
Multiparty Homomorphic Encryption
(or: On Removing Setup in Multi-Key FHE)

Prabhanjan Ananth1, Abhishek Jain2, and Zhengzhong Jin2

1University of California Santa Barbara
2Johns Hopkins University

Abstract

The notion of threshold multi-key fully homomorphic encryption (TMK-FHE) [Lopez-Alt,
Tromer, Vaikuntanathan, STOC’12] was proposed as a generalization of fully homomorphic
encryption to the multiparty setting. In a TMK-FHE scheme for n parties, each party can
individually choose a key pair and use it to encrypt its own private input. Given n ciphertexts
computed in this manner, the parties can homomorphically evaluate a circuit C over them to
obtain a new ciphertext containing the output of C, which can then be decrypted via a threshold
decryption protocol. The key efficiency property is that the size of the (evaluated) ciphertext is
independent of the size of the circuit.

TMK-FHE with one-round threshold decryption, first constructed by Mukherjee and Wichs
[Eurocrypt’16], has found several powerful applications in cryptography over the past few years.
However, an important drawback of all such TMK-FHE schemes is that they require a common
setup which results in applications in the common random string model.

To address this concern, we propose a notion of multiparty homomorphic encryption (MHE)
that retains the communication efficiency property of TMK-FHE, but sacrifices on the efficiency
of final decryption. Specifically, MHE is defined in a similar manner as TMK-FHE, except that
the final output computation process performed locally by each party is “non-compact” in that
we allow its computational complexity to depend on the size of the circuit. We observe that this
relaxation does not have a significant bearing in many important applications of TMK-FHE.

Our main contribution is a construction of MHE from the learning with errors assumption
in the plain model. Our scheme can be used to remove the setup in many applications of TMK-
FHE. For example, it yields the first construction of low-communication reusable non-interactive
MPC in the plain model. To obtain our result, we devise a recursive self-synthesis procedure to
transform any “delayed-function” two-round MPC protocol into an MHE scheme.

1 Introduction

The emergence of fully homomorphic encryption (FHE) [35] over the last decade has revolution-
ized cryptography. Roughly speaking, FHE allows for homomorphically evaluating an arbitrary
circuit over an encrypted plaintext such that the resulting ciphertext contains the output of the
circuit evaluated over the plaintext. This remarkable feature has enabled numerous applications in
cryptography over the years.

Since FHE is natively suited for tasks involving two parties, the notion of threshold multi-key fully
homomorphic encryption (TMK-FHE) [42] was proposed as its natural extension to the multiparty
setting. In a TMK-FHE scheme for n parties, each party can individually choose a key pair and
use it to encrypt its own private input. Given n ciphertexts computed in this manner, the parties
can homomorphically evaluate a circuit over them to obtain a new “multi-key ciphertext”. This

1

ciphertext, however, cannot be decrypted by any individual party; instead, the parties engage in a
threshold decryption protocol, where at the end, each party can learn the output of the circuit over
the inputs of the parties.

The efficiency properties of TMK-FHE are defined analogously to FHE, with the key requirement
being that the size of the evaluated ciphertext must be independent of the size of the circuit. The
security requireme is similar to secure multiparty computation (MPC) [49, 39], namely, even a
majority coalition of up to (n− 1) parties should not be able to learn anything beyond their inputs
and the output of the circuit. Indeed, TMK-FHE yields a natural design template for MPC: first
the parties encrypt their inputs using their own keys. Later, when the parties agree upon a circuit
C that they wish to compute, they homomorphically evaluate C over their set of encrypted inputs
and then execute the threshold decryption protocol over the resulting ciphertext to learn the output
of C.

The first generation of TMK-FHE schemes constructed by Lopez et. al. [42] required an interac-
tive threshold decryption procedure that involved running a generic MPC protocol. Subsequently,
building on Clear and McGoldrick [26], Mukherjee and Wichs [44] constructed the first TMK-FHE
scheme with a one-round (a.k.a. non-interactive) decryption protocol based on the learning with
errors (LWE) assumption. The non-interactive decryption ability has since turned out to be a
game-changer; in particular, it has enabled numerous powerful applications including two-round
MPC [44], homomorphic secret sharing [16, 17], spooky encryption [28], obfuscation and functional
encryption combiners [5, 6], multiparty obfuscation [40], homomorphic time-lock puzzles [43, 19]
and ad-hoc multi-input functional encryption [1].

On the use of Common Setup. All known TMK-FHE schemes with a one-round decryption
protocol [44, 22, 46] require an initial setup process to sample common parameters that must be
used by each party to compute its key. As a consequence, the aforementioned applications are
achieved in the common random string (CRS) model.

A major open question in this area (stated explicitly in [44, 22, 24]) is whether it is possible
to avoid the use of a common setup. The importance of this question stems from the fact that a
positive resolution would eliminate the necessity of a CRS in the applications of TMK-FHE, thereby
yielding schemes in the plain model.

Multiparty Homomorphic Encryption. To address the above concern, we study a notion of
multiparty homomorphic encryption (MHE) – a variant of TMK-FHE that retains its key virtue of
communication efficiency but sacrifices on the efficiency of final output computation step. Specifi-
cally, MHE is defined in a similar manner as TMK-FHE, except that the final output computation
step performed locally by each party is “non-compact” in that we allow its computational complexity
to depend on the size of the circuit. Syntactically, this is achieved by allowing the output compu-
tation algorithm to take as input the same circuit (say) C that was evaluated earlier. Crucially,
however, we still require the size of the (evaluated) ciphertexts to be independent of size of the
circuit.

A few remarks regarding the meaningfulness of this notion are in order:

• Non-triviality: We first observe that unlike the case of (single-key) FHE, allowing for non-
compact output computation does not trivialize the notion of MHE. Indeed, in the case of
FHE, a trivial scheme with non-compact output computation can be obtained via any public-
key encryption scheme by simply considering a decryption process that first recovers the
plaintext and then evaluates the circuit to compute the output. Such an approach, however,
does not extend to the multiparty setting since it would violate the security requirement of
MHE (defined similarly to TMK-FHE).

2

• Applicability: Second, allowing for non-compact output computation does not seem to
adversely impact many important applications of TMK-FHE. For example, MHE still yields
two-round MPC, with the minor difference that each party would need to perform work
proportional to the circuit two times as opposed to once.

Crucially, we show that by allowing for this relaxation, we can eliminate the use of setup. Specifically,
we show that MHE can be realized without any common setup, in the plain model.

1.1 Our Results

MHE from LWE. In this work, we study the notion of MHE as an alternative to TMK-FHE for
cryptographic applications. Our main result is a construction of MHE in the plain model based on
the LWE assumption.

Our approach differs significantly from [44] who build upon the Gentry et al. FHE scheme [36]
to construct TMK-FHE and then use it to build two-round MPC. We take a “reverse approach” and
provide a generic transformation from any delayed-function1 two-round MPC protocol in the plain
model to an MHE scheme.

Theorem 1.1 (Informal). Assuming LWE (with sub-exponential modulus-to-noise ratio), there ex-
ists a generic transformation from any delayed-function two-round semi-honest MPC in the plain
model to MHE.

Since delayed-function two-round MPC in the plain model is known from two-round oblivious
transfer2 [33, 11], which in turn can be realized based on LWE [47, 18], we obtain an MHE scheme
based only on LWE.

Our Approach. A fundamental property of TMK-FHE is the ability to perform an unlimited
number of homomorphic evaluations (of possibly different functions) on a tuple of ciphertexts.
That is, given a tuple of ciphertexts (c1, . . . , cn) and functions f1, . . . , fk (for any polynomial k), it
is possible to compute Cf1 , . . . , Cfk , where each Cfi is obtained by homomorphically evaluating fi
over (c1, . . . , cn). This reusability property is crucial to many applications of TMK-FHE.

Our main technical contribution is a recursive self-synthesis procedure for achieving this property.
Our approach bears resemblance to, and builds upon, several unrelated works dating as far back as
the construction of pseudorandom functions from pseudorandom generators [37], as well as recent
constructions of indistinguishability obfuscation from functional encryption [14, 7] (and even more
recently, constructions of identity-based encryption [30, 20]). Indeed, the central goal underlying
all of these works can be re-cast as achieving some form of reusability. We further elaborate on our
approach in Section 1.2.

Applications. MHE can be plugged into many applications of TMK-FHE, to eliminate the use of
CRS and obtain results in the plain model. In particular, by plugging in MHE in the aforementioned
template for constructing MPC from TMK-FHE, we obtain a two-round MPC protocol in the plain
model with the following two salient properties:

• The first round of the protocol, which only depends on the inputs of the parties, can be reused
for an arbitrary number of computations. That is, after the completion of the first round, the
parties can execute the second round multiple times, each time with a different circuit C` of
their choice, to learn the output of C` over their fixed inputs.

1A two-round MPC protocol satisfies the delayed function property if the first round messages of the protocol are
computed independently of the description (but not necessarily the size) of the function.

2While the original constructions of [33, 11] do not achieve the delayed-function property; as observed in [3, 4],
they can be easily adapted to satisfy this property.

3

• The communication complexity of the protocol is independent of the circuit size (and only
depends on the circuit depth).

Previously, such a protocol – obtained via TMK-FHE – was only known in the CRS model [44].
Benhamouda and Lin [13] investigated the problem of two-round reusable MPC (with circuit-

size dependent communication) and give a construction for the same, in the plain model, based on
bilinear maps.3 Our construction is based on a different assumption, namely, LWE, and therefore
also enjoys post-quantum security.

Future Directions. A few known applications of TMK-FHE [28, 16, 43] do rely on the compact-
ness (and in some cases, “simplicity”) of output reconstruction procedure achieved by the scheme
of [44]. Our construction does not enjoy this property, and achieving it remains an important open
problem for future.

1.2 Technical Overview

Towards constructing MHE, we consider a relaxed notion of MHE where the evaluation algorithm
is allowed to be private; we call this notion pMHE. It turns out that if we have a pMHE scheme
then we can combine this with any (single-key) leveled fully homomorphic encryption scheme to
achieve MHE. We will show the transformation from pMHE to MHE in Section 3. Hence, we focus
on constructing pMHE.

MHE with Private Evaluation (pMHE). An MHE scheme with private evaluation, associated
with n parties, consists of the following algorithms:

• Encryption: The ith party, for i ∈ [n], on input xi produces a ciphertext cti and secret key
ski.

• Evaluation: The ith party on input all the ciphertexts ct1, . . . , ctn, secret key ski, circuit C,
it evaluates ciphertexts to obtain a partial decrypted value pi.

• Final Decryption: Given all the partial decrypted values (p1, . . . , pn) and the circuit C, we
achieve the output C(x1, . . . , xn).

In terms of efficiency, we require that the size of the ciphertexts and the partial decrypted values do
not depend on the size of the circuit. In more detail, we define the notion of succinctness as follows:

• The size of the ciphertext is polynomial in the security parameter λ, input length of C, namely
C.in, the output length of C, namely C.out, and depth of C, namely C.depth.

• The size of the partial decrypted values is polynomial in the security parameter λ, C.in, C.out
and C.depth.

Ideally, we would like both the size of the ciphertexts and the size of the partial decrypted values to
be also independent of the depth of the circuit; however note that even the problem of constructing
single-key FHE schemes from learning with errors where the parameters do not grow with the depth
of the circuit is still open.

Starting Point: Generic Two-Round Secure MPC. Towards constructing a multi-party ho-
momorphic encryption scheme, we first identify a two round secure multiparty computation (MPC)
protocol as a natural starting tool to construct a pMHE scheme. This construction is simple and
can be described as follows:

3The authors communicated their result statement privately to us. As of this writing, a public version of their
paper is not available.

4

• The ith party, for i ∈ [N], on input xi produces the first round message msg
(1)
1 of the MPC

protocol along with the private state sti. The ciphertext cti is set to be msg
(1)
i and the secret

key ski is set to be the state sti.

• The evaluation phase corresponds to the computation of second round messages. The ith

party on input all the ciphertexts ct1, . . . , ctN , i.e., messages msg
(1)
1 , . . . ,msg

(1)
N , circuit C and

its secret key ski = sti, it produces the second round message msg
(2)
i . We interpret msg

(2)
i as

the partial decrypted value pi.

• Finally, given all the partial decrypted values (aka second round messages), we can recover
the output C(x1, . . . , xN).

While syntactically a two-round protocol does seem to yield a pMHE scheme as witnessed above,
there are many reasons why the above scheme falls short of satisfying the properties of an pMHE
scheme. We list some of the reasons below:

• Non-Succinctness: The size of the first and the second round messages in the MPC protocol,
and thus the size of the ciphertexts and partial decrypted values, could grow polynomially in
the size of the circuit.

• Lack of delayed function property: The first round messages in the MPC protocol could depend
on the circuit being securely computed. This means the encryption procedure in the above
scheme needs to take the circuit being evaluated as input.

• Non-Reusability: Even if the circuit, in the MPC protocol, is specified after the first message,
it could be the case that the second round messages when issued for two different circuits will
completely compromise the privacy of the inputs of the honest parties. That is, the first round
message in the MPC protocol when reused for two different executions could leak the inputs
of the honest parties. We call an MHE scheme that only allows for a single evaluation to be
a one-time pMHE scheme.

Indeed, the current known two-round secure MPC protocols [34, 12] based on two-round oblivious
transfer (and thus, learning with errors) have all the drawbacks mentioned above. It turns out that
there is a simple modification to existing two-round protocols to achieve delayed-function property
and thus for the rest of the overview, we only focus on handling the challenges of succinctness and
reusability. We start by addressing the reusability property – the key technical challenge.

Reusability: Naive Solution. Our first attempt to build an pMHE scheme for a circuit class
C = {C0, C1} that allows for only two decryption queries, denoted by TwoMHE, is as follows: we
consider two instantiations of OneMHE, that we call OneMHE0 and OneMHE1.

• The ith party, for i ∈ [N], on input xi, produces two ciphertexts cti0 and cti1, where cti0
is computed by encrypting xi using OneMHE0 and ct1 is computed by encrypting xi using
OneMHE1.

• To evaluate a circuit Cb, for b ∈ {0, 1}, run the evaluation procedure of OneMHEb to obtain
the partial decrypted values.

• The final decryption on input Cb and partial decrypted values produces the output.

5

It is easy to see that the above scheme supports two decryption queries. While the above template
can be generalized if C consists of polynomially many circuits; every circuit in C is associated with
an instantiation of OneMHE. However, it is clear that this approach does not scale when C consists
of exponentially many circuits.

Recursive Self-Synthesis. Instead of generating all the instantiations of OneMHE during the
encryption phase, as is done in TwoMHE, our main insight is to instead defer the generation of
the instantiations of OneMHE to the evaluation phase. The advantage of this is that during the
evaluation phase, we know exactly which circuit is being evaluated and thus we can afford to be
frugal and only generate the instantiations of OneMHE that are necessary, based on the description
of this circuit. The idea of bootstrapping a "one-time" secure scheme into a "multi-time" secure
scheme is not new and has been studied in different contexts in cryptography; be it the classical
result on pseudorandom functions from pseudorandom generators [38] or the more recent results
on indistinguishability from functional encryption [8, 15, 41] and constructions of identity-based
encryption [31, 21, 29]. In particular, as we will see soon, our implementation of deferring the
executions of OneMHE and only invoke the instantiations as needed bears some resemblance to
techniques developed in these works, albeit in a very different context.

Illustration. Before explaining our approach to handle any polynomial number of decryption
queries, we start with the same example as before: the goal is to build pMHE scheme for a circuit
class C = {C0, C1} that allows for 2 decryption queries. The difference, however, is, unlike before,
the approach we describe below will scale to exponentially many circuits.

We employ a tree-based approach to solve this problem.

• The tree associated with this scheme consists of three nodes: a single root and two leaves.
The first leaf is associated with the circuit C0 and the second leaf is associated with the circuit
C1.

• Denote the one-time pMHE scheme associated with the root to OneMHE⊥, with the left leaf
to be OneMHE0 and the right leaf node to be OneMHE1.

• Denote C̃i,b to be the garbling of a circuit that takes as input OneMHEb ciphertexts of
x1, . . . , xN , performs evaluation of C using the ith secret key associated with OneMHEb and
outputs the OneMHEb partial decryption values.

• Finally, denote the circuit C⊥ to be the circuit 4 that takes as input (x1, . . . , xN) and produces:

– wire labels, associated with C̃i,0 for OneMHE0 ciphertexts of xi under the ith party’s
secret key and,

– wire labels, associated with C̃i,1, for OneMHE1 ciphertexts of xi under the ith party’s
secret key.

Armed with the above notation, we present an overview of construction of a pMHE scheme for
C = {C0, C1} allowing for 2 decryption queries as follows:

• The ith party, for i ∈ [N], on input xi, produces the ciphertext cti⊥, where cti⊥ is computed
by encrypting xi using OneMHE⊥.

4We consider the setting where the circuit is randomized; this is without loss of generality since we can assume
that the randomness for this circuit is supplied by the parties

6

• To evaluate a circuit Cb, for b ∈ {0, 1}, the ith party does the following:

– First run the evaluation procedure of OneMHE⊥ on input circuit C⊥ to obtain the ith

partial decrypted value associated with OneMHE⊥.

– It computes a garbled circuit C̃i,b as described above.

Output the ith partial decrypted value associated with OneMHE⊥ and C̃i,b.

• The final decryption algorithm takes as input the OneMHE⊥ partial decryption values from all
the parties, garbled circuits C̃1,b, . . . , C̃N,b, circuit Cb and performs the following operations:

– It first runs the final decryption procedure of OneMHE⊥ to obtain the wire labels corre-
sponding to all the garbled circuits C̃1,b, . . . , C̃N,b.

– It then evaluates all the garbled circuits to obtain the OneMHEb partial decryption values.

– Using the OneMHEb partial decryption values, compute the final decryption procedure
of OneMHEb to obtain Cb(x1, . . . , xN).

Full-Fledged Tree-Based Approach. We can generalize the above approach to construct a
pMHE scheme for any circuit class and that handles any polynomially many queries. If s is the
maximum size of the circuit in the class of circuits, we consider a binary tree of depth log(s).

• Every edge in the tree is labeled. If an edge e is incident from the parent to its left child then
label it with 0 and if e is incident from the parent to its right child then label it with 1.

• Every node in the tree is labeled. The label is the concatenation of all the edge labels on the
path from the root to the node.

• Every leaf is associated with a circuit of size s.

With each node v, associate with v a new instantiation of a one-time pMHE scheme, that we denote
by OneMHEl(v), where l(v) is the label associated with node v. If v is the root node l(v) = ⊥.

Informally, the encryption algorithm of pMHE generates OneMHE⊥ encryption of xi under the
ith secret key. During the evaluation procedure, on input C, we generate log(s) garbled circuits, one
for every node on the path from the root to the leaf labeled with C. The role of these garbled circuits
is to delegate the computation of the partial decrypted values to the final decryption phase. In more
detail, the garbled circuit associated with the node v computes the OneMHElv||0 and OneMHElv||1
partial decrypted values and outputs the corresponding wire labels for the garbled circuits associated
with its children.

During the final decryption, starting from the root node, each garbled circuit (of every party) is
evaluated to obtain wire labels of the garbled circuit associated with the child node on the path from
the root to the leaf labelled with C. Finally, the garbled circuit associated with the leaf labelled
with C is then evaluated to obtain the OneMHEC partial decrypted values. These partial decrypted
values are then decoded to recover the final output C(x1, . . . , xN).

Efficiency Challenges. To argue that the above scheme is a pMHE scheme, we should at the
very least argue that the encryption, evaluation and final decryption algorithms can be executed in
polynomial time. Let us first argue that all the garbled circuits can be computed in polynomial time
by the ith party. The time to compute the garbled circuit associated with the root node is polynomial
in the time to compute OneMHE0 and OneMHE1 ciphertexts. The runtime of OneMHE0 (resp.,

7

OneMHE1) ciphertext is polynomial in |G0| (resp., |G1|). Moreover, |G0| itself grows polynomially
in the time to compute the OneMHE00 and OneMHE01 ciphertexts; this is similarly also true for
|G1|.

However, continuing this way, we realize that the time to compute the first garbled circuit is
exponential in s! Thus, the above scheme does not even have polynomial efficiency, let alone the
stronger succinctness property we need.

Identifying the Necessary Efficiency for Recursion. To make the above recursion idea work,
we impose a stringent efficiency constraint on the encryption complexity of OneMHE. In particular,
we require two properties to hold:

1. The encryption circuit of OneMHE has depth poly(λ) (and in particular grows polynomially
in the input, output and the depth of the circuit being evaluated).

