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ABSTRACT

Federated learning is gaining significant interests as it enables model training over a large volume
of data that is distributedly stored over many users, while protecting the privacy of the individual
users. However, a major bottleneck in scaling federated learning to a large number of users is the
overhead of secure model aggregation across many users. In fact, the overhead of state-of-the-art
protocols for secure model aggregation grows quadratically with the number of users. We propose a
new scheme, named Turbo-Aggregate, that in a network with N users achieves a secure aggregation
overhead of O(N logN), as opposed to O(N2), while tolerating up to a user dropout rate of
50%. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and
leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy
in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate
that Turbo-Aggregate achieves a total running time that grows almost linear in the number of
users, and provides up to 14× speedup over the state-of-the-art schemes with upto N = 200 users.
We also experimentally evaluate the impact of several key network parameters (e.g., user dropout
rate, bandwidth, and model size) on the performance of Turbo-Aggregate.

I. Introduction

Federated learning is an emerging approach that enables model training over a large volume of decentralized data
residing in mobile devices, while protecting the privacy of the individual users [1], [2], [3]. This is achieved by
two key design principles. First, the training data is kept on the user device rather than sending it to a central
server, and users locally perform model updates using their individual data. Second, local models are aggregated in
a privacy-preserving manner at a central server (or distributed across the users) to update the global model. The
secure aggregation protocol ensures that the individual update of each user is kept private, both from other users
and the central server. The global model is then pushed back to the mobile devices for inference. This process is
illustrated in Figure 1.

A recent promising implementation of federated learning, as well as is its application to Google keyboard query
suggestions is demonstrated in [4]. Several other works have also demonstrated that leveraging the information
that is distributed over many mobile users can increase the training performance dramatically, while ensuring data
privacy and locality [5], [6], [7].

A major bottleneck in scaling secure federated learning to a large number of users is the overhead of secure model
aggregation across many users. In particular, in a network with N users, the state-of-the-art protocols for secure
aggregation of locally updated models require pairwise random masks to be generated between each pair of users
(for hiding the local model updates), and therefore the overhead of secure aggregation grows quadratically in the
number of users (i.e., O(N2)) [8], [1]. This quadratic growth of secure aggregation overhead limits its practical
applications to hundreds of users [6]. The scale of current mobile systems, on the other hand, is in the order of tens
of millions of users, in fact, the number of devices is expected to reach billions [6].

Another key challenge in model aggregation is the dropout or unavailability of the users. Device availability and
connection quality in mobile networks change rapidly, and users may drop from federated learning systems at
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Fig. 1: Federated learning framework. At iteration t, the central server sends the current version of the global model,
x(t), to the mobile users. User i ∈ [N ] updates the global model using its local data, and computes a local model
xi(t). The local models are then aggregated in a privacy-preserving manner. Using the aggregated models, the
central server updates the global model x(t+ 1) for the next round, and pushes it back to the mobile users.

any time due to various reasons, such as poor connectivity, making a phone call, low battery, etc. The design
protocol hence needs to be robust to operate in such environments, where users can drop at any stage of the protocol
execution.

In this paper, we introduce a novel secure and robust aggregation framework for federated learning, named
Turbo-Aggregate, with four salient features:

1) Turbo-Aggregate reduces the overhead of secure aggregation to O(N logN) from O(N2);
2) Turbo-Aggregate has provable robustness guarantees, by tolerating up to a user dropout rate of 50%;
3) Turbo-Aggregate protects the privacy of the local model updates of each individual user, in the strong

information-theoretic sense;
4) Turbo-Aggregate experimentally achieves a total running time that grows almost linear in the number of users,

and provides up to 14× speedup over the state-of-the-art with N = 200 users, in distributed implementation
over Amazon EC2 cloud.

At a high level, Turbo-Aggregate is composed of three main ingredients. First, Turbo-Aggregate employs a multi-
group circular strategy for model aggregation. In particular, the users are partitioned into several groups, and at each
stage of the aggregation the users in one group pass the aggregated model updates (weights) of all the users in the
previous groups and the local model updates of the current group to users in the next group (in a privacy-preserving
manner). We show that this structure enables the reduction of aggregation overhead to O(N logN) (from O(N2)).
However, there are two key challenges that need to be addressed in the proposed multi-group circular strategy for
model aggregation. The first one is to protect the privacy of the individual user, i.e., the aggregation protocol should
not allow the identification of individual model updates. The second one is handling the user dropouts. For instance,
a user dropped at a higher stage of the protocol may lead to the loss of the aggregated model information from all
the previous stages, and collecting this information again from the lower stages may incur a large communication
cost.

The second key ingredient of Turbo-Aggregate is to leverage additive secret sharing [9], [10] to enable privacy and
security of the users. In particular, additive sharing masks each local model by adding randomness in a way that can
be cancelled out once the models are aggregated. Finally, the third novel ingredient of Turbo-Aggregate is to add
aggregation redundancy via Lagrange coding [11] to enable robustness against delayed or dropped users. The key
idea is to inject redundancy via Lagrange polynomial in the model updates that are passed from one group to the
next, so that the added redundancy can be exploited to reconstruct the aggregated model amidst potential dropouts.

Turbo-Aggregate allows the use of both centralized and decentralized communication architectures. In particular,
Turbo-Aggregate can be applied to the following communication models. The first one is the conventional federated
learning setup where all communication goes through a server, i.e., the server acts as an access point [1], [2], [3].
The second one is a decentralized setup where mobile devices communicate directly with each other via an underlay
communication network (e.g., a peer-to-peer network) [12], [13] without requiring a central server for secure model
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aggregation. Moreover, Turbo-Aggregate allows additional parallelization opportunities for communication, such as
broadcasting and multi-casting.

We theoretically analyze the performance guarantees of Turbo-Aggregate in terms of the communication overhead,
privacy protection, and robustness to dropped or delayed users. In particular, we show that Turbo-Aggregate achieves
an aggregation overhead of O(N logN) and can tolerate a user dropout rate of 50%. We then quantify the privacy
guarantees of our system. An important implication of dropped or delayed users is that they may lead to privacy
breaches [8]. Accordingly, we show that the privacy-protection of our algorithm is preserved in such scenarios also,
i.e., when users are dropped or delayed.

We also provide extensive experiments to empirically evaluate the performance of Turbo-Aggregate. In particular,
we evaluate the performance of Turbo-Aggregate by implementations on up to 200 users on the Amazon EC2 cloud.
We then compare the performance of Turbo-Aggregate with the state-of-the-art secure aggregation protocol from
[1], for varying user dropout rates (up to 50%). Our results indicate four key observations. First, Turbo-Aggregate
can achieve an overall execution time that grows almost linear in the number of users, while for the benchmark
protocol, the overall execution time grows quadratic in the number of users. Second, the overall execution time of
Turbo-Aggregate remains stable as the user dropout rate increases, while for the benchmark protocol, the overall
execution time significantly increases as the user dropout rate increases. Third, Turbo-Aggregate provides substantial
opportunities for parallelization due to its multi-group structure, and broadcasting opportunities for further reducing
the communication time. Finally, Turbo-Aggregate provides up to 14× speedup over the state-of-the-art with 200
users.

