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Abstract

We present a reusable two-round multi-party computation (MPC) protocol from the Decisional Diffie
Hellman assumption (DDH). In particular, we show how to upgrade any secure two-round MPC protocol
to allow reusability of its first message across multiple computations, using Homomorphic Secret Sharing
(HSS) and pseudorandom functions in NC1— each of which can be instantiated from DDH.

In our construction, if the underlying two-round MPC protocol is secure against semi-honest adver-
saries (in the plain model) then so is our reusable two-round MPC protocol. Similarly, if the underlying
two-round MPC protocol is secure against malicious adversaries (in the common random/reference string
model) then so is our reusable two-round MPC protocol. Previously, such reusable two-round MPC pro-
tocols were only known under assumptions on lattices.

At a technical level, we show how to upgrade any two-round MPC protocol to a first message succinct
two-round MPC protocol, where the first message of the protocol is generated independently of the
computed circuit (though it is not reusable). This step uses homomorphic secret sharing (HSS) and low-
depth pseudorandom functions. Next, we show a generic transformation that upgrades any first message
succinct two-round MPC to allow for reusability of its first message.

1 Introduction

Motivating Scenario. Consider the following setting: a set of n hospitals publish encryptions of their
sensitive patient information x1, . . . , xn. At a later stage, for the purposes of medical research, they wish to
securely evaluate a circuit C1 on their joint data by publishing just one additional message - that is, they
wish to jointly compute C1(x1, . . . , xn) by each broadcasting a single message, without revealing anything
more than the output of the computation. Can they do so? Furthermore, what if they want to additionally
compute circuits C2,C3 . . . at a later point on the same set of inputs?

Seminal results on secure multi-party computation (MPC) left quite a bit to be desired when considering
the above potential application. In particular, the initial construction of secure multi-party computation by
Goldreich, Micali and Wigderson [GMW87] required parties to interact over a large number of rounds. Even
though the round complexity was soon reduced to a constant by Beaver, Micali and Rogaway [BMR90], these
protocols fall short of achieving the above vision, where interaction is reduced to the absolute minimum.

Making progress towards this goal, Garg et al. [GGHR14] gave the first constructions of two-round MPC
protocols, assuming indistinguishability obfuscation [GGH+13] (or, witness encryption [GLS15, GGSW13])
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and one-way functions.1 A very nice feature of the Garg et al. construction is that the first round message is
indeed reusable across multiple executions, thereby achieving the above vision. Follow up works realized two-
round MPC protocols based on significantly weaker computational assumptions. In particular, two-round
MPC protocols based on LWE were obtained [MW16, BP16, PS16], followed by a protocol based on bilinear
maps [GS17, BF01, Jou04]. Finally, this line of work culminated with the recent works of Benmahouda and
Lin [BL18] and Garg and Srinivasan [GS18], who gave constructions based on the minimal assumption that
two-round oblivious transfer (OT) exists.

However, in these efforts targeting two-round MPC protocols with security based on weaker computational
assumptions, compromises were made in terms of reusability. In particular, among the above mentioned
results only the obfuscation based protocol of Garg et al. [GGHR14] and the lattice based protocols [MW16,
BP16, PS16] offer reusability of the first message across multiple executions. Reusability of the first round
message is quite desirable. In fact, even in the two-party setting, this problem has received significant
attention and has been studied under the notion of non-interactive secure computation [IKO+11, AMPR14,
MR17, BJOV18, CDI+19]. In this setting, a receiver first publishes an encryption of its input and later, any
sender may send a single message (based on an arbitrary circuit) allowing the receiver to learn the output
of the circuit on its input. The multiparty case, which we study in this work, can be seen as a natural
generalization of the problem of non-interactive secure computation. In this work we ask:

Can we obtain reusable two-round MPC protocols from assumptions not based on lattices?

1.1 Our Result

In this work, we answer the above question by presenting a general compiler that obtains reusable two-
round MPC, starting from any two-round MPC and using homomorphic secret sharing (HSS) [BGI16] and
pseudorandom functions in NC1. In a bit more detail, our main theorem is:

Theorem 1.1 (Main Theorem). Let X ∈ {semi-honest in plain model, malicious in common random/reference
sting model}. Assuming the existence of a two-round X -MPC protocol, an HSS scheme, and pseudorandom
functions in NC1, there exists a reusable two-round X -MPC protocol.

We consider the setting where an adversary can corrupt an arbitrary number of parties. We assume that
parties have access to a broadcast channel.

Benmahouda and Lin [BL18] and Garg and Srinivasan [GS18] showed how to build a two-round MPC
protocol from the DDH assumption. The works of Boyle et al. [BGI16, BGI17] constructed an HSS scheme
assuming DDH. Instantiating the primitives in the above theorem, we get the following corollary:

Corollary 1.2. Let X ∈ {semi-honest in plain model, malicious in common random/reference sting model}.
Assuming DDH, there exists a reusable two-round X -MPC protocol.

Previously, constructions of reusable two-round MPC were only known assuming indistinguishability
obfuscation [GGHR14, GS17] (or, witness encryption [GLS15, GGSW13]) or were based on multi-key fully-
homomorphic encryption (FHE) [MW16, PS16, BP16]. Furthermore, one limitation of the FHE-based
protocols is that they are in the CRS model even for the setting of semi-honest adversaries.

We note that the two-round MPC protocols cited above additionally achieve overall communication
independent of the computed circuit. This is not the focus of this work. Instead, the aim of this work is to
realize two-round MPC with reusability, without relying on lattices. As per our current understanding, MPC
protocols with communication independent of the computed circuit are only known using lattice techniques
(i.e., FHE [Gen09]). Interestingly, we use HSS, which was originally developed to improve communication
efficiency in two-party secure computation protocols, to obtain reusability.

1The Garg et al. paper required other assumptions. However, since then they have all been shown to be implied by
indistinguishability obfuscation and one-way functions.
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First Message Succinct Two-Round MPC. At the heart of this work is a construction of a first
message succinct (FMS) two-round MPC protocol— that is, a two-round MPC protocol where the first
message of the protocol is computed independently of the circuit being evaluated. In particular, the parties
do not need to know the description of the circuit that will eventually be computed over their inputs in the
second round. Furthermore, parties do not even need to know the size of the circuit to be computed in the
second round.2 This allows parties to publish their first round messages and later compute any arbitrary
circuit on their inputs. Formally, we show the following:

Theorem 1.3. Let X ∈ {semi-honest in plain model, malicious in common random/reference sting model}.
Assuming DDH, there exists a first message succinct two-round X -MPC protocol.

Such protocols were previously only known based on iO [GGHR14, DHRW16] or assumptions currently
needed to realize FHE [MW16, BP16, PS16, ABJ+19]. Note that for the learning-with-errors (LWE) based
versions of these protocols, the first message can only be computed knowing the depth (or, an upper bound
on the maximum depth) of the circuit to be computed. We find the notion of first message succinct two-
round MPC quite natural and expect it be relevant for several other applications. In addition to using
HSS in a novel manner, our construction benefits from the powerful garbling techniques realized in recent
works [LO13, GHL+14, GLOS15, GLO15, CDG+17, DG17b].

From First Message Succinctness to Reusability. On first thought, the notion of first message suc-
cinctness might seem like a minor enhancement. However, we show that this “minor looking” enhancement
is sufficient to enable reusable two-round MPC (supporting arbitrary number of computations) generically.
More formally:

Theorem 1.4. Let X ∈ {semi-honest in plain model, malicious in common random/reference sting model}.
Assuming a first message succinct two-round MPC protocol, there exists a reusable two-round X -MPC
protocol.

2 Technical Overview

In this section, we highlight our main ideas for obtaining reusability in two-round MPC. Our construction
is achieved in three steps. Our starting point is the recently developed primitive of Homomorphic Secret
Sharing (HSS), which realizes the following scenario. A secret s is shared among two parties, who can then
non-interactively evaluate a function f over their respective shares, and finally combine the results to learn
f(s), but nothing more.

2.1 Step 1: Overview of the scHSS Construction

First, we show how to use a “standard” HSS (for only two parties, and where the reconstruction algorithm
is simply addition) to obtain a new kind of HSS, which we call sharing compact HSS (scHSS). The main
property we achieve with scHSS is the ability to share a secret among n parties, for any n, while maintainting
compactness of the share size. In particular, as in standard HSS, the sharing algorithm will be independent of
the circuit that will be computed on the shares. We actually obtain a few other advantages over constructions
of standard HSS [BGI16, BGI17], namely, we get negligible rather than inverse polynomial evaluation error,
and we can support computations of any polynomial-size circuit. To achieve this, we sacrifice compactness
of the evaluated shares, simplicity of the reconstruction algorithm, and security for multiple evaluations.
However, it will only be crucial for us that multiple parties can participate, and that the sharing algorithm
is compact.

2Note that this requirement is more stringent than just requiring that the size of the first round message is independent of
the computed circuit, which can be achieved using laconic OT [CDG+17] for any two-round MPC protocol.
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The approach: A sharing-compact HSS scheme consists of three algorithms, Share,Eval, and Dec. Our
construction follows the compiler of [GS18] that takes an arbitrary MPC protocol and squishes it to two
rounds. At a high level, to share a secret x among n parties, we have the Share algorithm first compute an
n-party additive secret sharing x1, . . . , xn of x. Then, it runs the first round of the squished n-party protocol
on behalf of each party j with input xj .

3 Finally, it sets the j’th share to be all of the first round messages,
plus the secret state of the j’th party. The Eval algorithm run by party j will simply run the second round
of the MPC, and output the resulting message. The Dec algorithm takes all second round messages and
reconstructs the output.

Recall that we aim for a sharing-compact HSS, which in particular means that the Share algorithm must be
independent of the computation supported during the Eval phase. Thus, the first observation that makes the
above approach viable is that the first round of the two-round protocol that results from the [GS18] compiler
is independent of the particular circuit being computed. Unfortunately, it is not generated independently of
the size of the circuit to be computed, so we must introduce new ideas to remove this size dependence.

The [GS18] compiler: Before further discussing the size dependence issue, we recall the [GS18] compiler.
The compiler is applied to any conforming MPC protocol, a notion defined in [GS18].4 Roughly, a conforming
protocol operates via a sequence of actions φ1, . . . , φT . At the beginning of the protocol, each party j
broadcasts a one-time pad of their input, and additionally generates some secret state vj . The encrypted
inputs are arranged into a global public state st, which will be updated throughout the protocol. At each
step t, the action φt = (j, f, g, h) is carried out by having party j broadcast the bit γt := NAND(stf ⊕
vj,f , stg ⊕ vj,g) ⊕ vj,h. Everybody then updates the global state by setting sth := γt. We require that the
transcript of the protocol is publicly decodable, so that after the T actions are performed, anybody can learn
the (shared) output by inspecting st.

Now, the [GS18] compiler works as follows. In the first round of the compiled protocol, each party runs
the first round of the conforming protocol and broadcasts a one-time pad of their input. In the second round,
each party generates a set of garbled circuits that non-interactively implement the computation phase of
the conforming protocol. In particular, this means that an evaluator can use the garbled circuits output
by each party to carry out each action φ1, . . . , φT , learn the resulting final st, and recover the output. The
garbled circuits operate as follows. Each garbled circuit for party j takes as input the public state st, and
outputs information that allows recovery of input labels for party j’s next garbled circuit, corresponding
to an updated version of the public state. To facilitate this, the initial private state of each party must be
hard-coded into each of their garbled circuits.

In more detail, consider a particular round t and action φt = (j∗, f, g, h). Each party will output a
garbled circuit for this round. We refer to party j∗ as the “speaking” party for this round. Party j∗’s
garbled circuit will simply use its private state to compute the appropriate NAND gate and update the
public state accordingly, outputting the correct labels for party j∗’s next garbled circuit, and the bit γt to
be broadcast. It remains to show how the garbled circuit of each party j 6= j∗ can incorporate this bit γt,
revealing the correct input label for their next garbled circuit. We refer to party j as the “listening” party.
In [GS18], this was facilitated by the use of a two-round oblivious transfer (OT). In the first round, each
pair of parties (j, j∗) engages in the first round of multiple OT protocols with j acting as the sender and
j∗ acting as the receiver. Specifically, j∗ sends a set of receiver messages to party j. Then during action t,
party j’s garbled circuit responds with j’s sender message, where the sender’s two strings are garbled input
labels lab0, lab1 of party j’s next garbled circuit. Party j∗’s garbled circuit reveals the randomness used to
produce the receiver’s message with the appropriate receiver bit γt. This allows for public recovery of the
label labγt .

However, note that each of the T actions requires its own set of OTs to be generated in the first round.
Each is then “used up” in the second round, as the receiver’s randomness is revealed in the clear. This is
precisely what makes the first round of the resulting MPC protocol depend on the size of the circuit to be
computed: the parties must engage in the first round of Ω(T ) oblivious transfers during the first round of

3Actually, we use an nλ-party MPC protocol, for reasons that will become clear later in this overview.
4We tweak the notion slightly here, so readers familiar with [GS18] may notice some differences in this overview.
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the MPC protocol.

Pair-wise correlations: As observed also in [GIS18], the point of the first round OT messages was to
set up pair-wise correlations between parties that were then exploited in the second round to facilitate the
transfer of a bit from party j∗’s garbled circuit to party j’s garbled circuit. For simplicity, assume for now that
when generating the first round, the parties j and j∗ already know the bit γt that is to be communicated
during action t. This is clearly not the case, but this issue is addressed in [GS18, GIS18] (and here) by
generating four sets of correlations, corresponding to each of the four possible settings of the two bits of the
public state (α, β) at the indices (f, g) corresponding to action φt = (j∗, f, g, h).

Now observe that the following correlated randomness suffices for this task. Party j receives uniformly
random strings z(0), z(1) ∈ {0, 1}λ, and party j∗ receives the string z(∗) := z(γt). Recall that party j has in
mind garbled input labels lab0, lab1 for its next garbled circuit, and wants to reveal labγt in the clear, while
keeping lab1−γt hidden. Thus, party j’s garbled circuit will simply output (lab0⊕ z(0), lab1⊕ z(1)), and party
j∗’s garbled circuit outputs z(∗). Now, instead of generating first round OT messages, the Share algorithm
could simply generate all of the pair-wise correlations and include them as part of the shares. Of course, the
number of correlations necessary still depends on T , so we will need the Share algorithm to produce compact
representations of these correlations.

Compressing using constrained PRFs: Consider a pair of parties (j, j∗), and let Tj∗ be the set of
actions where j∗ is the speaking party. We need the output of Share to (implicitly) include random strings

{z(0)
t , z

(1)
t }t∈Tj∗ in j’s share and {z(γt)

t }t∈Tj∗ in j∗’s share. The first set of strings would be easy to represent

compactly with a PRF key kj , letting z
(b)
t := PRF(kj , (t, b)). However, giving the key kj to party j∗ would

reveal too much, as it is imperative that we keep {z(1−γt)
t }t∈Tj∗ hidden from party j∗’s view. We could

instead give party j∗ a constrained version of the key kj that only allows j∗ to evaluate PRF(kj , ·) on points
(t, γt). We expect that this idea can be made to work, and one could hope to present a construction based
on the security of (single-key) constrained PRFs for constraints in NC1 (plus a standard PRF computable
in NC1). Such a primitive was achieved in [AMN+18] based on assumptions in a traditional group, however,
we aim for a construction from weaker assumptions.

Utilizing HSS: Inspired by [BCGI18, BCG+19], we take a different approach based on HSS. Consider
sharing the PRF key kj between parties j and j∗, producing shares shj and shj∗ , and additionally giving
party j the key kj in the clear. During action t, we have parties j and j∗ (rather, their garbled circuits)
evaluate the following function on their respective shares: if γt = 0, output 0λ and otherwise, output
PRF(kj , t). Assuming that the HSS evaluation is correct, and using the fact that HSS reconstruction is
additive (over Z2), this produces a pair of outputs (yj , yj∗) such that if γt = 0, yj ⊕ yj∗ = 0λ, and if γt = 1,

yj ⊕ yj∗ = PRF(kj , t). Now party j sets z
(0)
t := yj and z

(1)
t := yj ⊕ PRF(kj , t), and party j∗ sets z

(∗)
t := yj∗ .

This guarantees that z
(∗)
t = z

(γt)
t and that z

(1−γt)
t = z

(∗)
t ⊕ PRF(kj , t), which should be indistinguishable

from random to party j∗, who doesn’t have kj in the clear.

Tying loose ends: This approach works, except that, as alluded to before, party j’s garbled circuit will
not necessarily know the bit γt when evaluating its HSS share. This is handled by deriving γt based on
public information (some bits α, β of the public shared state), and the private state of party j∗. Since party
j∗’s private state cannot be public information, this derivation must happen within the HSS evaluation,
and in particular, the secret randomness that generates j∗’s private state must be part of the secret shared
via HSS. In our construction, we compile a conforming protocol where each party j∗’s randomness can be
generated by a PRF with key sj∗ . Thus, we can share the keys (kj , sj∗) between parties j and j∗, allowing
them to compute output shares with respect to the correct γt. Finally, note that the computation performed
by HSS essentially only consists of PRF evaluations. Thus, assuming a PRF in NC1 (which follows from
DDH [NR97]), we only need to make use of HSS that supports evaluating circuits in NC1, which also follows
from DDH [BGI16, BGI17].
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Dealing with the 1 − 1/poly correctness of HSS: We are not quite done, since the [BGI16, BGI17]
constructions of HSS only achieve correctness with 1− 1/poly probability. At first glance, this appears to be
straightforward to fix. To complete action φt = (j∗, f, g, h), simply repeat the above λ times, now generating

sets {z(0)
t,p , z

(1)
t,p }p∈[λ] and {z(∗)

t,p }p∈[λ], using the values {PRF(kj , (t, p))}p∈[λ]. Party j now masks the same
labels lab0, lab1 with λ different masks, and to recover labγt , one can unmask each value and take the most
frequently occurring string to be the correct label. This does ensure that our scHSS scheme is correct except
with negligible probability.

