
From discrete-log to lattices: maybe the real lessons were our

broken schemes along the way?

Alexander Bienstock
New York University

Allison Bishop
Proof Trading

Eli Goldin
Columbia University

Garrison Grogan
Columbia University

Victor Lecomte∗

Columbia University

Abstract

In the fall of 2018, a professor became obsessed with conspiracy theories of deeper con-
nections between discrete-log based cryptography and lattice based cryptography. That
obsession metastisized and spread to some of the students in the professor’s cryptography
course through a cryptanalysis challenge that was set as a class competition. The students
and the professor continued travelling further down the rabbit hole, refusing to stop when
the semester was over. Refusing to stop even as some of the students graduated, and re-
ally refusing to stop even now, but pausing long enough to write up this chronicle of their
exploits.

1 Introduction

We learn very early in life that when we fail, it can help to go back to the beginning. We
make sense of why this helps by reasoning that if we return to where we started, we will
be freed of any wrong turns that we took, and we can have a new chance to make better
decisions. There is a delicate balance between using what we learned from previous failures
and trying not to allow our minds to slip into the same grooves that will lead us inexorably
down the same failed paths.

This kind of balance is often neglected when we succeed. Having reached a checkpoint
of progress, we may be loathe to start over, and we have little incentive to do so. We would
much rather go forward, building further successes upon the foundation of our previous ones.
This is obviously a constructive impulse: without it, the steady march of progress would
not exist. But what happens if we succeed at one goal in a way that actually hinders our
progress toward later goals? Locking in our prior successes, especially features of them that
may be more coincidental than fundamental, can saddle us with an ultimately untenable
constraints. We can become victims of our successes as much as our failures.

Sometimes it helps to go back to the beginning. Even if it doesn’t seem we should have
to. To rid ourserlves of the burdens of success.

Starting in the fall of 2018, we set out to better understand the fundamental similarities
and differences between discrete logartihm based cryptography and lattice based cryptogra-
phy. We went back to the basics: what do we know how to build from assumptions like DDH
and bilinear DDH? What do we know how to build from assumptions like LWE? There are
many cryptographic primitives on both lists, such as non-interactive key exchange between
two or three parties, public key encryption, identity-based encryption, and attribute-based
encryption. There are a few primitives we only know how to build from LWE, like fully
homomorphic encryption. Conversely, there are a few powerful proof techniques, like dual

∗This research was supported by a Belgian American Educational Foundation fellowship.

1

system encryption, that we only know how to deploy in the bilinear setting and have no
known translations to the LWE setting.

One could spend several years reading through all of the recent papers that present
cryptographic schemes in one setting or the other (tracing back to origins like [4, 13]).
In doing so, one would surely notice some implicit but rather naked connections between
bilinear map schemes and lattice based ones. One doesn’t need to be a conspiracy theorist
to see the bones of the Boneh-Boyen bilinear IBE scheme [3] inside the Agrawal-Boneh-
Boyen lattice IBE scheme [1]. But it can quickly become unsatisfying to stare at these
surface commonalities as they tease a deeper meaning. The recent explosion of research into
multilinear map candidates (e.g.[11, 9, 5, 6, 7, 22, 8] and many subsequent works) can be seen
as one ambitious attempt to carve out a deeper connection. But it may not be necessary
to build new primitives to shed more light on this subject. In this paper, we explore a
different, and hopefully complementary path. We go back to the basic constructions of
non-interactive key exchange, public key encryption, and identity-based encryption in both
the discrete-logarithm and lattice settings to interrogate their differences, seeking variants
that can closer to sharing a common structure. In doing so, we will allow ourselves to create
schemes that are explicitly worse in some respects than the ones we started with. In other
words, we’ll free ourselves from the typical requirement to construct “better” schemes than
prior work, and explore constructions that only serve as intermediary points on our quest to
understand the deeper connections (if any!) between discrete-log and lattice schemes. We’ll
even start with a construction approach that is entirely broken, and slowly walk it towards
something that is less so.

We will also spend a considerable amount of time building up a structural understanding
of how constructions of key exchange, public key encryption, and identity-based encryption
relate to each other, and what features of them facilitate these relationships and facilitate
various proof techniques. Much of this ground is covered implicitly across prior works, but
not all in one place and not quite with the same perspective. Our longterm goal is take
the ethereal suggestions of connection between discrete-log schemes and lattice schemes and
make them flesh. We fail much more than we succeed.

1.1 Intuition for cryptographic groups and lattices

Before we introduce the formal mathematical notation, let’s build some intution for a basic
cryptographic group through an (imperfect) auditory analogy. Imagine we are in a sound
studio, surrounded by very complicated audio equipment that we mostly do not understand.
There is a selection of pre-made audio tracks (all of the same length), and a few recognizeable
buttons: “play,” “record,” and “copy.” We can select any subset of the pre-made tracks and
hit “play,” and what we hear is a superposition of the selected tracks. The sounds are
the tracks are somewhat random, and due to constructive and deconstructive interference
of the sound waves and automatic processing performed by the equipment, there isn’t a
fundamental difference in volume or any other basic property between the original tracks
and the resulting superpositions. We can hit “record” along with “play” at any time to
record one of the superpositions as a new track, and it will then be appended to the list of
available tracks. If we select a single track and hit “copy,” we get a new copy of the same
sounds appearing as a new track in our selection list.

We might choose to remember how a new track was created from the original tracks and
a sequence of buttons. But if we leave the room for awhile and someone else comes in to
make new tracks using some arbitrary sequence of copying and playing and recording new
superpositions, we won’t have any idea how their newly created tracks relate to the originals
or the ones that we created. We can still easily recognize when two tracks sound exactly
the same, but that only allows us to (inefficiently) guess and check the procedures that the
mysterious other DJ may have used.

This would be a terrible way to make music, of course, but it is a decent analogy for
the properties of a cryptographic group where the discrete-logartihm (and further related
problems) are computationally hard. In the cryptographic group settings, the “tracks” are
group elements, all of the form ga for some generator g, and some unknown exponent a

2

in Zp. The group operation is assumed to be efficiently computable, and it corresponds
to addition in the exponent: ga · gb = ga+b. A superposition of tracks corresponds to a
sequence of additions in the exponent. The ability to recognize the identity element, g0, and
hence to test equality of two group elements, corresponds to the ability to recognize when
two tracks are exactly the same. The modular p arithmetic in the exponent corresponds
to the cummulative effects of constructive and destructive interference of sound waves as
well as the automatic audio processing (which presumably re-normalizes volume, etc.) The
difficulty of relating an arbitrary new track back to the original ones corresponds to the
discrete logarithm problem, which is the problem of compiuting the exponent a from the
group elements g and ga.

The analogy certainly isn’t perfect. In the group case, you also have the ability to
efficiently compute inverses, (ga)−1 = g−a. It feels weirdly contrived in the audio analogy
to say there’s also an “Inverse” button that say, inverts all of the individual sound waves
in a track to produce it’s perfect cancelation. But the audio analogy nonetheless provides
some useful intutiion.

Let’s now move to a visual analogy to develop a similar level of intuition for cryptographic
lattices. Imagine a treasure map, drawn crudely and not to scale. Each step along the
journey is described in terms like “travel X meters in direction Y ”, and there are landmarks
drawn at the end of each step. With all of this information, the map is easy enough to follow.
We could measure our meters and direction (say with degrees on a compass), and continually
confirm our progress by recognizing the landmarks along the way. Now imagine the same
map, but with all of the landmarks omitted. We could still follow the map successfully if
we are very precise, but we have vastly reduced our margin for error. If we perform some
steps slightly wrong and start the next steps from the wrong places, our errors will begin
to compound, and eventually we will end up very far away from the desired treasure. Now
imagine that in addition to ommitting the landmarks, our map has some individually small
errors in the values of the meter measurements X and the direction measurements Y . Now
we are lost - no matter how precisely we follow the map, the intrinsic errors in the directions
we are following will compound, and we will not find the treausre. We could try a brute force
search where we perform all combinations of all approximations of the individual actions,
but this would take an exponential number of attempts, relative to the number of steps in
the path to the treasure.

There is a similar effect at work in lattice-based cryptography. In the lattice setting,
we start with an (approximately) uniformly random matrix A in Zm×nq , where m >> n.
If we sample a uniformly random vector s ∈ Znq and compute As ∈ Zmq , we get a random
linear combination of the n columns of A inside the larger dimensional space, Zmq . This is
recognizable to someone who knows A but not s: essentially they can solve for the n unknown
entries of s using the m linear equations over Zq (which are linearly independent with all but
negligible probability). We can think of the combination of A and As as being like the map
with only the exact step descriptions but no landmarks. Now instead let’s add some small
noise to As to produce As+ ε: ε here is a vector in Zmq (the larger dimension) whose entries
are “close” to 0 modular q, where we think of Zq as being represented by a range of integers
centered at 0, and equivalence classes modulo q with representatives like 0, 1,−1, 2,−2, ...
are considered “small” or “short,” while equivalence classes with representatives like b q3c and
−b q3c are considered “large.” Don’t worry about the precise divide between large and small
for now, as we’re just developing high level intuition. The combination of A,As+ ε is more
like the map with errors in the directions and no landmarks - if the errors are significant
enough and n,m are sufficiently large, than it might as well be gibberish. The learning with
errors assumption asserts that we can’t telll the difference between As+ ε and a uniformly
random vector in Zmq in this instance. Note that information-theoretically at least, there
is a difference: we will stay within parameter ranges where all the possible values of ε are
not enough when added to all of the qn values of As (ranging over all possible s while A is
fixed) to fill up the full space of Zmq , since qm >> qn.

If we add two vectors of this form, As1+ε1 and As2+ε2, we get a new vector of (roughly)
the same form: A(s1 + s2) + (ε1 + ε2). It’s true that the entries of ε1 + ε2 will tend to be

3

a little less small than the entries of ε1, ε2 individually, but quallitatively we are still in a
similar position if we do this kind of addition a limited number of times. In a vague sense
(this is a stretch, but humor me please), this is analogous to following two treasure maps
sequentially, where the first is designed to lead to the starting point of the second.

The landmarks in this analogy (imperfectly) correspond to a trapdoor basis T , which is
a basis of short row vectors t ∈ Zmq such that xA ∼ 0 mod q (here we abuse notation and
write 0 for the all zero row vector in Znq). Such a basis cannot typically be found after the
fact for a randomly sampled A, but there are well-known ways of sampling such an A and
T together such that the distribution of A is still statistically close to uniformly random.
Note that even one such vector allows us to dstinguish As + ε from random, as for any s,
x(As+ ε) ∼ x · ε will be small modulo q, where as x dotted with a random vector typically
would not be. Having a full basis of such vectors x is even more powerful. It allows us to
solve for a small vector u such that uA = v, for instance, for any particular target vector
v of our choosing. Without the trapdoor basis, we could find some u with this property,
but it would generally not have short entries. Using the trapdoor basis, we can massage an
arbitary solution into a short one by adding/substracting linear combinations of the vectors
in T , which do not change the product with A modulo q.

It is perhaps no coincidence that we have used different senses to build heuristic analogies
for cryptographic groups and lattices. Amusingly, though “noise” is an auditory term, the
audio analogy we described above for groups does not fit well for lattices. Adding small
“noise” to an audio track is not a very effective way of disguising it (though it can be a
huge pain to clean out - just ask any professional sound editor!) And the visual analogy
we described for lattices is not a good fit for a typcial cryptographic group, where all
computations remain exact and there are no “errors.” But there is some commonality of
structure in the mathematical representation: namely the operation of addition. We can
perform the operation ga · gb = ga+b in the group setting, even if we don’t know the secret
exponents a and b, and we can perform the operation As1 + ε1 + As2 + ε2 in the lattice
setting, even if we don’t know the secret vectors s1, s2.

In both cases, there is an underlying structure that can be manipulated additively, but
not extracted. The secret underlying structure lives in the exponent in the group case,
and in the range of A in the lattice case. More complex cryptographic structures are built
on top of these additive foundations by finding (sometimes precarious) ways of extending
manipulative capabilites without going so far as to allow efficient extraction of the underlying
secret structure. Bilinear maps, for instance, augment the ability to add in the exponent
with the ability to perform a single multiplication in the exponent. More precisely, a bilinear
map e takes pairs of elements of the group G =< g > into a new group, GT , such that:

e(ga, gb) = e(g, g)ab.

The final result here depends precisely upon the multiplied exponent (assuming e(g, g) is a
generating element of GT). But since it is in the new group GT , the process is not repeatable.
Nor is the exponent ab extractable from the group element e(g, g)ab - we asssume the discrete
logarithm problem is hard in GT as well. There are further variations of this, e.g. when
the map e takes input from G1 ×G2 for different groups G1 and G2 instead of G×G, but
this will not be important for our high level purposes. A variation that will be conceptually
helpful for us later is that the groups G and GT can be of composite order with prime order
subgroups, rather than prime order. [Aside: you might wonder if it’s possible to extend
the auditory analogy to bilinear groups, or more generally, what a meaningful analogy for
bilinear groups might be. We wonder that too! If you come up with a good one (or a bad
one that is mildly interesting), please let us know!]