2. The size of the ciphertext output by the encryption of OneMHE is poly(λ).

Put together, we refer to the above efficiency properties as strong ciphertext succinctness. It turns
out that if we have an OneMHE scheme with strong ciphertext succinctness, then the resulting
reusable pMHE scheme has polynomial efficiency and moreover, the ciphertext sizes in the resulting
scheme are polynomial in the security parameter alone.5

But what about the size of partial decryption values? Unfortunately, it turns out that the
reusable pMHE scheme obtained from the above process does not have succinct partial decryption
values. In particular, the size of the partial decryption values grow proportional to the size of the
circuit. We address this problem by applying a compiler that generically transforms a pMHE scheme
with large partial decryption values into a scheme with succinct partial decryption values; that is,
one that only grows proportional to the input, output lengths and the depth of the circuit being
evaluated. Such compilers, that we refer to as low communication compilers were recently studied
in the context of two-round secure MPC protocols [48, 2] and we adapt them to our setting. Once
we apply such a compiler, we achieve our desired pMHE scheme that satisfies the required efficiency
properties.

Achieving Strong Ciphertext Succinctness. The above discussion hinged on the fact that
there exists a OneMHE scheme that has strong ciphertext succinctness property. We next show how
to construct such a scheme in two steps:

• Weak Ciphertext Succinctness (Section 4.2): First, we relax the notion of strong ciphertext
succinctness property to allow for the size of the ciphertexts to be polynomial in λ, input,
output lengths and the depth of the circuit. We call this relaxed version to be weak cipher-
text succinctness property. We apply the low communication compiler discussed above on a
OneMHE scheme with no succinctness properties whatsoever (that can in turn be constructed
using any delayed-function two-round semi-honest secure MPC) to obtain a OneMHE scheme
satisfying weak ciphertext succinctness property. (Note that we apply this compiler not only
in this step but also once more on top of the reusable pMHE scheme as discussed above.)

• From Weak to Strong Ciphertext Succinctness (Section 4.3): We then show how to transform a
OneMHE scheme satisfying weak ciphertext succinctness property into one that satisfies strong

5An informed reader may wish to draw an analogy to recent works that devise recursive strategies to build
indistinguishability obfuscation from functional encryption [8, 15, 41]. These works show that a functional encryption
scheme with a sufficiently compact encryption procedure (roughly, where the complexity of encryption is sublinear
in the size of the circuit) can be used to build an indistinguishability obfuscation scheme. In a similar vein, strong
ciphertext succinctness can be seen as the necessary efficiency notion for driving the recursion in our setting without
blowing up efficiency.

8

ciphertext succinctness property. There are two differences between these two notions: (i) in
the weak ciphertext succinctness property, the size of the ciphertexts could grow polynomially
in λ, input, output lengths and depth of the circuit being evaluated whereas in the strong
ciphertext succinctness property, the size of the ciphertexts grows only polynomially in the
security parameter λ and, (ii) in the strong ciphertext succinctness property, there is an
additional restriction on the depth of the encryption circuit to be polynomial in the security
parameter.

We tackle these differences one by one by employing two different tools:

– We first use randomized encodings computable in NC1 [9] to compress the depth of the
encryption circuit in the OneMHE scheme with weak ciphertext succinctness.

– We next use the recently studied notion of laconic oblivious transfer (LOT) [25] to
compress the size of the ciphertexts. Roughly speaking, LOT allows a receiver to use a
hash function to compress a large database D ∈ {0, 1}∗ to a short digest d. A sender can
then use the digest d to encrypt two messages m0,m1 under an index i to a ciphertext
ct, such that the receiver can decrypt ct to learn mD[i], given the database D.
To compress the size of the first round message, for each party, we view the first round
message as the database D, and use the hash function to compress it to a short digest.
Then in the second round, each party garbles the next round function, and encrypts
both labels for each input wires using the digests. Each party also outputs D in the
clear in the second round, so that all other parties can use it to decrypt the labels, and
then evaluate the garbled circuit to obtain the second round messages of the underlying
protocol.

Both of the above steps combined yields a OneMHE scheme satisfying strong ciphertext succinctness
property which can then be bootstrapped to obtain a (reusable) pMHE scheme. Further, we note
that the tools employed in all of these steps can be built from LWE.

Achieving Public Evaluation Using FHE. (Section 3.4) So far, we have seen how to achieve
a reusable pMHE scheme, namely, an MHE scheme with private evaluation. We show how to
achieve an MHE scheme, i.e., the one with public evaluation, from reusable pMHE scheme using
any (single-key) leveled FHE scheme. Each party encrypts its secret key using FHE; that is the ith

party generates FHE public key-secret key pair (pki, ski) and encrypts the ith secret key using pki;
call this FHE.cti. The ith party ciphertext of the MHE scheme MHE.cti now consists of the ith party
ciphertext of the pMHE scheme, namely pMHE.cti, along with FHE.cti. The public evaluation
of MHE now consists of homomorphically evaluating the pMHE private evaluation circuit, with
(C, pMHE.ct1, . . . , pMHE.ctN) hardwired, on the ciphertext FHE.cti. Since this is performed for
each party, there are N resulting FHE ciphertexts (̂FHE.ct1, . . . , ̂FHE.ctN). During the partial
decryption phase, the ith party decrypts F̂HE.cti using ski to obtain the partial decryption value
corresponds to the pMHE scheme. The final decryption of MHE is the same as the final decryption
of pMHE.

Summary. We summarise below the steps involved in constructing MHE.

• First Step: Delayed-function two-round secure MPC. We start with a two-round
secure MPC protocol satisfies delayed-function property: i.e., the functionality to be securely
computed can be specified after the first round of the protocol. Such protocols exist from

9

two-round semi-honest oblivious transfer [34, 12]6 and thus can be based on the hardness of
learning with errors. This already yields a one-time pMHE scheme, albeit with no succinctness
properties.

• Second Step: Low-Communication Compiler. (Section 4.2) Then we show how to apply
a low-communication compiler on the above one-time pMHE scheme to obtain a one-time
pMHE scheme satisfying weak ciphertext succinctness property. This compiler additionally
assumes the hardness of learning with errors.

• Third Step: From Weak to Strong Ciphertext Succinctness. (Section 4.3) Assuming
laconic oblivious transfer and randomized encodings computable in NC1 – both of which
can be instantiated from the hardness of learning with errors [25, 21, 32, 9, 10] – we show
how to transform an pMHE scheme satisfying weak ciphertext succinctness property into one
satisfying strong ciphertext succinctness property.

• Fourth Step: One-Time pMHE to Reusable MHE scheme. (Section 5) We then show
how to generically bootstrap the one-time pMHE scheme satisfying strong ciphertext succinct-
ness property to obtain a reusable pMHE scheme; this is the main technical contribution of
our paper. The resulting scheme does not have succinct partial decryption values.

• Fifth Step: Low-Communication Compiler (again!). (Section 4.2) We then apply the
low-communication compiler again to the (reusable) pMHE scheme obtained above to obtain
a scheme that has succinct partial decryption values.

• Final Step: From private evaluation to public evaluation. (Section 3) We show how
to use any (single-key) leveled fully homomorphic encryption scheme, that can be based on
the hardness of learning with errors, to obtain a (reusable) MHE scheme, i.e., with public
evaluation, starting from a pMHE scheme.

2 Preliminaries

We denote the security parameter by λ. We focus only on boolean circuits in this work. For any
circuit C, let C.in, C.out, C.depth be the input length, output length and depth of the circuit C,
respectively. Denote C.params = (C.in, C.out, C.depth).

For any totally ordered sets S1, S2, . . . , Sn, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈ S1×S2×· · ·×Sn, we

use the notation (i∗1, i
∗
2, . . . , i

∗
n) + 1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)− 1) to denote the lexicographical smallest

(resp. biggest) element in S1 × S2 × · · · × Sn that is lexicographical bigger (resp. smaller) than
(i∗1, i

∗
2, . . . , i

∗
n).

Pseudorandom Generators. We recall the definition of pseudorandom generators. A function
PRGλ : {0, 1}PRG.inλ → {0, 1}PRG.outλ is a pseduorandom generator, if for any PPT distinguisher D,
there exits a negligible function ν(λ) such that∣∣∣∣Pr

[
s← {0, 1}PRG.inλ : D(1λ,PRGλ(s)) = 1

]
− Pr

[
u← {0, 1}PRG.outλ : D(1λ, u) = 1

] ∣∣∣∣ < ν(λ)

Learning with Errors. We recall the learning with errors (LWE) distribution.
6As stated, [34, 12] do not satisfies delayed-function property but a simple modification to these protocols yields

the desired property.

10

Definition 2.1 (LWE distribution). For a positive integer dimension n and modulo q, the LWE
distribution As,χ is obtained by sampling a ← Znq , and an error e ← χ, then outputting (a, b =

sT · a + e) ∈ Znq × Zq.

Definition 2.2 (LWE problem). The decisional LWEn,m,q,χ problem is to distinguish the uniform
distribution from the distribution As,χ, where s← Znq , and the distinguisher is given m samples.

Standard instantiation of LWE takes χ to be a discrete Gaussian distribution.

Definition 2.3 (LWE assumption). Let n = n(λ),m = m(λ), q = q(λ) and χ = χ(λ). The
Learning with Error (LWE) assumption states that for any PPT distinguisher D, there exits a
negligible function ν(λ) such that

|Pr[D(1λ, (A, sTA + e)) = 1]− Pr[D(1λ, (A,u)) = 1]| < ν(λ)

where A← Zn×mq , s← Znq ,u← Zmq , e← χm.

2.1 Garbling Schemes

A garbling scheme [49] is a tuple of algorithms (GC.Garble,GC.Eval) defined as follows.

GC.Garble(1λ, C, lab) On input the security parameter, a circuit C, and a set of labels lab = {labi,b
}i∈[C.in],b∈{0,1}, where labi,b ∈ {0, 1}λ, it outputs a garbled circuit C̃.

GC.Eval(C̃, lab) On input a garbled circuit C̃ and a set of labels lab = {labi}i∈[C.in], it outputs a
value y.

We require the garbling scheme to satisfy the following properties.

Correctness For any circuit C, and any input x ∈ {0, 1}C.in,

Pr

[
lab={labi,b}(i,b)∈[C.in]×{0,1}←{0,1}2λC.in,

C̃←GC.Garble(1λ,C,lab),y←GC.Eval(C̃,(labi,xi)i∈[C.in])
: y = C(x)

]
= 1

Selective Security For any PPT adversaries (A1,A2), and any input x, there exits a simulator
(GC.Sim1,GC.Sim2), and a negligible function ν(λ) such that∣∣∣∣Pr

[
lab←{0,1}2λC.in,(C,stA)←A1(1λ,labx)

C̃←GC.Garble(1λ,C,lab)
: A2(stA, C̃) = 1

]
−

Pr
[
(stS ,lab)←GC.Sim1(1λ,C.in),(C,stA)←A1(1λ,lab),

C←GC.Sim2(stS ,C(x))
: A2(stA, C) = 1

] ∣∣∣∣ < ν(λ)

Theorem 2.4 ([49]). There exists a garbling scheme for all poly-sized circuits from one-way func-
tions.

2.2 Randomized Encoding

A randomized encoding scheme [9] is a generalization of garbling schemes where the circuit and the
input are encoded using one function. Let F = {fλ | fλ : {0, 1}fλ.in → {0, 1}fλ.out} be a function
family. We say F̂ = {f̂λ | f̂λ : {0, 1}f̂λ.in1 × {0, 1}f̂λ.in2 → {0, 1}f̂λ.out} is a randomized encoding of
F , if it satisfies the following properties.

11

Correctness There exists a recover algorithm RE.Recover such that for any λ and x ∈ {0, 1}fλ.in,

Pr
[
r ← {0, 1}f̂ .in2 : RE.Recover(f̂λ(x, r)) = fλ(x)

]
= 1

Computational Privacy There exits a PPT simulator RE.Sim such that for any PPT distin-
guisher D, there exits a negligible function ν(λ), for any x ∈ {0, 1}fλ.in,∣∣∣∣Pr

[
r ← {0, 1}f̂λ.in2 : D(1λ, f̂λ(x, r)) = 1

]
− Pr

[
D(1λ,RE.Sim(1λ, fλ(x))) = 1

] ∣∣∣∣ < ν(λ)

Theorem 2.5 ([9, 10]). Assuming the hardness of learning with errors, there exists a randomized
encoding scheme computable in NC1 for every efficiently computable function.

2.3 Laconic Oblivious Transfer

Informally, a laconic oblivious transfer is an interactive protocol with two parties (S,R). The
receiver R has a database D ∈ {0, 1}∗ as input. It then uses a deterministic hash function to hash
the database, and obtains a digest. Next, the receiver sends the digest to the sender. The sender
takes as input an index i, the digest, and two messages m0,m1, and computes a ciphertext ct. Any
one who knows the database D can decrypt the ciphertext ct to mD[i]. We give the formal definition
in the following.

A laconic oblivious transfer (laconic OT) scheme [25] is a tuple of algorithms (Gen,Hash,Enc,
Dec), which works as follows.

Gen(1λ) On input security parameters, it outputs a uniformly random common string crs.

Hash(crs, D) On input crs and a binary string D ∈ {0, 1}∗, it outputs a digest digest.

Enc(crs, digest, i,m0,m1) On input crs, a digest, an index i, and two messages m0,m1, it outputs a
ciphertext ct.

Dec(crs, ct, D) On input crs, a ciphertext ct, and a binary string D, it outputs a decrypted message
m.

A laconic OT scheme satisfies the following properties.

Correctness For any D, index i ∈ [|D|], and any m0,m1,

Pr
[

crs←Gen(1λ),digest←Hash(crs,D)
ct←Enc(crs,digest,i,m0,m1),m←Dec(crs,ct,D)

: m = mDi

]
= 1

Semi-Honest Sender-Privacy For any binary string D, any index i ∈ [|D|], and any message
m0,m1, and any PPT distinguisher D, there exists a negligible ν(λ) such that

|Pr[D(1λ, crs, digest,Enc(crs, digest, i,m0,m1)) = 1]−
Pr[D(1λ, crs, digest,Enc(crs, digest, i,mDi ,mDi)) = 1]| < ν(λ)

where crs← Gen(1λ), digest← Hash(crs, D).

Efficiency Size of digest is succinct i.e. |digest| = poly(λ). The running time of Enc is poly(λ, log |D|).
The running time of Hash is poly(λ, |D|). The depth of Hash is bounded by poly(λ, log |D|).

Theorem 2.6 ([25, 21, 32]). Assuming the hardness of learning with errors, there exists a laconic
oblivious transfer scheme.

12

2.4 Laconic Function Evaluation

A laconic function evaluation (LFE) scheme [48] for a class of poly-sized circuits consists of four
PPT algorithms crsGen,Compress,Enc,Dec described below.

crsGen(1λ, params) It takes as input the security parameter λ, circuit parameters params and outputs
a uniformly random common string crs.

Compress(crs, C) It takes as input the common random string crs, poly-sized circuit C and outputs
a digest digestC . This is a deterministic algorithm.

Enc(crs, digestC , x) It takes as input the common random string crs, a digest digestC , a message x
and outputs a ciphertext ct.

Dec(crs, C, ct) It takes as input the common random string crs, circuit C, ciphertext ct and outputs
a message y.

Correctness. We require the following to hold:

Pr

[
crs←crsGen(1λ,params)

digestC←Compress(crs,C)
ct←Enc(crs,digestC ,x)
y←Dec(crs,C,ct)

: y = C(x)

]
= 1

Efficiency. The size of CRS should be polynomial in λ, the input, output lengths and the depth
of C. The size of digest, namely digestC , should be polynomial in λ, the input, output lengths and
the depth of C. The size of the output of Enc(crs, digestC) should be polynomial in λ, the input,
output lengths and the depth of C.

Security. For every PPT adversary A, input x, circuit C, there exists a PPT simulator Sim such
that for every PPT distinguisher D, the following holds:∣∣∣ Pr

crs←crsGen(1λ,params)
digestC←Compress(crs,C)

[
1← D

(
1λ, crs, digestC ,Enc(crs, digestC , x)

)]
−

Pr
crs←crsGen(1λ,params)

digestC←Compress(crs,C)

[
1← D

(
1λ, crs, digestC , Sim(crs, digestC , C(x))

)] ∣∣∣ ≤ neg(λ)

for some negligible function neg.

Remark 2.7. A strong version of security, termed as adaptive security, was defined in [48]; for our
construction, selective security suffices.

Theorem 2.8 ([48]). Assuming the hardness of learning with errors, there exists a laconic function
evaluation protocol.

3 Multiparty Homomorphic Encryption

We define the notion of multiparty homomorphic encryption (MHE) in this section. As mentioned
earlier, this notion can be seen as a variant of threshold multikey homomorphic encryption [27, 45];
unlike threshold multikey FHE, this notion does not require a trusted setup, however, the final
decryption phase needs to take as input the circuit being evaluated as input.

13

3.1 Definition

A multiparty homomorphic encryption is a tuple of algorithms MHE = (MHE.KeyGen,MHE.Enc,
MHE.Eval,MHE.PartDec,MHE.FinDec), which are defined as follows.

MHE.KeyGen(1λ, i) On input the security parameter λ, and an index i ∈ [N], it outputs a public-key
secret-key pair (pki, ski) for the i-th party.

MHE.Enc(pki, xi) On input a public key pki of the i-th party, and a message xi, it outputs a
ciphertext cti.

MHE.Eval(C, (ctj)j∈[N]) On input the circuit C of size polynomial in λ and the ciphertexts (ctj)j∈[N],
it outputs the evaluated ciphertext ĉt.

MHE.PartDec(ski, i, ĉt) On input the secret key ski of ith party, the index i, and the evaluated
ciphertext ĉt, it outputs the partial decryption pi of the ith party.

MHE.FinDec(C, (pj)j∈[N]) On input the circuit C, and all the partial decryptions (pj)j∈[N], it out-
puts a value y ∈ {0, 1}C.out.

We require that a MHE scheme satisfies the properties of correctness, succinctness and reusable
simulation security.

Correctness. We require the following definition to hold.

Definition 3.1 (Correctness). A scheme (MHE.KeyGen,MHE.Enc,MHE.Eval,MHE.PartDec,MHE.FinDec)
is said to satisfy the correctness of an MHE scheme if for any inputs (xi)i∈[N], and circuit C, the
following holds:

Pr

∀i∈[N],(pki,ski)←MHE.KeyGen(1λ,i)

cti←MHE.Enc(pki,xi)
ĉt←MHE.Eval(C,(ctj)j∈[N])

pi←MHE.PartDec(ski,i,ĉt)
y←MHE.FinDec(C,(pj)j∈[N])

: y = C(x1, . . . , xN)

 = 1

Succinctness. We require that the size of the ciphertexts and the partial decrypted values to be
independent of the size of the circuit being evaluated. More formally,

Definition 3.2 (Succinctness). A scheme (MHE.KeyGen,MHE.Enc,MHE.Eval,MHE.PartDec,MHE.FinDec)
is said to satisfy the succinctness property of an MHE scheme if for any inputs (xi)i∈[N], and circuit
C, the following holds: for any inputs (xi)i∈[N], and circuit C,

• Succinctness of Ciphertext: for j ∈ [N], |ctj | = poly(λ, |xj |).

• Succinctness of Partial Decryptions: for j ∈ [N], |pj | = poly(λ,N,C.in, C.out, C.depth), where
N is the number of parties, C.in is the input length of the circuit being evaluated, C.out is the
output length and C.depth is the depth of the circuit.

where, for every i ∈ [N], (i) (pki, ski) ← MHE.KeyGen(1λ, i), (ii) cti ← MHE.Enc(pki, xi), (iii)
ĉt← MHE.Eval(C, (ctj)j∈[N]) and, (iv) pi ← MHE.PartDec(ski, i, ĉt).

Remark 3.3. En route to constructing MHE schemes satisfying the above succinctness properties,
we also consider MHE schemes that satisfy the correctness and security (stated next) properties but
fail to satisfy the above succinctness definition. We refer to such schemes as non-succinct MHE
schemes.

14

3.2 Security

We define the security of MHE by real-ideal diagram. We only consider the semi-honest security
notion.