Unfortunately, the 1/poly correctness actually translates to a security issue with the resulting scHSS
scheme. In particular, it implies that an honest party’s evaluated share is indistiguishable from a simulated
evaluated share with probability only 1−1/poly. To remedy this, we actually use an nλ-party MPC protocol,
and refer to each of the nλ parties as a “virtual” party. The Share algorithm now additively secret shares
the secret x into nλ parts, and each of the n real parties participating in the scHSS receives the share of λ
virtual parties. We are then able to show that for any set of honest parties, with overwhelming probability,
there will exist at least one corresponding virtual party that is “simulatable”. The existence of a single
simulatable virtual party is enough to prove the security of our construction.

At this point it is important to point out that, while the above strategy suffices to prove our construction
secure for a single evaluation (where the circuit evaluated can be of any arbitrary polynomial size), it does
not imply that our construction achieves reusability, in the sense that the shares output by Share may be
used to evaluate any unbounded polynomial number of circuits. Despite the fact that the PRF keys shared
via HSS should enable the parties to generate an unbounded polynomial number of pair-wise correlations,
the 1/poly evaluation error of the HSS will eventually break simulation security. Fortunately, as alluded to
before, the property of sharing-compactness actually turns out to be enough to bootstrap our scheme into a
truly reusable MPC protocol. The key ideas that allow for this will be discussed in Section 2.3.

2.2 Step 2: From scHSS to FMS MPC

In the second step, we use a scHSS scheme to construct a first message succinct two-round MPC protocol
(in the rest of this overview we will call it FMS MPC). The main feature of a scHSS scheme is that its Share
algorithm is independent of the computation that will be performed on the shares. Intuitively, this is very
similar to the main feature offered by a FMS MPC protocol, in that the first round is independent of the
circuit to be computed. Now, suppose that we have an imaginary trusted entity that learns everyone’s input
(x1, . . . , xn) and then gives each party i a share shi computed as (sh1, . . . , shn) ← Share(x1‖ . . . ‖xn). Note
that, due to sharing-compactness this step is independent of the circuit C to be computed by the FMS MPC
protocol. After receiving their shares, each party i runs the scHSS evaluation circuit Eval(i,C, shi) to obtain
their own output share yi, and then broadcasts yi . Finally, on receiving all the output shares (y1, . . . , yn),
everyone computes y := C(x1, . . . xn) by running the decoding procedure of scHSS: y := Dec(y1, . . . , yn).

A straightforward three-round protocol. Unfortunately, we do not have such a trusted entity available
in the setting of FMS MPC. A natural approach to resolve this would be to use any standard two-round
MPC protocol (from now on we refer to such a protocol as vanilla MPC) to realize the Share functionality
in a distributed manner. However, since the vanilla MPC protocol would require at least two rounds to
complete, this straightforward approach would incur one additional round. This is inevitable, because
the parties receive their shares only at the end of the second round. Therefore, an additional round of
communication (for broadcasting the output shares yi) would be required to complete the final protocol.

Garbled circuits to the rescue. Using garbled circuits, we are able to squish the above protocol to
operate in only two rounds. The main idea is to have each party i additionally send a garbled circuit C̃i in
the second round. Each C̃i garbles a circuit that implements Eval(i,C, ·). Given the labels for shi, C̃i can be
evaluated to output yi ← Eval(i,C, shi). Note that, if it is ensured that every party receives all the garbled
circuits and all the correct labels after the second round, they can obtain all (y1, . . . , yn), and compute the

6



final output y without further communication. The only question left now is how the correct labels are
communicated within two rounds.

Tweaking vanilla MPC to output labels. For communicating the correct labels, we slightly tweak the
functionality computed by the vanilla MPC protocol. In particular, instead of using it just to compute the
shares (sh1, . . . , shn), we have the vanilla MPC protocol compute a slightly different functionality that first
computes the shares, and rather than outputting them directly, outputs the corresponding correct labels
for everyone’s shares.5 This is enabled by having each party provide a random value ri, which is used to
generate the labels, as an additional input to D. Therefore, everyone’s correct labels are now available after
the completion of the second round of the vanilla MPC protocol. Recall that parties also broadcast their
garbled circuits along with the second round of the vanilla MPC. Each party i, on receiving all C̃1, . . . C̃n
and all correct labels, evaluates to obtain (y1, . . . , yn) and then computes the final output y.6

2.3 Step 3: From FMS MPC to Reusable MPC

Finally, in this third step, we show how FMS MPC can be used to construct reusable two-round MPC, where
the first message of the protocol can be reused across multiple computations.

We start with the observation that a two-round FMS MPC protocol allows us to compute arbitrary sized
circuits after completion of the first round. This offers a limited form of (bounded) reusability, in that all
the circuits to be computed could be computed together as a single circuit. However, once the second round
is completed, no further computation is possible. Thus, the main challenge is how to leverage the ability to
compute a single circuit of unbounded size to achieve unbounded reusability. Inspired by ideas from [DG17b],
we address this challenge by using the ideas explained in Step 2 (above) repeatedly. For the purposes of this
overview, we first explain a simpler version of our final protocol, in which the second round is expanded into
multiple rounds. A key property of this protocol is that, using garbled circuits, those expanded rounds can
be squished back into just one round (just like we did in Step 2) while preserving reusability.

Towards reusability: a multi-round protocol. The fact that FMS MPC does not already achieve
reusability can be re-stated as follows: the first round of FMS MPC (computed using an algorithm MPC1)
can only be used for a single second round execution (using an algorithm MPC2). To resolve this issue, we
build a GGM-like [GGM84] tree-based mechanism that generates a fresh FMS first round message for each
circuit to be computed, while ensuring that no FMS first round message is reused.

The first round of our final two-round reusable protocol, as well the multi-round simplified version, simply
consists of the first round message corresponding to the root level (of the GGM tree) instance of the FMS
protocol. We now describe the subsequent rounds (to be squished to a single second round later) of our
multi-round protocol.

Intuitively, parties iteratively use an FMS instance at a particular level of the binary tree (starting from
the root) to generate two new first-round FMS messages corresponding to the next level of the tree. The
leaf FMS protocol instances will be used to compute the actual circuits. The root to leaf path traversed to
compute a circuit C is decided based on the description of the circuit C itself.7

In more detail, parties first send the second round message of the root (0’th) level FMS protocol instance
for a fixed circuit N (independent of the circuit C to be computed) that samples and outputs “left” and
“right” MPC1 messages using the same inputs that were used in the root level FMS. Now, depending on
the first bit of the circuit description, parties choose either the left (if the first bit is 0) or the right (if the

5It is important to note that the set of garbled labels corresponding to some input x hides the actual string x. Hence, out-
putting all the labels instead of specific shares enables everyone to obtain the desired output without any further communication,
but also does not compromise security.

6We remark that, in the actual protocol each party i sends their labels, encrypted, along with the garbled circuit C̃i in the
second round. The vanilla MPC protocol outputs the correct sets of decryption keys based on the shares, which allows everyone
to obtain the correct sets of labels, while the other labels remain hidden.

7We actually use the string whose first λ bits are the size of C, and the remaining bits are the description of C. This is to
account for the possibility that one circuit may be a prefix of another.
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first bit is 1) MPC1 messages for the next (1st) level. Now using the chosen FMS messages, parties generate
the MPC2 message for the same circuit N as above. This results in two more fresh instances of the MPC1

messages for the next (2nd) level. As mentioned before, this procedure is continued until the leaf node is
reached. At that point the MPC2 messages are generated for the circuit C that the parties are interested in
computing.

Note that, during the evaluation of two different circuits (each associated with a different leaf node), a
certain number of FMS protocol instances might get re-executed. However, our construction ensures that
this is merely a re-execution of a fixed circuit with the exact same input/output behavior each time. This
guarantees that no FMS message is reused (even though it might be re-executed). Finally, observe that
this process of iteratively computing more and more MPC1 messages for the FMS protocol is only possible
because the generation of the first message of an FMS protocol can be performed independently of the circuit
that gets computed in the second round. In particular, the circuit N computes two more MPC1 messages on
behalf of each party.

Squishing the multiple rounds: using ideas in Step 2 iteratively. We take an approach similar to
Step 2, but now starting with a two-round FMS MPC (instead of a vanilla MPC). In the second round, each
party will send a sequence of garbled circuits where each garbled circuit will complete one instance of an
FMS MPC which generates labels for the next garbled circuit. This effectively emulates the execution of the
same FMS MPC instance in the multi-round protocol, but without requiring any additional round. Now,
the only thing left to address is how to communicate the correct labels.

Communicating the labels for each party’s garbled circuit. The trick here is (again very similar to
step 2) to tweak the circuit N, in that instead of outputting the two MPC1 messages for the next level, N
(with an additional random input ri from each party i) now outputs labels corresponding to the messages.8

For security reasons, it is not possible to include the same randomness ri in the input to each subsequent
FMS instance. Thus, we use a carefully constructed tree-based PRF, following the GGM [GGM84] construc-
tion and pass along not the key of the PRF but a careful derivative that is sufficient for functionality and
does not interfere with security.

Adaptivity in the choice of circuit. Our reusable two-round MPC protocol satisfies a strong adaptive
security guarantee. In particular, the adversary may choose any circuit to compute after seeing the first round
messages (and even after seeing the second round messages for other circuits computed on the same inputs).
This stronger security is achieved based on the structure of our construction, since the first round messages
of the FMS MPC used to compute the actual circuit are only revealed when the actual execution happens in
the second round of the reusable protocol. In particular, we do not even have to rely on “adaptive” security
of the underlying FMS protocol to achieve this property.9

3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N→ R+ is said to be negligible if for any polynomial
poly(·) there exists λ0 ∈ N such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an

unspecified negligible function and poly(·) to denote an unspecified polynomial function. We denote [k] to
be the set {1, . . . , k}.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the content
of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x ← S as the process of sampling x uniformly from the set S. We will use PPT to denote Probabilistic

8Again, the actual protocol is slightly different, in that all labels are encrypted and sent along with the garbled circuits, and
N outputs decryption keys corresponding to the correct labels.

9This is for reasons very similar to those in [DG17a].
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Polynomial Time algorithm. We assume without loss of generality that the length of the random tape used
by all cryptographic algorithms is λ.

3.1 Garbled Circuits

We recall the definition of a garbling scheme for circuits [Yao86] (see Applebaum et al. [AIK04], Lindell and
Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further discussion). A garbling scheme for
circuits is a tuple of PPT algorithms (Garble,GEval). Garble is the circuit garbling procedure and GEval is
the corresponding evaluation procedure. More formally:

• (C̃, {labi,b}i∈[n],b∈{0,1}) ← Garble
(
1λ,C

)
: Garble takes as input a security parameter 1λ, a circuit C,

and outputs a garbled circuit C̃ along with labels labi,b where i ∈ [n] (where n is the length of the input
to C) and b ∈ {0, 1}. Each label labi,b is assumed to be in {0, 1}λ.

• y ← GEval
(
C̃, {labi,xi}i∈[n]

)
: Given a garbled circuit C̃ and a sequence of input labels {labi,xi}i∈[n]

(referred to as the garbled input), GEval outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}|x| we have that:

Pr
[
C(x) = GEval

(
C̃, {labi,xi}i∈[n]

)]
= 1

where (C̃, {labi,b}i∈[n],b∈{0,1})← Garble
(
1λ,C

)
.

Security. For security, we require that there exists a PPT simulator Sim such that for any circuit C and
input x ∈ {0, 1}|x|, we have that (

C̃, {labi,xi}i∈[n]

)
c
≈ Sim

(
1|C|, 1|x|,C(x)

)
where (C̃, {labi,b}i∈[n],b∈{0,1})← Garble

(
1λ,C

)
and

c
≈ denotes that the two distributions are computationally

indistinguishable.
We use the notation of overline to denote a set of labels/keys for garbled circuits. For example, lab refers

to {labi,b}i∈[n],b∈{0,1}. In contrast, we reserve the notation of hat to denote a set where only one label/key

is known per wire. For example, l̂ab refers to {labi}i∈[n].

3.2 Robust Private-Key Encryption

A robust private-key encryption scheme (rob.enc, rob.dec) satisfies the usual properties of correctness and
semantic security, plus the following robustness property. For any PPT A and message m,

Pr
k←{0,1}λ,

c←rob.enc(k,m)

[rob.dec(k′, c) 6= ⊥ : k′ ← A(c)] = negl(λ).

A robust private-key encryption scheme can be constructed as follows. Let k be the key for a PRF
PRF(k, ·) : {0, 1}λ → {0, 1}. To encrypt a bit b, draw ri ← {0, 1}λ for each i ∈ [2λ]. Then draw s← {0, 1}λ
and output {(ri,PRF(k, ri))}i∈[2λ], (s,PRF(k, s) ⊕ b) as the encryption of b. The decryption procedure on
input ciphertext {(ri, ui)}i∈[2λ], (s, v) and key k′ will first check that ui = PRF(k′, ri) for each (ri, ui). An
adversary that can find a satisfying key k′ will break security of the PRF, since with overwhelming probability,
there will not exist such a k′ relative to 2λ uniformly random pairs (ri, ui).
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3.3 Two-Round MPC

Throughout this work, we will focus on two-round MPC protocols. We now define the syntax we follow for
a two-round MPC protocol.

Definition 3.1 (Two-Round MPC Procotol). An n-party two-round MPC protocol is described by a triplet
of PPT algorithms (MPC1,MPC2,MPC3) with the following syntax.

• MPC1(1λ,CRS,C, i, xi; ri) =: (st
(1)
i ,msg

(1)
i ): Takes as input 1λ, a common random/reference string

CRS, (the description of) a circuit C to be computed, identity of a party i ∈ [n], input xi ∈ {0, 1}∗
and randomness ri ∈ {0, 1}λ (we drop mentioning the randomness explicitly when it is not needed). It

outputs party i’s first message msg
(1)
i and its private state st

(1)
i .

• MPC2(C, st
(1)
i , {msg

(1)
j }j∈[n]) → (st

(2)
i ,msg

(2)
i ): Takes as input (the description of) a circuit10 C to be

computed, the state11 of a party st
(1)
i , and the first round messages of all the parties {msg

(1)
j }j∈[n]. It

outputs party i’s second round message msg
(2)
i and its private state st

(2)
i .

• MPC3(st
(2)
i , {msg

(2)
j }j∈[n]) =: yi: Takes as input the state of a party st

(2)
i , and the second round

messages of all the parties {msg
(2)
j }j∈[n]. It outputs the ith party’s output yi.

Each party runs the first algorithm MPC1 to generate the first round message of the protocol, the second
algorithm MPC2 to generate the second round message of the protocol and finally, the third algorithm MPC3

to compute the output. The messages are broadcasted after executing the first two algorithms, whereas the
state is kept private.

Security. In this work we follow the standard real/ideal world paradigm for defining secure multi-party
computation (MPC) as in [Gol04]. In order to distinguish it from the other enhanced notions, we will
sometimes refer to this notion of two round MPC as the vanilla notion of two round MPC. We define this
notion below for completeness. Parts of this section have been taken verbatim from [Gol04].

Consider n parties P1, . . . , Pn with inputs x1, . . . , xn respectively that wish to interact in a protocol
π to evaluate any circuit/functionality C on their joint inputs. The security of protocol π (with respect
to a functionality C) is defined by comparing the real-world execution of the protocol with an ideal-world
evaluation of f by a trusted party. Informally, it is required that for every adversary A that corrupts some
subset of the parties I ⊂ [n] and participates in the real execution of the protocol, there exist an adversary
Sim, also referred to as a simulator, which can achieve the same effect in the ideal-world. Let’s denote
~x = (x1, . . . , xn). We now formally describe the security definition.

The real execution. In the real execution, the n-party protocol π for computing C is executed in the
presence of an adversary A. The adversary A takes as input the security parameter λ and an auxiliary input
z. The honest parties follow the instructions of π. A sends all messages of the protocol on behalf of the
corrupted parties (parties in I) following any arbitrary polynomial-time strategy.12

The interaction of A in the protocol π defines a random variable REALπ,A(λ, ~x, z, I) whose value is
determined by the coin tosses of the adversary and the honest parties. This random variable contains the
output of the adversary (which may be an arbitrary function of its view) as well as the outputs of the honest
parties.

10It might seem unnatural to include C in the input of MPC2 when it was already used as an input for MPC1. This is done
to keep the notation consistent with a stronger notion of two-round MPC where C will be dropped from the input of MPC1.