In the lattice setting, we can augment our available operations with multiplication if we
set ourselves up to work with matrices of compatible dimensions for multiplication. In the
GSW construction of fully homomorphic encryption from LWE, for example, ciphertexts are
matrices that can be multiplied and added: this manipulates their underlying content but
does not enable decryption. The secret key is an approximate eigenvector of the ciphertexts.
The matrix multiplication of the secret key with a single ciphertext matrix creates a noise

4

term that is small on its own, but we might worry what will happen to this term when several
ciphertexts are multiplied together. This will give us new “noise” terms that are formed by
ciphertext matrices multiplied by original noise terms. The GSW scheme employs a clever
trick to make the entries of ciphertext matrices effectively small: it converts them to a bit
decomposition, which becomes a “short” matrix in a higher dimension. This matrix can be
multiplied by noise terms in the higher dimensional space without the product blowing up
to be large. More intuition and details can be found in [14].

But for now, let’s hold off on thinking about these kind of extensions and spend a little
more time with the basic structures of groups and lattices. We’ve already noted the similar
additive structure, and the lack of ability to multiply the underlying secret structures in
both basic settings. However, in the group case, there is an ability to multiply an unknown
exponent by a known scalar: given group elements g and ga and an exponent b ∈ Zp, we can
compute gab. We can do this by computing a binary decomposition of b, and using repeated
squaring to produce (ga)2

j

for all the powers 2j that appear in the decomposition of b. We
can then add these together in the exponent (using the group operation) to form gab.

This operation, and the beautiful symmetry of the resulting gab is the core of Diffie-
Hellman key exchange for two parties in a cryptographic group [10]: Alice chooses a and
publishes ga. Bob chooses b and publishes gb. Alice can compute the shared secret key gab by
taking gb and raising it to her known exponent a, and Bob can compute it by taking ga and
raising it to his known exponent b. However, someone who only sees the published values
g, ga, gb and does not know either secret exponent, is presumed to be unable to compute
gab.

This naturally raises the question: is there a clean analog of this capability to “raise to
a known power” in the lattice setting? In the next section, we will explore that topic in
detail.

2 A twice-broken key-exchange scheme

While it is instructive to think about analogies between cryptographic groups and lattices
at an operation level, it is also helpful for us to ground our exploration in fundamental
applications such as key exchange, public key encryption, and identity-based encryption.
Since no connection we draw between groups and lattices is likely to be immediately perfect,
we need to use such applications as tests of how effective our proposed analogies may be,
and guides to show us what we must improve.

2.1 Paying tribute to Diffie-Hellman

And so, our journey started with the following question: what would be the dumbest possible
translation of the Diffie-Hellman key exchange in the lattice world? If we want to translate
this into lattice lingo, there are three questions we need to answer: what are the secrets (a
and b), what is published (ga and gb), and what is the key (gab).

For the secrets, let’s go for the simplest thing: let’s pick a prime q and say that Alice and
Bob draw integers a, b uniformly in Zq, where q is a very large prime. What is published
should give some information about a and b, but not reveal them completely. The simplest
way to do this in the lattice world is to add some noise: let’s say that Alice publishes a+ ε
(mod q) and Bob publishes b + δ, where ε, δ are small noise values chosen in an interval
[−N,N] with N � q.

Now, what should the key be, that is, what combination of a and b should Alice and
Bob try to compute? First, it seems inevitable that whichever result is computed won’t be
computed exactly. Indeed, in the absence of a clean, irreversible operation (the foundation
of discrete-log cryptography), if Alice were able to compute some combination of a and b
exactly, she would be able to recover b.

Let’s see what operations we have at our disposal. How about the sum a + b? Alice
can easily approximate it as a+ (b+ δ), but outside observers could do almost as well with
(a + ε) + (b + δ). That won’t do. What about the product ab? The attack won’t work

5

anymore, but legitimate computation also fails. Let’s say Alice computes a(b+ δ) = ab+aδ.
Since a can be large (on the same order of magnitude as q), aδ can also be large, which
means that ab+ aδ could be arbitrarily far from ab.

It seems like multiplying a noisy value will always produce an explosion of errors, so
should we give up? Not necessarily: what if we were able to decompose the multiplication
into a small series of additions?

On Alice’s side, we can use the binary decomposition of a: imagine that we approximately
know the product 2ib for each i such that 2i < q, then we can sum up all the terms that
correspond to 1s in a’s binary decomposition, and obtain an estimate for ab whose error is
only log q bigger than the errors for the individual products 2ib.

Concretely, Alice and Bob will need to send out the following information. Let λ =
blog2 qc. Alice will generate a secret a ∈ Zq uniformly at random, as well as noise values
ε0, . . . , ελ ∈ [−N,N] with some appropriate distribution. She will then output the following
values modulo q.

α0 ← a+ ε0
α1 ← 2a+ ε1
α2 ← 22a+ ε2
· · ·
αλ ← 2λa+ ελ

Similarly, Bob will generate b ∈ Zq and noise δ0, . . . , δλ ∈ [−N,N], and output the following
modulo q.

β0 ← b+ δ0
β1 ← 2b+ δ1
β2 ← 22b+ δ2
· · ·
βλ ← 2λb+ δλ

Then both Alice and Bob are able to approximate ab up to error N log q, while any
attempts by an outside observer to multiply Alice’s and Bob’s outputs together will result
in an explosion of errors.

Is this scheme secure? Is it the perfect translation we’re looking for? As we all know,
the best way to make sure of this is to reduce it to a well-known security assumption abuse
one’s professor position and offer extra credit to any student who finds a break.

2.2 Using powers of two as a ladder

As expected, a student took the bait and found a break. In fact, it turns out that the
information given by Alice suffices to determine her secret a exactly in polynomial time,
that is, polynomial in log q.

The intuition is as follows. If we were given the values αi = 2ia + εi as integers in Z
instead of just their remainder modulo q, it would be pretty easy to find a: we would know
that 2λa lies in interval [αλ −N,αλ +N], and therefore a lies in interval[

αλ −N
2λ

,
αλ +N

2λ

]
.

This interval has size 2N/2λ, which is less than 1, so there would be the only one integer in
it: the correct value of a.

However, this doesn’t work well when we’re working in Zq. One way to see this is that,
because q is odd, for any value v ∈ [αλ − N,αλ + N], there is some x such that 2λx ≡ v
(mod q).1 So unfortunately we would still have 2N + 1 values to consider.

Let’s take the particular case of division by two. Imagine we know that 2x ∈ [l, r] for
some x, l, r ∈ Zq. What can we say about x? To get a sense of what’s happening, let’s fix
q = 31 and [l, r] = [10, 20].

1This is because a multiplicative inverse for 2λ exists: just set x = v · (2λ)−1.

6

Z31

0 1

10
20

we know that 2x ∈ [10, 20]

Clearly, if x ∈ [5, 10], then 2x ∈ [10, 20]. But is that all? No: again, since q is odd, for
any v ∈ Zq there must exist some x such that 2x = v. But we have only found this for
2x ∈ {10, 12, . . . , 20}. So where are the 5 missing x’s? They are on the other side of the
circle! For example, if x = 21, then 2x = 42 ≡ 11 (mod q).

Z31

0 1

5

1021

25

the possible values for x

This is because operations in Zq wrap around if the result exceeds q. So in general, if
we want to find x such that 2x ∈ [l, r], we should either have

l ≤ 2x ≤ r or l + q ≤ 2x ≤ r + q,

when doing computations in Z. Therefore, we should have

x ∈
[⌈

l

2

⌉
,

⌊
r

2

⌋]
or x ∈

[⌈
l + q

2

⌉
,

⌊
r + q

2

⌋]
where the divisions and roundings are performed in Q.

So the bad news is that we have two intervals now, but the good news is that they are
smaller. So what if we could tell which one of these is the one that actually contains x?
Let’s see how we can do that.

From Alice’s output, we know an interval of length 2N that contains 2λa: just take
[αλ−N,αλ+N] as mentioned before. This means that we can find two possible intervals of
length N for 2λ−1a. The nice thing is that we also know an interval of length 2N for 2λ−1a:
just take [αλ−1 −N,αλ−1 +N].

7

Zq

0 1

Zq

0 1

?

?

what we know about 2λa what we deduce about 2λ−1a

Zq

0 1

Zq

0 1

what we already knew before about 2λ−1a the correct interval for 2λ−1a

Because N is small compared to q, the two intervals of length N are very far apart, and
therefore our interval of length 2N for 2λ−1a can’t intersect with both of them.2 So we just
have to look at which one it intersects with, and pick that one.

Now that we know an interval of length N for 2λ−1a, why stop there? We can repeat the
exact same process and find an interval of length bN/2c for 2λ−2a, then use that to find an
interval of length bN/4c for 2λ−3a, etc. If we repeat this until we get to a, we will find an
interval of length bN/2λ−1c for a. Since N < 2λ−1, this length is 0, so we have determined
a exactly.

The number of operations needed to go down one power of two is constant, so in total
the attack runs in O(log q) integer operations.

2.3 If life doesn’t give you a ladder, start chopping wood

At first sight, it seems that the attack described above relies heavily on the fact that Alice
and Bob used representations in terms of powers of 2. If we don’t have this convenient
structure that allows us to reduce interval sizes by dividing by a small factor every time,
the attack falls apart. So maybe this is what needs to change in the scheme?

Consider a more general framework where instead of giving approximate values for 2ia for
all i, Alice gives approximate values for cia for some some arbitrary coefficients c1, . . . , cm ∈
Zq that are decided in advance and publicly known. The errors ε1, . . . , εm are still assumed
to be distributed in [−N,N]. Note that m doesn’t necessarily have to be close to log2 q.

Let’s assume we are still using the same trick for the legitimate computation of the key.
Then once Bob has chosen his b, he must be able to efficiently find a linear combination of
the ci’s that sums to b, in order to compute his estimate of ab. Therefore, we have to assume
that there is an efficient procedure or oracle that, given some b, returns m integer weights
w1, . . . , wm such that

m∑
i=1

wici = b and

m∑
i=1

|wi| ≤W.

The first part ensures correctness, while the second part ensures that the error made when
computing ab from the cia · wi will be bounded by WN . If the weights were too big, they
would amplify the errors in the approximations of cia given by Alice, and the error on ab
would cease being small.

2More precisely, because of our assumption that 2(3N+1) ≤ q, the gaps separating the two intervals of length
N have length bigger than 2N . An interval of length 2N cannot span such a large gap, and therefore cannot
touch both intervals at the same time.

8

Perhaps the aforementioned student wasn’t solely motivated by the extra credit, because
he kept going and extended the attack to also cover schemes of this type. It uses the same
division-based technique as the first attack, but is unfortunately not quite as intuitive.

The core idea is the following. Assume we currently know intervals of length ≤ L for
all cia, and we want to find an interval of length L/2 for a specific cka. Call the oracle on
b := 2Wck, and compute an estimate for ba = 2Wcka using the weights that are returned.
Because

∑
|wi| ≤ W , the interval that we obtain for 2Wcka has length at most LW . By

“dividing this interval by 2W”, we can find an interval of size LW
2W = L/2 for cka, as desired.

Let’s look at how division by 2W would work. More generally, assume that we know
kx ∈ [l, r] for some small integer k. What can we say about x? For k = 2 we saw that
the possible values for x lay in two diametrically opposite intervals. In general, the possible
values for x will lie in k intervals evenly spread around Zq.

Zq

0 1

Zq

0 1

what we know about kx the possible values for x
(here, k = 5)

More precisely, if kx ∈ [l, r], then x lies in one of the k intervals[⌈
l + iq

k

⌉
,

⌊
r + iq

k

⌋]
for some i = 0, . . . , k − 1. Again, the division and rounding are performed in Q here.

In our case, we have an interval of length LW for 2Wcka, so dividing by 2W gives us
2W possible intervals of length at most bL/2c for cka. As for the first attack, we will use
the interval of length L we already know to determine which one of the 2W smaller intervals
is the correct one.

Zq

0 1

Zq

0 1
?

?
?

?

the interval we computed for 2Wcka what we deduce about cka
(here, 2W = 4)

Zq

0 1

Zq

0 1

what we already knew before about cka the correct interval for cka

Initially, we have L = 2N . In order to be sure that we can determine the correct
interval uniquely, we need the 2W intervals to be spaced by more than 2N , so we need
2W (3N + 1) ≤ q. This is quite a reasonable assumption to make: since the error made by

9

Alice and Bob can be as large as NW , the interval in which a successful value of ab lies has
size 2NW . So if q were smaller than 2W (3N + 1), then the attacker would have a roughly
1/3 probability of getting the key right by just randomly guessing an element in Zq, which
is not great from a security standpoint.

If we apply this operation for all k, we go from intervals of size 2N to intervals of size at
most N for all cka. Then, since the precision we get depends on the current interval sizes
for all cka, we can run it on all k again to get intervals of size bN/2c, then bN/4c, etc. Once
an exact value is obtained for all cka, we can compute a as c1ac

−1
1 .

A single division step can be implemented in O(m) operations, and we need to do
O(m logN) of them, so the running time of this attack is O(m2 logN) integer operations.

2.4 LWE with varying secret dimension

This kind of attack does not apply, however, if we remove the oracle to compute an arbitary b
as a suitable sum of the coefficeints ci, and instead choose the ci’s uniformly at random. Let’s
put aside for a moment the not-so-minor problem that this kills our intended functionality
and note the relationship between our problem and LWE.

The standard decisional-LWE assumption is defined in terms of a matrix A uniform
random in Zm×nq and a secret vector s uniform random in Znq . It is assumed that given A, it
is hard to distinguish between As+ε, where ε is an m-dimensional vector with entries drawn
from an error distribution, and r, a vector drawn uniformly at random from Zmq . For the
purposes of the cryptanalysis challenge, and our subsequent constructions of cryptographic
primitives, we wanted to know under what values of the dimension n of the secret vector
would the decisional-LWE assumption possibly still hold.