In the real world, the adversary is given the public key (pki) and ciphertext cti for each party, and
the randomness generating the public keys and ciphertexts for the dishonest parties. The adversary
is also given access to an oracle O. Each time, the adversary can query the oracle O with a circuit
C. The oracle O firstly evaluates C homomorphically over the ciphertexts (cti)i∈[N], and obtains
an evaluated ciphertext ĉt. Then it outputs the partial decryption of ĉt for each honest party.

In the ideal world, the public keys and the ciphertexts for all parties, and the randomness for
dishonest parties are obtained by the simulator MHE.Sim1. The adversary is also given access to an
oracle O′. For each query C made by the adversary, the oracle O′ executes the stateful simulator
MHE.Sim2 to obtain the simulated partial decryption (pi)i∈H . Then the oracle O′ outputs (pi)i∈H .

Reusable Simulation Security. We define the real and ideal experiments below. The exper-
iments are parameterized by adversary A, PPT simulator MHE.Sim implemented as algorithms
(MHE.Sim1,MHE.Sim2) and H ⊆ [N].

RealA(1λ, (xi)i∈[N])

for i ∈ [N] do

ri, r
′
i ← {0, 1}∗

(pki, ski) = MHE.KeyGen(1λ, i; ri)

cti = MHE.Enc(pki, xi; r
′
i)

endfor

AO(1λ,·)(1λ, (pki, cti)i∈[N], (xi, ri, r
′
i)i/∈H)

return ViewA

O(1λ, C)

ĉt← MHE.Eval(C, (ctj)j∈[N])

for i ∈ H do

pi ← MHE.PartDec(ski, i, ĉt)

endfor

return (pi)i∈H

IdealA(1λ, (xi)i∈[N])

(stS , (pki, cti)i∈[N], (ri, r
′
i)i∈[N]\H)← MHE.Sim1(1λ, H, (xi)i/∈H)

AO
′(1λ,·)(1λ, (pki, cti)i∈[N], (xi, ri, r

′
i)i/∈H)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H)← MHE.Sim2(stS , C, C((xi)i∈[N]))

Update stS = st′S
return (pi)i∈H

Definition 3.4. A scheme (MHE.KeyGen,MHE.Enc,MHE.Eval,MHE.PartDec,MHE.FinDec) is said
to satisfy the reusable simulation security if the following holds: there exists two simulators (MHE.Sim1,
MHE.Sim2) such that for any PPT adversary A, for any set of honest parties H ⊆ [N], PPT dis-
tinguisher D, and any messages (xi)i∈[N], there exists a negligible function ν(λ) such that∣∣∣∣Pr

[
D
(

1λ,RealA(1λ, (xi)i∈[N])
)

= 1
]
− Pr

[
D
(

1λ, IdealA(1λ, (xi)i∈[N])
)

= 1
] ∣∣∣∣ < ν(λ)

One-Time Simulation Security We say a multiparty homomorphic encryption scheme is a one-
time multiparty homomorphic encryption scheme, if the security holds for all adversary A that only
query the oracle at most once.

Remark. Definition 3.4 directly captures the reusability property implied by the definition of
[44]. However, our definition is somewhat incomparable to [44] due to the following reasons: [44]

15

give a one-time (semi-malicious) statistical simulation security definition for threshold decryption,
which implies multi-use security via a standard hybrid argument. In contrast, Definition 3.4, which
guarantees (semi-honest) computational security, is given directly for the multi-use setting. Second,
[44] define security of threshold decryption only for n−1 corruptions7 whereas our definition captures
any dishonest majority.

3.3 pMHE: MHE with Private Evaluation

Towards achieving MHE, we first consider a relaxation of the notion of MHE where we allow the
evaluation algorithm to be a private-key procedure. We call this notionMHE with private evaluation,
denoted by pMHE.

A multiparty homomorphic encryption with private evaluation (pMHE) is a tuple of algorithms
(pMHE.Enc, pMHE.PrivEval, pMHE.FinDec) , which are defined as follows.

pMHE.Enc(1λ, C.params, i, xi) On input the security parameter λ, the parameters of a circuit C,
C.params = (C.in, C.out, C.depth), an index i, and an input xi, it outputs a ciphertext cti,
and a partial decryption key ski.

pMHE.PrivEval(ski, i, C, (ctj)j∈[N])
8 On input the partial decryption key ski, an index i, a circuit

C, and the ciphertexts (ctj)j∈[N], it outputs a partial decryption message pi.

pMHE.FinDec(C, (pj)j∈[N]) On input the circuit C and the partial decryptions (pj)j∈[N], it outputs
y ∈ {0, 1}C.out.

Correctness For any input (xi)i∈[N], and any circuit C, we have

Pr

[
∀i (cti,ski)←pMHE.Enc(1λ,C.params,i,xi)
∀i pi←pMHE.PrivEval(ski,i,C,(ctj)j∈[N])

y←pMHE.FinDec(C,(pj)j∈[N])
: y = C((xi)i∈[N])

]
= 1

Reusable (resp. One-Time) Simulation Security The experiments are parameterized by ad-
versaryA, input (xi)i∈[N], PPT simulatorMHE.Sim implemented as algorithms (MHE.Sim1,MHE.Sim2),
and subsets of honest parties H ⊆ [N].

RealA(1λ, (xi)i∈[N])

for i ∈ [N] do

ri ← {0, 1}∗

(cti, ski) = MHE.Enc(1λ, C.params, i, xi; ri)

endfor

AO(1λ,·)(1λ, (cti)i∈[N], (xi, ri)i/∈H)

return ViewA

O(1λ, C)

for i ∈ H do

pi ← MHE.PrivEval(ski, i, C, (ctj)j∈[N])

endfor

return (pi)i∈H

IdealA(1λ, (xi)i∈[N])

(stS , (cti)i∈[N], (xi, ri)i/∈H)← MHE.Sim1(1λ, H, (xi)i/∈H)

AO
′(1λ,·)(1λ, (cti)i∈[N], (xi, ri)i/∈H)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H)← MHE.Sim2(stS , C, C((xi)i∈[N]))

Update stS = st′S
return (pi)i∈H

7As such, counter-intuitively, additional work is required when using it in applications such as MPC, when less
than n− 1 parties may be corrupted. We refer the reader to [44] for details.

8In fact, PrivEval is a combination of private evaluation and partial decryption.

16

Succinctness We define the succinctness of ciphertext and partial decryption of pMHE in the
same manner as in Definition 3.2.

3.4 MHE from pMHE and Fully Homomorphic Encryption

We show how to construct an MHE scheme from pMHE and a leveled fully homomorphic encryption
scheme.

Theorem 3.5 (From pMHE to MHE). If there exits a reusable simulation secure pMHE scheme
pMHE with succinctness property, and a (leveled) fully homomorphic encryption scheme FHE =
(FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval), then there exits a reusbale simulation secure MHE scheme
MHE with succinctness property.

Construction.

C ′i,[C,(ctj)j∈[N]]
(pMHE.ski) Execute pi = pMHE.PrivEval(1λ, pMHE.ski, i, C, (ctj)j∈[N]).

Output pi.

MHE.KeyGen(1λ, i) Execute (FHE.pki,FHE.ski)← FHE.KeyGen(1λ, 1C
′.depth).

Let pki = FHE.pki, and ski = FHE.ski.

Output (pki, ski).

MHE.Enc(pki, xi) Parse pki as FHE.pki.

Execute (pMHE.cti, pMHE.ski)← pMHE.Enc(1λ, C.params, i, xi).

Execute FHE.cti ← FHE.Enc(FHE.pki, pMHE.ski).

Output cti = (pMHE.cti,FHE.cti).

MHE.Eval(C, (ctj)j∈[N]) For each j ∈ [N], parse ctj as (pMHE.ctj ,FHE.ctj).

For each i ∈ [N], execute ĉti ← FHE.Eval(C ′i,[C,(pMHE.ctj)j∈[N]]
,FHE.cti).

Output (ĉti)i∈[N].

MHE.PartDec(ski, i, ĉti) Parse ski as FHE.ski.

Execute pi ← FHE.Dec(FHE.ski, ĉti).

Output pi.

MHE.FinDec(C, (pj)j∈[N]) Execute y ← pMHE.FinDec(C, (pj)j∈[N]).

Output y.

Proof. The correctness and succinctness follows from the correctness and succinctness of the pMHE
scheme pMHE and FHE.

For simulation security, we build the following hybrids.

Hybrid0 This hybrid is identical to the Real.

Hybrid1 In this hybrid, we replace the oracle O(1λ, C) with the following, which doesn’t use the
FHE secret keys (FHE.ski)i∈[N].

17

Oracle O(1λ, C) Execute pi ← pMHE.PrivEval(pMHE.ski, i, C, (pMHE.ctj)j∈[N]).
Output pi.

Hybridi
∗
1.5 We replace the function MHE.Enc(pki, xi) with the following, which doesn’t use pMHE
secret keys for honest parties (pMHE.ski)i∈H .

MHE.Enc(pki, xi) Execute
(pMHE.cti, pMHE.ski)← pMHE.Enc(1λ, C.params, i,mi).
If i ∈ H and i ≤ i∗, execute FHE.cti ← FHE.Enc(FHE.pki, 0

|pMHE.ski|).
Otherwise, execute FHE.cti ← FHE.Enc(FHE.pki, pMHE.ski).
Output cti = (pMHE.cti,FHE.cti).

Hybrid2 We replace the function MHE.Enc(pki, xi) with the following, which doesn’t use pMHE
secret keys for honest parties (pMHE.ski)i∈H .

MHE.Enc(pki, xi) Execute
(pMHE.cti, pMHE.ski)← pMHE.Enc(1λ, C.params, i,mi).
If i ∈ H, execute FHE.cti ← FHE.Enc(FHE.pki, 0

|pMHE.ski|).
Otherwise, execute FHE.cti ← FHE.Enc(FHE.pki, pMHE.ski).
Output cti = (pMHE.cti,FHE.cti).

Ideal We replace the Hybrid2 with the ideal world, where the simulators are defined as follows.

MHE.Sim1(1
λ, H, (xi)i/∈H) For each i ∈ [N], randomly sample random coins ri, r′i.

execute (FHE.pki,FHE.ski) = FHE.KeyGen(1λ; ri).
Execute (pMHE.stS , (pMHE.cti)i∈[N], (pMHE.ri)i/∈H)← pMHE.Sim1(1

λ, H, (xi)i/∈H).
For each i ∈ H, execute FHE.cti ← FHE.Enc(FHE.pki, 0

|pMHE.ski|).
For each i /∈ H, let (pMHE.cti, pMHE.ski) = pMHE.Enc(1λ, xi; pMHE.ri),
and FHE.cti = FHE.Enc(FHE.pki, pMHE.ski; r

′
i).

Let cti = (pMHE.cti,FHE.cti), and stS = pMHE.stS .
Output (pMHE.stS , (cti)i∈[N], (xi, ri, (pMHE.ri, r

′
i))i/∈H).

MHE.Sim2(stS , C, C((xi)i∈[N])) Execute (pi)i∈H ← pMHE.Sim2(pMHE.stS , C, C((xi)i∈[N])).
Output (stS , pi)i∈H .

Lemma 3.6. Hybrid0,Hybrid1, and Hybrid01.5 are identical. For any i∗ ∈ [N], and any PPT distin-
guisher D, there exits a negligible function ν(λ) such that |Pr[D(1λ,Hybridi

∗−1
1.5) = 1]−Pr[D(1λ,Hybridi

∗
1.5)

= 1]| < ν(λ).

Proof. From correctness of the (leveled) FHE, Hybrid0 and Hybrid1 are identical. In Hybridi
∗
1.5, when

i∗ = 0, all FHE.cti are generated in the same manner as the real exeuction. Hence, Hybrid1 and
Hybrid01.5 are identical.

For any PPT adversary A and distinguisher D, we build the following distinguisher D′ breaking
the ciphertext-indistinguishable security of FHE.

Adversary D′(1λ,FHE.pk) For each i ∈ [N], randomly sample ri, r′i, pMHE.ri, and

execute (FHE.pki,FHE.ski) = FHE.KeyGen(1λ; ri), and

execute (pMHE.cti, pMHE.ski) = pMHE.Enc(1λ, C.params, i, xi; pMHE.ri).

18

For each i ∈ H and i < i∗, execute FHE.cti ← FHE.Enc(FHE.pki, 0
|pMHE.ski|).

Query the challenger with plaintext (0|pMHE.ski∗ |, pMHE.ski∗).

Then the challenger sends a challenge ciphertext ct.

For i = i∗ ∈ H, Let FHE.pki∗ = FHE.pk,FHE.cti∗ = ct.

For each i /∈ H or i > i∗, let FHE.cti = FHE.Enc(1λ,FHE.pki; r
′
i).

Let pki = FHE.pki, cti = (pMHE.cti,FHE.cti).

Execute AOA(1λ,·)(1λ, (pki, cti)i∈[N], (xi, ri, (pMHE.ri, r
′
i))i/∈H).

Let b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) For each i ∈ H, execute

pi = pMHE.PrivEval(1λ, pMHE.ski, i, C, (pMHE.ctj)j∈[N]).

Output (pi)i∈H .

When the challenger ct is generated by FHE.Enc(FHE.pk, 0|pMHE.ski∗ |), then the adversary D′
simulates the environment of Hybridi

∗
1.5 for A. Hence,

Pr
[
ct← FHE.Enc(FHE.pk, 0|pMHE.ski∗ |) : D′(1λ,FHE.pk) = 1

]
= Pr[D(1λ,Hybridi

∗
1.5) = 1] (1)

When the challenger ct is generated by FHE.Enc(FHE.pk, pMHE.ski∗), then the adversary D′
simulates the environment of Hybridi

∗−1
1.5 for A. Hence,

Pr
[
ct← FHE.Enc(FHE.pk, pMHE.ski∗) : D′(1λ,FHE.pk) = 1

]
= Pr[D(1λ,Hybridi

∗−1
1.5) = 1] (2)

By the security of FHE, there exits a negligible function ν(λ) such that the difference of the left
hand sides of Equation (1) and (2) is bounded by ν(λ). Hence, we have |Pr[D(1λ,Hybridi

∗−1
1.5) =

1]− Pr[D(1λ,Hybridi
∗
1.5) = 1]| < ν(λ).

Lemma 3.7. HybridN1.5 is identical to Hybrid2. For any PPT distinguisher D, there exits a negligible
function ν(λ) such that |Pr[D(1λ,HybridA2) = 1]− Pr[D(1λ, IdealA) = 1]| < ν(λ).

Proof. When i∗ = N , all FHE.cti are generated by encrypting 0|pMHE.ski|. Hence, HybridN1.5 is
identical to Hybrid2. For any PPT adversaryA, and distinguisherD, we build the following adversary
A′ for pMHE.

Adversary A′OA′ (1λ, (pMHE.cti)i∈[N], (xi, pMHE.ri)i/∈H) For each i ∈ [N], randomly sample ri, r′i.

Execute (FHE.pki,FHE.ski) = FHE.KeyGen(1λ; ri).

For each i /∈ H, (pMHE.cti, pMHE.ski) = pMHE.Enc(1λ, xi; pMHE.ri), and let

FHE.cti = FHE.Enc(FHE.pki, pMHE.ski; r
′
i).

For each i ∈ H, let FHE.cti ← FHE.Enc(FHE.pki, 0
|pMHE.ski|).

For each i ∈ [N], let cti = (pMHE.cti,FHE.cti).

Invoke AOA(1λ, (cti)i∈[N], (xi, ri, (pMHE.ri, r
′
i))i/∈H).

Output ViewA.

19

Oracle OA(1λ, C) The adversary A′ queries the oracle OA′(1λ, ·) with C, and obtains (pi)i∈H .

Output (pi)i∈H .

When A′ is interacting with Real world, it simulates the Hybrid2 for A. Hence,

Pr
[
D(1λ,RealA

′
) = 1

]
= Pr

[
D(1λ,HybridA2) = 1

]
When A′ is interacting with Ideal world, it simulates the Ideal world for A. Hence,

Pr
[
D(1λ, IdealA

′
) = 1

]
= Pr

[
D(1λ, IdealA) = 1

]
Since the pMHE scheme is simulation secure, there exits a negligible function ν(λ) such that

|Pr[D(1λ, IdealA
′
) = 1]− Pr[D(1λ,RealA

′
) = 1]| < ν(λ).

Hence, we have |Pr[D(1λ,HybridA2) = 1]− Pr[D(1λ, IdealA) = 1]| < ν(λ).

We finish the proof by combining Lemma 3.6 and Lemma 3.7.

4 One-Time pMHE

In this section, we focus on constructing a one-time pMHE scheme; recall that a one-time pMHE
scheme is one where the adversary is allowed to make only one decryption query. Later, we show
how to bootstrap a one-time pMHE scheme into a reusable pMHE scheme; it turns out that the
underlying one-time pMHE scheme needs to satisfy certain ciphertext succintness property in order
for the bootstrapping step to work.

We first define two notions of ciphertext succinctness: weak ciphertext succinctness and strong
ciphertext succinctness. We show how to achieve pMHE with strong ciphertext succinctness from
pMHE with weak ciphertext succinctness assuming laconic oblivious transfer. Later in Section 5,
we show how to achieve reusable pMHE scheme from a one-time pMHE scheme satisfying strong
succinctness property.

4.1 Ciphertext Succinctness

We define two notions of ciphertext succinctness associated with a pMHE scheme.

Definition 4.1 (Weak Ciphertext Succinctness). A pMHE scheme (pMHE.Enc, pMHE.PrivEval,
pMHE.FinDec) is said to satisfy weak ciphertext succinctness property if it satisfies the correctness,
reusable simulation security of a pMHE scheme and in addition, satisfies the following property:

• The running time of the pMHE.Enc circuit is poly(λ,N,C.in, C.out, C.depth).

where N is the number of parties, and (C.in, C.out, C.depth) are the parameters associated with the
circuits being evaluated.

Definition 4.2 (Strong Ciphertext Succinctness). A pMHE scheme (pMHE.Enc, pMHE.PrivEval,
pMHE.FinDec) is said to satisfy weak ciphertext succinctness property if it satisfies the correctness,
reusable simulation security of a pMHE scheme and in addition, satisfies the following properties:

• It satisfies weak ciphertext succinctness.

• The depth of the pMHE.Enc circuit is poly(λ, logN, log(C.in), log(C.out), log(C.depth)).

20

• The output length of the pMHE.Enc circuit is poly(λ, logN, log(C.in), log(C.out), log(C.depth)).

where N is the number of parties, and (C.in, C.out, C.depth) are the parameters associated with the
circuits being evaluated.

Remark 4.3. The weak ciphertext succinctness is weaker than the succinctness property of a pMHE
scheme. On th other hand, the strong ciphertext succinctness property is incomparable with the
succinctness property of an MHE scheme; while there is no requirement on the size of the partial
decryptions in the above definitions, there is a strict requirement on the complexity of the encryption
procedure in the above definition as against a requirement on just the size of the ciphertexts as
specified in the succinctness definition of MHE.

4.2 One-Time pMHE with Weak Ciphertext Succinctness

We show how to generically transform a non-succinct pMHE scheme into one a succinct pMHE
scheme; and in particular the resulting scheme satisfies weak ciphertext succinctness property. More-
over, the transformation preserves the number of queries the adversary can make to the decryption
oracle. That is, if the underlying pMHE scheme is reusable then so is the resulting scheme.

Theorem 4.4. Assuming LWE, there exists a generic transformation from any non-succinct pMHE
into a succinct pMHE scheme.

Lemma 4.5 (Correctness). The construction of pMHE is correct.

Proof. For any input (xi)i∈[N], any circuit C, and any i ∈ [N], let (cti, ski)← pMHE.Enc(1λ, C.params, i, xi).
For any i ∈ [N], let pi ← pMHE.PrivEval(ski, i, C, (ctj)j∈[N]).

For each i, j ∈ [N], k ∈ [|ĉtj |], labi,j,k ← LOT.Dec(LOT.crsj , LOT.cti,j,k, ĉtj).
From the correctness of the laconic OT, we have labi,j,k = labi,j,k,ĉtj [k].
From the correctness of the garbling scheme, we have p′i = KG[sk′i,C,r

′
i]
((ĉtj)j∈[N]).

In circuit KG, it first executes ctj ← RE.Recover(ĉtj) for each j ∈ [N]. From the correctness
of the randomized encoding scheme, we have ctj = pMHE′.Enc1(1

λ, C.params, i, xj ; rj). Finally, the
circuit KG outputs p′i = pMHE′.PrivEval(sk′i, C, (ctj)j∈[N]; r

′
i). 1 From the correctness of pMHE′,

since y ← pMHE′.FinDec(C, (p′i)i∈[N]), we derive that y = C((xi)i∈[N]).