We further study the impact of key network parameters, in particular, the model size and the communication
bandwidth, by measuring the total running time with various model size and bandwidth constraints. Our experimental
results demonstrate that Turbo-Aggregate provides the same level of speedup over the state-of-the-art for various
model sizes, and still provides substantial gain in environments with more severe bandwidth constraints.

Related Work. A potential solution for secure aggregation is to leverage cryptographic approaches, such as
multiparty computation (MPC) or homomorphic encryption. MPC-based techniques mainly utilize Yao’s garbled
circuits or secret sharing (e.g., [14], [15], [16], [17]). Their main bottleneck is the high communication cost, and
communication-efficient implementations require an extensive offline computation part [16], [17]. A notable recent
work is [18], which focuses on optimizing MPC protocols for network security and monitoring. Homomorphic
encryption is a cryptographic secure computation scheme that allows aggregations to be performed on encrypted data
[19], [20], [21]. However, the privacy guarantees of homomorphic encryption depends on the size of the encrypted
data (more privacy requires a larger encypted data size), and performing computations in the encrypted domain is
computationally expensive [22], [23].

A recent line of work has focused on secure aggregation by additive masking [24], [1]. In [24], users agree on
pairwise secret keys using a Diffie-Hellman type key exchange protocol and then each user sends the server a
masked version of their data, which contains the pairwise masks as well as an individual mask. The server can then
sum up the masked data received from the users to obtain the aggregated value, as the summation of additive masks
cancel out. If a user fails and drops out, the server asks the remaining users to send the sum of their pairwise keys
with the dropped users added to their individual masks, and subtracts them from the aggregated value. The main
limitation of this protocol is the communication overhead of this recovery phase, as it requires the entire sum of the
missing masks to be sent to the server. Moreover, the protocol terminates if additional users drop during this phase.

A novel technique is proposed in [1] to ensure that the protocol is robust if additional users drop during the recovery
phase. It also ensures that the additional information sent to the server does not breach privacy. To do so, the protocol
utilizes pairwise random masks between users to hide the individual models. The cost of generating these masks,
which takes the majority of execution time, scales with respect to O(N2), with N corresponding to the number of
users. The execution time of [1] increases as more users are dropped, as the protocol requires additional information
corresponding to the dropped users. The recovery phase of our protocol does not require any additional information
to be shared between the users, which is achieved by a coding technique applied to the additively secret shared data.
Hence, the execution time of our algorithm stays almost the same as more and more users are dropped, the only
overhead comes from the decoding phase whose contribution is very small compared to the overall communication
cost. On the other hand, this requires each user to send logN messages whose size is equal to the model size,
which is our main limitation. For very large models, one can use compression or quantization techniques to reduce
the model size.

Notable approaches to reduce the communication cost in federated learning include reducing the model size via
quantization, or learning in a smaller parameter space [25]. In [26], a framework has been proposed for autotuning
the parameters in secure federated learning, to achieve communication-efficiency. Another line of work has focused
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on approaches based on decentralized learning [27], [28] or edge-assisted hierarchical physical layer topologies
[29]. Specifically, [29] utilizes edge servers to act as an intermediate aggregator for the local updates from edge
devices. The global model is then computed at the central server by aggregating the intermediate computations
available at the edge servers. These setups perform the aggregation using the clear (unmasked) model updates, i.e.,
the aggregation is not required to preserve the privacy of individual model updates. Our focus is different, as we
study the secure aggregation problem which requires the server to learn no information about an individual update
beyond the aggregated values. Finally, approaches that aim at alleviating the aggregation overhead by reducing the
model size (e.g., quantization [25]) can also be leveraged in Turbo-Aggregate, which can be an interesting future
direction.

Circular communication and training architectures have been considered previously in the context of distributed
stochastic gradient descent on clear (unmasked) gradient updates, to reduce communication load [30] or to model
data-heterogeneity [31]. Different from these setups, our key challenge in this work is handling user dropouts while
ensuring user privacy, i.e., secure aggregation. Conventional federated learning frameworks consider a centralized
communication architecture in which all communication between the mobile devices goes through a central server [1],
[2], [3]. More recently, decentralized federated learning architectures without a central server have been considered
for peer-to-peer learning on graph topologies [12] and in the context of social networks [13]. Model poisoning
attacks on federated learning architectures have been analyzed in [32], [33]. Differentially-private federated learning
frameworks have been studied in [34], [35]. A multi-task learning framework for federated learning has been
proposed in [36], for learning several models simultaneously. [37], [38] have explored federated learning frameworks
to address fairness challenges and to avoid biasing the trained model towards certain users. Convergence properties
of trained models are studied in [39].

II. System Model

Federated learning is a distributed learning framework that allows training machine learning models directly on the
data held at distributed devices, such as mobile phones. The goal is to learn a single global model, x, using data
that is generated, stored and processed locally at millions of remote users. This can be represented by minimizing a
global objective function,

min
x
L(x) such that L(x) =

N∑

i=1

piLi(x), (1)

where N is the total number of remote devices, such as mobile phones, pi ≥ 0 and
∑
i pi = 1, and Li is the local

objective function for the ith device.

Conventional federated learning architectures consider a centralized communication topology in which all
communication between the individual devices goes through a central server [1], [2], [3], and no direct links
are allowed between the mobile users. The learning setup is as demonstrated in Figure 1. At iteration t, the central
server shares the current version of the global model, x(t), with the mobile users. Each user then updates the
model using its local data. User i ∈ [N ] then computes a local model xi(t). The local models of the N users are
then aggregated in a privacy-preserving manner. Using the aggregated models, the server updates the global model
x(t+ 1) for the next round. Then, the server pushes the updated global model to the mobile devices.

Compared to conventional training frameworks, secure federated learning has three unique features:

• Full model aggregation: Training data is stored and processed locally by remote devices. The global model is
updated by a central server through a (secure) weighted aggregation of the locally trained models. The updated
global model is then pushed back from the server to the remote users.

• Privacy of individual models: Data generated at mobile devices may contain privacy-sensitive information about
their users. As such, we wish to ensure that the data stays on device, by processing it locally and communicating
only the intermediate updates in a privacy-preserving manner, so that no user can be singled-out from the
aggregated updates.

• Resiliency against user dropouts: As network conditions and user availability in mobile environments can vary
widely, users may be dropped or delayed at any stage of protocol execution. We assume that each user has a
dropout probability of p ∈ [0, 1]. As observed previously, such dropped or delayed users can lead to privacy
breaches [1]. Therefore, privacy guarantees should hold even in the case when users are dropped or delayed.

A centralized secure aggregation protocol for federated learning is proposed by [1], where each mobile user locally
trains a model. The local models are securely aggregated through a central server, who then updates the global
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model. For secure aggregation, users create pairwise keys through a key exchange protocol, such as [40], then utilize
them to communicate messages securely with other users, while all communication is forwarded through the server.
Privacy of individual models is provided by pairwise random masking. Specifically, each pair of users u, v ∈ [N ]
first agree on a pairwise random seed su,v . In addition, user u creates a private random seed bu. The role of bu is to
prevent the privacy breaches that may occur if user u is only delayed instead of dropped (or declared as dropped by
a malicious server), in which case the pairwise masks alone are not sufficient for privacy protection. User u ∈ [N ]
then masks its model xu,

yu=xu + PRG(bu) +
∑

v:u<v

PRG(su,v)−
∑

v:u>v

PRG(sv,u) (2)

where PRG is a pseudo random generator, and sends it to the server. Finally, user u secret shares bu as well as
{su,v}v∈[N ] with the other users, via Shamir’s secret sharing. From a subset of users who survived the previous
stage, the server collects either the shares of the pairwise seeds belonging to a dropped user, or the shares of the
private seed belonging to a surviving user (but not both). Using the collected shares, the server reconstructs the
private seed of each surviving user, and the pairwise seeds of each dropped user, to be removed from the aggregate
of the masked models. The server then computes the aggregated model,

z =
∑

u∈U

(
yu − PRG(bu)

)
−
∑

u∈D

( ∑

v:u<v

PRG(su,v)−
∑

v:u>v

PRG(sv,u)
)

=
∑

u∈U
xu (3)

where U and D represent the set of surviving and dropped users, respectively.

