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Abstract

Functional Encryption denotes a form of encryption where a master secret key-holder
can control which functions a user can evaluate on encrypted data. Learning With Errors
(LWE) (Regev, STOC’05) is known to be a useful cryptographic hardness assumption which
implies strong primitives such as, for example, fully homomorphic encryption (Brakerski-
Vaikuntanathan, FOCS’11) and lockable obfuscation (Goyal et al., Wichs et al., FOCS’17).
Despite its strength, however, there is just a limited number of functional encryption schemes
which can be based on LWE. In fact, there are functional encryption schemes which can be
achieved by using pairings but for which no secure instantiations from lattice-based assump-
tions are known: function-hiding inner product encryption (Lin, Baltico et al., CRYPTO’17)
and compact quadratic functional encryption (Abdalla et al., CRYPTO’18). This raises the
question whether there are some mathematical barriers which hinder us from realizing function-
hiding and compact functional encryption schemes from lattice-based assumptions as LWE.

To study this problem, we prove an impossibility result for function-hiding functional
encryption schemes which meet some algebraic restrictions at ciphertext encryption and de-
cryption. Those restrictions are met by a lot of attribute-based, identity-based and functional
encryption schemes whose security stems from LWE. Therefore, we see our results as impor-
tant indications why it is hard to construct new functional encryption schemes from LWE
and which mathematical restrictions have to be overcome to construct secure lattice-based
functional encryption schemes for new functionalities.

Keywords: Functional Encryption, Function-Hiding, Impossibility, LWE, Lattice-based,
Online/Offline.
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1 Introduction
Functional Encryption (FE) schemes are special encryption schemes in which the holder of a master
secret key can issue secret keys for specific functions to users. By knowing a secret key for a function
f and a ciphertext for a message x, an adversary shall learn nothing more of x than f(x). FE
schemes have proven to be extremely versatile. Not only does their notion generalize other forms of
encryption like Attribute-Based (ABE) or Identity-Based Encryption (IBE), but also do we know
that compact single-key FE and linearly compact FE for cubic polynomials together with plausible
assumptions imply indistinguishability obfuscation [AJ15, BV15, LT17].

Function-Hiding Functional Encryption (FHFE) schemes are an even stronger subclass of FE
where we demand that an adversary – given a secret key for a function f and a ciphertext for
a message x – learns nothing about f and x except of f(x); i.e., the secret keys now hide the
functions they are supposed to evaluate.

We know that FE schemes with a bounded number of secret keys, an adversary may learn, are
already achievable from minimal assumptions [AV19]. However, if we try to achieve security for an
unbounded number of secret keys, then we are left with (function-hiding) inner-product encryption,
linearly compact quadratic FE and FE schemes for constant-degree polynomials which are yielded
by relinearizing. Of course, there are special cases of FE like attribute-based and identity-based
encryption schemes. In those schemes, a ciphertext is accompanied with a non-hidden attribute
or identity and decryption is successful iff the attribute/identity matches the policy of the secret
key. However, the main focus in this work are FE schemes, since we are interested in schemes
which perform various computations on hidden inputs. We stress here that for linearly compact
quadratic FE and function-hiding inner-product FE there are just pairing-based constructions
known so far [BJK15, DDM16, BCFG17, Lin17, ACF+18, Gay20].

Learning With Errors (LWE) [Reg05] is a well-established hardness assumption. It states that
it is hard to solve a system of linear equations over a modulus q, if the solution has sufficient
entropy, the coefficients of the equations are chosen uniformly random from Zq and one column
of the presented system has been perturbed by a small noise-vector whose entries are sampled
from a suitable error-distribution. Because of its strong homomorphic properties, there are fully
homomorphic encryption schemes and lockable obfuscation schemes whose security can be proven
solely under LWE [BGV12, GKW17, WZ17]. Up to now, it is not possible to construct those
schemes from other standard assumptions. Intuitively, one would assume that its homomorphic
properties imply a lot of different FE schemes. But as we have stressed, the most complex already
existing FE schemes cannot be replicated by lattice-based constructions. In fact, inner product
encryption is the only FE scheme whose security can be based on LWE (again, putting ABE and
IBE aside). Because of the aforementioned amply homomorphic properties of LWE, this is very
surprising and leads us to the following question:

What hinders us from constructing function-hiding inner-product encryption schemes whose
security can be proven solely from the learning with errors assumption?

We show that there are two properties, both very common under LWE-based FE schemes, which
make it impossible for a function-hiding inner-product encryption scheme to be secure. The first
property lies in the decryption algorithms of LWE-based encryption schemes: If we take a close look
at the pairing-based schemes, we see that decryption is always complex, for it involves computing
discrete logarithms of the target group of the pairing. On the other hand, a lot of LWE-based IBE
and FE schemes have simple decryption algorithms [CHKP10, ABB10, AFV11, BRS13, ABDP15,
ALS16]. In most cases, for moduli q > p > 1, a secret key sk in such a scheme usually determines
a multivariate polynomial gsk(Y1, . . . , Ys) of constant total degree, while the ciphertext is a vector
ct ∈ Zsq. At decryption, the polynomial is evaluated at the ciphertext which yields a value gsk(ct) ∈
Zq; this value will be rounded to the nearest number of Zp, i.e., it will be divided by bq/pc and
then rounded to the nearest integer in {0, . . . , p− 1}. In full detail, this means

Dec(sk, ct) =

⌈
gsk(ct)
bq/pc

⌋
.

We believe that this property already suffices to render a FHFE scheme insecure. Therefore, we
state here the following conjecture:
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Conjecture 1. Let FE = (Setup,KeyGen,Enc,Dec) be a correct private-key functional encryption
scheme for computing inner-products of vectors in Znp . If there is a constant d′ ∈ N and a polynomial
s in the security parameter, s.t.

• each ciphertext ct sampled by Enc is a vector in Zsq,

• each secret key sk sampled by KeyGen is a multivariate polynomial in Zq[Y1, . . . , Ys] of total
degree ≤ d′

• and the decryption algorithm works by

Dec(sk, ct) =

⌈
sk(ct)
bq/pc

⌋
,

then FE cannot be function-hiding secure for an unbounded number of secret keys.

We leave it as an open question to prove or refute conjecture 1. Instead, we prove in this work
a weaker version of the above statement.

If we are to take a closer look at the aforementioned IBE and FE schemes and some ABE schemes
[GVW13, BGG+14], we can distinguish an additional property which seems to be common for some
LWE-based schemes. They tend to have very algebraic encryption algorithms. Take, for example,
a closer look at ciphertext encryption in the LWE-based inner-product encryption schemes of
Agrawal et al. [ALS16]. For an input vector x ∈ {0, . . . , p− 1}l and two publicly known matrices
A ∈ Zm×nq , U ∈ Zl×nq , ciphertexts are generated by sampling a uniformly random vector s ← Znq ,
two gaussian noise vectors e0 ← DZm,αq, e1 ← DZl,αq and outputting

ct = (As+ e0, Us+ e1 + b · x)

where b is either bq/Kc or pk−1. Note that we can distinguish two parts in this encryption
algorithm:

– a very complex offline part, where m+ l multivariate degree-1 polynomials

g1(X), . . . , gm(X), h1(X), . . . , hl(X)

are sampled by only knowing the public key (A,U, p, q,K) and without looking at the input x:

gi(X1, . . . , Xl) := 〈ai | s〉+ e0,i,

hi(X1, . . . , Xl) := 〈ui | s〉+ e1,i + bq/Kc ·Xi

– and a simple online part which just consists of inserting x in the polynomials sampled before
and outputting the ciphertext

ct = (g1(x), . . . , gm(x), h1(x), . . . , hl(x)).

This distinction in a complex offline and a simple online part can be seen in the other aforemen-
tioned schemes, too. Therefore, we extract it as an additional characteristic of some LWE-based
schemes and make it more precise in the following:

We say Enc is an encryption algorithm of depth d over Zq, if there is a ppt algorithm Encoffline,
s.t. we have for each master secret key msk and input x ∈ Znp :

Enc(msk, x) ={
(r1, . . . , rs)← Encoffline(msk) (1)
return (r1(x), . . . , rs(x)) (2)

}

where we demand that each ri is a multivariate polynomial in Zq[X1, . . . , Xn] of total degree ≤ d.
We will call line (1) the offline part and line (2) the online part of Enc. Indeed, with this additional
property we can prove an FHFE scheme to be insecure.
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1.1 Contribution
For moduli q = q(λ) > p = p(λ) such that q is prime, q

p is polynomially bounded and p is not
bounded by a constant, we prove the following:

Theorem 1 (Informal Main Theorem). Assume that the prerequisites of conjecture 1 hold and
that additionally Enc is of depth d over Zq for some constant d ∈ N.

Then, FE cannot be function-hiding secure for an unbounded number of secret keys.

To be more precise, we give a bound of the maximum number of secret keys which can be
issued to an adversary before he can break FE (corollary 4). On a very high level, our proof idea
is to use the algebraic structure of the composition Dec ◦Enc. By doing so, we show that the
decryption noises are generated in a very algebraic way, are small and contain information about
the encrypted ciphertexts. Therefore, we can prove theorem 1 by analysing them.

As an additional result, we show that private-key encryption schemes where the encryption
algorithms are of constant depth and the ciphertext vectors are short enough cannot be secure
(theorem 6 and corollary 3). This result does not depend on the decryption algorithms of the
private-key encryption schemes.

1.1.1 Generality of Our Results.

We note here that there are a lot of LWE-based ABE schemes whose decryption algorithms are
too complex to be subsumed by the equation

Dec(sk, ct) =

⌈
sk(ct)
bq/pc

⌋
(3)

for a constant degree polynomial sk. This is because they allow policy-predicates which cannot
be computed by constant-depth circuits. Since the policy-predicate needs to be computed at
decryption, their decryption algorithms must be at least as complicated as the most complex
policy-predicate they allow. However, the aforementioned ABE schemes in [GVW13, BGG+14]
have decryption algorithms that become simple enough to fit equation (3), if we restrict the policy-
circuits in those schemes to be of constant depth and if attributes and policy match at decryption.

1.1.2 Two-Input Quadratic Functional Encryption.

We can derive from theorem 1 an impossibility result for 2-input quadratic FE schemes. A 2-input
quadratic FE scheme evaluates functions with two distinguished inputs and has a left and a right
encryption algorithm. To decrypt a value f(x, y), one needs a secret key for f , a left ciphertext for
x and a right ciphertext for y. Since such a scheme contains a secret key for the quadratic function
f(x, y) = 〈x | y〉, it can emulate a function-hiding inner-product encryption scheme, even if it is
only single-key secure.

Corollary 1. Let 2 FE = (Setup,KeyGen,EncR,EncL,Dec) be a correct private-key 2-input func-
tional encryption scheme for quadratic functions f : Znp × Znp → Zp. If there are s ∈ poly(λ) and
a constant d′ ∈ N, s.t.

• EncL is of constant depth d over Zq,

• each ciphertext ctL sampled by EncL is a vector in Zsq,

• each pair of a secret key sk and a right ciphertext ctR determines a multivariate polynomial
gsk,ctR ∈ Zq[X1, . . . , Xs] of total degree ≤ d′ s.t. the decryption algorithm works by

Dec(sk, ctL, ctR) =

⌈
gsk,ctR(ct)
bq/pc

⌋
,

then 2 FE cannot be single-key secure.
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1.2 Interpretation, Limitations and Open Problems
Parameter Restrictions To prove theorem 1, we assume that the exterior modulus q of the
FHFE scheme FE is prime. Furthermore, we need that the fraction q/p is bounded by a polynomial
in the security parameter λ and that the interior modulus p is for almost all λ greater than some
constant which depends on the depth of FE. Note that q/p is usually a bound for the error noise
used in LWE-based schemes. Since LWE is assumed to be hard, even if its modulus q is a prime
and the deviation of its error noise is bounded by a polynomial in λ, we do not think that those
requirements are big restrictions for our results.

Interpretation and Open Problems We see the results in this paper as a useful argument
in understanding the difficulties in constructing LWE-based function-hiding functional encryption
schemes. An even more useful argument would be to close the gap and prove conjecture 1. Because
of theorem 1, to prove our conjecture, it now suffices to transform a function-hiding inner-product
encryption scheme which is correct and secure and fulfils the requirements of the conjecture to
one that fulfils the requirements of theorem 1. In other words, it suffices to take an FHFE scheme
which already decrypts in an LWE-like manner and simplify its encryption algorithm to one of
constant depth which stays secure and correct.

