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4 Université de Paris, IRIF, CNRS, F-75006 Paris, France

Abstract. We present new classical and quantum algorithms for solv-
ing random subset-sum instances. First, we improve over the Becker-
Coron-Joux algorithm (EUROCRYPT 2011) from Õ

(
20.291n

)
down to

Õ
(
20.283n

)
, using more general representations with values in {−1, 0, 1, 2}.

Next, we improve the state of the art of quantum algorithms for this
problem in several directions. By combining the Howgrave-Graham-Joux
algorithm (EUROCRYPT 2010) and quantum search, we devise an al-

gorithm with asymptotic running time Õ
(
20.236n

)
, lower than the cost

of the quantum walk based on the same classical algorithm proposed by
Bernstein, Jeffery, Lange and Meurer (PQCRYPTO 2013). This algo-
rithm has the advantage of using classical memory with quantum ran-
dom access, while the previously known algorithms used the quantum
walk framework, and required quantum memory with quantum random
access.
We also propose new quantum walks for subset-sum, performing better
than the previous best time complexity of Õ

(
20.226n

)
given by Helm

and May (TQC 2018). We combine our new techniques to reach a time

Õ
(
20.216n

)
. This time is dependent on a heuristic on quantum walk up-

dates, formalized by Helm and May, that is also required by the previous
algorithms. We show how to partially overcome this heuristic, and we
obtain an algorithm with quantum time Õ

(
20.218n

)
requiring only the

standard classical subset-sum heuristics.

Keywords: subset-sum, representation technique, quantum search, quantum
walk, list merging.

1 Introduction

We study the subset-sum problem, also known as knapsack problem: given n inte-
gers a = (a1, . . . an), and a target integer S, find an n-bit vector e = (e1, . . . en) ∈
{0, 1}n such that e · a =

∑
i eiai = S. The density of the knapsack instance is

defined as d = n/(log2 maxi ai), and for a random instance a, it is related to the
number of solutions that one can expect.



The decision version of the knapsack problem is NP-complete [17]. Although
certain densities admit efficient algorithms, related to lattice reduction [28,29],
the best algorithms known for the knapsack problem when the density is close to
1 are exponential-time, which is why we name these instances “hard” knapsacks.
This problem underlies some cryptographic schemes aiming at post-quantum
security (see e.g. [30]), and is used as a building block in some quantum hidden
shift algorithms [7], which have some applications in quantum cryptanalysis of
isogeny-based [11] and symmetric cryptographic schemes [9].

In this paper, we focus on the case where d = 1, where expectedly a sin-
gle solution exists. Instead of naively looking for the solution e via exhaustive
search, in time 2n, Horowitz and Sahni [21] proposed to use a meet-in-the-middle
approach in 2n/2 time and memory. The idea is to find a collision between two
lists of 2n/2 subknapsacks, i.e. to merge these two lists for a single solution.
Schroeppel and Shamir [40] later improved this to a 4-list merge, in which the
memory complexity can be reduced down to 2n/4.

The Representation Technique. At EUROCRYPT 2010, Howgrave-Graham and
Joux [22] (HGJ) proposed a heuristic algorithm solving random subset-sum in-

stances in time Õ
(
20.337n

)
, thereby breaking the 2n/2 bound. Their key idea was

to represent the knapsack solution ambiguously as a sum of vectors in {0, 1}n.
This representation technique increases the search space size, allowing to merge
more lists, with new arbitrary constraints, thereby allowing for a more time-
efficient algorithm. The time complexity exponent is obtained by numerical op-
timization of the list sizes and constraints, assuming that the individual elements
obtained in the merging steps are well-distributed. This is the standard heuris-
tic of classical and quantum subset-sum algorithms. Later, Becker, Coron and
Joux [3] (BCJ) improved the asymptotic runtime down to Õ

(
20.291n

)
by allowing

even more representations, with vectors in {−1, 0, 1}n.
The BCJ representation technique is not only a tool for subset-sums, as

it has been used to speed up generic decoding algorithms, classically [32,4,33]
and quantumly [23]. Therefore, the subset-sum problem serves as the simplest
application of representations, and improving our understanding of the classical
and quantum algorithms may have consequences on these other generic problems.

Quantum Algorithms for the Subset-Sum Problem. Cryptosystems based on hard
subset-sums are natural candidates for post-quantum cryptography, but to un-
derstand precisely their security, we have to study the best generic algorithms for
solving subset-sums. The first quantum time speedup for this problem was ob-
tained in [6], with a quantum time Õ

(
20.241n

)
. The algorithm was based on the

HGJ algorithm. Later on, [19] devised an algorithm based on BCJ, running in

time Õ
(
20.226n

)
. Both algorithms use the corresponding classical merging struc-

ture, wrapped in a quantum walk on a Johnson graph, in the MNRS quantum
walk framework [31]. However, they suffer from two limitations.

First, both use the model of quantum memory with quantum random-access
(QRAQM), which is stronger than the standard quantum circuit model, as it
allows unit-time lookups in superposition of all the qubits in the circuit. The
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QRAQM model is used in most quantum walk algorithms to date, but its prac-
tical realizations are still unclear. With a more restrictive model, i.e. classical
memory with quantum random-access (QRACM), no quantum time speedup over
BCJ was previously known. This is not the case for some other hard problems in
post-quantum cryptography, e.g. heuristic lattice sieving for the Shortest Vector
Problem, where the best quantum algorithms to date require only QRACM [26].

Second, both use a conjecture (implicit in [6], made explicit in [19]) about
quantum walk updates. In short, the quantum walk maintains a data structure,
that contains a merging tree similar to HGJ (resp. BCJ), with lists of smaller
size. A quantum walk step is made of updates that changes an element in the
lowest-level lists, and requires to modify the upper levels accordingly, i.e. to track
the partial collisions that must be removed or added. In order to be efficient, the
update needs to run in polynomial time. Moreover, the resulting data structure
shall be a function of the lowest-level list, and not depend on the path taken in the
walk. The conjecture states that it should be possible to guarantee sound updates
without impacting the time complexity exponent. However, it does not seem an
easy task and the current literature on subset-sums lacks further justification or
workarounds.

Contributions. In this paper, we improve classical and quantum subset-sum
algorithms based on representations. We write these algorithms as sequences of
“merge-and-filter” operations, where lists of subknapsacks are first merged with
respect to an arbitrary constraint, then filtered to remove the subknapsacks that
cannot be part of a solution.

First, we propose a more time-efficient classical subset-sum algorithm based
on representations. We have two classical improvements: we revisit the previous
algorithms and show that some of the constraints they enforced were not needed,
and we use more general distributions by allowing “2”s in the representations.
Overall, we obtain a better time complexity exponent of 0.283.

Most of our contributions concern quantum algorithms. As a generic tool, we
introduce quantum filtering, which speeds up the filtering of representations with
a quantum search. We use this improvement in all our new quantum algorithms.

We give an improved quantum walk based on quantum filtering and our
extended {−1, 0, 1, 2} representations. Our best runtime exponent is 0.216, under
the quantum walk update heuristic of [19]. Next, we show how to overcome this
heuristic, by designing a new data structure for the vertices in the quantum walk,
and a new update procedure with guaranteed time. We remove this heuristic
from the previous algorithms [6,19] with no additional cost. However, we find
that removing it from our quantum walk increases its cost to 0.218.

In a different direction, we devise a new quantum subset-sum algorithm based
on HGJ, with time Õ

(
20.236n

)
. It is the first quantum time speedup on subset-

sums that is not based on a quantum walk. The algorithm performs instead a
depth-first traversal of the HGJ tree, using quantum search as its only building
block. Hence, by construction, it does not require the additional heuristic of [19]
and it only uses classical memory with quantum random-access, giving also the
first quantum time speedup for subset-sum in this memory model.
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A summary of our contributions is given in Table 15. All these complex-
ity exponents are obtained by numerical optimization. Our code is available at
https://github.com/xbonnetain/optimization-subset-sum.

Table 1. Previous and new algorithms for subset-sum, classical and quantum, with
time and memory exponents rounded upwards. We note that the removal of Heuris-
tic 2 in [6,19] comes from our new analysis in Section 6.4. QW: Quantum Walk. QS:
Quantum Search. CF: Constraint filtering (not studied in this paper). QF: Quantum
filtering.

Time
exp.

Memory
exp.

Represen-
tations

Memory
model

Techniques
Requires
Heur. 2

Reference

Classical

0.3370 0.3113 {0, 1} RAM [22]
0.2909 0.2909 {−1, 0, 1} RAM [3]
0.287 {−1, 0, 1} RAM CF [38]

0.2830 0.2830 {−1, 0, 1, 2} RAM Sec. 2.5

Quantum

0.241 0.241 {0, 1} QRAQM QW No [6] + Sec. 6.4
0.226 0.226 {−1, 0, 1} QRAQM QW No [19] + Sec. 6.4

0.2356 0.2356 {0, 1} QRACM QS + QF No Sec 4.3
0.2156 0.2110 {−1, 0, 1, 2} QRAQM QW + QF Yes Sec. 5.3
0.2182 0.2182 {−1, 0, 1, 2} QRAQM QW + QF No Sec. 6.4

Outline. In Section 2, we study classical algorithms. We review the represen-
tation technique, the HGJ algorithm and introduce our new {−1, 0, 1, 2} repre-
sentations to improve over [3]. In Section 3, we move to the quantum setting,
introduce some preliminaries and the previous quantum algorithms for subset-
sum. In Section 4, we present and study our new quantum algorithm based on
HGJ and quantum search. We give different optimizations and time-memory
tradeoffs. In Section 5, we present our new quantum algorithm based on a quan-
tum walk. Finally, in Section 6 we show how to overcome the quantum walk
update conjecture, up to a potential increase in the update cost. We conclude,
and give a summary of our new results in Section 7.

2 List Merging and Classical Subset-sum Algorithms

In this section, we remain in the classical realm. We introduce the standard
subset-sum notations and heuristics and give a new presentation of the HGJ

5 After this work, Alexander May has informed us that the thesis [15] contains unpub-
lished results using more symbols, with the best exponent of 0.2871 obtained with
the symbol set {−2,−1, 0, 1, 2}.
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algorithm, putting an emphasis on the merge-and-filter operation. We introduce
our extended {−1, 0, 1, 2} representations and detail our improvements over BCJ.

2.1 Notations and Conventions

Hereafter and in the rest of the paper, all time and memory complexities, classical
and quantum, are exponential in n. We use the soft-O notation Õ which removes
polynomial factors in n, and focus on the asymptotic exponent, relative to n. We
use negl(n) for any function that vanishes inverse-exponentially in n. We often

replace asymptotic exponential time and memory complexities (e.g. Õ (2αn)) by
their exponents (e.g. α). We use capital letters (e.g. L) and corresponding letters
(e.g. `) to denote the same value, in log2 and relatively to n: ` = log2(L)/n.

Definition 1 (Entropies and multinomial functions). We define the fol-
lowing functions:
Hamming Entropy: h(x) = −x log2 x− (1− x) log2(1− x)

Binomial: bin (ω, α) = h(α/ω)ω
2-way Entropy: g(x, y) = −x log2 x− y log2 y− (1−x− y) log2(1−x− y)

Trinomial: trin (ω, α, β) = g(α/ω, β/ω)ω
3-way Entropy: f(x, y, z) = −x log2 x− y log2 y − z log2 z−

(1− x− y − z) log2(1− x− y − z)
Quadrinomial: quadrin (ω, α, β, γ) = f(α/ω, β/ω, γ/ω)ω

Property 1 (Standard approximations). We have the following approximations,
asymptotically in n:

bin (ω, α) ' 1
n log2

(
ωn
αn

)
; trin (ω, α, β) ' 1

n log2

(
ωn

αn,βn

)
quadrin (ω, α, β, γ) ' 1

n log2

(
ωn

αn,βn,γn

)
Definition 2 (Distributions of knapsacks). A knapsack or subknapsack is
a vector e ∈ {−1, 0, 1, 2}n. The set of e with αn “-1”, (α + β − 2γ)n “1”, γn
“2” and (1− 2α−β+ γ)n “0” is denoted Dn[α, β, γ]. If γ = 0, we may omit the
third parameter. This coincides with the notation Dn[α, β] from [19].

Note that we always add vectors over the integers, and thus, the sum of two
vectors of Dn[∗, ∗, ∗] may contain unwanted symbols −2, 3 or 4.

Property 2 (Size of knapsack sets). We have:

1
n log2 |Dn[0, β, 0]| ' h(β) ; 1

n log2 |Dn[α, β, 0]| ' g(α, α+ β)

1
n log2 |Dn[α, β, γ]| ' f(α, α+ β − 2γ, γ) .

