 2004.

[11] W. Feller, “An introduction to probability theory and its applications.
vol. ii,” Population, vol. 23, no. 2, p. 375, 1968.

[12] R. Gisselquist, P. G. Hoel, S. C. Port, and C. J. Stone, “Introduction to
probability theory.” American Mathematical Monthly, vol. 81, no. 9, p.
1041, 1974.

[13] R. Howard, “Data encryption standard,” Information Age archive, vol. 9,
no. 4, pp. 204–210, 1987.

[14] E. Biham and A. Shamir, “Differential cryptanalysis of des-like cryp-
tosystems,” Journal of CRYPTOLOGY, vol. 4, no. 1, pp. 3–72, 1991.

[15] R. Beaulieu, D. Shors, J. Smith, S. Treatmanclark, B. Weeks, and
L. Wingers, “The simon and speck lightweight block ciphers,” design
automation conference, p. 175, 2015.

Yi Chen received his B.E. degree and M.S. de-
gree both from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology(HUST), Wuhan, China, in
2016, 2018 respectively. He is currently pursuing the
Ph.D. degree in the school of computer science and
technology at Tsinghua University, Beijing, China.
His current research interests include cryptanalysis,
multimedia encryption and deep learning.

Yantian Shen is currently pursuing the B.E. degree
in the department of computer science and tech-
nology at Tsinghua University, Beijing, China. His
current research interests include cryptanalysis and
deep learning.

Hongbo Yu is currently a Associate Professor and a
Ph.D. Supervisor with the Department of Computer
Science and Technology, Tsinghua University. She
has published many high-quality papers in a series
of top conferences and journals such as CRYPTO,
EUROCRYPT. Her current research interests include
cryptanalysis and design.