Lemma 4.6 (One-Time Simulation Security). The construction of pMHE is one-time simulation
secure.

Proof. For any adversary A, and any subset H ⊆ [N], and any input (xi)i∈[N],
we prove the Lemma by a series of hybrids.

Hybrid0 This hybrid is identical to the real execution RealA(1λ, (x)i∈[N]).

Hybridi
∗
1 In this hybrid, we replace the pMHE.Enc to the following procedure, and keep all other
parts the same as Hybrid0.

pMHE.Enc(1λ, C.params, i, xi) Randomly sample random coins ri for pMHE′.Enc.
If i ≤ i∗ and i ∈ H, execute cti = pMHE′.Enc1(1

λ, C.params, i, xi; ri), and ĉti ← RE.Sim(1λ, cti).

Otherwise, let ĉti ← ̂pMHE.Enc′1(1
λ, C.params, i, xi, ri).

Execute LOT.crsi ← LOT.Gen(1λ), and let digesti ← LOT.Hash(LOT.crsi, ĉti).
Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

21

Hybrid
(i∗,j∗,k∗)
2 In this hybrid, we replace the pMHE.PrivEval with the following procedure, and keep
all other parts the same as HybridN1 .

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).
Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).
Sample random coins r′i for pMHE′.PrivEval.
Execute K̃Gi ← GC.Garble(1λ,KG[sk′i,C,r

′
i]
, labi).

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).
For each j ∈ [N], k ∈ [|ĉtj |], if (i, j, k) ≤ (i∗, j∗, k∗), let bj,k = ĉtj [k],
execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,bj,k , labi,j,k,bj,k).
Otherwise, execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,0, labi,j,k,1).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Hybridi
∗
3 In this hybrid, we replace the pMHE.PrivEval with the following procedure, and keep all
other parts the same as HybridN,N,|ĉtN |2 .

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).
Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).
Sample random coins r′i for pMHE′.PrivEval.
If i > i∗, randomly sample labels labi, execute K̃Gi ← GC.Garble(1λ,KG, labi).
Parse labi as (labi,j,k,b)j∈[N],k∈[|ĉtj |],b∈{0,1}. Let lab

′
i,j,k = labi,j,k,ĉtj [k].

Otherwise, execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ,KG((ctj)j∈[N]), lab
′
i).

Parse lab′i as lab
′
i,j,k.

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).
For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and
execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, lab

′
i,j,k, lab

′
i,j,k).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Hybrid4 In this hybrid, we replace the pMHE.PrivEval with the following procedure, and keep all
other parts the same as HybridN3 .

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).
Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).
Sample random coins r′i for pMHE′.PrivEval.
For each j ∈ [N], let ct′j ← RE.Recover((ĉtj)j∈[N]).
Let p′i = pMHE′.PrivEval(1λ, sk′i, C, (ctj)j∈[N]; r

′
i).

Execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ, p′i, lab
′
i).

Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].
For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).
For each j ∈ [N], k ∈ [|ĉtj |], execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, lab

′
i,j,k, lab

′
i,j,k).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Ideal In this hybrid, we replace the pMHE.Enc and pMHE.PrivEval with the following simulators.

22

pMHE.Sim1(1
λ, H, (xi)i∈[N]\H) Execute (st′S , (cti

′)i∈[H], (ri)i∈[N]\H)← pMHE.Sim1(1
λ, H, (xi)i∈[N]\H).

For each i ∈ [N], randomly sample r̂i for randomized encoding ̂pMHE.Enc′1.
Randomly sample LOT.ri for LOT.Gen.
If i ∈ H, execute ĉti ← RE.Sim(1λ, cti

′).

Otherwise let ĉti = ̂pMHE′.Enc1(1
λ, C.params, i, xi, ri; r̂i).

For each i ∈ [N], execute LOT.crsi ← LOT.Gen(1λ; LOT.ri).
Execute digesti ← LOT.Hash(LOT.crsi, ĉti).
Set cti = (LOT.crsi, digesti), and stS = (st′S , (cti)i∈[N], (ĉti)i∈[N]).
Output (stS , (cti)i∈H , (ri, r̂i, LOT.ri)i∈[N]\H).

pMHE.Sim2(stS , C, C(x1, x2, . . . , xn)) Parse stS as (st′S , (cti)i∈[N], (ĉti)i∈[N]).
Execute (pi)i∈H ← pMHE′.Sim2(skS , C, C((xi)i∈[N])).

Execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ, p′i, lab
′
i).

Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].
For each i ∈ [N], parse cti as cti = (LOT.crsi, digesti).
For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and
execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, lab

′
i,j,k, lab

′
i,j,k).

Set pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).
Output (stS , pi)i∈H .

Lemma 4.7. Hybrid0 and Hybrid01 are identical. Moreover, for any i∗ ∈ [N], any PPT adversary
A, and distinguisher D, there exists a negligible function ν(λ) such that |Pr[D(1λ,Hybridi

∗−1
1) =

1]− Pr[D(1λ,Hybridi
∗
1) = 1]| < ν(λ).

Proof. If i∗ = 0, then all i ∈ [N] satisfy i > i∗. Hence, Hybrid0 and Hybrid01 are identical. The only
difference between Hybridi

∗−1
0 and Hybridi

∗
1 is how ĉti∗ is generated.

For any PPT adversaryA, distinguisherD, any input (xi)i∈[N], any random coins ri, we construct

a PPT adversary D′ breaking the computational privacy of the randomized encoding ̂pMHE.Enc′1.

Distinguisher D′(1λ, ĉt) On input the security parameter λ and an encoding ĉt, it simulates the
environment for A by instantiating the function calls to pMHE.Enc. Specifically,

pMHE.Enc(1λ, C.params, i, xi) If i < i∗ and i ∈ H, then randomly sample random coins ri,

and execute cti = pMHE′.Enc1(1
λ, C.params, i, xi; ri), and ĉti ← RE.Sim(1λ, cti).

If i = i∗ and i ∈ H, let ĉti∗ = ĉt.

If i > i∗ or i /∈ H, randomly sample random coins ri, r̂i,

and execute ĉti = ̂pMHE.Enc′1((1
λ, C.params, i, xi; ri); r̂i).

Execute LOT.crsi ← LOT.Gen(1λ), and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

For each query made by A, it executes pMHE.PrivEval in Hybridi
∗−1
1 and Hybridi

∗
1 . Note that

pMHE.PrivEval remains the same in both hybrids.

23

When ĉt is generated by ̂pMHE.Enc′1((1
λ, C.params, i∗, xi; ri); r̂i) with random coins ri and r̂i,

the distinguisher simulates the Hybridi
∗−1 for A. Hence,

Pr
[
ĉt = ̂pMHE.Enc′1((1

λ, C.params, i∗, xi; ri); r̂i) : D′(1λ, ĉt) = 1
]

= Pr[D(1λ,Hybridi
∗−1) = 1] (3)

When ĉti∗ is obtained by RE.Sim(1λ, pMHE.Enc′1((1
λ, C.params, i∗, xi; ri); r̂i)), the distinguisher

simulates Hybridi
∗
for A. Hence,

Pr
[
ĉt← RE.Sim(1λ, pMHE.Enc′1((1

λ, C.params, i∗, xi; ri); r̂i)) : D′(1λ, ĉt) = 1
]

= Pr[D(1λ,Hybridi
∗
) = 1]

(4)

By the computational privacy of the randomized encoding, the difference on the left hand sides of
the Equation (8) and (9) is bounded by a negligible function ν(λ). Hence, |Pr[D(1λ,Hybridi

∗−1) =
1]− Pr[D(1λ,Hybridi

∗
) = 1]| < ν(λ). This finishes the proof.

Recall that, for n totally ordered sets S1, S2, . . . , Sn, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈ S1 × S2 ×

· · ·×Sn, we use the notation (i∗1, i
∗
2, . . . , i

∗
n)+1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)−1) to denote the lexicographical

smallest (resp. biggest) element that is lexicographical bigger (resp. smaller) than (i∗1, i
∗
2, . . . , i

∗
n).

Lemma 4.8. HybridN1 and Hybrid
(1,1,1)−1
2 are identical. Moreover, for any (i∗, j∗, k∗) ∈ [N]× [N]×

[|ĉtj∗ |], any PPT adversary A, and any PPT distinguisher D, there exists a negligible function ν(λ)

such that |Pr[D(1λ,Hybrid
(i∗,j∗,k∗)−1
2) = 1]− Pr[D(1λ,Hybrid

(i∗,j∗,k∗)
2) = 1]| < ν(λ).

Proof. When (i∗, j∗, k∗) = (1, 1, 1) − 1, the condition (i, j, k) ≤ (i∗, j∗, k∗) never holds. Hence, the
hybrid Hybrid

(1,1,1)−1
2 is identical to HybridN1 . Now for any PPT adversary A, any PPT distinguisher

D, we construct an adversary D′ breaking the semi-honest sender privacy of laconic OT for each
fixed (ĉtj)j∈[N].

In the indistinguishability game of sender privacy of laconic OT, let the binary string D = ĉtj∗ ,
and the index be k∗, and randomly sample m0,m1. We define the following functions.

pMHE.Enc[crs,digest](1
λ, C.params, i, xi) If i 6= j∗, execute LOT.crsi ← LOT.Gen(1λ),

and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Otherwise, let LOT.crsi = crs, and digesti = digest.

Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

pMHE.PrivEval[ct](1
λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).

Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).

Sample random coins r′i for pMHE′.PrivEval.

Randomly sample labels labi, parse labi as {labi,j,k,b}i∈[N],j∈[N],k∈[| ˆctj |],b∈{0,1}.

For each b ∈ {0, 1}, replace labi∗,j∗,k∗,b with mb.

Execute K̃Gi ← GC.Garble(1λ,KG, labi).

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).

For each j ∈ [N], k ∈ [|ĉtj |], if (i, j, k) < (i∗, j∗, k∗), execute

LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , labi,j,k,bi,j,k , labi,j,k,bi,j,k), where bi,j,k = ĉtj [k].

If (i, j, k) = (i∗, j∗, k∗), let LOT.cti,j,k = ct.

24

If (i, j, k) > (i∗, j∗, k∗), execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,0, labi,j,k,1).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

The distinguisher D′ is constructed as follows. We generate ĉti for each i ∈ [N] in the same
manner as in Hybrid

(i∗,j∗,k∗)−1
2 and Hybrid

(i∗,j∗,k∗)
2 .

Distinguisher D′(1λ, crs, digest, ct) For each i ∈ [N], sample the random coins ri for pMHE.Enc.

Let (cti, ski) = pMHE.Enc[crs,digest](1
λ, C.params, i, xi; ri).

Execute AOA(1λ,·)(1λ, (cti)i∈[N], (xi, ri, r̂i, LOT.crsi
9)i/∈H), and let b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) For each i ∈ H, execute pi ← pMHE.PrivEval[ct](1
λ, ski, i, C, (ctj)j∈[N])

Output (pi)i∈H .

When ct ← LOT.Enc(crs, digest, k∗,m0,m1), the distinguisher simulates the environment of
Hybrid

(i∗,j∗,k∗)−1
2 for A and D. Hence,

Pr
[
ct← LOT.Enc(crs, digest, k∗,m0,m1) : D(1λ, crs, digest, ct) = 1

]
= Pr[D(1λ,Hybrid

(i∗,j∗,k∗)−1
2) = 1]

(5)

When ct ← LOT.Enc(crs, digest, k∗,mĉtj∗ [k∗]
,mĉtj∗ [k∗]

), the distinguisher simulates the environ-

ment of Hybrid(i
∗,j∗,k∗)

2 for A and D. Hence,

Pr
[
b = mĉtj∗ [k∗]

, ct← LOT.Enc(crs, digest, k∗,mb,mb) : D(1λ, crs, digest, ct) = 1
]

= (6)

Pr
[
D(1λ,Hybrid

(i∗,j∗,k∗)
2) = 1

]
(7)

By the semi-honest sender privacy of the laconic OT, the difference between left hand sides of the
Equations (10) and (11) is bounded by a negligible function. Hence, there exits a negligible function
ν(λ) such that |Pr[D(1λ,Hybrid

(i∗,j∗,k∗)−1
2) = 1]− Pr[D(1λ,Hybrid

(i∗,j∗,k∗)
2) = 1]| < ν(λ).

Lemma 4.9. HybridN,N,|ĉtN |2 is identical to Hybrid03. Moreover, for any i∗ ∈ [N], any PPT adversary
A, and any PPT distinguisher D, there exits a negligible function ν(λ) such that |Pr[D(1λ,Hybridi

∗−1
3)

= 1]− Pr[D(1λ,Hybridi
∗
3) = 1]| < ν(λ).

Proof. For any PPT adversary A, and PPT distinguisher D, we build the following adversary
A′ = (A′1,A′2) trying to break the garbling scheme.

A′(1λ, lab′) For each i ∈ [N], sample the random coins ri for pMHE.Enc.

Let (cti, ski) = pMHE.Enc(1λ, C.params, i, xi; ri).

Execute AOA(1λ,·)(1λ, (cti)i∈[N], (xi, ri)i/∈H), and b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) For each i ∈ H, execute pi ← pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]).

Output (pi)i∈H

9Note that the crs of laconic OT is an uniform random string. Hence, the random coin is the crs itself.

25

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).

Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).

Sample random coins r′i for pMHE′.PrivEval.

If i > i∗, randomly sample labels labi, execute K̃Gi ← GC.Garble(1λ,KG, labi).

Parse labi as (labi,j,k,b)j∈[N],k∈[|ĉtj |],b∈{0,1}. Let lab
′
i,j,k = labi,j,k,ĉtj [k].

If i = i∗, the adversary A′ query the challenger with the circuit KG, and obtains K̃G.

Denote K̃Gi = K̃G, and lab′i = lab′. Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].

If i < i∗, execute lab′i ← GC.Sim1(1
λ,KG.in),

K̃Gi ← GC.Sim2(1
λ,KG((ctj)j∈[N]), lab

′
i).

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).

For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and

execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , lab
′
i,j,k, lab

′
i,j,k).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

When (lab′, K̃G) is obtained by real execution, then the adversary A′ simulates the environments
of Hybridi

∗−1
3 for A. Hence, Pr[RealA

′
= 1] = Pr[D(1λ,Hybridi

∗−1
3) = 1].

When (lab′, K̃G) is obtained from ideal execution, then the adversary A′ simulates the enviro-
ments of Hybridi

∗
3 for A. Hence, Pr[IdealA

′
= 1] = Pr[D(1λ,Hybridi

∗
3) = 1].

By the selective-security of the garbling scheme, there exists a negligible function that bound
the difference of the left hand side.

Hence, there exits a negligible function ν(λ) such that |Pr[D(1λ,Hybridi
∗−1
3) = 1]−Pr[D(1λ,Hybridi

∗
3)

= 1]| < ν(λ).

Lemma 4.10. HybridN3 is identical to Hybrid4. Moreover, for any PPT adversary A and distin-
guisher D, there exits a negligible function ν(λ) such that |Pr[D(1λ,HybridA4) = 1]−Pr[D(1λ, IdealA) =
1]| < ν(λ).

Proof. For any PPT adversary A, we build the following adversary A′ trying to break the scheme
pMHE′.

Adversary A′OA′ (1λ, (ct′i)i∈[N], (xi, r
′
i)i/∈H) For i /∈ H, randomly sample ki ← {0, 1}PRG.in,

Sample random coins r′i ← {0, 1}∗ for pMHE.Enc, and r̂i ← {0, 1}∗ for randomized encoding,
and LOT.ri for LOT.Gen.

For each i /∈ H, execute ĉti = ̂pMHE′.Enc1((1
λ, C.params, i, xi; r

′
i); r̂i).

For each i ∈ H, execute ĉti ← RE.Sim(1λ, ct′i).

For each i ∈ [N], execute LOT.crsi = LOT.Gen(1λ; LOT.ri), and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Let cti = (LOT.crsi, digesti).

Execute AOA(1λ, (cti)i∈[N], (xi, ki, r̂i, LOT.ri)i/∈H), and b← D(1λ,ViewA).

Output b.

26

Oracle OA(1λ, C) The adversary A′ queries the oracle OA′ with circuit C, and obtains (p′i)i∈H .

Then for each i ∈ H, execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ, p′i, lab
′
i).

Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].

For each i ∈ [N], parse cti as cti = (LOT.crsi, digesti).

For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and

execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , lab
′
i,j,k, lab

′
i,j,k).

Set pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Output (pi)i∈H .

When A′OA′ is interacting with Real, it simulates the environment of Hybrid4 for A. Hence, we
have Pr[RealA

′
= 1] = Pr[D(1λ,HybridA4) = 1].

When A′OA′ is interacting with Ideal, it simulates the environment of Ideal for A. Hence, we
have Pr[IdealA

′
= 1] = Pr[D(1λ, IdealA) = 1].

By the one-time simulation security of pMHE′, there exits a negligible function ν(λ) such that
|Pr[RealA

′
= 1] − Pr[IdealA

′
= 1]| < ν(λ). Hence, |Pr[D(1λ,HybridA4) = 1] − Pr[D(1λ, IdealA) =

1]| < ν(λ).

Combining Lemma 4.16, 4.17, 4.18, and 4.19, we prove that (pMHE.Sim1, pMHE.Sim2) is a
simulator for pMHE. Hence, pMHE is (one-time) simulation secure.

Lemma 4.11 (Strong Ciphertext Succinctness). If the underlying scheme pMHE′ is weak ciphertext
succinct, then the construction pMHE is strong ciphertext succinct.

Proof. We prove that the properties of strong ciphertext succinctness are satisfied.

• The weak ciphertext succinctness of pMHE follows from the weak succinctness of pMHE′, the
efficiency of the randomized encoding, and the efficiency of LOT.

• The depth of the circuit pMHE.Enc is the depth of the randomized encoding ̂pMHE′.Enc1

adding the depth of LOT.Hash(·, ·). The depth of ̂pMHE′.Enc1 is poly(λ, logN, logC.in, logC.out,
C.depth). The depth of LOT.Hash(·, ·) is poly(λ, log |ĉti|) = poly(λ, logRunning time of pMHE′.Enc1)
= poly(λ, logN, logC.in, logC.out, logC.depth). Hence, the depth of pMHE.Enc is poly(λ, logN,
logC.in, logC.out, logC.depth).

• The output length of pMHE.Enc is |cti| = |LOT.crsi|+ |digesti| = poly(λ).

Corollary 4.12. Assuming LWE, there is a generic transformation that converts any delayed-
function semi-honest secure MPC into a one-time pMHE scheme satisfying weak ciphertext suc-
cinctness property.

Proof. If we can show any delayed-function semi-honest secure MPC can be converted to a pMHE
scheme, that is possibly non-succinct, then from Theorem 4.4, we can further convert it to a succinct
pMHE scheme; and in particular, the resulting scheme satisfies the weak ciphertext succinctness
property. This would finish the proof.

Now we describe how to convert any delayed-function semi-honest secure MPC to a pMHE
scheme. Since this construction is simple, we give a sketch of the construction below.

27

• The ith party, for i ∈ [N], on input xi produces the first round message msg
(1)
1 of the delayed-

function MPC protocol along with the private state sti. The ciphertext cti is set to be msg
(1)
i

and the secret key ski is set to be the state sti.

• The private evaluation phase corresponds to the computation of second round messages. The
ith party on input all the ciphertexts ct1, . . . , ctN , i.e., messages msg

(1)
1 , . . . ,msg

(1)
N , circuit C

and its secret key ski = sti, it produces the second round message msg
(2)
i . We interpret msg

(2)
i

as the partial decrypted value pi.

• Finally, given all the partial decrypted values (aka the second round messages), we can recover
the output C(x1, . . . , xN).

4.3 From Weak to Strong Ciphertext Succinctness

We show how to generically achieve strong ciphertext succinctness from weak succinctness assuming
laconic OT and randomized encodings.

Lemma 4.13 (From Weak to Strong Ciphertext Succinctness). Assuming the existence of laconic
oblivious transfer and randomized encodings computable in NC1, there is a generic transforma-
tion that transforms a pMHE scheme pMHE′ = (pMHE′.Enc, pMHE′.PrivEval, pMHE′.FinDec) sat-
isfying weak ciphertext succinctness, into a pMHE scheme pMHE = (pMHE.Enc, pMHE.PrivEval,
pMHE.FinDec) satisfying strong ciphertext succinctness.