A major bottleneck in scaling secure aggregation to a large number of users is communication and computation costs
to handle su,v , which are quadratic in the number of users. Communication overhead can be reduced significantly by
exchanging random seeds instead of whole random vectors. However, computation overhead to recover su,v of the
dropped users and execute the pseudo random generator based on the recovered seeds is quadratic, which dominates
the time consumed. Hence, overall the secure aggregation overhead grows quadratically in the number of users
(i.e., O(N2)), which limits the network size to hundreds of users in practice [6]. Furthermore, since such schemes
rely on the generation of pairwise keys from the seeds of a pseudorandom number generator, these frameworks
guarantee computational privacy as opposed to information-thoretic privacy, which guarantees privacy even when
the adversary has unlimited computational power. The centralized communication architectures have recently been
extended to decentralized peer-to-peer communication topologies that does not require a central server [12], [13].

III. The Turbo-Aggregate Protocol

We now introduce the proposed Turbo-Aggregate protocol for secure federated learning that achieves an overhead
that is almost linear in the number of users, while being resilient to user dropouts. Our focus is on the honest
but curious adversary setup, that is, the adversaries try to learn information about others but do not inject false
information into the protocol, for instance, via modifying their local datasets. Our framework allows the use of both
centralized and decentralized communication architectures. That is, communication can either go through a central
server that acts as an access point [1], [2], [3], or through a decentralized communication topology between the
mobile users, where mobile users communicate directly with one another via an underlay communication network,
such as a peer-to-peer communication network [12], [13].

Turbo-Aggregate is composed of three main components. First, it creates a multi-group circular aggregation structure
for fast model aggregation. Second, it leverages additive secret sharing by adding randomness in a way that can
be cancelled out once the models are aggregated, in order to guarantee the privacy of the users. Third, it adds
aggregation redundancy via Lagrange polynomial in the model updates that are passed from one group to the next,
so that the added redundancy can be exploited to reconstruct the aggregated model amidst potential dropouts. We
now describe each of these components in detail, present the overall Turbo-Aggregate protocol, and finally provide
an illustrative example of Turbo-Aggregate.

A. Multi-group circular aggregation

Given a mobile network with N users, Turbo-Aggregate first partitions the users into L groups as shown in Figure 2,
with Nl users in group l ∈ [L], such that

∑
l∈[L]Nl = N . We consider a random partitioning strategy. That is, each
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Group 1
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Group 2

Fig. 2: Network topology with N users partitioned into L groups, with Nl users in group l ∈ [L]. User i in group l
holds a vector x(l)

i corresponding to its local model parameters.

user is assigned to one of the available groups uniformly at random, by using a bias-resistant public randomness
generation protocol such as in [41]. This partitioning is purely hypothetical and does not require a physical layer
topology such as geographical proximity. We use Ul ⊆ [Nl] to represent the set of users that completed their part in
the protocol (surviving users), and Dl = [Nl]\Ul to denote the set of dropped users 1.

User i in group l ∈ [L] holds a vector x(l)
i of dimension d, corresponding to the parameters of their locally trained

model. The goal is to evaluate
z =

∑

l∈[L]

∑

i∈Ul
x
(l)
i (4)

in a privacy-preserving fashion. Specifically, we require that each party involved in the protocol can learn nothing
beyond the aggregate of all users.

The dashed links in Figure 2 represent the communication links between the server and the mobile users. In our
general description, we assume that all communication takes place through a central server, via creating pairwise
secure keys using a Diffie-Hellman type key exchange protocol [40]. In particular, mobile users create pairwise
keys through the key exchange protocol, then utilize them to communicate messages securely with other users,
while all communication is forwarded through the server, for the details of this procedure we refer to [1]. Without
loss of generality, Turbo-Aggregate can also utilize direct links between devices, if available, such as peer-to-peer
communication structures, where users can communicate directly with each other through an underlay communication
network.

Turbo-Aggregate consists of L execution stages performed sequentially. At stage l ∈ [L], users in group l encode
their inputs, including their trained models and the partial summation of the models from lower stages, and send
them to users in group l + 1 (communication can take place through the server). Upon receiving the corresponding
messages, users in group l + 1 first recover (decode) the missing information due to potentially dropped users
from the lower stage, and then aggregate the received data. At the end of the protocol, models of all users will be
aggregated.

The proposed coding and aggregation mechanism guarantees that no party taking part in the protocol (mobile users
or the server) can learn an individual model, or a partially aggregated model belonging to a subset of users. The
server learns nothing but the final aggregated model of all users.

Recovery from dropped users is enabled through a novel coding technique, by adding redundancy to the additively
masked data before transmission. This allows users in the upper stages to recover the information needed to cancel

1 For modeling the user dropouts, we focus on the worst-case scenario, which is the case when a user drops during the
execution of the corresponding group, i.e., when a user receives messages from the previous group but fails to propagate it to the
next group. If a user drops before the execution of the corresponding group, the protocol can simply remove that user from the
user list. If a user drops after the execution of the corresponding group, it will already have completed its part and propagated its
message to the next group, hence the protocol can simply ignore that user.
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the effect of dropped users in the lower stages, without needing any extra communication. This enables secure
aggregation of the individually trained models while guaranteeing user privacy and robustness to user dropouts.
These components are explained below.

B. Masking with additive secret sharing

Turbo-Aggregate hides the individual user models using additive masks to protect their privacy against potential
collusions between the interacting parties. This is done by a two-step procedure. In the first step, the server sends
a random mask to each user, denoted by a random vector u

(l)
i for user i ∈ [Nl] at group l ∈ [L]. Each user then

masks its local model x(l)
i as x

(l)
i +u

(l)
i . Since this random mask is known only by the server and the corresponding

user, it protects the privacy of each user against potential collusions between any subset of the remaining users, as
long as the server is honest, i.e., does not collaborate with the adversarial users. On the other hand, privacy may be
breached if the server is adversarial and colludes with a subset of users. The second step of Turbo-Aggregate aims
at protecting user privacy against such scenarios. In this second step, users generate additive secret sharing of the
individual models for privacy protection against potential collusions between the server and the users. To do so,
user i in group l sends a masked version of its local model to each user j in group l + 1,

x̃
(l)
i,j = x

(l)
i + u

(l)
i + r

(l)
i,j , (5)

where j ∈ [Nl+1], and r
(l)
i,j is a random vector such that,

∑

j∈[Nl+1]

r
(l)
i,j = 0 (6)

for each i ∈ [Nl]. The role of additive secret sharing is not only to mask the model to provide privacy against
collusions between the server and the users, but also to maintain the accuracy of aggregation by making the sum of
the received data over the users in each group equal to the original data (before additive secret sharing), as the
random vectors in (6) cancel out.