By consulting Oded Regev, the founder of LWE, we were able to find an answer. Al-
though most lattice cryptography papers only give a hint of what n can be, the actual
conjecture is that the hardness of LWE scales with exp(n log q), i.e. an attacker’s advan-
tage in distinguishing the two distributions is 1/(exp(n log q)), and thus negligible. This
means for sufficient n (e.g. linear in the security parameter), q only need be polynomially
large, as most cryptography papers state. However, if we take n to be a constant value,
namely n = 1, then we can boost q to be exponentially large in the security parameter (and
thus log q polynomially large) and still conjecture hardness. More specifically, the value of
the secret scalar s in this case still takes on only one of exponentially many values in Zq.
Furthermore, since we can represent values in Zq using a compact binary representation of
length polynomial in the security parameter, for example, this change does not incur a fatal
loss in efficiency.

With this knowledge in hand, we confidently constructed a final cryptanalysis challenge,
namely LWE with n = 1, and brazenly conjectured it to be hard. Now we just needed to
return to the pesky problem of correctness.

3 A secure Diffie-Hellman-esque key exchange

Although the student’s efforts finally paid off and they got the reward of extra credit and
self-satisfaction, the original goal was still a constructive one. What would be the key
exchange in the lattice world that looked most like Diffie-Hellman’s group-based exchange?
There are already known constructions of non-interactive 2-party key exchange from LWE
(e.g. [15, 24]), but we purposely didn’t look at these and tried to develop our own intuition
for a Diffie-Hellman analog from scratch. In doing so, we basically recreated [15], but we’ll
describe it below in the way we developed it, to show how its structure arises from the ashes
of our broken cryptanalysis challenge.

3.1 The key exchange

One thing that we learned from this journey is that linear algebra is hard; both from the
perspective of an attacker trying to uncover some secret, as well as from the perspective

10

sa ← {0, 1}m

εa ← χm

va := Asa
oa := Btva + εa

sb ← {0, 1}m
εb ← χm

vb := Asa
ob := Atvb + εb

oa ob

va · vb ≈ sa · ob va · vb ≈ sb · oa

Alice Bob

A,B ← Zn×m
q

Figure 1: Lattice-based key exchange that is similar in nature to the Diffie-Hellman key ex-
change.

of cryptographers trying to squeeze out any information that can be obtained from the
inherently noisy world of lattice cryptography. Fortunately, in this case, we were able to
obtain the first perspective without the second.

We learned from our attacker’s perspective that having a oracle to compute small weights
to express an arbitary b in terms of coefficients ci is deadly to security. But without this,
how will Bob know how decompose his secret element b as such a sum? A simple answer
is: he cheats! He chooses b by choosing small weights wi, and defines b as

∑
i wici. In this

sense, his real secret becomes the weights wi, rather than b. This trick gets us to a key
exchange protocol relying on the hardness of LWE with n = 1, a plausible assumption as we
discussed above. Though it turns out we can also easily expand from scalars a, b to vectors
va, vb, and have the shared secret be derived from their approximate dot product. This way,
we can rely on the more general hardness of LWE without needing to force n = 1.

We depict this key exchange in Figure 1. It proceeds as follows:

1. In the setup phase, we start by choosing a prime q polynomially large in the security
parameter n. Then, two public matrices A,B are chosen uniformly from Zn×mq , where
m > n log q.

2. Alice chooses her secret vector sa uniformly from {0, 1}m, and then sets va := Asa ∈ Znq
and draws a noise vector εa from Zmq . She then publishes oa := Btva + εa.

3. Bob simultaneously generates sb, vb, εb symmetrically (vb = Bsb), and outputs ob :=
Atvb + εb.

4. The extra added layer of complexity here is that Alice’s and Bob’s shared secret will
actually be an approximation of va · vb, two vectors that contain the information from
their secrets. To approximate this value, Alice will compute sa · ob and Bob will
compute sb · oa.

Observe that our key exchange very much resembles that of Diffie and Hellman. Alice
and Bob act in an exactly symmetric manner, only using A and B for opposite purposes.

In the end, Alice and Bob will both select a bit {0, 1} for this exchange, corresponding
to whichever of 0 or b q2c their approximation is closer to. We will now show that if Alice
and Bob repeat this exchange n times, using the same matrices A,B but different vectors
sia, s

i
b, ε

i
a, ε

i
b, then with all but negligible probability, they will obtain ua, ub ∈ {0, 1}n such

that ua = ub.

Remark 1. One could obtain a (possibly) more efficient scheme by using an error-correcting
code such that Alice and Bob both round their approximation of va · vb to some value u ∈ Zq

11

out of a set of super-polynomially many such values. However, this would necessitate q to
be super-polynomially large, whereas most LWE-based schemes do no require this.

Lemma 2 (Correctness). The probability that Alice and Bob do not agree on the same value
u ∈ {0, 1}n is negl(n).

Proof. After a given key exchange round, Alice obtains sa · ob = va · vb + sa · εb and Bob
obtains sb ·oa = va ·vb+εa ·sb. Thus the approximations of Alice and Bob only differ by some
sum of small error terms, ea and eb, drawn from a discrete gaussian distribution. Observe
that Alice and Bob will with all but negligible probability only round their approximations
to different values if ea and eb are of different signs (or in the modulo q world, one is small
and the other is big). Moreover, this will only happen if va · vb is close to some cutoff for
the rounding (i.e., q/4 or 3q/4).

Therefore, we can select q and the parameters for our discrete gaussian such that with
only negligible probability, va ·vb is in a subset of Zq such that the sums of small error terms
ea and eb could result in Alice and Bob rounding differently.

Since there are only n rounds, the probability that Alice and Bob do not agree on the
same value u is n · negl(n) = negl(n).

For the security proof, we show that, under the LWE assumption, given the public
parameters A,B and the communicated vectors o1a, o

1
b , . . . , o

n
A, o

n
b , there is no polynomial

probabilistic time (PPT) adversary that can distinguish between u, the n-dimensional bit
vector that Alice or Bob computes given their noisy approximations of via · vib for i ∈ [n],
and a random n-dimensional bit vector r.

Lemma 3. [Security] Assuming there is no PPT attack on LWE, there exists no PPT
adversary A that given (A,B, o1a, o

1
b), . . . , (A,B, o

n
a , o

n
b) can distinguish between the shared

key u ∈ {0, 1}n and a random value r ∈ {0, 1}n with non-negligible probability.

The proof of this lemma is rather straightforward, and can be found in appendix A.

4 Identity based encryption and dual system proof tech-
niques

Two party key exchange is a good initial sanity check for any approach to building group-
like schemes in lattices, but as such schemes with satisfying features and security proofs
are already known, it is not a goal in itself. Identity based encryption (IBE), however,
offers a more serious test. There are already IBE schemes known in the lattice setting,
and [1] in particular we will discuss below). But the flexible and adaptive toolkit of dual
system encryption techniques which yields more satsifying tradeoffs between effiency and
security guarantees in bilinear groups for IBE schemes and further applications has yet to
be smoothly replicated in lattices. (We have not yet had time to digest and contrast the
contemporaneous work of [28], which claims to do this for a particular kind of attribute
based encryption.) Here we will give a quick overview of identity based encryption, how
dual system encryption proof techniques work, and why it is challenging to instantiate them
in lattices.

At first glance, identity based encryption may look like a small step from public key
encryption. There are public parameters that can be used to encrypt to any particular
identity, and for each identity there is an secret key, derived from a master secret key. Each
secret key is only capable of decrypting the ciphertexts prepared precisely for it. But unlike
basic public key encryption, the identity-parameterized secret keys of IBE scheme are tied
together by a common origin, the master secret key. Somehow, each individual secret key
must have targeted decryption capabilities inherited from the master secret key that allow
it to decrypt ciphertexts intended for its associated identity, but it must be too weak to
decrypt ciphertexts intended for other indentities. Crucially, this must remain true even
when an arbitray polynomial number of secret keys are collected together: they still should
not combine to decrypt ciphertexts for any identity not in the set of associated identities.

12

In this way, collections of secret keys in an IBE system must never be greater than the sum
of their parts.

This creates a fundamental challenge for proving security of IBE schemes that is avoided
in proving, say, IND-CPA security for PKE schemes. To model an attacker’s ability to amass
secret keys for a dynamic set of legitimate identities while attacking a ciphertext intended
for a particular identity not in the set, it seems the security reduction must know the
master secret key in order to produce secret keys for arbitrary identities upon request, but
should not know the master secret key, so it cannot trivially solve the challenge itself. This
apparent paradox is similar to the challenge faced in proving existential unforgeability in
public key signature schemes, where the reduction must be able to provide valid signatures
for arbitary messages upon request. A natural approach to resolving this paradox is to
partition the space of identities. Informally, we’ll refer to an identity as “easy” when the
security reduction can produce a corresponding secret key that functions appropriately, and
we’ll refer to an identity as “hard” when this is not the case. For a party who knows the
master secret key, all identies will be easy. For the security reduction, we seem to need most
identies to be easy, but the identity that is ultimately attacked to be hard. It is important
for the IBE attacker to be oblvious to this partition of keys so it cannot thwart our efforts
by purposefully requesting a secret key for a hard identity or purposefully attacking an
easy identity. The public parameters keep the security reduction honest, as they allow the
attacker to test the functionality of the secret keys it receives against ciphertexts of its own
creation.

We can only speculate, but the difficulty in balancing this tension may be substantially
to blame for the relatively long gap between the definition of IBE functionality by Shamir in
1984 [27] and the first proposed constructions of IBE schemes in 2001 [4]. It is no coincidence
that the Boneh-Franklin IBE scheme uses bilinear groups, and is roughly contemporaneous
to the use of bilinear groups to construct non-interactive three party key exchange. (Later
in this paper, we formalize a connection between IBE schemes and three party key exchange
protocols with certain properties.) The Boneh-Franklin scheme resolved the apparent para-
dox using the random oracle heuristic, a manuver similar in spirit to random oracle proofs
of security for signature schemes. The security reduction uses the ability to program the
random oracle in order to create perfectly functional secret keys for identities on demand in
an alternate way, without needing the master secret key. However, for one random oracle
query, the actual computational challenge is embedded, and the reduction cannot generate
a corresponding secret key for itself. The reduction essentially has the freedom to decide
dynamically for each identity whether it wants to use the oracle programming to make the
identity easy or the computational challenge to make the identity hard. The success of
the reduction therefore depends upon guessing correctly which of the polynomially many
identities that are referenced by the attacker will turn out to be the attack target, and to
embed the computational challenge there.

Random oracle proofs are a bit unsatisfying to champions of theoretical rigor, as the
random oracle model is only a heuristic. Since real hash functions are not idealized oracles,
a security reduction in the random oracle model cannot be used to make a clean statement
of the form “an attack on this scheme using resources X to achieve success probability Y
must correspond to an attack on a standard computational assumption using resources Z
and success probability ≥ V .” As a result, cryptographers continued to search for an IBE
scheme similiar to the Boneh-Franklin scheme, but with an accompanying security proof not
relying on the random oracle heuristic. A next approach was to design a security reduction
to implicitly commit to a fixed partition of which identies would be easy and which would be
hard in the design of the public parameters, thereby eliminating the reliance on the random
oracle for dynamically defining the key partition. The parition must be hidden from the
attacker. The selective security model, used to prove the security of the Boneh-Boyen IBE
in [3], for example, makes this partitioning easier for the reduction by asserting that the
attacker must declare the attack target identity immediately, without first seeing the public
parameters. This restriction on the attacker is somewhat arbitrary, and makes the obtained
security gaurantee therefore weaker. The subsequent scheme of Waters [29] avoids this by

13

carefully choosing a proportion of identities to randomly make hard, so that it’s reasonably
likely that a dynamically chosen attack target will happen to be hard, while also reasonably
likely that all dynamically requested identity secret keys will happen to be easy to produce.

This paritioning approach has been successfully employed for both bilinear group based
IBE constructions as well as lattice based constructions. In fact, there is a strong connection
between the Boneh-Boyen IBE in [3] based on bilinear groups, and the Agrawal-Boneh-Boyen
in [1] based on lattices. Let’s take a quick look at the core structure of each.

Boneh-Boyen IBE We let G =< g > be a group of prime order p, with a bilinear
map e : G × G → GT . Our identies ID are assumed to be elements of Zp. We define
u = ga, h = gb ∈ G, where a, b are randomly chosen during setup, as is the master secret
key, gα, for a randomly chosen exponent α. The public parameters are

PP := g, u, h, e(g, g)α.

To generate a secret key SKID, we choose a random exponent r and compute:

SKID := gα(uIDh)r, gr.

To encrypt a message M ∈ GT to an identity ID, we choose a random exponent s and
compute:

CT := Me(g, g)αs, gs, (uIDh)s.

When the identies for a secret key and a ciphertext match, we can decrypt by first
computing:

e(gα(uIDh)r, gs)e(gr, (uIDh)s)−1 = e(g, g)αs,

and then dividing this from the ciphtext eement in GT to reveal the message M .

Agrawal-Boneh-Boyen IBE The public parameters consist of: A0, A1, B ∈ Zm×nq ,
and the master secret key is a trapdoor basis for A0. Identities are hashed to matrices
HID ∈ Zn×nq . Ciphertexts for an identity ID as well as the secret key for ID revolve around
the matrix

FID := (A0|A1 +H(ID)B) ∈ Zn×2mq ,

which clearly has echoes of the structure uIDh = ga+IDb in it.
A key insight (pun intended!) is that a trapdoor basis for A0 can be used to generate a

trapdoor basis for FID. Thus, basically FID becomes suitable for use as the “publid key”
in a typical lattice-based PKE structure, where the secret key SKID is a single short vector
derived from that basis. For full details of the construction and security proof, see [1].