Subset-sum. The problem we will solve is defined as follows:

Definition 3 (Random subset-sum instance of weight n/2). Let a be cho-
sen uniformly at random from (ZN )

n
, where N ' 2n. Let e be chosen uniformly

at random from Dn[0, 1/2, 0]. Let t = a · e (mod N). Then (a, t) is a random
subset-sum instance. A solution is a vector e′ such that a · e′ = t (mod N).
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Sampling. Throughout this paper, we assume that we can classically sample uni-
formly at random from Dn[α, β, γ] in time poly(n). (Since αn, βn and γn will
in general not be integer, we suppose to have them rounded to the nearest inte-
ger.) This comes from an efficient bijection between representations and integers
(see Appendix A in the full version of the paper [8]). In addition, we can effi-
ciently produce the uniform superposition of vectors of Dn[α, β, γ], using poly(n)
quantum gates, and we can perform a quantum search among representations.

2.2 Merging and Filtering

In all subset-sum algorithms studied in this paper, we repeatedly sample vectors
with certain distributionsDn[∗, ∗, ∗], then combine them. LetD1 = Dn[α1, β1, γ1],
D2 = Dn[α2, β2, γ2] be two input distributions and D = Dn[α, β, γ] be a target.

Given two lists L1 ∈ D|L1|
1 and L2 ∈ D|L2|

2 , we define:

• the merged list L = L1 ./c L2 containing all vectors e = e1 + e2 such that:
e1 ∈ L1, e2 ∈ L2, (e1 + e2) · a = s mod M , s ≤ M is an arbitrary integer
and M ≈ 2cn (we write L1 ./c L2 because s is an arbitrary value, whose
choice is without incidence on the algorithm)
• the filtered list Lf = (L ∩ D) ⊆ L, containing the vectors with the target

distribution of 1,−1, 2 (the target D will always be clear from context).

In general, L is exponentially bigger than Lf and does not need to be written
down, as vectors can be filtered on the fly. The algorithms then repeat the
merge-and-filter operation on multiple levels, moving towards the distribution
Dn[0, 1/2] while increasing the bit-length of the modular constraint, until we
satisfy e · a = t mod 2n and obtain a solution. Note that this merging-and-
filtering view that we adopt, where the merged list is repeatedly sampled before
an element passes the filter, has some similarities with the ideas developed in
the withdrawn article [16].

The standard subset-sum heuristic assumes that vectors in Lf are drawn
independently, uniformly at random from D. It simplifies the complexity analysis
of both classical and quantum algorithms studied in this paper. Note that this
heuristic, which is backed by experiments, actually leads to provable probabilistic
algorithms in the classical setting (see [3, Theorem 2]). We adopt the version
of [19].

Heuristic 1 If input vectors are uniformly distributed in D1 × D2, then the
filtered pairs are uniformly distributed in D (more precisely, among the subset
of vectors in D satisfying the modular condition).

Filtering Representations. We note ` = (1/n) log2 |L|, and so on for `1, `2, `
f .

By Heuristic 1, the average sizes of L1, L2, L and Lf are related by:

• ` = `1 + `2 − c
• `f = ` + pf, where pf is negative and 2pfn is the probability that a pair

(e1, e2), drawn uniformly at random from D1 ×D2, has (e1 + e2) ∈ D.
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In particular, the occurrence of collisions in Lf is a negligible phenomenon, unless
`f approaches (log2 |D|/n) − c, which is the maximum number of vectors in D
with constraint c. For a given random knapsack problem, with high probability,
the size of any list built by sampling, merging and filtering remains very close
to its average (by a Chernoff bound and a union bound on all lists).

Here, pf depends only onD1, D2 andD. Working with this filtering probability
is especially useful for writing down our algorithm in Section 4. We give its
formula for {0, 1} representations below. Two similar results for {−1, 0, 1} and
{−1, 0, 1, 2} can be found in the full version of the paper [8].

Lemma 1 (Filtering HGJ-style representations). Let e1 ∈ Dn[0, α] and
e2 ∈ Dn[0, β] be drawn uniformly at random. The probability that e1 + e2 ∈
Dn[0, α+ β] is 0 if α+ β > 1, and 2pf1(α,β)n otherwise, with

pf1 (α, β) = bin (1− α, β)− h(β) = bin (1− β, α)− h(α) .

Proof. The probability that a e1 + e2 survives the filtering is:(
n− αn
βn

)
/

(
n

βn

)
=

(
n− βn
αn

)
/

(
n

αn

)
.

Indeed, given a choice of αn bit positions among n, the other βn bit positions
must be compatible, hence chosen among the (1− α)n remaining positions. By
taking the log2, we obtain the formula for the filtering probability. ut

Time Complexity of Merging. Classically, the time complexity of the merge-and-
filter operation is related to the size of the merged list.

Lemma 2 (Classical merging with filtering). Let L1 and L2 be two sorted
lists stored in classical memory with random access. In log2, relatively to n,
and discarding logarithmic factors, merging and filtering L1 and L2 costs a time
max(min(`1, `2), `1 + `2− c) and memory max(`1, `2, `

f ), assuming that we must
store the filtered output list.

Proof. Assuming sorted lists, there are two symmetric ways to produce a stream
of elements of L1 ./c L2: we can go through the elements of L1, and for each one,
find the matching elements in L2 by dichotomy search (time `1 + max(0, `2− c))
or we can exchange the role of L1 and L2. Although we do not need to store
L1 ./c L2, we need to examine all its elements in order to filter them. ut

2.3 Correctness of the Algorithms

While the operation of merging and filtering is the same as in previous works, our
complexity analysis differs [22,3,6,19]. We enforce the constraint that the final list
contains a single solution, hence if it is of size 2n`0 , we constrain `0 = 0. Next, we
limit the sizes of the lists so that they do not contain duplicate vectors: these are
saturation constraints. A list of size 2n`, of vectors sampled from a distribution
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D, with a constraint of cn bits, has the constraint: ` ≤ 1
n log2 |D| − c. This says

that there are not more than |D|/2cn vectors e such that e · a = r (mod 2cn)
for the (randomly chosen) arbitrary constraint r.

Previous works focus on the solution vector e and compute the number of
representations of e, that is, the number of ways it can be decomposed as a
sum: e = e1 + . . .+ et of vectors satisfying the constraints on the distributions.
Then, they compare this with the probability that a given representation passes
the arbitrary constraints imposed by the algorithm. As their lists contains all
the subknapsacks that fulfill the constraint, this really reflects the number of
duplicates, and it suffices to enforce that the number of representations is equal
to the inverse probability that a representation fulfills the constraint. If the two
lists we merge are not of maximal size, the size of the merged list is the number
of elements that fulfill the corresponding distribution times the probability that
such an element is effectively the sum of two elements in the initial lists.

The two approaches are strictly equivalent, as the probability that the sum
of two subknapsacks is valid is exactly the number of representations of the sum,
divided by the number of pairs of subknapsacks.

2.4 The HGJ Algorithm

We start our study of classical subset-sum by recalling the algorithm of Howgrave-
Graham and Joux [22], with the corrected time complexity of [3]. The algorithm
builds a merging tree of lists of subknapsacks, with four levels, numbered 3 down
to 0. Level j contains 2j lists. In total, 8 lists are merged together into one.

Level 3. We build 8 lists denoted L3
0 . . . L

3
7. They contain all subknapsacks of

weight n
16 on n

2 bits, either left or right:{
L3
2i = Dn/2[0, 1/8]× {0n/2}

L3
2i+1 = {0n/2} ×Dn/2[0, 1/8]

From Property 2, these level-3 lists have size `3 = h(1/8)/2. As the positions
set to 1 cannot interfere, these is no filtering when merging L3

2i and L3
2i+1.

Level 2. We merge the lists pairwise with a (random) constraint on c2n bits,
and obtain 4 filtered lists. The size of the filtered lists plays a role in the
memory complexity of the algorithm, but the time complexity depends on
the size of the unfiltered lists.
In practice, when we say “with a constraint on cjn bits”, we assume that

given the subset-sum objective t modulo 2n, random values rji such that∑
i r
j
i = t mod 2cjn are selected at level j, and the rji have cjn bits only.

Hence, at this step, we have selected 4 integers on c2n bits r10, r
1
1, r

1
2, r

1
3 such

that r10 + r11 + r12 + r13 = t mod 2c2n. The 4 level-2 lists L2
0, L

2
1, L

2
2, L

2
3 have

size `2 = (h(1/8)− c2), they contain subknapsacks of weight n
8 on n bits.

Remark 1. The precise values of these ri are irrelevant, since they cancel
out each other in the end. They are selected at random during a run of the
algorithm, and although there could be “bad” values of them that affect
significantly the computation, this is not expected to happen.
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Level 1. We merge the lists pairwise with (c1 − c2)n new bits of constraint,
ensuring that the constraint is compatible with the previous ones. We obtain
two filtered lists L1

0, L
1
1, containing subknapsacks of weight n/4. They have

size:

`1 = 2`2 − (c1 − c2) + pf1 (1/8, 1/8)

where pf1 (1/8, 1/8) is given by Lemma 1.
Level 0. We find a solution to the subset-sum problem with the complete con-

straint on n bits. This means that the list L0 must have expected length
`0 = 0. Note that there remains (1 − c1)n bits of constraint to satisfy, and
the filtering term is similar as before, so:

`0 = 2`1 − (1− c1) + pf1 (1/4, 1/4) .

L0, 1
Dn[0, 12 ]

. . .L1
0, c1

Dn[0, 14 ]

. . .L2
0, c2

Dn[0, 18 ]

L3
0

Dn/2[0, 1/8]× {0n/2}
L3
1

{0n/2} ×Dn/2[0, 1/8]

Fig. 1. The HGJ algorithm (duplicate lists are omitted)

By Lemma 2, the time complexity of this algorithm is determined by the
sizes of the unfiltered lists: max (`3, 2`3 − c2, 2`2 − (c1 − c2), 2`1 − (1− c1)).

The memory complexity depends of the sizes of the filtered lists: max (`3, `2, `1).
By a numerical optimization, one obtains a time exponent of 0.337n.

2.5 The BCJ Algorithm and our improvements

The HGJ algorithm uses representations to increase artificially the search space.
The algorithm of Becker, Coron and Joux [3] improves the runtime exponent
down to 0.291 by allowing even more freedom in the representations, which can
now contain “−1”s. The “−1”s have to cancel out progressively, to ensure the
validity of the final knapsack solution.

We improve over this algorithm in two different ways. First, we relax the
constraints `j+cj = g(αj , 1/2

j+1) enforced in [3], as only the inequalities `j+cj 6
g(αj , 1/2

j+1) are necessary: they make sure the lists are not larger than the
number of distinct elements they can contain. This idea was also implicitly used
in [14], in the context of syndrome decoding. When optimizing the parameters
under these new constraints, we bring the asymptotic time exponent down to
0.289n.
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L0, 1
Dn[0, 12 , 0]

. . .L1
0 , c1

Dn[α1,
1
4 , γ1]

. . .L2
0, c2

Dn[α2,
1
8 , γ2]

. . .L3
0, c3

Dn[α3,
1
16 , γ3]

L4
0

Dn/2[α3, 1/16, γ3]× {0n/2}
L4
1

{0n/2} ×Dn/2[α3, 1/16, γ3]

Fig. 2. Our improved algorithm (duplicate lists are omitted).

{−1, 0, 1, 2} representations. Next, we allow the value “2” in the subknapsacks.
This allows us to have more representations for the final solution from the same
initial distributions. Indeed, in BCJ, if on a bit the solution is the sum of a “-1”
and two “1”s, then it can only pass the merging steps if we first have the “-1”
that cancels a “1”, and then the addition of the second “1”. When allowing “2”s,
we can have the sum of the two “1’s and then at a later step the addition of a
“-1”. The algorithm builds a merging tree with five levels, numbered 4 down to
0. Level j contains 2j lists. In total, 16 lists are merged together into one.

Level 4. We build 16 lists L4
0 . . . L

4
15. They contain complete distributions on n

2
bits, either left or right, with n

32 + α3n
2 − γ3n “1”, α3n

2 “-1” and γ3n
2 “2”:{

L4
2i = Dn/2[α3, 1/16, γ3]× {0n/2}

L4
2i+1 = {0n/2} ×Dn/2[α3, 1/16, γ3]

As before, this avoids filtering at the first level. These lists have size: `4 =
f(α3, 1/16 + α3 − 2γ3, γ3)/2.

Level 3. We merge into 8 lists L3
0 . . . L

3
7, with a constraint on c3 bits. As there

is no filtering, these lists have size: `3 = f(α3, 1/16 + α3 − 2γ3, γ3)− c3.
Level 2. We now merge and filter. We force a target distributionDn[α2, 1/8, γ2],

with α2 and γ2 to be optimized later. There is a first filtering probability p2.
We have `2 = 2`3 − (c2 − c3) + p2.