11Without loss of generality we may assume that the MPC2 algorithm is deterministic given the state st
(1)
i . Any randomness

needed for the second round could be included in st
(1)
i . Even in the reusable (defined later) case, it is possible to use a PRF

computed on the input circuit to provide the needed randomness for the execution of MPC2.
12A semi-honest adversary follows the protocol behaviour honestly.
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The ideal execution. In the ideal execution, an ideal world adversary Sim interacts with a trusted party.
The ideal execution proceeds as follows:

• Send inputs to the trusted party: Each honest party sends its input to the trusted party. Each
corrupt party Pi, (controlled by Sim) may either send its input xi or send some other input of the same
length to the trusted party. Let x′i denote the value sent by party Pi. Note that for a semi-honest
adversary, x′i = xi always.

• Trusted party sends output to the adversary: The trusted party computes C(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

• Adversary instructs trusted party to abort or continue: This is formalized by having the
adversary send either an abort or continue message to the trusted party. (A semi-honest adversary
never aborts.) In the latter case, the trusted party sends to each honest party Pi its output value yi.
In the former case, the trusted party sends the special symbol ⊥ to each honest party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values
obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALC,Sim(λ, ~x, z, I). Having
defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 3.2. Let λ be the security parameter. Let C be an n-party functionality, and π be an n-party
protocol for n ∈ N. We say that π securely computes C in the presence of malicious (resp., semi-honest)
adversaries if for every PPT real world adversary (resp., semi-honest adversary) A, there exists a PPT ideal
world adversary (resp., semi-honest adversary) Sim such that for any ~x = {xi}i∈[n] ∈ ({0, 1}∗)n, z ∈ {0, 1}∗,
any I ⊂ [n] and for any PPT distinugisher D, we have that

|Pr[D(REALπ,A(λ, ~x, z, I)) = 1]− Pr[D(IDEALC,Sim(λ, ~x, z, I)) = 1]|

is negligible in λ.

Remark 3.3 (Plain Model). We will also consider the setting of two-round MPC and its variants without
the use of CRS (or, where CRS in the above algorithms is set to be ⊥). We refer to such protocols as being
in the plain model.

3.3.1 First Message Succinct Two-Round MPC

We next define the notion of a first message succinct (FMS) two-round MPC protocol. This notion is a
strengthening (in terms of efficiency) of the above described notion of (vanilla) two-round MPC. Informally,
a two-round MPC protocol is first message succinct if the first round messages of all the parties can be
computed without knowledge of the circuit being evaluated on the inputs. This allows parties to compute
their first message independent of the circuit (in particular, independent also of its size) that will be computed
in the second round.

Definition 3.4 (First Message Succinct Two-Round MPC). Let π = (MPC1, MPC2,MPC3) be a two-round
MPC protocol. Protocol π is said to be first message succinct if algorithm MPC1 does not take as input the
circuit C being computed. More specifically, it takes an input of the form (1λ,CRS, i, xi; ri).

Note that a first message succinct two-round MPC satisfies the same correctness and security properties
as the (vanilla) two-round MPC.13

13In particular, for an FMS two-round MPC protocol, its first message is succinct but may not be reusable.
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3.3.2 Reusable Two-Round MPC

We next define the notion of a reusable two-round MPC protocol, which can be seen as a strengthening of
the security of a first message succinct two-round MPC protocol. Informally, reusability requires that the
parties should be able to reuse the same first round message to securely evaluate an unbounded polynomially
number of circuits C1, . . . ,C`, where ` is a polynomial (in λ) that is independent of any other parameter in
the protocol. That is, for each circuit Ci, the parties can just run the second round of the protocol each
time (using exactly the same first round messages) allowing the parties to evaluate the circuit on the same
inputs. Note that each of these circuits can be of size an arbitrary polynomial in λ.

Very roughly, security requires that the transcript of all these executions along with the set of outputs
should not reveal anything more than the inputs of the corrupted parties and the computed outputs.

We again formalize security (and correctness) via the real/ideal world paradigm. Consider n parties
P1, . . . , Pn with inputs x1, . . . , xn respectively. Also, consider an adversary A corrupting a set I ⊂ [n] of
parties.

The real execution. In the real execution, the n-party first message succinct two-round MPC protocol
π = (MPC1,MPC2,MPC3) is executed in the presence of an adversary A. The adversary A takes as input
the security parameter λ and an auxiliary input z. The execution proceeds in two phases:

• Phase I: All the honest parties i /∈ I execute the first round of the protocol by running the algorithm

MPC1 using their respective input xi. They broadcast their first round message msg
(1)
i and preserve

their secret state st
(1)
i . Then the adversary A sends the first round messages on behalf of the corrupted

parties following any arbitrary (polynomial-time computable) strategy (a semi-honest adversary follows
the protocol behavior honestly and runs the algorithm MPC1(·)).

• Phase II (Reusable): The adversary outputs a circuit C, which is provided to all parties.

Next, each honest party computes the algorithm MPC2 using this circuit C (and its secret state st
(1)
i

generated as the output of MPC1 in Phase I). Again, adversary A sends arbitrarily computed (in PPT)
second round messages on behalf of the corrupt parties. The honest parties return the output of MPC3

executed on their secret state and the received second round messages.

The adversary A decides whether to continue the execution of a different computation. If yes, then
the computation returns to the beginning of phase II. In the other case, phase II ends.

The interaction of A in the above protocol π defines a random variable REALπ,A( λ, ~x, z, I) whose distribution
is determined by the coin tosses of the adversary and the honest parties. This random variable contains the
output of the adversary (which may be an arbitrary function of its view) as well as the output recovered by
each honest party.

The ideal execution. In the ideal execution, an ideal world adversary Sim interacts with a trusted party.
The ideal execution proceeds as follows:

1. Send inputs to the trusted party: Each honest party sends its input to the trusted party. Each
corrupt party Pi, (controlled by Sim) may either send its input xi or send some other input of the same
length to the trusted party. Let x′i denote the value sent by party Pi. Note that for a semi-honest
adversary, x′i = xi always.

2. Adversary picks circuit: Sim sends a circuit C to the ideal functionality which is also then forwarded
to the honest parties.

3. Trusted party sends output to the adversary: The trusted party computes C(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

12



4. Adversary instructs trusted party to abort or continue: This is formalized by having the
adversary Sim send either a continue or abort message to the trusted party. (A semi-honest adversary
never aborts.) In the latter case, the trusted party sends to each uncorrupted party Pi its output value
yi. In the former case, the trusted party sends the special symbol ⊥ to each uncorrupted party.

5. Reuse: The adversary decides whether to continue the execution of a different computation. In the
yes case, the ideal world returns to the start of Step 2.

6. Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values
obtained from the trusted party.

Sim’s interaction with the trusted party defines a random variable IDEALSim(λ, ~x, z, I). Having defined the
real and the ideal worlds, we now proceed to define our notion of security.

Definition 3.5. Let λ be the security parameter. Let π be an n-party two-round protocol, for n ∈ N. We say
that π is a reusable two-round MPC protocol in the presence of malicious (resp., semi-honest) adversaries if
for every PPT real world adversary (resp., semi-honest adversary) A there exists a PPT ideal world adversary
(resp., semi-honest adversary) Sim such that for any ~x = {xi}i∈[n] ∈ ({0, 1}∗)n, any z ∈ {0, 1}∗, any I ⊂ [n]
and any PPT distinguisher D, we have that

|Pr[D(REALπ,A(λ, ~x, z, I)) = 1]− Pr[D(IDEALSim(λ, ~x, z, I)) = 1]|

is negligible in λ.

Remark 3.6 (Adaptivity of the circuits chosen.). Note that unlike the vanilla two-round MPC protocol (or
even the first message succinct two-round MPC protocol), reusable two-round MPC allows the adversary to
choose the circuits that the honest parties compute on adaptively based on its previous interactions with the
honest parties.

4 Step 1: Constructing Sharing-Compact HSS from HSS

In this section, we start by recalling the notion of homomorphic secret sharing (HSS) and defining our
notion of sharing-compact HSS. We use the standard notion of HSS, which supports two parties and features
additive reconstruction. In contrast, our notion of sharing compactness is for the multi-party case, but does
not come with the typical bells and whistles of a standard HSS scheme — specifically, it features compactness
only of the sharing algorithm and without additive reconstruction. For brevity, we refer to this notion of
HSS as sharing-compact HSS (scHSS). In what follows, we give a construction of sharing-compact HSS and
prove its security.

4.1 Homomorphic Secret Sharing

We start with a definition of HSS [BGI16]. The HSS.Share and HSS.Eval functionalities, along with the
notion of semantic security, are standard, and taken from the paper [BGI16] introducing the primitive. The
multi-evaluation correctness property we use is shown to be achievable in [BGI17]. Finally, we use the
notion of error simulation from [BGI17], but we are slightly more explicit in the definition. In particular,

we split HSS.Share into two parts HSS.Share(enc) and HSS.Share(PRF), and define an additional functionality
HSS.CheckEval, which in [BGI17] was essentially defined to be an auxiliary output of HSS.Eval.

The following definition was shown in [BGI16, BGI17] to be achievable for program class P that contains
circuits in NC1, under the DDH assumption.

Definition 4.1 (Homomorphic Secret Sharing [BGI16, BGI17]). A (2-party, 1−1/poly correct, additive over
Z2, multi-evaluation) Homomorphic Secret Sharing scheme for a class of programs P consists of algorithms
(HSS.Share,HSS.Eval) with the following syntax:
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• HSS.Share(1λ, x) : On input the security parameter λ and x ∈ {0, 1}n, the sharing algorithm outputs a
pair of shares (sh0, sh1).

• HSS.Eval(id, b, sh, P, δ) : On input identifier id, party index b ∈ {0, 1}, share sh, program P ∈ P with n
input bits and m output bits, and an error bound δ > 0, the evaluation algorithm outputs yb ∈ {0, 1}m,
constituting party b’s part of the share of an output y ∈ {0, 1}m.

The algorithm HSS.Share is PPT, while HSS.Eval runs in time polynomial in its input and 1/δ. Now we
continue with the correctness and security properties of HSS.Share and HSS.Eval. Semantic security is stan-
dard, and multi-evaluation correctness states that errors in evaluation are computationally indistinguishable
from being independent events, over the randomness of HSS.Share.

• Multi-evaluation correctness: For every polynomial m, s, and nonuniform polynomial time distin-
guisher A, there is a negligible function ν such that the following holds. For every positive integer λ,
input x ∈ {0, 1}n, programs P1, . . . , Pm(λ) ∈ P of size s(λ) with input length n, error bound δ > 0, and

distinct identifiers id1, . . . , idm(λ) ∈ {0, 1}λ, there are error probabilities p1, . . . , pm(λ) ≤ δ such that the
advantage of A in distinguishing between the outputs of the following two experiments is at most ν(λ):

– Experiment 1: Output a bit sequence τ1, . . . , τm(λ) where Pr[τi = 1] = pi and the τi are inde-
pendent.

– Experiment 2: (sh0, sh1) ← Share(1λ, x). For i = 1, . . . ,m(λ), and b ∈ {0, 1}, let yib ←
Eval(idi, b, shb, Pi, δ), output 0 if yi0 ⊕ yi1 = Pi(x) and 1 otherwise.

• Semantic security: For any b ∈ {0, 1}, pair of polynomial-length input sequences v1, v2, . . . and
w1, w2, . . . such that |vi| = |wi|, and non-uniform polynomial time distinguisher A, there is a negligible
function ν such that for every positive integer λ, |Pr[A(V bλ ) = 1]− Pr[A(W b

λ) = 1]| ≤ ν(λ), where V bλ
(resp. W b

λ) is obtained by letting (sh0, sh1)← HSS.Share(1λ, vλ) (resp. (sh0, sh1)← HSS.Share(1λ, wλ))
and outputting shb.

Now we discuss the error simulation. First, HSS.Share may be split into two algorithms HSS.Share(enc)

and HSS.Share(PRF), where HSS.Share(enc)(1λ, x) outputs (ŝh0, ŝh1) and HSS.Share(PRF)(1λ) outputs κ, and

sh0 := (ŝh0, κ), sh1 := (ŝh1, κ). Moreover, one can define the following algorithm HSS.CheckEval.14

• HSS.CheckEval(id, b, sh, P, δ) : On input identifier id, party index b ∈ {0, 1}, share sh, program P ∈ P
with n input bits, and an error bound δ > 0, the check evaluation algorithm outputs a bit c ∈ {0, 1}.

This algorithms satisfies the following properties. In words, error simulation states that if HSS.CheckEval
outputs 1 on some party b’s share shb and program P , then party b is guaranteed that the HSS reconstruction
will be correct. Correctness states that HSS.CheckEval will output 1 with high probability, and moreover that
this probability depends only on the randomness of HSS.Share(PRF).

• Error simulation: For any positive integer λ, input x ∈ {0, 1}n, bit b ∈ {0, 1}, program P ∈ P with
input length n, error bound δ > 0, and identifier id ∈ {0, 1}λ,

Pr

 HSS.CheckEval(id, b, shb, P, δ) = 1
∧ y0 ⊕ y1 6= P (x)

:
(sh0, sh1)← HSS.Share(1λ, x)
y0 ← HSS.Eval(id, 0, sh0, P, δ)
y1 ← HSS.Eval(id, 1, sh1, P, δ)

 = 0.

• Correctness of HSS.CheckEval: There is a negligible ν such that for any positive integer λ, input
x ∈ {0, 1}n, bit b ∈ {0, 1}, program P ∈ P with input length n, error bound δ > 0, identifier id ∈ {0, 1}λ,

and pair of shares (ŝh0, ŝh1) in the support of HSS.Share(enc)(1λ, x),

Pr
κ←HSS.Share(PRF)(1λ)

[HSS.CheckEval(id, b, (ŝhb, κ), P, δ) = 1] ≥ 1− δ − ν(λ).

14In [BGI17], this algorithm was defined as part of HSS.Eval itself and so was not given a separate name.
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4.2 Sharing-Compact Homomorphic Secret Sharing

We continue with our definition of sharing-compact HSS, which differs from HSS in various ways:

• we support sharing among an arbitrary number of parties (in particular, more than 2);

• we have a simulation-based security definition;

• we support a notion of robustness;

• we have negligible correctness error;

• our reconstruction procedure is not necessarily additive;

• we require security for only one evaluation.

We do preserve the property that the sharing algorithm, and in particular, the size of the shares, is
independent of the size of the program to be computed.

Definition 4.2 (Sharing-compact Homomorphic Secret Sharing (scHSS)). A scHSS scheme for a class of
programs P is a triple of PPT algorithms (Share,Eval,Dec) with the following syntax:

Share(1λ, n, x) Takes as input a security parameter 1λ, a number of parties n, and a secret x ∈ {0, 1}∗, and
outputs shares (x1, . . . , xn).

Eval(j, P, xj): Takes as input a party index j ∈ [n], a program P , and share xj, and outputs a string
yj ∈ {0, 1}∗.

Dec(y1, . . . , yn): Takes as input all evaluated shares (y1, . . . , yn) and outputs y ∈ {0, 1}∗.

The algorithms satisfy the following properties.

• Correctness: For any program P ∈ P and secret x,

Pr

[
Dec(y1, . . . , yn) = P (x) :

(x1, . . . , xn)← Share(1λ, x)
∀j, yj ← Eval(j, P, xj)

]
= 1− negl(λ).

• Robustness: For any non-empty set of honest parties H ⊆ [n], program P ∈ P, secret x, and PPT
adversary A,

Pr

 Dec(y1, . . . , yn) ∈ {P (x),⊥} :
(x1, . . . , xn)← Share(1λ, x)
∀j ∈ H, yj ← Eval(j, P, xj)

{yj}j∈[n]\H ← A({xj}j∈[n]\H , {yj}j∈H)

 = 1− negl(λ).

• Security: There exists a PPT simulator S such that for any program P ∈ P, any secret x, and any
set of honest parties H ⊆ [n] we have that:{

{xi}i∈[n]\H , {yi}i∈H :
(x1, . . . , xn)← Share(1λ, n, x),
∀i ∈ H, yi ← Eval(i, P, xi)

}
c
≈
{
S(1λ, P, n,H, P (x))

}
.

4.3 Conforming Protocol

In our construction, we need a modification of the notion of conforming MPC protocol from [GS18]. Consider
an MPC protocol Φ between parties P1, . . . , Pn. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of
party Pi. We consider any random coins used by a party to be part of its input (we can assume each party
uses at most λ bits of randomness, and expands as necessary with a PRF). A conforming protocol Φ is defined
by functions inpgen, gen, post, and computation steps or what we call actions φ1, · · ·φT . The protocol Φ
proceeds in three stages: the input sharing stage, the computation stage, and the output stage. For those
familiar with the notion of conforming protocol from [GS18, GIS18], we outline the differences here.
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• We split their function pre into (inpgen, gen), where inpgen is universal, in the sense that it only depends
on the input length m (and in particular, not the function to be computed).

• We explicitly maintain a single public global state st that is updated one bit at a time. Each party’s
private state is maintained implicitly via their random coins si chosen during the input sharing phase.

• We require the transcript (which is fixed by the value of st at the end of the protocol) to be publicly
decodable.

Next, we give our description of a conforming protocol.