Another way to extend the results here is to prove theorem 1 for encryption algorithms where,
in the online part, one first computes a bit-decomposition G−1(x) of an input vector x and then
applies the polynomials sampled in the offline part to G−1(x). A lot of the techniques here would
not be suitable for this task; indeed, one would need to develop more advanced techniques to show
this.

A Note on Ring LWE One can ask himself, if RLWE, a more algebraic version of LWE
introduced in [LPR10], can help to overcome the requirements of theorem 1. We want to point
out that, as long as a FHFE scheme meets the requirements of theorem 1, it does not matter, if
its apparent security stems from LWE or RLWE. Let us explain this in more detail:

Let q, p be like in theorem 1. For some m ∈ poly(λ), define the ring

Rq := Z[X]/(q,Xm + 1).

Further, let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme which fulfils the
requirements of theorem 1, if one replaces Zq by Rq. I.e., FE shall fulfil the following requirements:

• there is an s ∈ poly(λ) s.t. each ciphertext ct ∈ supp(Enc) is an element of Rsq,

• each secret key sk sampled KeyGen is a multivariate polynomial Rq[Z1, . . . , Zs]of total degree
≤ d2,

• the decryption algorithm works by

Dec(sk, ct) =

⌈
sk(ct)
bq/pc

⌋
∈ Rp := Z[X]/(p,Xm + 1)

• and Enc is of constant depth d1 over Rq, i.e., there is a ppt algorithm Encoffline which on
input msk outputs s multivariate polynomials in Rq[Y1, . . . , Yn] of total degree ≤ d1 s.t. Enc
works by

Enc(msk, x) ={
(r1, . . . , rs)← Encoffline(msk)

return (r1(x), . . . , rs(x))

}.

Then, one can show that FE cannot be function-hiding secure for an unbounded number of secret-
keys. This can be done by converting FE to a functional encryption scheme which meets the
requirements of theorem 1 (over Zq). To this end, it suffices to note, that each ciphertext ct ∈

5



supp(Enc) can be interpreted as vector in Zs·mq ∼= Rsq and that each polynomial g ∈ Rq[Y1, . . . , Ys]
of degree d can be interpreted as a tuple of m polynomials

(g1, . . . , gm) ∈ Zq[Y ′1,1, . . . , Y ′1,m, . . . , Y ′s,1, . . . , Y ′s,m]

each of total degree ≤ d.

1.3 Related Work
The idea of decomposing encryption algorithms into simple online and complex offline parts has
already been studied with the purpose of finding FE schemes with practical usages (we cite [HW14,
AR17] as examples). However, to the best of our knowledge, this is the first work where the
online/offline structure of encryption has been used to prove an impossibility result.

Ananth and Vaikuntanathan showed that FE for P/poly with a bounded number of secret keys
can already be achieved from minimal assumptions, i.e. public-key encryption in the asymmetric
setting and one-way functions in the symmetric setting [AV19]. The ciphertexts in their schemes
are growing linearly with the number of secret keys which can be handed out to an adversary. It is
presumably hard to improve their result, since we know that a bounded FE scheme with sufficiently
compact ciphertexts would already imply indistinguishability obfuscation [AJ15, BV15].

As mentioned, it is hard to construct FE schemes for stronger functionalities. In recent years,
researchers circumvented this problem and looked at novel FE schemes with additional properties:
Abdalla, Chotard and other researchers constructed mulit-input and decentralized multi-client
inner-product encryption schemes [ACF+18, CDG+18, ABKW19, ACF+19]. Those are inner-
product encryption schemes where a function has multiple inputs and to decrypt one needs a
secret key and multiple suitable ciphertexts. In the decentralized schemes, one gets rid of the
master secret key holder. Jain et al. introduced the notion of 3-restricted FE [AJS18, JLMS19],
which can be understood as cubic FE where a ciphertext just hides two out of three factors.

1.4 Technical Overview
To prove theorem 1, we need to show the existence of a selective adversary who wins the function-
hiding IND-CPA game against the function-hiding inner-product encryption scheme FE. In this
game, the adversary submits an unbounded number of inputs x0

i and functions f0
j for world 0 and

an unbounded number of inputs x1
i and functions f1

j for world 1. Then, the challenger draws a
random bit b ← {0, 1} and sends the corresponding ciphertexts and secret keys of world b to the
adversary. The adversary wins, if he guesses b correctly and if the submitted inputs and functions
would not tell him trivially in which world he lives, i.e., if we have for all i and j

f0
j (x0

i ) = f1
j (x1

i ).

We do not directly construct an adversary to break FE. Instead, we show how an adversary
can reduce the problem of breaking FE to the problem of breaking other encryption schemes
with additional properties. To do so, we apply multiple transformations to FE. Eventually, we
end with a private-key encryption scheme whose ciphertexts are short integer vectors and whose
encryption algorithm is of constant depth. Then, we construct a simple adversary who can break
such encryption schemes.

To make our argument go through, we need the transformations to preserve the security and
correctness of the transformed schemes. It is easy to see that security is preserved, since we ensure
that all changes to FE can be computed by an adversary while he plays the above security game
against FE. On the other hand, we can not always guarantee that our transformations preserve
correctness. In fact, one transformation step applied to FE changes it in such a way that decryption
succeeds only in a non-negligible number of cases. Furthermore, it is important that at each time
we have an encryption algorithm of constant depth. This means, each transformation step either
changes the encryption algorithm without changing its depth or at most changes its depth to
another constant value.

Our proof consists of three major steps:
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(1) We first change FE s.t. all ciphertexts have short entries relative to the modulus q. To do
this, the adversary queries a lot of secret keys for the zero-function and learns, by doing so,
the structure of the space of secret keys. Then, he can exchange a ciphertext with a vector
of decryption noises. Those noises have to be short, because otherwise they would make
a correct decryption impossible. On the other hand, however, we show that those noises
contain enough information about the original ciphertext to make decryption possible in a
non-negligible number of cases. Therefore, we can assume FE to have short ciphertexts.

Then, we use a straightforward transformation to convert FE to a private-key encryption
scheme SKEq whose ciphertexts are short relative to q and whose encryption algorithm is of
constant depth over Zq.

(2) Since the encryption algorithm of SKEq is of constant depth, SKEq encrypts a number x by
sampling some polynomials, evaluating those polynomials at x and reducing the result modulo
q. To analyse the ciphertexts of SKEq, we need to get rid of the arithmetic overflows in the
online part of its encryption algorithm. We observe that, if r(X) is a polynomial with small
coefficients, then, for some small x values, r(x) does not change when we reduce it modulo
q. Furthermore, we know the ciphertexts of SKEq to be short relative to q. By using this
fact, we can apply simple changes to the encryption algorithm of SKEq to ensure that the
polynomials sampled by its offline algorithm have very small coefficients. By doing so, we
can change SKEq to a private-key encryption scheme SKE of constant depth whose ciphertext
vectors are sufficiently short and where no arithmetic overflows do occur in the online part of
its encryption algorithm.

(3) In SKE, a message x gets encrypted by sampling random integer polynomials r1, . . . , rm of
constant degree and computing (r1(x), . . . , rm(x)) as ciphertext without any arithmetic over-
flows. Intuitively, such a scheme should not be secure and, indeed, we show that such a scheme
can only be secure, if its ciphertexts do not contain any information about the encrypted mes-
sages. But this makes decryption impossible. Since we showed that a correct and secure FHFE
scheme FE can be transformed into a secure private-key encryption scheme whose ciphertexts
contain a non-negligible amount of information, it follows that FE could not be secure and
correct in the first place.

We now take a closer look at the techniques used in each step.

1.4.1 Replacing Ciphertexts with Decryption Noise.

We describe here how to make the ciphertexts of FE short. For simplicity, let us assume that we
have already relinearized ciphertexts and secret keys, i.e. decryption works by

Dec(sk, ct) =

⌈
〈sk | ct〉
bq/pc

⌋
.

Query a lot of secret keys v1, . . . , vm ← KeyGen(msk, 0) for the zero-function and draw a ciphertext
ctx for an arbitrary input x ∈ Znp . Each vi must decrypt ctx to zero, since this is the value of the
zero-function applied to x. Because of decryption correctness of FE, we can therefore assume that
we have for each vi

|〈vi | ctx〉| ≤
⌊
q

p

⌋
.

Otherwise, 〈vi | ctx〉/bq/pc would not round to zero. We can now exchange ctx with the following
new ciphertext for x:

ct′x = (〈v1 | ctx〉 , . . . , 〈vm | ctx〉).

This ciphertext just consists of noise values which are generated when decrypting ctx with secret
keys for the zero-function. Therefore, each entry of ct′x is bounded by bq/pc. The question remains,
how much information about x is left in ct′x and if it is even possible to recover f(x) from ct′x and
skf . We show that in a non-negligible number of cases a successful decryption is still possible.
That is because of the function-hiding property of FE which vaguely implies that a secret key for
f has to lie in spanZq{v1, . . . , vm} with non-negligible probability.
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1.4.2 Getting Rid of Arithmetic Overflows.

The key observation in step (2) is that, if we evaluate a polynomial of degree d with small coefficients
at a small input, reducing the result modulo q will not change its value. However, the polynomials
r1(X), . . . , rm(X) sampled in the offline part of the encryption algorithm of SKEq do not necessarily
have small coefficients. We only know them to have small output values. We prove that there is
a constant c, s.t. each c · ri has sufficiently small coefficients modulo q. The existence of c can be
shown by using a quasi-inverse1 of the Vandermonde matrix V for the tuple (0, 1, . . . , d), that is
an integer matrix whose product with V equals a scaled identity matrix.

By simply multiplying ciphertexts of SKEq with c, we can make them behave like they were
outputted from an encryption algorithm of constant depth where no arithmetic overflows do occur
in its online part. Therefore, we can transform SKEq into SKE.

Quasi-inverses of Vandermonde have been recently used by Esgin et al. to extract witnesses out
of many polynomial relations [ESLL19]. However, in this work, we use a different quasi-inverse
than them, which yields better bounds for our results.

1.4.3 Statistically Distinguishing Random Polynomials.

We describe here, how our adversary breaks SKE in step (3). It suffices to look at the j-th
coordinate of a ciphertext of SKE. At input x, the j-th coordinate is computed by sampling a
random polynomial rj(X) of constant degree d in the offline part and evaluating it at x. Our
adversary works by guessing one x 6= 0 and comparing E[rj(x)2] and E[rj(0)2]. We show, if for
each x the means E[rj(x)2] and E[rj(0)2] do not differ by a non-negligible amount, then rj(X)
is of degree at most d − 1 with overwhelming probability. By inductively using hybrids, one can
see that rj(X) must be of degree 0, i.e. constant, with overwhelming probability. But, if rj(X)
is constant, the value rj(x) does not carry any information about x. Therefore, if the ciphertexts
of SKE contain a non-negligible amount of information about the encrypted messages, it follows
that there must be some j and x 6= 0 s.t. our adversary can successfully distinguish E[rj(x)2] and
E[rj(0)2] and, therefore, successfully distinguish ciphertexts for 0 from ciphertexts for x.

1.5 Organization of this Work
We first introduce some preliminaries in section 2 and some important definitions and concepts in
section 3. Then, in section 4, we give an adversary who breaks private-key encryption schemes of
constant depth which do not make use of arithmetic overflows. In section 5, we then derive an
impossibility result for private-key encryption schemes of constant depth with short ciphertexts
over Zq by transforming them to schemes we broke in the preceding section. Finally, in section
6, we show the impossibility of LWE-like FHFE schemes with simple online/offline encryption by
transforming them to schemes of the preceding section.

Acknowledgements. I would like to thank my doctoral supervisor Dennis Hofheinz and my
former colleagues Geoffroy Couteau, Valerie Fetzer, Michael Klooß and Sven Maier for helpful
comments and advices on how to improve this text. Further, I would like to thank the reviewers
and everyone who listened to the talk preceding this work for their questions and suggestions.