In addition, each user holds a variable corresponding to the aggregated masked models from the previous group. For
user i in group l, this variable is represented by s̃

(l)
i . At each stage of Turbo-Aggregate, users in the active group

update and propagate these variables to the next group. Aggregation of these masked models is defined via the
recursive relation,

s̃
(l)
i =

1

Nl−1

∑

j∈[Nl−1]

s̃
(l−1)
j +

∑

j∈Ul−1

x̃
(l−1)
j,i . (7)

at user i in group l > 1, whereas the initial aggregation at group l = 1 is set as s̃
(1)
i = 0, for i ∈ [N1]. While

computing (7), any missing values in {s̃(l−1)j }j∈[Nl−1] (due to the users dropped in group l− 1) is reconstructed via
the recovery technique presented in Section III-C.

User i in group l then sends the aggregated value in (7) to each user in group l + 1. The average of the aggregated
values of users in group l includes the aggregation of the models of users in up to group l − 1, plus the individual
random masks sent from the server. This can be observed by defining a partial summation,

s(l+1) =
1

Nl

∑

i∈[Nl]

s̃
(l)
i (8)

=
1

Nl

∑

i∈[Nl]

(
1

Nl−1

∑

j∈[Nl−1]

s̃
(l−1)
j +

∑

j∈Ul
x̃
(l−1)
j,i

)

=
1

Nl−1

∑

j∈[Nl−1]

s̃
(l−1)
j +

∑

j∈Ul
x
(l−1)
j +

∑

j∈Ul
u
(l−1)
j (9)

= s(l) +
∑

j∈Ul
x
(l−1)
j +

∑

j∈Ul
u
(l−1)
j (10)

where (9) follows from (6). With the initial partial summation s(2) = 1
N1

∑
i∈[N1]

s̃
(1)
i = 0, one can show that

s(l+1) is equal to the aggregation of the models of users in up to group l− 1, masked by the randomness sent from
the server,

s(l+1) =
∑

m∈[l−1]

∑

j∈Um
x
(m)
j +

∑

m∈[l−1]

∑

j∈Um
u
(m)
j . (11)
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At the final stage, the server obtains the final aggregate value from (11) and removes the added randomness∑
m∈[L]

∑
j∈Um u

(m)
j . During the process, the server learns only the final sum. Therefore, this process can securely

compute the aggregation of all user models.

This approach works well if no user drops out during the execution of the protocol. On the other hand, the protocol
will terminate if any party fails to complete its part. For instance, if user j in the (l + 1)-th group drops out, the
random vectors masking the models of the l-th group in the summation (9) cannot be cancelled out. In the following,
we propose a novel recovery technique that is robust to dropped or delayed users, based on coding theory principles.

C. Adding redundancies to recover the data of dropped or delayed users

The main intuition behind our recovery strategy is to encode the additive secret shares (masked models) in a way
that guarantees secure aggregation when users are dropped or delayed. The key challenge for this problem is that
one cannot simply use error correcting codes, as the code should be applied after the secrets are created, and the
coding technique should enable the secrets to be aggregated. To solve this problem, we propose to leverage Lagrange
coding, which is a recently introduced technique that satisfies these requirements [11]. It encodes a given set of
K vectors (v1, . . . ,vK) by using a Lagrange interpolation polynomial. One can view this as embedding a given
set of vectors on a Lagrange polynomial, such that each encoded value represents a point on the polynomial. The
resulting encoding enables a set of users to compute a given polynomial function h on the encoded data in a way
that any individual computation {h(vi)}i∈[K] can be reconstructed using any subset of deg(h)(K + 1) + 1 other
computations. The reconstruction is done through polynomial interpolation. Therefore, one can reconstruct any
missing value as long as a sufficient number of other computations are available, i.e., enough number of points are
available to interpolate the polynomial. In our problem of gradient aggregation, the function of interest, h, would be
linear and accordingly have degree 1, since it corresponds to the summation of all individual gradient vectors.

Turbo-Aggregate utilizes Lagrange coding for recovery against user dropouts, via a novel strategy that encodes
the secret shared values to compute secure aggregation. More specifically, in Turbo-Aggregate, the encoding is
performed as follows. Initially, user i in the l-th group forms a Lagrange interpolation polynomial f (l)i : Fq → Fdq
of degree Nl+1 such that f (l)i (α

(l+1)
j ) = x̃

(l)
i,j for j ∈ [Nl+1], where α(l+1)

j is an evaluation point allocated to user
j ∈ [Nl+1] in group l+ 1. Fq represents a finite field each element of the model vector belongs to, and q is a field
size. This is accomplished by letting f (l)i be the Lagrange interpolation polynomial,

f
(l)
i (z) =

∑

j∈[Nl+1]

x̃
(l)
i,j ·

∏

k∈[Nl+1]\{j}

z−α(l+1)
k

α
(l+1)
j −α(l+1)

k

. (12)

Then, we allocate another set of Nl+1 distinct evaluation points {β(l+1)
j }j∈[Nl+1] from Fq such that {β(l+1)

j }j∈[Nl+1]∩
{α(l+1)

j }j∈[Nl+1] = ∅. Next, user i ∈ [Nl] in the l-th group generates the encoded data,

x̄
(l)
i,j = f

(l)
i (β

(l+1)
j ) (13)

for each j ∈ [Nl+1], and sends the coded vector, x̄(l)
i,j , to user j in (l + 1)-th group.

In addition, user i ∈ [Nl] in group l aggregates the encoded models {x̄(l−1)
j,i }j∈Ul−1

received from the previous
stage with the partial summation s(l),

s̄
(l)
i =

1

Nl−1

∑

j∈[Nl−1]

s̃
(l−1)
j +

∑

j∈Ul−1

x̄
(l−1)
j,i

= s(l) +
∑

j∈Ul−1

x̄
(l−1)
j,i (14)

The summation of the masked models in (7) and the summation of the coded models in (14) can be viewed as
evaluations of a polynomial g(l) such that,

s̃
(l)
i = g(l)(α

(l)
i ) (15)

s̄
(l)
i = g(l)(β

(l)
i ) (16)

for i ∈ [Nl], where g(l)(z) = s(l) +
∑
j∈Ul−1

f
(l−1)
j (z) is a polynomial function with degree at most Nl − 1. Then,

user i ∈ [Nl] sends these two summations to users in group l + 1. We note that each user in group l has two
evaluations of g(l), hence users in group l + 1 should receive two evaluations of g(l) from each user in group l.

8
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Algorithm 1 Turbo-Aggregate

input Local models x
(l)
i of users i ∈ [Nl] in group l ∈ [L].

output Aggregated model
∑

l∈[L]

∑
i∈Ul

x
(l)
i .

1: for group l = 1, . . . , L do
2: for user i = 1, . . . , Nl do
3: Compute the masked model {x̃(l)

i,j}l∈[Nl+1] from (5).
4: Generate the encoded model {x̄(l)

i,j}j∈[Nl+1] from (13).
5: if l = 1 then
6: Initialize s̃

(1)
i = s̄

(1)
i = 0.