The security proofs for Boneh-Boyen in the bilinear group setting and Agrawal-Boneh-
Boyen in the lattice setting rely on a similar trick relating to the aID + b structure. In the
bilinear reduction, a, b are carefully chosen functions of the attack target identity ID∗, so
that (aID+ b)r for a strategically chosen r can be used to cancel out the unknown term in
the master secret key in the exponent to produce a suitable SKID for any ID 6= ID∗. When
ID = ID∗, the unknown term cancels out inside the computation of aID∗ + b, hence there
is no value of r that can allow r(aID∗ + b) to compensate for its appearance in α.

Similarly in the lattice setting, the parameters are carefully chosen functions of H(ID∗)
so that a trapdoor for B, rather than AO, can be used to generate an trapdoor for FID if
and only if FID 6= FID∗ . This is also arranged through a cancelation that occurs only when
ID = ID∗.

While this works well in both the bilinear and lattice settings, partitioning methods for
security reductions tend to require either unnatural restrictions on the attacker’s choices
(i.e. forcing the attacker to commit to the target immediately), or security loss in terms
of parameters that grow unacceptably for increasingly complex cryptosystems like IBE,
HIBE, ABE, etc. This motivated the search for security reductions that could transcend
the partitioning paradigm. The dual system encryption technique, first developed in [30]
and further evolved in [18, 17, 23, 20, 19] (e.g.), manages to accomplish this. Instead of

14

partitioning keys into easy and hard, it begins with the thought experiment: what if there
were no public parameters? Schemes in a world without public parameters would be like
teenagers in a world without parents: drastically under-supervised. In a world without
public parameters, the burden on the security reduction would be greatly reduced, as the
so-called keys it gave to the attacker upon request could not as meaningfully be tested
against legitimate ciphertexts.

Of course, we live in a polite society and not a world of IBE without public parameters.
The trick of dual system encryption is that we can prove that our real world with public
parameters is computationally indistinguishable from an alternate universe effectively with-
out public paramters. The basic trick works like this. We start in a bilinear group where
subgroup decision problems are hard. In other words, our bilinear group secretly decom-
poses into a few different subgroups that behave independently, and are mutually orthogonal
under the bilinear map. (For a more thorough exposition of subgroup structures, see [2].)
Subgroup decision problems concern the ability to discern which subgroups are non-trivially
represented in which distributions of group elements. Some subgroup decision problems are
trivially easy, like recognizing the difference between the identity element (which is trivial
in all subgroups), and an element that is non-trivial in at least one subgroup. In some
instantiations of bilinear groups, many non-trivial subgroup decision problems are believed
to be hard: like recognizing the difference between a random element of one subgroup and
a random element of of the whole group (as long as you aren’t given an element with the
relevant subgroup absent, as pairing this element against your challenge would result in the
identity element in one case and not in the other). Essentially, pulling the different subgroup
pieces apart is presumed to be hard, and we only get hints as to which subgroups are present
by whether the results of pairings turn out to be trivial or non-trivial.

We can use one or more subgroups to execute our IBE scheme, while reserving one or more
subgroups to be active only in the security reduction. Crucially, the public parameters will
not contain any non-trivial contributions in the reserved subgroups. The security reduction
uses the hardness of subgroup decision problems to iteratively attach non-trivial components
in these reserved subgroups to the secret keys and challenge ciphertext given to the attacker.
This effectively creates a “shadow” copy of the scheme that operates in parallel correctly
in the reserved subgroups, but does not have corresponding public parameters in these
subgroups to keep the reduction honest. In this way, the hardness of subgroup decision
problems allows us to argue that our scheme is indistinguishable from a scheme that is less
accountable to the public parameters, and this makes it easier for us to resolve the paradox
without paritioning keys. Admittedly, we’re simplifying quite liberally here. Often it is still
challenging to prove security in a world with a no public parameters when there are many
keys still floating around. However, this is typically addressable by a hybrid argument which
effectively reduces the burden to the case of a single key or some other smaller unit for which
security can be argued directly by other means.

The Bishop-Waters IBE scheme in [18] executes this on top of the base structure of the
Boneh-Boyen IBE. Ignoring some additional subgroups that exist for purposes of the hybrid
argument, ciphertexts and keys in the Bishop-Waters scheme that have been transformed
to include the shadow copy look like:

SKID := gα1 (uID1 h1)r1(uID2 h2)r2, g
r1
1 g

r2
2

CTID := gs11 g
s2
2 , (u

ID
1 h1)s1(uID2 h2)s2

Here, the group elements with subscript 1 are one subgroup, while the group elements
with subscript 2 are in a different subgroup. The two subgroups behave orthogonally under
the bilinear map, so we basically get two copies of the scheme, operating independently in
the two subgroups. However, the parameters g2, u2, h2 are not part of the public parame-
ters, which only include g1, u1, h1. As a result, the second subgroup copy of the scheme is
unmoored, and it is easier to argue its security.

No one has yet put forward an effective instantiation of this kind of shadow world in

15

the lattice setting3. In particular, a hybrid security reduction that iteratively activates the
reserved subgroup components on secret keys provided to the attacker seems incompatible
with typcial lattice constructions, which have short vectors/matrices as their secret keys.
The Agrawal-Boneh-Boyen IBE we examined above, for instance, has secret keys that are
comprised of short vectors. Shortness is a noticeable feature that we cannot hide from the
attacker. And we do not know of a useful computational assumption in the lattice setting
that argues computational indistinguishability for two distributions of short vectors. Recall
that in LWE, the challenge vector As + ε has a short noise vector ε, but the overall value
of As + ε is not a vector with short entries. As similar as they may look at first, the
Boneh-Boyen IBE in bilinear groups and the Agrawal-Boneh-Boyen IBE in lattices diverge
in a critical way: in the bilinear setting, the secret keys and ciphertexts are both made of
group elements, things that additional subgroups can be attached to using computational
assumptions. But in the lattice setting, the secret keys are short vectors and the ciphertexts
are large vectors. We can hope to change the distribution of ciphertexts using computational
assumptions like LWE, but we cannot really hope to change the distributions of short secret
keys.

We should also mention here that the k-LWE assumption introduced in [21] has some
potential to illuminate a path to a lattice notion of a “shadow.” In this assumption, a matrix
A ∈ Zm×nq is sampled, along with k short vectors x1, . . . , xk such that xiA is the all zero

vector for each i. Both A and {xi}ki=1 are given out, along with a challenge vector. Now, if
the challenge vector were of the form As+ noise or uniformly random, one could distinguish
by taking any xi times the challenge vector and observing whether the result is short. So
the challenge is modified to be of the fom As+ noise or Tz+ noise, where T spans the space
of vectors orthogonal to the collection of {xi}ki=1. Now the same distinguishing approach
fails, as the product with each xi will be short either way. This assumption is shown to hold
under the typical LWE assumption for some eminently reasonable values of k [21].

The additional space between the span of A and the larger span of T could be a fertile
ground for a “shadow” copy of some lattice objects, but the challenge remains that correct
behavior is defined though multiplication with short vectors. Unsuprisingly, the traitor
tracing application of this assumption in [21] uses short vectors as secret keys. We have
yet to figure out an effective way to use k-LWE in our quest to build lattice schemes more
amenable to dual system techniques. Admittedly though, we were unable to truly internalize
the sampling techniques in the security reduction in [21] that proves a k-LWE attacker can
be leveraged to attack traditional LWE, and these sampling techniques may prove to be
useful elsewhere, even if the black-box statement of k-LWE proves less so.

All of this motivated us to try to construct an IBE scheme in the lattice setting whose
secret keys are not comprised of short vectors, but rather employ structures more similar to
the structures employed in ciphertexts. Such a goal is not desirable on its own in terms of the
performance of a scheme, but we hope that it may serve as a first step towards instantiating
dual system proof techniques in the lattice setting.

5 A PKE and a random oracle walk into a bar...

Before jumping into the task of constructing an IBE scheme, we decided to survey some
of the most direct techniques for proving security of IBE systems, so that we could keep
them in mind to guide our construction efforts. The most natural starting point is the first
IBE construction of Boneh-Franklin [4], which employed a security reduction in the random
oracle model. Interestingly, the Boneh-Franklin construction and accompanying security
proof is developed around a public key encryption scheme at its core. Security is proven for
the base PKE scheme first, and then a random oracle is used to boost the functionality and
security of the base PKE scheme to a secure IBE scheme. It’s really kind of magical. It’s
like a PKE found an oracle in a bottle that granted it’s one wish to become an IBE.

3Again, we are not passing judgement on [28], which came out too recently for us to have read before preparing
this paper.

16

This is a tantalizing example to study, as there are already known PKE schemes in
lattices that avoid having short secret keys. Here we’ll give a quick tutorial on the heart of
Boneh-Franklin PKE/IBE and its basic security reduction in the random oracle model. This
will give us the proper context in which to consider a PKE in lattices without short keys,
and study to what extent the same strategy might be used to boost it to an IBE without
short keys.

5.1 The Boneh-Franklin base PKE construction

First we’ll define the core PKE scheme:

Setup The Setup algorithm fixes a bilinear group G =< g > of prime order p, with bilinear
map e : G × G → GT . It selects two uniformly random exponents s, v ∈ Zp and defines
P := gs and Q := gv. The public key is:

PK := (g, P,Q,H1),

where H1 is a hash function from GT to {0, 1}n. The secret key is:

SK := Qs = gsv.

Encrypt To encrypt a message m ∈ {0, 1}n, the encryptor chooses a random exponent
r ∈ Zp and computes the ciphertext as:

CT := (gr,m⊕H1(e(P,Q)r))

Decrypt To decrypt a ciphertext CT, the decryptor computes

e(gr,SK) = e(g, g)rsv = e(P,Q)r,

and then computes H1(e(P,Q)r). By taking this ⊕ the second component of CT, the
decryptor obtains the message m.

5.2 The Boneh-Franklin IBE construction

Now we give the basic IBE construction. It won’t be hard to spot the PKE scheme inside
it:

Setup Similarly to the setup algorithm of the PKE above, the IBE Setup algorithm first
fixes a bilinear group G =< g > of prime order p, with bilinear map e : G × G → GT . It
selects a uniformly random exponent s ∈ Zp and defines P := gs. The public parameters
are:

PP := (g, P,H0, H1),

where H1 is a hash function from GT to {0, 1}n, and H0 is a hash function from {0, 1}∗ to
G. The master secret key is s.

KeyGen Given the master secret key s and an identity ID ∈ {0, 1}∗, the key generation
algorithm computes QID := H0(ID), and then computes the secret key as:

SKID := QsID.

Encrypt To encrypt a message m ∈ {0, 1}n to an identity ID, the encryptor first chooses
a random exponent r ∈ Zp. It computes the ciphertext as:

CT := (gr,m⊕H1(e(P,H0(ID))r).

We note that e(P,H0(ID))r = e(P,QID)r.

17

Decrypt To decrypt a ciphertext CT for ID, the decryptor computes:

e(gr,SKID) = e(g,QID)rs = e(P,QID)r.

The decryptor can then apply H1 to this, and ⊕ with the second component of the ciphertext
to obtain the message m.

5.3 The Boneh-Franklin security reduction in the random oracle
model

The paper [4] goes on to provide a further IBE scheme with chosen-ciphertext security, but
the most basic security argument that [4] provides for this simple IBE scheme is a reduction
of the IBE security to PKE security, where both hash functions are treated as random
oracles. The details of this, as well as the straightforward proof of the PKE security under
the bilinear diffie-hellman assumption in the random oracle model, can be found in [4]. Here
we will briefly sketch the reduction of IBE security to PKE security, as that is most relevant
to our purposes. The seucrity garuantee we will consider, for both IBE and PKE, will
be the weak notion of one-way encryption. This requires that an attacker cannot recover
the plaintext when a randomly chosen message is encrypted under a randomly generated
public key. In the IBE setting, the attacker can adaptively query for secret keys for various
identities, and declares a target identity for the random message to be encrypted to.

Let’s suppose we have an attacker A on the IBE scheme in this sense, and we wish to
attack the underlying PKE scheme. Our reduction algorithm B gets to simulate the random
oracle for H0, which A can query. (The fact that H1 is modeled as a random oracle is not
relevant to this reduction, but is rather used in the security argument for the underlying PKE
scheme.) Now, the PKE challenger gives B a public key PK including g, P,Q. B forwards
g, P to A as the PP for the IBE scheme. When A makes a query ID to H0, B essentially
guesses whether this will turn out to be the attack target or not. If B guesses it is not the
attack target, it will choose a random exponent v ∈ Zp and set H0(ID) := QID := gv. This
enables B to later respond with P v = gvs as the secret key for this identity if A requests it.
However, if B guesses that this is the attack target identity, it will set QID := Q from its
on challenge, perfectly aligning an encryption under this identity with an encryption in the
underlying PKE.

The core of this argument is that the programming of the random oracle, in this case
setting QID := gv for a known exponent v, enables the computation of a corresponding
secret key gvs without knowledge of the master secret key s. This is an elegant use of the
basic symmetry of s and v in the element gvs: there are two ways of getting to the element
gvs. Either one can know gs and v, or one can know gv and s. In this way, the ability to
program the random oracle can be substituted for the knowledge of the master secret key,
dynamically at the reduction’s will for each identity.