Level 1. Similarly, we have: `1 = 2`2 − (c1 − c2) + p1.
Level 0. We have `0 = 2`1 − (1 − c1) + p0 = 0, since the goal is to obtain one

solution in the list L0.

With these constraints, we find a time Õ
(
20.2830n

)
(rounded upwards) with

the following parameters:

α1 = 0.0340, α2 = 0.0311, α3 = 0.0202, γ1 = 0.0041, γ2 = 0.0006, γ3 = 0.0001

c1 = 0.8067, c2 = 0.5509, c3 = 0.2680, p0 = −0.2829, p1 = −0.0447, p2 = −0.0135

`1 = 0.2382, `2 = 0.2694, `3 = 0.2829, `4 = 0.2755
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Remark 2 (On numeric optimizations). All algorithms since HGJ, including
quantum ones, rely on (nonlinear) numeric optimizations. Their correctness is
easy to check, since the obtained parameters satisfy the constraints, but there
is no formal proof that the parameters are indeed optimal for a given constraint
set. The same goes for all algorithms studied in this paper. In order to gain
confidence in our results, we tried many different starting points and several
equivalent rewriting of the constraints.

Remark 3 (Adding more symbols). In general, adding more symbols (“-2”s, “3”s,
etc.) can only increase the parameter search space and improve the optimal
time complexity. However, we expect that the improvements from adding more
symbols will become smaller and smaller, while the obtained constraints will
become more difficult to write down and the parameters harder to optimize.
Note that adding “-1”s decreases the time complexity exponent by 0.048, while
adding “2”s decreases it only by 0.006.

Remark 4 (On the number of levels). Algorithms based on merging-and-filtering,
classical and quantum, have a number of levels (say, 4 or 5) which must be se-
lected before writing down the constraints. The time complexity is a decreasing
function of the number of levels, which quickly reaches a minimum. In all algo-
rithms studied in this paper, adding one more level does not change the cost of
the upper levels, which will remain the most expensive.

3 Quantum Preliminaries and Previous Work

In this section, we recall some preliminaries of quantum computation (quantum
search and quantum walks) that will be useful throughout the rest of this paper.
We also recall previous quantum algorithms for subset-sum. As we consider all
our algorithms from the point of view of asymptotic complexities, and neglect
polynomial factors in n, a high-level overview is often enough, and we will use
quantum building blocks as black boxes. The interested reader may find more
details in [37].

3.1 Quantum Preliminaries

All the quantum algorithms considered in this paper run in the quantum circuit
model, with quantum random-access memory, often denoted as qRAM. “Base-
line” quantum circuits are simply built using a universal gate set. Many quantum
algorithms use qRAM access, and require the circuit model to be augmented
with the so-called “qRAM gate”. This includes subset-sum, lattice sieving and
generic decoding algorithms that obtain time speedups with respect to their
classical counterparts. Given an input register 1 ≤ i ≤ r, which represents the
index of a memory cell, and many quantum registers |x1, . . . xr〉, which represent
stored data, the qRAM gate fetches the data from register xi:

|i〉 |x1, . . . xr〉 |y〉 7→ |i〉 |x1, . . . xr〉 |y ⊕ xi〉 .

We will use the terminology of [25] for the qRAM gate:

11



• If the input i is classical, then this is the plain quantum circuit model (with
classical RAM);

• If the xj are classical, we have quantum-accessible classical memory (QRACM)
• In general, we have quantum-accessible quantum memory (QRAQM)

All known quantum algorithms for subset-sum with a quantum time speedup
over the best classical one require QRAQM. For comparison, speedups on heuris-
tic lattice sieving algorithms exist in the QRACM model [27,24], including the
best one to date [26]. While no physical architecture for quantum random access
has been proposed that would indeed produce a constant or negligible overhead
in time, some authors [25] consider the separation meaningful. If we assign a cost
O (N) to a QRACM query of N cells, then we can replace it by classical memory.
Subset-sum algorithms were studied in this setting by Helm and May [20].

Quantum Search. One of the most well-known quantum algorithms is Grover’s
unstructured search algorithm [18]. We present here its generalization, amplitude
amplification [12].

Lemma 3 (Amplitude amplification, from [12]). Let A be a reversible
quantum circuit, f a computable boolean function over the output of A, Of its
implementation as a quantum circuit, and a be the initial success probability of
A, that is, the probability that OfA |0〉 outputs “true”. There exists a quantum

reversible algorithm that calls O
(√

1/a
)

times A, A† and Of , uses as many

qubits as A and Of , and produces an output that passes the test f with probabil-
ity greater than max(a, 1− a).

This is known to be optimal when the functions are black-box oracles [5].
As we will use quantum search as a subprocedure, we make some remarks

similar to [34, Appendix A.2] and [10, Section 5.2] to justify that, up to additional
polynomial factors in time, we can consider it runs with no errors and allows to
return all the solutions efficiently.

Remark 5 (Error in a sequence of quantum searches). Throughout this paper,
we will assume that a quantum search in a search space of size S with T solutions
runs in exact time

√
S/T . In practice, there is a constant overhead, but since S

and T are always exponential in n, the difference is negligible. Furthermore, this
is a probabilistic procedure, and it will return a wrong result with a probability
of the order

√
T/S. As we can test if an error occurs, we can make it negligible

by redoing the quantum search polynomially many times.

Remark 6 (Finding all solutions). Quantum search returns a solution among
the T possibilities, selected uniformly at random. Finding all solutions is then
an instance of the coupon collector problem with T coupons [35]; all coupons are
collected after on average O (T log(T )) trials. However, in the QRACM model,
which is assumed in this paper, this logarithmic factor disappears. We can run
the search of Lemma 3 with a new test function that returns 0 if the output of
A is incorrect, or if it is correct but has already been found. The change to the
runtime is negligible, and thus, we collect all solutions with only O (T ) searches.

12



Quantum Walks. Quantum walks can be seen as a generalization of quan-
tum search. They allow to obtain polynomial speedups on many unstructured
problems, with sometimes optimal results (e.g. Ambainis’ algorithm for element
distinctness [1]). In this paper, we consider walks in the MNRS framework [31].

Let G = (V,E) be an undirected, connected, regular graph, such that some
vertices of G are “marked”. Let ε be the fraction of marked vertices, that is, a
random vertex has a probability ε of being marked. Let δ be the spectral gap of
G, which is defined as the difference between its two largest eigenvalues.

In a classical random walk on G, we can start from any vertex and reach
the stationary distribution in approximately 1

δ random walk steps. Then, such a
random vertex is marked with probability ε. Assume that we have a procedure
Setup that samples a random vertex to start with in time S, Check that verifies if
a vertex is marked or not in time C and Update that performs a walk step in time
U, then we will have found a marked vertex in expected time: S+ 1

ε

(
1
δU + C

)
.

Quantum walks reproduce the same process, except that their internal state is
not a vertex of G, but a superposition of vertices. The walk starts in the uniform
superposition

∑
v∈V |v〉, which must be generated by the Setup procedure. It

repeats
√

1/ε iterations that, similarly to amplitude amplification, move the
amplitude towards the marked vertices. An update produces, from a vertex, the
superposition of its neighbors. Each iteration does not need to repeat 1

δ vertex

updates and, instead, takes a time equivalent to
√

1/δ updates to achieve a good
mixing. Thanks to the following theorem , we will only need to specify the setup,
checking and update unitaries.

Theorem 1 (Quantum walk on a graph (adapted from [31])). Let G =
(V,E) be a regular graph with spectral gap δ > 0. Let ε > 0 be a lower bound
on the probability that a vertex chosen randomly of G is marked. For a random
walk on G, let S,U,C be the setup, update and checking cost. Then there exists
a quantum algorithm that with high probability finds a marked vertex in time

O
(
S +

1√
ε

(
1√
δ
U + C

))
.

3.2 Solving Subset-sum with Quantum Walks

In 2013, Bernstein, Jeffery, Lange and Meurer [6] constructed quantum subset
sum algorithms inspired by Schroeppel-Shamir [40] and HGJ [22]. We briefly
explain the idea of their quantum walk for HGJ. The graph G that they consider
is a product Johnson graph. We recall formal definitions from [23].

Definition 4 (Johnson graph). A Johnson graph J(N,R) is an undirected
graph whose vertices are the subsets of R elements among a set of size N , and
there is an edge between two vertices S and S′ iff |S ∩ S′| = R − 1, in other
words, if S′ can be obtained from S by replacing an element. Its spectral gap is
given by δ = N

R(N−R) .
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Theorem 2 (Cartesian product of Johnson graphs [23]). Let Jm(N,R)
be defined as the cartesian product of m Johnson graphs J(N,R), i.e., a vertex
in Jm(N,R) is a tuple of m subsets S1, . . . Sm and there is an edge between
S1, . . . Sm and S′1, . . . S

′
m iff all subsets are equal at all indices except one index

i, which satisfies |Si ∩ S′i| = R − 1. Then it has
(
N
R

)m
vertices and its spectral

gap is greater than 1
m

N
R(N−R) .

In [6], a vertex contains a product of 8 sublists L′30 ⊂ L3
0, . . . , L

′3
7 ⊂ L3

7 of a
smaller size than the classical lists: ` < `3. There is an edge between two vertices
if we can transform one into the other by replacing only one element in one of
the sublists. The spectral gap of such a graph is (in log2, relative to n) −`.

In addition, each vertex has an internal data structure which reproduces the
HGJ merging tree, from level 3 to level 0. Since the initial lists are smaller, the
list L0 is now of expected size 8(` − `3) (in log2, relative to n), i.e. the walk
needs to run for 4(`3 − `) steps. Each step requires `/2 updates.

In the Setup procedure, we simply start from all choices for the sublists
and build the tree by merging and filtering. Assuming that the merged lists have
decreasing sizes, the setup time is `. The vertex is marked if it contains a solution
at level 0. Hence, checking if a vertex is marked takes time C = 1, but the update
procedure needs to ensure the consistency of the data structure. Indeed, when
updating, we remove an element e from one of the lists L′3i and replace it by a
e′ from L3

i . We then have to track all subknapsacks in the upper levels where e
intervened, to remove them, and to add the new collisions where e′ intervenes.

Assuming that the update can run in poly(n), an optimization with the new
parameter ` yields an exponent 0.241. In [6], the parameters are such that on
average, a subknapsack intervenes only in a single sum at the next level. The
authors propose to simply limit the number of elements to be updated at each
level, in order to guarantee a constant update time.

Quantum Walk Based on BCJ. In [19], Helm and May quantize, in the same
way, the BCJ algorithm. They add “-1” symbols and a new level in the merging
tree data structure, reaching a time exponent of 0.226. But they remark that
this result depends on a conjecture, or a heuristic, that was implicit in [6].

Heuristic 2 (Helm-May) In these quantum walk subset-sum algorithms, an
update with expected constant time U can be replaced by an update with exact
time U without affecting the runtime of the algorithm, up to a polynomial factor.

Indeed, it is easy to construct “bad” vertices and edges for which an exact
update, i.e. the complete reconstruction of the merging tree, will take exponential
time: by adding a single new subknapsack e, we find an exponential number of
pairs e + e′ to include at the next level. So we would like to update only a few
elements among them. But in the MNRS framework, the data structure of a
vertex must depend solely on the vertex itself (i.e. on the lowest-level lists in
the merging tree). And if we do as proposed in [6], we add a dependency on the
path that lead to the vertex, and lose the consistency of the walk.
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In a related context, the problem of “quantum search with variable times”
was studied by Ambainis [2]. In a quantum search for some x such that f(x) = 1,
in a set of size N , if the time to evaluate f on x is always 1, then the search

requires time O
(√

N
)

. Ambainis showed that if the elements have different

evaluation times t1, . . . tN , then the search now requires Õ(
√
t21 + . . .+ t2N ), the

geometric mean of t1, . . . tN . As quantum search can be seen as a particular
type of quantum walk, this shows that Heuristic 2 is wrong in general, as we
can artificially create a gap between the geometric mean and expectation of the
update time U; but also, that it may be difficult to actually overcome. In this
paper, we will obtain different heuristic and non-heuristic times.

4 Quantum Asymmetric HGJ

In this section, we give the first quantum algorithm for the subset-sum problem,
in the QRACM model, with an asymptotic complexity smaller than BCJ.

4.1 Quantum Match-and-Filter

We open this section with some technical lemmas that replace the classical
merge-and-filter Lemma 2. In this section, we will consider a merging tree as
in the HGJ algorithm, but this tree will be built using quantum search. The
following lemmas bound the expected time of merge-and-filter and match-and-
filter operations performed quantumly, in the QRACM model. This will have
consequences both in this section and in the next one.