7: else
8: Reconstruct the missing values in {s̃(l−1)

k }k∈[Nl−1] due to the dropped users in group l − 1.
9: Update the aggregate value s̃

(l)
i from (7).

10: Compute the coded aggregate value s̄
(l)
i from (14).

11: Send {x̃(l)
i,j ,x̄

(l)
i,j ,̃s

(l)
i , s̄

(l)
i } to user j ∈ [Nl+1] in group l+1 (j ∈ [Nfinal] if l = L).

12: for user i = 1, . . . , Nfinal do
13: Reconstruct the missing values in {s̃(L)

k }k∈[L] due to the dropped users in group L.
14: Compute s̃

(final)
i from (17) and s̄

(final)
i from (18).

15: Send {s̃(final)
i , s̄

(final)
i } to the server.

16: Server computes the final aggregated model from (19).

Then, each user in group l + 1 reconstructs the missing terms in {s̃(l)i }i∈[Nl] (caused by the users dropped in the
previous stage), computes the partial sum in (8), and then updates the aggregate term as in (7). Our coding strategy
ensures that each user in group l + 1 can reconstruct each term in {s̃(l)i }i∈[Nl], as long as they receive at least Nl
evaluations from the previous stage. As a result, Turbo-Aggregate can tolerate up to half of the users dropping at
each stage.

D. Final aggregation and the overall Turbo-Aggregate protocol

For the final aggregation, we need a dummy stage to securely compute the aggregation of all user models, especially
for the privacy of the trained models of users in group L. To do so, we arbitrarily select a set of users who will
receive and aggregate the models sent from the users in group L. They can be any surviving user who has participated
in the protocol, and will be called user j ∈ [Nfinal] in the final stage, where Nfinal is the number of users selected.

During this phase, users in group L mask their own model with additive secret sharing by using (5), and aggregate
the models received from the users in group (L − 1) by using (7) and (14). Then user i from group L sends
{x̃(L)

i,j , x̄
(L)
i,j , s̃

(L)
i , s̄

(L)
i } to user j in the final stage.

Upon receiving the set of messages, user j ∈ [Nfinal] in the final stage recovers the partial summations {s̃(L)i }i∈[NL],
aggregates them with the masked models,

s̃
(final)
j =

1

NL

∑

i∈[NL]

s̃
(L)
i +

∑

i∈UL
x̃
(L)
i,j , (17)

s̄
(final)
j =

1

NL

∑

i∈[NL]

s̃
(L)
i +

∑

i∈UL
x̄
(L)
i,j , (18)

and sends the resulting {s̃(final)j , s̄
(final)
j } to the server.

The server then recovers the summations {s̃(final)j }j∈[Nfinal]. Note that the server can reconstruct any missing
aggregation in (17) using the set of received values (17) and (18) even in the case when some users in the final
stage drop out. Finally, the server computes the average of the summations from (17) and removes the random
masks

∑
m∈[L]

∑
j∈Um u

(m)
j from the aggregate, which, as can be observed from (8)-(11), is equal to the aggregate

of the individual models of all surviving users,
1

Nfinal

∑

j∈[Nfinal]

s̃
(final)
j −

∑

m∈[L]

∑

j∈Um
u
(m)
j =

∑

m∈[L]

∑

j∈Um
x
(m)
j . (19)

Having all above steps, the overall Turbo-Aggregate protocol can now be presented in Algorithm 1.

9
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Fig. 3: Example with N = 9 users and L = 3 groups, with 3 users per group. User 3 in group 2 drops during
protocol execution.

x
(1)
1

x
(2)
1

x
(3)
1

x
(1)
2

x
(1)
3

x
(2)
2

x
(2)
3

x
(3)
2

x
(3)
3

server

Group 1 Group 2

Group 3

{x̃(1)
1,j}j∈[3]

{x̄(1)
1,j}j∈[3]

s̃
(1)
1

s̄
(1)
1

Fig. 4: Illustration of the computations performed by user 1 in group 1, who then sends {x̃(1)
1,j , x̄

(1)
1,j , s̃

(1)
1 , s̄

(1)
1 } to

user j ∈ [3] in group 2 (using pairwise keys through the server).

IV. An Illustrative Example

We next demonstrate the execution of Turbo-Aggregate through an illustrative example. Consider the network in
Figure 3 with N = 9 users partitioned into L = 3 groups with Nl = 3 (l ∈ [3]) users per group, and assume that
user 3 in group 2 drops during protocol execution.

In the first stage, user i ∈ [3] in group 1 masks its model x(1)
i using additive masking as in (5) and computes

{x̃(1)
i,j }j∈[3]. Then, the user generates the encoded models, {x̄(1)

i,j }j∈[3], by using the Lagrange polynomial in (12).
Finally, the user initializes s̃

(1)
i = s̄

(1)
i = 0, and sends {x̃(1)

i,j , x̄
(1)
i,j , s̃

(1)
i , s̄

(1)
i } to user j ∈ [3] in group 2. Figure 4

demonstrates this stage for one user.

In the second stage, user j ∈ [3] in group 2 generates the masked models {x̃(2)
j,k}k∈[3], and the coded models

{x̄(2)
j,k}k∈[3], by using (5) and (13), respectively. Next, the user aggregates the messages received from group 1,

by computing, s̃
(2)
j = 1

3

∑
i∈[3] s̃

(1)
i +

∑
i∈[3] x̃

(1)
i,j and s̄

(2)
j = 1

3

∑
i∈[3] s̃

(1)
i +

∑
i∈[3] x̄

(1)
i,j . Figure 5 shows this

aggregation phase for one user. Finally, user j sends {x̃(2)
j,k, x̄

(2)
j,k, s̃

(2)
j , s̄

(2)
j } to user k ∈ [3] in group 3. However,

user 3 (in group 2) drops out during the execution of this stage and fails to complete its part.

In the third stage, user k ∈ [3] in group 3 generates the masked models {x̃(3)
k,t}t∈[3] and the coded models {x̄(3)

k,t}t∈[3].
Then, the user runs a recovery phase due to the dropped user in group 2. This is facilitated by the Lagrange
coding technique. Specifically, user k can decode the missing value s̃

(2)
3 = g(2)(α

(2)
3 ) due to the dropped user,

10
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∑
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x̃
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x̄
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Fig. 5: The aggregation phase for user 1 in group 2. After receiving the set of messages
{
x̃
(1)
i,1 , x̄

(1)
i,1 , s̃

(1)
i , s̄

(1)
i

}
i∈[3]

from the previous stage, the user computes the aggregated values s̃
(2)
1 and s̄

(2)
1 (note that this is an aggregation of

the masked values).

by using the four evaluations {s̃(2)1 , s̄
(2)
1 , s̃

(2)
2 , s̄

(2)
2 } = {g(2)(α(2)

1 ), g(2)(β
(2)
1 ), g(2)(α

(2)
2 ), g(2)(β

(2)
2 )} received from

the remaining users in group 2. Then, user k aggregates the received and reconstructed values by computing
s̃
(3)
k = 1

3

∑
j∈[3] s̃

(2)
j +

∑
j∈[2] x̃

(2)
j,k and s̄

(3)
k = 1

3

∑
j∈[3] s̃

(2)
j +

∑
j∈[2] x̄

(2)
j,k .