We construct the pMHE scheme pMHE as follows.

Construction.

pMHE.Enc(1λ, C.params, i, xi) Since the function pMHE′.Enc outputs two parts: cti and ski, let
pMHE′.Enc1 be the function that outputs the first part cti.

Let ̂pMHE′.Enc1 be the randomized encoding of the function pMHE′.Enc1(·, ·, ·, ·; ·).
Randomly sample random coins ri for pMHE′.Enc.

Randomly sample r̂i, and execute ĉti = ̂pMHE′.Enc1((1
λ, C.params, i, xi; ri); r̂i).

Execute LOT.crsi ← LOT.Gen(1λ), and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

KG[sk′i,C,r
′
i]
((ĉtj)j∈[N]) For each j ∈ [N], execute ctj ← RE.Recover(ĉtj).

Execute p′i = pMHE′.PrivEval(sk′i, i, C, (ctj)j∈[N]; r
′
i).

Output p′i.

pMHE.PrivEval(ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).

Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).

Sample random coins r′i for pMHE′.PrivEval.

Randomly sample the labels labi, parse labi as (labi,j,k,b)j∈[N],k∈[|ĉtj |],b∈{0,1}.

Execute K̃Gi ← GC.Garble(1λ,KG[sk′i,C,r
′
i]
, labi).

28

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).

For each j ∈ [N], k ∈ [|ĉtj |], execute
LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,0, labi,j,k,1).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

pMHE.FinDec(C, (pi)i∈[N]) For each i ∈ [N], parse pi as (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti), and parse cti
as (LOT.crsi, digesti).

For each i, j ∈ [N], and k ∈ [|ĉtj |], execute labi,j,k ← LOT.Dec(LOT.crsj , LOT.cti,j,k, ĉtj).

For each i ∈ [N], evaluate p′i ← GC.Eval(K̃Gi, (labi,j,k)j,k), and cti ← RE.Recover(ĉti).

Finally execute y ← pMHE′.FinDec(C, (p′i)i∈[N]), and output y.

Lemma 4.14 (Correctness). The construction of pMHE is correct.

Proof. For any input (xi)i∈[N], any circuit C, and any i ∈ [N], let (cti, ski)← pMHE.Enc(1λ, C.params, i, xi).
For any i ∈ [N], let pi ← pMHE.PrivEval(ski, i, C, (ctj)j∈[N]).

For each i, j ∈ [N], k ∈ [|ĉtj |], labi,j,k ← LOT.Dec(LOT.crsj , LOT.cti,j,k, ĉtj).
From the correctness of the laconic OT, we have labi,j,k = labi,j,k,ĉtj [k].
From the correctness of the garbling scheme, we have p′i = KG[sk′i,C,r

′
i]
((ĉtj)j∈[N]).

In circuit KG, it first executes ctj ← RE.Recover(ĉtj) for each j ∈ [N]. From the correctness
of the randomized encoding scheme, we have ctj = pMHE′.Enc1(1

λ, C.params, i, xj ; rj). Finally, the
circuit KG outputs p′i = pMHE′.PrivEval(sk′i, C, (ctj)j∈[N]; r

′
i). 1 From the correctness of pMHE′,

since y ← pMHE′.FinDec(C, (p′i)i∈[N]), we derive that y = C((xi)i∈[N]).

Lemma 4.15 (One-Time Simulation Security). The construction of pMHE is one-time simulation
secure.

Proof. For any adversary A, and any subset H ⊆ [N], and any input (xi)i∈[N],
we prove the Lemma by a series of hybrids.

Hybrid0 This hybrid is identical to the real execution RealA(1λ, (x)i∈[N]).

Hybridi
∗
1 In this hybrid, we replace the pMHE.Enc to the following procedure, and keep all other
parts the same as Hybrid0.

pMHE.Enc(1λ, C.params, i, xi) Randomly sample random coins ri for pMHE′.Enc.
If i ≤ i∗ and i ∈ H, execute cti = pMHE′.Enc1(1

λ, C.params, i, xi; ri), and ĉti ← RE.Sim(1λ, cti).

Otherwise, let ĉti ← ̂pMHE.Enc′1(1
λ, C.params, i, xi, ri).

Execute LOT.crsi ← LOT.Gen(1λ), and let digesti ← LOT.Hash(LOT.crsi, ĉti).
Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

Hybrid
(i∗,j∗,k∗)
2 In this hybrid, we replace the pMHE.PrivEval with the following procedure, and keep
all other parts the same as HybridN1 .

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).
Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).
Sample random coins r′i for pMHE′.PrivEval.
Execute K̃Gi ← GC.Garble(1λ,KG[sk′i,C,r

′
i]
, labi).

29

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).
For each j ∈ [N], k ∈ [|ĉtj |], if (i, j, k) ≤ (i∗, j∗, k∗), let bj,k = ĉtj [k],
execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,bj,k , labi,j,k,bj,k).
Otherwise, execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,0, labi,j,k,1).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Hybridi
∗
3 In this hybrid, we replace the pMHE.PrivEval with the following procedure, and keep all
other parts the same as HybridN,N,|ĉtN |2 .

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).
Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).
Sample random coins r′i for pMHE′.PrivEval.
If i > i∗, randomly sample labels labi, execute K̃Gi ← GC.Garble(1λ,KG, labi).
Parse labi as (labi,j,k,b)j∈[N],k∈[|ĉtj |],b∈{0,1}. Let lab

′
i,j,k = labi,j,k,ĉtj [k].

Otherwise, execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ,KG((ctj)j∈[N]), lab
′
i).

Parse lab′i as lab
′
i,j,k.

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).
For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and
execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, lab

′
i,j,k, lab

′
i,j,k).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Hybrid4 In this hybrid, we replace the pMHE.PrivEval with the following procedure, and keep all
other parts the same as HybridN3 .

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).
Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).
Sample random coins r′i for pMHE′.PrivEval.
For each j ∈ [N], let ct′j ← RE.Recover((ĉtj)j∈[N]).
Let p′i = pMHE′.PrivEval(1λ, sk′i, C, (ctj)j∈[N]; r

′
i).

Execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ, p′i, lab
′
i).

Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].
For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).
For each j ∈ [N], k ∈ [|ĉtj |], execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, lab

′
i,j,k, lab

′
i,j,k).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Ideal In this hybrid, we replace the pMHE.Enc and pMHE.PrivEval with the following simulators.

pMHE.Sim1(1
λ, H, (xi)i∈[N]\H) Execute (st′S , (cti

′)i∈[H], (ri)i∈[N]\H)← pMHE.Sim1(1
λ, H, (xi)i∈[N]\H).

For each i ∈ [N], randomly sample r̂i for randomized encoding ̂pMHE.Enc′1.
Randomly sample LOT.ri for LOT.Gen.
If i ∈ H, execute ĉti ← RE.Sim(1λ, cti

′).

Otherwise let ĉti = ̂pMHE′.Enc1(1
λ, C.params, i, xi, ri; r̂i).

For each i ∈ [N], execute LOT.crsi ← LOT.Gen(1λ; LOT.ri).

30

Execute digesti ← LOT.Hash(LOT.crsi, ĉti).
Set cti = (LOT.crsi, digesti), and stS = (st′S , (cti)i∈[N], (ĉti)i∈[N]).
Output (stS , (cti)i∈H , (ri, r̂i, LOT.ri)i∈[N]\H).

pMHE.Sim2(stS , C, C(x1, x2, . . . , xn)) Parse stS as (st′S , (cti)i∈[N], (ĉti)i∈[N]).
Execute (pi)i∈H ← pMHE′.Sim2(skS , C, C((xi)i∈[N])).

Execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ, p′i, lab
′
i).

Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].
For each i ∈ [N], parse cti as cti = (LOT.crsi, digesti).
For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and
execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, lab

′
i,j,k, lab

′
i,j,k).

Set pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).
Output (stS , pi)i∈H .

Lemma 4.16. Hybrid0 and Hybrid01 are identical. Moreover, for any i∗ ∈ [N], any PPT adversary
A, and distinguisher D, there exists a negligible function ν(λ) such that |Pr[D(1λ,Hybridi

∗−1
1) =

1]− Pr[D(1λ,Hybridi
∗
1) = 1]| < ν(λ).

Proof. If i∗ = 0, then all i ∈ [N] satisfy i > i∗. Hence, Hybrid0 and Hybrid01 are identical. The only
difference between Hybridi

∗−1
0 and Hybridi

∗
1 is how ĉti∗ is generated.

For any PPT adversaryA, distinguisherD, any input (xi)i∈[N], any random coins ri, we construct

a PPT adversary D′ breaking the computational privacy of the randomized encoding ̂pMHE.Enc′1.

Distinguisher D′(1λ, ĉt) On input the security parameter λ and an encoding ĉt, it simulates the
environment for A by instantiating the function calls to pMHE.Enc. Specifically,

pMHE.Enc(1λ, C.params, i, xi) If i < i∗ and i ∈ H, then randomly sample random coins ri,

and execute cti = pMHE′.Enc1(1
λ, C.params, i, xi; ri), and ĉti ← RE.Sim(1λ, cti).

If i = i∗ and i ∈ H, let ĉti∗ = ĉt.

If i > i∗ or i /∈ H, randomly sample random coins ri, r̂i,

and execute ĉti = ̂pMHE.Enc′1((1
λ, C.params, i, xi; ri); r̂i).

Execute LOT.crsi ← LOT.Gen(1λ), and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

For each query made by A, it executes pMHE.PrivEval in Hybridi
∗−1
1 and Hybridi

∗
1 . Note that

pMHE.PrivEval remains the same in both hybrids.
When ĉt is generated by ̂pMHE.Enc′1((1

λ, C.params, i∗, xi; ri); r̂i) with random coins ri and r̂i,
the distinguisher simulates the Hybridi

∗−1 for A. Hence,

Pr
[
ĉt = ̂pMHE.Enc′1((1

λ, C.params, i∗, xi; ri); r̂i) : D′(1λ, ĉt) = 1
]

= Pr[D(1λ,Hybridi
∗−1) = 1] (8)

When ĉti∗ is obtained by RE.Sim(1λ, pMHE.Enc′1((1
λ, C.params, i∗, xi; ri); r̂i)), the distinguisher

simulates Hybridi
∗
for A. Hence,

Pr
[
ĉt← RE.Sim(1λ, pMHE.Enc′1((1

λ, C.params, i∗, xi; ri); r̂i)) : D′(1λ, ĉt) = 1
]

= Pr[D(1λ,Hybridi
∗
) = 1]

(9)

31

By the computational privacy of the randomized encoding, the difference on the left hand sides of
the Equation (8) and (9) is bounded by a negligible function ν(λ). Hence, |Pr[D(1λ,Hybridi

∗−1) =
1]− Pr[D(1λ,Hybridi

∗
) = 1]| < ν(λ). This finishes the proof.

Recall that, for n totally ordered sets S1, S2, . . . , Sn, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈ S1 × S2 ×

· · ·×Sn, we use the notation (i∗1, i
∗
2, . . . , i

∗
n)+1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)−1) to denote the lexicographical

smallest (resp. biggest) element that is lexicographical bigger (resp. smaller) than (i∗1, i
∗
2, . . . , i

∗
n).

Lemma 4.17. HybridN1 and Hybrid
(1,1,1)−1
2 are identical. Moreover, for any (i∗, j∗, k∗) ∈ [N]×[N]×

[|ĉtj∗ |], any PPT adversary A, and any PPT distinguisher D, there exists a negligible function ν(λ)

such that |Pr[D(1λ,Hybrid
(i∗,j∗,k∗)−1
2) = 1]− Pr[D(1λ,Hybrid

(i∗,j∗,k∗)
2) = 1]| < ν(λ).

Proof. When (i∗, j∗, k∗) = (1, 1, 1) − 1, the condition (i, j, k) ≤ (i∗, j∗, k∗) never holds. Hence, the
hybrid Hybrid

(1,1,1)−1
2 is identical to HybridN1 . Now for any PPT adversary A, any PPT distinguisher

D, we construct an adversary D′ breaking the semi-honest sender privacy of laconic OT for each
fixed (ĉtj)j∈[N].

In the indistinguishability game of sender privacy of laconic OT, let the binary string D = ĉtj∗ ,
and the index be k∗, and randomly sample m0,m1. We define the following functions.

pMHE.Enc[crs,digest](1
λ, C.params, i, xi) If i 6= j∗, execute LOT.crsi ← LOT.Gen(1λ),

and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Otherwise, let LOT.crsi = crs, and digesti = digest.

Output cti = (LOT.crsi, digesti), and ski = (ĉti, C.params, xi; ri).

pMHE.PrivEval[ct](1
λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).

Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).

Sample random coins r′i for pMHE′.PrivEval.

Randomly sample labels labi, parse labi as {labi,j,k,b}i∈[N],j∈[N],k∈[| ˆctj |],b∈{0,1}.

For each b ∈ {0, 1}, replace labi∗,j∗,k∗,b with mb.

Execute K̃Gi ← GC.Garble(1λ,KG, labi).

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).

For each j ∈ [N], k ∈ [|ĉtj |], if (i, j, k) < (i∗, j∗, k∗), execute

LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , labi,j,k,bi,j,k , labi,j,k,bi,j,k), where bi,j,k = ĉtj [k].

If (i, j, k) = (i∗, j∗, k∗), let LOT.cti,j,k = ct.

If (i, j, k) > (i∗, j∗, k∗), execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , k, labi,j,k,0, labi,j,k,1).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

The distinguisher D′ is constructed as follows. We generate ĉti for each i ∈ [N] in the same
manner as in Hybrid

(i∗,j∗,k∗)−1
2 and Hybrid

(i∗,j∗,k∗)
2 .

Distinguisher D′(1λ, crs, digest, ct) For each i ∈ [N], sample the random coins ri for pMHE.Enc.

Let (cti, ski) = pMHE.Enc[crs,digest](1
λ, C.params, i, xi; ri).

32

Execute AOA(1λ,·)(1λ, (cti)i∈[N], (xi, ri, r̂i, LOT.crsi
10)i/∈H), and let b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) For each i ∈ H, execute pi ← pMHE.PrivEval[ct](1
λ, ski, i, C, (ctj)j∈[N])

Output (pi)i∈H .

When ct ← LOT.Enc(crs, digest, k∗,m0,m1), the distinguisher simulates the environment of
Hybrid

(i∗,j∗,k∗)−1
2 for A and D. Hence,

Pr
[
ct← LOT.Enc(crs, digest, k∗,m0,m1) : D(1λ, crs, digest, ct) = 1

]
= Pr[D(1λ,Hybrid

(i∗,j∗,k∗)−1
2) = 1]

(10)

When ct ← LOT.Enc(crs, digest, k∗,mĉtj∗ [k∗]
,mĉtj∗ [k∗]

), the distinguisher simulates the environ-

ment of Hybrid(i
∗,j∗,k∗)

2 for A and D. Hence,

Pr
[
b = mĉtj∗ [k∗]

, ct← LOT.Enc(crs, digest, k∗,mb,mb) : D(1λ, crs, digest, ct) = 1
]

= (11)

Pr
[
D(1λ,Hybrid

(i∗,j∗,k∗)
2) = 1

]
(12)

By the semi-honest sender privacy of the laconic OT, the difference between left hand sides of the
Equations (10) and (11) is bounded by a negligible function. Hence, there exits a negligible function
ν(λ) such that |Pr[D(1λ,Hybrid

(i∗,j∗,k∗)−1
2) = 1]− Pr[D(1λ,Hybrid

(i∗,j∗,k∗)
2) = 1]| < ν(λ).

Lemma 4.18. Hybrid
N,N,|ĉtN |
2 is identical to Hybrid03. Moreover, for any i∗ ∈ [N], any PPT adver-

sary A, and any PPT distinguisher D, there exits a negligible function ν(λ) such that |Pr[D(1λ,Hybridi
∗−1
3)

= 1]− Pr[D(1λ,Hybridi
∗
3) = 1]| < ν(λ).

Proof. For any PPT adversary A, and PPT distinguisher D, we build the following adversary
A′ = (A′1,A′2) trying to break the garbling scheme.

A′(1λ, lab′) For each i ∈ [N], sample the random coins ri for pMHE.Enc.

Let (cti, ski) = pMHE.Enc(1λ, C.params, i, xi; ri).

Execute AOA(1λ,·)(1λ, (cti)i∈[N], (xi, ri)i/∈H), and b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) For each i ∈ H, execute pi ← pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]).

Output (pi)i∈H

pMHE.PrivEval(1λ, ski, i, C, (ctj)j∈[N]) Parse ski as (ĉti, C.params, xi; ri).

Compute sk′i from pMHE′.Enc(1λ, C.params, xi; ri).

Sample random coins r′i for pMHE′.PrivEval.

If i > i∗, randomly sample labels labi, execute K̃Gi ← GC.Garble(1λ,KG, labi).

Parse labi as (labi,j,k,b)j∈[N],k∈[|ĉtj |],b∈{0,1}. Let lab
′
i,j,k = labi,j,k,ĉtj [k].

If i = i∗, the adversary A′ query the challenger with the circuit KG, and obtains K̃G.
10Note that the crs of laconic OT is an uniform random string. Hence, the random coin is the crs itself.

33

Denote K̃Gi = K̃G, and lab′i = lab′. Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].

If i < i∗, execute lab′i ← GC.Sim1(1
λ,KG.in),

K̃Gi ← GC.Sim2(1
λ,KG((ctj)j∈[N]), lab

′
i).

For each j ∈ [N], parse ctj as ctj = (LOT.crsj , digestj).

For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and

execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , lab
′
i,j,k, lab

′
i,j,k).

Output pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

When (lab′, K̃G) is obtained by real execution, then the adversary A′ simulates the environments
of Hybridi

∗−1
3 for A. Hence, Pr[RealA

′
= 1] = Pr[D(1λ,Hybridi

∗−1
3) = 1].

When (lab′, K̃G) is obtained from ideal execution, then the adversary A′ simulates the enviro-
ments of Hybridi

∗
3 for A. Hence, Pr[IdealA

′
= 1] = Pr[D(1λ,Hybridi

∗
3) = 1].

By the selective-security of the garbling scheme, there exists a negligible function that bound
the difference of the left hand side.

Hence, there exits a negligible function ν(λ) such that |Pr[D(1λ,Hybridi
∗−1
3) = 1]−Pr[D(1λ,Hybridi

∗
3)

= 1]| < ν(λ).

Lemma 4.19. HybridN3 is identical to Hybrid4. Moreover, for any PPT adversary A and distin-
guisher D, there exits a negligible function ν(λ) such that |Pr[D(1λ,HybridA4) = 1]−Pr[D(1λ, IdealA) =
1]| < ν(λ).

Proof. For any PPT adversary A, we build the following adversary A′ trying to break the scheme
pMHE′.

Adversary A′OA′ (1λ, (ct′i)i∈[N], (xi, r
′
i)i/∈H) For i /∈ H, randomly sample ki ← {0, 1}PRG.in,

Sample random coins r′i ← {0, 1}∗ for pMHE.Enc, and r̂i ← {0, 1}∗ for randomized encoding,
and LOT.ri for LOT.Gen.

For each i /∈ H, execute ĉti = ̂pMHE′.Enc1((1
λ, C.params, i, xi; r

′
i); r̂i).

For each i ∈ H, execute ĉti ← RE.Sim(1λ, ct′i).

For each i ∈ [N], execute LOT.crsi = LOT.Gen(1λ; LOT.ri), and let digesti ← LOT.Hash(LOT.crsi, ĉti).

Let cti = (LOT.crsi, digesti).

Execute AOA(1λ, (cti)i∈[N], (xi, ki, r̂i, LOT.ri)i/∈H), and b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) The adversary A′ queries the oracle OA′ with circuit C, and obtains (p′i)i∈H .

Then for each i ∈ H, execute lab′i ← GC.Sim1(1
λ,KG.in), and K̃Gi ← GC.Sim2(1

λ, p′i, lab
′
i).

Parse lab′i as (lab′i,j,k)j∈[N],k∈[|ĉtj |].

For each i ∈ [N], parse cti as cti = (LOT.crsi, digesti).

For each j ∈ [N], k ∈ [|ĉtj |], let bj,k = ĉtj [k], and

execute LOT.cti,j,k ← LOT.Enc(LOT.crsj , digestj , lab
′
i,j,k, lab

′
i,j,k).