First, we remark that we can use a much more simple data structure than
the ones in [1,6]. In this data structure, we store pairs e, e · a indexed by e · a
mod M for some M ' 2m.

Definition 5 (Unique modulus list). A unique modulus list is a qRAM data
structure L(M) that stores at most M entries (e, e ·a), indexed by e ·a mod M ,
and supports the following operations:

• Insertion: inserts the entry (e, e · a) if the modulus is not already occupied;
• Deletion: deletes (e, e · a) (not necessary in this section)
• Query in superposition: returns the superposition of all entries (e, e ·a) with

some modular condition on e ·a, e.g. e ·a = t mod M ′ for some t and some
modulus M ′.

Note that all of these operations, including the query in superposition of all
the entries with a given modulus, cost O (1) qRAM gates only. For the latter,
we need only some Hadamard gates to prepare the adequate superposition of
indices. Furthermore, the list remains sorted by design.

Next, we write a lemma for quantum matching with filtering, in which one of
the lists is not written down. We start from a unitary that produces the uniform
superposition of the elements of a list L1, and we wrap it into an amplitude am-
plification, in order to obtain a unitary that produces the uniform superposition
of the elements of the merged-and-filtered list.
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Lemma 4 (Quantum matching with filtering). Let L2 be a list stored in
QRACM (with the unique modulus list data structure of Definition 5). As-
sume given a unitary U that produces in time tL1 the uniform superposition
of L1 = x0, . . . x2m−1 where xi = (ei, ei · a). We merge L1 and L2 with a modu-
lar condition of cn bits and a filtering probability p. Let L be the merged list and
Lf the filtered list. Assume |Lf | ≥ 1. Then there exists a unitary U ′ producing

the uniform superposition of Lf in time: O
(
tL1√
p max(

√
2cn/|L2|, 1)

)
.

Notice that this is also the time complexity to produce a single random
element of Lf . If we want to produce and store the whole list Lf , it suffices to
multiply this complexity by the number of elements in Lf (i.e. p|L1||L2|/2cn).

We would obtain: O
(
tL1

√
pmax

(
|L1|

√
|L2|
2cn ,

|L1||L2|
2cn

))
.

Proof. Since L2 is stored in a unique modulus list, all its elements have distinct
moduli. Note that the expected sizes of L and Lf follow from Heuristic 1. Al-
though the number of iterations of quantum search should depend on the real
sizes of these lists, the concentration around the average is so high (given by
Chernoff bounds) that the error remains negligible if we run the search with the
expected number of iterations. We separate three cases.

• If |L2| < 2cn, then we have no choice but to make a quantum search on
elements of L1 that match the modular constraint and pass the filtering

step, in time: O
(
tL1

√
2cn

L2p

)
.

• If |L2| > 2cn but |L2| < 2cn/p, an element of L1 will always pass the modular
constraint, with more than one candidate, but in general all these candidates
will be filtered out. Given an element of L1, producing the superposition of
these candidates is done in time 1, so finding the one that passes the filter,
if there is one, takes time

√
|L2|/2cn. Next, we wrap this in a quantum

search to find the “good” elements of L1 (passing the two conditions), with

O
(√

2cn/pL2

)
iterations. The total time is:

O
(√

2cn

L2p
×
(√
|L2|/2cn × tL1

)
=
tL1√
p

)
.

• If |L2| > 2cn/p, an element of L1 yields on average more than one filtered
candidate. Producing the superposition of the modular candidates is done
in time O (1) thanks to the data structure, then finding the superposition of
filtered candidates requires 1/

√
p iterations. The total time is: O

(
tL1/
√
p
)
.

The total time in all cases is: O
(
tL1√
p max(

√
2cn/|L2|, 1)

)
. Note that classically,

the coupon collector problem would have added a polynomial factor, but this is
not the case here thanks to QRACM (Remark 6). ut

In the QRACM model, we have the following corollary for merging and fil-
tering two lists of equal size. This result will be helpful in Section 4.3 and 5.
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Corollary 1. Consider two lists L1, L2 of size |L1| = |L2| = |L| exponential in
n. We merge L1 and L2 with a modular condition of cn bits, and filter with a
probability p. Assume that 2cn < |L|. Then Lf can be written down in quantum

time: O
(√

p |L|
2

2cn

)
.

Proof. We do a quantum search to find each element of Lf . We have tL1 = O (1)
since it is a mere QRACM query, and we use Lemma 4. ut

4.2 Revisiting HGJ

We now introduce our new algorithm for subset-sum in the QRACM model.
Our starting point is the HGJ algorithm. Similarly to [34], we use a merging

tree in which the lists at a given level may have different sizes. Classically, this
does not improve the time complexity. However, quantumly, we will use quantum
filtering. Since our algorithm does not require to write data in superposition,
only to read from classical registers with quantum random access, we require
only QRACM instead of QRAQM.

In the following, we consider that all lists, except L3
0, L

2
0, L

1
0, L

0, are built with
classical merges. The final list L0, containing (expectedly) a single element, and a
branch leading to it, are part of a nested quantum search. Each list L3

0, L
2
0, L

1
0, L

0

corresponds either to a search space, the solutions of a search, or both. We
represent this situation on Fig. 3. Our procedure runs as follows:

1. (Classical step): build the intermediate lists L3
1, L

2
1, L

1
1 and store them using

a unique modulus list data structure (Definition 5).
2. (Quantum step): do a quantum search on L3

0. To test a vector e ∈ L3
0:

• Find e3 ∈ L3
1 such that e + e3 passes the c20n-bit modular constraint

(assume that there is at most one such solution). There is no filtering
here.

• Find e2 ∈ L2
1 such that (e + e3) + e2 passes the additional (c1− c20)n-bit

constraint.
• If it also passes the filtering step, find e1 ∈ L1

1 such that (e+e3+e2)+e1

is a solution to the knapsack problem (and passes the filter).

Structural constraints are imposed on the tree, in order to guarantee that
there exists a knapsack solution. The only difference between the quantum and
classical settings is in the optimization goal: the final time complexity.

Structural Constraints. We now introduce the variables and the structural con-
straints that determine the shape of the tree in Fig. 3. The asymmetry happens
both in the weights at level 0 and at the constraints at level 1 and 2. We write
`ji = (log2 |L

j
i |)/n. With the lists built classically, we expect a symmetry to be

respected, so we have: `32 = `33, `34 = `35 = `36 = `37, `22 = `23. We also tweak the
left-right split at level 0: lists from L3

2 to L3
7 have a standard balanced left-right

split; however, we introduce a parameter r that determines the proportion of
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L0

L1
1 with

constraint c1

L2
3 with

constraint c21

L3
7

a/2, n/2
L3
6

a/2, n/2

L2
2 with

constraint c21

L3
5

a/2, n/2
L3
4

a/2, n/2

L1
0 with

constraint c1

L2
1 with

constraint c20

L3
3

b/2, n/2
L3
2

b/2, n/2

L2
0 with

constraint c20

L3
1

cr,
nr

L3
0

c(1− r),
n(1− r)

Fig. 3. Quantum HGJ algorithm. Dotted lists are search spaces (they are not stored).
Bold lists are stored in QRACM. In Section 4.3, L2

2 and L2
3 are also stored in QRACM.

positions set to zero in list L3
0: in L3

0, the vectors weigh cn(1 − r) on a sup-
port of size n(1− r), instead of cn/2 on a support of size n/2. In total we have
c+ b+ 2a = 1

2 , as the weight of the solution is supposed to be exactly n/2.
Then we note that:

• The lists at level 3 have a maximal size depending on the corresponding
weight of their vectors:

`30 ≤ h(c)(1− r), `31 ≤ h(c)r, `32 = `33 ≤ h(b)/2, `34 ≤ h(a)/2

• The lists at level 2 cannot contain more representations than the filtered list
of all subknapsacks of corresponding weight:

`20 ≤ h(c)− c20, `21 ≤ h(b)− c20, `22 = `23 ≤ h(a)− c21

• Same at levels 1 and 0: `10 ≤ h(c+ b)− c1, `11 ≤ h(2a)− c1
• The merging at level 2 is exact (there is no filtering):

`20 = `30 + `31 − c20, `21 = `32 + `33 − c20, `22 = `34 + `35 − c21, `23 = `36 + `37 − c21,

• At level 1, with a constraint c1 ≥ c20, c21 that subsumes the previous ones:

`10 = `20 + `21 − c1 + c20 + pf1 (b, c) , `11 = `22 + `23 − c1 + c21 + pf1 (a, a)

• And finally at level 0: `0 = 0 = `10 + `11 − (1− c1) + pf1 (b+ c, 2a)

Classical Optimization. All the previous constraints depend on the problem,
not on the computation model. Now we can get to the time complexity in the
classical setting, that we want to minimize:

max
(
`34, `

3
2, `

3
1, `

3
2 + `33 − c20, `34 + `35 − c21, `22 + `23 − c1 + c21,

`30 + max(`31− c20, 0) + max(`21− c1 + c20, 0) + max(pf1 (b, c) + `11− (1− c1), 0)
)
.
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The last term corresponds to the exhaustive search on `30. In order to keep the
same freedom as before, it is possible that an element of L3

0 matches against sev-
eral elements of L3

1, all of which yield a potential solution that has to be matched
against L2

1, etc. Hence for each element of L3
0, we find the expected max(`31−c20, 0)

candidates matching the constraint c10. For each of these candidates, we find the
expected max(`21 − c1 + c20, 0) candidates matching the constraint c1. For each
of these candidates, if it passes the filter, we search for a collision in L1

1; this
explains the max(pf1 (b, c) + `11 − (1 − c1), 0) term. In the end, we check if the
final candidates pass the filter on the last level.

We verified that optimizing the classical time under our constraints gives the
time complexity of HGJ.

Quantum Optimization. The time complexity for producing the intermediate
lists is unchanged. The only difference is the way we find the element in L3

0 that
will lead to a solution, which is a nested sequence of quantum searches.

• We can produce the superposition of all elements in L2
0 in time

t2 =
1

2
max(c20 − `31, 0)

• By Lemma 4, we can produce the superposition of all elements in L1
0 in time

t2 −
1

2
pf1 (b, c) +

1

2
max

(
c1 − c20 − `21, 0

)
• Finally, we expect that there are

(
`20 + `21 − c1 + c20 + pf1 (b, c)

)
elements in

L1
0, which gives the number of iterations of the quantum search.

The time of this search is:

1

2

(
`10 + max(c20 − `31, 0)− pf1 (b, c) + max

(
c1 − c20 − `21, 0

))
and the total time complexity is:

max
(
`34, `

3
2, `

3
1, `

3
2 + `33 − c20, `34 + `35 − c21, `22 + `23 − c1 + c21,

1

2

(
`10 + max(c20 − `31, 0)− pf1 (b, c) + max

(
c1 − c20 − `21, 0

)) )
We obtain a quantum time complexity exponent of 0.2374 with this method

(the detailed parameters are given in Table 2).

4.3 Improvement via Quantum Filtering

Let us keep the tree structure of Figure 3 and its structural constraints. The
final quantum search step is already made efficient with respect to the filtering
of representations, as we only pay half of the filtering term pf1 (b, c). However,
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we can look towards the intermediate lists in the tree, i.e. L3
1, L

2
1, L

1
1. The merg-

ing at the first level is exact: due to the left-right split, there is no filtering of
representations, hence the complexity is determined by the size of the output
list. However, the construction of L1

1 contains a filtering step. Thus, we can use
Corollary 1 to produce the elements of L1

1 faster and reduce the time complexity
from: `22 + `23− c1 + c21 to: `22 + `23− c1 + c21 + 1

2pf1 (a, a). By optimizing with this
time complexity, we obtain a time exponent 0.2356 (the detailed parameters are
given in Table 2). The corresponding memory is 0.2356 (given by the list L3

1).

Table 2. Optimization results for the quantum asymmetric HGJ algorithm (in log2

and relative to n), rounded to four digits. The time complexity is an upper bound.

Variant Time a b c `30 `31 `32 `34 `20 `10

Classical 0.3370 0.1249 0.11 0.1401 0.3026 0.2267 0.25 0.2598 0.3369 0.3114
Section 4.2 0.2374 0.0951 0.0951 0.2146 0.4621 0.2367 0.2267 0.2267 0.4746 0.4395
Section 4.3 0.2356 0.0969 0.0952 0.2110 0.4691 0.2356 0.2267 0.2296 0.4695 0.4368

Remark 7 (More improvements). We have tried increasing the tree depth or
changing the tree structure, but it does not seem to bring any improvement. In
theory, we could allow for more general representations involving “-1” and “2”.
However, computing the filtering probability, when merging two lists of subknap-
sacks in Dn[α, β, γ] with different distributions becomes much more technical.
We managed to compute it for Dn[α, β], but the number of parameters was too
high for our numerical optimizer, which failed to converge.