In the final stage, Turbo-Aggregate selects a set of surviving users to aggregate the models of group 3. Without loss
of generality, we assume these are the users in group 1. Next, user k ∈ [3] from group 3 sends {x̃(3)

k,t , x̄
(3)
k,t , s̃

(3)
k , s̄

(3)
k }

to user t ∈ [3] in the final group. Then, user t computes the aggregation, s̃(final)t = 1
3

∑
k∈[3] s̃

(3)
k +

∑
k∈[3] x̃

(3)
k,t

and s̄
(final)
t = 1

3

∑
k∈[3] s̃

(3)
k +

∑
k∈[3] x̄

(3)
k,t , and sends {s̃(final)t , s̄

(final)
t } to the server.

Finally, the server computes the average of the summations received from the final group and removes the added
randomness, which is equal to the aggregate of the original models of the surviving users.

1

3

∑

t∈[3]
s̃
(final)
t −

∑

i∈[3]
u
(3)
i −

∑

j∈[2]
u
(2)
j −

∑

k∈[3]
u
(3)
k

=
∑

i∈[3]
x
(1)
i +

∑

j∈[2]
x
(2)
j +

∑

k∈[3]
x
(3)
k .

V. Theoretical Guarantees of Turbo-Aggregate

In this section, we state our main results for the theoretical performance guarantees of Turbo-Aggregate. Our first
result is on the communication and computation overhead of secure aggregation with Turbo-Aggregate.

Theorem 1: Consider a mobile network with N users and let Nl = logN for all l ∈ [L] and L = N/ logN . Then,
the aggregation overhead of Turbo-Aggregate is O(N logN).

Proof 1: At stage l ∈ [N/ logN ], each of the logN senders in group l sends a message to each of the logN receivers
in group l + 1, which has a communication cost of O((logN)2). Since there are L = N/ logN stages, overall the
communication overhead is O(N logN). The computation overhead per user can be broken up into three parts: (1)
masking the model with additive secret sharing has a computational overhead of logN , (2) encoding the masked
models with Lagrange coding has a computational overhead that is at most O(logN log2 logN log log logN) [11],
and (3) decoding to recover the information of the dropped users has a cost of O(p logN log2 logN log log logN),
where p is the dropout rate, which follows from the decoding cost of Lagrange coding [11]. These computations are
carried out in parallel by the users at each group. Since there are L = N/ logN groups, the total execution time
for masking, encoding and decoding scales with respect to O

(
N(1 + p) log2 logN log log logN

)
, which is almost

linear in the number of users.

11
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Remark 1: The time cost for communication can be reduced from O(N logN) to O(N) by paralellization, i.e.,
allowing communication to take place in parallel. That is, users at any given group can send their messages to
the next group simultaneously, in a parallel fashion. The completion time for this process is O(logN) per group,
and for a total number of L = N/ logN groups the time cost would be O(N). Messages can be delivered via
direct user-to-user communication links or routed by a server with a sufficiently large bandwidth. We experimentally
demonstrate this linearity in Section VI.

Our next result is on the robustness against user dropouts.

Theorem 2: Turbo-Aggregate guarantees the accuracy of full model aggregation against p ≤ 1
2 user dropout rate. In

other words, Turbo-Aggregate is resilient against up to a total number of N
2 user dropouts.

Proof 2: Turbo-Aggregate guarantees the accuracy of full model aggregation due to the relation given in (10) and
(11). However, this requires users in each group l ∈ [L] to be able to reconstruct the term s̃

(l−1)
i of all the users

dropped in stage l − 1, i.e., the previous stage. This is facilitated by our encoding procedure as follows. At stage
l, each user in group l + 1 receives 2(Nl −Dl) evaluations of the polynomial g(l), where Dl is the number of
users dropped in group l. Since the degree of g(l) is at most Nl − 1, one can reconstruct s̃(l)i for all i ∈ [Nl] using
polynomial interpolation, as long as 2(Nl −Dl) ≥ Nl. Therefore, Turbo-Aggregate guarantees the accuracy of full
model aggregation as long as Nl ≥ 2Dl for all l ∈ [L].

Remark 2: Turbo-Aggregate can tolerate a larger dropout rate than 50% by adding more redundancies during
the coding process. Specifically, when we generate and communicate k set of evaluations, we can recover the
desired partial aggregation by decoding the polynomial in (15) as long as each user receives Nl evaluations, i.e.,
(1 + k)(Nl − pNl) ≥ Nl. Therefore, Turbo-Aggregate can tolerate up to p ≤ k

1+k user dropout rate, where p = 50%
with the current set of redundancies, i.e., k = 1. As a result, Turbo-Aggregate can provide a trade-off between
communication and robustness. That is, allowing more communication to create a larger amount of redundancy can
provide tolerance against a larger fraction of user dropouts.

Our final analysis is on the privacy of individual models. We consider three different security scenarios, which are
users-only, server-only, and users-server collusion. For all scenarios, Turbo-Aggregate preserves the privacy of a
local model of any honest user when the number of adversaries is less than half of the total number of users, which
is described in Theorem 3. In the following, we discuss the privacy protection of Turbo-Aggregate against specific
attack scenarios.

Users-only adversary. In this case, a subset of mobile users is adversarial and can collaborate to learn information
about the models of honest users. The server is honest and does not collaborate with the adversaries.

Privacy. In Turbo-Aggregate, the individual model of each honest user is masked by a random vector sent by the
server. This vector is only known by the server and the corresponding honest user. Since the server is honest, i.e.,
does not collaborate with the adversaries, the adversaries cannot learn any information about the individual models
of the honest users.

Server-only adversary. In this case, the server is adversarial and tries to learn information about the local models
of the honest users. The mobile users are honest and do not collude with the server.

Privacy. Since the server does not collude with any of the mobile users, in this case, the only information collected
by the server is the secret shares of the aggregate model of the whole network, sent by the users in the final group.
As a result, the server cannot learn any information about the individual user models, beyond the aggregate of all
users.

Users-server collusion. In this case, the server as well as up to a number of T < N
2 mobile users are adversarial

and may collude with each other to learn the models of the honest users.

Privacy. In this case, the privacy guarantee for each individual model follows from Theorem 3 described below,
which is based on the random user assignment policy combined with a union bound argument. In particular, to learn
an individual model, Turbo-Aggregate requires the secret shares from at least half of the users in the corresponding
group, due to the additive secret sharing and Lagrange coding strategy. On the other hand, Theorem 3 shows that
with high probability, the total number of adversaries at each group is less than half of the total number of users
within the group. As a result, the individual model of each honest user is protected, as long as no more than T < N

2
mobile users collude. The only information the server can learn in this case is the aggregate of the individual models
of the honest users within a group.

12
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Theorem 3: When the number of adversaries, T , is less than half of the number of users, i.e., T = N( 1
2 − ε) for

ε > 0, the probability that an adversary can learn a local model of any honest user is bounded by exp (−2ε2)
logN , which

goes to zero with sufficiently large number of users.