If we want to build a secure IBE in the random oracle model from a lattice PKE in a
similar way, we need to have two different ways of computing a secret key - the legitmate
way that uses knowledge of the master secret key, and an alternate way that uses the ability
of the reduction to program the random oracle.

We’ll come back to discussing this challenge of how to design two paths to the secret
key, but for now we’ll describe a reasonable candidate for the base PKE scheme in lattices.
There are several known PKE schemes from LWE (starting with [25]), some of which have
short vectors as secret keys and some of which do not. We choose here to look at an extreme
simplication of the PKE inside the Gentry-Sahai-Waters FHE construction [14, 12], as we
try later on to draw further inspiration from homomorphic techniques. In fact, we have
(unsuccessfully) tried to draw inspiration from FHE already, as one can view our initial
formulation of the cryptanalysis challenge with the powers of 2 as a failed attempt to use
bit decomposition tricks to build a secure analog of “exponentiation to a known power” in
the lattice setting.

18

5.4 A Simple PKE without short keys

If you squint at the GSW FHE scheme as described in [12], and you strip off the trappings
that are only relevant to homomorphic operations, you get something like:

1. Setup: Sample B ←r Zm×(n−1)q , s←
r
Zn−1q , ε←

r
Zm×1q such that ε is composed of small

entries.

Set the public key PK := A := [B|Bs+ ε] and the secret key SK := t := [−s1]

Am

n

n

= B|Bs+ εm

n

n

Xm

n

n

, t

n

n

= −s
1

n . (1)

Note that At is now a vector of small entries and that A ∈ Zm×nq .

2. Encrypt(Message m ∈ {0, 1}): If m = 0 sample a matrix of small entries R ←
r

Zm×nq

and set the ciphertext CT := RA. If m = 1 send a random ciphertext CT ←
r
Zm×nq

3. Decrypt(CT ∈ Zm×nq): test if CT ∗ t is small.

Correctness easily follows from seeing that At is a vector of small entries, thus so is
CT ∗ t, while if CT is a matrix of large random entries, it is highly unlikely that CT ∗ t is
composed of small entries. Security also follows simply from Matrix-LWE.

This PKE seems suitable as a structure that could live inside an IBE with non-short secret
keys. The further goal of such an IBE construction would be to execute a dual system proof
startegy, but we will first set a more modest goal of getting any kind of provable security for
any lattice IBE scheme without short keys. Even this more modest goal continues to elude
us, but in the next sections we will detail what we have learned so far in our attempts.

6 Misadventures in sampling and the quest for two-
faced keys

As we saw above, the structure that enables the random oracle boost from PKE to IBE
in the Boneh-Franklin scheme is the two-faced nature of the secret keys. The keys gsv can
be computed either by knowing by s (the true key generation procedure) or by knowing v
(the cheat allowed in the random oracle model). It is not at all clear how to accomplish
an analog of this in the lattice setting. This is closely related to the necessity of avoiding
efficient reconstruction of the master secret key from any collection of IBE secret keys. This
suggests that keys themselves should be noisy objects in relation to the master secret key,
since any non-noisy linear derivation would be reversible with enough equations in terms of
the underlying unknowns.

Having both secret keys and ciphertexts be large, noisy objects would bode well for ul-
timately executing dual system encryption techniques, but it poses a challenge to achieving
correctness in decryption. Decryption will likely involve some kind of multiplication be-
tween keys and ciphertexts, so the difficulty resides in controlling noise through this kind of
operation. (See why we have kept so close to FHE schemes as a guide?)

Attempts to understand the shape of this challenge sent us on a long digression into
possible sampling algorithms in the lattice setting. We embarked on a general search for ways
to jointly sample objects like (B, t) above such that Bt is small. An extreme generalization of
this question becomes: what are all the ways to non-trivially sample noisy objects with small
products over Zq? Below, we give some answers and some non-answers to this question.

19

6.0.1 Small cross terms: forget about scalars

Don’t you just hate it when you multiply things and the product isn’t small? We do. Say
that in your scheme you want to multiply to (large) values A,B ∈ Zq but all you have is
noisy versions of them: A+ δ and B + ε, where δ and ε are small. If you directly multiply
them, you get

(A+ δ)(B + ε) = AB +Aε+Bδ + δε.

Since δ and ε are small, δε is also (fairly) small. But the cross terms Aε and Bδ can
be arbitrarily large! Now, sometimes that’s good: see Section 3 where we use this pre-
cise phenomenon to build a key-exchange scheme. But cryptography is all about wanting
contradictory things, and sometimes you really want those cross terms to be small.

Of course, if you sample A uniformly at random in Zq, and ε uniformly in, say, {0, . . . , s}
for s � q, then with high probability, their product Aε will be large. But maybe it is
possible to sample A and ε in a coordinated way so that they somehow “cancel out” and
their products are always small? We proceed to stifle that hope.

Concretely, say that we are trying to generate many different values for A and ε in Zq
such that all products Aε are small, i.e. |Aε| ≤ s for some small s ∈ N.4 We prove that in a
sense you can’t do better than to just have both A and ε be small.

Lemma 4. Let SA and Sε be two subsets of Zq with at least 2 elements (the sets of all
possible values that A and ε could take). Assume that for all A ∈ SA and ε ∈ Sε, we have
|Aε| ≤ s ∈ N. Then there is a factor f ∈ Z∗q such that

(i) for all A ∈ SA, |f−1A| ≤ 4s2 log2(2s);

(ii) for all ε ∈ Sε, |fε| ≤ s.

This means that there is a way to divide all values in SA and multiply all values in Sε by
a constant f so that all their possible values are small, and assuming 4s3 log2(2s) < q, such
that their products are smaller than q even in Z (not Zq). In other words, any sampling
procedure that manages to always keep Aε small is just a scaled version of the trivial strategy
which consists in making both A and ε always small. The proof also shows the scaling factor
f is easy to find: you can first set f to be the difference of any two elements of SA, then
divide it by the GCD of the possible values for |fε|.

Proof. Let A1 and A2 be distinct elements from SA. Fix f = A2−A1. Multiply all elements
of SA by f−1 and all elements of Sε by f . After this change we have A2−A1 = 1, so for all
ε we have

|ε| = |(A2 −A1)ε| = |A2ε|+ |A1ε| ≤ 2s, (2)

i.e. all ε are small. Now, forget about SA for a moment and assume that the GCD of all |ε|
(ε ∈ Sε) is 1.5 If instead the GCD is g 6= 1, then we can multiply f by g−1, which will make
it 1, while maintaining inequality (2) (since this divides the value of each |ε| by g in N, not
in modular arithmetic).

In particular, we can find a subset T ⊆ Sε of size at most m = log2(2s) + 1 that has
GCD 1: just start with the smallest (by | · |) non-zero element of Sε and then greedily add
any element that will decrease the value of the GCD. Each addition divides the value by at
least 2, so we get to 1 in ≤ log2(2s) steps. Let T = {ε1, . . . , εm}.

Now, by Bézout’s identity, there are some weights wi ∈ Z such that
∑
i wi|εi| = 1.

Claim 5. We can choose those weights such that
∑
i |wi| ≤ 4s log2(2s).

Proof. Start with arbitrary wi’s. While there is wi with i ≥ 2 such that wi /∈ [0, |ε1|],
add/remove |ε1| to it to fix that, and add/remove |εi| accordingly to w1 to keep

∑
i wi|εi|

unchanged.

4|x| is a function from Zq to N defined as min(x, q− x) if x is viewed as an integer in {0, . . . , q− 1}. It retains
basically the same properties as with regular integers (in particular, the triangle inequality).

5Here, we’re using |ε|, not ε, because |ε| is in N, so the GCD is well defined.

20

We now have all wi with i ≥ 2 nonnegative and
∑m
i=2 wi ≤ (m − 1)|ε1|. On the other

hand, w1|ε1|+
∑m
i=2 wi|εi| = 1, so

|w1| ≤
−1 +

∑m
i=2 wi|εi|
|ε1|

≤
∑m
i=2 wi|ε1|
|ε1|

=

m∑
i=2

wi.

So overall, we have

∑
i

|wi| ≤ |w1|+
m∑
i=2

wi ≤ 2

m∑
i=2

wi ≤ 2(m− 1)|ε1|

≤ 2(log2(2s) + 1− 1)× 2s

= 4s log2(2s)

We now use this linear combination to bound the size of the A’s. First, adapt the signs
of the wi’s to match the signs of the εi’s, which gives us

∑
i wiεi = 1. Then for any A, we

have

|A| =

∣∣∣∣∣∑
i

wiAεi

∣∣∣∣∣ ≤∑
i

|wi||Aεi| ≤

(∑
i

|wi|

)
s ≤ 4s2 log2(2s).

Of course, this impossibility result for sampling only applies to the case when A and ε
are scalars (single elements of Zq), and leaves open the existence of a meaningful sampling
scheme for A, ε ∈ Znq such that A · ε is always small. Can linear algebra save us this time?
Stay tuned.

6.1 Out of the scalar pot and into the dimension fire

Let’s see what happens if we expand the dimension of our objects. We want to understand
how we might sample a single matrix A ∈ Zm×nq and many vectors γ ∈ Zn×1q such that Aγ
is small. We are interested in the regime where m >> n, so choosing A randomly and then
simply choosing a small vector ε and trying to solve for γ such that Aγ = ε will not work.

Reformulating the PKE sampling We observe that our lattice PKE above contains
a base case of this where precisely one such γ is produced. In that sampling, we can define
n := 1 + n′, first sample B ∈ Zm×n′q at random, s ∈ Zn′×1q at random, and ε ∈ Zm×1q to be
small. We can then define:

A := [Bs+ ε | B]

γ :=

[
−1
s

]
We can think of B as a collection of m row vectors, which we’ll denote by b1, . . . , bm.

We will also refer to rows (i.e. entries) of ε as ε1, . . . , εm. We can thus rewrite the above as:

A :=

b1 · s+ ε1 b1
b2 · s+ ε2 b2

...
...

bm · s+ εm bm

We can see in this format that the first entry of each row of A is being used to make the

dot product with γ be precisely what we want it to be.
One thing to note here is that the −1 as the first entry of γ is not important. We could

sample any constant α for that entry and then choose the first column of A to be −1α times
its values of above to make things work out to be the same.

21

Generalizing to multiple vectors If we want to sample multiple vectors γ in a simi-
lar way, we can use more entries in each row of A to satisfy more desired linear relationships.

We can set n = d+ n′ for some value d for instance, sample B uniformly as before, and
now sample γ1, . . . , γd uniformly at random from Znq . For notational convenience, we’ll write
αi to denote the first d entries of γi and si to denote the remaining n′ entries of γi. (So γi
is a vertical concatenation of αi over si.) We’ll also sample m-dimensional vectors εi to be
small, and we’ll use the notation εi,j to denote the jth entry of εi.

Now, for each j from 1 to m, we can solve for a d-dimensional row vector cj such that

cj · αi = −bj · si + εi,j

for all i from 1 to d. This is possible because there are d equations here in the d unknown
entries of cj .

We then define

A :=

c1 b1
c2 b2
...

...
cm bm

We then have for each j from 1 to m and each i from 1 to d:

cj · αi + bj · si = εi,j ,

Hence Aγi = εi for each i from 1 to d.

Limitations The above allows us to sample A and γ1, . . . , γd such that Aγi is small for
each i. But obviously d must be polynomial here, and also must be < n. We can generate
more such vectors γ by taking subset sums of {γi}, or more generally linear combinations
with short coefficients, but these will still come from a subspace of rank d. It is unreasonable
to hope, for example, that linear combinations of εi’s will “look like” random noise, as
random noise would not be rank d << m. It is also not immediately clear if our sampling
of A here is suitable for LWE.

7 A few proposed constructions for IBE in lattices

In parallel to our bottom-up exploration of sampling algorithms, we also worked on con-
structing IBE schemes in a top-down way, hoping to make the two efforts meet in the middle.
This mythical union has not yet occurred, but we describe here our attempts at IBE con-
structions and what we know about them so far. Our initial goal was simply to write down
correct IBE schemes with non-short keys that we could not immediately attack ourselves.

7.1 Our first scheme

Our first approach was to figure out how to inject a master secret key into our GSW-based
PKE scheme as described above. The simplest way we could see to do this was to add
another instance of LWE in order to hide the master secret key. That is, we would make a
scheme based off of the same cancellation as GSW but where one half of the cancellation is
a separate approximation. Taking m and n to be the same as in the GSW scheme, one of
our early iterations of this idea is as follows:

• The setup algorithm samples two m × n matrices A and B and one n × n matrix
S uniformly at random over a field Zq. It then samples a m × n matrix with small
coefficients Σ from an appropriate distribution6. It also selects some collision-resistant

6Don’t worry, the underspecification of such details will be the least of our problems.

22

hash function H : ID-SPACE→ Zq.

Am

n

n

, Bm

n

n

, Σm

n

n

, Sn

n

n

, (3)

• S,B are stored as the master secret key. A, Ã = AS + Σ, and H are published as the
public parameters.

• When any user requests a secret key for some identity ID, the master key generation
algorithm first samples two n×m matrices with small coefficients Γ,Γ′. It also samples
a small m×m matrix R from the appropriate distribution. It then computes

SKID =

(
−BT

Γ′ + (SBT + Γ)H(ID)

)
R

and sends SKID to the user.