4.4 Quantum Time-Memory Tradeoff

In the original HGJ algorithm, the lists at level 3 contain full distributions
Dn/2[0, 1/8]. By reducing their sizes to a smaller exponential, one can still run
the merging steps, but the final list L0 is of expected size exponentially small
in n. Hence, one must redo the tree many times. This general time-memory
tradeoff is outlined in [22] and is also reminiscent of Schroeppel and Shamir’s
algorithm [40], which can actually be seen as repeating 2n/4 times a merge of
lists of size 2n/4, that yields 2−n/4 solutions on average.

Asymmetric Tradeoff. The tradeoff that we propose is adapted to the QRACM
model. It consists in increasing the asymmetry of the tree: we reduce the sizes of
the intermediate lists L3

1, L
2
1, L

1
1 in order to use less memory; this in turn increases

the size of L3
0, L

2
0 and L1

0 in order to ensure that a solution exists. We find that
this tradeoff is close to the time-memory product curve TM = 2n/2, and actually
slightly better (the optimal point when m = 0.2356 has TM = 20.4712n). This is
shown on Figure 4. At m = 0, we start at 2n/2, where L3

0 contains all vectors of
Hamming weight n/2.
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Fact 1 For any memory constraint m ≤ 0.2356 (in log2 and proportion of n),
the optimal time complexity in the quantum asymmetric HGJ algorithm of Sec-
tion 4.3 is lower than Õ

(
2n/2−m

)
.
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Fig. 4. Quantum time-memory tradeoff of the asymmetric HGJ algorithm

Improving the QRACM usage. In trying to reduce the quantum or quantum-
accessible hardware used by our algorithm, it makes sense to draw a line between
QRACM and classical RAM, i.e. between the part of the memory that is actually
accessed quantumly, and the memory that is used only classically. We now try
to enforce the constraint only on the QRACM, using possibly more RAM. In
this context, we cannot produce the list L1

1 via quantum filtering. The memory
constraint on lists L3

1, L
2
1, L

1
1 still holds; however, we can increase the size of lists

L3
4, L

3
5, L

3
6, L

3
7, L

2
2, L

2
3.

Fact 2 For any QRACM constraint m ≤ 0.2356, the optimal time complexity
obtained by using more RAM is always smaller than the best optimization of
Section 4.3.

The difference remains only marginal, as can be seen in Table 3, but it shows
a tradeoff between quantum and classical resources.

5 New Algorithms Based on Quantum Walks

In this section, we improve the algorithm by Helm and May [19] based on BCJ
and the MNRS quantum walk framework. Our algorithm is a quantum walk on
a product Johnson graph, as in Section 3.2. There are two new ideas involved.
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Table 3. Time-memory tradeoffs (QRACM) for three variants of our asymmetric HGJ
algorithm, obtained by numerical optimization, and rounded upwards. The last variant
uses more classical RAM than the QRACM constraint.

QRACM Section 4.2 Section 4.3 With more RAM
bound Time Memory Time Memory Time Memory

0.0500 0.4433 0.0501 0.4433 0.0501 0.4412 0.0650
0.1000 0.3896 0.1000 0.3896 0.1000 0.3860 0.1259
0.1500 0.3348 0.1501 0.3348 0.1501 0.3301 0.1894
0.3000 0.2374 0.2373 0.2356 0.2356 0.2373 0.2373

5.1 Asymmetric 5th level

In our new algorithm, we can afford one more level than BCJ. We then have a
6-level merging tree, with levels numbered 5 down to 0. Lists at level i all have
the same size `i, except at level 5. Recall that the merging tree, and all its lists,
is the additional data structure attached to a node in the Johnson graph. In the
original algorithm of [19], there are 5 levels, and a node is a collection of 16 lists,
each list being a subset of size `4 among the g(1/16 + α3, α3)/2 vectors having
the right distribution.

In our new algorithm, at level 5, we separate the lists into “left” lists of
size `l5 and “right” lists of size `r5. The quantum walk will only be performed
on the left lists, while the right ones are full enumerations. Each list at level
4 is obtained by merging a “left” and a “right” list. The left-right-split at
level 5 is then asymmetric: vectors in one of the left lists Ll5 are sampled
from Dηn[α4, 1/32, γ4] × {0(1−η)n} and the right lists Lr5 contain all the vec-
tors from {0ηn} × D(1−η)n[α4, 1/32, γ4]. This yields a new constraint: `r5 =
f(1/32 + α4 − 2γ4, α4, γ4)(1− η).

While this asymmetry does not bring any advantage classically, it helps in
reducing the update time. We enforce the constraint `r5 = c4, so that for each
element of Ll5, there is on average one matching element in Lr5. So updating the
list L4 at level 4 is done on average time 1. Then we also have `4 = `l5.

With this construction, `r5 and `l5 are actually unneeded parameters. We
only need the constraints c4(= `r5) = f(1/32 + α4 − 2γ4, α4, γ4)(1 − η) and
`4(= `l5) ≤ f(1/32 + α4 − 2γ, α4, γ4)η. The total setup time is now:

S = max

(
c4, `4︸ ︷︷ ︸

Lv. 5 and 4

, 2`4 − (c3 − c4)︸ ︷︷ ︸
Level 3

, 2`3 − (c2 − c3)︸ ︷︷ ︸
Level 2

, 2`2 − (c1 − c2)︸ ︷︷ ︸
Level 1

,

`1 + max(`1 − (1− c1), 0)︸ ︷︷ ︸
Level 0

)

and the expected update time for level 5 (inserting a new element in a list Ll5
at the bottom of the tree) and at level 4 (inserting a new element in L4) is 1.
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The spectral gap of the graph is δ = −`l5 and the proportion of marked vertices
is ε = −`0.

Saturation Constraints. In the quantum walk, we have `0 < 0, since we expect
only some proportion of the nodes to be marked (to contain a solution). This
proportion is hence `0. The saturation constraints are modified as follows:

`l5 ≤ `0
16 + f( 1

32 + α4 − 2γ4, α4, γ4)η, `4 ≤ `0
16 + f( 1

32 + α4 − 2γ4, α4, γ4)− c4
`3 ≤ `0

8 + f( 1
16 + α3 − 2γ3, α3, γ3)− c3, `2 ≤ `0

4 + f( 1
8 + α2 − 2γ2, α2, γ2)− c2

`1 ≤ `0
2 + f(1/4 + α1 − 2γ1, α1, γ1)− c1

Indeed, the classical walk will go through a total of −`0 trees before finding
a solution. Hence, it needs to go through −`0/16 different lists at level 5 (and 4),
which is why we need to introduce `0 in the saturation constraint: there must
be enough elements, not only in Ll5, but in the whole search space that will be
spanned by the walk. These constraints ensure the existence of marked vertices
in the walk.

5.2 Better Setup and Updates using quantum search

Along the lines of Lemma 4 and corollary 1, we now show how to use a quantum
search to speed up the Setup and Update steps in the quantum walk. As the
structure of the graph is unchanged, we still have ε = −`0 and a spectral gap
δ = −`l5.

Setup. Let pi, (1 ≤ i ≤ 3) be the filtering probabilities at level i, i.e. the (loga-
rithms of the) probabilities that an element that satisfies the modulo condition
resp. at level i also has the desired distribution of 0s, 1s, −1s and 2s, and appears
in list Li. Notice that pi ≤ 0. Due to the left-right split, there is no filtering at
level 4.

We use quantum filtering (Corollary 1) to speed up the computation of lists
at levels 3, 2 and 1 in the setup, reducing in general a time 2`−c to 2`−c+pf/2.
It does not apply for level 0, since L0 has a negative expected size. At this level,
we will simply perform a quantum search over L1. If there is too much constraint,
i.e. (1 − c1) > `1, then for a given element in L1, there is on average less than
one modular candidate. If (1 − c1) < `1, there is on average more than one
(although less than one with the filter) and we have to do another quantum
search on them all. This is why the setup time at level 0, in full generality,
becomes (`1 + max(`1− (1− c1), 0))/2. The setup time can thus be improved to:

S = max

(
c4, `4︸ ︷︷ ︸

Lv. 5 and 4

, 2`4 − (c3 − c4) + p3/2︸ ︷︷ ︸
Level 3

, 2`3 − (c2 − c3) + p2/2︸ ︷︷ ︸
Level 2

,

2`2 − (c1 − c2) + p1/2︸ ︷︷ ︸
Level 1

, (`1 + max(`1 − (1− c1), 0))/2︸ ︷︷ ︸
Level 0

)
.
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Update. Our update will also use a quantum search. First of all, recall that the
updates of levels 5 and 4 are performed in (expected) time 1. Having added
an element in L4, we need to update the upper level. There are on average
`4− (c3− c4) candidates satisfying the modular condition. To avoid a blowup in
the time complexity, we forbid to have more than one element inserted in L3 on
average, which means: `4 − (c3 − c4) + p3 ≤ 0 ⇐⇒ `3 ≤ `4. We then find this
element, if it exists, with a quantum search among the `4− (c3− c4) candidates.

Similarly, as at most one element is updated in L3, we can move on to the
upper levels 2, 1 and 0 and use the same argument. We forbid to have more than
one element inserted in L2 on average: `3− (c2− c3) + p2 ≤ 0 ⇐⇒ `2 ≤ `3, and
in L1: `1 ≤ `2. At level 0, a quantum search may not be needed, hence a time
max(`1 − (1− c1), 0)/2. The expected update time becomes:

U = max

(
0, (`4 − (c3 − c4))/2︸ ︷︷ ︸

Level 3

, (`3 − (c2 − c3))/2︸ ︷︷ ︸
Level 2

,

(`2 − (c1 − c2))/2︸ ︷︷ ︸
Level 1

, (`1 − (1− c1))/2︸ ︷︷ ︸
Level 0

)
.

5.3 Parameters

Using the following parameters, we found an algorithm that runs in time Õ
(
20.2156n

)
:

`0 = −0.1916, `1 = 0.1996, `2 = 0.2030, `3 = 0.2110, `4(= `l5) = 0.2110

c1 = 0.6190, c2 = 0.4445, c3 = 0.2506, c4(= `r5) = 0.0487

α1 = 0.0176, α2 = 0.0153, α3 = 0.0131, α4 = 0.0087

γ1 = 0.0019, γ2 = γ3 = γ4 = 0, η = 0.8448

There are many different parameters that achieve the same time. The above
set achieves the lowest memory that we found, at Õ

(
20.2110n

)
. Note that time

and memory complexities are different in this quantum walk, contrary to previ-
ous works, since the update procedure has now a (small) exponential cost.

Remark 8 (Time-memory tradeoffs). Quantum walks have a natural time-memory
tradeoff which consists in reducing the vertex size. Smaller vertices have a smaller
chance of being marked, and the walk goes on for a longer time. This is also
applicable to our algorithms, but requires a re-optimization with a memory con-
straint.

6 Mitigating Quantum Walk Heuristics for Subset-Sum

In this section, we provide a modified quantum walk NEW-QW for any quantum
walk subset-sum algorithm QW, including [6,19] and ours, that will no longer
rely on Heuristic 2. In NEW-QW, the Johnson graph is the same, but the vertex
data structure and the update procedure are different (Section 6.2). It allows us
to guarantee the update time, at the expense of losing some marked vertices. In
Section 6.3, we will show that most marked vertices in QW remain marked.
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6.1 New Data Structure for Storing Lists

The main requirement of the vertex data structure is to store lists of subknap-
sacks with modular constraints in QRAQM. For each list, we will use two data
structures. The first one is the combination of a hash table and a skip list given
in [1] (abbreviated skip list below) and the second one is a Bucket-modulus list
data structure, adapted from Definition 5, that we define below.

Hash Table and Skip List. We use the data structure of [1] to store lists of entries
(e, e · a), sorted by knapsack value e · a. The data structure for M entries, that

we denote SL(M), uses Õ (M) qRAM memory cells and supports the following
operations: inserting an entry in the list, deleting an entry from the list and
producing the uniform superposition of entries in the list. All these operations
require time polylog(M).

We resort to this data structure because the proposal of “radix trees” in [6]
is less detailed. It is defined relatively to a choice of polylog(M) = poly(n) hash
functions selected from a family of independent hash functions of the entries (we
refer to [1] for more details). For a given choice of hash functions, the insertion or
deletion operations can fail. Thus, the data structure is equipped with a super-
position of such choices. Instead of storing SL(M), we store:

∑
h |h〉 |SLh(M)〉

where SLh is the data structure flavored with the choice of hash functions h.
Insertions and deletions are performed depending on h. This allows for a globally
negligible error: if sufficiently many hash functions are used, the insertion and
deletion of any element add a global error vector of amplitude o(2−n) regardless
of the current state of the data. The standard “hybrid argument” from [5] and [1,
Lemma 5] can then be used in the context of an MNRS quantum walk.