• Input sharing phase: Each party i chooses random coins si ← {0, 1}λ, computes (wi, ri) :=
inpgen(xi, si) where wi = xi ⊕ ri, and broadcasts wi. Looking ahead to the proof of Lemma 4.3,
we will take si to be the seed of a PRF(si, ·) : {0, 1}∗ → {0, 1}.

• Computation phase: Let T be a parameter that depends on the circuit C to be computed. Each
party sets the global public state

st := (w1‖0T/n‖w2‖0T/n‖ · · · ‖wn‖0T/n),

and generates their secret state vi := gen(i, si).
15 Let ` be the length of st or vi (st and vi will be of

the same length). We will also use the notation that for index f ∈ [`], vi,f := genf (i, si).

For each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].

2. Party Pi computes one NAND gate as

γt = NAND(stf ⊕ vi,f , stg ⊕ vi,g)⊕ vi,h

and broadcasts γt to every other party.

3. Every party updates sth to the bit value γt received from Pi.

We require that for all t, t′ ∈ [T ] such that t 6= t′, we have that if φt = (·, ·, ·, h) and φt′ = (·, ·, ·, h′)
then h 6= h′ (this ensures that no state bit is ever overwritten).

• Output phase: Denote by Γ = (γ1, . . . , γT ) the transcipt of the protocol, and output post(Γ).

Lemma 4.3. For any input length m, there exists a function inpgen such that any n party MPC pro-
tocol Π (where each party has an input of length at most m) can be written as a conforming protocol
Φ = (inpgen, gen, post, {φt}t∈T ) while inheriting the correctness and the security of the original protocol.

The proof of this lemma is very similar to the proof provided in [GS18], but since we have tweaked the
notion of a conforming protocol in multiple ways, we give the modified proof below.

Proof. First we define the universal function inpgen, which takes as input an x ∈ {0, 1}m and random coins
s ∈ {0, 1}λ. It interprets s as the seed of a PRF PRF(s, ·) : {0, 1}∗ → {0, 1}. Then it computes the string
r ∈ {0, 1}m, where rj := PRF(s, (j, inp)) (inp is a special symbol), and outputs (w, r) := (r ⊕ x, r).

Now, let Π be any n party MPC protocol for computing a circuit C, where the functionality is defined
so that everybody receives the same output. Without loss of generality we assume that in each round of
Π, one party broadcasts one bit that is obtained by computing a circuit on its input and the messages it
has received so far from other parties. Note that this restriction can be easily enforced by increasing the
round complexity of the protocol to the communication complexity of the protocol. To achieve a publicly
decodable transcript, simply require that the first party to receive the output broadcast it in the next round.

15Technically, gen should also take the parameters n, T as input, but we leave these implicit.
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Let the round complexity (and also communication complexity) of Π be p. In every round r ∈ [p] of Π, one
of the parties computes a circuit and broadcasts the output bit. Let the circuit computed in round r be Cr.
Without loss of generality we assume that (i) there exists q such that for each r ∈ [p], we have that q = |Cr|,
(ii) each Cr is composed of just NAND gates with fan-in two, and (iii) each party sends an equal number
of bits in the execution of Π. All three of these conditions can be met by adding dummy gates and dummy
rounds of interaction. We are now ready to describe our transformed conforming protocol Φ. The protocol
Φ will have T = pq rounds.

Recall that the global state st before the beginning of the computation phase will be set to

st := (w1‖0T/n‖w2‖0T/n‖ · · · ‖wn‖0T/n).

Let ` = nm+T be the length of st. We now describe the function gen(i, si), which for party i will generate
an `-bit string vi used to mask the values of its intermediate computations. It will only have potentially
non-zero values at locations (i− 1)`/n+ 1, . . . , i`/n. First, it sets vi,(i−1)`/n+1, . . . , vi,(i−1)`/n+m to the value

ri computed during inpgen. Next, it computes the string ui ∈ {0, 1}T/n as follows. For each j ∈ [T/n] that
is not a multiple of q, it sets uj := PRF(si, j). For each j ∈ [T/n] that is a multiple of q, it sets uj := 0.
Finally, it sets vi,(i−1)`/n+m+1, . . . , vi,i`/n to ui.

We are now ready to describe the actions φ1, · · ·φT . For each r ∈ [p], round r in Π is expanded into q
actions in Φ — namely, actions {φt}t where t ∈ {(r−1)q+1, · · · , rq}. Let Pi be the party that computes the
circuit Cr and broadcasts the output bit in round r of Π. We now describe the φt for t ∈ {(r−1)q+1, · · · , rq}.
For each t, we set φt = (i, f, g, h) where f and g are the locations in st that the (t− (r − 1)q)’th gate of Cr
is computed on. Moreover, we set h to be the first location in st among the locations (i− 1)`/n+m+ 1 to
i`/n that has previously not been assigned to an action. (Note that this is pq/n locations which is exactly
equal to the number of bits computed and broadcast by Pi.) Recall from before that on the execution of
φt, party Pi sets γt := NAND(st ⊕ vi,f , st ⊕ vi,g) ⊕ vi,h and broadcasts γt to all parties. Then, sth is set to
be the value of γt. Note that each value st ⊕ vi,f is either a bit of party i’s input, a bit of i’s intermediate
computation, or a bit of the public transcript.

Now we need to argue that Φ preserves the correctness and security properties of Π. Observe that Φ is
essentially the same as the protocol Π except that in Φ some additional bits are sent. Specifically, in addition
to the messages that were sent in Π, parties computing Φ send a one-time pad of their inputs, plus q − 1
additional bits per every bit sent in Π. Crucially, the messages sent in Π are sent in the clear in Φ, due to
the fact that vi,(i−1)`/n+m+j = 0 for j a multiple of q. Thus, no information is dropped in Φ, so correctness
follows. Finally, note that each of the extra bits sent in Φ is masked by a bit generated with a secret PRF
key. This ensures that, assuming PRF security, Φ achieves the same security properties as Π.

4.4 Our Construction

We describe a sharing-compact HSS scheme for sharing an input x ∈ {0, 1}m among n parties.

Ingredients: We use the following ingredients in our construction.

• An nλ-party conforming MPC protocol Φ (for computing an arbitrary functionality) with functions
inpgen, gen, and post.

• A homomorphic secret sharing scheme (HSS.Share,HSS.Eval) supporting evaluations of circuits in NC1.
To ease notation in the description of our protocol, we will generally leave the party index, identifier,
and error parameter δ implicit. The party index will be clear from context, the identifier can be the
description of the function to be evaluated, and the error parameter will be fixed once and for all by
the parties.

• A garbling scheme for circuits (Garble,GEval).

• A robust private-key encryption scheme (rob.enc, rob.dec) as defined in Section 3.2.
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• A PRF that can be computed in NC1.

Theorem 4.4. Assuming a semi-honest MPC protocol (with any number of rounds) that can compute any
polynomial-size functionality, a homomorphic secret sharing scheme supporting evaluations of circuits in
NC1, and a PRF that can be computed in NC1, there exists a sharing-compact homomorphic secret sharing
scheme supporting the evaluation of any polynomial-size circuit.

Notation: As explained in Section 2, our construction at a high level follows the template of [GS18] (which
we refer to as the GS protocol). In the evaluation step of our construction, each party generates a sequence
of garbled circuits, one for each action step of the conforming protocol. For each of these action steps,
the garbled circuit of one party speaks and the garbled circuits of the rest listen. We start by describing
three circuits that aid this process: (i) circuit F (described in Figure 1), which includes the HSS evaluations
enabling the speaking/listening mechanism, (ii) circuit P∗ (described in Figure 2) garbled by the speaking
party, and (iii) circuit P (described in Figure 3) garbled by the listening party.

(i) Circuit F. The speaking garbled circuit and the listening garbled circuit need shared secrets for commu-
nication. Using HSS, F provides an interface for setting up these shared secrets. More specifically, consider
a speaking party j∗ and a listening party j 6= j∗ during action t. In our construction, the parties j, j∗ will be
provided with HSS shares of their secrets {sj , sj∗}, {kj , kj∗}. Note that the order of sj and sj∗ in {sj , sj∗}
and the order of kj and kj∗ in {kj , kj∗} is irrelevant. All of the secret information used by party j∗ in
computation of its conforming protocol messages is based on sj∗ . Also, during action t, party j’s garbled
circuit will need to output encrypted labels for its next garbled circuit. Secret kj is used to generate any
keys needed for encrypting garbled circuit labels. Concretely, in the circuit G (used inside F), observe that
sj∗ is used to perform the computation of γ, and kj is used to compute the “difference value”, explained
below.

F[t, α, β, p](sh)

Input: sh.
Hardcoded: The action number t ∈ [T ], bits α, β, and index p ∈ [λ].

1. Let φt = (j∗, f, g, h).

2. Let G[t, α, β, p, f, g, h] be the circuit that on input {sj , sj∗}, {kj , kj∗}:

(a) Set γ := NAND
(
α⊕ genf (j∗, sj∗), β ⊕ geng(j

∗, sj∗)
)
⊕ genh(j∗, sj∗).

(b) If γ = 0, output 0λ, else output PRF (kj , (t, α, β, p)).

Output: HSS.Eval(sh,G[t, α, β, p, f, g, h]).

Figure 1: The Circuit F.

Both party j and party j∗ can compute F on their individual share of {sj , sj∗}, {kj , kj∗}. They either
obtain the same output value (in the case that party j∗’s message bit for the tth action is 0) or they obtain
outputs that differ by a pseudorandom difference value known only to party j (in the case that party j∗’s
message bit for the tth action is 1). This difference value is equal to PRF(kj , (t, α, β, p)), where t, α, β and
p denote various parameters of the protocol.

Next, we’ll see how the circuit F enables communication between garbled circuits. In our construction
the speaking party will just output the evaluation of F on its share (for appropriate choices of t, α, β and
p). On the other hand, party j will encrypt the zero-label for its next garbled circuit using the output of the
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evaluation of F on its share (for appropriate choices of t, α, β and p) and will encrypt the one-label for its
next garbled circuit using the exclusive or of this value and the difference value. Observe that the output of
the speaking circuit will be exactly the key used to encrypt the label corresponding to the bit sent by j∗ in
the tth action.

Finally, we need to ensure that each circuit G evaluated under the HSS can be computed in NC1.
Observe that G essentially only computes genf (j∗, sj∗) evaluations and PRF(kj , ·) evaluations. The proof
of Lemma 4.3 shows that genf (j∗, sj∗) may be computed with a single PRF evaluation using key sj∗ . Thus,
if we take each sj , kj to be keys for a PRF computable in NC1, it follows that G will be in NC1.

(ii) The Speaking Circuit P∗. The construction of the speaking circuit is quite simple. The speaking
circuit for the party j∗ corresponding to action t computes the updated global state and the bit γ sent
out in action t. However, it must somehow communicate γ to the garbled circuit of each j 6= j∗. This
effect is achieved by having P∗ return the output of F (on relevant inputs as explained above). However,
technical requirements in the security proof preclude party j∗ from hard-coding its HSS share sh into P∗,
and having P∗ compute on this share. Thus, we instead hard-code the outputs of F on all relevant inputs.

More specifically, we hard-code
{
z

(α,β)
j,p

}
α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

, where z
(α,β)
j,p is obtained as the output F[t, α, β, p](sh).

P∗

j∗,{z(α,β)j,p

}
α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

, (vf , vg, vh), lab

 (st)

Input: st.

Hardcoded: A (virtual) party index j∗, a set of strings
{
z
(α,β)
j,p

}
α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

, three bits (vf , vg, vh), and a set of

labels lab = {labk,0, labk,1}k∈[`].

1. Compute γ := NAND(stf ⊕ vf , stg ⊕ vg)⊕ vh.

2. Set sth := γ.

Output:

(
γ,
{
z
(stf ,stg)

j,p

}
j∈[n′]\{j∗},

p∈[λ]
, {labk,stk}k∈[`]

)
.

Figure 2: The Speaking Circuit P∗.

(iii) The Listening Circuit P. The construction of the listening circuit mirrors that of the speaking circuit.
The listening circuit outputs the labels for all wires except the hth wire that it is listening on. For the hth

wire, the listening circuit outputs encryptions of the two labels under two distinct keys, where one of them
will be output by the speaking circuit during this action. As in the case of speaking circuits, for technical
reasons in the proof, we cannot have the listening circuit compute these value but must instead hard-code

them. More specifically, we hard code
{
z

(α,β)
p,0 , z

(α,β)
p,1

}
α,β∈{0,1},
p∈[λ]

where z
(α,β)
p,0 is obtained as F[t, α, β, p](sh)

and z
(α,β)
p,1 is obtained as z

(α,β)
p,0 ⊕ PRF (kj , (t, α, β, p)).

The Construction Itself: The foundation of a sharing-compact HSS for evaluating circuit C is a con-
forming protocol Φ (as described earlier in Section 4.3) computing the circuit C. Very roughly (and the
details will become clear as we go along), in our construction, the Share algorithm will generate secret shares
of the input x for the n parties. Additionally, the share algorithm generates the first round GS MPC mes-
sages on behalf of each party. The Eval algorithm will roughly correspond to the generation of the second
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P

[
j,
{
z

(α,β)
p,0 , z

(α,β)
p,1

}
α,β∈{0,1},
p∈[λ]

, (f, g, h), lab

]
(st)

Input: st.

Hardcoded. A (virtual) party index j, set of strings
{
z

(α,β)
p,0 , z

(α,β)
p,1

}
α,β∈{0,1},
p∈[λ]

, three indices (f, g, h),

and a set of labels lab = {labk,0, labk,1}k∈[`].

Output:

({
rob.enc

(
z

(stf ,stg)
p,b , labh,b

)
,
}
b∈{0,1},p∈[λ]

, {labk,stk}k∈[`]\{h}

)
.

Figure 3: The Listening Circuit P.

round messages of the GS MPC protocol. Finally, the Dec algorithm will perform the reconstruction, which
corresponds to the output computation step in GS after all the second round messages have been sent out.

Our construction will differ from the GS protocol in the sense that the first round MPC messages generated
by the sharing algorithm are independent of the circuit to be computed (and its size).

The Sharing Algorithm: Because of the inverse polynomial error probability in HSS (hinted at in Sec-
tion 2 and explained in the proof), we need to use an n′ = nλ (virtual) party protocol rather than just an n
party protocol. Each of the n parties actually messages for λ virtual parties. Barring this technicality and
given our understanding of what needs to be shared to enable the communication between garbled circuits,
the sharing is quite natural.

On input x, the share algorithm generates a secret sharing of x (along with the randomness needed for the
execution of Φ) to obtain a share xj for each virtual party j ∈ [n′]. In addition, two PRF keys sj , kj for each
virtual party j ∈ [n′] are sampled. Now, the heart of the sharing algorithm is the generation of HSS shares of
{sj , sj′}, {kj , kj′} for every pair of j 6= j′ ∈ [n′], which are then provided to parties j and j′. Specifically, the

algorithm computes shares sh
{j,j′}
j and sh

{j,j′}
j′ as the output of HSS.Share

(
1λ, ({sj , sj′}, {kj , kj′})

)
. Note

that we generate only one set of shares for each j, j′ and the ordering of j and j′ is irrelevant (we use the
set notation to signify this).

Share(1λ, n, x) :

1. Let n′ = nλ, m′ = m + λ, and x1 := (z1‖ρ1) ∈ {0, 1}m′ , . . . , xn′ := (zn′‖ρn′) ∈ {0, 1}m
′
, where

z1, . . . , zn′ is an additive secret sharing of x, and each ρi ∈ {0, 1}λ is uniformly random. The ρi are
the random coins used by each party in the MPC protocol Π underlying the conforming protocol Φ.

2. For each j ∈ [n′]:

(a) Draw PRF keys sj , kj ← {0, 1}λ, so that PRF(sj , ·) : {0, 1}∗ → {0, 1} and PRF(kj , ·) : {0, 1}∗ →
{0, 1}λ, where both of these pseudorandom functions can be computed by NC1 circuits.

(b) Compute (wj , rj) := inpgen(xj , sj).

3. For each j 6= j′ ∈ [n′], compute
(
sh
{j,j′}
j , sh

{j,j′}
j′

)
← HSS.Share

(
1λ, ({sj , sj′}, {kj , kj′})

)
.

4. Let shj =

(
xj , sj , kj ,

{
sh
{j,j′}
j

}
j′∈[n′]\{j}

)
.

5. For each i ∈ [n], output party i’s share shi :=
(
{wj}j∈[n′],

{
shj
}
j∈[(i−1)λ+1,··· ,iλ]

)
.
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The Evaluation Algorithm: Observe that the sharing algorithm is independent of the conforming pro-
tocol Φ (and the circuit C to be computed), thus achieving sharing compactness. This is due to the fact that
the function inpgen is universal for conforming protocols Φ (as explained in Section 4.3).

In contrast, the evaluation algorithm will emulate the entire protocol Φ. First, it will set the error
parameter δ for HSS, depending on the protocol Φ. Then, each virtual party j (where each party controls λ
virtual parties) generates a garbled circuit for each action of the conforming protocol. For each action, the
speaking party uses the speaking circuit P∗ and the rest of the parties use the listening circuit P.