• To encrypt a message M = 1 to send to ID, we first sample a small m×m matrix R′

and a small m × n matrix Σ′ from the appropriate distributions. Then we compute

CTID := R′
[
ÃH(ID) + Σ′|A

]
to ID.

• To encrypt M = 0 to send to ID, we simply sample a random m×2n matrix as CTID

To summarize in a more visual form,

• Master Secret Key

Sn

n

n

, Bm

n

n

(4)

• Public Parameters

Am

n

n

, Ãm

n

n

= Am

n

n

Sn

n

n

+ Σm

n

n

,H : ID → Zq

(5)

23

• Secret Key

SKID2n

m

m

=

− BTn

m

m

Γ′n

m

m

+

 Sn

n

n

BTn

m

m

+ Γn

m

m

H(ID)

Rm

m

m

(6)

• Ciphertext

CTIDm

2n

2n

= R′m

m

m

 Ãm

n

n

H(ID) + Σ′m

n

n

| Am

n

n

(7)

We note that the matrix B here is hidden randomness that is shared across the individual
key generations. One could certainly make it a fresh matrix per key generation, but we left
it shared on the principle that we would want to understand why the sharing would be
problematic before choosing to refresh it per key.

7.1.1 On decryption and correctness

As stated, this scheme is not correct, and possibly not secure. Similarly to GSW-encryption,
the idea of this scheme is that multiplying the ciphertext and secret key should cancel out
everything but the noise. However, in practice, decryption would look like the following.
Decryption:

CTID · SKID

= R′
(
−(AS + Σ)H(ID)BT − Σ′BT +AΓ′ +ASBTH(ID) +AΓH(ID)

)
R

= R′
(
−H(ID)ΣBT − Σ′Bt +AΓ′ +AΓ′ +H(ID)AΓ

)
R

(8)

Unlike in GSW, not every element here is small, and so decryption as stated above would not
work. However, if A and B and H(ID) are instead sampled to have small entries, then this
entire product is small as long as CTID is an encryption of 1. However, for an encryption
of 0 the product is uniformly random and so therefore small with negligible probability.

7.1.2 On security

One would hope that the IBE security of this scheme would stem from the LWE assumption.
Note that under the LWE assumption, both AS + Σ and SBT + Γ should, separately, look

24

sufficiently random. While there are many problems with this scheme, there are two key
issues that must be addressed before attempting to prove security.

The fundamental issues here are as follows:

• We know that the LWE assumption holds even when multiple samples are given as
this is essentially the same as increasing the value of m. However, does the LWE
assumption hold when giving LWE samples operating on both the rows and columns
of S separately, as we have here. Note that if the LWE assumption holds for symmetric
secrets S then we can simply modify the scheme to sample S as a random symmetric
matrix. This variant of LWE we call “Symmetric LWE,” and is discussed in the next
section of this paper.

• In order to achieve correctness, we required that A be small. However, the LWE
assumption requires that A have uniformly random entries. In order to hope for a
proof of security in this case, we would need to prove that the LWE assumption still
holds with this added restriction. This variant on LWE is known as “Compact LWE,”
and is also discussed in the next section.

[Spoiler alert: the combination of small A and symmetric S yields insecurity! Read on
to find out how.] Note that there are many other, less fundamental, issues. First of all, it is

not clear that the ciphertext is sufficiently random. Note that Ã is public and Σ′ is small,
so it is conceivable that the leftover hash lemma does not provide enough entropy to protect
the ciphertext. Furthermore, it seems that we are not extracting enough entropy from the
ID space. Here, H(ID) is a scalar, and so it seems unlikely that the various secret keys
would be sufficiently different so as to protect from attack. Finally, the scheme is overly
complex and does not seem to be the intuitive way to approach the problem.

However, the amount of power that this double-sided use of LWE gives when combined
with the cancellation of GSW is a very promising technique if the fundamental issues can
be somehow addressed. Thus, we continued to perform further experimentation and simpli-
fication until we arrived at a new scheme which we feel respresents the same core ideas, but
is a little easier to study.

7.2 A simpler IBE construction

When you find yourself faced with a complicated scheme that seems to work, it is often
useful to drop some parts and see if it breaks.7 In the worst case, it does break and now
you know what that part was for. In the best case, it doesn’t (immediately) break and you
have a new, simpler scheme! This is one of those cases.

Let’s first take a step back and understand what we’re doing. What makes the GSW-style
encryption presented in Section 5.4 work is that when we generate

Am

n

n

and bm := Am

n

n

sn + σm , (9)

this creates a hidden relationship between A and b, where b is nearly a linear combination
of the columns of A (something that is unlikely to happen by chance). Secret s is the key
to this relationship. Let’s call it a backdoor for b.

The relationship can then be used when both A and b are left-multiplied by a small

7We do not recommend applying this advice to any real-life device.

25

random vector r:

r

m

m
Am

n

n

and r

m

m
bm . (10)

Indeed, we can use our backdoor to cancel out everything in rb except for the noise:

(rb)− (rA)s = r(As+ σ)− rAs = rσ. (11)

In IBE, we want to do the same thing, but we need to give partial backdoors. We can’t
give our whole secret away to the first random stranger who comes by and asks for a key.
Instead we only want to give some partial view on the backdoor, which can only be used on
particular kinds of ciphertext.

Of course, in our world, “partial view” means LWE samples. So we need to make our
backdoor bigger, in order to be able to sample views of it. Instead of a single column s, it
will be a matrix S, where each column is a backdoor for a particular b. And a view of S is
a particular noisy linear combination of those backdoor columns.

Concretely, we would compute

Bm

n

n

:= Am

n

n

Sn

n

n

+ Σm

n

n

. (12)

The n columns of B give us n times more hidden relationships to work with than before.
However, key owners are only given LWE samples8 of S, not S itself:

S
K
I
Dn := Sn

n

n

h
I
Dn + γn . (13)

If we ignore γ for a moment,9 it turns out that this gives a backdoor only for one specific
“subspace” of B: product BhID. Therefore when encrypting, in order to ensure that ID
and only ID can decrypt our message, we give our product by r in that subspace:

r

m

m
Am

n

n

and r

m

m

 Bm

n

n

h
I
Dn

 . (14)

So what if that’s all there is to it? Let’s go more concretely through the details of the
scheme.

8Note that the LWE product is written in a different order in (12) and (13). In (12), the coefficients A are
on the left and the secret S is on the right, while in (13), the coefficients hID are on the right and the secret S
is on the left. Don’t get confused and think that we’re actually sampling hID!

9As you can see, this sentence is full of sin.

26

Generation The authority starts by sampling

Am

n

n

, Sn

n

n

, Σm

n

n

. (15)

It computes

Bm

n

n

:= Am

n

n

Sn

n

n

+ Σm

n

n

. (16)

The jth column of B is made of m LWE samples (m noisy linear equations) of the jth column
of S.

Public parameters The authority publishes

Am

n

n

, Bm

n

n

. (17)

Secret key The secret key for identity ID is

S
K
I
Dn := Sn

n

n

h
I
Dn + γn , (18)

where hID is the (pseudo)random vector corresponding to identity ID and γ is fresh noise.
The ith element of SKID is an LWE sample (a noisy linear equation) of the ith row of S.

Ciphertext A ciphertext encrypting the message bit 1 is made of two elements

r

m

m
Am

n

n

and r

m

m
Bm

n

n

h
I
Dn , (19)

where r is a small fresh random vector. A ciphertext encrypting the message bit 0 will have
random elements.

Decryption The person who owns SKID can compute (written out in the case where
the ciphertext encrypts 1):

(rBhID)− (rA)SKID = r(AS + Σ)hID − rA(ShID + γ) (20)

= r(ΣhID −Aγ). (21)

27

Now, of course, we want this to be small, so our sampling challenges are still there. How
do we make ΣhID and Aγ small? On the one hand, Σ and γ can be small since they are
LWE noise. On the other hand, both A and hID are the random coefficients that define the
LWE samples, and they are supposed to be drawn uniformly in Zq. So we still have to use
a sampling trick such as the one outlined in Section 6.1 or rely on an assumption such as
compact LWE to have a chance of making this work.

7.3 A bird’s eye view of the construction approach

It may be useful to note that hID and SKID play similar roles in this construction: they
are n-dimensional vectors such that:

Am

n

n

S
K
I
Dn ≈ Bm

n

n

h
I
Dn , (22)

where our notation of ≈ indicates that the subtraction of these resulting m-dimensional
vectors will have small entries. For arbitrary matrices A and B with these dimensions, such
vectors hID and SKID would not necessarily exist. It is the way that A and B are jointly
sampled that makes this possible, and also that forms the basis of the master secret key
that allows the creation of a suitable SKID for an arbitary choice of hID.

If we try to leverage the random oracle heuristic to prove security for such a scheme, we
naturally ask: is there some way to use the reductions ability to choose hID (while simulating
the oracle) in order to compute a suitable SKID without knowing anything secret about A
and B? This boils down to: we know that there exist vectors in the n-dimensional subspace
spanned by the columns of A that are “close” to vectors in the n-dimensional subspace
spanned by the columns of B. But without additional clues, it doesn’t seem easy to find
such vectors in the subspace spanned by A, even if we have the freedom to choose a target
vector in the subspace spanned by B.

Zooming back in on the specifics of our construction, the hidden matrix S embedded
in the relationship between A and B means that suitable values for SKID can be sampled
as approximations to ShID. We might hope to assemble an approximation to ShID for a
carefully chosen hID without knowing S by using noisy samples of S like AS + Γ, but there
are two issues with this. One is the mismatch between rows and columns and S between
ShID and AS + Γ, and the other is the unwanted multiplications of noise terms with A
and hID in the computation of ASKID −BhID that is ultimately supposed to be small for
correctness. One could resolve the first issue by requiring S to be symmetric. One could
resolve the second issue by requiring all entries of A and hID to be small. However, as we
shall see in the next section, imposing all of these requirements at once leads to a variant
of the LWE assumption that is broken. And this is fundamental, as correct decryption
capability for some identities will inherently distinguish the public parameters from random
matrices.

Summary of barriers to security proofs Let’s pause for a moment and summa-
rize the barriers we see to proving security for IBE constructions like these. In our efforts,
we consistently hit a tension between the largeness of the public parameters and the re-
quirements we have for sampling our secret keys. In the basic PKE above, there are not
multiple locations of LWE challenges, only the one in the public key A. It is clear that a
security proof should proceed by replacing the LWE challenge embedded in the public key
with a random vector. This is not a wholly promising step towards dual system encryption
techniques, which will clearly require the flexibility to place an LWE challenge in keys and
ciphertexts, not merely in the public parameters. This is not simply a quirk of dual system
encryption, as it relates to a fundamental challenge of IBE: erecting a firewall between the

28

master secret key and the identity secret keys. To do this in our constructions, we have
tried to use a sort of nested structure in which one LWE challenges exist both in the public
parameters/ciphertexts as well as in the secret keys for identities. But also, some multipli-
cation of ciphertext with the secret key must be short in order to decrypt. If nothing is done
to modify A, and it’s a general random matrix as in a typical LWE instance, then it seems
we open a door to a sampling hell in which one must magically sample the public parameter
and secret key in such a way that nice short components pop out. We made some progress
towards understanding this in Section 6, but not enough to yield a concrete approach for
effectively embedding standard LWE into an IBE scheme with large secret keys.

However, there is a lot of LWE-like structure in our constructions. We can particularly
see it in the terms AS + Γ and ShID + γ. This looks like a variant of LWE where you take
both noisy row and column samples of the hidden matrix S. To make this even simpler to
study, we can force row and column samples to be the same and require S to be symmetric.
This variant of LWE can be studied on its own, divorced from our IBE construction, as we
do in the next section. But once combined with a stipulation that A and hID be short (the
only obvious way to achieve correctness without succeeding at a more subtle joint sampling
approach), this modification to LWE becomes deadly. This is not sheer bad luck: of course
if you can create SKID and hID such that ASKID − BhID is small, you can distinguish
A and B from two random matrices. This is because such vectors SKID and hID will not
generally exist. But this does not seem to immediately translate to an ability to distinguish
rA, rBhID∗ from a random for a different h∗ID if there is some reason you cannot create a
suitable SK∗ID. Hence things remain for now in the unsatisfying state of having no proof for
our IBE scheme, as well as no decisive break.

8 LWE variants: try to be the assumption you wish to
see in the world?

[Aside: do not take this section title too seriously. That would be terrible advice.] Nonethe-
less, let’s take a detour to study this variant of LWE where the secret vector s is replaced by
a secret square matrix S that is constrained to be symmetric. We later demonstrate what
happens when we mix this with the notion of “compact LWE,” where the public matrix A is
constrained to have small entries rather than being chosen uniformly at random. But first,
we are able to show that hardness for our symmetric variant of LWE follows from hardness
of the more standard LWE definition if we set the smaller dimension parameter n = 1.

8.1 Symmetric-LWE

Now we introduce the decisional-symmetric-LWE assumption. First, we recall from section
2 that the standard decisional-LWE assumption takes a parameter n, that represents the
dimension of the secret vector s. It is believed that n can take on any value in N, as long as
if the other parameters (q and the parameters of the discrete gaussian) are set appropriately.
The proof of our lemma below relies on this conjecture.

Now, we describe the distributions of symmetric-LWE. In this case, an attacker is given
A drawn uniformly at random from Zm×nq , but is now asked to distinguish between

• B0 drawn uniformly at random from Zm×nq , and

• B1 = AS + Σ and , where the upper right triangle of (n× n)-dimensional S is drawn
uniformly at random from Zq and the rest is symmetrically filled in, and once again
(m× n)-dimensional Σ is drawn from the appropriate discrete gaussian distribution.