Set pi = (K̃Gi, ĉti, (LOT.cti,j,k)j,k, cti).

Output (pi)i∈H .

34

When A′OA′ is interacting with Real, it simulates the environment of Hybrid4 for A. Hence, we
have Pr[RealA

′
= 1] = Pr[D(1λ,HybridA4) = 1].

When A′OA′ is interacting with Ideal, it simulates the environment of Ideal for A. Hence, we
have Pr[IdealA

′
= 1] = Pr[D(1λ, IdealA) = 1].

By the one-time simulation security of pMHE′, there exits a negligible function ν(λ) such that
|Pr[RealA

′
= 1] − Pr[IdealA

′
= 1]| < ν(λ). Hence, |Pr[D(1λ,HybridA4) = 1] − Pr[D(1λ, IdealA) =

1]| < ν(λ).

Combining Lemma 4.16, 4.17, 4.18, and 4.19, we prove that (pMHE.Sim1, pMHE.Sim2) is a
simulator for pMHE. Hence, pMHE is (one-time) simulation secure.

Lemma 4.20 (Strong Ciphertext Succinctness). If the underlying scheme pMHE′ is weak ciphertext
succinct, then the construction pMHE is strong ciphertext succinct.

Proof. We prove that the properties of strong ciphertext succinctness are satisfied.

• The weak ciphertext succinctness of pMHE follows from the weak succinctness of pMHE′, the
efficiency of the randomized encoding, and the efficiency of LOT.

• The depth of the circuit pMHE.Enc is the depth of the randomized encoding ̂pMHE′.Enc1

adding the depth of LOT.Hash(·, ·). The depth of ̂pMHE′.Enc1 is poly(λ, logN, logC.in, logC.out,
C.depth). The depth of LOT.Hash(·, ·) is poly(λ, log |ĉti|) = poly(λ, logRunning time of pMHE′.Enc1)
= poly(λ, logN, logC.in, logC.out, logC.depth). Hence, the depth of pMHE.Enc is poly(λ, logN,
logC.in, logC.out, logC.depth).

• The output length of pMHE.Enc is |cti| = |LOT.crsi|+ |digesti| = poly(λ).

5 Reusable pMHE from One-Time pMHE

In this section, we show how to bootstrap from a one-time pMHE with strong ciphertext succinctness
property into a (possibly non-succinct) reusable pMHE scheme.

Lemma 5.1 (Bootstrap from One-Time Strong Ciphertext Succinctness Scheme to Reusable Scheme).
Let pMHE′ = (pMHE′.Enc, pMHE′.PrivEval, pMHE′.FinDec) be a one-time strong ciphertext succinct
pMHE scheme, and PRG : {0, 1}PRG.in → {0, 1}PRG.out be a PRG. We can build a reusable strong
ciphertext succinct pMHE scheme pMHE = (pMHE.Enc, pMHE.PrivEval, pMHE.FinDec).

Construction.

pMHE.Enc(1λ, C.params, i, xi) Randomly sample ki ← {0, 1}PRG.in, and random coins ri.

Execute (ct′i, sk
′
i)← pMHE′.Enc(1λ,NewEnc1.params, i, (xi, ki)).

We will specify the circuit NewEnc later. Recall that, for any circuit C, we denote C.params
to be the tuple (C.in, C.out, C.depth).

Set cti = ct′i and ski = (sk′i, (ki, ri)). Output (cti, ski).

pMHE.PrivEval(ski, C, i, (ctj)j∈[N]) Parse ski as (sk′i, (ki, ri)).

Let id be the binary representation of the circuit C. Denote |id| as n.
For t ∈ [n], let NewEnct be the following recursively defined circuits.

35

NewEncn+1((xj , kj)j∈[N]) Execute y = C((xj)j∈[N]).
Output y.

NewEnct((xj , kj)j∈[N]) For any j ∈ [N], parse PRG(kj) as (labj,t,b, ktj,b, r
t
j,1,b, r

t
j,2,b, r

t
j,3,b)b∈{0,1}.

For any j ∈ [N], b ∈ {0, 1}, execute
(ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnct+1.params, j, (xj , k

t
j,b); r

t
j,1,b).

For any b ∈ {0, 1}, Let ctb = (ctj,b)j∈[N].

Output (labi,t,0ct0 , lab
i,t,1
ct1)i∈[N].

For t ∈ [n], Boott is defined as follows.

Boott
[skti;r

t
i]

(ctt) Execute pti = pMHE′.PrivEval(skti,NewEnc
t+1, ctt; rti).

Output pti.

Execute p0i = pMHE′.PrivEval(sk′i,NewEnc
1, (ctj)j∈[N]; ri).

Let k0i = ki.

For each t = 1, 2, . . . , n,

Let b = id[t]. Parse PRG(kt−1i) as (labi,t,b
′
, kti,b′ , r

t
i,1,b′ , r

t
i,2,b′ , r

t
i,3,b′)b′∈{0,1}

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti). Output pi.

pMHE.FinDec(C, (pi)i∈[N]) Let id be the binary representation of C. Parse pi as (p0i , (B̃oot
t
i)t∈[n], cti).

For each t = 1, 2, . . . , n,

Let b = id[t].

Execute (lab′i,t,0, lab′i,t,1)i∈[N] ← pMHE′.FinDec(NewEnct, (pt−1i)i∈[N]).

For each i ∈ [N], execute pti ← GC.Eval(1λ, B̃ootti, lab
′i,t,b).

Execute y ← pMHE′.FinDec(NewEncn+1, (pni)i∈[N]).

Output y.

Lemma 5.2 (Correctness). The construction of pMHE is correct.

Proof. For any input (xi)i∈[N], any circuit C, and any i ∈ [N], let (cti, ski)← pMHE.Enc(1λ, C.params, i, xi).

Let pi = (p0i , (B̃oot
t
i)t∈[n], cti)← pMHE.PrivEval(ski, C, i, (ctj)j∈[N]).

Now we consider each step in pMHE.FinDec(C, (pi)i∈[N]). For each t = 1, 2, . . . , n, we prove by
induction the following claim.

Claim 5.3. For any t ∈ [n], we have

• (lab′i,t,0, lab′i,t,1)i∈[N] = (labi,t,0ct0 , lab
i,t,1
ct1)i∈[N], where (labi,t,b)b∈{0,1}, (ctb)b∈{0,1} are obtained by

executing (labj,t,b, ktj,b, r
t
j,1,b, r

t
j,2,b, r

t
j,3,b)b∈{0,1} = PRG(kt−1j) for each j ∈ [N], and for each

b ∈ {0, 1}, let (ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnct+1.params, j, (xj , k
t
j,b); r

t
j,1,b), and ctb =

(ctj,b)j∈[N].

36

• For any j ∈ [N], k0j = kj. kt+1
j = ktj,id[t].

• For any j ∈ [N], pti = pMHE′.PrivEval(skti,NewEnc
t+1, ctid[t]; r

t
i,2,id[t]).

We prove the claim by induction on t. For the base case, we will show that the claim holds for
t = 1. By the correctness of pMHE′, we have that (lab′i,1,0, lab′i,1,1) = (labi,1,0ct0 , labi,1,1ct1). For each
b ∈ {0, 1}, ctb = (ctj,b)j∈[N], and (ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnc2.params, j, (xj , k

1
j,b); r

1
j,1,b),

where (labj,t,b, k1j,b, r
1
j,1,b, r

1
j,2,b, r

1
j,3,b)b∈{0,1} = PRG(kj). From the correctness of the garbling scheme,

we have p1i = Boot1
[sk1i ;r

1
i,2,id[1]

]
(ctid[1]) = pMHE′.PrivEval(ski,NewEnc

2, ctid[1]; r
1
i,2,id[1]).

Now we assume the claim holds for t = t∗− 1, and we now prove for the case of t = t∗. We have
pt
∗−1
i = pMHE′.PrivEval(skt

∗−1
i ,NewEnct

∗
, ctid[t∗−1]; r

1
i,2,id[t∗−1]). From the correctness of pMHE′,

we have (lab′i,t,0, lab′i,t,1)i∈[N] = (labi,t,0ct0 , lab
i,t,1
ct1)i∈[N], where ctb = (ctj,b)j∈[N], and (ctj,b, skj,b) =

pMHE′.Enc(1λ,NewEnct+1.params, j, (xj , k
t
j,b); r

t
j,1,b), for all j ∈ [N], b ∈ {0, 1}. We then finish

proving the claim by the correctness of the garbling scheme.
Thus, the claim holds for any t∗ ∈ [n]. Hence, pni = pMHE′.PrivEval(skni ,NewEnc

n+1, ctid[n];

rni,2,id[n]), and ctid[n] is obtained from pMHE′.Enc(1λ,NewEncn+1.params, j, (xj , k
n
j,id[n])j∈[N]). From

the correctness of pMHE′, we have y = NewEncn+1((xj , k
n
j,id[n])j∈[N]) = C((xi)i∈[N]).

Lemma 5.4 (Reusable Simulation Security). The construction of pMHE is reusable simulation
secure.

For any input (xi)i∈[N], any set of honest parties H ⊆ [N], and any PPT adversary A that
queries the oracle O with at most Q = Q(λ) times, we build the following hybrids.

Hybrid0 This hybrid is identical to the real execution RealA(1λ, (xi)i∈[N]).

Hybrid1 From Hybrid0 to Hybrid1, we replace (ct′i)i∈[N] and (p0i)i∈H with the simulating messages
(cti
′)i∈[N] and (p0i)i∈H generated by the simulators of pMHE′.

For each i ∈ [N], randomly sample ki ← {0, 1}PRG.in.
For each i ∈ [N], if i /∈ H, sample random coins ri, otherwise, let ri = ⊥.
Execute (st′S , (cti

′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1
λ, H, (xi, ki)i∈[N]\H).

Execute (st′′S , (p
0
i)i∈H)← pMHE′.Sim2(st

′
S ,NewEnc

1,NewEnc1((xj , kj)j∈[N])).

Invoke AO(1λ,·)(1λ, (cti′)i∈[N], (xj , kj , rj , pMHE′.rj)j /∈H).

Output ViewA.

pMHE.PrivEval(1λ, ski, C, i, (ctj
′)j∈[N]) Let k0i = ki.

For each t = 1, 2, . . . , n,
Let b = id[t]. Parse PRG(kt−1i) as (labi,t,b

′
, kti,b′ , r

t
i,1,b′ , r

t
i,2,b′ , r

t
i,3,b′)b′∈{0,1}.

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

37

Hybrid2 This hybrid is almost the same as Hybrid1, except that pMHE.PrivEval is replaced with the
following functions.

For each i ∈ [N], randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

For each i ∈ [N], if i /∈ H, sample random coins ri, otherwise, let ri = ⊥.
Execute (st′S , (cti

′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1
λ, H, (xi, ki)i∈[N]\H).

For any j ∈ [N], b ∈ {0, 1}, execute (ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnc2.params, j, (xj , kj,b); rj,1,b).

For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N].

Execute (st′′S , (p
0
i)i∈H)← pMHE′.Sim2(st

′
S ,NewEnc

1, ((labi,0ct0)i∈[N], (lab
i,1
ct1)i∈[N])).

Invoke AO(1λ,·)(1λ, (cti′)i∈[N], (xj , kj , rj , pMHE′.rj)j /∈H).

Output ViewA.

pMHE.PrivEval(1λ, ski, C, i, (ctj
′)j∈[N]) Set (labi,1,b, k1i,b, r

1
i,1,b, r

1
i,2,b, r

1
i,3,b)b∈{0,1}

to be (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.
For each t = 1, 2, . . . , n,

Let b = id[t].
Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k

t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)i∈H,b′∈{0,1}.

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Hybridi
∗
2.5 This hybrid is almost the same as Hybrid2, except that we replace the output of the PRG
with the uniform random string for each i ∈ H one by one.

For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

For each i ∈ H, if i < i∗, then randomly sample (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Otherwise parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Hybrid3 This hybrid is essentially identical to HybridN+1
2.5 .

For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

For each i ∈ H, randomly sample (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Hybridi
∗,b∗

3.5 This hybrid is almost the same as Hybrid3, except that we replace the labels of the
garbled circuit with the labels simulated by GC.Sim1.

We maintain a set T ′ ⊆ [N] × {0, 1}∗. An element (i, s) ∈ T ′, if at the tree node s, the
garble circuit Bootis for ith party already been generated by GC.Sim1, but haven’t been used
by GC.Sim2.

Initialize an empty set T ′ = φ.

38

For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Execute (st′S , (cti
′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1

λ, H, (xi, ki)i∈[N]\H).

For each i ∈ H, if (i, b) < (i∗, b∗), randomly sample (ki,b, ri,1,b, ri,2,b).

Otherwise, randomly sample (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b).

For each i ∈ [N], if i /∈ H, sample random coins ri, otherwise, let ri = ⊥.
For any j ∈ [N], b ∈ {0, 1},
execute (ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnc2.params, j, (xj , kj,b); rj,1,b).

For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N].

For any b ∈ {0, 1}, i ∈ H, if (i, b) < (i∗, b∗), execute

(GC.stib, lab
′i,b)← GC.Sim1(1

λ,KG.in).

Update T ′ = T ′ ∪ {(i, b)}.

Otherwise lab′i,b = labi,bctb .

For any i ∈ [N] \H, b ∈ {0, 1}, let lab′i,b = labi,bctb .

Execute (st′′S , (p
0
i)i∈H)← pMHE′.Sim2(st

′
S ,NewEnc

1, ((lab′i,0)i∈[N], (lab
′i,1)i∈[N])).

Invoke AO(1λ,·)(1λ, (cti′)i∈[N], (xj , kj , rj , pMHE′.rj)j /∈H).

Output ViewA.

pMHE.PrivEval(1λ, ski, C, i, (ctj
′)j∈[N]) Let b = id[1].

Set (k1i,b′ , r
1
i,1,b′ , r

1
i,2,b′)b′∈{0,1} to be (ki,b′ , ri,1,b′ , ri,2,b′)b′∈{0,1}.

Compute sk1i from pMHE′.Enc(1λ,NewEnc1.params, i, (xi, k
1
i,b); r

1
i,1,b).

If (i, b) < (i∗, b∗), and (i, b) /∈ T ′, then let B̃oot1i = Bootib.
If (i, b) < (i∗, b∗), and (i, b) ∈ T ′, then execute
p1i = pMHE′.PrivEval(1λ, sk1i ,NewEnc

2, ctb; r
1
i,2,b),

B̃oot1i ← GC.Sim2(GC.st
i
b, p

1
i), and define Bootib = B̃oot1i , and update T ′ = T ′ \ {(i, b)}.

If (i, b) ≥ (i∗, b∗), then execute B̃oot1i = GC.Garble(1λ,Boot1
[sk1i ;r

1
i,2,b]

; r1i,3,b).

Parse PRG(k1i,b) as (labi,2,b
′
, k2i,b′ , r

2
i,1,b′ , r

2
i,2,b′ , r

2
i,3,b′)b′∈{0,1}.

For t = 2 . . . n, let b = id[t].
Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k

t
i,b); r

t
i,1,b).

Then execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)b′∈{0,1}.

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Hybrid4 This hybrid is essentially the same as Hybrid(N,1)+1
3.5 .

Initialize an empty set T ′ = φ.

For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,

39

and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Execute (st′S , (cti
′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1

λ, H, (xi, ki)i∈[N]\H).

For each i ∈ H, randomly sample (ki,b, ri,1,b, ri,2,b)b∈{0,1}.

For each i ∈ [N], if i /∈ H, sample random coins ri, otherwise, let ri = ⊥.
For any j ∈ [N], b ∈ {0, 1}, execute
(ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnc2.params, j, (xj , kj,b); rj,1,b).

For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N].

For any b ∈ {0, 1}, i ∈ H, execute (GC.stib, lab
′i,b)← GC.Sim1(1

λ,KG.in). Update T ′ = T ′ ∪ {(i, b)}.

For any i ∈ [N] \H, b ∈ {0, 1}, let lab′i,b = labi,bctb .

Execute (st′′S , (p
0
i)i∈H)← pMHE′.Sim2(st

′
S ,NewEnc

1, ((lab′i,0)i∈[N], (lab
′i,1)i∈[N])).

Invoke AO(1λ,·)(1λ, (cti′)i∈[N], (xj , kj , rj , pMHE′.rj)j /∈H).

Output ViewA.

pMHE.PrivEval(1λ, ski, C, i, (ctj
′)j∈[N]) Let b = id[1].

Set (k1i,b′ , r
1
i,1,b′ , r

1
i,2,b′)b′∈{0,1} to be (ki,b′ , ri,1,b′ , ri,2,b′)b′∈{0,1}.

Compute sk1i from pMHE′.Enc(1λ,NewEnc1.params, i, (xi, k
1
i,b); r

1
i,1,b).

If (i, b) /∈ T ′, let B̃oot1i = Bootib.
If (i, b) ∈ T ′, then execute p1i = pMHE′.PrivEval(1λ, sk1i ,NewEnc

2, ctb; r
1
i,2,b),

B̃oot1i ← GC.Sim2(GC.st
i
b, p

1
i), and define Bootib = B̃oot1i . Update T ′ = T ′ \ {(i, b)}.

Parse PRG(k1i,b) as (labi,2,b
′
, k2i,b′ , r

2
i,1,b′ , r

2
i,2,b′ , r

2
i,3,b′)b′∈{0,1}.

For t = 2 . . . n, let b = id[t].
Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k

t
i,b); r

t
i,1,b).

Then execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)b′∈{0,1}.

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Hybrid5 This hybrid is almost the same as Hybrid4, except that we replace the (ctb)b∈{0,1} with
(ctb)b∈{0,1} generated by the simulator pMHE′.Sim1.

We maintain a set T ′′ ⊆ {0, 1}∗. A string s ∈ T ′′, if at the tree node s, the first round message
cts has already been generated by pMHE′.Sim1, but the corresponding pMHE′.Sim2 hasn’t
been executed.

Initialize the empty sets T ′, T ′′ = φ.

For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Execute (st′S , (cti
′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1

λ, H, (xi, ki)i∈[N]\H).

For each i ∈ H, b ∈ {0, 1}, sample (ki,b)b∈{0,1} ← {0, 1}∗.

For any b ∈ {0, 1}, execute (st′b, ctb, (r
′
i)i∈[N]\H)← pMHE′.Sim1(1

λ, (xj , kj,b)j∈[N]\H).

Update T ′′ = T ′′ ∪ {b}.

40

For any b ∈ {0, 1}, i ∈ H, execute (GC.stib, lab
′i,b)← GC.Sim1(1

λ,KG.in).

Update T ′ = T ′ ∪ {(i, b)}.

For any i ∈ [N] \H, b ∈ {0, 1}, let lab′i,b = labi,b
ctb

.

Execute (p0i)i∈H ← pMHE′.Sim2(st
′
S ,NewEnc

1, ((lab′i,0)i∈[N], (lab
′i,1)i∈[N])).

Invoke AO(1λ,·)(1λ, (cti′)i∈[N], (xj , kj , rj , pMHE′.rj)j /∈H).

Output ViewA.

Oracle O(1λ, C) Let b = id[1].

If b ∈ T ′′, then execute

(pbi)i∈H ← pMHE′.Sim2(st
′
b,NewEnc

2,NewEnc2((xj , kj,b)j∈[N])).

Update T ′′ = T ′′ \ {b}.
Execute the following procedure for every i ∈ H to obtain pi. Output (pi)i∈H .

pMHE.PrivEval(1λ, ski, C, i, (ctj
′)j∈[N]) Set (k1i,b)b∈{0,1} to be (ki,b)b∈{0,1}.

Let b = id[1].

If (i, b) /∈ T ′, let B̃oot1i = Bootib.

If (i, b) ∈ T ′, then execute B̃oot1i ← GC.Sim2(GC.st
i
b, p

b
i), and define Bootib = B̃oot1i .

Update T ′ = T ′ \ {(i, b)}.
Parse PRG(k1i,b) as (labi,2,b

′
, k2i,b′ , r

2
i,1,b′ , r

2
i,2,b′ , r

2
i,3,b)b′∈{0,1}.

For each t = 2, . . . , n, let b = id[t].
Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k

t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b)b′∈{0,1}.

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Hybridq
∗

6 This hybrid is almost the same as Hybrid5, except that the oracle O is replaced with the
following oracle.

We maintain a set T ⊆ {0, 1}n. An element s ∈ T , if the tree node s is accessed by one of the
previous queries C. We initialize the empty set T = φ.