1Calling such matrices quasi-inverses is ambiguous. However, we will stick to this notion, since we lack better
names.
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2 Preliminaries
For n ∈ N = {1, 2, 3, . . .}, set [n] := {1, . . . , n}. We define two sets of functions:

poly(λ) := {p : N→ N ∃c, d ∈ N ∀λ ∈ N : λc + d ≥ p(λ) ≥ 1} ,
negl(λ) := {ε : N→ R ∀c ∈ N : limλ→∞λ

cε(λ) = 0} .

For functions f, g : N→ R, we write

f(λ) ≥ g(λ)− negl(λ),

if there is an ε ∈ negl(λ) s.t. we have for all λ

f(λ) ≥ g(λ)− ε(λ).

For x ∈ R, we define the following roundings:

bxc := max {z ∈ Z | z ≤ x} ,
dxe := min {z ∈ Z | z ≥ x} ,

dxc := max

{
z ∈ Z | |x− z| ≤ 1

2

}
.

For two discrete distributions D1,D2 over a set X we define the statistical distance of (D1,D2)
by

∆(D1,D2) :=
1

2

∑
x∈X
|D1(x)−D2(x)| .

2.1 Statistical Preliminaries
We take the following inequality from [Hoe63].

Theorem 2 (Hoeffding’s Inequality). Let n ∈ N and B, t ≥ 0. For n independent random variables
X1, . . . , Xn with |Xi| ≤ B, we have

Pr

[ ∣∣∣∣X1 + . . .+Xn

n
− E

[
X1 + . . .+Xn

n

]∣∣∣∣ ≥ 2Bt

]
≤ 2e−2nt2 .

In this work, we will consider adversaries who approximate the means of specific random vari-
ables. By using Hoeffding’s inequality, it follows that by querying a polynomial number of samples
our adversaries can – with overwhelming probability – approximate the mean of a polynomially
bounded random variable up to a fraction.

Corollary 2. Let D be a memoryless source that outputs real numbers which are bounded by B ≥ 0.
Let r ∈ N and set n = 2r3. Let µ be the mean of D and let En be the random variable which is
sampled by n-fold querying D, summing its outputs and dividing this sum by n. Then, we have

Pr

[
|En − µ| ≤

B

r

]
≥ 1− 2e−r.

2.2 Algebraic Preliminaries
2.2.1 Discrete Derivatives

Let N ∈ N and let f : {0, . . . , N} → R be a mapping.
The aim of this subsubsection is to prove the followng theorem.

Theorem 3. Let f(X) =
∑d
i=0 aiX

i be a polynomial of degree d over R. Then

d! · ad =

d∑
k=0

(−1)d−k
(
d

k

)
f(k).
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We will prove theorem 3 by using discrete derivatives. Our strategy will work similarly to trick
2 of [GKP94], section 5.3.

Definition 1. We define the forward difference of f by

D(f) : {0, . . . , N − 1} −→ R
x 7−→ f(x+ 1)− f(x).

Note, that the mapping D : R{0,...,N} → R{0,...,N−1} is R-linear.

An easy calculation shows that the forward difference has its own Leibniz rule:

Lemma 1. Let x ∈ {0, . . . , N − 1} and f, g : {0, . . . , N} → R. Then, we have

D(f · g)(x) = f(x) ·D(g)(x) +D(f)(x) · g(x) +D(f)(x) ·D(g)(x).

More importantly, the forward difference behaves on polynomials similarly to the normal deriva-
tive:

Lemma 2. Let d ∈ N. We have:

(a) The function D(f) is zero on {0, . . . , N − 1} iff f is constant on {0, . . . , N}.

(b) If f(X) =
∑d
i=0 aiX

i is a polynomial with a0, . . . , ad ∈ R, then so is D(f) and we have

deg(D(f)) = max{0,deg(f)− 1}.

(c) If f(X) = Xd and d ≤ N , we have

Dd(f)(X) = d!

where Dd denotes the d-fold successive execution of D.

Proof. (a) D(f)(x) is zero for all x = 0, . . . , N − 1 iff

f(0) = f(1) = . . . = f(N − 1) = f(N).

(b) First, we note for f(X) = Xi

D(f) = (X + 1)i −Xi =

i∑
k=0

(
i

k

)
Xk −Xi =

i−1∑
k=0

(
i

k

)
Xk.

Now, the claim follows by the linearity of D.

(c) We prove this claim by induction over d ≥ 1. The base case d = 1 obviously holds. Now, let
d > 1 be arbitrary with d ≤ N . We have

D(f) = (X + 1)d −Xd =

d−1∑
k=0

(
d

k

)
Xk = dXd−1 +

d−2∑
k=0

(
d

k

)
Xk.

By the induction thesis, we have

Dd−1(Xd−1) = (d− 1)!

while the (d−1)-th forward difference of
∑d−2
k=0

(
d
k

)
Xk vanishes according to both above claims.

The following theorem subsumes theorem 3.
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Theorem 4. Let d ∈ {0, . . . , N} and x ∈ {0, . . . , N−d}. For an arbitrary function f : {0, . . . , N} →
R we have

Dd(f)(x) =

d∑
k=0

(−1)d−k
(
d

k

)
f(x+ k).

In particular, if f(X) =
∑d
i=0 aiX

i for some ai ∈ R, we have

d! · ad = Dd(f)(0) =

d∑
k=0

(−1)d−k
(
d

k

)
f(k).

Proof. We show the claim by induction over d. For d = 0, 1 the claim trivially holds.
Now, let d > 1. We then have by the induction hypothesis

Dd−1(f)(x) =

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
f(x+ k).

If we set fk(X) := f(X + k), we get by applying D again

Dd(f)(x) =D

(
d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
fk

)
(x)

=

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
D(fk)(x)

=

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
(fk(x+ 1)− fk(x))

=

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
f(x+ k + 1)−

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
f(x+ k)

We can rewrite the last term as

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
f(x+ k + 1)−

d−1∑
k=0

(−1)d−1−k
(
d− 1

k

)
f(x+ k) =:

d∑
k=0

bkf(x+ k)

by setting

bk =



− (−1)d−1

(
d− 1

0

)
, if k = 0,

(−1)d−1−(k−1)

(
d− 1

k − 1

)
− (−1)d−1−k

(
d− 1

k

)
, if d− 1 ≥ k ≥ 1,

(−1)d−1−(d−1)

(
d− 1

d− 1

)
, if k = d.

Easy calculations show now for all k = 0, . . . , d

bk = (−1)d−k
(
d

k

)
.

2.2.2 Modulo Valuation

Now, let q ∈ N be a modulus.

Definition 2. For a ∈ Z, we define the absolute value modulo q by

|a mod q| := min
z∈qZ
|a+ z| ∈

{
0, . . . ,

⌊q
2

⌋}
.
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Lemma 3. (a) For a ∈ Z, we have |a mod q| = 0⇔ a ∈ qZ.

(b) For a1, . . . , an ∈ Z, we have |
∑n
i=1 ai mod q| ≤

∑n
i=1 |ai mod q|.

(c) For a, z ∈ Z, we have |z · a mod q| ≤ |z| · |a mod q|.

Proof. Both inequalities (b) and (c) follow, if we can show for a, b ∈ Z

|a+ b mod q| ≤ |a mod q|+ |b mod q| .

We can rewrite this inequality to

min
z∈qZ
|a+ b+ z| ≤ min

z1∈qZ
|a+ z1|+ min

z2∈qZ
|b+ z2|.

Let z∗1 , z∗2 ∈ qZ be optimal for the terms on the right hand. Then

min
z∈qZ
|a+ b+ z| ≤ |a+ b+ z∗1 + z∗2 | ≤ |a+ z∗1 |+ |b+ z∗2 | = min

z1∈qZ
|a+ z1|+ min

z2∈qZ
|b+ z2|.

2.3 Learning Theory-Preliminaries
In this subsection, we study the problem of learning vector subspaces. Let F be an arbitrary field.

Lemma 4. Let s ∈ N0 = {0, 1, 2, . . .} and let D be a discrete distribution over Fs. For m ∈ N, we
have

Pr
v1,...,vm←D

[vm ∈ spanF {v1, . . . , vm−1}] ≥ 1− s

m
.

Proof. Letm > s and fix v1, . . . , vm ∈ supp(D). Denote by Sm the group of permutations of the set
[m] and by T ⊂ Sm the subgroup of order m which is generated by the cyclic rotation (123 . . .m).
For τ ∈ T set

Vτ := spanF
{
vτ(1), . . . , vτ(m−1)

}
.

Since each vi is an s-dimensional vector, we have

m− s ≤# {j ∈ [m] | vj ∈ spanF {vi | i ∈ [m] \ {j}}} = #
{
τ ∈ T | vτ(m) ∈ Vτ

}
.

Therefore, for each fixed choice v1, . . . , vm ∈ supp(D) we have

Pr
τ←T

[
vτ(m) ∈ Vτ

]
≥ m− s

m
.

Since the vectors v1, . . . , vm are identically and independently distributed, we furthermore have

Pr
v1,...,vm←D

[vm ∈ spanF {v1, . . . , vm−1}] = Pr
v1,...,vm←D

τ←T

[
vτ(m) ∈ Vτ

]
.

Combining both things, we get

Pr
v1,...,vm←D

[vm ∈ spanF {v1, . . . , vm−1}] = Pr
v1,...,vm←D

τ←T

[
vτ(m) ∈ Vτ

]
=

∑
v1,...,vm∈supp(D)

Pr
τ←T

[
vτ(m) ∈ Vτ

]
· Pr
w1,...,wm←D

[∀i : wi = vi]

≥
∑

v1,...,vm∈supp(D)

m− s
m

· Pr
w1,...,wm←D

[∀i : wi = vi] =
m− s
m

.

Theorem 5. Let s ∈ N0 and let D be a discrete distribution over Fs. Then, there exists an
algorithm which makes s queries to D and O(s3)-fold use of the four basic arithmetic operations in
F to compute a number k ≤ s, a matrix B ∈ Fs×k which consists of k samples of D and a second
matrix B+ ∈ Fk×s s.t. with V := B · Fk

(a) we have B+ ·B = 1k×k,
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(b) B ·B+ is the identity on V , i.e., for all v ∈ V , we have B ·B+ · v = v,

(c) a certain proportion of the samples of D lies in V , i.e. Prv←D [v ∈ V ] ≥ 1
s .

Proof. Our algorithm samples first v1, . . . , vs ← D and then chooses a basis b1, . . . , bk ∈ {v1, . . . , vs}
of V = spanF {v1, . . . , vs}. This can be achieved by using the Gaussian elimination algorithm which
makes use of O(s3) basic arithmetic operations of F. Claim (c) then follows by lemma 4. The
algorithm then sets

B := (b1| . . . |bk) ∈ Fs×k

and computes a matrix B+ ∈ Fk×s s.t. B+ · B = 1k×k. Such a matrix B+ can be computed by
choosing a subset of k linearly independent rows of B, computing an inverse to them and filling
this inverse column-wise with zeros s.t. we get the desired property. For this task, our algorithm
needs to perform O(s3) basic arithmetic operations in F. Therefore, claim (a) does follow.

Claim (b) is implied by (a).
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3 Definitions
In this section, we give basic definitions and state elementary lemmas for this work.

3.1 Functional Encryption
Throughout this work, let λ denote the security parameter. Let (Fλ)λ be a family of function
descriptions with a family of domains (Xλ)λ and codomains (Yλ)λ. We tacitly assume in the
following that the size of each f ∈ Fλ, x ∈ Xλ and y ∈ Yλ is bounded by a polynomial in λ, that we
can efficiently sample uniformly random elements of those families and that there is a deterministic
polytime evaluation algorithm which on input (f, x) ∈ Fλ ×Xλ outputs the correct value y ∈ Yλ.
We denote the output of this algorithm by f(x).

Definition 3. A functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) for the family
(Fλ)λ is a quadruple of four ppt algorithms where

Setup(1λ) on input 1λ generates a master secret key msk,

KeyGen(msk, f) on input msk and a function f ∈ Fλ generates a secret key skf ,

Enc(msk, x) on input msk and an input value x ∈ Xλ generates a ciphertext ctx,

Dec(skf , ctx) on input a secret key skf and a ciphertext ctx outputs a value y ∈ Yλ.