Eval(i,C, shi):

1. Parse shi as
(
{wj}j∈[n′],

{
shj
}
j∈[(i−1)λ+1,··· ,iλ]

)
, let T be a parameter16 of the conforming protocol Φ

computing C, and set the HSS error parameter δ = 1/8λ2T .

2. Set st := (w1‖0T/n
′‖w2‖0T/n

′‖ · · · ‖wn′‖0T/n
′
).

3. For each j ∈ [(i− 1)λ+ 1, · · · , iλ], run the following procedure.

VirtualEval(j,C, shj):

(a) Parse shj as

(
xj , sj , kj ,

{
sh
{j,j′}
j

}
j′∈[n′]\{j}

)
.

(b) Compute vj := gen(j, sj).

(c) Set lab
j,T+1

:=
{
labj,T+1

k,0 , labj,T+1
k,1

}
k∈[`]

where for each k ∈ [`] and b ∈ {0, 1}, labj,T+1
k,b := 0λ.

(d) For each t from T down to 1:

i. Parse φt as (j∗, f, g, h).

ii. If j = j∗, compute (where P∗ is described in Figure 2 and F is described in Figure 1)

arg1 :=
{
F[t, α, β, p]

(
sh
{j∗,j}
j∗

)}
j∈[n′]\{j∗},
α,β∈{0,1},
p∈[λ]

arg2 := (vj∗,f , vj∗,g, vj∗,h)(
P̃j
∗,t, lab

j∗,t
)
← Garble

(
1λ,P∗

[
j∗, arg1, arg2, lab

j∗,t+1
])
.

iii. If j 6= j∗, compute (where P is described in Figure 3 and F is described in Figure 1)

arg1 :=

 F[t, α, β, p]
(
sh
{j∗,j}
j

)
,

F[t, α, β, p]
(
sh
{j∗,j}
j

)
⊕ PRF (kj , (t, α, β, p))


α,β∈{0,1},
p∈[λ]

arg2 := (f, g, h)(
P̃j,t, lab

j,t
)
← Garble

(
1λ,P

[
j, arg1, arg2, lab

j,t+1
])
.

(e) Set yj :=

({
P̃j,t
}
t∈[T ]

,
{
labj,1k,stk

}
k∈[`]

)
. Recall st was defined in step 2.

4. Output yi :=
{
yj
}
j∈[(i−1)λ+1,··· ,iλ]

.

16Recall that T is the number of actions to be taken.
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The Decoding Algorithm: The decoding algorithm is quite natural given what we have seen so far.
Garbled circuits from each virtual party are executed sequentially, communicating among themselves. This
results in an evaluation of the conforming protocol Φ and the final output can be computed using the post
algorithm.

Dec(y1, . . . , yn):

1. For each i ∈ [n], parse yi as

{({
P̃j,t
}
t∈[T ]

,
{
labj,1k

}
k∈[`]

)}
j∈[(i−1)λ+1,··· ,iλ]

.

2. For each j ∈ [n′], let l̃ab
j,1

:=
{
labj,1k

}
k∈[`]

.

3. For each t from 1 to T ,

(a) Parse φt as (j∗, f, g, h).

(b) Compute

(
γt,
{
z∗j,p
}
j∈[n′]\{j∗},

p∈[λ]

, l̃ab
j∗,t+1

)
:= GEval

(
P̃j
∗,t, l̃ab

j∗,t
)

.

(c) For each j 6= j∗:

i. Compute

(
{elabp,0, elabp,1}p∈[λ] ,

{
labj,t+1

k

}
k∈[`]\{h}

)
:= GEval

(
P̃j,t, l̃ab

j,t)
.

ii. If there exists p ∈ [λ], such that rob.dec
(
z∗j,p, elabp,γt

)
6= ⊥, then set the result to labj,t+1

h . If
all λ decryptions give ⊥, then output ⊥ and abort.

iii. Set l̃ab
j,t+1

:=
{
labj,t+1

k

}
k∈[`]

.

4. Set Γ = (γ1, . . . , γT ) and output post(Γ).

4.5 Correctness

We begin by introducing some notation. Recall that each share shi allows each party to construct the same
shared initial global state st := (w1‖0T/n

′‖w2‖0T/n
′‖ · · · ‖wn′‖0T/n

′
). Then, if the conforming protocol is

followed correctly, each action φt should update st in one location, writing a single bit γt where there was
previously a zero. We define st(1) := st, and let st(t) be the updated global state directly before action t.
Thus st(T+1) denotes the final global state. Note that in the correct execution of the conforming protocol,
for each φt = (j∗, f, g, h), γt = NAND(st(t) ⊕ vj∗,f , st(t) ⊕ vj∗,g)⊕ vj∗,h.

Correctness will follow by showing that during Dec, each party’s t’th garbled circuit is evaluated on
st(t). To see why this suffices, note that if this were the case, then for each φt = (j∗, f, g, h), party j∗’s t’th
garbled circuit would output the correct γt = NAND(st(t) ⊕ vj∗,f , st(t) ⊕ vj∗,g) ⊕ vj∗,h, by definition of the
program P∗. Then the Γ = (γ1, . . . , γT ) computed during Dec would correspond to the correct transcript of
the conforming protocol, and post(Γ) would give the correct output.

We can show the above claim by induction. The base case is clear since each party constructs the same
st = st(1) during step 2 of Eval, and then releases the appropriate garbled labels for its first garbled circuit
in step 3.(e) of Eval. Now assume the claim holds through action t − 1. Let φt = (j∗, f, g, h), and consider
one “listening” party j 6= j∗ (the following argument may be repeated for each j 6= j∗).

We know that the input to j∗’s t’th garbled circuit will be st(t). By definition of P∗, the output of j∗’s
garbled circuit includes the labels for j’s t + 1’st garbled circuit corresponding to input st(t+1). Moreover,
the output also includes {

z
(st

(t)
f ,st(t)g )

j,p

}
p∈[λ]

:=
{
z∗p
}
p∈[λ]

,
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where each string z∗p is an HSS share of G[t, st
(t)
f , st

(t)
g , p, f, g, h] applied to the shared secret {sj , sj∗} , {kj , kj∗}.

We also know that the input to party j’s t’th garbled circuit is st(t). By definition of P, the output of
j’s garbled circuit includes all the labels for j’s t+ 1’st garbled circuit corresponding to input st(t+1), except
the label labj,t+1

h,γt
. Moreover, the output also includes

{
rob.enc

(
z

(stf ,stg)
p,0 , labj,t+1

h,0

)
, rob.enc

(
z

(stf ,stg)
p,1 , labj,t+1

h,1

)}
p∈[λ]

=
{
rob.enc

(
z

(stf ,stg)
p,0 , labj,t+1

h,0

)
, rob.enc

(
z

(stf ,stg)
p,0 ⊕ PRF

(
kj , (t, st

(t)
f , st(t)g , p)

)
, labj,t+1

h,1

)}
p∈[λ]

:=
{
rob.enc

(
zp, lab

j,t+1
h,0

)
, rob.enc

(
zp ⊕ PRF

(
kj , (t, st

(t)
f , st(t)g , p)

)
, labj,t+1

h,1

)}
p∈[λ]

:= {elabp,0, elabp,1}p∈[λ] ,

where each zp is the other HSS share of G[t, st
(t)
f , st

(t)
g , p, f, g, h] applied to {sj , sj∗} , {kj , kj∗}.

Now it suffices to show that party j will recover labj,t+1
h,γt

in step 3.(c).(ii) of Dec. First note that the
γt computed within the program F is correct, since, for any f ∈ [`], vj∗,f = genf (j∗, sj∗). Now assume
for the moment that HSS evaluation is perfectly correct. Then by definition of F, in the case that γt = 0,
for any p ∈ [λ] we have that z∗p ⊕ zp = 0λ, meaning that z∗p = zp. Otherwise, if γt = 1, we have that

z∗p ⊕ zp = PRF
(
kj , (t, st

(t)
f , st

(t)
g , p)

)
, meaning that z∗p = zp ⊕ PRF

(
kj , (t, st

(t)
f , st

(t)
g , p)

)
. Thus, for either

value of γt, and any p ∈ [λ], Dec(z∗p , elabp,γt) = labj,t+1
h,γt

.
Finally, we must deal with the fact that HSS evaluation can fail with probability 1/δ. We appeal to

the multi-evaluation correctness of HSS (see Definition 4.1), which implies that any event that occurs with
negligible probability when assuming errors in multiple evaluations are truly independent, will also occur
with negligible probability in the real execution of multiple evaluations. Thus we show that correctness
holds with overwhelming probability, when assuming HSS evaluation errors occur independently and with
probability at most 1/δ = 1/8λ2T . The probability that all of the λ decryptions in step 3.(c).(ii) fail is at
most (1/δ)λ = negl(λ). Since this step is computed Tn′ = poly(λ) times, the overall probability of failure is
negl(λ).

4.6 Security

We begin by introducing some notation. Let j be one of the n′ = nλ virtual parties, and recall that{{
sh
{j′,j}
j′ , sh

{j′,j}
j

}}
j′∈[n′]\{j}

is the set of HSS shares involving j. Note that this set can be written (see Definition 4.1) as{{(
ŝh
{j′,j}
j′ , κ{j

′,j}
)
,

(
ŝh
{j′,j}
j , κ{j

′,j}
)}}

j′∈[n′]\{j}
.

Now, the conforming protocol Φ and circuit C determine the set of actions φt = (j∗, f, g, h), which
determine the entire set of functions G[t, α, β, p, f, g, h] to be computed on the HSS shares involving j. Call
this set Gj , and note that it contains at most 8λT functions. We call virtual party j simulatable if the
following holds:

∀ j′ ∈ [n′] \ {j},G ∈ Gj ,HSS.CheckEval

((
ŝh
{j′,j}
j′ , κ{j

′,j}
)
,G, δ

)
= 1,

where we leave the inputs id, b implicit. In other words, j is simulatable if, from the viewpoint of all parties
except j, it is guaranteed that all HSS evaluations with j will be correct. Note that (see Definition 4.1),

the event that party j is simulatable depends only on the randomness of κ{j
′,j} ← HSS.Share(PRF)(1λ), for

j′ 6= j.

23



4.6.1 The Simulator

Recall that we need to show that there exists a PPT simulator S such that for any n, x,C, and set of honest
parties H ⊆ [n],{

{shi}i∈[n]\H , {yi}i∈H :
(sh1, . . . , shn)← Share(1λ, n, x),

∀i ∈ H, yi ← Eval(i,C, shi)

}
c
≈
{
S(1λ,C, n,H,C(x))

}
.

The construction of our simulator is based on the fact that at least one party is always honest, which means
that at least λ virtual parties will be honest. We argue that at least one of these λ parties will be simulatable
(or, error-free in terms of HSS evaluations from the perspective of all other parties). Our simulator proceeds
by guessing the identity of a simulatable party. If it is the case that no HSS errors will occur on this party’s
shares, then the simulation continues. Otherwise, the entire set of κ{j

′,j} ← HSS.Share(PRF) for each pair of
parties j, j′ is re-sampled. More formally, the simulator S operates as follows, where SimΦ is the simulator
for the underlying conforming protocol Φ.

S(1λ,C, n,H,C(x)) :

1. Let n′ = nλ and let H ′ be the set of virtual honest parties. Pick a uniformly random jSim from H ′.

2. Pick each of {xj}j 6=jSim uniformly at random.

3. Run
(
{sj}j 6=jSim , wjSim ,Γ

)
← SimΦ

(
1λ,C, n′, {xj}j 6=jSim , {jSim},C(x)

)
, where sj are the random coins of

party j, wjSim is the simulated first round message of the “honest” party jSim, and Γ = (γ1, . . . , γT ) is
the simulated transcript corresponding to the computation phase of the conforming protocol.

4. For j 6= jSim, let (wj , rj) := inpgen(j, sj).

5. Generate PRF keys {kj}j 6=jSim , and set sjSim , kjSim = 0λ.

6. For each j 6= j′ ∈ [n′], compute
(
sh
{j,j′}
j , sh

{j,j′}
j′

)
← HSS.Share

(
1λ, ({sj , sj′}, {kj , kj′})

)
.

7. Until jSim is simulatable, re-sample the entire set
{
κ{j,j

′}
}
j,j′

for each j 6= j′, or abort after λ failed

attempts.

8. For j 6= jSim, let shj =

(
xj , sj , kj ,

{
sh
{j,j′}
j

}
j′∈[n′]\{j}

)
.

9. For i ∈ [n] \H, set shi :=
(
{wj}j∈[n′], {shj}j∈[(i−1)λ+1,··· ,iλ]

)
.

10. For j ∈ H ′ \ {jSim}, let yj = VirtualEval(j,C, shj).

11. Set st(T+1) := (w1‖0T/n
′‖w2‖0T/n

′‖ · · · ‖wn′‖0T/n
′
) ⊕ uΓ, where uΓ is defined to be zeros except that

for all t ∈ [T ], (uΓ)h = γh, where h is such that φt = (j∗, f, g, h).

12. Generate yjSim via the following procedure:

(a) Set l̃ab
jSim,T+1

:= {0λ}k∈[`].

(b) For each t from T down to 1:

i. Parse φt as (j∗, f, g, h).

ii. If jSim = j∗,(
P̃jSim,t, l̃ab

jSim,t
)
← GSim

(
1|P∗|, 1`,

(
γt, {zj,p}j∈[n′]\{jSim},

p∈[λ]

, l̃ab
jSim,t+1

))
,

where,
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• If γt = 0,

zj,p := F[t, st
(T+1)
f , st(T+1)

g , p]
(
sh
{jSim,j}
j

)
.

• If γt = 1,

zj,p := F[t, st
(T+1)
f , st(T+1)

g , p]
(
sh
{jSim,j}
j

)
⊕ PRF

(
kj , (t, st

(T+1)
f , st(T+1)

g , p)
)
.

iii. If jSim 6= j∗,(
P̃jSim,t, l̃ab

jSim,t
)
← GSim

(
1|P|, 1`,

(
{elabp,0, elabp,1}p∈[λ] , {lab

jSim,t+1
k }k 6=h

))
,

where for up ← {0, 1}λ,

elabp,γt := rob.enc
(
F[t, st

(T+1)
f , st(T+1)

g , p]
(
sh
{j∗,jSim}
j∗

)
, labjSim,t+1

h

)
,

elabp,1−γt := rob.enc
(
up, 0

λ
)
.

(c) Set yjSim :=

({
P̃jSim,t

}
t∈[T ]

, l̃ab
jSim,1

)
.

13. For i ∈ H, set yi := {yj}j∈[(i−1)λ+1,··· ,iλ].

14. Output
{
{shi}i∈[n]\H , {yi}i∈H

}
.

4.6.2 Indistinguishability

Hybrid0: The real distribution.

Hybrid1: Ensure that at least one of the virtual honest parties is simulatable. Let n′ = nλ be the set of
virtual parties in the protocol, and let H ′ be the set of virtual honest parties corresponding to the
real honest parties. First, choose a party jSim uniformly from H ′. Then, re-sample the entire set
{κ{j,j′} ← HSS.Share(PRF)(1λ)}j,j′ for each j 6= j′, until jSim is simulatable, or abort after λ failed
attempts.

Now we show that Hybrid0 and Hybrid1 are indistinguishable. First note that in Hybrid0, each vir-
tual honest party is simulatable with identical probability, and these outcomes are determined only
by the HSS.Share(PRF) computations. In Hybrid1, we are using rejection sampling to generate the

HSS.Share(PRF) outcomes conditioned on the event that jSim is simulatable. Since jSim is chosen uni-
formly from all H ′, the only way that this is distinguishable from Hybrid0 is if there are no simulatable
virtual honest parties in Hybrid0.

Whether or not each party is simulatable is not quite independent, so we’ll have to be slightly careful
about bounding the probability of zero simulatable parties in Hybrid0. Towards this, we say that a set
J of parties is mutually simulatable if ∀ j1 6= j2 ∈ J ,G ∈ Gj1 ∩ Gj2 ,

HSS.CheckEval

((
ŝh
{j1,j2}
j1 , κ{j1,j2}

)
,G, δ

)
= HSS.CheckEval

((
ŝh
{j1,j2}
j2 , κ{j1,j2}

)
,G, δ

)
= 1.

Observe that conditioned on a set J ⊆ [n′] being mutually simulatable, the probability that each
individual j ∈ J is simulatable is completely independent.

Now, note that there are always at least λ virtual honest parties. Consider splitting the λ virtual
honest parties into

√
λ groups of size

√
λ. Since each individual party participates in at most 8λT

HSS computations throughout the protocol, whether a particular group is mutually simulatable de-
pends on at most 8λ1.5T/n′ HSS.CheckEval computations. Since each HSS.CheckEval outputs 0 with
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probability at most δ = 1/8λ2T , a union bound shows that each group is mutually simulatable except
with probability (1/

√
λn′). Each group being mutually simulatable is an independent event, so the

probability of zero mutually simulatable groups is at most (1/
√
λn′)

√
λ = negl(λ). Now, an individual

party is not simulatable with probability at most δ8λT = 1/λ, and within a mutually simulatable
group, these events are independent. Thus, the probability of zero mutually simulatable parties is at

most negl(λ) + (1/λ)
√
λ = negl(λ).