Oracle O(1λ, C)

Let q be the number of times that O(1λ, ·) is invoked.

Let id be the binary representation of C, and let h = max(0 ≤ h′ ≤ n | id[1 . . . h′] ∈ T).

Case 1: q < q∗. In this case, we answer the query by simulation.

For each t = h+ 1, h+ 2, . . . n,

Denote id′ = id[1 . . . t], id′0 = id′ ◦ 0, id′1 = id′ ◦ 1.

Now we generate (pid
′

i)i∈H .

If t = n, then execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, C((xi)i∈[N])).

41

If t < n, for each b′ ∈ {0, 1}, execute (st′
id′
b′
, ctb′ , (rj,b′)j /∈H)← pMHE′.Sim1(1

λ, (xj , kj,id′
b′

)j /∈H).

Update T ′′ = T ′′ ∪ {id′b′}.
For each i ∈ H, b′ ∈ {0, 1}, execute (GC.sti

id′
b′
, lab′i,b

′
)← GC.Sim1(1

λ,KG.in).

Update T ′ = T ′ ∪ {(i, id′b′)}.

For each i ∈ [N] \H, b′ ∈ {0, 1}, let lab′i,b′ = lab
i,id′

b′
ctb′

.

Execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, ((lab′i,0)i∈[N], (lab

′i,1)i∈[N])).

For each i ∈ H, execute B̃ootti ← GC.Sim2(GC.st
i
id′
, pid

′
i), and set Bootiid′ = B̃ootti.

Update T ′′ = T ′′ \ {id′}, T ′ = T ′ \ {(i, id′)}, and T = T ∪ {id′}.
Randomly sample (ki,id′

b′
)i∈H,b′∈{0,1} ← {0, 1}PRG.in.

For t ∈ [h], we set B̃ootti = Bootiid[1...t]. Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Case 2: q ≥ q∗. In this case, we answer the query by real execution.

Denote b = id[h+ 1], id′ = id[1 . . . h+ 1].

For each i ∈ H, set kh+1
i,b to be ki,id′ .

If id′ /∈ T ′′, let ˜Booth+1
i = Bootiid′ , for each i ∈ H.

If id′ ∈ T ′′, then execute

(pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnch+2,NewEnch+2((xj , kj,id′)j∈[N])),

then let ˜Booth+1
i ← GC.Sim2(GC.st

i
id′
, pid

′
i) for every i ∈ H, and let Bootiid′ = ˜Booth+1

i .

Update T ′ = T ′ \ {(i, id′) | i ∈ H}, T ′′ = T ′′ \ {id′}.
For each i ∈ H, parse PRG(kh+1

i,b) as (labi,h+2,b′ , kh+2
i,b′ , r

h+2
i,1,b′ , r

h+2
i,2,b′ , r

h+2
i,3,b′)b′∈{0,1}.

For each t = h+ 2 . . . n, and each i ∈ H, let b = id[t].

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)b′∈{0,1}.

For each t ∈ [h], we set B̃ootti = Bootid[1...t]. Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Hybridq
∗,h∗

7 This hybrid is almost the same as Hybrid6.

Oracle O(1λ, C)

Let q be the number of times that O is invoked.

Let id be the binary representation of C, and let h = max(0 ≤ h′ ≤ n | id[1 . . . h′] ∈ T).

Case 1: q < q∗. In this case, we answer the query by simulation.

For each t = h+ 1, h+ 2, . . . n,

Denote id′ = id[1 . . . t], id′0 = id′ ◦ 0, id′1 = id′ ◦ 1.

42

Now we generate (pid
′

i)i∈H .

If t = n, then execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, C((xi)i∈[N])).

If t < n, for each b′ ∈ {0, 1}, execute (st′
id′
b′
, ctb′ , (rj,b′)j /∈H)← pMHE′.Sim1(1

λ, (xj , kj,id′
b′

)j /∈H).

Update T ′′ = T ′′ ∪ {id′b′}.
For each i ∈ H, b′ ∈ {0, 1}, execute (GC.sti

id′
b′
, lab′i,b

′
)← GC.Sim1(1

λ,KG.in).

Update T ′ = T ′ ∪ {(i, id′b′)}.

For each i ∈ [N] \H, b′ ∈ {0, 1}, let lab′i,b′ = lab
i,id′

b′
ctb′

.

Execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, ((lab′i,0)i∈[N], (lab

′i,1)i∈[N])).

For each i ∈ H, execute B̃ootti ← GC.Sim2(GC.st
i
id′
, pid

′
i), and set Bootiid′ = B̃ootti.

Update T ′′ = T ′′ \ {id′}, T ′ = T ′ \ {(i, id′)}, and T = T ∪ {id′}.
Randomly sample (ki,id′

b′
)i∈H,b′∈{0,1} ← {0, 1}PRG.in.

For t ∈ [h], we set B̃ootti = Bootiid[1...t]. Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Case 2: q = q∗ In this case, we simulate the B̃ootti for t = h+ 1, 2, . . . , h∗, and get the B̃ootti
for t = h∗ + 1, . . . n from the real execution.

For each t = h+ 1, . . . , h∗,

denote b = id[t], id′ = id[1 . . . t], id′0 = id′ ◦ 0, id′1 = id′ ◦ 1.

Now we generate (pid
′

i)i∈H .

If t = n, then execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
idb
,NewEnct+1, C((xi)i∈[N])).

If t < n, for each b′ ∈ {0, 1}, execute (st′
id′
b′
, ctb′ , (rj,b′)j /∈H)← pMHE′.Sim1(1

λ, (xj , kj,id′
b′

)j /∈H).

Update T ′′ = T ′′ ∪ {id′b′}.
For each i ∈ H, b′ ∈ {0, 1}, execute (GC.sti

id′
b′
, lab′i,b

′
)← GC.Sim1(1

λ,KG.in).

Update T ′ = T ′ ∪ {(i, id′b′)}.

For each i ∈ [N] \H, b′ ∈ {0, 1}, let lab′i,b′ = lab
i,id′

b′
ctb′

.

Execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, ((lab′i,0)i∈[N], (lab

′i,1)i∈[N])).

For any i ∈ H, execute B̃ootti ← GC.Sim2(GC.st
i
id′
, pid

′
i), and set Bootiid′ = B̃ootti.

Update T ′′ = T ′′ \ {id′}, T ′ = T ′ \ {(i, id′)}, and T = T ∪ {id′}.
Randomly sample (ki,id′0 , ki,id′1)i∈H ← {0, 1}PRG.in.

Denote b = id[h∗ + 1], id′ = id[1 . . . h∗ + 1], id′0 = id′ ◦ 0, id′1 = id′ ◦ 1.

For each i ∈ H, set kh
∗+1
i,b = ki,id′ .

If id′ /∈ T ′′, let ˜Booth
∗+1
i = Bootiid′ .

If id′ ∈ T ′′, then execute

43

(ph
∗+1
i)i∈H ← pMHE′.Sim2(st

′
id′
,NewEnch

∗+2,NewEnch
∗+2((xj , kj,id′)j∈[N])),

execute ˜Booth
∗+1
i ← GC.Sim2(GC.st

i
id′
, ph

∗+1
i) for every i ∈ H, and define Bootiid′ = B̃ootti.

Update T ′ = T ′ \ {(i, id′) | i ∈ H}, T ′′ = T ′′ \ {id′}.
For each i ∈ H, parse PRG(kh

∗+1
i,b) as (labi,h

∗+2,b′ , kh
∗+2
i,b′ , rh

∗+2
i,1,b′ , r

h∗+2
i,2,b′ , r

h∗+2
i,3,b′)b′∈{0,1}.

For each t = h∗ + 2 . . . n, and each i ∈ H, let b = id[t].

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)b′∈{0,1}.

For t ∈ [h], we set B̃ootti = Bootiid[1...t]. Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Case 3: q > q∗. In this case, we answer the query by real execution.

Denote b = id[h+ 1], id′ = id[1 . . . h+ 1].

For each i ∈ H, set kh+1
i,b to be ki,id′ .

If id′ /∈ T ′′, let ˜Booth+1
i = Bootiid′ , for each i ∈ H.

If id′ ∈ T ′′, then execute

(pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnch+2,NewEnch+2((xj , kj,id′)j∈[N])),

then let ˜Booth+1
i ← GC.Sim2(GC.st

i
id′
, pid

′
i) for every i ∈ H, and let Bootiid′ = ˜Booth+1

i .

Update T ′ = T ′ \ {(i, id′) | i ∈ H}, T ′′ = T ′′ \ {id′}.
For each i ∈ H, parse PRG(kh+1

i,b) as (labi,h+2,b′ , kh+2
i,b′ , r

h+2
i,1,b′ , r

h+2
i,2,b′ , r

h+2
i,3,b′)b′∈{0,1}.

For each t = h+ 2 . . . n, and each i ∈ H, let b = id[t].

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)b′∈{0,1}.

For each t ∈ [h], we set B̃ootti = Bootiid[1...t]. Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

Ideal This hybrid is almost the same as Hybrid5.

pMHE.Sim1(1
λ, (xi)i/∈H) For each i ∈ [N], randomly sample ki ← {0, 1}PRG.in.

Execute (st′S , (cti
′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1

λ, H, (xi, ki)i∈[N]\H).

Execute (p0i)i∈H ← pMHE′.Sim2(st
′
S ,NewEnc

1,NewEnc1((xj , kj)j∈[N]).
Set cti = ct′i and ski = (sk′i, (ki,⊥)). Output (cti, ski).
Initialize the empty sets T, T ′, T ′′ = φ.
For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.
Execute (st′S , (cti

′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1
λ, H, (xi, ki)i∈[N]\H).

For each i ∈ H, b ∈ {0, 1}, sample (ki,b)b∈{0,1} ← {0, 1}∗.

44

For any b ∈ {0, 1}, execute (st′b, ctb, (r
′
i)i∈[N]\H)← pMHE′.Sim1(1

λ, (xj , kj,b)j∈[N]\H).
Update T ′′ = T ′′ ∪ {b}.
For any b ∈ {0, 1}, i ∈ H, execute (GC.stib, lab

′i,b)← GC.Sim1(1
λ,KG.in).

Update T ′ = T ′ ∪ {(i, b)}.
For any i ∈ [N] \H, b ∈ {0, 1}, let lab′i,b = labi,b

ctb
.

Execute (p0i)i∈H ← pMHE′.Sim2(st
′
S ,NewEnc

1, ((lab′i,0)i∈[N], (lab
′i,1)i∈[N])).

Let stS = ((p0i)i∈H , st
′
S , T, T

′, T ′′, (ki)i∈H).
Output (stS , (cti)i∈[N], (ki, ri, pMHE′.ri)i/∈H).

pMHE.Sim2(stS , C, C((xi)i∈[N]) Let id be the binary representation of C.
let h = max(0 ≤ h′ ≤ n | id[1 . . . h′] ∈ T).
For each t = h+ 1 . . . n,

Denote id′ = id[1 . . . t], id′0 = id′ ◦ 0, id′1 = id′ ◦ 1.

Now we generate (pid
′

i)i∈H .

If t = n, then execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, C((xi)i∈[N])).

If t < n, for each b′ ∈ {0, 1}, execute (st′
id′
b′
, ctb′ , (rj,b′)j /∈H)← pMHE′.Sim1(1

λ, (xj , kj,id′
b′

)j /∈H).

Update T ′′ = T ′′ ∪ {id′b′}.
For each i ∈ H, b′ ∈ {0, 1}, execute (GC.stiidb◦b′ , lab

′i,b′)← GC.Sim1(1
λ,KG.in).

Update T ′ = T ′ ∪ {(i, id′b′)}.

For each i ∈ [N] \H, b′ ∈ {0, 1}, let lab′i,b′ = lab
i,id′

b′
ctb′

.

Execute (pid
′

i)i∈H ← pMHE′.Sim2(st
′
id′
,NewEnct+1, ((lab′i,0)i∈[N], (lab

′i,1)i∈[N])).

For each i ∈ H, execute B̃ootti ← GC.Sim2(GC.st
i
id′
, pid

′
i), and set Bootiid′ = B̃ootti.

Update T ′′ = T ′′ \ {id′}, T ′ = T ′ \ {(i, id′)}, and T = T ∪ {id′}.
Randomly sample (ki,id′

b′
)i∈H,b′∈{0,1} ← {0, 1}PRG.in.

For t ∈ [h], we set B̃ootti = Bootiid[1...t]. Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′).

Let stS = ((p0i)i∈H , st
′
S , T, T

′, T ′′, (ki)i∈H)

Output (stS , (pi)i∈H).

Lemma 5.5. For any PPT adversary A, and any PPT distinguisher D, there exits a negligible
function ν(λ) such that |Pr[D(1λ,HybridA0) = 1]− Pr[D(1λ,HybridA1) = 1]| < ν(λ).

Proof. For any honest party set H ⊆ [N], any input (xi)i∈[N], we build the following adversary A′
for pMHE′.

Note that the adversary A′ takes input (1λ, (ct′i)i∈[N], ((xi, ki), pMHE.ri)i/∈H), and can query the
oracle O(1λ, ·) at most once.

Adversary A′O(1λ, (ct′i)i∈[N], ((xi, ki), pMHE′.r′i)i/∈H) For any i ∈ [N], randomly sample ki ←
{0, 1}PRG.in.
For any i /∈ H, randomly sample random coins ri.

Invoke the oracle (p0i)i∈H ← O(1λ,NewEnc1).

Invoke AOA(1λ,·)(1λ, (ct′i)i∈[N], (xi, (ki, ri, pMHE′.r′i))i/∈H).

Output ViewA.

45

Oracle OA(1λ, C) For each i ∈ H, t = 1, 2, . . . , n, set k0i = ki.

Let b = idt. Parse PRG(kt−1i) as (labi,t,b
′
, kti,b′ , r

t
i,1,b′ , r

t
i,2,b′ , r

t
i,3,b′)b′∈{0,1}.

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Set pi = (p0i , (B̃oot
t
i)t∈[n], ct

′
i).

Output (pi)i∈H .

For each i ∈ [N], let ki be uniform random string over {0, 1}PRG.in.
If ((ct′i)i∈[N], ((xi, ki), pMHE′.r′i)i/∈H) is generated as in Real, then the adversary A′ simulates the

environment of Hybrid0 for A. Hence, Pr[D(1λ,HybridA0) = 1] = Pr[D(1λ,RealA
′
) = 1].

If ((ct′i)i∈[N], ((xi, ki), pMHE′.r′i)i/∈H) is generated as in Ideal, then the adversary A′ simulates
the environment of Hybrid1 for A. Hence, Pr[D(1λ,HybridA1) = 1] = Pr[D(1λ, IdealA

′
) = 1].

Since pMHE′ is one-time secure, there exits a negligible function ν(λ) such that |Pr[D(1λ,RealA
′
) =

1]−Pr[D(1λ, IdealA
′
) = 1]| < ν(λ). Hence, we have |Pr[D(1λ,HybridA0) = 1]−Pr[D(1λ,HybridA1) =

1]| < ν(λ).

Note that Hybrid1 and Hybrid2 are essentially identical, since the only change is the expanding
of NewEnc1((xi, ki)i∈[N]) in Hybrid2.

Lemma 5.6. Hybrid1,Hybrid2 and Hybrid12.5 are identical. HybridN+1
2.5 is identical to Hybrid3. Mor-

ever, for any i∗ ∈ [N], and any PPT adversary A, and PPT distinguisher D, there exits a negligible
function ν(λ) such that |Pr[D(1λ,Hybridi

∗
2.5) = 1]− Pr[D(1λ,Hybridi

∗+1
2.5) = 1]| < ν(λ).

Proof. Hybrid2 is obtained by replacing the output of NewEnc in Hybrid1. Hence, Hybrid1 and Hybrid2
are identical. When i∗ = 1, (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b) are generated by PRG for all i ∈ [N]. Hence,
Hybrid12.5 is identical to Hybrid2. When i∗ = N + 1, for every i, (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1} is
generated randomly. Hence, HybridN+1

2.5 is identical to Hybrid3.
Note that the only difference between Hybridi

∗
2.5 and Hybridi

∗+1
2.5 is that, in Hybridi

∗
2.5, (labi

∗,b, ki∗,b, ri∗,1,b,
ri∗,2,b, ri∗,3,b)b∈{0,1} is generated by PRG, while in Hybridi

∗+1
2.5 , (labi

∗,b, ki∗,b, ri∗,1,b, ri∗,2,b, ri∗,3,b)b∈{0,1}
is generated randomly.

Now, for any adversary A for pMHE, we build the following distinguisher D′ for the PRG.

Distinguisher D′(1λ, v ∈ {0, 1}PRG.out) For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

For each i ∈ H, if i < i∗, then randomly sample (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

If i = i∗, then parse v as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

If i > i∗, then parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

For each i ∈ [N], if i /∈ H, sample ri ← {0, 1}∗, otherwise, let ri = ⊥.
Execute (st′S , (cti

′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1
λ, H, (xi, ki)i∈[N]\H).

For any j ∈ [N], b ∈ {0, 1}, execute
(ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnc2.params, j, (xj , kj,b); rj,1,b).

For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N].

46

Execute (p0i)i∈H ← pMHE′.Sim2(st
′
S ,NewEnc

1, ((labi,0ct0)i∈[N], (lab
i,1
ct1)i∈[N])).

Execute AOA(1λ, (cti
′)i∈[N], (xi, ki, ri, pMHE′.ri)i/∈H), where the oracle OA is specified below.

Let b← D(1λ,ViewA).

Output b.

Oracle OA(1λ, C) For each i ∈ H, execute pi ← pMHE.PrivEval(1λ,⊥, C, i, (ctj ′)j∈[N])

where the function pMHE.PrivEval is the same as Hybrid2.

Output (pi)i∈H .

When v = PRG(s), where s ← {0, 1}PRG.in, the distinguisher simulates the Hybridi
∗
2.5 for A.

Hence, Pr[s← {0, 1}PRG.in : D′(1λ,PRG(s)) = 1] = Pr[D(1λ,Hybridi
∗
2.5) = 1].

When v is uniform random, the distinguisher simulates the Hybridi
∗+1
2.5 for A. Hence, Pr[v ←

{0, 1}PRG.out : D′(1λ, v) = 1] = Pr[D(1λ,Hybridi
∗+1
2.5) = 1].

From the security of the PRG, we derive that there exits a negligible function ν(λ) such that
|Pr[D(1λ,Hybridi

∗
2.5) = 1]− Pr[D(1λ,Hybridi

∗+1
2.5) = 1]| < ν(λ).

Lemma 5.7. Hybrid3 is identical to Hybrid
(1,1)
3.5 . Hybrid(N,1)+1

3.5 is identical to Hybrid4. Moreover, for
each (i∗, b∗) ∈ [N]×{0, 1}, any PPT adversary A, any PPT distinguisher D, there exits a negligible
function ν(λ) such that |Pr[D(1λ,Hybrid

(i∗,b∗)
3.5) = 1]− Pr[D(1λ,Hybrid

(i∗,b∗)+1
3.5) = 1]| < ν(λ).

Proof. The main difference between Hybrid
(i∗,b∗)
3.5 and Hybrid

(i∗,b∗)+1
3.5 is (lab′i

∗,b∗ , B̃oot1i). We obtain
it from GC.Garble in Hybrid

(i∗,b∗)
3.5 , and obtain it from GC.Sim2 in Hybrid

(i∗,b∗)+1
3.5 .

Now we build an adversary A′ = (A′1,A′2) breaking the garbling scheme for the input ctb∗ and
the circuit Boott

[skti;r
t
i,2,b]

.

A′(1λ, lab) Initialize an empty set T ′ = φ.

For each i ∈ [N] \H, randomly sample ki ← {0, 1}PRG.in,
and parse PRG(ki) as (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b)b∈{0,1}.

Execute (st′S , (cti
′)i∈[N], (pMHE′.ri)i∈[N]\H)← pMHE′.Sim1(1

λ, H, (xi, ki)i∈[N]\H).

For each i ∈ H, if (i, b) < (i∗, b∗), randomly sample (ki,b, ri,1,b, ri,2,b).

Otherwise, randomly sample (labi,b, ki,b, ri,1,b, ri,2,b, ri,3,b).

For each i ∈ [N], if i /∈ H, sample random coins ri, otherwise, let ri = ⊥.
For any j ∈ [N], b ∈ {0, 1}, execute
(ctj,b, skj,b) = pMHE′.Enc(1λ,NewEnc2.params, j, (xj , kj,b); rj,1,b).