We call FE correct, if we have for each samplable2 (fλ)λ ∈ (Fλ)λ an ε ∈ negl(λ), s.t. it holds for
all (xλ)λ ∈ (Xλ)λ

Pr

Dec (skf , ctx) = fλ(xλ)

msk← Setup(1λ),

skf ←KeyGen(msk, fλ),

ctx ←Enc(msk, xλ)

 ≥ 1− ε(λ).

We call FE better than guessing (by 1
r ), if there exists a polynomial r ∈ poly(λ) s.t. we have for

each (xλ)λ ∈ (Xλ)λ and each samplable (fλ)λ ∈ (Fλ)λ

Pr

Dec (skf , ctx) = fλ(xλ)

msk←Setup(1λ)

skf ←KeyGen(msk, fλ),

ctx ←Enc(msk, xλ)

 ≥ 1

r(λ)
+

1

#Yλ
− negl(λ).

We call FE useless, if we have for each polynomial r ∈ poly(λ)

Pr
msk←Setup(1λ)

[
∀x, y ∈ Xλ : ∆ (Enc(msk, x),Enc(msk, y)) <

1

r(λ)

]
≥ 1− negl(λ).

While being correct is a common requirement for encryption schemes, being useless implies that
a successful decryption is almost impossible, since the ciphertexts contain nearly no information.
Being better than guessing, however, implies that in some cases the ciphertexts and secret keys
contain enough information for a successful decryption. Now, one would assume that a scheme
cannot be useless and better than guessing at the same time and, indeed, we have the following
lemma:

Lemma 5. Let #Yλ ≥ 2 for all λ and let (Fλ)λ contain a samplable (fλ)λ s.t. each fλ is surjective.
Then, we have:

(a) If FE is correct, it is better than guessing.

(b) If FE is useless, it is not better than guessing.
2By being samplable, we mean here that there is a uniform deterministic poly-time algorithm which on input

1λ outputs fλ.
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Proof. To see (a), it suffices to take r(λ) = 2.
For (b), assume for the sake of contradiction that FE is both useless and better than guessing.

Let (fλ)λ s.t. each fλ is surjective. Then, for msk ∈ supp(Setup(1λ)) and x ∈ Xλ, define the
distribution

Hmsk(x) := Dec(KeyGen(msk, fλ),Enc(msk, x)).

For a, b ∈ Xλ, set
pa,b := Pr

msk←D
[Hmsk(a) = fλ(b)] .

Since FE is better than guessing, there is an r ∈ poly(λ) s.t. for each (xλ)λ we have

pxλ,xλ = Pr
msk←Setup(1λ)

[Hmsk(xλ) = fλ(xλ)] ≥ 1

#Yλ
+

1

r(λ)
− negl(λ). (4)

Since FE is useless, we have

Pr
msk←Setup(1λ)

[
∀x, y ∈ Xλ : 2∆ (Hmsk(x), Hmsk(y)) <

1

4r(λ)

]
≥ 1− negl(λ).

Let D be the output of Setup(1λ) conditioned on

∀x, y ∈ Xλ : 2∆ (Hmsk(x), Hmsk(y)) <
1

4r(λ)
. (5)

If λ is big enough, we have for each x ∈ Xλ

px,x := Pr
msk←D

[Hmsk(x) = fλ(x)] ≥ 1

#Yλ
+

1

2r(λ)
.

Fix an a ∈ Xλ. Because of inequality (4) and since fλ : Xλ → Yλ is surjective, there must exist a
b ∈ Xλ s.t.

pa,b := Pr
msk←D

[Hmsk(a) = fλ(b)] <
1

#Yλ
.

Since D is conditioned on (5), we have |pa,c − pb,c| ≤ 2∆ (Hmsk(a), Hmsk(b)) < 1
4r for all a, b, c. In

particular, we get the contradiction

1

#Yλ
+

1

2r(λ)
≤ pb,b ≤ pa,b +

1

4r(λ)
<

1

#Yλ
+

1

4r(λ)
.

3.2 Encryption Algorithms
Now, let R be a ring with an associated valuation |·|R : R → N0. In this work, we always assume
R = Z or R = Zq for a prime q = q(λ). In the first case |·|Z = |·| is the archimedean absolute
value. In the latter case |·|Zq = |· mod q| is the absolute value modulo q we defined in definition 2.

Furthermore, let Xλ = {0, . . . , N}n now consist of n-dimensional vectors for a polynomial
n = n(λ) ∈ poly(λ) and some N = N(λ).

Definition 4. We say the scheme FE or rather its encryption algorithm Enc is of length s over
R, if the output of Enc is always an element of Rs. Furthermore, we say in this case that Enc is of

(a) width B, if the infinity-norm of almost all ciphertexts is bounded by B. I.e., there is an
ε ∈ negl(λ), s.t. we have for each (xλ)λ ∈ (Xλ)λ

Pr
msk←Setup(1λ)

[ ∃i ∈ [s] : |ci|R > B | c← Enc(msk, xλ)] ≤ ε(λ),

(b) depth d, if Enc consists of two parts: an offline part – a ppt algorithm Encoffline which on
input msk generates s polynomials over R[X1, . . . , Xn] of total degree ≤ d – and an online
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part which generates a ciphertext by evaluating the polynomials sampled by Encoffline at the
input x. I.e., Enc works as follows

Enc(msk, x) :
(p1, . . . , ps)← Encoffline(msk)

ctx := (p1(x), . . . , ps(x))

return ctx

where we demand that each pi is a polynomial of total degree ≤ d over R.

3.3 Security Notions
In this work, we study the notion of selective and function-hiding IND-CPA security where the
adversary is allowed to submit a priori multiple challenge inputs (x0

i , x
1
i ) and a bounded number of

challenge functions (f0
j , f

1
j ). To be feasible, the adversary must ensure that the output values f bj (xbi )

do not already tell him, if he lives in world 0 or world 1, i.e. he must ensure f0
j (x0

i ) = f1
j (x1

i ). The
challenger will send the adversary the ciphertexts and secret keys for one random bit b ← {0, 1}.
To win, the adversary has to guess the bit b.

Definition 5. Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme for the family
(Fλ)λ and let m ∈ poly(λ). We say that FE is selectively m-bounded function-hiding IND-
CPA secure (m-fh-IND-CPA secure), if each ppt adversary A has a negligible advantage in
winning the following game:

Step 1: The adversary A submits two lists3 of possible inputs (x0
i )
n
i=1, (x

1
i )
n
i=1 and two lists of

possible functions (f0
j )mj=1, (f

1
j )mj=1 to the challenger C.

Step 2: The challenger C generates a master secret key msk ← Setup(1λ) and draws a secret
bit b ← {0, 1}. Then, C computes ctxbi := Enc(msk, xbi ) for each i = 1, . . . , n, skfbj :=

KeyGen(msk, f bj ) for each j = 1, . . . ,m and sends the lists (ctxbi )
n
i=1 and (skfbj )mj=1 to A.

Step 3: The adversary A guesses b.

The adversary wins the above game, if he guesses b correctly, and, if we have f0
j (x0

i ) = f1
j (x1

i ) for
all i = 1, . . . , n and j = 1, . . . ,m. The advantage of A is defined by

Adv(A) := 2 Pr[A wins]− 1 = Pr[A wins | b = 0] + Pr[A wins | b = 1]− 1.

We call FE selectively unbounded function-hiding IND-CPA secure (fh-IND-CPA se-
cure), if FE is m-fh-IND-CPA secure for each polynomial m ∈ poly(λ), and we call FE selectively
IND-CPA secure (IND-CPA secure), if FE is 0-fh-IND-CPA secure.

3.4 Private-Key Encryption
We define private-key encryption schemes as a special case of functional encryption schemes:

Definition 6. A private-key encryption scheme is a functional encryption scheme SKE =
(Setup,KeyGen,Enc,Dec) for a function family (Fλ)λ where each Fλ only contains the identity
function Id : Xλ → Xλ.

When discussing private-key encryption schemes we sometimes omit KeyGen from the header of
the scheme and write Dec(msk, ·) instead of Dec(KeyGen(msk, Id), ·). Note that we call SKE IND-
CPA secure, if it is selectively 0-bounded function-hiding IND-CPA secure in the sense of definition
5. This differs from the usual security notion in literature, where the adversary is usually allowed
to submit only one pair of challenge messages and can inquire ciphertexts adaptively. However, by
using a hybrid argument, one can show that the security loss which occurs by allowing multiple
challenge messages is polynomially bounded. If we consider message spaces of superpoly size, then
we can construct private-key encryption schemes which are selectively, but not adaptively, secure.
Therefore, the security notion for SKE we use here is weaker than the usual one in literature.

3The size n is determined by the descryiption of A and bounded by A’s running time. The size n may be zero,
which would mean that A always sends two empty lists of inputs.
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3.5 Transformations
Definition 7. Let FE = (Setup,KeyGen,Enc,Dec), FE′ = (Setup′,KeyGen′,Enc′,Dec′) be two
functional encryption schemes for the same functionality. We say that FE is virtually FE′, if the
following algorithms are equal

Setup = Setup′

KeyGen = KeyGen′

Dec = Dec′

and if there is an ε ∈ negl(λ), s.t. for all sequences (xλ)λ ∈ (Xλ)λ the statistical distance between
the following two distributions is bounded from above by ε:{

(msk, ctx) | msk← Setup(1λ), ctx ← Enc(msk, xλ)
}
,{

(msk, ct′x) | msk← Setup(1λ), ct′x ← Enc′(msk, xλ)
}
.

Now, let FE be a functional encryption scheme for functions (Fλ) with inputs (Xλ) and let FE
be one for functions (F ′λ) with inputs (X ′λ). We say there is an adversarial transformation
from FE to FE′, if there are ppt algorithms Tct, Tsk, TF , TX s.t. we have the following equalities of
distributions for all x′ ∈ X ′λ, f ′ ∈ F ′λ, msk ∈ supp(Setup):

Setup′(1λ) = Setup(1λ),

Enc′(msk, x′) = Tct(Enc(msk, TX(x′))),

KeyGen′(msk, f ′) = Tsk(KeyGen(msk, TF (f ′))).

If (Fλ) = (F ′λ), then we always assume TF = IdFλ and TX = IdXλ .
Let k ∈ N be constant and let (FEi)ki=1 be a sequence of functional encryption schemes. We

say there is a virtual adversarial transformation from FE1 to FEk, if, for each i = 1, . . . , k− 1,
FEi is virtually FEi+1 or there is an adversarial transformation from FEi to FEi+1.

We can now observe the following facts:

Lemma 6. (a) If FE is virtually FE′, then FE is m-fh-IND-CPA secure, correct, better than guess-
ing resp. useless iff FE′ is so.

(b) If FE is m-fh-IND-CPA secure and there is an adversarial transformation from FE to FE′, then
FE′ is m-fh-IND-CPA secure.

Proof. (a) Let FE be virtually FE′. Then, it is clear that, if FE is correct, then FE′ is correct, too.
The same goes for being better than guessing and being useless.
Now, let FE be m-fh-IND-CPA secure. We have to show that FE′ is m-fh-IND-CPA secure,
too. Let A be a selective adversary who plays the IND-CPA game from definition 5 with
FE′. We have to show that A does not notice when we exchange FE′ with FE. W.l.o.g., we
can assume that there is a polynomial s ∈ poly(λ) s.t. A requires ciphertexts for s messages
x1, . . . , xs ∈ Xλ and secret keys for m functions f1, . . . , fm ∈ Fλ.
Since FE is virtually FE′, there is an ε(λ) ∈ negl(λ), s.t. for all (xλ)λ, for msk← Setup(1λ), ct←
Enc(msk, xλ), ct′ ← Enc′(msk, xλ) we have

2∆((msk, ct), (msk, ct′))

=
∑
msk∗

∑
ct∗

∣∣Pr
[
msk∗ = Setup(1λ), ct∗ = Enc(msk∗, xλ)

]
− Pr

[
msk∗ = Setup(1λ), ct∗ = Enc′(msk∗, xλ)

]∣∣
=
∑
msk∗

Pr
[
msk∗ = Setup(1λ)

]
·
∑
ct∗

∣∣Pr [ct∗ = Enc(msk∗, xλ)]− Pr
[
ct∗ = Enc′(msk∗, xλ)

]∣∣ ≤ ε(λ).