Proposition 1 ([1], Lemma 5, adapted). Consider an MNRS quantum walk
with a “perfect” (theoretical) update unitary U , managing data structures, and
an “imperfect” update unitary U ′ such that, for any basis state |x〉:

U ′ |x〉 = U |x〉+ |δx〉

where |δx〉 is an error vector of amplitude bounded by o(2−n) for any x. Then
running the walk with U ′ instead of U , after T steps, the final “imperfect” state
|ψ′〉 deviates from the “perfect” state |ψ〉 by: ‖ |ψ′〉 − |ψ〉 ‖ ≤ o(2−nT ).

This holds as a general principle: in the update unitary, any perfect procedure
can be replaced by an imperfect one as long as its error is negligible (with respect
to the total number of updates) and data-independent. In contrast, the problem
with Heuristic 2 is that a generic constant-time update induces data-dependent
errors (bad cases) that do not seem easy to overcome.

Bucket-modulus List. Let B = poly(n) be a “bucket size” that will be cho-
sen later. The bucket-modulus list is a tool for making our update time data-
independent: it limits the number of vectors that can have a given modulus
(where moduli are of the same order as the list size).
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Definition 6 (Bucket-modulus list). A Bucket-modulus list BL(B,M) is a
qRAM data structure that stores at most B ×M entries (e, e · a), with at most
B entries sharing the same modulus e · a mod M . Thus, BL(B,M) contains
M “buckets”. Buckets are indexed by moduli, and kept sorted. It supports the
following operations:

• Insertion: insert (e, e · a). If the bucket at index e · a mod M contains B
elements, empty the bucket. Otherwise, sort it using a simple sorting circuit.
• Deletion: remove an entry from the corresponding bucket.
• Query in superposition: similar as in Definition 5.

In our new quantum walks, each list will be stored in a skip list SL(M)
associated with a bucket-modulus BL(B,M). Each time we insert or delete an
element from SL(M), we update the bucket-modulus list accordingly, according
to the following rules.

Upon deletion of an element e in SL(M), let e · a = T mod M , there are
three cases for BL(B,M):

• If |{e′ ∈ SL(M), e′ · a = T}| > B + 1, then bucket number T in BL(B,M)
stays empty;
• If |{e′ ∈ SL(M), e′ ·a = T}| = B+ 1, then removing e makes the number of

elements reach the bound B, so we add them all in the bucket at index T ;
• If |{e′ ∈ SL(M), e′ · a = T}| ≤ B, then we remove e from its bucket.

Upon insertion of an element e in SL(M), there are also three cases for
BL(B,M):

• If |{e′ ∈ SL(M), e′ · a = T}| = B, then we empty the bucket at index T ;
• If |{e′ ∈ SL(M), e′ · a = T}| < B, then we add e to the bucket at index T

in BL(B,M);
• If |{e′ ∈ SL(M), e′ · a = T}| > B, then the bucket is empty and remains

empty.

In all cases, there are at most B insertions or deletions in a single bucket. Note
that BL(B,M) ⊆ SL(M) but that some elements of SL(M) will be dropped.

Remark 9. The mapping from a skip list of size M (considered as perfect), which
does not “forget” any of its elements, to a corresponding bucket-modulus list
with M buckets, which forgets some of the previous elements, is deterministic.
Given a skip list L, a corresponding bucket modulus list L′ can be obtained by
inserting all elements of L into an empty bucket modulus list.

6.2 New Data Structure for Vertices

The algorithms that we consider use multiple levels of merging. However, we will
focus only on a single level. Our arguments can be generalized to any constant
number of merges (with an increase in the polynomial factors involved). Recall
that the product Johnson graph on which we run the quantum walk is unchanged,
only the data structure is adapted.

26



In the following, we will consider the merging of two lists Ll and Lr of
subknapsacks of respective sizes `l and `r, with a modular constraint c and a
filtering probability pf. The merged list is denoted Lc = Ll ./c Lr and the
filtered list is denoted Lf . We assume that pairs (e1, e2) in Lc must satisfy
(e1 + e2) · a = 0 mod 2cn (the generalization to any value modulo any moduli
is straightforward).

On the positive side, our new data structure can be updated, by design, with
a fixed time that is data-independent. On the negative side, we will not build
the complete list Lf , and miss some of the solutions. As we drop a fraction
of the vectors, some nodes that were previously marked will potentially appear
unmarked, but this fraction is polynomial at most. We defer a formal proof of
this fact to Section 6.3 and focus on the runtime.

We will focus on the case where `l = `r and either Ll or Lr are updated,
which happens at all levels in our quantum walk, except the first level. Because
there is no filtering at the first level, it is actually much simpler to study with
the same arguments. In previous quantum walks, we had `c = 2` − c ≤ `, i.e.
` ≤ c; now we will have 2`− c ≥ ` and 2`− c+ pf ≤ `.

Recall that our heuristic time complexity analysis assumes an update time
(`−c)/2. Indeed, the update of an element in Ll or Lr modifies on average (`−c)
elements in Ll ./c Lr, among which we expect at most one filtered pair (e1, e2)
(by the inequality 2`− c+ pf ≤ `). We find this solution with a quantum search.
In the following, we modify the data structure of vertices in order to guarantee
the best update time possible, up to additional polynomial factors. We will see
however that it does not reach (` − c)/2. We now define our intermediate lists
and sublists, before giving the update procedure and its time complexity.

Definitions. Both lists Ll, Lr are of size M ' 2`n. We store them in skip lists. In
both Lr and Ll, for each T ≤M , we expect on average only one element e such
that e · a = T mod M . We introduce two Bucket-modulus lists (Definition 6)
L′l(B,M) and L′r(B,M) that we will write as L′l and L′r for simplicity, indexed
by e · a mod M , with an arbitrary bound B = poly(n) for the bucket sizes.
They are attached to Ll and Lr as detailed in Section 6.1. When an element in
Ll or Lr is modified, they are modified accordingly.

In L′l and L′r, we consider the sublists of subknapsacks having the same
modulo C mod 2cn, and we denote by L′l,C and L′r,C these sublists. They can
be easily considered separately since the vectors are sorted by knapsack weight.
By design of the bucket-modulus lists, L′l,C and L′r,C both have size at most

B2(`−c)n. We have:

L′l ./c L
′
r =

⋃
0≤C≤2cn−1

L′l,C × L′r,C .

Next, we have a case disjunction to make. The most complicated case is when
2`−2c+pf > 0, that is, each product L′l,C×L′r,C for a given C yields more than
one filtered pair on average. In that case, we define sublists L′l,C,i of L′l,C and
sublists L′r,C,j of L′r,C using a new arbitrary modular constraint, so that each of
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these sublists is of size −pf/2 (at most). There are `−c+pf/2 sublists (exactly).
The rationale of this cut is that a product L′l,C,i × L′r,C,j for a given i, j now
yields on average a single filtered pair (or less). When 2`− 2c+ pf ≤ 0, we don’t
perform this last cut and consider the product L′l,C × L′r,C immediately. By a

slight abuse of notation, we denote: (L′l,C,i × L′r,C,j)
f the set of filtered pairs

from L′l,C,i × L′r,C,j , and we have:

Lf =
⋃

0≤C≤2cn−1

⋃
i,j

(L′l,C,i × L′r,C,j)f .

Algorithm 1 Update algorithm: given Ll, Lr of size `, we insert or delete an
element in Ll and update the filtered list Lf accordingly. We focus here on the
case 2`− 2c+ pf > 0.

Data: skip lists for Ll, Lr, L
f , bucket-modulus lists L′l, L

′
r

1: . The bucket-modulus list for Lf will be updated later
Input: an insertion / deletion instruction for Ll
Output: updates Ll, L

′
l, L

f accordingly
2: Insert or delete in Ll . only one element to update
3: Update the bucket-modulus structure L′l . at most B elements to update
4: for each element e to insert / delete in L′l do . B = poly(n) iterations
5: Select its corresponding sublist L′l,C,i
6: Let L′′l,C,i = L′l,C,i ∪ {e} or L′l,C,i\{e}
7: for each sublist L′r,C,j do . `− c+ pf/2 iterations

8: Estimate s = |(L′l,C,i × L′r,C,j)f | . time Õ
(
B × 2−pfn/2

)
9: Estimate s′ = |(L′′l,C,i × L′r,C,j)f | . time Õ

(
B × 2−pfn/2

)
. In the case of an insertion, s′ ≥ s and s′ ≤ s for a deletion

10: if s > B and s′ ≤ B
. The removal of e makes the number of filtered pairs acceptable

11: then Lf ← Lf ∪ (L′′l,C,i × L′r,C,j)f
12: if s > B and s′ > B
13: then do nothing
14: if s ≤ B and s′ > B

. The insertion of e overflows the filtered pairs
15: then remove all (L′l,C,i × L′r,C,j)f from Lf

16: if s ≤ B and s′ ≤ B
17: then update Lf with the (at most) B new or removed pairs
18: end for
19: end for

Algorithm and Complexity. Algorithm 1 details our update procedure. We now
compute its time complexity and explain why it remains data-independent. Re-
call that we want to avoid the “bad cases” where an update goes on for too long:
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this is the case where an update in Ll (or Lr) creates too many updates in Lf .
In Algorithm 1, we avoid this by deliberately limiting the number of elements
that can be updated. We can see that Lf will be smaller than the “perfect”
one for two reasons: • the bucket-modulus data structure loses some vectors,
since the buckets are dropped when they overflow. • filtered pairs are lost. In-
deed, the algorithm ensures that in Lf , at most B solutions el + er come from
a cross-product L′l,C,i × L′r,C,j .

This makes the update procedure history-independent and its time complex-
ity data-independent. Indeed:

Lemma 5. The state of the data structures Ll, Lr, L
f after Algorithm 1 depends

only on Ll, Lr, L
f before and on the element that was inserted / deleted.

We omit a formal proof, as it follows from our definition of the bucket-
modulus list and of Algorithm 1.

Lemma 6. With a good choice of B, Algorithm 1 runs with a data-independent
error in o(2n). The time complexity of Algorithm 1 is Õ

(
2(`−c)n

)
and an update

modifies Õ
(
2max(`−c+pf/2,0)n

)
elements in the filtered list Lf at the next level

(respectively `− c and max(`− c+ pf/2, 0) in log scale).

Proof. We check step by step the time complexity of Algorithm 1:

• Insertion and deletion from the skip list for Ll is done in poly(n), with a
global error that can be omitted.

• The bucket-modulus list L′l is updated in time O (B) = poly(n) without
errors. At most B elements must be inserted or removed.

• For each insertion or removal in L′l, we select the corresponding sublist L′l,C,i
(or simply L′l,C if 2` − 2c + pf ≤ 0). We look at the sublists L′r,C,j and we
estimate the number of filtered pairs in the products L′l,C,i × L′r,C,j (of size
−pf), checking whether it is smaller or bigger than B. We explain in [8,

Appendix C] how to do that reversibly in time Õ
(
B × 2−pfn/2

)
(−pf/2 in

log scale). There are ` − c + pf/2 classical iterations, thus the total time is
`− c.

• Depending whether we have found more or less than B filtered pairs, we will
have to remove or to add all of them in Lf . This means that B×2(`−c+pf/2)n

insertion or deletion instructions will be passed over to Lf .

There are two sources of data-independent errors: first, the skip list data
structure (see Section 6.1). Second, the procedure of [8, Appendix C]. Both can
be made exponentially small at the price of a polynomial overhead. Note that B
will be set in order to get a sufficiently small probability of error (see the next
section), and can be a global O (n). However, the polynomial overhead of our
update unitary grows with the number of levels. ut
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6.3 Fraction of Marked Vertices

Now that we have computed the update time of NEW-QW, it remains to com-

pute its fraction εnew of marked vertices. We will show that εnew = ε
(

1− 1
poly(n)

)
with overwhelming probability on the random subset-sum instance, where ε is
the previous fraction in QW.

Consider a marked vertex in QW. There is a path in the data structure
leading to the solution, hence a constant number of subknapsacks e1, . . . , et such
that the vertex will remain marked if and only if none of them is “accidentally”
discarded by our new data structure. Thus, if G is the graph of the walk, we
want to upper bound:

Pr
v∈G

(
v is marked in QW and

not marked in NEW-QW

)
≤

∑
ei,1≤i≤t

Pr
v∈G

(
ei ∈ v in QW

ei /∈ v in NEW-QW

)
.