Hybrid2 : Simulate jSim’s HSS evaluations. We alter steps d.(ii) and d.(iii) of VirtualEval(jSim,C, shjSim). In

particular, we compute VirtualEval(jSim,C, shjSim) without computing on any of jSim’s HSS shares. For
each t ∈ [T ], and φt = (j∗, f, g, h):

• If jSim = j∗, then for each j ∈ [n′] \ {j∗}, α, β ∈ {0, 1}, p ∈ [λ], replace F[t, α, β, p]
(
sh
{jSim,j}
jSim

)
with

F[t, α, β, p]
(
sh
{jSim,j}
j

)
if γt = 0

F[t, α, β, p]
(
sh
{jSim,j}
j

)
⊕ PRF(kj , (t, α, β, p)) if γt = 1.

• If jSim 6= j∗, then for each α, β ∈ {0, 1}, p ∈ [λ], replace F[t, α, β, p]
(
sh
{jSim,j∗}
jSim

)
,

F[t, α, β, p]
(
sh
{jSim,j∗}
jSim

)
⊕ PRF (kjSim , (t, α, β, p))


with  F[t, α, β, p]

(
sh
{jSim,j∗}
j∗

)
,

F[t, α, β, p]
(
sh
{jSim,j∗}
j∗

)
⊕ PRF (kjSim , (t, α, β, p))

 if γt = 0

 F[t, α, β, p]
(
sh
{jSim,j∗}
j∗

)
⊕ PRF (kjSim , (t, α, β, p))

F[t, α, β, p]
(
sh
{jSim,j∗}
j∗

)  if γt = 1.

Since all HSS evaluations that include jSim are perfectly correct, it follows from the definition of F that
the above switches are perfectly indistinguishable.

Hybrid3 : Replace kjSim with 0 in all of the HSS secrets involving party jSim. This is indistinguishable from
the previous hybrid by semantic security of HSS. For this step to work, we require that the distribution
at this point can be generated without computing on any of jSim’s HSS shares. For some party j, the
reduction can choose the values (sj , sjSim , kj , kjSim), and will receive from the challenger j’s share (with
jSim) of either (sj , sjSim , kj , kjSim) or (sj , sjSim , kj , 0). It can use this information to generate the rest of
distribution. Also note that the re-sampling procedure described in Hybrid1 does not rely on jSim’s
shares. Thus, the entire distribution can be generated without any of jSim’s HSS shares.

Hybrid4 : Replace all values PRF (kjSim , (t, α, β, p)) with a uniformly random string. This is indistiguishable

from the previous hybrid by security of the PRF. Now observe that in step (d).(iii) of VirtualEval, for
each t = φ(j∗, f, g, h), whenever jSim 6= j∗, we can write the second hard-coded argument to P as

{
F[t, α, β, p]

(
sh
{jSim,j∗}
j∗

)
,

ut,α,β,p

}
α,β∈{0,1},
p∈[λ]

if γt = 0

{
ut,α,β,p,

F[t, α, β, p]
(
sh
{jSim,j∗}
j∗

) }
α,β∈{0,1},
p∈[λ]

if γt = 1,
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where each ut,α,β,p ← {0, 1}λ.

Hybrid5 : Simulate all of jSim’s garbled circuits. Indistinguishability follows from a sequence of subhybrids
{Hybrid4.t.0,Hybrid4.t.1}t∈[T ], two for each action. At each step φt = (j∗, f, g, h), we simulate jSim’s gar-

bled circuit in Hybrid4.t.0. Then, if jSim 6= j∗, in Hybrid4.t.1 we replace
{
rob.enc

(
ut,stf ,stg,p, lab

jSim,t+1
h,1−γt

)}
p∈[λ]

with
{
rob.enc

(
ut,stf ,stg,p, 0

λ
)}
p∈[λ]

in the output of jSim’s t’th garbled circuit. This second step follows

from semantic security of (rob.enc, rob.dec).

Hybrid6 : Replace sjSim with 0 in all of the HSS secrets involving party jSim. This is indistinguishable from
the previous hybrid by semantic security of HSS. We again use the fact that the distribution at this
point can be generated without any of jSim’s HSS shares.

Hybrid7 : Simulate Φ. This is doable since jSim’s randomness sjSim is not used to generate the rest of the
distribution.

At this point, generating the distribution no longer requires x. Since the first part of each party’s input
is an additive share of x, and the second part is uniform, the inputs {xj}j 6=jSim are uniformly distributed.
The resulting distribution is exactly the simulator described last section.

4.7 Robustness

To show that our construction achieves robustness, we actually show that robustness holds against the
simulated distribution described above. By indistinguishability of the simulated distribution and the real
distribution, this establishes the claim. More specifically, say that there exists a secret x, circuit C, set of
honest parties H ⊆ [n], and an adversary A that breaks the robustness experiment. Then, the following
must also hold, where S is the simulator from last section.

Pr

[
Dec(y1, . . . , yn) /∈ {C(x),⊥} :

({xi}i∈[n]\H , {yi}i∈[H])← S(1λ, |C|, n,H,C(x))
{yi}i∈[n]\H ← A({xi}i∈[n]\H , {yi}i∈[H])

]
= 1/poly(λ).

Observe that the only way for A to force a bad outcome is if one of its garbled circuits manages to convince
one of jSim’s garbled circuits of a “wrong” γt value. Specifically, it must be the case that for some φt =
(j∗, f, g, h) with jSim 6= j∗, during step 3.(c).(ii) of Dec there is some z∗jSim,p such that Dec(z∗jSim,p, elabp,1−γt) 6=

⊥, where

(
{elabp,0, elabp,1}p∈[λ] ,

{
labjSim,t+1

k

}
k∈[`]\{h}

)
:= GEval

(
P̃jSim,t, l̃ab

jSim,t
)
. But each elabp,1−γt =

enc(up, 0
λ), where up is a uniformly random key drawn independent of A’s view. Thus, the robustness of

(rob.enc, rob.dec) directly implies that A cannot produce a key k′ such that Dec(k′, elabp,1−γt) 6= ⊥.

5 Step 2: FMS MPC from Sharing-Compact HSS

In this section, we use a sharing-compact HSS scheme to construct a first message succinct two-round MPC
protocol that securely computes any polynomial-size circuit. We refer to Section 2.2 for a high-level overview
of the construction. For modularity of presentation, we begin by defining a label encryption scheme.

Label Encryption. This is an encryption scheme designed specifically for encrypting a grid of 2 × `
garbled input labels corresponding to a garbled circuit with input length `. The encryption algorithm takes
as input a 2 × ` grid of strings (labels) along with a 2 × ` grid of keys. It encrypts each label using each
corresponding key, making use of a robust private-key encryption scheme (rob.enc, rob.dec), as defined in
Section 3.2. It then randomly permutes each pair (column) of ciphertexts, and outputs the resulting 2 × `
grid. On the other hand, decryption only takes as input a set of ` keys, that presumably correspond to
exactly one ciphertext per column, or, exactly one input to the garbled circuit. The decryption algorithm
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uses the keys to decrypt exactly one label per column, with the robustness of (rob.enc, rob.dec) ensuring that
indeed only one ciphertext per column is able to be decrypted. The random permutations that occur during
encryption ensure that a decryptor will recover a valid set of input labels without knowing which input they
actually correspond to. This will be crucial in our construction.

LabEnc(K, lab) : On input a key K = {Ki,b}i∈[`],b∈{0,1} and lab = {labi,b}i∈[`],b∈{0,1} (where Ki,b, labi,b ∈
{0, 1}λ), LabEnc draws n random bits b′i ← {0, 1} and outputs elab = {elabi,b}i∈[`],b∈{0,1}, where

elabi,b := rob.enc(Ki,b⊕b′i , labi,b⊕b′i).

LabDec(K̂, elab): On input a key K̂ = {Ki}i∈[`] and elab = {elabi,b}i∈[`],b∈{0,1}, for each i ∈ [`] output

rob.dec(Ki, elabi,0) if it is not ⊥ and rob.dec(Ki, elabi,1) otherwise.

5.1 Our Construction

The starting point of our construction is the observation that the only shortcoming of a scHSS scheme is
that the Share algorithm must be executed by a trusted party/dealer. However, no trusted party is available
in the setting of a first message succinct two-round MPC. A natural idea to address this problem is to
have the parties use a vanilla two-round MPC to emulate the trusted execution of the sharing algorithm.
Unfortunately, this results in parties receiving their shares at the end of the second round. Thus, the final
protocol would require an extra round of communication, in which each party evaluates on their individual
share and broadcasts the result. In order to avoid this extra round, in the second round we have the parties
additionally send a garbled circuit that computes their third round message. To make this work, we actually
have the vanilla two-round MPC output keys that allow recovery of garbled input labels corresponding to
each party’s scHSS share. This avoids the need for the third round altogether.

In more detail, each party i chooses a random string ri in the first round. This string ri will be used as
the key to a PRF that generates a 2× ` grid of LabEnc keys K := {PRF(ri, (t, b))}t∈[`],b∈{0,1}. In round two,
to jointly compute a circuit C, each party i generates a garbled circuit that takes as input a scHSS share cshi
and outputs the evaluated share Yi := Eval(i,C, cshi). It then encrypts the 2 × ` grid of input labels using
keys K.

The functionality D that is computed by the vanilla MPC takes as input the party inputs {xi}i∈[n],
as well as the set of random strings {ri}i∈[n]. It first generates a sharing of the concatenated inputs

(csh1, . . . , cshn) ← Share(1λ, n, (x1|| . . . ||xn)). Then, instead of outputting the resulting shares in the clear,
for each i ∈ [n] it outputs keys that allow all parties to recover the input labels corresponding to input
cshi for party i’s garbled circuit. In particular, it uses ri to output the values {PRF(ri, (t, cshi[t]))}i∈[`].
Now, after the second round of the vanilla MPC is broadcast, parties can recover each set of keys. Then,
everybody can use the resulting keys to decrypt party i’s garbled labels corresponding to input cshi, and
evaluate party i’s garbled circuit to obtain Yi. Crucially, due to the properties of LabEnc, this process leaks
nothing about cshi to each party j 6= i. Once all the Yi are recovered, the reconstruction algorithm Dec of
the scHSS scheme can be run to recover the output of C.

We present the formal construction in Figure 4. It is given for functionalities C where every party receives
the same output, which is without loss of generality. Throughout, we will denote by ` the length of each
party’s scHSS share. Note that the circuit D used by the construction is defined immediately after in Figure 5.
Finally, p[t] denotes the t’th bit of a string p ∈ {0, 1}∗.

Theorem 5.1. Let X ∈ {semi-honest in the plain model, semi-honest in the common random/reference
string model, malicious in the common random/reference string model}. Assuming a (vanilla) X two-round
MPC protocol and a scHSS scheme for polynomial-size circuits, there exists an X first message succinct
two-round MPC protocol.

5.2 Simulator

Remark 5.2. Before proceeding to the proof of Theorem 5.1, we discuss the following point about simulation.
Our simulator FMS.Sim will make use of the simulator Sim for the underlying vanilla MPC protocol. For
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A first message succinct MPC protocol (FMS.MPC1,FMS.MPC2,FMS.MPC3)

Main Ingredients:

• A (vanilla) two-round MPC protocol (MPC1,MPC2,MPC3).

• A scHSS scheme (Share,Eval,Dec).

• A garbled circuit scheme (Garble,GEval).

• A label encryption scheme (LabEnc, LabDec).

FMS.MPC1(1λ,CRS, i, xi):

1. Draw ri ← {0, 1}λ, and compute (st
(1)
i ,msg

(1)
i )← MPC1(1λ,CRS,D, i, (xi, ri)).

2. Output FMS.st
(1)
i := (st

(1)
i , ri) and FMS.msg

(1)
i := msg

(1)
i .

FMS.MPC2(C,FMS.st
(1)
i , {FMS.msg

(1)
j }j∈[n]):

1. Compute (st
(2)
i ,msg

(2)
i )← MPC2(D, st

(1)
i , {msg

(1)
j }j∈[n]).

2. Compute (C̃, lab)← Garble(1λ,Eval(i,C, ·)).
3. Compute elab← LabEnc(K, lab) where K = {PRF(ri, (t, b))}t∈[`],b∈{0,1}.

4. Output FMS.st
(2)
i := st

(2)
i and FMS.msg

(2)
i := (msg

(2)
i , C̃, elab).

FMS.MPC3(FMS.st
(2)
i , {FMS.msg

(2)
j }j∈[n]):

1. Compute {K̂j}j∈[n] := MPC3(st
(2)
i , {msg

(2)
j }j∈[n]).

2. For each j ∈ [n]:

(a) Compute l̂abj := LabDec(K̂j , elabj).

(b) Compute Yj := GEval(C̃j , l̂abj).

3. Output y := Dec(Y1, . . . , Yn).

Figure 4: A first message succinct MPC protocol (FMS.MPC1,FMS.MPC2,FMS.MPC3)

Circuit D

Input: (x1, r1), . . . , (xn, rn)

1. (csh1, . . . , cshn)← Share(1λ, n, (x1|| . . . ||xn)).

2. For each i ∈ [n]:

(a) For each t ∈ [`], set Ki,t := PRF(ri, (t, cshi[t])).

(b) Set K̂i := {Ki,t}t∈[`].

Output: (K̂1 . . . K̂n)

Figure 5: The (randomized) circuit D

convenience in the proof, we will actually assume that Sim is black-box, and moreover, that it is straight-line.
That is, Sim only requires oracle access to its adversary A, and moreover, it interacts with A by sending
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a message
(
CRS, {msg

(1)
i }i∈H

)
, waiting for a response, sending a message

{
msg

(2)
i

}
i∈H

, and waiting for a

response (and it queries its ideal functionality after receiving its first response from A, and before sending its
second message to A). We claim that this assumption is not necessary for the proof to go through, and expect
that one could write a proof assuming a simulator that uses its adversary in an arbitrary manner. Even so,
there are known constructions of two-round MPC from DDH [GS18, BL18] that anyway have simulators
satisfying the above assumptions, in both the semi-honest setting and the malicious setting with CRS.

Furthermore, we also claim that these assumptions are without loss of generality in the setting of two-
round MPC. We give a brief and informal argument for why this is the case. First note that for the semi-
honest case, simulation is always straight-line. On the other hand, for the malicious case we are necessarily
in the common reference string model. Now note that any two-round MPC protocol implies a two-round OT
protocol. Next, we observe that any secure two-round OT protocol (regardless of its simulator) necessarily
satisfies some basic game-based properties that give a (weak) notion of two-round OT. Thus, we can use
the transformation of Döttling et al. [DGH+19] to construct a two-round OT with straight-line simulation.
This two-round OT, when plugged into the compiler of Garg and Srinivasan [GS18] yields a two-round MPC
protocol with a straight-line simulator.

Now we prove Theorem 5.1. Let I denote the set of corrupt parties and H := [n] \ I denote the set of
honest parties. The description of the simulator FMS.Sim is given below. This simulator will have access
to its own ideal functionality FC. It takes as input the security parameter, auxiliary input z, set of corrupt
parties I, and corrupt party inputs {xi}i∈I , and makes use of the simulator Sim for the vanilla two-round
MPC, the simulator GSim for the garbling scheme, and the sharing-compact HSS simulator scHSS.Sim.

Before we start describing the simulator and the hybrids, we provide descriptions of two circuits D′ and
D′′ that are modifications of the circuit D. These circuits will be used in the simulator and the hybrids. The
changes relative to D are written in red.

Circuit D′

Input: (csh1, r1), . . . , (cshn, rn)

1. Skip this step.

2. For each i ∈ [n]:

(a) For each t ∈ [`], set Ki,t := PRF(ri, (t, cshi[t])).

(b) Set K̂i := {Ki,t}t∈[`].

Output: (K̂1 . . . K̂n)

Figure 6: The circuit D′
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Circuit D′′

Input: (csh1, r1), . . . , (cshn, rn)

1. Skip this step.

2. For each i ∈ [n]:

(a) • If i ∈ I, for each t ∈ [`], set Ki,t := PRF(ri, (t||cshi[t])).
• If i ∈ H, for each t ∈ [`], sample Ki,t ← R(ri, (t, cshi[t])) where R(ri, ·) is a random function

with the same input and output lengths as PRF.

(b) Set K̂i := {Ki,t}t∈[`].

Output: (K̂1 . . . K̂n)

Figure 7: The circuit D′′

Now we present our simulator FMS.Sim.:

FMS.SimA(1λ, z, I, {xi}i∈I):

1. For each i ∈ [n], draw ri ← {0, 1}λ. For i ∈ H set r′i = ri.

2. Execute Sim with inputs (1λ,⊥, I, {xi, ri}i∈I), and receive
(
CRS, {msg

(1)
i }i∈H

)
, where ri for i ∈ I are

sampled uniformly.

3. Send
(
CRS, {msg

(1)
i }i∈H ,

)
to A, which returns

{
msg

(1)
i

}
i∈I

.

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I submitted by Sim to its ideal functionality.

(a) Send {x′j}j∈I as the inputs of the corrupted parties to the ideal functionality FC and receive out′

as the output.

(b) Compute {{cshi}i∈I , {Yi}i∈H} ← scHSS.Sim(1λ,Eval(C, ·), n,H, out′).
(c) Skip.

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) where for each j ∈ H, cshj is set to be the zero

string. Provide {K̂j}j∈[n] to Sim as the output of its query to the ideal functionality.