For k ∈ {0, 1, . . . , s}, draw msk← Setup(1λ), sk1 ← KeyGen(msk, f1), . . . , skm ← KeyGen(msk, fm)
and

cti ←

{
Enc′(msk, xi), if i ≤ k,
Enc(msk, xi), if i > k.
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If we set Vk := (msk, sk1, . . . , skm, ct1, . . . , cts), then V0 equals the view of A in the selective
IND-CPA game against FE, while Vs equals the view of A in the selective IND-CPA game
against FE′. Now, fix

msk∗ ∈ supp(Setup(1λ)),

for i = 1, . . . , s, ct∗i ∈ supp(Enc(msk∗, xi)) ∪ supp(Enc′(msk∗, xi)),
for j = 1, . . . ,m, sk∗j ∈ supp(KeyGen(msk∗, fj)).

Then, we have

Pr [Vk = (msk∗, sk∗1, . . . , sk
∗
m, ct

∗
1, . . . , ct

∗
s)]

= Pr
[
msk∗ = Setup(1λ)

]
·
m∏
j=1

Pr
[
sk∗j = KeyGen(msk∗, fj)

]
·
k∏
i=1

Pr
[
ct∗i = Enc′(msk∗, xi)

]
·

s∏
i=k+1

Pr [ct∗i = Enc(msk∗, xi)] .

For k < s, it follows now

2∆(Vk, Vk+1)

=
∑
msk∗

Pr
[
msk∗ = Setup(1λ)

] m∏
j=1

∑
sk∗j

Pr
[
sk∗j = KeyGen(msk∗, fj)

]
·
k∏
i=1

∑
ct∗i

Pr
[
ct∗i = Enc′(msk∗, xi)

] · s∏
i=k+2

∑
ct∗i

Pr [ct∗i = Enc(msk∗, xi)]


·
∣∣Pr
[
ct∗k+1 = Enc′(msk∗, xk+1)

]
− Pr

[
ct∗k+1 = Enc(msk∗, xk+1)

]∣∣
=
∑
msk∗

Pr
[
msk∗ = Setup(1λ)

]
·
∣∣Pr
[
ct∗k+1 = Enc′(msk∗, xk+1)

]
− Pr

[
ct∗k+1 = Enc(msk∗, xk+1)

]∣∣ ≤ ε(λ).

Using triangle inequality, we get

2∆(V0, Vs) ≤
s−1∑
k=0

∆(Vk, Vk+1) ≤ s · ε(λ) ∈ negl(λ).

Therefore, the advantage of A to distinguish the IND-CPA game with FE from the IND-CPA
game with FE′ is statistically bounded by a negligible value.

Therefore, FE′ is m-fh-IND-CPA secure.

(b) Let A′ be a selective adversary who plays the IND-CPA game from definition 5 with FE′. We
have to construct a selective adversary A who plays the same IND-CPA game with FE and
whose advantage against FE is at least as big as the advantage of A′ against FE′.

The adversary A proceeds as follows:

Step 1: He startsA′ as a subroutine and collects all ciphertext-queries x′1
0
, . . . , x′s

0
, x′1

1
, . . . , x′s

1

and all secret key-queries f ′1
0
, . . . , f ′m

0
, f ′1

1
, . . . , f ′m

1 of A′. Then, he computes for
b = 0, 1 and i = 1, . . . , s

xbi := TX(x′i
b
)

and for j = 1, . . . ,m

f bj := TF (f ′j
b
).

Then, he submits the inputs x1
0, . . . , xs

0, x1
1, . . . , xs

1 and the functions f1
0, . . . , fm

0,
f1

1, . . . , fm
1 to the challenger.
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Step 2: The challenger draws b∗ ← {0, 1} and sends to A the ciphertexts

cti = Enc(msk, xb
∗

i ) = Enc(msk, TX(x′i
b∗

))

and the secret keys

skj = KeyGen(msk, f b
∗

j ) = KeyGen(msk, TF (f ′j
b∗

)).

A computes now for i = 1, . . . , s

ct′i := Tct(cti)

and for j = 1, . . . ,m
sk′j := Tsk(skj)

and sends the ciphertext ct′1, . . . , ct
′
s and the secret keys sk′1, . . . , sk

′
m to A′.

Step 3: A outputs the bit which is guessed by A′.

Since Tct, Tsk, TF , TX form an adversarial transformation, the view of A′ while he is being used
by A in the IND-CPA game against FE is identically distributed as the view of A′ while he
plays the IND-CPA game against FE′. Therefore, the advantage of A against FE equals the
advantage of A′ against FE′.

At some points, we want to ensure that an encryption algorithm Enc of width B never outputs a
ciphertext whose largest entry is not bounded by B. We can ensure such a behaviour by replacing
each ciphertext of Enc which is too big with the zero vector. It is clear that this change just has a
statistically negligible impact on a scheme. One can even ensure that by doing so we do not harm
the depth of Enc:

Lemma 7. For n = 1, let FE be of length s, width B and depth d over R. If d is constant and B is
polynomial, then FE is virtually a scheme FE′ = (Setup′,KeyGen′,Enc′,Dec′) of length s and depth d
over R where we have Enc′(msk′, x) ∈ {−B, . . . , B}s for all λ, x ∈ Xλ and msk′ ∈ supp(Setup′(1λ)).

Before we can prove lemma 7, we need the following algebraic lemma which states that one can
ensure that a polynomial of constant degree is bounded by just observing its behaviour on a set of
polynomial size.

Lemma 8. Let p ∈ R[X] be a polynomial of degree d and let N,B ∈ N. If we set

I = {0, . . . ,min(N, 2(d+ 1)(2B + 1)d+1 − 1)},

then we have
∃x ∈ {0, . . . , N}n : |p(x)|R > B ⇐⇒ ∃x ∈ I : |p(x)|R > B.

Proof. Since I ⊂ {0, . . . , N}n, the direction from right to left does hold.
To prove the other direction assume, for the sake of contradicition, there is an x∗ ∈ {0, . . . , N}n

with |p(x∗)|R > B, but for all x ∈ I we have |p(x)|R ≤ B.
Since p is a polynomial of degree d over Z or Zq for some prime q, we have that for each x the

value p(x+ d+ 1) is determined by the values

p(x), . . . , p(x+ d).

Therefore, if there are integers x 6= y with p(x+ i) = p(y+ i) for all i = 0, . . . , d, then p is periodic
with a period ≤ |x− y|. Now imagine the sequence

p(0), p(1), . . . , p(d), p(d+ 1), . . . , p
(
(d+ 1)2(2B + 1)d+1 − 1

)
as being an enumeration of 2(2B + 1)d+1 many (d + 1)-tuples of numbers in {−B, . . . , B} ⊆ R.
Each tuple is of the form

(p ((d+ 1)k) , p ((d+ 1)k + 1) , . . . , p ((d+ 1)k + d)) ∈ {−B, . . . , B}d+1

for k ∈ {0, . . . , 2(2B + 1)d+1 − 1}. Now, {−B, . . . , B}d+1 contains only (2B + 1)d+1 elements,
therefore p must be periodic with its image contained in p(I). Ergo, in {0, . . . , N}, it cannot
evaluate to a value outside of {−B, . . . , B}.
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Proof Lemma 7. Let FE = (Setup,KeyGen,Enc,Dec) be of length s, width B and depth d over R
with an offline encryption algorithm Encoffline. Let I ⊂ Z be the interval from lemma 8. We define
FE′ by setting

Setup′(1λ) := Setup(1λ),

KeyGen′(msk′, f) := KeyGen(msk′, f),

Dec′(sk′, ct′) := Dec(sk, ct)

and by defining Enc′ to be of depth d with the following offline algorithm:

Enc′offline(msk′) ={
(p1, . . . , ps)← Encoffline(msk′)
if ∃x ∈ I, j ∈ [s] : |pj(x)|R > B

return (0, . . . , 0)

else
return (p1, . . . , ps)

}.

Then, Enc′offline is ppt, since I and [s] are of polynomial size. Let ε ∈ negl(λ), s.t. we have for all
(xλ)λ

Pr
msk←Setup(1λ)

[ ∃i ∈ [s] : |ci|R > B | c← Enc(msk, xλ)] ≤ ε(λ).

We then have

Pr
msk←Setup(1λ)

[ ∃i ∈ [s], x ∈ I : |pi(x)|R > B | p← Encoffline(msk)]

=
∑
x∈I

Pr
msk←Setup(1λ)

[ ∃i ∈ [s] : |pi(x)|R > B | p← Encoffline(msk)]

=
∑
x∈I

Pr
msk←Setup(1λ)

[ ∃i ∈ [s] : |ci|R > B | c← Enc(msk, x)] ≤ #I · ε(λ).

Set
A := {p ∈ supp(Encoffline) | ∃i ∈ [s], x ∈ I : |pi(x)|R > B} .

Then, we have for msk,msk′ ← Setup(1λ)

∆((msk,Encoffline(msk)), (msk′,Enc′offline(msk′))) ≤ Pr
msk←Setup(1λ)

[Encoffline(msk) ∈ A] ≤ #I · ε(λ).

Since I is of polynomial size, #I ·ε(λ) is negligible. Since we have on the other hand for each (xλ)λ

∆((msk,Enc(msk, xλ)), (msk′,Enc′(msk′, xλ))) ≤ ∆((msk,Encoffline(msk)), (msk′,Enc′offline(msk′))),

it follows that FE is virtually FE′.
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4 Online/Offline Encryption Without Overflows
In this section, we show that private-key encryption schemes of polynomial width that are better
than guessing cannot be IND-CPA secure, if their encryption algorithms have a very simple online
part in which no arithmetical overflows do occur.

Theorem 6. Let d ∈ N be constant, N ≥ 2d and let SKE be a private-key encryption scheme of
depth d and width B ∈ poly(λ) with message space Xλ = {0, . . . , N} over Z.

If SKE is selectively IND-CPA secure, then SKE is useless.

Proof Theorem 6 Part 1. Let SKE be an IND-CPA secure scheme of length s, depth d and width
B over Z for messages Xλ = {0, . . . , N}. If we define SKE′ = (Setup′,Enc′,Dec′) like in lemma
7, then SKE is virtually SKE′. In particular, SKE′ is of the same length and depth and is secure
and useless iff SKE is so. Furthermore, SKE′ is now strictly of width B, i.e., it never outputs a
ciphertext outside of {−B, . . . , B}s. It now suffices to prove that SKE′ is useless. �

To prove theorem 6, we define an adversary which we will show to have a non-negligible ad-
vantage against SKE′, if SKE′ is not useless.

Definition 8. Let r ∈ poly(λ), N ≥ 2d and s ≥ 1. Set m = 2r3.
We define the following selective adversary A which plays the IND-CPA security-game in defi-

nition 5 with the scheme SKE′:

Step 1: The adversary A draws y ← [2d] and then, for b = 0, 1, submits the following two lists of
3m messages each:

xbi =


0, if i ∈ {1, . . . ,m},
b · y, if i ∈ {m+ 1, . . . , 2m},
y, if i ∈ {2m+ 1, . . . , 3m}.

He submits two empty lists of possible functions.

Step 2: The adversary A receives a list of ciphertexts (ct′
xbi

)3m
i=1. Let ct′

xbi ,j
denote the j-th entry of

ct′
xbi
. For k = 0, 1, 2 and j = 1, . . . , s he computes the arithmetical means

ck,j :=
1

m

(k+1)m∑
i=1+km

(ct′xbi ,j)
2

Step 3: If there is a j s.t. |c2,j − c1,j | > 2Br , the adversary outputs 0. Otherwise, if there is a j s.t.
|c0,j − c1,j | > 2Br , he outputs 1. If none of the above requirements should be met, then
the adversary outputs a random bit b′ ← {0, 1}.

The following lemma shows in which cases A has a non-negligible advantage.

Lemma 9. Let r ∈ poly(λ) s.t. r ≥ λ. For a fixed msk′, set CT′y = Enc′(msk′, y). The adversary
in definition 8 has a non-negligible advantage in the selective IND-CPA game against SKE′, if the
following probability is non-negligible

Pr
msk′←Setup′(1λ)

[
∃j ∈ [s], y∗ ∈ [2d] :

∣∣∣E [(CT′y∗,j
)2]− E

[(
CT′0,j

)2]∣∣∣ > 4
B

r

]
.