We focus on some level in the tree, on a list L of average size 2`n, and on
a single vector e0 that must appear in L. Subknapsacks in L are taken from
B ⊆ Dn[α, β, γ]. We study the event that e0 is accidentally discarded from L.
This can happen for two reasons:

• we have |{e ∈ L, e · a = e0 · a mod 2`n}| > B: the vector is dropped at the
bucket-modulus level;
• at the next level, there are more than B pairs from some product of lists
L′l,C,i × L′r,C,j to which the vector e0 belongs, that will pass the filter.

We remark the following to make our computations easier.

Fact 3 We can replace the L from our new data structure NEW-QW by a list
of exact size 2`n, which is a sublist from the list L in QW.

At successive levels, our new data structure discards more and more vectors.
Hence, the actual lists are smaller than in QW. However, removing a vector e
from a list, if it does not unmark the vertex, does not increase the probability of
unmarking it at the next level, since e does not belong to the unique solution.

Fact 4 When a vertex in NEW-QW is sampled uniformly at random, given a
list L at some merging level, we can assume that the elements of L are sampled
uniformly at random from their distribution B (with a modular constraint).

This fact translates Heuristic 1 as a global property of the Johnson graph.
At the first level, nodes contain lists of exponential size which are sampled with-
out replacement. However, when sampling with replacement, the probability of
collisions is exponentially low. Thus, we can replace Prv∈G by Prv∈G′ where G′

is a “completed” graph containing all lists sampled uniformly at random with
replacement. This adds only a negligible number of vertices and does not impact
the probability of being discarded.
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Number of Vectors Having the Same Modulus. Let N ' 2n and M be a divisor
of N . Given a particular e0 ∈ B and a vector a ∈ ZnN ,

For e ∈ B, define Xe(a) =

{
1 if e · a = e0 · a (mod M)

0 otherwise

We prove the following Lemma in the full version of the paper [8].

Lemma 7. If |B| �M ' |L|, then for a 1− negl(n) proportion of a ∈ ZnN , and
with an appropriate B = O (n):

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1

 > 1− 1

poly(n)
(1)

For the number of filtered pairs, we use the fact that the vectors at each level
are sampled uniformly at random from their distribution. If this is the case, then
a Chernoff bound (similar to the proof of Lemma 7) limits the deviation of the
number of filtered pairs in L′l,C,i × L′r,C,j from its expectation (which is 1 by
construction): the probability that there are more than B + 1 pairs is smaller
than e−(B+1)/3. By taking a sufficiently big B = O (n), we can take a union
bound over all products of lists L′l,C,i × L′r,C,j in which e0 intervenes. We also
take a union bound over the intermediate subknapsacks that we are considering.
The loss of vertices remains inverse polynomial.

6.4 Time Complexities without Heuristic 2

Previous quantum subset-sum algorithms [6,19] have the same time complexities
without Heuristic 2, as they fall in parameter ranges where the bucket-modulus
data structure is enough. However, this is not the case of our new quantum walk.
We keep the same set of constraints and optimize with a new update time. Al-
though using the extended {−1, 0, 1, 2} representations brings an improvement,
neither do the fifth level, nor the left-right split. This simplifies our constraints.
Let m̂ax(·) = max(·, 0). The guaranteed update time becomes:

U = m̂ax

(
`3 − (c2 − c3)︸ ︷︷ ︸

Level 2

, m̂ax(`3 − (c2 − c3) +
p2
2

)︸ ︷︷ ︸
Number of elements
to update at level 1

+ m̂ax(`2 − (c1 − c2)),

1

2

(
m̂ax

(
`3−(c2−c3)+

p2
2

)
+ m̂ax

(
`2−(c1 − c2) +

p1
2

)
+ m̂ax(`1 − (1− c1))

)
︸ ︷︷ ︸

Final quantum search among all updated elements

)

We obtain the time exponent 0.2182 (rounded upwards) with the following
parameters (rounded). The memory exponent is 0.2182 as well.

`0 = −0.2021, `1 = 0.1883, `2 = 0.2102, `3 = 0.2182, `4 = 0.2182

c3 = 0.2182, c2 = 0.4283, c1 = 0.6305, p0 = −0.2093, p1 = −0.0298, p2 = −0.0160

α1 = 0.0172, α2 = 0.0145, α3 = 0.0107, γ1 = 0.0020
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7 Conclusion

In this paper, we proposed improved classical and quantum heuristic algorithms
for subset-sum, building upon several new ideas. First, we used extended rep-
resentations ({−1, 0, 1, 2}) to improve the current best classical and quantum
algorithms. In the quantum setting, we showed how to use a quantum search to
speed up the process of filtering representations, leading to an overall improve-
ment on existing work. We built an “asymmetric HGJ” algorithm that uses a
nested quantum search, leading to the first quantum speedup on subset-sum in
the model of classical memory with quantum random access. By combining all
our ideas, we obtained the best quantum walk algorithm for subset-sum in the
MNRS framework. Although its complexity still relies on Heuristic 2, we showed
how to partially overcome it and obtained the first quantum walk that requires
only the classical subset-sum heuristic, and the best to date for this problem.

Open Questions. We leave as open the possibility to use representations with
“-1”s (or even “2”s) in a quantum asymmetric merging tree, as in Section 4.3.
Another question is how to bridge the gap between heuristic and non-heuristic
quantum walk complexities. In our work, the use of an improved vertex data
structure seems to encounter a limitation, and we may need a more generic
result on quantum walks, similar to [2]. Finally, it would be of interest to study
representations with a larger set of integers.
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Appendices

A Bijection between Representations and Integers

It is well known that there exists a bijection between
[
0,
(
n
m

)[
and n-bit vectors

of Hamming weight m, and this bijection can be computed in polynomial time
in n [39]. In our case, m = βn and such vectors are subknapsacks from Dn[0, β].
If i1, . . . im are the bit-positions of the m “1” in this vector, we map it to the
m-tuple of integers: (i1, . . . im), and define the bijection as:

φ : (i1, . . . im) 7→
(
im − 1

m

)
+ . . .+

(
i1 − 1

1

)
where

(
i
j

)
has supposedly been precomputed for all i ≤ n, j ≤ m. In order

to compute the inverse φ−1, we find for each j ≤ t the unique integer ij such
that

(
ij−1
m

)
≤ x ≤

(
ij
m

)
. We can generalize this to an arbitrary number of nonzero

symbols (3 in our paper: “1”, “-1” and “2”), that we denote 1, 2, . . . t. Let k1, . . . kt
be the counts of each symbol in the vector v. We map it to a tuple of tuples:
(i11, . . . i

1
k1

), . . ., (it1, . . . i
t
kt

) where the first vector represents the positions of the
“1” among the n bit positions, the second vector represents the positions of the
“2” after having removed the “1”, and so on. Consequently, we have 0 ≤ i1j ≤
n− 1, 0 ≤ i2j ≤ n− 1− k1, etc.

Next, we map each of these t tuples individually to an integer, as was done
above: φj(ij1, . . . i

j
kj

) = xj where 0 ≤ xj ≤
(
n−k1...−kj−1

kj

)
. Finally, we compute:

φ(v) = x1 +

(
n

k1

)
x2 +

(
n

k1, k2

)
x3 + . . .+

(
n

k1, . . . kt

)
xt

= x1 +

(
n

k1

)(
x2 +

(
n− k1
k2

)(
x3 + . . .+

(
n− k1 . . .− kt−2

kt−1

)
xt
)
. . .

)
.

By the bounds on the xj , we remark that 0 ≤ φ(v) ≤
(

n
k1,...kt

)
−1. Furthermore,

we observe that one can easily retrieve the xj by successive euclidean divisions,
and use the bijections φj to finish the computation.

Lemma 8. Let n, k1, . . . kt be t+ 1 integers such that k1 + . . . + kt ≤ n. There
exists a quantum unitary, realized with poly(n) gates, that on input a number j

in
[
0,
(

n
k1,...kt

)[
, writes on its output register the j-th vector φ−1(j) ∈ {0, . . . , t}n

having, for each 1 ≤ i ≤ t, exactly ki occurrences of the symbol “i”. There exists
another unitary which writes, on input v, the integer value φ(v).

Using this unitary in combination with a Quantum Fourier Transform, we
can, for example, easily produce superpositions of subsets of Dn[α, β, γ], by
taking arbitrary integer intervals.
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B Filtering Probabilities

We give below the filtering probabilities for representations that use “-1” and
“2”. The principle is similar to Lemma 1, but the details are more technical.
Notice that both of these lemmas assume symmetric input distributions, and
thus are less general than Lemma 1.

Lemma 9 (Filtering BCJ-style representations). Let e1, e2 ∈ Dn[α, β]
and γ ≤ 2α. Then the logarithm of the probability that e1 + e2 ∈ Dn[γ, 2β] is:

pf2 (α, β, γ) = bin (β + α, α− γ/2) + bin (α, α− γ/2)

+ trin (1− β − 2α, γ/2, β + γ/2)− trin (1, β + α, α)

Proof. In order to estimate the success probability, we need to estimate the
number of well-formed representations, and how they can be decomposed. Given
a fixed vector e1 ∈ D, we count the number of compatible e2 such that xn
positions with a -1 from e2 are cancelled by a 1 from e1. As e1 + e2 ∈ Dn[γ, 2β],

there are
(
(β+α)n
xn

)(
αn

(2α−γ−x)n)
)(

(1−β−2α)n
(α−x)n,(β+γ−α+x)n

)
such vectors.

Taking the logarithm and the standard approximations, its derivative is

log
(
β+α−x

x
2α−γ−x
γ−α+x

α−x
β+γ−α+x

)
. This term is strictly decreasing for O < x < γ−α,

and equals 0 for x = α− γ/2. Hence, this is the maximum, which correspond to
the balanced case. It is equal, up to a polynomial loss, to the total number of
compatible vectors. Hence, the log of the number of compatible vectors is

bin (β + α, α− γ/2) + bin (α, α− γ/2) + trin (1− β − 2α, γ/2, β + γ/2) . As
there are trin (1, β + α, α) vectors in Dn[α, β], the lemma holds. ut

Lemma 10 (Filtering representations using “2”s). Let e1, e2 ∈ Dn[α1, β, γ1]

and α0, γ0 ≥ 0. Let us define :

{
xmin = max(0, α1 + β − 1−α0+γ0

2 , γ1 − γ0/2)
xmax = min(α1 − α0/2, α0/2 + β1 − γ0, γ1)

.

If xmin 6 xmax, then the logarithm of the probability that e1+e2 ∈ Dn[α0, 2β, γ0]
is at least:

pf3 (α0, β, γ0, α1, γ1) = max
x∈[xmin,xmax]

trin (α1, x, α0/2) +

trin (α1 + β − 2γ1, γ0 − 2γ1 + 2x, β − γ0 − x+ α0/2) + bin (γ1, x) +

quadrin (1− β − 2α1 + γ1, γ1 − x, α0/2, β − γ0 − x+ α0/2)−
quadrin (1, α1, α1 + β − 2γ1, γ1)

Proof. To avoid the explosion of the number of variables, we restrain ourselves
to the symmetric cases (for which there are as much 1s given by 0 + 1 as 1s
given by 1 + 0, etc.) Given some e1 ∈ Dn[α1, β, γ1], we compute the number
of compatible e2 ∈ Dn[α1, β, γ1]. These vectors can be sorted according to the
number xn of positions where a −1 from e1 cancels out a 2 from e2. For e1 +e2

to be in Dn[α0, 2β, γ0], we must have :

• (−1) + (0)|(0) + (−1) : α0n/2 times
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• (−1) + (1)|(1) + (−1) : (α1 − x− α0/2)n times
• (−1) + (2)|(2) + (−1) : xn times
• (1) + (0)|(0) + (1) : (α0/2 + β − γ0 − x)n times
• (2) + (0)|(0) + (2) : (γ1 − x)n times
• (1) + (1) : (γ0 − 2γ1 + 2x)n times
• (0) + (0) : (1− α0 + γ0 − 2α1 − 2β + 2x)n times (i.e. the remaining)

Thus, in e1 (which contains α1 “−1”s), α0n/2 of the “−1”s must match a “0”,
(α1−x−α0/2)n of the “−1”s must match a “1” and the remaining nxmust match
a “2”. Therefore, there are

(
α1n

α0n/2,xn

)
possible choices for the coordinates of e2

matching the “−1”s of e1. Similarly, there are
(

(α1+β−2γ1)n
(γ0−2γ1+2x)n,(β−γ0−x+α0/2)n

)
possibilities for the coordinates of e2 matching the “1”s,

(
γ1n
xn

)
for the coordi-

nates matching the “2”s, and
(

(1−β−2α1+γ1)n
(γ1−x)n,α0n/2,(β−γ0−x+α0/2)n

)
for the coordinates

matching the “0”s.
The total number of possibilities is :

∑
x

(
α1n

α0n/2, xn

)(
(α1 + β − 2γ1)n

(γ0 − 2γ1 + 2x)n, (β − γ0 − x+ α0/2)n

)
(
γ1n

xn

)(
(1− β − 2α1 + γ1)n

(γ1 − x)n, α0n/2, (β − γ0 − x+ α0/2)n

)
This quantity is defined only for xmin 6 x 6 xmax. If x is outside of these

bounds, one of these multinomial (at least) is zero and there is no compatible
e2. As xn must be an integer, there are only a linear number of possible choices
for x. Therefore the number of all possible e2 is given, up to a polynomial factor,
by the number of e2s for the best x.