Proof 3: Turbo-Aggregate employs an unbiased random grouping strategy to allocate the users into each group
l ∈ [L] where L = N

logN and Nl = logN . Let Al be an event that an adversary can learn a local model of an
honest user in group l − 1. First, note that adversaries in groups l′ ≤ l − 1 cannot learn any information about a
user in group l − 1 because communication in Turbo-Aggregate is directed from users in lower groups to users in
upper groups. Moreover, adversaries in groups l′ ≥ l + 1 can learn nothing beyond the partial summation, s(l

′).
Hence, information breach of a local model in group l − 1 occurs only when the number of adversaries in group l
is greater or equal to half of the number of users in group l. In this case, adversaries can obtain sufficient number
of evaluation points to recover all of the masked models belonging to a certain user, x̃(l−1)

i,j in (5) for all j ∈ Nl.
Then, they can recover the original model x(l−1)

i by adding all of the masked models and removing the randomness
u
(l−1)
i . Therefore, P[Al] = P[The number of adversaries in group l ≥ Nl

2 ].

To calculate P[Al], we consider a random grouping strategy allocating N users to N
logN groups whose size is logN

for each group, while T out of N users are adversaries. Let Xl be a random variable corresponding to the number of
adversaries in group l ∈ [logN ]. Then, Xl follows a hypergeometric distribution with parameters (N,T, logN) and
its tail probability is bounded as P[Xl ≥ logN

2 ] ≤ exp (−2( 1
2 − T

N )2 logN) = exp (−2ε2 logN) [42]. If the number
of adversaries in group l is larger than or equal to half the number of users in group l, then they can recover all of
the additively secret shared model values of a certain user in group l− 1. Therefore, P[Al] = P[Xl ≥ logN

2 ] and the
probability of privacy leakage of any local model is given by P[

⋃
l∈[L]

Al] ≤
∑
l∈[L]

P[Al] ≤ N
logN exp (−2ε2 logN) =

exp (−2ε2)
logN .

Finally, we note that the secure aggregation framework of [1] can also be applied to a similar multi-group structure,
by partitioning the network into multiple groups and applying the secure aggregation protocol from [1] to each group.
The difference between this setup ([1] applied to a multi-group structure) and our framework is that Turbo-Aggregate
provides full privacy, i.e., server only learns the final aggregate of all groups (all N users), whereas in the multi-group
version of [1], the server would learn the aggregate model of each group. Therefore, the two setups, i.e., [1] applied
to a multi-group structure vs. Turbo-Aggregate, are not comparable.

VI. Experiments

In this section, we evaluate the performance of Turbo-Aggregate by experiments over up to N = 200 users for
various user dropout rates, bandwidth conditions, and model size.

A. Experiment setup

Platform. In our experiments, we implement Turbo-Aggregate on a distributed platform and examine its total
running time with respect to the state-of-the-art, which is the secure aggregation protocol from [1] as described in
(3). The dimension of the individual models, d, is fixed to 100, 000 with 32 bit entries. Computation is performed
in a distributed manner over the Amazon EC2 cloud using m3.medium machine instances. Communication is
implemented using the MPI4Py [43] message passing interface on Python. In order to simulate mobile network
conditions for bandwidth-constrained mobile environments, we report our results for various bandwidth communication
scenarios between the machine instances. The default setting for the maximum bandwidth constraint of m3.medium
machine instances is 1Gbps, and we additionally measure the total training time while gradually decreasing the
maximum bandwidth from 1Gbps to 100Mbps.

Modeling user dropouts. To model the dropped users in Turbo-Aggregate, we randomly select pNl users out of
Nl users in group l ∈ [L] where p is the dropout rate. We consider the worst case scenario where the selected users
drop after receiving the messages sent from the previous group (users in group l− 1) and do not complete their part
in the protocol, i.e., send their messages to machines in group l + 1. To model the dropped users in the benchmark
protocol, we follow the scenario in [1]. We randomly select pN users out of N users, which artificially drop after
sending their masked model yu in (2). In this case, the server has to reconstruct the pairwise seeds corresponding
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Fig. 6: Total running time of Turbo-Aggregate versus the benchmark protocol from [1] as the number of users
increases, for various user dropout rates.

to the dropped user, {su,v}v∈[N ]\{u}, and execute the pseudo random generator using the reconstructed seeds to
remove the corresponding random masks.

Implemented Schemes. We implement three schemes for performance evaluation.

1) Turbo-Aggregate: For our first implementation, we directly implement Turbo-Aggregate described in Algorithm
1, where L execution stages are performed sequentially. At stage l ∈ [L], users in group l communicate with
users in group l+ 1, and communication can take place in parallel. This provides a complete comparison with
the benchmark protocol.

2) Turbo-Aggregate+: We can further optimize (speed up) Turbo-Aggregate by exploiting two observations.
First, since x̃

(l)
i,j from (5) and x̄

(l)
i,j from (13) do not depend on the information from the previous groups,

users can generate and send them simultaneously, which can be performed in parallel across all of the groups.
The time cost for this communication is O(logN). Second, in Turbo-Aggregate, user i in group l needs to
send {s̃(l)i , s̄

(l)
i } to every user j ∈ [N(l+1)] in group l + 1. This can be carried out in a more efficient manner,

by utilizing broadcasting. Specifically, user i can broadcast {s̃(l)i , s̄
(l)
i } to the users in group l + 1, whose

complexity is O(1). Since there are L = N/ logN stages where each of the logN senders broadcast, overall
the time cost of this communication is O(N). In our experiments, we also implement this optimized version
of Turbo-Aggregate, which we term Turbo-Aggregate+.

3) Benchmark: We implement the benchmark protocol [1] where a server mediates the communication between
users to exchange information required for key agreements (rounds of advertising and sharing keys) and users
send their own masked models to the server (masked input collection). One can also speed up the rounds of
advertising and sharing keys by allowing users to communicate in parallel. However, as demonstrated below,
this has minimal effect on the total running time of the protocol, as the total running time is dominated by the
cost of generating pairwise masks (the computational cost of expanding the pseudo random generator seeds)
and not the actual duration of communication. This has also been observed in [1]. That is, communication cost
for key agreements is essentially negligible compared to the computation cost, both of which are quadratic in
the number of users.

B. Performance evaluation

For performance analysis, we measure the total running time for secure aggregation with each protocol while
increasing the number of users N gradually for different user dropout rates. Our results are demonstrated in Figure 6.
We make the following key observations.

• Total running time of Turbo-Aggregate and Turbo-Aggregate+ are almost linear in the number of users, while
for the benchmark protocol, the total running time is quadratic in the number of users.

• Turbo-Aggregate and Turbo-Aggregate+ provide a stable total running time as the user dropout rate increases.
This is because the encoding and decoding time of Turbo-Aggregate do not change significantly when the

14



A PREPRINT - FEBRUARY 12, 2020

DROP RATE ENC. DEC. COMM. TOTAL

10% 2181 1673 23989 27843
30% 2052 2408 24213 28673
50% 2054 3058 24191 29303

TABLE I: Breakdown of the running time (ms) of Turbo-Aggregate with N = 200 users.

DROP RATE ENC. DEC. COMM. TOTAL

10% 2209 1673 6167 10049
30% 1928 2437 6457 10822
50% 2021 3059 6362 11442

TABLE II: Breakdown of the running time (ms) of Turbo-Aggregate+ with N = 200 users.

DROP COMM. OF RECON. OTHER TOTAL
RATE MODELS AT SERVER

10% 8670 53781 832 63284
30% 8470 101256 742 110468
50% 8332 151183 800 160315

TABLE III: Breakdown of the running time (ms) of the benchmark protocol [1] with N = 200 users.

dropout rate increases, and we do not require additional information to be transmitted from the remaining users
when some users are dropped or delayed. On the other hand, for the benchmark protocol, the running time
significantly increases as the dropout rate increases.