Proof. Fix for this proof a master secret key msk′ ∈ supp(Setup′(1λ)) and denote by CT′y
2 the

distribution of drawing ct′y ← Enc′(msk′, y) and squaring all its entries. In step 2, A approximates
the means of CT′0

2
,CT′b·y

2 and CT′y
2. By Bounded we denote the event that for each k = 0, 1, 2 the

distance between ck and its mean is at most B/r, i.e.

Bounded : max
(∣∣∣∣∣∣c0 − E

[
CT′0

2
]∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣c1 − E

[
CT′b·y

2
]∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣c2 − E

[
CT′y

2
]∣∣∣∣∣∣
∞

)
≤ B

r
.

21



Since Enc′ always outputs values bounded by B, we have, according to corollary 2, that the
probability that event Bounded will occur is at least (1− 2e−r)3s ≥ 1− 6se−r. Therefore, for each
fixed msk′, it follows

Pr [A fails b = 0] ≤ Pr

[
||c0 − c1||∞ > 2

B

r

]
+

1

2
≤ Pr [¬Bounded] +

1

2
≤ 6se−r +

1

2
.

Similarly, for each fixed msk′ ∈ supp(Setup′(1λ)), we get Pr [A fails b = 1] ≤ 6se−r + 1
2 .

Now, assume additionally for msk′ that the following event Seperated does hold

Seperated : ∃y∗ ∈ [2d] :
∣∣∣∣∣∣E [CT′0

2
]
− E

[
CT′y∗

2
]∣∣∣∣∣∣
∞
> 4

B

r
.

Let y denote the value drawn by A in step 1. If Seperated holds for msk′, then

Pr [A wins b = 0, y = y∗]

≥Pr

[
||c2 − c1||∞ > 2

B

r
b = 0, y = y∗

]
≥Pr[Bounded] · Pr

[
||c2 − c1||∞ > 2

B

r
Bounded, b = 0, y = y∗

]
≥(1− 6se−r) · 1 = 1− 6se−r.

Similarly, we get Pr [A wins b = 1, y = y∗] ≥ 1− 6se−r. Therefore, for msk′ ← Setup′(1λ), we get
now

Pr [A wins Seperated]

=
1

2d
(Pr [A wins Seperated, y = y∗] +

2d− 1

2d
Pr [A wins Seperated, y 6= y∗])

≥ 1

2d
(1− 6se−r) +

2d− 1

2d

(
1

2
− 6se−r

)
≥ 1

4d
+

1

2
− 6se−r.

Now, if we set ε := Pr [Seperated], we have

Pr [A wins] = ε · Pr [A wins Seperated] + (1− ε) · Pr [A wins ¬Seperated]

≥ ε
(

1

4d
+

1

2
− 6se−r

)
+ (1− ε)

(
1

2
− 6se−r

)
= ε

1

4d
+

1

2
+ 6se−r.

Since our lemma requires ε to be non-negligible and r ≥ λ, it follows that A has a non-negligible
advantage.

To conclude the proof of theorem 6, we need to show that the prerequisites of lemma 9 do
occur, if SKE′ is not useless. In fact, we show a purely mathematical statement in the following
which implies the uselessness of SKE′, if the prerequisites of lemma 9 are not met. Our statement
says that for a distribution of polynomials the means of the squared outputs of the polynomials for
x = 0, . . . , 2d need to be widespread, because, otherwise, it is very unlikely for the sampled poly-
nomials to be non-constant. If the polynomials sampled by Enc′offline(msk′) are with overwhelming
probability constant, then, of course, the sampled ciphertexts do not carry any information about
the encrypted input x.

Lemma 10. Let D be a distribution over integer polynomials of degree d > 0. If there is a function
ε = ε(λ) s.t. for all x ∈ {1, . . . , 2d} we have∣∣∣∣ E

p←D

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ ε,
then it follows

Pr
p←D

[deg p ≤ d− 1] ≥ 1− 2ε.
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Proof. For p ← D, we set f(X) := p(X)2 − p(0)2. Then, f is a random integer polynomial of
degree 2d. If we have p(X) =

∑d
i=0 aiX

i, then the leading coefficient of f is a2
d. Now, by theorem

3, it follows

(2d)! · a2
d =

2d∑
i=0

(−1)2d−i
(

2d

i

)
f(i).

Hence

E
p←D

[
a2
d

]
=

1

(2d)!

∣∣∣∣∣
2d∑
i=0

(−1)2d−i
(

2d

i

)
E

p←D
[f(i)]

∣∣∣∣∣
≤ 1

(2d)!

2d∑
i=0

(
2d

i

) ∣∣∣∣ E
p←D

[f(i)]

∣∣∣∣
≤ 1

(2d)!

2d∑
i=0

(
2d

i

)
· ε =

22d

(2d)!
ε ≤ 2ε.

If we draw p(X) =
∑d
i=0 aiX

i ← D, it follows

Pr [deg p = d] =
∑

i∈Z\{0}

Pr [ad = i] ≤
∑

i∈Z\{0}

i2 · Pr [ad = i] = E
p←D

[
a2
d

]
≤ 2ε.

Lemma 10 already implies that the offline algorithm of an IND-CPA secure encryption scheme
of depth d and polynomial width will – with overwhelming probability – sample polynomials of
degree d− 1. In the following theorem, we generalize this observation for arbitrary degrees d− k.

Theorem 7. Let D be a distribution over integer polynomials of degree d. If there are functions
ε = ε(λ) and B = B(λ) s.t. for all x ∈ {1, . . . , 2d} and p ∈ supp(D) we have∣∣p(x)2 − p(0)2

∣∣ ≤ B2

and ∣∣∣∣ E
p←D

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ 1

2
ε,

then it follows for all k = 0, . . . , d

Pr
p←D

[deg p ≤ d− k] ≥ 1− (2 + 2B2)kε.

Proof. We show Theorem 7 by using induction over k = 0, . . . , d. While the base case k = 0 is
trivially true, the case k = 1 follows immediately by lemma 10.

For the induction step, let k ≥ 1 be arbitrary. We will show

Pr[deg p ≤ d− (k + 1)] ≥ (2B2 + 1) Pr[deg p ≤ d− k]− ε− 2B2.

To this aim, write p(X) =
∑d
i=0 aiX

i for p← D and let D′ be D conditioned on deg p ≤ d− k, i.e.

Pr[p← D′] := Pr[p← D | deg p ≤ d− k].

Then, we have

Pr
p←D

[deg p ≤ d− (k + 1)] = Pr
p←D

[ad−k = 0 | deg p ≤ d− k] · Pr
p←D

[deg p ≤ d− k]

= Pr
p←D′

[ad−k = 0] · Pr
p←D

[deg p ≤ d− k]. (6)

We want to apply lemma 10 to show

Pr
p←D′

[ad−k = 0] ≥ 1− 2 ·
1
2ε+ (1− Prp←D[deg p ≤ d− k])B2

Prp←D[deg p ≤ d− k]
. (7)
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For this, we have to show for all x = 0, . . . , 2(d− k)∣∣∣∣ E
p←D′

[
p(x)2 − p(0)2

]∣∣∣∣ ≤ 1
2ε+ (1− Prp←D[deg p ≤ d− k])B2

Prp←D[deg p ≤ d− k]
. (8)

If we set A := supp(D) \ supp(D′), then we have for x ∈ {0, . . . , 2d}

Pr
p←D

[deg p ≤ d− k] ·
∣∣∣∣ E
p←D′

[
p(x)2 − p(0)2

]∣∣∣∣
=

∣∣∣∣∣∣
∑

p∈supp(D′)

Pr [p← D] · (p(x)2 − p(0)2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
p←D

[p(x)2 − p(0)2]−
∑
p∈A

Pr [p← D] · (p(x)2 − p(0)2)

∣∣∣∣∣∣
≤
∣∣∣∣ E
p←D

[p(x)2 − p(0)2]

∣∣∣∣+

∣∣∣∣∣∣
∑
p∈A

Pr [p← D] · (p(x)2 − p(0)2)

∣∣∣∣∣∣
≤1

2
ε+ Pr

p←D
[p ∈ A] ·B2 =

1

2
ε+

(
1− Pr

p←D
[deg p ≤ d− k]

)
·B2.

By reordering, we get inequality (8). Hence, lemma 10 yields inequality (7). Inserting inequality
(7) in equation (6) gives

Pr
p←D

[deg p ≤ d− (k + 1)]

= Pr
p←D′

[ad−k = 0] · Pr
p←D

[deg p ≤ d− k]

≥

(
1− 2

(
1
2ε+ (1− Prp←D[deg p ≤ d− k])B2

)
Prp←D[deg p ≤ d− k]

)
Pr
p←D

[deg p ≤ d− k]

= Pr
p←D

[deg p ≤ d− k]− ε− 2

(
1− Pr

p←D
[deg p ≤ d− k]

)
B2

=(2B2 + 1) Pr
p←D

[deg p ≤ d− k]− ε− 2B2

The induction hypothesis states

Pr
p←D

[deg p ≤ d− k] ≥ 1− (2B2 + 2)kε.

Since
(
(2B2 + 1)(2B2 + 2)k + 1

)
≤ (2B2 + 2)k+1, we obtain the claimed inequality:

Prp←D[deg p ≤ d− k] ≥ (2B2 + 1)(1− (2B2 + 2)kε)− ε− 2B2

≥ 1−
(
(2B2 + 1)(2B2 + 2)k + 1

)
ε

≥ 1− (2B2 + 2)k+1ε.

We can now finish the proof of theorem 6.

Proof Theorem 6 Part 2. LetA be the adversary in definition 8. ForA to have negligible advantage
against SKE′, according to lemma 9, it is necessary to have for all r = 4r′B ∈ poly(λ)

Pr

[
∀j ∈ [s], y ∈ [2d] :

∣∣∣E [(CT′y,j
)2]− E

[(
CT′0,j

)2]∣∣∣ ≤ 1

r′

]
≥ 1− negl(λ)

where we take the probability over msk′ ← Setup′(1λ). But now, by theorem 7, we have for each
r ∈ (2 + 2B2)d · poly(λ)

Pr

[
∀j ∈ [s] : Pr

(p1,...,ps)←Enc′offline

[deg pj = 0] ≥ 1− (2 + 2B2)d
1

r

]
≥ 1− negl(λ).

Therefore, the uselessness of SKE′ and, in particular, the uselessness of SKE follow.
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5 Online/Offline Encryption With Short Ciphertexts
In section 4, we showed that encryption schemes of constant depth and polynomial width without
arithmetic overflows cannot be secure. In this section, we show the same result for encryption
schemes of constant depth and polynomial width which may make use of arithmetic overflows but
have short ciphertexts. We do so by transforming such schemes to encryption schemes without
arithmetic overflows. I.e., if the ciphertexts are of short width, we can transform their encryption
algorithm to one of constant depth over Z by using a simple multiplication trick. As before,
throughout this section, let λ denote the security parameter and let B = B(λ), d = d(λ) and
N = N(λ) be arbitrary variables depending on λ. Let s ∈ poly(λ). Additionally, introduce a
modulus variable q = q(λ). We prove in this section the following theorem:

Theorem 8. Let q be a prime, N ≥ d + 1 and let SKEq be a private-key encryption scheme of
depth d and width B over Zq for messages Xλ = {0, . . . , N} s.t.

2(d+ 1)2 · (d!)3 · dd ·Nd ·B ≤ q − 1.

If SKEq is selectively IND-CPA secure, then there exists a virtual adversarial transformation to
an encryption scheme SKE of depth d and width (d!)2B over Z for messages Xλ = {0, . . . , N}
which preserves selective IND-CPA security and – in both directions – correctness, being better
than guessing and uselessness.

Theorem 8 and theorem 6 imply together the following impossibility result:

Corollary 3. Let q be a prime and let SKEq be a private-key encryption scheme of depth d and
width B for messages x = 0, . . . , N over Zq s.t. N ≥ 2d and

2(d+ 1)2 · (d!)3 · dd ·Nd ·B ≤ q − 1.

If SKEq is selectively IND-CPA secure, B ∈ poly(λ) and d ∈ N constant, then SKEq is useless.

Proof. Because of theorem 8, there is an IND-CPA secure private-key encryption scheme SKE over
Z of polynomial width (d!)2B and constant depth d ∈ N for messages Xλ = {0, . . . , N} which is
useless iff SKEq is useless. Since N ≥ 2d, SKE is useless according to theorem 6.