(e) Receive {msg
(2)
i }i∈H from Sim on behalf of the honest parties.

5. For each i ∈ H,

(a) (C̃i, {lab′i,t}t∈[`])← GSim(1|Eval(C,·)|, 1|cshi|, Yi). Let labi = {labi,t,0, labi,t,1}t∈[`], where each labi,t,0 :=

labi,t,1 := lab′i,t.

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

6. Send
{
msg

(2)
i , C̃i, elabi

}
i∈H

to A, which returns
{
msg

(2)
i , C̃i, elabi

}
i∈I

.

7. Compute out as follows:

(a) Provide {msg
(2)
j }j∈I to Sim. If Sim outputs continue then continue. Otherwise set out := ⊥ and

skip to next step.

(b) For each j ∈ I
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i. Compute l̂abj := LabDec(K̂j , elabj).

ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) If out′ = Dec(Y1, . . . , Yn) then send continue to the ideal functionality else send ⊥.

8. Output the output of A.

5.3 Hybrids

Now we prove the distributions REALπ,A(λ, ~x, z, I) and IDEALSimA(λ, ~x, z, I) are computationally indistin-
guishable. We prove this claim by considering a sequence of hybrids. The distribution REALπ,A(λ, ~x, z, I) is

the same as the distribution output by HybA0 (1λ, z, I, {xi}i∈[n]), and the distribution IDEALSimA(λ, ~x, z, I) is

the same as the distribution output by HybA7 (1λ, z, I, {xi}i∈[n]). We will give the proof for the case where
A is assumed to be malicious. The semi-honest case is identical except that one of the hybrids (specifically
HybA6 ) can be skipped. We will make remarks when the proof for the semi-honest case will differ.

• HybA0 (1λ, z, I, {xi}i∈[n]) : This hybrid corresponds to the real world execution of the FMS protocol in
the presence of the adversary A. In this hybrid, messages for the honest parties are generated according
to the protocol specifications. Messages of the malicious parties are generated by A. Formally, this
hybrid proceeds as follows:

1. For each i ∈ [n], draw ri ← {0, 1}λ. For i ∈ H set r′i = ri.

2. Sample CRS from the prescribed distribution and for i ∈ H, compute(
st

(1)
i ,msg

(1)
i

)
:= MPC1

(
1λ,CRS,D, i, (xi, ri)

)
.

3. Send
(
CRS, {msg

(1)
i }i∈H ,

)
to A, which returns

{
msg

(1)
i

}
i∈I

.

4. For i ∈ H, compute
(
st

(2)
i ,msg

(2)
i

)
← MPC2

(
D, st

(1)
i , {msg

(1)
j }j∈[n]

)
.

5. For each i ∈ H,

(a) Compute (C̃i, labi)← Garble(1λ,Eval(i,C, ·)).
(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {PRF(ri, (t, b))}t∈[`],b∈{0,1}.

6. Send
{
msg

(2)
i , C̃i, elabi

}
i∈H

to A, which returns
{
msg

(2)
i , C̃i, elabi

}
i∈I

.

7. Compute out as follows:

(a) Compute {K̂j}j∈[n] := MPC3

(
st

(2)
i , {msg

(2)
j }j∈[n]

)
.

(b) For each j ∈ [n]

i. Compute l̂abj := LabDec(K̂j , elabj).

ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) Set out := Dec(Y1, . . . , Yn).

8. Output out and A’s output.

• HybA1 (1λ, z, I, {xi}i∈[n]) : In this hybrid, we change how the messages for the underlying vanilla two-
round MPC are generated. More specifically, we use the simulator of the underlying vanilla two-round
MPC to generate these messages, which affects Steps 2, 4 and 7. We give a formal description of this
hybrid, and changes with respect to Hyb0 are highlighted in red. We do this for every subsequent pair
of hybrids. Additionally, to avoid unnecessary repetition we only present a moving window snippet of
the hybrids to which changes are being made.

...
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2. Execute Sim with inputs (1λ,⊥, I, {xi, ri}i∈I), and receive
(
CRS, {msg

(1)
i }i∈H

)
, where ri for i ∈ I

are sampled uniformly.

3. Send
(
CRS, {msg

(1)
i }i∈H ,

)
to A, which returns

{
msg

(1)
i

}
i∈I

.

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I queries by Sim to its ideal functionality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).

(b) Execute (csh1, . . . , cshn)← Share(1λ, n, (x′1|| . . . ||x′n)).

(c) For each j ∈ H, set Yj := Eval(i,C, cshj).

(d) Compute {K̂j}j∈[n] := D′({cshj}j∈[n], {r′j}j∈[n]) and provide it to Sim as the output of its
query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.

Comment: Recall that D′ is the circuit that does not compute Share but instead takes
the output of Share as input.

5. For each i ∈ H,

(a) Compute (C̃i, labi)← Garble(1λ,Eval(i,C, ·)).
(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {PRF(ri, (t, b))}t∈[`],b∈{0,1}.

6. Send
{
msg

(2)
i , C̃i, elabi

}
i∈H

to A, which returns
{
msg

(2)
i , C̃i, elabi

}
i∈I

.

7. Compute out as follows:

(a) Provide {msg
(2)
j }j∈I to Sim. If Sim outputs continue then continue. Otherwise set out := ⊥

and skip to next step.

(b) For each j ∈ I
i. Compute l̂abj := LabDec(K̂j , elabj).

ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) Set out := Dec(Y1, . . . , Yn).

...

HybA0 ≈c Hyb
A
1 . The indistinguishability between the two hybrids follows directly based on the secu-

rity of the underlying vanilla two-round MPC protocol.

• HybA2 (1λ, z, I, {xi}i∈[n]) : Observe that in hybrid HybA1 , several calls to PRFs with keys {ri}i∈H were
made in the preparation of honest party messages. These calls are implicitly made in the execution
of D′ in Step 4d, and additionally in Step 5b. In this hybrid, instead of answering these queries as
the output of pseudorandom functions, we answer using random functions R(ri, ·). Note that we only
replace the queries for i ∈ H with random functions. Queries for i ∈ I are still computed using a PRF.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I queries by Sim to its ideal functionality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).

(b) Execute (csh1, . . . , cshn)← Share(1λ, n, (x′1|| . . . ||x′n)).

(c) For each j ∈ H, set Yj := Eval(i,C, cshj).

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) and provide it to Sim as the output of its
query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.
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Comment: Recall that D′′ is same as circuit D′ except that each call to PRF(ri, ·) for
i ∈ H is answered as R(ri, ·).

5. For each i ∈ H,

(a) Compute (C̃i, labi)← Garble(1λ,Eval(i,C, ·)).
(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

Comment: Note that these Ki values include the K̂j values defined in Step 4d, since
the same function R(rj , ·) is used in both places.

...

HybA1 ≈c Hyb
A
2 . This indistinguishabilty follows directly from the security of PRF.

• HybA3 (1λ, z, I, {xi}i∈[n]) : In this hybrid, we remove information of one label per input wire, for each
of the honest party garbled circuits. We do this by copying each label corresponding to the “correct”
input. This change is done in Step 5 and will allow us to move to simulated garbled circuits in the
next hybrid.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I queries by Sim to its ideal functionality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).

(b) Execute (csh1, . . . , cshn)← Share(1λ, n, (x′1|| . . . ||x′n)).

(c) For each j ∈ H, set Yj := Eval(i,C, cshj).

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) and provide it to Sim as the output of its
query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.

5. For each i ∈ H,

(a) Compute (C̃i, labi)← Garble(1λ,Eval(i,C, ·)). For each t ∈ [`], set labi,t,1−cshi[t] := labi,t,cshi[t].

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

...

HybA2 ≈c Hyb
A
3 . This indistinguishabilty follows directly from the semantic security of LabEnc, which

in turn follows from the semantic security of rob.enc. Observe that each label labi,t,1−cshi[t] is en-
crypted under the key R(ri, (t, 1 − cshi[t])), which is not used anywhere else. Furthermore, having
the same labels for both input values (0 and 1) ensures that decrypting with any valid sequence of
keys (in particular, one that is provided to Sim in Step 4d) would yield the correct sequence of labels
(labi,1,cshi[1], . . . , labi,n,cshi[n]).

• HybA4 (1λ, z, I, {xi}i∈[n]) : In this hybrid, we change the share cshj for each honest party j to be the zero
string. This does not affect functionality because the same sequence of garbled labels will always be
recovered no matter which key is used per input bit, since we are copying over the labels corresponding
to the correct input.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I queries by Sim to its ideal functionality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).
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(b) Execute (csh1, . . . , cshn)← Share(1λ, n, (x′1|| . . . ||x′n)).

(c) For each j ∈ H, set Yj := Eval(i,C, cshj).

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) where for each j ∈ H set cshj is set to be
the zero string and provide it to Sim as the output of its query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.

5. For each i ∈ H,

(a) Compute (C̃i, labi)← Garble(1λ,Eval(i,C, ·)). For each t ∈ [`], set labi,t,1−cshi[t] := labi,t,cshi[t].

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

...

HybA3 ≡ HybA4 . Recall that LabEnc randomly permutes each pair of labels corresponding to an input
bit. Thus, which key is revealed for decryption does not affect the distribution, so this hybrid is
perfectly indistinguishable from HybA3 .

• HybA5 (1λ, z, I, {xi}i∈[n]) : In this hybrid, we change how honest party garbled circuits are generated in
Step 5. Specifically, we now generate the circuits using the simulator GSim.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I queries by Sim to its ideal functionality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).

(b) Execute (csh1, . . . , cshn)← Share(1λ, n, (x′1|| . . . ||x′n)).

(c) For each j ∈ H, set Yj := Eval(i,C, cshj).

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) and provide it to Sim as the output of its
query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.

5. For each i ∈ H,

(a) Compute (C̃i, {lab′i,t}t∈[`]) ← GSim(1|Eval(C,·)|, 1|cshi|, Yi). Let labi = {labi,t,0, labi,t,1}t∈[`],

where each labi,t,0 := labi,t,1 := lab′i,t.

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

6. Send
{
msg

(2)
i , C̃i, elabi

}
i∈H

to A, which returns
{
msg

(2)
i , C̃i, elabi

}
i∈I

.

7. Compute out as follows:

(a) Compute {K̂j}j∈[n] := MPC3

(
st

(2)
i , {msg

(2)
j }j∈[n]

)
.

(b) For each j ∈ [n]

i. Compute l̂abj := LabDec(K̂j , elabj).

ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) Set out := Dec(Y1, . . . , Yn).

...

35



HybA4 ≈c Hyb
A
5 . Indistinguishability follows directly from simulation security of the garbling scheme.

• HybA6 (1λ, z, I, {xi}i∈[n]) : Skip this hybrid if in the semi-honest case. In this hybrid, we set of the
honest party outputs to ⊥ if the adversary can make them output the wrong output value.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I queries by Sim to its ideal functionality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).

(b) Execute (csh1, . . . , cshn)← Share(1λ, n, (x′1|| . . . ||x′n)).

(c) For each j ∈ H, set Yj := Eval(i,C, cshj).

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) and provide it to Sim as the output of its
query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.

5. For each i ∈ H,

(a) Compute (C̃i, {lab′i,t}t∈[`]) ← GSim(1|Eval(C,·)|, 1|cshi|, Yi). Let labi = {labi,t,0, labi,t,1}t∈[`],

where each labi,t,0 := labi,t,1 := lab′i,t.

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

6. Send
{
msg

(2)
i , C̃i, elabi

}
i∈H

to A, which returns
{
msg

(2)
i , C̃i, elabi

}
i∈I

.

7. Compute out as follows:

(a) Provide {msg
(2)
j }j∈I to Sim. If Sim outputs continue then continue. Otherwise set out := ⊥

and skip to next step.

(b) For each j ∈ I
i. Compute l̂abj := LabDec(K̂j , elabj).

ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) If out′ = Dec(Y1, . . . , Yn) then set out := C(x′1 . . . x
′
n) else set out := ⊥.

...

HybA5 ≈c Hyb
A
6 . This indinguishability follows from robustness of scHSS. To see why, note that the

only possible way for the distributions output by HybA5 and HybA6 to differ is if out 6= ⊥ and out 6= out′

in HybA5 . Observe that by definition, each Yj := GEval(C̃j , l̂abj) for j ∈ H computed in Step 7b of

HybA5 is equal to the Yj computed in step 4c by running the Share algorithm followed by Eval. Thus,
producing {Y ′i }i∈I that combine with {Yj}j∈H to cause Dec to output y′ 6= y implies an adversary that
succeeds in the scHSS robustness experiment.

• HybA7 (1λ, z, I, {xi}i∈[n]) : In this hybrid, we change how the sharing-compact HSS shares are generated.
In particular, we use the scHSS.Sim to generate the {csh}i∈I for the corrupted parties and {Yi}i∈H for
the corrupted parties.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I submitted by Sim to its ideal function-
ality.

(a) For each i ∈ H set x′i := xi and r′i := ri. Set out′ := C(x′1, . . . x
′
n).

(b) Compute {{cshi}i∈I , {Yi}i∈H} ← scHSS.Sim(1λ,Eval(C, ·), n,H, out′).
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(c) Skip.

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[I], {rj}j∈[n]) where for each j ∈ H, cshj is set to be the
zero string and provide it to Sim as the output of its query to the ideal functionality.

(e) Next, Sim generates second round messages {msg
(2)
i }i∈H on behalf of honest parties.

5. For each i ∈ H,

(a) Compute (C̃i, {lab′i,t}t∈[`]) ← GSim(1|Eval(C,·)|, 1|cshi|, Yi). Let labi = {labi,t,0, labi,t,1}t∈[`],

where each labi,t,0 := labi,t,1 := lab′i,t.

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

7. Compute out as follows:

(a) Provide {msg
(2)
j }j∈I to Sim. If Sim outputs continue then continue. Otherwise set out := ⊥

and skip to next step.

(b) For each j ∈ I
i. Compute l̂abj := LabDec(K̂j , elabj).

ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) If out′ = Dec(Y1, . . . , Yn) then set out := C(x′1 . . . x
′
n) else set out := ⊥.

8. Output out and A’s output.

HybA6 ≈c HybA7 . This indistinguishability follows directly from simulation security of the scHSS
scheme.

• HybA8 (1λ, z, I, {xi}i∈[n]) : In this hybrid, instead of computing the out′ itself, we obtain it by querying
the ideal functionality FC.

...

4. Continue the execution of Sim to obtain values {x′i, r′i}i∈I submitted by Sim to its ideal function-
ality.

(a) Send {x′j}j∈I as the inputs of the corrupted parties to the ideal functionality FC and receive
out′ as the output.

(b) Compute {{cshi}i∈I , {Yi}i∈H} ← scHSS.Sim(1λ,Eval(C, ·), n,H, out′).
(c) Skip.

(d) Compute {K̂j}j∈[n] := D′′({cshj}j∈[n], {r′j}j∈[n]) where for each j ∈ H, cshj is set to be the

zero string. Provide {K̂j}j∈[n] to Sim as the output of its query to the ideal functionality.

(e) Receive {msg
(2)
i }i∈H from Sim on behalf of the honest parties.

5. For each i ∈ H,

(a) (C̃i, {lab′i,t}t∈[`]) ← GSim(1|Eval(C,·)|, 1|cshi|, Yi). Let labi = {labi,t,0, labi,t,1}t∈[`], where each

labi,t,0 := labi,t,1 := lab′i,t.

(b) Compute elabi ← LabEnc(Ki, labi) where Ki = {R(ri, (t, b))}t∈[`],b∈{0,1}.

6. Send
{
msg

(2)
i , C̃i, elabi

}
i∈H

to A, which returns
{
msg

(2)
i , C̃i, elabi

}
i∈I

.

7. Compute out as follows:

(a) Provide {msg
(2)
j }j∈I to Sim. If Sim outputs continue then continue. Otherwise set out := ⊥

and skip to next step.

(b) For each j ∈ I
i. Compute l̂abj := LabDec(K̂j , elabj).
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ii. Evaluate Yj := GEval(C̃j , l̂abj).

(c) If out′ = Dec(Y1, . . . , Yn) then send continue to the ideal functionality else send ⊥.

8. Output the output of A.

HybA7 ≡ HybA8 . By definition of the ideal functionality FC, this is merely a syntactic change, and the
two hybrids are equivalent.

6 Step 3: Two-Round Reusable MPC from FMS MPC

In this section, we present our compiler that takes any two-round FMS MPC and produces a two-round
reusable MPC. We begin with some notation.

Notation. For a circuit C, let 〈C〉 be a string obtained by concatenating the length of C (expanded to λ
bits by padding) with C, i.e. 〈C〉 := |C| ‖ C ∈ {0, 1}∗. Throughout, we will denote by ` the length of the

string (st
(1)
j , {msg

(1)
j }j∈[n]).

PRG. We will use a length-quadrupling pseudorandom generator PRG : {0, 1}λ → {0, 1}4λ. We write
G0,G1,H0,H1 to denote the first, second, third and fourth part of the output. For example, for seed
r ∈ {0, 1}λ, let PRG(r) = y0‖y1‖y2‖y3 = G0(r)‖G1(r)‖H0(r)‖H1(r).