We prove the following lemma:

Lemma 6. If every attacker An−i of the decisional-LWE problem with secret vector s of
dimension (n− i) for i ∈ {0, 1, . . . , n−1} has advantage at most εi in distinguishing between
b0 and b1, then there is no attacker B of the decisional-symmetric-LWE problem that has
advantage greater than

∑n
i=1 εi.

29

Proof. We proceed in a series of hybrids. In game 0, we start with B0 drawn uniformly at
random from Zm×nq . In game n, we end with B1 = AS + Σ, S symmetric.

In game i, we have that B = [ASi + Σi|U(Zm×n−iq)], where

Si =

[
Sti
Sbi

]
,

in which the upper right triangle of (i× i)-dimensional Sti is drawn uniformly from Zq and
the rest is symmetrically filled out, Sbi is drawn uniformly from Zn−i×iq , and each element
of the (m× i)-dimensional Σi is drawn from the appropriate discrete gaussian distribution.

So our hybrids deal with distinguishing:

[ASi + Σi|U(Zm×n−iq)]

and
[ASi+1 + Σi+1|U(Zm×n−(i+1)

q],

given A, for i = 0 to n (but this time, Si, Si+1 are changed to denote a matrix of the form
above).

Our reductions for games i and i+ 1 is as follows: we again will build an adversary An−i
for decisional-LWE given adversary B trying to distinguish between games i and i+ 1.

• This time, the adversary An−i receives an (n − i)-dimensional decisional-LWE chal-
lenge, i.e. An−i is given An−i drawn uniformly from Zm×n−iq , and either b0 drawn
uniformly at random from Zmq or b1 = An−is + ε, where s is drawn uniformly from

Zn−iq , and each element of the m-dimensional ε is drawn from the appropriate discrete
gaussian distribution.

• An−i then draws Ai uniformly from Zm×iq , Si (as above) and Σi on its own, and sets
A = [Ai|An−i], to form ASi + Σi.

• They next take the i elements of the (i + 1)-th row of Si (i.e., the first row of Sbi),
denoted by s∗, and Ai, and compute b∗ = bδ +Ai · s∗.

• Finally, they construct the matrix

B = [ASi + Σi|b∗|U(Zm×n−(i+1)
q)]

and send A,B to B.

• When B returns bit δ′ to An−i, An−i returns δ′ to its challenger.

Observe that if δ = 0, then b∗ = b0 +Ai ·s∗, where b0 is drawn uniformly at random, so each
element of b∗ is thus uniformly random as well (since the corresponding element of Ai · s∗
is displaced uniformly at random in Zq). Thus, we end up with B constructed according to
the distribution for game i. We depict this case in Figure 2.

If δ = 1, then b∗ = An−is + ε + Ai · s∗ = As′ + ε, where A = [Ai|An−i] as above and
s′ = [s∗||s] (|| denotes that s′ is a column vector consisting of s∗ on top of s). Thus, since
the i elements of s∗ are exactly the i elements of the (i + 1)-th row of Si, and the n − i
elements of s are drawn uniformly at random from Zq, if we form Si+1 = [Si||s′], then the
top ((i + 1) × (i + 1))-dimensional matrix of Si+1 is distributed the same way that Sti+1

should be, and the bottom is distributed the same way that Sbi+1 should be. Therefore,
since we also have the noise ε from b∗ to represent the noise in the (i+1)-th column of Σi+1,

in this case, we have B = [ASi+1 + Σi+1|U(Zm×n−(i+1)
q)], so B is constructed according to

the distribution for game i+ 1. We depict this case in Figure 3
Thus, since An−i has a ≤ εi advantage in the decisional-LWE problem for i = 0 to n−1,

then games 0 and n are distinguishable with ≤
∑n−1
i=0 εi advantage, which is still negligible

in the security parameter.

Note that since the above reduction relies on a decisional-LWE instance with secret vector
dimension as small as 1, we do not gain any extra security from increasing the dimension
of the secret symmetric matrix S. We might as well use a scalar s, of dimension 1, which is
inherently symmetric.

30

ASi + Σi b∗ U
(
Zm×n−(i+1)
q

)

b∗ = b0 +Ai · s∗ ∈ U
(
Zm
q

)

ASi + Σi U
(
Zm×n−i
q

)

Figure 2: Reduction for games i and i+ 1 in the proof of Lemma 2 for the case of δ = 0.

ASi + Σi b∗ U
(
Zm×n−(i+1)
q

)

St
i

Sb
i n− i

i

i

Si =

St
i

Sb
i

s

s∗

= Si+1

ASi+1 + Σi+1 U
(
Zm×n−(i+1)
q

)

b∗ = b1 +Ai · s∗ = A · [s∗ || s] + ε =⇒

Figure 3: Reduction for games i and i+ 1 in the proof of Lemma 2 for the case of δ = 1.

31

9 An attack on symmetric compact LWE

We can further define compact, symmetric LWE (CSLWE) as an instance of symmetric
LWE where the lattice is described by a matrix with small entries. Consider an instance of
CSLWE as follows, where an attacker is attempting to distinguish a proper CSLWE sample

B1 = Am

n

n

Sn

n

n

+ Σm

n

n

(23)

from a uniformly random m× n matrix B0.
Consider the following algebraic manipulation:

B1A
T −BT1 A

= (AS + Σ)AT − (AS + Σ)TA

= ASAT + ΣAT −ATSTA− ΣTA

= ASAT + ΣAT −ATSA− ΣTA

= ΣAT − ΣTA

(24)

Since A and Σ are both matrices with small entries, so is B1A
T − BT1 A. However, with

high probability B0A
T − AT0 A will not have small entries. Thus, as BiA

T − BTi A can be
computed in polynomial time, an attacker could efficiently distinguish these two distributions
with non-negligible probability.

Note that this attack does not imply insecurity for compact LWE and symmetric LWE
separately, as both the symmetry condition and the smallness condition are required for the
proof.

9.1 Implications for our IBE schemes

Our best ideas for a proof of security for the scheme outlined in section 7.2 boil down to
using compact, symmetric LWE in some capacity. This is because the scheme has LWE
samples on both sides with small lattices. However, just because compact, symmetric LWE
is broken in the decisional case does not immediately imply that the scheme is broken. One
could imagine a proof that instead relied on a computational version of compact, symmetric
LWE. Furthermore, if there is a concrete attack computational, compact, symmetric LWE,
then that can easily be transformed into an attack on this scheme as the master secret key
would be essentially revealed. Worryingly, there is a reduction from computational LWE
to decisional LWE discussed by Oded Regev in [26]. Furthermore, this reduction directly
applies to the compact, symmetric case. However, this reduction does require that the order
of the field is polynomial in the security parameter. Thus, it is paramount that the order of
the field used in these IBE constructions be superpolynomial in the security parameter.

10 Back to the beginning, again

Having failed thus far to jump from a lattice PKE with large secret keys to a provably
secure lattice IBE with large secret keys, we return to our starting point. Armed with the
experience we’ve gained, we try to retrace our steps, and consider where we might take a
different path. We began by examing the operation of exponentiation by a known scalar
in the group setting and its role in the elegant Diffie-Hellman key exchange. In the group
setting, two party key exchange and public key encryption are nearly synonomous. The
El-Gamal PKE has a public key that corresponds to Alice’s published element ga in the
Diffie-Hellman scheme, and a ciphertext is formed by choosing a random exponent b and

32

computing: gb,Mgab where the message M is assumed to be a group element. In other
words, the encryptor is Bob, and he publishes the element gb as before, along with the
message hidden by the secret key he now shares with Alice. The Boneh-Franklin PKE, in
contrast, has a different structure that is far less natural on its own. Its secret keys are
group elements rather than exponents, a seemingly necessary feature to enable the boost to
an IBE, but also a feature that forces the “shared key” between the encryptor and decryptor
into the target group of a bilinear map.

Once we are in a bilinear setting, however, we need no longer limit non-interactive key
exchange to two parties. Instead, we can have a non-interactive three party key exchange [16]
where Alice publishes ga, Bob publishes gb, Charlie publishes gc, and the shared secret key
is e(g, g)abc. (Note that an adversary can compute e(g, g)ab, or any other quadratic form of
a, b, c in the exponent by using the published values and the bilinear map, but distinguishing
the triple product abc in the exponent in GT from a random element is assumed to be hard.)
This three party exchange is perhaps the right analog for the Boneh-Franklin PKE scheme.
In fact, the three ways of getting to the triple product e(g, g)abc (by knowing a and gb, gc,
by knowing b and ga, gc, or by knowing c and ga, gb) correspond roughly to the three ways of
getting to a blinding factor computation in the extension to IBE: the legitimate secret key
derivation by the master secret key holder, the (illegitimate but indistinguishable) approach
of the reduction to creating keys by leveraging its strategic simulation of the random oracle,
and the legitimate encryption algorithm.

In turns out we can formulate this relationship between non-interactive key exchange and
random oracle IBE more abstractly. Next we define an augmented notion of non-interactive
key exchange that suffices to imply IBE in the random oracle model.

10.1 A non-interactive key exchange and a random oracle walk into
a bar...

The high level idea of this abstraction is codify a structure of three party key exchange that
can generically map onto the three pieces of a random oracle security proof for IBE. These
pieces are 1. the legitimate secret key derivation process from the master secret key, 2. the
reduction’s approach to responding to key requests, and 3. the encryption algorithm. We
find it slightly more convenient to define this as a two-tiered exchange protocol rather than
a straight three party protocol. More precisely, we imagine that we are first performing a
key exchange between two parties, and their shared secret key goes on to behave like the
new secret key for a single party in a final exchange with some new party. Since this is
all non-interactive, this tiered structure is really just in our minds, but we find it clarifying
nonetheless.

Let’s first suppose we have a non-interactive two party key exchange with two algorithms:
Generate and Construct. The Generate algorithm is used (symmetrically) by an individual
party to produce two outputs: a public key PK and a secret key SK. The Construct
algorithm takes in one public key and one secret key (produced by a opposite parties) and
produces a shared secret key that we’ll denote by SK12. For now, we’ll consider Generate
to be a randomized algorithm, while Construct is assumed to be determinsitic. We’ll allow
a negligible probability that Construct fails to produce the same shared secret key for the
two parties when they each independently run Generate and publish the resulting public
keys.

We’ll next suppose that the distribution of SK12 induced by honestly running two inde-
pendent instances of Generate and one instance of Construct is computationally indistin-
guishable from the distribution of SK∗12 produced by running Generate∗12, an algorithm for
another non-interactive two party key exchange scheme. This scheme may be asymmetric,
so it also has an algorithm Generate∗3 for the other party to run, and separate construction
algorithms Construct∗12 and Construct∗3.

Furthermore, we suppose there is a publicly known and polynomial-time computable
function f that takes in PK1 and PK2 generated by the two runs of the original Generate
and outputs PK12 such that the joint distribution of PK12 and SK12 is computationally

33

distinguishable from the output of Generate∗12, i.e.

(PK12,SK12) ≈c (PK∗12,SK∗12)

(This subsumes the prior requirement for SK∗12 alone.) The correctness condition for Construct∗12,
Construct∗3, Generate∗12, Generate∗3 also allows for negligible failure.

Our security gaurantee will be the starred scheme produces a shared key that is com-
putationally difficult to distinguish from random, even in the presence of the publication of
PK1 and PK2 (and not just PK12).

Finally, we’ll suppose there is a random oracle H that can map identities to a an output
distribution that is computationally indistinguishable from the distribution of PK∗12 induced
by running Generate∗12 honestly.

With these ingredients, we’ll build a R.O. secure IBE:
GenerateIBE : Run Generate to produce SK1 and PK1. Set MSKIBE = SK1 and

PPIBE = PK1 as well as H.
KeyGenIBE(ID): Run H to produce PK2 := H(ID). Compute:

SKID := Construct(PK2,SK1).

Encrypt(ID,M): Run H to produce PK2 := H(ID). Compute

PK12 := f(PK1,PK2).

Run Generate∗3 to produce SK∗3,PK∗3. Run Construct∗3(PK12,SK∗3) to produce a value R.
We’ll assume the message M is the same length as R. The ciphertext is produced as:

CT := M ⊕R, PK3,

where ⊕ denotes a bitwise XOR.
Decrypt(CT,SKID): run Construct∗12(PK3,SKID) to produce what is (whp) the value

of R. Bitwise XOR to extract M .
Now’s let’s try to prove the IBE is secure in the RO model relying on the security

gaurantee we gave for the key exchange. Let’s assume we have an IBE attacker A who can
succeed at distinguishing an encryption of M0 from an encryption of M1 with non-negligible
advantage in the RO setting. We’ll build a PPT algorithm B that attacks the underlying
nested key exchange scheme, assuming B gets to act as the oracle for A. We’ll make
the simplifying assumption (WLOG) that A queries every identity to H that it references
before it asks for the accompanying secret key or specifies it as the identity for the challenge
ciphertext.
B is given PK1, PK2, PK3, and a candidate value R that may or may not be the final

shared key. It gives PK1 to A as the public parameters for the IBE scheme.
Over the course of the RO IBE security game, A will query a polynomial number of

identities to the random oracle. B will guess which of these queries corresponds to the
challenge identity. If B is wrong, it will abort the game with A and guess randomly on its
own challenge. For what follows, we’ll assume B guesses correctly.