• Turbo-Aggregate and Turbo-Aggregate+ provide a speedup of up to 5.5× and 14× over the benchmark,
respectively, for a user dropout rate of up to 50% with N = 200 users. This gain is expected to increase further
as the number of users increases.

To further illustrate the impact of user dropouts, we present the breakdown of the total running time of Turbo-
Aggregate, Turbo-Aggregate+, and the benchmark protocol in Tables I, II and III, respectively, for the case of
N = 200 users. Tables I and II demonstrate that, for Turbo-Aggregate and Turbo-Aggregate+, the encoding time
stays constant with respect to the user dropout rate, and decoding time is linear in the number of dropout users,
which takes only a small portion of the total running time. Table III shows that, for the benchmark protocol, total
running time is dominated by the reconstruction of pairwise masks (using a pseudo random generator) at the server,
which has a computational overhead of O

(
(N −D) +D(N −D)

)
where D is the number of dropout users [1]. This

leads to an increased running time as the number of user dropouts increases. The running time of Turbo-Aggregate,
on the other hand, is relatively stable against varying user dropout rates, as the communication time is independent of
the user dropout rate and the only additional overhead comes from the decoding phase, whose overall contribution is
minimal. Table II shows that communication time of Turbo-Aggregate+ is reduced to a fourth of the communication
time of original Turbo-Aggregate, and is even less than the communication time of the benchmark protocol.

C. Impact of model size, bandwidth and stragglers

Model size. For simulating with various model sizes, we additionally experiment with smaller and larger dimensions
for the individual models, by selecting d = 50, 000 and 150, 000. As demonstrated in Figure 7a, we observe that for
this setup, all three schemes have a total running time that is linear to the model size. For various model sizes, the
gain of Turbo-Aggregate and Turbo-Aggregate+ are almost constant. Turbo-Aggregate provides a speedup of up to
5.6× and 5.5× over the benchmark with d = 50, 000 and d = 150, 000, respectively. Turbo-Aggregate+ provides a
speedup of up to 15× and 14× over the benchmark with d = 50, 000 and d = 150, 000, respectively.

Bandwidth. For simulating various bandwidth conditions in mobile network environments, we measure the total
running time while decreasing the maximum bandwidth constraint for the communication links between the Amazon
EC2 machine instances from 1Gbps to 100Mbps. In Figure 7b, we observe that the gain of Turbo-Aggregate and
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(a) Total running time of Turbo-Aggregate versus the
benchmark protocol from [1] as the model size increases,
for various user dropout rates.

(b) Total running time of Turbo-Aggregate versus the
benchmark protocol from [1] as the maximum bandwidth
increases, for various user dropout rates.

Fig. 7: Total running time of Turbo-Aggregate versus the benchmark protocol from [1] for various key network
parameters. The number of users is fixed to N = 200.

Turbo-Aggregate+ over the benchmark decrease as the maximum bandwidth constraint decreases. This is because
for the benchmark, the major bottleneck is the running time for the reconstruction of pairwise masks, which remains
constant over various bandwidth conditions. On the other hand, for Turbo-Aggregate, the total running time is
dominated by the communication time which is a reciprocal proportion to the bandwidth. This leads to a significantly
decreased gain of Turbo-Aggregate over the benchmark, 1.9× with the maximum bandwidth constraint of 100Mbps.
However, total running time of Turbo-Aggregate+ increases moderately as the maximum bandwidth constraint
decreases because communication time of Turbo-Aggregate+ is even less than the communication time of the
benchmark. Turbo-Aggregate+ still provides a speedup of 5.6× over the benchmark with the maximum bandwidth
constraint of 100Mbps. In real setting, this gain is expected to increase further as the number of users increases.

Stragglers or delayed users. Beyond user dropouts, in a federated learning environment, stragglers or slow users
can also significantly impact the total running time. Turbo-Aggregate can effectively handle these straggling users
by simply treating them as user dropouts. At each stage of the aggregation, if some users send their messages later
than a certain threshold, users at the higher group can start to decode those messages without waiting for stragglers.
This has negligible impact on the total running time because Turbo-Aggregate provides a stable total running time
as the number of dropout users increases. For the benchmark, however, stragglers can significantly delay the total
running time even though it can also handle stragglers as dropout users. This is because the running time for the
reconstruction of pairwise masks corresponding to the dropout users, which is the dominant time consuming part of
the benchmark protocol, significantly increases as the number of dropout users increases.

VII. Conclusion

We proposed Turbo-Aggregate that theoretically achieves a secure aggregation complexity of O(N logN), as opposed
to the prior complexity of O(N2), while tolerating up to a user dropout rate of 50%. Turbo-Aggregate leverages
three main ingredients: a multi-group circular strategy for efficient model aggregation; additive secret sharing to
protect model privacy; adding aggregation redundancy via Lagrange coding to enable robustness against delayed or
dropped users. Furthermore, via experiments over Amazon EC2, we demonstrated that Turbo-Aggregate achieves a
total running time that grows almost linearly in the number of users, and provides up to 14× speedup over the
state-of-the-art scheme with N = 200 users. We also experimentally evaluated the effect of bandwidth and model
size on the performance of Turbo-Aggregate and benchmark schemes.

Turbo-Aggregate is particularly suitable for wireless topologies, in which network conditions and user availability can
vary rapidly. Turbo-Aggregate can provide a resilient framework to handle such unreliable network conditions. One
may also leverage the geographic heterogeneity of wireless networks to better form the communication groups in
Turbo-Aggregate. An interesting future direction would be to explore how to optimize the multi-group communication
structure of Turbo-Aggregate based on the specific topology of the users, as well as the network conditions.
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Another future direction would be to design aggregation protocols that adapt to new users that join the network.
Current secure aggregation frameworks, while being robust to user dropouts, cannot accommodate new users in
real-time, as this requires a new system configuration for additive masking and pairwise secret key generation phases.
As such, one needs to design a federated learning framework that can adapt to such dynamic network topologies.
This consists of developing a self-configurable protocol that can accommodate new users on-the-go and adapt to the
changes in the network topology, by re-configuring the system specifications such as the multi-group structure and
coding setup, to ensure that the resilience and privacy guarantees are satisfied.

In this paper, our focus was on honest but curious adversaries, i.e., the adversaries try to learn information about
others but do not inject false information into the protocol, for instance, via modifying their local datasets. The setup
when adversaries can modify their local datasets to influence the global model has been studied in the literature in
the context of non-secure federated learning [44], [45]. These frameworks often rely on comparing the distances
between the local updates of the users, and excluding the outlier instances. Extending these frameworks to the secure
federated learning paradigm is an interesting future direction, and requires additional challenges to be addressed,
such as computing the distances between individual models of the users in a secure computation framework, without
revealing the actual models.

Finally, Turbo-Aggregate can use any linear MDS (maximum distance separable) code for creating aggregation
redundancies to enable robustness against delayed or dropped users. Lagrange coding is one example of a linear
MDS code where coding and addition can commute. An interesting future direction would be to explore how to
optimize the encoding and decoding complexity of linear MDS codes to speed up Turbo-Aggregate.
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