To prove theorem 8, let q > 2 be a prime and define a map

ι : Zq → {−
q − 1

2
, . . . , 0, . . . ,

q − 1

2
} ⊂ Z

by setting
ι(a mod q) := a+ zq where z ∈ Z s.t. |a+ zq| = |a mod q| .

Then, ι preserves absolute values and we have

ι(a mod q) mod q = a mod q.

One first idea for proving theorem 8 could be to just apply ι component-wise to each ciphertext,
i.e. treat each ciphertext modulo q as it would be an integer vector. Technically, we would replace
Enc by ι ◦ Enc. While ι ◦ Enc would be indeed of length s and width B over Z, it is not clear, if
it would be of depth d over Z. To make this precise, for p ∈ Zq[X], we denote by I(p mod q) the
coefficient-wise application of ι, i.e.

I

(
d∑
i=0

aiX
i mod q

)
:=

d∑
i=0

ι(ai mod q)Xi.

Then, we have the equation I(p mod q) mod q = p mod q again. Now, for ι ◦ Enc to be of depth
d over Z, we would need a suitable offline algorithm. We could, for example, take I ◦ Encoffline as
candidate. If p is a polynomial over Zq sampled by Encoffline, we would then need the following
kind of equality for all x ∈ Xλ

ι(p(x) mod q) = I(p mod q)(x). (9)
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While equation (9) holds for polynomials p with small coefficients, it does not hold in general.
Therefore, we need to apply minor changes to the polynomials sampled by Encoffline as we will see
later. To this end, consider the Vandermonde matrix for the tuple (0, 1, . . . , d)

V := ((i− 1)j−1)i,j=1,...,d+1 =


1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2d

...
...

1 d d2 . . . dd

 ∈ Z(d+1)×(d+1).

We can deduce the coefficients of a polynomial by applying V −1 to its output values. However,
V −1 has very large entries modulo q, therefore we use the following integer quasi-inverse W with
bounded entries.

Lemma 11. There exists an integer matrix W ∈ Z(d+1)×(d+1) whose entries are bounded by
(d!)3dd, s.t. V ·W = W · V = (d!)2 · Id(d+1)×(d+1).

Proof. Let w0, . . . , wd be integer polynomials of degree d. We denote their coefficients by wi,j , i.e.

wi(X) =

d∑
i=0

wi,jX
j .

If we set

W :=

w0,0 . . . wd,0
...

. . .
...

w0,d . . . wd,d

 ,

we have

VW =

w0(0) . . . wd(0)
...

. . .
...

w0(d) . . . wd(d)

 .

If we set

ŵj(X) :=

 d∏
i=0,i6=j

(X − i)


and

wj(X) := (d!)2 1

ŵj(j)
· ŵj(X),

then each wj is an integer polynomial with

wj(i) =

{
(d!)2, if j = i,

0, if j 6= i.

Hence, VW = (d!)2 · Id(d+1)×(d+1). To bound the entries of W , we have to bound the coefficients
of
∑d
i=0 ŵi,jX

j := ŵi(X). We can compute ŵi,d−j by

ŵi,d−j =
∑

{k1,...,kj}⊆{0,...,d}\{i}
k1<...<kj

(−1)j · k1 · · · kj .

Therefore

|ŵi,d−j | =
∑

{k1,...,kj}⊆{0,...,d}\{i}
k1<...<kj

k1 · · · kj ≤
∑

{k1,...,kj}⊆{0,...,d}\{i}
k1<...<kj

dj ≤
(
d

j

)
dj .
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Since

wj(X) =
(d!)2

ŵj(j)
· ŵj(X) ≤ (d!)2ŵj(X),

we get

|wi,j | ≤
(
d

j

)
dj(d!)2 ≤ (d!)3dd.

Lemma 12. Let q > 2 be a prime, set c = (d!)2 and let p ∈ Zq[X] be a polynomial of degree d.
Furthermore, let N ≥ d+ 1. If we have for all x = 0, . . . , d

|p(x) mod q| ≤ q − 1

2(d+ 1)2 · (d!)3 · dd ·Nd
,

then we have for all x = 0, . . . , N

I(c · p mod q)(x) = ι(c · p(x) mod q).

Proof. It is clear that we have for any integer polynomial p and any x ∈ Z

I(c · p mod q)(x) mod q = c · p(x) mod q = ι(c · p(x) mod q) mod q.

Therefore, in our case, it suffices to show that the absolute value of I(c · p mod q)(x) is bounded
by q−1

2 , since ι(c · p(x) mod q) is a value of {− q−1
2 , . . . , q−1

2 } which differs from I(c · p mod q)(x)
only by a value in qZ.

Let p(X) =
∑d
i=0 aiX

i ∈ Zq[X] and set a = (a0, . . . , ad) ∈ Zd+1
q to be the column vector of p′s

coefficients. Then, we have

V · a mod q =


1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2d

...
...

1 d d2 . . . dd

 ·

a0

a1

a2

...
ad

 mod q =


p(0)
p(1)
p(2)
...

p(d)

 mod q.

Let W = (wi,j)i,j ∈ Z(d+1)×(d+1) be the quasi-inverse of V from lemma 11. Since

WV a = ca mod q,

we have for each ai

c · ai mod q =

d∑
i=0

wi,jp(j) mod q.

In particular, we have now

|c · ai mod q| =

∣∣∣∣∣
d∑
i=0

wi,jp(j) mod q

∣∣∣∣∣ ≤
d∑
i=0

|wi,j | · |p(j) mod q| .

Set
B := max

x=0,...d
|p(x) mod q| ≤ q − 1

2(d+ 1)2 · (d!)3 · dd ·Nd
.

Since each |wi,j | is bounded by (d!)3dd and each |p(j) mod q| is bounded by B, we get

|c · ai mod q| ≤
d∑
i=0

|wi,j | · |p(j) mod q| ≤
d∑
i=0

(d!)3ddB = (d+ 1)(d!)3ddB.
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Therefore, we have for all x = 0, . . . , N

|I(c · p mod q)(x)| =

∣∣∣∣∣
d∑
i=0

ι (c · ai mod q)xi

∣∣∣∣∣
≤

d∑
i=0

∣∣ι (c · ai mod q)xi
∣∣

≤
d∑
i=0

|ι (c · ai mod q)| ·
∣∣xi∣∣

≤
d∑
i=0

(d+ 1)(d!)3ddB · |x|i

≤(d+ 1)(d!)3ddB ·

(
d∑
i=0

N i

)

≤(d+ 1)(d!)3ddB · (d+ 1)Nd ≤ q − 1

2
.

Ergo, the claim follows.

Proof Theorem 8. Because of lemma 7, we can – by using the same argument we used in the
first part of the proof of theorem 6 – w.l.o.g. assume that the encryption algorithm of SKEq =
(Setupq,Encq,Decq) never outputs a ciphertext whose entries modulo q are not bounded by B. Set

c := (d!)2 ∈ Z, h := c−1 mod q ∈ Zq

and define a scheme SKE = (Setup,Enc,Dec) over Z by applying the following adversarial trans-
formation to SKEq:

Setup(1λ) := Setupq(1
λ),

Enc(msk, x) :=ι(c · Encq(msk, x) mod q),

Dec(msk, ct) := Decq(msk, (h · ct mod q)).

It is clear that SKEq is correct, better than guessing (resp. useless) iff SKE is correct, better than
guessing (resp. useless), since we have

(h · (ι(c · ct mod q)) mod q) = (h · (c · ct) mod q) = ct mod q.

Since SKEq is IND-CPA secure and the above transformations are adversarial, SKE is IND-CPA
secure.

It remains to show that Enc is an encryption algorithm of depth d and width cB over Z. Now,
for each (ct1, . . . , cts)← Encq(msk, x), we have

|ι(c · ctj mod q)| = |c · ctj mod q| ≤ c · |ctj mod q| ≤ cB,

therefore Enc is of width cB over Z. To show that Enc is of depth d we have to give a feasible
offline algorithm Encoffline for Enc = ι(c · Encq). This is done by setting

Encoffline(msk) := I(c · Encoffline,q(msk) mod q).

Let x ∈ {0, . . . , N}. If we fix the randomness r of Enc(msk, x, r) and set

(p1, . . . , ps) := Encoffline,q(msk, r),
(p′1, . . . , p

′
s) := Encoffline(msk, r),
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then

Enc(msk, x, r) =ι(c · Encq(msk, x, r) mod q)

=(ι(c · p1(x) mod q), . . . , ι(c · ps(x) mod q))

(∗)
=(I(c · p1 mod q)(x), . . . , I(c · ps mod q)(x))

=(p′1(x), . . . , p′s(x)),

where equation (∗) follows from lemma 12. Therefore, Enc(msk, x) is of depth d.
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6 Lattice-Based Function-Hiding Functional Encryption
In this section, let n(λ) ≥ 1 be a polynomial in λ and let

q(λ) > p(λ) ≥ N(λ) ≥ 1

for all λ. Further, let Xλ = {0, . . . , p}n, Yλ = {0, . . . , p} and let (Fλ)λ be a function family which
contains (besides other functions) the zero-function 0 ∈ Fλ – which maps each x ∈ Xλ to zero –
and the projection π1 ∈ Fλ – which maps each x ∈ Xλ to its first coordinate.

Let FE = (Setup,KeyGen,Enc,Dec) be a functional encryption scheme for (Fλ)λ of depth d1

and length s over Zq and let d2 ∈ N be a constant s.t. each secret key sk ∈ supp(KeyGen) is a
polynomial in Zq[X1, . . . , Xs] of total degree ≤ d2 with

Dec(sk, ct) = dsk(ct)/bq/pcc .

Finally, set m =
(
s+d2
d2

)
. We prove in this section the following theorem:

Theorem 9. If q is a prime and FE is selectively (m+ 1)-bounded function-hiding IND-CPA secure
and correct, then there exists an adversarial transformation from FE to a private-key encryption
scheme of depth d := d1 · d2, width bq/pc and length m over Zq for messages x = 0, . . . , N which
is selectively IND-CPA secure and better than guessing.

Corollary 4 (Impossibility Result). Assume that q is a prime, d1 is constant and q
p is bounded

by a polynomial in λ and that for almost all λ ∈ N we have

p(λ) ≥ (d+ 1)2 · 2d+1 · (d!)3 · d2d.

Then, FE cannot be both selectively (m+ 1)-bounded function-hiding IND-CPA secure and correct.

Proof. Assume that FE is both and set N = 2d. Because of theorem 9, we can transform FE
to a private-key encryption scheme over Zq with depth d and width B := bq/pc for messages
X ′λ = {0, . . . , 2d} which is IND-CPA secure and better than guessing. Then, we have

B =

⌊
q

p

⌋
≤ q − 1

p
≤ q − 1

2(d+ 1)2 · (d!)3 · dd · (2d)
d
.

Now, according to corollary 3, this encryption scheme must be useless and therefore cannot be
better than guessing. In particular, FE cannot be correct.

We prove theorem 9 by applying adversially three transformations to FE. First, we relinearize
the ciphertexts and secret keys s.t. decryption becomes evaluating a scalar product, dividing by
bq/pc and rounding down. Second, we draw m secret keys v1, . . . , vm ← KeyGen′(msk, 0) for the
zero-function and replace a ciphertext ct′ with a vector of decryption noises 〈ct′ | vi〉. Because of
decryption correctness, each noise value must be small; therefore, we get a new ciphertext of small
width. By using sufficiently many secret keys, we can ensure that the new ciphertext contains
enough information s.t. the probability of a correct decryption becomes high enough. We will not
always be able to decrypt correctly, but we show that we are still better than guessing by 1

m .
In fact, this is implied by lemma 13 which states that a secret key of a non-zero function must
sufficiently resemble a secret key of the zero-function. As a last step, we convert the current FE
scheme into a private-key encryption scheme for messages x ∈ {0, . . . , N} which is better than
guessing and of small width over Zq. Since all transformations can be applied by an adversary, the
scheme stays IND-CPA secure (however, we lose some security in the second transformation step,
since we have to ask for m secret keys). If we started with a FE scheme of constant depth, then
the final scheme will also be of constant depth.