Each time A makes an oracle query for an identity ID that is not the challenge, B
runs Generate to produce SK,PK. It sets H(ID) := PK. If asked to provide SKID, it runs
Construct(SK,PK1) to produce SKID. By the correctness requirement onGenerate, Construct
and the distributional requirement above that SK12 ≈ SK∗12, this should be indistinguishable
from the correct key distribution.

When it comes time to produce the challenge ciphertext, B will set H(ID∗) = PK2 for
the challenge identity ID∗, and will compute the ciphertext as:

CT∗ := R⊕Mb, PK3

A’s success should be correlated with R being the correct shared key in B’s challenge.

34

Boneh-Franklin IBE as an example We can recast the Boneh-Franklin IBE scheme
and its random oracle security reduction as a particular implementation of this abstraction:

Generate is defined to output SK := a, PK := ga, while Construct takes in b, ga, outputs
gab.

Generate∗12 produces SK∗12 := gr, PK∗12 := e(g, g)r, while Generate∗3 is the same as
Generate (in the source group of a bilinear group). Construct∗12 computes e(SK∗12,PK3),
while Construct∗3 computes PK12 raised to the power of SK∗3.

f takes PK1 and PK2 and pairs them using the bilinear map. H hashes identities into
the source group of a bilinear group.

Instantiating this framework in lattices? Perhaps what’s most appealing about
this structural view of Boneh-Franklin is that it shows how the identity secret keys SKID

have come to inherit some computational hiding properties. Unlike the short lattice keys
of the Agrawal-Boneh-Boyen LWE-based scheme, the secret keys of any lattice construction
following this framework might naturally come with more guidance into how to eventually
change their distributions in a dual system style hybrid proof.

This template also feels reasonably suited to the lattice setting, where homomorphic
techniques may provide a guide for constructing suitable functions f . However, we have not
yet been able to produce an instantiation.

10.2 Non-conclusion

With the benefit of hindsight, a visualization of the attack on our extended cryptanalysis
challenge feels like an appropriate visualization of the process of research as well:

Zq

0 1

Zq

0 1
?

?
?

?

We seem to go from one consistent high level goal to a bunch of potentially inconsistent
sub-goals. As in the attack, the ultimate success of our efforts hinges upon finding instructive
sanity checks that can help us efficiently sort through the branching possibilities to narrow
in on the extensible path. The sanity checks that we have tried to use for this purpose
reside in the structural connections that underpin concrete applications of bilinear groups
and lattices, namely key exchange, public key encryption, identity based encryption, and
beyond. Along the way we’ve amassed a fuller understanding of the relationships between
these primitives, their security proofs, and the features/necessities of their constructions.

Here is a rough map of what we’ve explored:

35

This map is not intended to be comprehensive (e.g. there are other ways of getting fully
secure IBE besides dual system techniques). The highlighted parts here are the ones we still
find the most unsatisfying: the persistent lack of a provably secure lattice IBE scheme with
non-short secret keys, and the surprising lack of insight we seem to get from non-short key
PKEs in the lattice world, when the group equivalent contained a powerful bilinear map, a
power that continued to drive development up the picture chain and far beyond. And yet
the lattice world has FHE, its own powerful engine that has yet to have a clear word to say
about any of this.

We can’t shake the feeling that there’s much more here to discover. And so, while
others may chase further dreams past identity based encryption into functional encryption,
obfuscation, multilinear maps, and beyond, we stay here, slowly searching. Searching for
the entrance to the tunnel that will connect the two worlds. It should be easier to spot here
near the beginning, at the fork in the road before the paths too widely diverge. Before we
take up the heavy burdens of success.

References

[1] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h)ibe in the standard model. In
EUROCRYPT, pages 553–572, 2010.

[2] A. Bishop, L. Kowalczyk, T. Malkin, V. Pastro, M. Raykova, and K. Shi. In pursuit of
clarity in obfuscation. In CFAIL, 2019.

[3] D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption without
random oracles. In EUROCRYPT, pages 223 – 238, 2004.

[4] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In
CRYPTO, pages 213–229, 2001.

[5] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In EUROCRYPT.

[6] J. Coron, C. Gentry, S. Halevi, T. Lepoint, H. K. Maji, E. Miles, M. Raykova, A. Sahai,
and M. Tibouchi. Zeroizing without low-level zeroes: New MMAP attacks and their
limitations. In CRYPTO, 2015.

[7] J. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi. Cryptanalysis of GGH15 multilinear
maps. In CRYPTO.

36

[8] J. Coron, M. S. Lee, T. Lepoint, and M. Tibouchi. Zeroizing attacks on indistinguisha-
bility obfuscation over CLT13. In PKC.

[9] J. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
In CRYPTO, 2013.

[10] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Information
Theory, 22(6), 1976.

[11] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT, pages 1–17, 2013.

[12] C. Gentry. Computing on the edge of chaos: Structure and randomness in encrypted
computation. IACR Cryptology ePrint Archive, 2014:610, 2014.

[13] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the 40th annual ACM Symposium on
Theory of Computing, pages 197–206, 2008.

[14] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[15] X. Lin J. Ding, X. Xie. A simple provably secure key exchange scheme based on the
learning with errors problem. IACR Cryptology ePrint Archive, 2012:688, 2012.

[16] A. Joux. A one round protocol for tripartite diffie-hellman. In ANTS-IV, 2000.

[17] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[18] A. Lewko and B. Waters. New techniques for dual system encryption and fully secure
hibe with short ciphertexts. In TCC, pages 455–479, 2010.

[19] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In EUROCRYPT,
pages 568–588, 2011.

[20] A. Lewko and B. Waters. Unbounded hibe and attribute-based encryption. In EURO-
CRYPT, pages 547–567, 2011.

[21] S. Ling, D. H. Phan, D. Stehlé, and R. Steinfeld. Hardness of k-lwe and applications
in traitor tracing. In CRYPTO, 2014.

[22] E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. In CRYPTO.

[23] T. Okamoto and K. Takashima. Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[24] C. Peikert. Lattice cryptography for the internet. In PQCrypto, 2014.

[25] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, 2005.

[26] O. Regev. The learning with errors problem (invited survey). In CCC, 2010.

[27] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages
47–53, 1984.

[28] G. Wang, M. Wan, Z. Liu, and D. Gu. Dual system in lattice: Fully secure abe from
lwe assumption. IACR Cryptology ePrint Archive, 2020:064, 2020.

[29] B. Waters. Efficient identity-based ecnryption without random oracles. In EURO-
CRYPT, pages 114–127, 2005.

[30] B. Waters. Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

A Proof of lemma 3

We first introduce a convenient variant of the LWE assumption and, for completeness, show
that its hardness is inherited from the hardness of standard LWE.

37

A.1 Matrix-LWE

The first simple LWE extension, which has been seen in the literature, is that of matrix-
LWE. In the standard definition of the decisional-LWE assumption used in the cryptography
literature, an attacker is given A drawn uniformly at random from Zm×nq . They are then
given one of either:

• b0, which is drawn uniformly at random from Zmq , or

• b1 = As+ε, where s is uniformly random in Znq and each element of the m-dimensional
ε is drawn from some appropriate discrete gaussian distribution,

and are asked to distinguish between the two.
It of course is assumed that an attacker only has advantage of ε, where ε is negligible

in the security parameter, in distinguishing between these two distributions, and thus the
problem is deemed to be hard.

We consider a variant of the standard decisional-LWE assumption, called the decisional-
matrix-LWE assumption. In this case, an attacker is once again given A drawn uniformly
at random from Zm×nq , but this time is asked to distinguish between

• B0, which is drawn uniformly at random from Zm×nq , and

• B1 = AS+ Σ, where S is uniformly random in Zn×nq and each element of the (m×n)-
dimensional matrix Σ is drawn from some appropriate discrete gaussian distribution.

We prove the following lemma:

Lemma 7. If every attacker A of the decisional-LWE problem has advantage at most ε in
distinguishing between b0 and b1, then there is no attacker B of the decisional-matrix-LWE
problem that has advantage greater than n · ε.

Now we are ready to prove Lemma 3.
We proceed in a series of hybrids. In game 0, we start with B0 drawn uniformly at

random from Zm×nq). In game n, we end with B1 = AS + Σ. In game i, we have that

B = [ASi + Σi|U(Zm×n−iq)], where Si is drawn uniformly from Zn×iq , and each element of
the (m×i)-dimensional Σi is drawn from some the appropriate discrete gaussian distribution
(observe the notation).

Thus, our hybrids deal with distinguishing [ASi+Σi|U(Zm×n−iq)] and [ASi+1+Σi+1|U(Zm×n−(i+1)
q],

given A, for i = 0 to n.
Our reduction for games i and i+1 is as follows: we build an adversary A for decisional-

LWE given adversary B trying to distinguish between games i and i+ 1.

• Given A and b0 drawn uniformly at random from Zmq , or b1 = As + ε, A constructs
the matrix

B = [ASi + Σi|bδ|U(Zm×n−(i+1)
q)],

by drawing Si and Σi on its own from the proper distributions.

• A then sends A,B to B.

• When A returns bit δ′ (0 if game i, 1 if game i+ 1) to B, B returns δ′ to its challenger.

Observe that if δ = 0, B gets B for game i, but if δ = 1, then B gets B for game i+ 1.
Therefore, since A has ≤ ε advantage in the decisional-LWE problem, games 0 and n are

≤ (n · ε)-distinguishable, which is still negligible in the security parameter.
A wants to distinguish

A,B, (o1a := Btv1a + ε1a, o
1
b = Atv1b + ε1b), . . . , (o

n
a := Btvna + εna , o

n
b = Atvnb + εnb), u

from

A,B, (o1a := Btv1a + ε1a, o
1
b = Atv1b + ε1b), . . . , (o

n
a := Btvna + εna , o

n
b = Atvnb + εnb), r

If we organize the vectors via for i ∈ [n] to be columns of an (n× n)-dimensional matrix
Va, do the same for the vectors vb to get matrix Vb, again the same for vectors εib, ε

i
a to get

38

(m×n)-dimensional matrices Σa,Σb, and finally, the same for vectors oia, o
i
b to get (m×n)-

dimensional matrices Oa, Ob, then we can equivalently state the problem as distinguishing
between

A,B,Oa := BtVa + Σa, Ob := AtVb + Σb, u

and
A,B,Oa := BtVa + Σa, Ob := AtVb + Σb, r

We can also group together the secret vectors sia, s
i
b for i ∈ [n] as columns in (m × n)-

dimensional matrices Sa, Sb. Therefore, using Claim 5.3 from [25], since m > n log q and Sa
is only used to calculate Va := ASa, we have that (A, Va) is statistically indistinguishable
from (A,Ra), where Ra is chosen uniformly from Zn×nq . The same holds for Vb. Therefore,
the attacker is equivalently distinguishing

A,B,Oa := BtRa + Σa, Ob := AtRb + Σb, u
′

from
A,B,Oa := BtRa + Σa, Ob := AtRb + Σb, r

where u′ is determined by the approximate dot products Ria ·Rib, where Ria is the i-th column
of Ra, and Rib is symmetrically defined.

We observe that this problem is only easier if Ra is given outright instead of Oa, since
each entry u′i of u′ is determined by the dot product of Ria with Rib, and Oa only attempts
to hide the columns of Ra. Thus, it is at least as easy to distinguish

A,B,Ra, Ob := AtRb + Σb, u
′ (25)

from
A,B,Ra, Ob := AtRb + Σb, r (26)

From Matrix LWE (see appendix A.1), we know that (26) is computationally indistin-
guishable from

A,B,Ra, R, r, (27)

where R is a uniformly random matrix in Zm×nq .
Similarly, we can provide a reduction from Matrix LWE to show that (25) is also indis-

tinguishable from (27):

Claim 8. Equation (25) is computationally indistinguishable from (27) for any PPT adver-
sary B1.

Proof. Assume that B2 is an adversary attacking Matrix LWE using B2.

• if δ = 0 for the Matrix LWE game, B2 receives from its challenger (A,O0 := AtRb+Σb),
where A is uniform random in Zn×mq , Rb is uniformly random in Zn×nq , and (m× n)-
dimensional Σb is drawn from the proper discrete gaussian.

• if δ = 1 for the Matrix LWE game, B2 receives from its challenger (A,O1), where A is
uniform random in Zn×mq and O1 is uniformly random in Zm×nq .

• B2 then samples uniformly at random B ← Zn×mq , Sa ← Zm×nq and sets Ra := ASA.

• For each column of Oδ, Sa, B2 will compute Oiδ · Sia and round it according to the key
exchange protocol to obtain an n-dimensional bit vector uδ.

• B2 will then send (A,B,Ra, Oδ, u) to B1, receive back a bit δ′ and forward this to the
matrix LWE challenger.

Observe that if δ = 0, then Oi0 · Sia is an approximation of Ria · Rib. Since we use it to
determine u0, u0 is distributed equivalently to u′ in (25). If δ = 1, then Oi1 · Sia is some
random value in Zq, and thus u1 is some random n-dimensional bit vector that is distributed
equivalently to r in (27).

Moreover, since we showed above that there does not exist any PPT adversary B2 that can
win the matrix LWE game, there must not exist any PPT adversary B1 that can distinguish
between (25) and (27)

39

Thus we have shown that there exists no PPT adversary A that can distinguish between
the two distributions given in the lemma statement. In particular, since u is indistinguish-
able from random, every computationally bounded eavesdropper cannot discern which of
exponentially many possibilities the bit vector u is.

40