For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N].

For any b ∈ {0, 1}, i ∈ H, if (i, b) < (i∗, b∗), execute (GC.stib, lab
′i,b) ← GC.Sim1(1

λ,KG.in),
Update T ′ = T ′ ∪ {(i, b)}.
If (i, b) = (i∗, b∗), let lab′i,b = lab.

If (i, b) > (i∗, b∗), execute lab′i,b = labi,bctb .

For any i ∈ [N] \H, b ∈ {0, 1}, let lab′i,b = labi,bctb .

Execute (st′′S , (p
0
i)i∈H)← pMHE′.Sim2(st

′
S ,NewEnc

1, ((lab′i,0)i∈[N], (lab
′i,1)i∈[N])).

47

Invoke AO(1λ,·)(1λ, (cti′)i∈[N], (xj , kj , rj , pMHE′.rj)j /∈H).

Output D(1λ,ViewA).

pMHE.PrivEval(1λ, ski, C, i, (ctj
′)j∈[N]) Let b = id[1].

Set (k1i,b′ , r
1
i,1,b′ , r

1
i,2,b′)b′∈{0,1} to be (ki,b′ , ri,1,b′ , ri,2,b′)b′∈{0,1}.

Compute sk1i from pMHE′.Enc(1λ,NewEnc1.params, i, (xi, k
1
i,b); r

1
i,1,b).

If (i, b) < (i∗, b∗), and (i, b) /∈ T ′, then let B̃oot1i = Bootib.

If (i, b) < (i∗, b∗), and (i, b) ∈ T ′, then execute

p1i = pMHE′.PrivEval(1λ, sk1i ,NewEnc
2, ctb; r

1
i,2,b),

B̃oot1i ← GC.Sim2(GC.st
i
b, p

1
i), and define Bootib = B̃oot1i , and update T ′ = T ′ \ {(i, b)}.

If (i, b) = (i∗, b∗), and (i, b) /∈ T ′, let B̃oot1i = Bootib.

If (i, b) = (i∗, b∗), and (i, b) ∈ T ′,

query the challenger of A′ with circuit Boot1
[sk1i ;r

1
i,2,b]

to obtain B̃oot1i , and set Bootib = B̃oot1i .

If (i, b) > (i∗, b∗), then execute B̃oot1i = GC.Garble(1λ,Boot1
[sk1i ;r

1
i,2,b]

; r1i,3,b).

Parse PRG(k1i,b) as (labi,2,b
′
, k2i,b′ , r

2
i,1,b′ , r

2
i,2,b′ , r

2
i,3,b′)b′∈{0,1}.

For t = 2 . . . n, let b = id[t].

Compute skti from pMHE′.Enc(1λ,NewEnct.params, i, (xi, k
t
i,b); r

t
i,1,b).

Then execute B̃ootti ← GC.Garble(1λ,Boott
[skti;r

t
i,2,b]

, labi,t,b; rti,3,b).

Parse PRG(kti,b) as (labi,t+1,b′ , kt+1
i,b′ , r

t+1
i,1,b′ , r

t+1
i,2,b′ , r

t+1
i,3,b′)b′∈{0,1}.

Set pi = (p0i , (B̃oot
t
i)t∈[n], cti

′). Output pi.

If (labctb∗ , B̃oot
1
i∗) is obtained from the real execution Real, then the adversary A′ simulates the

environment of Hybrid(i
∗,b∗)

3.5 for A. Hence, Pr[RealA
′

= 1] = Pr[D(1λ,Hybridi
∗,b∗

3.5) = 1].

If (labctb∗ , B̃oot
1
i∗) is obtained from the ideal execution Ideal, then the adversary A′ simulates

the environment of Hybrid(i
∗,b∗)+1

3.5 for A. Hence, Pr[IdealA
′

= 1] = Pr[D(1λ,Hybrid
(i∗,b∗)+1
3.5) = 1].

Since we the garbling scheme is selective secure, there exits a negligible function ν(λ) such that
|Pr[RealA

′
= 1] − Pr[IdealA

′
= 1]| < ν(λ). Hence, we have |Pr[D(1λ,Hybrid

(i∗,b∗)
3.5) = 1] − Pr[D(1λ,

Hybrid
(i∗,b∗)+1
3.5) = 1]| < ν(λ).

Lemma 5.8. For any PPT adversary A, and any PPT distinguisher D, there exists a negligible
function ν(λ) such that |Pr[D(1λ,Hybrid4) = 1]− Pr[D(1λ,Hybrid5) = 1]| < ν(λ).

Proof. The proof follows the same idea from Lemma 5.5.

Lemma 5.9. Hybrid5 is identical to Hybrid16. HybridQ+1
6 is identical to Ideal. Moreover, for any

q∗ ∈ [Q], any PPT adversary A, and any PPT distinguisher D, there exists a negligible function
ν(λ) such that |Pr[D(1λ,Hybridq

∗

6) = 1]− Pr[D(1λ,Hybridq
∗+1

6) = 1]| < ν(λ).

48

Proof. We prove that for any (q∗, h∗), there exits a negligible function ν(λ) such that |Pr[D(1λ,

Hybrid
(q∗,h∗)
7) = 1]− Pr[D(1λ,Hybrid

(q∗,h∗)+1
7) = 1]| < ν(λ).

The proof follows the same strategy as Lemma 5.5, and Lemma 5.6.

Proof of Lemma 5.4. Combining Lemma 5.5, Lemma 5.6, Lemma 5.8, and Lemma 5.9, we finish
the proof.

Lemma 5.10 (Efficiency). If the underlying pMHE pMHE′ is strong ciphertext succinct, then the
construction of pMHE runs in polynomial time and is weak ciphertext succinct.

Proof. Since the scheme pMHE′ is strong ciphertext succinct, for each cti, we have that the running
time of pMHE′ is poly(λ,N,C.in, C.out, C.depth), and the depth of pMHE′.Enc is poly(λ, logN, logC.in,
logC.out, logC.depth).

Now, we check each requirement for weak ciphertext succinctness.
The running time of pMHE.Enc is poly(λ,N,NewEnc1.in,NewEnc1.out,NewEnc1.depth).
For NewEnct.in, we have NewEnct.in = poly(λ,N,C.in). For NewEnct.out, we have NewEnct.out =

poly(λ,N,C.in, C.out, C.depth). Now we only need to bound NewEnc1.depth.
For any t ∈ [n], we have

NewEnct.depth =PRG.depth + pMHE′.Enc.depth +O(1)

=poly(λ, logN) + poly(λ, logN, logNewEnct+1.in, logNewEnct+1.out, logNewEnct+1.depth)

=poly(λ, logN, logNewEnct+1.in, logNewEnct+1.out, logNewEnct+1.depth)

=poly(λ, logN, logC.in, logC.out, logC.depth, logNewEnct+1.depth)

For t = n+ 1, we have NewEnct.in = C.in,NewEnct.out = C.out,NewEnct.depth = C.depth.

Claim 5.11. There exits two constants c′ and c0 such that for any λ > c0, for all t ∈ [n],
NewEnct.depth < λc

′ ·N c′ · (C.in)c
′ · (C.out)c′ · (C.depth)c

′ .

Proof. There exits a c ≥ 1 such that NewEnct.depth < λc · logcN · logc(C.in) · logc(C.out) ·
logc(C.depth) · logc(NewEnct+1.depth).

Set c′ = c + 1. We prove the claim by induction on t. For t = n + 1, as c′ > 1, the theorem
clearly holds.

Now we assume the claim holds for t = t∗ + 1, we prove the claim for t = t∗. By the induction
assumption, we have

NewEnct
∗
.depth < λc · logcN · logc(C.in) · logc(C.out) · logc(C.depth) · logc(NewEnct

∗+1.depth)

< λc ·N c · (C.in)c · (C.out)c · (C.depth)c · logc(NewEnct+1.depth)

< λc ·N c · (C.in)c · (C.out)c · (C.depth)c · (c+ 1)c · logc(λ ·N · C.in · C.out · C.depth)

< λc
′ ·N c′ · (C.in)c

′ · (C.out)c′ · (C.depth)c
′

The last equality holds if λ > c0, for some c0 > 0. Thus, the claim holds for t = t∗. By induction,
the claim holds for all t ∈ [n].

By the claim, we derive that the running time of pMHE.Enc is a polynomial of λ,N,C.in, C.out, C.depth.

49

6 Main Result: (Reusable) MHE

We now show how to achieve our main result of (reusable) multiparty homomorphic encryption
scheme.

From Delayed-Function Two-Round Secure MPC to one-time pMHE scheme with weak
ciphertext succincntess. We first transform any delayed-function two-round secure MPC proto-
col into a pMHE scheme satisfying weak ciphertext succinctness property. The following was proven
in Section 4.2.

Lemma 6.1. Assuming the existence of laconic function evaluation, there exists a generic trans-
formation from any non-succinct pMHE scheme into a succinct pMHE scheme. Moreover, the
transformation preserves the number of decryption queries made by the adversary.

The work of [48] presented a construction of laconic function evaluation assuming the hardness of
learning with errors. Moreover, as shown in Corollary 4.12, a delayed-function two-round secure
MPC yields a non-succinct one-time pMHE scheme. Thus, we have the following corollary.

Corollary 6.2. Assuming the hardness of learning with errors, there exists a generic transformation
from any delayed-function two-round secure MPC protocol into a one-time succinct pMHE scheme;
and in particular, the resulting scheme satisfies weak ciphertext succinctness property.

From Weak to Strong Ciphertext Succinctness. We then show how to transform a one-time
pMHE scheme satisfying weak ciphertext succinctness into a scheme that satisfies strong ciphertext
succinctness property. The following was proven in Section 4.3.

Lemma 6.3. Assuming the existence of laconic oblivious transfer and randomized encodings com-
putable in NC1, there exists a generic transformation from any one-time pMHE scheme satisfying
weak ciphertext succinctness property into a one-time pMHE scheme satisfying strong ciphertext
succinctness property.

Laconic oblivious transfer can be based on the hardness of learning with errors [25, 21, 32]. Ran-
domized encodings in NC1 can also be based on the hardness of learning with errors [9, 10]. Thus,
we have the following corollary.

Corollary 6.4. Assuming the hardness of learning with errors, there exists a generic transformation
from any one-time pMHE scheme satisfying weak ciphertext succinctness property into a one-time
pMHE scheme satisfying strong ciphertext succinctness property.

From one-time pMHE with strong ciphertext succinctness to (reusable) non-succinct
pMHE. Next, we show how to construct a (reusable) pMHE scheme from one-time pMHE sat-
isfying strong ciphertext succinctness property. However, the resulting reusable MHE scheme is
non-succinct; i.e., it does not satisfy Definition 3.2. The following was proven in Section 5.

Lemma 6.5. Assuming one-way functions, there exists a generic transformation from any one-time
pMHE scheme satisfying strong ciphertext succinctness property into a non-succinct reusable pMHE
scheme.

From non-succinct (reusable) pMHE to succinct (reusable) pMHE. We next show how
to construct a succinct (reusable) pMHE scheme from a non-succinct (reusable) pMHE scheme. We
invoke Lemma 6.1 once more to obtain the following lemma.

50

Lemma 6.6. Assuming the hardness of learning with errors, there exists a generic transformation
from a (reusable) non-succinct pMHE scheme into a (reusable) succinct pMHE scheme.

From (reusable) pMHE to (reusable) MHE. We show how to construct a (reusable) MHE
scheme from a (reusable) pMHE scheme. This was proven in Section 3.4.

Lemma 6.7. Assuming the existence of leveled fully homomorphic encryption, there is a generic
transformation from a (reusable) pMHE scheme into a (reusable) MHE scheme.

Since level fully homomorphic encryption can be instantiated from the hardness of learning with
errors [23], we have the following corollary.

Corollary 6.8. Assuming the hardness of learning with errors, there is a generic transformation
from a (reusable) pMHE scheme into a (reusable) MHE scheme.

Main Theorem. Combining corollaries 6.2, 6.4, 6.8 and lemmas 6.5, 6.6 and the fact that we
can achieve a delayed-function two-round semi-honest secure MPC from hardness of learning with
errors [34, 12, 47], we have the following main theorem.

Theorem 6.9 (Main Theorem). Assuming the hardness of learning with errors, there exists a
multiparty homomorphic encryption scheme.

Theorem 6.10 (Semi-Honest Reusability Compiler). Let Π be a two-round (non-reusable) delayed-
function semi-honest secure computation protocol for f with the following property:

• The time complexity to compute the first round message is polynomial in λ, input, output
length of f .

• The output length of the first round message is a fixed polynomial in λ and the number of
parties.

Then there exists a two-round secure computation protocol satisfying reusable semi-honest property.

Proof. The proof is essentially the same as Lemma 5.1. We sketch the proof in the following. The
idea is to allow the parties to recursively generate two fresh first round messages of Π, and use one
leaf of the recursive tree to do the actual multi-party computation. To realize this idea, we need to
use garbled circuit to ‘delay’ the computation to the second round.

We sketch the construction of the reusable MPC as follows. Denote the input to the i-th party
as xi.

First Round Each party generates a first round message of Π, with input (xi)i∈[N].

Second Round The second round message consists of a second round message pi of Π, and several
garbled circuits (C̃i,j)j∈[|C|], where each C̃i,j is a garbling of the circuit Ci,j . The circuit Ci,j
takes as input the first round messages of all parties, computes the partial decryption of a
function fj . The function fj is specified as follows: it takes (xi)i∈[N] as input, computes two
fresh first round messages of the input (xi)i∈[N]. Then output the labels of the fresh first
round messages, where the labels is used to garble the circuit (Ci,j+1)i∈[N]. Note that all the
randomness used is obtained by applying a PRG on a random seed.

Publicly Recover Output Given the first and the second round message, use the garbled cir-
cuits to compute the second round messages of Π, and finally use the leaf node to do the
computation, and thus obtains f(x1, . . . , xn).

The proofs of correctness, simulation security, and efficiency are essentially the same as Lemma 5.2,
Lemma 5.4, and Lemma 5.10.

51

References

[1] Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-input
functional encryption. In: Vidick, T. (ed.) ITCS 2020. vol. 151, pp. 40:1–40:41. LIPIcs, Seattle,
WA, USA (Jan 12–14, 2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.40

[2] Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From fe combiners to secure
mpc and back. In: TCC (2019)

[3] Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty compu-
tation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II.
LNCS, vol. 10992, pp. 395–424. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2018). https://doi.org/10.1007/978-3-319-96881-0_14

[4] Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic MPC with
malicious security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol.
11477, pp. 532–561. Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–23, 2019).
https://doi.org/10.1007/978-3-030-17656-3_19

[5] Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust
combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz,
J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 491–520. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 14–18, 2016). https://doi.org/10.1007/978-3-662-53008-5_17

[6] Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability obfus-
cation to functional encryption. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I.
LNCS, vol. 10210, pp. 91–121. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4,
2017). https://doi.org/10.1007/978-3-319-56620-7_4

[7] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption.
In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp.
308–326. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015).
https://doi.org/10.1007/978-3-662-47989-6_15

[8] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In:
Annual Cryptology Conference. pp. 308–326. Springer (2015)

[9] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. computational complexity 15(2), 115–162 (2006)

[10] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 719–737.
Springer (2012)

[11] Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via
garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 500–532. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 –
May 3, 2018). https://doi.org/10.1007/978-3-319-78375-8_17

[12] Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via
garbled interactive circuits. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 500–532. Springer (2018)

52

[13] Benhamouda, F., Lin, H.: Multiparty non-interactive secure computation. In: Private Com-
munication (2019)

[14] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
In: Guruswami, V. (ed.) 56th FOCS. pp. 171–190. IEEE Computer Society Press, Berkeley,
CA, USA (Oct 17–20, 2015). https://doi.org/10.1109/FOCS.2015.20

[15] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
Journal of the ACM (JACM) 65(6), 39 (2018)

[16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation
under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 509–539. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016).
https://doi.org/10.1007/978-3-662-53018-4_19

[17] Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimizing rounds, com-
munication, and computation. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II.
LNCS, vol. 10211, pp. 163–193. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4,
2017). https://doi.org/10.1007/978-3-319-56614-6_6

[18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel,
A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 370–390. Springer, Hei-
delberg, Germany, Panaji, India (Nov 11–14, 2018). https://doi.org/10.1007/978-3-030-03810-
6_14

[19] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1
fully-homomorphic encryption and time-lock puzzles. In: TCC (2019)

[20] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage re-
silience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564. Springer, Heidelberg, Germany, Tel
Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/10.1007/978-3-319-78381-9_20

[21] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous ibe, leakage resilience
and circular security from new assumptions. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 535–564. Springer (2018)

[22] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short cipher-
texts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016).
https://doi.org/10.1007/978-3-662-53018-4_8

[23] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
lwe. SIAM Journal on Computing 43(2), 831–871 (2014)

[24] Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 446–472.
Springer, Heidelberg, Germany, Kobe, Japan (Dec 8–12, 2019). https://doi.org/10.1007/978-
3-030-34621-8_16

[25] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivi-
ous transfer and its applications. In: Annual International Cryptology Conference. pp. 33–65.
Springer (2017)

53

[26] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with er-
rors. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015).
https://doi.org/10.1007/978-3-662-48000-7_31

[27] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning with errors.
In: Annual Cryptology Conference. pp. 630–656. Springer (2015)

[28] Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816,
pp. 93–122. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016).
https://doi.org/10.1007/978-3-662-53015-3_4

[29] Döttling, N., Garg, S.: From selective ibe to full ibe and selective hibe. In: Theory of Cryp-
tography Conference. pp. 372–408. Springer (2017)

[30] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2017). https://doi.org/10.1007/978-
3-319-63688-7_18

[31] Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assumption. In: An-
nual International Cryptology Conference. pp. 537–569. Springer (2017)

[32] Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-
dependent message secure encryption schemes. In: IACR International Workshop on Public
Key Cryptography. pp. 3–31. Springer (2018)

[33] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assump-
tions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821,
pp. 468–499. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018).
https://doi.org/10.1007/978-3-319-78375-8_16

[34] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assump-
tions. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 468–499. Springer (2018)

[35] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.)
41st ACM STOC. pp. 169–178. ACM Press, Bethesda, MD, USA (May 31 – Jun 2, 2009).
https://doi.org/10.1145/1536414.1536440

[36] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 18–22, 2013). https://doi.org/10.1007/978-3-642-40041-4_5

[37] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended ab-
stract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press, Singer Island, Florida
(Oct 24–26, 1984). https://doi.org/10.1109/SFCS.1984.715949

[38] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the
ACM (JACM) 33(4), 792–807 (1986)

54

[39] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness
theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC. pp. 218–229.
ACM Press, New York City, NY, USA (May 25–27, 1987). https://doi.org/10.1145/28395.28420

[40] Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-interactive mul-
tiparty computation without correlated randomness. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211. Springer, Heidelberg, Germany, Hong
Kong, China (Dec 3–7, 2017). https://doi.org/10.1007/978-3-319-70700-6_7

[41] Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and appli-
cations. In: Theory of Cryptography Conference. pp. 96–124. Springer (2016)

[42] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.)
44th ACM STOC. pp. 1219–1234. ACM Press, New York, NY, USA (May 19–22, 2012).
https://doi.org/10.1145/2213977.2214086

[43] Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
620–649. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26948-7_22

[44] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735–763. Springer,
Heidelberg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/978-3-662-
49896-5_26

[45] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key fhe. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp.
735–763. Springer (2016)

[46] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A.D. (eds.)
TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg, Germany, Beijing,
China (Oct 31 – Nov 3, 2016). https://doi.org/10.1007/978-3-662-53644-5_9

[47] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivi-
ous transfer. In: Annual international cryptology conference. pp. 554–571. Springer (2008)

[48] Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS). pp. 859–870. IEEE
(2018)

[49] Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Founda-
tions of Computer Science (sfcs 1986). pp. 162–167. IEEE (1986)

55

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Garbling Schemes
	Randomized Encoding
	Laconic Oblivious Transfer
	Laconic Function Evaluation

	Multiparty Homomorphic Encryption
	Definition
	Security
	pMHE: MHE with Private Evaluation
	MHE from pMHE and Fully Homomorphic Encryption

	One-Time pMHE
	Ciphertext Succinctness
	One-Time pMHE with Weak Ciphertext Succinctness
	From Weak to Strong Ciphertext Succinctness

	Reusable pMHE from One-Time pMHE
	Main Result: (Reusable) MHE