In order to obtain a probability, we divide the number of compatible e2

by
(

n
α1n,(α1+β−2γ1)n,γ1n)

)
, which is the size of Dn[α1, β, γ1]. We observe here

that the logarithm of the probability that e2 is compatible with e1 is exactly
pf3 (α0, β, γ0, α1, γ1).

We only considered the symmetric cases, assuming that we can neglect the
contribution of the asymmetric cases. If we cannot, it means that we underes-
timated the probability for e1 and e2 to be compatible, and we could improve
further the parameters by taking into account the asymmetric cases as well. ut

C Estimating a Number of Solutions Reversibly

We give a reversible procedure that, given a search space X with good elements
G ⊆ X, finds whether |G| > B using Õ (B) independent Grover searches in
X. This procedure uses a coupon collector instead of quantum counting [13],
because B is considered to be a constant, and we are interested in a good success
probability rather than a quadratic speedup.

Lemma 11. Let X be a search space of exact size 2αn and G ⊆ X be a “good”
subspace of exact size unknown. There exists a quantum algorithm that given
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superposition access to X, finds whether |G| ≥ B or not in time Õ
(
B
√
X
)

and

with a negligible probability of error.

Proof. Although |G| is not known, we use the idea (see e.g. [12]) that we can
perform quantum searches with an approximate number of iterations and still
obtain solutions with a good probability.

More precisely, there exists a number t, depending on |G| (unknown) and
|X| (known) such that after t iterations, the state will be exactly the uniform
superposition ofG. This ideal t is not an integer; it is between 1 and dπ4

√
|X|e (we

assume that there is at least a solution, otherwise we will also detect this). Since
we don’t know t, we will instead approximate it by a t′ such that t

2 ≤ t′ ≤ 3t
2 .

If we perform t′ iterations with such a good t′, we will fall on a state with a
constant global amplitude b (roughly 1√

2
) on elements of G. Thus, we perform

many different searches with different iteration numbers, ranging from 0, 1 to
dπ4
√
|X|e, and increasing exponentially. This ensures us that regardless of the

value of t, one of these numbers will be an approximation sufficient for us.
Since we want the algorithm to work with a global error negligible and in-

dependent of |G|, we set c = O
(

ln
√
|X|
)

the number of different searches and

perform c′B copies of each. Thus, we have a total of cc′B independent states
|ψi〉 for 1 ≤ i ≤ c. One of these packets approximates the good t at best, but

we don’t know which one. We see the state
⊗

i(|ψi〉
⊗cB

) as a superposition over

tuples of Xcc′B : ∑
x1,...xcc′B

αx1,...xcc′B |x1〉 . . . |xcc′B〉 .

We check whether the tuple (x1, . . . xcc′B) contains ≥ B distinct solutions
and we put the result in a qubit:∑
x1,...xcc′B

αx1,...xcc′B |x1〉 . . . |xcc′B〉 |(x1, . . . xcc′B contains ≥ B distinct solutions)〉 .

If |G| < B, then this qubit is always 0: we can immediately uncompute the
quantum searches and we have obtained the result. If |G| ≥ B, then some of
these tuples contain B distinct solutions, but not all. We must ensure that their
proportion is overwhelming, so that after uncomputing, the algorithm actually
adds an error vector of negligible amplitude. To do that, we will only focus on
the block of c′B states that corresponds to the good t, since for them, we have
a lower bound on the probability of finding a solution. The other states, that we
dismiss, can only improve our success in finding B distinct solutions. So we now
focus on c′B-tuples only.

Let us consider |G| = B which is the worst case. First, we will look at
the proportion of c′B-tuples that contain (1 − c′′)c′bB solutions: this is the
probability to succeed at least (1 − c′′)c′bB times after c′B independent trials
of probability b each, and it is higher than 1 − exp(−c′′c′Bb/2) by a Chernoff
bound. Next, assuming that there are (1 − c′′)c′bB independent solutions, we
check the probability that they span all the B distinct solutions that there are
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in total. This is related to the coupon collector problem. The probability to miss

at least a coupon among B after c(3)B lnB trials is lower than B−c
(3)+1. Thus,

we may take c(3) = O (n), c′′ = 1
2 and c′ = O (n) for a total probability of failure

in o(2−n). ut

D Computing the Fraction of Marked Vertices

This section contains a proof for Lemma 7 that was omitted from the main body
of the paper. Recall that we defined:

Xe(a) =

{
1 if e · a = e0 · a (mod M)

0 otherwise

We will first prove a result on the average number of vectors having the same
modulus as e0, then we will use this in a Chernoff bound. Define

Y (B, e0; a) = |{e ∈ B,a · e = a · e0 (mod M)}| .

where M divides N ' 2n. For simplicity, we write Y (a) for Y (B, e0; a) in the
following. We are interested in Y (a) as a random variable when a is drawn
uniformly from ZnN .

Lemma 12. If |B| �M , then with probability 1− negl(n),

Y (a) ≤ 2Ea[Y (a)] ∼ 2 · |B|
M

(2)

Proof. Following [36], for any z ∈ C, define E(z) = exp(2πiz/M). It satisfies the
identity

∀k ∈ N,
kM−1∑
λ=0

E(λu) =

{
0 if u 6= 0 (mod M)

kM if u = 0 (mod M)
(3)

for any u ∈ Z. We have

Y (a) =
∑
e∈B

Xe(a) and Xe(a) =
1

M

M−1∑
λ=0

E(λa · (e− e0)).

Therefore for any e 6= e0,

Ea[Xe(a)] =
1

Nn

∑
a∈ZnN

1

M

M−1∑
λ=0

E(λa · (e− e0))

=
1

Nn

∑
a∈ZnN

1

M
+

1

Nn

∑
a∈ZnN

1

M

M−1∑
λ=1

E(λa · (e− e0))

=
1

M
+

1

MNn

M−1∑
λ=1

∑
a∈ZnN

E(λa · (e− e0))
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=
1

M
+

1

MNn

M−1∑
λ=1

n∏
i=1

∑
a∈ZN

E(λa(ei − ei0)))

=
1

M
(see below)

where in the last step, we used that if e 6= e0, there exists i ∈ [1, n] such that
ei 6= ei0, where ei is the ith component of e and hence of the ith sum in the
product is zero by (3) since λ 6= 0 (mod M). It follows by linearity that

Ea[Y (a)] = Ea[Xe(a)] +
∑

e∈B\{e0}

Ea[Xe(a)] = 1 +
|B| − 1

M

since e0 ∈ B. Similarly for any e, f ∈ B \ {e0},

Ea[Xe(a)Xf (a)] =
1

Nn

∑
a∈ZnN

(
1

M

M−1∑
λ=0

E(λa · (e− e0))

)(
1

M

M−1∑
µ=0

E(µa · (f − e0))

)

=
1

M2Nn

∑
a∈ZnN

M−1∑
λ=0

M−1∑
µ=0

E(λa · (e− e0))E(µa · (f − e0))

=
1

M2Nn

∑
a∈ZnN

M−1∑
λ=0

M−1∑
µ=0

E(a · (λe + µf − (λ+ µ)e0))

=
1

M2Nn

M−1∑
λ=0

M−1∑
µ=0

∑
a∈ZnN

E(a · (λe + µf − (λ+ µ)e0))

=
1

M2

M−1∑
λ=0

M−1∑
µ=0

1
[
λe + µf = (λ+ µ)e0 mod M

]
by (3). If λ = 0 then the equation λe+µf = (λ+µ)e0 mod M becomes µf = µe0

but since f 6= e0, the only solution is µ = 0. A symmetric reasoning shows that
if µ = 0 then λ = 0 is the only solution. Hence, given e 6= e0, we have

∑
f∈B\{e0}

Ea[Xe(a)Xf (a)] =
|B| − 1 + |Fe|

M2

where

Fe =
{

(λ, µ, f) ∈ {1, . . . ,M − 1}2 × B \ {e0} : λe + µf = (λ+ µ)e0 mod M
}
.

We now claim that this set is not too large. Assume that (λ, µ, f) ∈ Fe, recall
that λ, µ 6= 0 and since e 6= e0 then there exists i such that ei 6= ei0 so in
particular λ(ei − ei0) = µ(f i − ei0). But recall that e, f , e0 ∈ B ⊆ {−1, 0, 1, 2}n
hence ei − ei0 ∈ {−3,−2,−1, 1, 2, 3}. It follows that if we fix µ then there are
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at most 3 possible values6 for λ. We note in passing that the constant 3 is not
magical: if we had B ⊆ {−a, . . . , a}n then it be bounded by 2a. Now assume
that (λ, µ, f), (λ, µ,g) ∈ Fe with f 6= g, then we must have

µ(f − g) = 0 mod M ⇒ f − g = 0 mod M/µ

⇒ ∃k 6= 0.∀i,gi = f i + kM/µ

which is only possible if µ divides M . In particular, we must have M/µ > 2, in
other words all coordinates of f and g are at least at distance 2. This is clearly
impossible because B ⊆ Dn[α, β, γ]: the distribution of “-1”, “0”, “1”, “2” in one
of f or g would be wrong. In summary, we have that:

• for every µ, f , there are at most 3 possible values of λ such that (λ, µ, f) ∈ Fe,
• for every λ and µ, there is at most one value of f such that (λ, µ, f) ∈ Fe.

It follows that Fe has size at most 3M . Then by linearity,

Ea[Y (a)2] =
∑
e,f∈B

Ea[Xe(a)Xf (a)]

=
∑
f∈B

Ea[Xf (a)] +
∑

e∈B\{e0}

Ea[Xe(a)] +
∑

e,f∈\{e0}

Ea[Xe(a)Xf (a)]

6 2Ea[Y (a)]− 1 + (|B| − 1)
|B| − 1 + 3M

M2

6 1 + 2
|B| − 1

M
+ (|B| − 1)

|B| − 1 + 3M

M2

6
M2 + (|B| − 1)(|B| − 1 + 5M)

M2
.

Finally, we have

Va(Y (a)) = Ea[Y (a)2]− Ea[Y (a)]2

6
M2 + (|B| − 1)(|B| − 1 + 5M)− (|B|+M − 1)2

M2

=
3(|B| − 1)M

M2

=
3(|B| − 1)

M
.

Thus Ea[Y (a)] ≈ Va(Y (a)) when we look at their order of magnitude.
According to Tchebychev’s inequality,

Pr
a

[|Y (a)− Ea[Y (a)]| > Ea[Y (a)]] ≤ Va(Y (a))

Ea[Y (a)]2
= negl(n)

which completes the proof. ut
6 If we have, say, 3λ = x (mod M) then λ = x/3 (mod M/3), which is only possible

if x and M are divisible by 3, and then λ ∈ {x/3, (x+M)/3, (x+ 2M)/3}.
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Lemma 7. If |B| �M ' |L|, then for a 1− negl(n) proportion of a ∈ ZnN , and
with an appropriate B = O (n):

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1

 > 1− 1

poly(n)
(4)

Proof.

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1


=

|B|∑
y=1

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1|Y (a) = y

Pr [Y (a) = y]

Under the condition of Y (a) = y, for all i ∈ [1, |L|], Xei(a) can be seen as a
random variable following Ber( y

|B| ), since eis’ are randomly chosen from B. Here

Ber(p) is a Bernoulli distribution of parameter p.
Using equation (2), for a 1− negl(n) portion of a ∈ ZnN , we have

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1


>

2· |B|M∑
y=1

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1|Y (a) = y

Pr [Y (a) = y]

= (1− negl(n))

2· |B|M∑
y=1

Pr
e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1|Y (a) = y


> (1− negl(n)) Pr

e1,··· ,e|L|∼Unif(B)

 |L|∑
i=1

Xei(a) < B − 1|Y (a) = 2 · |B|
M


= (1− negl(n)) Pr

Xei
∼Ber(2· |B|M ·

1
|B| )=Ber( 2

M )

 |L|∑
i=1

Xei(a) < B − 1


Chernoff’s inequality gives that for any δ ≥ 1:

Pr

 |L|∑
i=1

Xei(a) ≥ (1 + δ)
2|L|
M

 ≤ e− δ3 2|L|
M .

Hence, when M = |L|, by taking B linear in n, we obtain that the probability
of being unmarked due to this e0 is less than 1

poly(n) . ut
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