Proof Theorem 9 Step 1. As a first step, we relinearize the ciphertexts and secret keys of FE. Note
that each polynomial sk ∈ Zq[X1, . . . , Xs] of total degree ≤ d2 can be written as a vector of its
coefficients. This yields a linear transformation

Φ : {sk ∈ Zq[X1, . . . , Xs] | deg sk ≤ d2} −→ Z
(s+d2d2

)
q .
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On the other hand, there is a polynomial map Φ+ : Zsq −→ Zmq of degree d2 which maps each vector
to a vector of different products of its entries s.t. we have for all sk ∈ Zq[X1, . . . , Xs] of total degree
≤ d2 and all ct ∈ Zsq

sk(ct) =
〈
Φ (sk) | Φ+ (ct)

〉
. (10)

Now, we define a new scheme FE′ = (Setup′,KeyGen′,Enc′,Dec′) by setting

Setup′(1λ) := Setup(1λ), KeyGen′(msk′, f) := Φ
(
KeyGen(msk′, f)

)
,

Enc′(msk′, x) := Φ+
(
Enc(msk′, x)

)
, Dec′(sk′, ct′) :=

⌈〈
sk′ | ct′

〉
/bq/pc

⌋
.

Applying Φ and Φ+ together forms an adversarial transformation, therefore FE′ is (m+1)-fh-IND-
CPA secure. Because of equation (10), FE′ is correct. Further, Enc′ is of depth d := d1 · d2 and its
outputs are vectors of length m =

(
s+d2
d2

)
. �

Lemma 13. For each sampleable (fλ)λ ∈ (Fλ)λ there is an ε ∈ negl(λ) s.t.

Pr

sk′f ∈ spanZq{v1, . . . , vm}
msk′ ← Setup′(1λ)

v1, . . . , vm ← KeyGen′(msk, 0)

sk′f ← KeyGen′(msk′, fλ)

 ≥ 1

m+ 1
− ε(λ).

Proof. Lemma 4 states

P1 := Pr

sk′0 ∈ spanZq{v1, . . . , vm}
msk′ ← Setup′(1λ)

v1, . . . , vm ← KeyGen′(msk′, 0)

sk′0 ← KeyGen′(msk′, 0)

 ≥ 1− 1

m+ 1
.

Consider an adversary A who plays the IND-CPA game from definition 5 against FE′ and works
as follows:

Step 1: For b = 0, 1 and i = 1, . . . ,m+ 1, the adversary sets

gbi :=

{
0, if i ≤ m or b = 0,

fλ, if i = m+ 1 and b = 1.

and submits two empty lists of possible inputs and two lists of possible functions (g0
i )m+1
i=1 , (g1

i )m+1
i=1 .

Step 2: After receiving (sk′gbi )
m+1
i=1 , A computes V := spanZq

{
sk′gb1 , . . . , sk

′
gbm

}
.

Step 3: The adversary outputs 0, if sk′gbm+1
∈ V , and 1 otherwise.

If we set

P2 := Pr

sk′f ∈ spanZq{v1, . . . , vm}
msk′ ← Setup′(1λ),

v1, . . . , vm−1 ← KeyGen′(msk′, 0),

sk′f ← KeyGen′(msk′, fλ)

 ,
then we can compute the advantage of A by

ε := Pr[A wins | b = 0] + Pr[A wins | b = 1]− 1 = P1 + (1− P2)− 1 = P1 − P2.

ε is negligible, since FE′ is (m+ 1)-fh-IND-CPA secure. Therefore

P2 = P1 − ε(λ) ≥ 1

m+ 1
− ε(λ).

Proof Theorem 9 Step 2. Let FE′ = (Setup′,KeyGen′,Enc′,Dec′) be a correct and (m+ 1)-fh-IND-
CPA secure functional encryption scheme where Enc′ is of depth d and length m over Zq. Let
furthermore Dec′ be computed by

Dec′(sk′, ct′) =
⌈〈

sk′ | ct′
〉
/bq/pc

⌋
.
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We now adversarially transform FE′ to a functional encryption scheme FE′′ for the same functional-
ity which is 1-fh-IND-CPA secure, better than guessing and whose encryption algorithm has depth
d, width bq/pc and length m over Zq.

In the IND-CPA game against FE′, our adversary first queries m secret keys

v1, . . . , vm ← KeyGen′(msk′, 0)

for the zero function and then makes use of the algorithm B described in theorem 5 to compute
V,A,A+ ← B(v1, . . . , vm) s.t.

V = spanZq{v1, . . . , vm}

and A ∈ Zm×kq , A+ ∈ Zk×mq are matrices with

V = A · Zkq and A ·A+v = v for all v ∈ V.

After our adversary queried m secret keys, FE′ remains 1-fh-IND-CPA secure. However, by doing
so, the adversary gained the additional data V,A,A+ with which he can transform FE′ to FE′′ =
(Setup′′,KeyGen′′,Enc′′,Dec′′) by setting:

Setup′′(1λ) := Setup′(1λ) Enc′′(msk′′, x) := AT · Enc′(msk′′, x)

KeyGen′′(msk′′, f) :

sk′f ← KeyGen′(msk′, f)

if sk′f ∈ V
sk′′f := A+ · sk′f

else

sk′′f := ⊥
return sk′′f

Dec′′(sk′′, ct′′) :

if sk′′ = ⊥
y ← {0, . . . , p}

else

y ← Dec′(sk′′, ct′′)
return y

FE′′ has the following properties:

– Security: The above changes can be applied by an adversary while he plays the IND-CPA game
from definition 5. Therefore, FE′′ is 1-fh-IND-CPA secure, since our adversary has to query m
secret keys for the zero function which does not leak any information about encrypted messages.

– Depth and Length: Since the transformation of the encryption algorithm is done by multi-
plication with the matrix AT ∈ Zk×mq , the depth of the encryption algorithm does not change.
Furthermore, Enc′′ is of length4 k ≤ m over Zq.

– Width: We have to show that Enc′′ is of width bq/pc. To this end, let (xλ)λ ∈
(Xλ)λ, draw msk′′ ← Setup′′(1λ), ct′′ ← Enc′′(msk′′, xλ) and fix a component ct′′i of ct′′ =
(ct′′1 , . . . , ct

′′
k) ∈ Zkq . Note that the columns of the matrix A = (vj1 | . . . |vjk) are some of the

vectors v1, . . . , vm ← KeyGen′(msk′, 0) according to theorem 5. Since ct′′ = AT ct′ for some
ct′ ← Enc′(msk′, xλ), there is, because of the correctness of FE′, an ε0 ∈ negl(λ) s.t. for all
(xλ)λ ∈ (Xλ)λ

Pr

[
|ct′′i | ≤

⌊
q

p

⌋]
= Pr

[∣∣vTji · ct′∣∣ ≤ ⌊qp
⌋]
≥ Pr

[⌈
vTji · ct

′

bq/pc

⌋
= 0

]

= Pr

Dec′(vji , ct
′) = 0

msk′ ← Setup′(1λ)

vji ← KeyGen′(msk′, 0),

ct′ ← Enc′(msk′, x)

 ≥ 1− ε(λ)

4Note that k is not fixed but rather a random variable. However, this is not a problem, since we can always pad
the output of Enc′′ to be of length m over Zq .
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where in the first three terms we take the randomness over the computation of msk′′ and ct′′.
Therefore, Enc′′ is of width bq/pc.

– Better than Guessing: It remains to show that FE′′ is better than guessing.

Fix (xλ)λ ∈ (Xλ)λ and a samplable (fλ)λ ∈ (Fλ)λ and draw

msk′′ ← Setup′′(1λ),

sk′′f ← KeyGen′′(msk′′, fλ),

ct′′x ← Enc′′(msk′′, xλ).

Then, we have

Pr
[
Dec′′(sk′′f , ct

′′
x) = f(x)

]
= Pr

[
Dec′′(sk′′f , ct

′′
x) = f(x) sk′′f = ⊥

]
· Pr

[
sk′′f = ⊥

]
+ Pr

[
Dec′′(sk′′f , ct

′′
x) = f(x) sk′′f 6= ⊥

]
· Pr

[
sk′′f 6= ⊥

]
=

1

p+ 1
· Pr

[
sk′′f = ⊥

]
+ Pr

[
Dec′′(sk′′f , ct

′′
x) = f(x) sk′′f 6= ⊥

]
· Pr

[
sk′′f 6= ⊥

]
.

Now, we have
sk′′f 6= ⊥ ⇐⇒ sk′f ∈ V.

Because of lemma 13, the probability for this is at least 1
m+1 − ε1 for some ε1 ∈ negl(λ). If

sk′f ∈ V , we have

Dec′′(sk′′f , ct
′′
x) = Dec′(sk′′f , ct

′′
x) =

⌈〈
sk′′f | ct′′x

〉
bq/pc

⌋
=

⌈〈
A+ sk′f | AT ct′x

〉
bq/pc

⌋

=

⌈〈
AA+ sk′f | ct′x

〉
bq/pc

⌋
= Dec′(sk′f , ct

′
x).

The last term equals fλ(xλ) with probability at least 1 − ε2 for some ε2 ∈ negl(λ). Now, let λ
be big enough s.t. 1− ε2(λ) ≥ 1

p(λ)+1 , then

Pr
[
Dec′′(sk′′f , ct

′′
x) = f(x)

]
(11)

=
1

p+ 1
· Pr

[
sk′′f = ⊥

]
+ Pr

[
Dec′′(sk′′f , ct

′′
x) = f(x) sk′′f 6= ⊥

]
· Pr

[
sk′′f 6= ⊥

]
≥ 1

p+ 1
· (1− Pr

[
sk′′f 6= ⊥

]
) + (1− ε2) · Pr

[
sk′′f 6= ⊥

]
=

1

p+ 1
+ Pr

[
sk′′f 6= ⊥

](
1− ε2 −

1

p+ 1

)
≥ 1

p+ 1
+

(
1

m+ 1
− ε1

)(
1− ε2 −

1

p+ 1

)
≥ 1

p+ 1
+

p

(m+ 1)(p+ 1)
− negl(λ).

Therefore, FE′′ is better than guessing by p
(m+1)(p+1) . �

Since (Fλ)λ contains the projection onto the first coordinate, there is a straightforward way
to adversially transform FE′′ to a private encryption scheme over Zq with width bq/pc and depth
d which is better than guessing and selectively IND-CPA secure. For this purpose set X̃λ =
{0, . . . , N(λ)}.

Proof Theorem 9 Step 3. Let FE′′ = (Setup′′,KeyGen′′,Enc′′,Dec′′) be the functional encryption
scheme of the preceding step. Then, FE′′ is 1-fh-IND-CPA secure, better than guessing and of
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depth d and width B := bq/pc over Zq. Additionally, FE′′ has the special property that for all
samplable (fλ)λ there is an ε ∈ negl(λ), s.t. we have for all (xλ)λ

Pr
msk′′←Setup′′(1λ)

Dec′′(sk′′f , ct
′′
x) = fλ(xλ)

sk′′f ← KeyGen′′(msk′′, fλ)

ct′′x ← Enc′′(msk′′, xλ)

sk′′f 6= ⊥

 ≥ 1− ε(λ).

We adversarially transform FE′′ to a private-key encryption scheme SKE′′′ = (Setup′′′,Enc′′′,KeyGen′′′,Dec′′′)
of depth d and width B over Zq for the message space X̃λ which is IND-CPA secure and better
than guessing. For this end set:

Setup′′′(1λ) := Setup′′(1λ)

Enc′′′(msk′′′, x) := Enc′′(msk′′′, (x, 0 . . . , 0))

KeyGen′′′(msk′′′, IdX̃λ) := KeyGen′′(msk′′′, π1)

and

Dec′′′(sk′′′, ct′′′) :

if sk′′′ = ⊥
y ← {0, . . . , N}

else

y ← Dec′′(sk′′′, ct′′′)
return y

Note that this adversarial transformation is the only one in this work, where we have two functional
encryption schemes for different functionalities. Now, SKE′′′ is IND-CPA secure, because FE′′ is
1-fh-IND-CPA secure (in fact, FE′′ being 0-fh-IND-CPA secure would already suffice). Enc′′′ is of
depth d and width B over Zq, since Enc′′ is so. The computations marked by the number (11) in
the preceding transformation step show – mutatis mutandis – that SKE′′′ is better than guessing
by N

(m+1)·(N+1) .
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