MPC2(C, ·, ·) Let (MPC1,MPC2,MPC3) be a two-round MPC protocol. We will be garbling the circuit
MPC2(C, ·, ·), which is the circuit computing the MPC2 algorithm with the first input fixed to be the
description of a circuit C and the other two inputs undefined (to be decided later).

Wrap. Consider a standard private-key encryption scheme (enc, dec). Suppose F is a function that takes
an input x and returns (y1, y2) := F (x) where y1, y2 are of specific lengths. Then we define a function
Wrap(sk, F ) that on input x ∈ {0, 1}∗, computes (y1, y2) := F (x), and returns (z, y2), where z =
enc(sk, y1). Looking ahead, we will be using a circuit that implements Wrap(sk,MPC2(C, ·, ·)). In
particular, the circuit MPC2(C, ·, ·) returns a state and message pair (st,msg) and then Wrap encrypts
the state st but outputs msg in the clear.

6.1 Our Construction

We start by giving a high-level overview of the reusable MPC, which we call r.MPC. Recall from Section 2.3
that round one of r.MPC essentially just consists of round one of an FMS.MPC instance computing the circuit
N. We refer to this as the 0’th (instance of) MPC. Now fix a circuit C to be computed in round two, and
its representative string p := 〈C〉, which we’ll take to be length m. This string p fixes a root-to-leaf path in
a binary tree of MPCs that the parties will compute. In round two, the parties compute round two of the
0’th MPC, plus m (garbled circuit, encrypted labels) pairs. Each of these is used to compute an MPC in
the output phase of r.MPC. The first m− 1 of these MPCs compute N, and the m’th MPC computes C.

In the first round of r.MPC, each party i also chooses randomness ri, which will serve as the root for a
binary tree of random values generated as in [GGM84] by a PRG (G0,G1). Below, we set ri,0 := ri, where
the 0 refers to the fact that the 0’th MPC will be computing the circuit N on input that includes {ri,0}i∈[n].
The string p then generates a sequence of values ri,1, . . . , ri,m by ri,d := Gp[d](ri,d−1). The d’th MPC will be
computing the circuit N on input that includes {ri,d}i∈[n].

Now, it remains to show how the m (garbled circuit, encrypted labels) pairs output by each party in
round two can be used to reconstruct each of the m MPC outputs, culminating in C. We use a repeated
application of the mechanism developed in the last section. In particular, the d’th garbled circuit output
by party i computes their second round message of the d’th MPC. The input labels are encrypted using
randomness derived from party i’s root randomness ri. Specifically, as in last section, we use a PRF to
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compute a 2 × ` grid of keys, which will be used to LabEnc the 2 × ` grid of input labels. The key to this
PRF will be generated by a PRG (H0,H1) applied to ri,d−1. Since we are branching based on the bit p[d],
the key will be set to Hp[d](ri,d−1).

Likewise, the d’th MPC (for d < m), using inputs {ri,d}i∈[n], computes two instances of the first round of
the d+1’st MPC, the “left child” using inputs {G0(ri,d)}i∈[n] and the “right child” using inputs {G1(ri,d)}i∈[n].
It then uses the PRF key H0(ri,d) to output the ` keys corresponding to party i’s left child first round message,
and the key H1(ri,d) to output the ` keys corresponding to party i’s right child first round message.

Finally, in the output phase of r.MPC, all parties can recover party i’s second round message of the d’th
MPC, by first using the output of the d − 1’st MPC to decrypt party i’s input labels corresponding to its
first round message of the d’th MPC, and then using those labels to evaluate its d’th garbled circuit, finally
recovering the second round message. Once all of the d’th second round messages have been recovered, the
output may be reconstructed. Note that this output is exactly the set of keys necessary to repeat the process
for the d+ 1’st MPC. Eventually, the parties will arrive at the m’th MPC, which allows them to recover the
final output C(x1, . . . , xn). One final technicality is that each party’s second round message for each MPC
may be generated along with a secret state. We cannot leak this state to other parties in the output phase,
so in the second round of r.MPC, parties will actually garble circuits that compute their second round (state,
message) pair, encrypt the state with their own secret key, and then output the encrypted state plus the
message in the clear. In the output phase, each party i can decrypt their own state, (but not anyone else’s)
and use their state to reconstruct the output of each MPC.

We present the formal construction in Figure 8. It is given for functionalities C where every party receives
the same output, which is without loss of generality. Note that the circuit N used by the construction is
defined immediately after in Figure 9.
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A Reusable MPC potocol (r.MPC1, r.MPC2, r.MPC3)

Ingredients:

• A two-round first message succinct MPC protocol (MPC1,MPC2,MPC3).

• A garbled circuit scheme (Garble,GEval).

• A label encryption scheme (LabEnc, LabDec).

• A length-quadrupling PRG = (G0,G1,H0,H1).

• A private-key encryption scheme (enc, dec) and associated function Wrap.

r.MPC1(1λ,CRS, i, xi):

1. Draw ri ← {0, 1}λ, and compute (st
(1)
i ,msg

(1)
i )← MPC1(1λ,CRS, i, (xi, ri)).

2. Sample a key ski ← {0, 1}λ for (enc, dec).

3. Output (r.st
(1)
i , r.msg

(1)
i ) where r.st

(1)
i := (st

(1)
i , ri, ski) and r.msg

(1)
i := msg

(1)
i .

r.MPC2(C, r.st
(1)
i = (st

(1)
i , ri, ski), {msg

(1)
j }j∈[n]):

1. Set p := 〈C〉, and ri,0 := ri.

2. Compute (st
(2)
i ,msg

(2)
i )← MPC2(N, st

(1)
i , {msg

(1)
j }j∈[n]).

3. For each d ∈ [m],

(a) If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

(b) Set Ki,d := {Kt,b}t∈[`],b∈{0,1}, where each Kt,b := PRF(Hp[d](ri,d−1), (t, b)).

(c) Compute elabi,d ← LabEnc(Ki,d, labi,d).

(d) Compute ri,d := Gp[d](ri,d−1).

4. Output r.st
(2)
i := (st

(2)
i , ski) and r.msg

(2)
i :=

(
msg

(2)
i , {C̃i,d, elabi,d}d∈[m]

)
.

r.MPC3

(
r.st

(2)
i = (st

(2)
i , ski),

{
r.msg

(2)
j =

(
msg

(2)
j , {C̃j,d, elabj,d}d∈[m]

)}
j∈[n]

)
:

1. Compute

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
:= MPC3(st

(2)
i , {msg

(2)
j }j∈[n]).

2. For each d ∈ [m]:

(a) For each j ∈ [n]:

i. Compute l̂ab := LabDec(K̂
p[d]
j,d , elabj,d).

ii. Evaluate (est
(2)
j ,msg

(2)
j ) := GEval(C̃j,d, l̂ab).

(b) Decrypt st
(2)
i := dec(ski, est

(2)
i ).

(c) If d < m, compute

(
K̂0

1,d+1 . . . K̂
0
n,d+1

K̂1
1,d+1 . . . K̂

1
n,d+1

)
:= MPC3(st

(2)
i , {msg

(2)
j }j∈[n]),

else, compute y := MPC3(st
(2)
i , {msg

(2)
j }j∈[n]).

3. Output y.

Figure 8: A Reusable MPC potocol (r.MPC1, r.MPC2, r.MPC3)
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Circuit N

Input: (x1, r1) . . . , (xn, rn).

1. For each i ∈ [n] (generating the left child MPC1):

(a) Compute z0
i := (st

(1)
i ,msg

(1)
i )← MPC1(1λ,CRS, i, (xi,G0(ri))).

(b) For each t ∈ [`], set K0
i,t = PRF(H0(ri), (t, z

0
i [t])).

(c) Set K̂0
i = {K0

i,t}t∈[`].

2. For each i ∈ [n] (generating the right child MPC1):

(a) Compute z1
i := (st

(1)
i ,msg

(1)
i )← MPC1(1λ,CRS, i, (xi,G1(ri))).

(b) For each t ∈ [`], set K1
i,t = PRF(H1(ri), (t, z

1
i [t])).

(c) Set K̂1
i = {K1

i,t}t∈[`].

Output:

(
K̂0

1 . . . K̂
0
n

K̂1
1 . . . K̂

1
n

)
.

Figure 9: The (randomized) circuit N.
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Theorem 6.1. Let X ∈ {semi-honest in the plain or CRS model, malicious in the CRS model}. Assuming
a first message succinct X two-round MPC protocol, there exists an X reusable two-round MPC protocol.

6.2 The Simulator

In this section, we present a hybrid simulator, r.SimAk , where for depth parameter k, the first k MPCs carried
out in the second round of r.MPC are simulated, while the remaining are executed honestly. When k is the
size of the largest circuit computed, this r.SimAk is the full simulator, which does not take take as input the
inputs of honest parties.

Recall that any C to be computed fixes a string p := 〈C〉. This string p in turn fixes a sequence of strings
ri,0, ri,1, . . . , ri,m for each party i, where ri,0 is always set to the ri chosen by party i in the first round.
In the simulated execution up to depth k, corrupt party messages will be generated using this sequence of
values ri,0, ri,1, . . . , ri,m. However, honest party messages up to depth k will be computed with uniform and
independent randomness. Eventually, for each honest party i, the string ri,k will be chosen at random. Then
the values ri,k+1, . . . , ri,m will be fixed following the protocol, by ri,d := Gp[d](ri,d−1).

Now, we explain each step of the simulator r.SimAk , where k ∈ [m]. The simulator is given inputs {xi}i∈[n]

(if k = m, then it only needs the corrupt party inputs), and repeatedly uses the FMS.MPC simulator FMS.Sim.

Steps 1-2. The simulator first generates input randomness ri for the corrupt parties, and secret keys ski
for the honest parties.

Steps 3-5. It begins to simulate the 0’th MPC, whose first message constitutes the first message of r.MPC.
In step 3, it makes use of the FMS.MPC simulator, calling this instance FMS.MPC0, to generate the first
round messages on behalf of the honest parties. In step 4, it sends these to A as the first round messages of
r.MPC. When A responds with its first round messages, it extracts inputs {x̃i, r̃i}i∈I . For each i ∈ I, it sets
ri,0 to the extracted r̃i, which as explained earlier, serves as the root of party i’s tree of randomness.

Step 6. The adversary chooses the circuit C to compute.

Step 7. At this point, the simulator must generate second round messages on behalf of the honest parties.
One component of a r.MPC second round message is the second round message of the 0’th MPC. Step 7

will generate these messages {msg
(2)
i,0 }i∈H on behalf of the honest parties. To do so, it uses the simulator

FMS.MPC0 initialized in earlier steps. In order to use FMS.MPC0, it must answer FMS.MPC0’s call to its
ideal functionality. Thus, steps (a) and (b) compute the output of circuit N, using randomness derived from
ri,0 for corrupt parties, and uniform independent randomness for honest parties. This output is given to
FMS.MPC0, who responds with second round messages for the 0’th MPC.

Step 8. The other component of a r.MPC second round message is a sequence of (garbled circuit, encrypted
labels) pairs for each party. These are computed in step 8, which is split into 3 sections: (a) the simulated
levels before k, (b) the “transition” level k, and (c) the honestly generated levels after k.

In section (a), the d’th MPC is simulated, and its output is used to simulate the d’th garbled circuit
for each honest party. Moreover, this d’th MPC computing the circuit N is done so using uniform and
independent randomness for each of the honest parties. In more detail, step (i) generates the next randomness
ri,d for each corrupt party. Steps (ii) − (iv) are similar to 3 − 5 above, where FMS.Sim is initialized as

FMS.Simd. Observe that the corrupt party messages {msg
(1)
i,d}i∈I have been generated in a previous step,

so there is no need to involve A here. Steps (v) − (vii) are similar to step 7 above, where the circuit N is
computed and its output given to FMS.Simd, who responds with the simulated second round messages for
honest parties. In step (viii) these second round messages are used to simulate the garbled circuit for each
honest party. The simulated labels are encrypted using keys drawn for each honest party at the previous
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depth. To fill out the 2 × ` grid of encryptions, each simulated label is also copied and encrypted under a
new uniformly drawn key.

Section (b) is very similar to section (a). The major difference is that in step (v), the circuit N is computed
honestly with respect to the randomness ri,d chosen for the honest parties i ∈ H. Each of these ri,d becomes
the root randomness of the remaining sub-tree for each honest party. The other difference is that this may
be the final level, in which case FMS.Simd should actually be answered with the value C(x1, . . . , xn). This
(step (vi)) is where the r.MPC simulator uses its ideal functionality.

Section (c) generates the remaining (garbled circuit, encrypted labels) pairs as in the real execution of
r.MPC. The simulator exactly follows the step 3 of r.MPC2.

Steps 9-11. Now that the second round messages of r.MPC for honest parties have been simulated, they
are sent to A, who responds with the second round messages on behalf of the corrupt parties. The messages
corresponding to the 0’th MPC are sent to FMS.Sim0. If they are well-formed, then execution continues,
otherwise, the honest parties are instructed to output ⊥. Then, in step 10, the messages are combined to
produce the honest party outputs. For every level d up to k, observe that the keys necessary to decrypt the
encrypted labels have already been generated. The garbled circuits are then evaluated, and the resulting
second round messages for the d’th MPC are sent to FMS.Simd. If they are well-formed, then execution
continues, otherwise, the honest parties are instructed to output ⊥. After level k, reconstruction of the
honest party outputs proceeds as in r.MPC3.

Notation:

• For any i ∈ [n], let w := |Wrap(ski,MPC2(N, ·, ·)| and h := |(st(1)
i ,msg

(1)
i )|, where (st

(1)
i ,msg

(1)
i ) ←

MPC1(1λ,CRS, i, (xi, ri)). If this instance of (FMS) MPC is executed at the d-th level of the tree, and

the bit c indicates left or right child, the message-state pair is denoted by (st
(1)
i,d,c,msg

(1)
i,d,c).

• Let p∗[d] denote the prefix of string p of length d−1, where we set p∗[1] to a special symbol ε. For each
i ∈ [n], d ∈ [m], p∗[d] ∈ {0, 1}d−1, c ∈ {0, 1}, we let R((i, p∗[d], c), ·) denote a uniformly random function
from {0, 1}∗ → {0, 1}λ, and U(i, p∗[d], c),V(i, p∗[d], c) denote uniformly random strings of length λ.

Remark 6.2. The following proof is stated only for the malicious case. The semi-honest case is very similar,
the only difference being that we need to argue that the simulator never sends ⊥ to its ideal functionality.

It suffices to argue that each msg
(2)
j,d recovered in step 10.(b).(i).(B) of the simulation corresponds to the

honestly generated second round message of the d’th MPC for party j. This is straight-forward to see from
the robustness property of LabEnc, since decrypting any wrong label happens with negligible probability due
to the use of rob.enc.

Intermediate Simulator for k ∈ [m], r.SimAk (1λ, z, I, {xi}i∈[n]):

1. For each i ∈ I, sample ri ← {0, 1}λ.

2. For each i ∈ H, sample ski ← {0, 1}λ.

3. Initialize FMS.Sim with inputs (1λ, z, I, {xi, ri}i∈I). Denote this instance of the simulator by FMS.Sim0.

Run FMS.Sim0 to obtain
(
CRS, {msg

(1)
i,0 }i∈H

)
.

4. Send
(
CRS, {msg

(1)
i,0 }i∈H

)
to A on behalf of the honest parties. A responds with {msg

(1)
i,0 }i∈I . Forward

{msg
(1)
i,0 }i∈I to FMS.Sim0.

5. FMS.Sim0 queries {x̃i, r̃i}i∈I to its ideal functionality FN. For each i ∈ I, set xi := x̃i and ri,0 := r̃i.

6. A outputs the description of a circuit Cq, set pq := 〈Cq〉. The following steps are repeated for each
circuit query q ∈ [Q].
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7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},
i. Skip.

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, 0)).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) For d < k,

i. For each i ∈ I, compute ri,d := Gpq [d](ri,d−1).

ii. Initialize FMS.Sim with inputs (1λ, z, I, {xi, ri,d}i∈I). Denote this instance of the simulator

by FMS.Simd. Run FMS.Simd to obtain
(
CRS, {msg

(1)
i,d}i∈H

)
.

iii. Ignore FMS.Simd’s output, and send back {msg
(1)
i,d,pq [d]}i∈I .

iv. FMS.Simd queries {x̃i, r̃i,d}i∈I to its ideal functionality, which is ignored.

v. For each i ∈ I, c ∈ {0, 1},
A. Compute zci,d+1 := (st

(1)
i,d+1,c,msg

(1)
i,d+1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,d))).

B. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,d), (t, z

c
i,d+1[t])).

C. Set K̂c
i,d+1 := {Kc

i,t}t∈[`].

vi. For each i ∈ H, c ∈ {0, 1},
A. For each t ∈ [`], set Kc

i,t := R((i, p∗q [d+ 1], c), (t, 0)).

B. Set K̂c
i,d+1 := {Kc

i,t}t∈[`].

vii. Provide

(
K̂0

1,d+1 . . . K̂
0
n,d+1

K̂1
1,d+1 . . . K̂

1
n,d+1

)
to FMS.Simd, who responds with {msg

(2)
i,d}i∈H .

viii. For each i ∈ H,

A. Set est
(2)
i,d := enc(ski,~0) and compute (C̃i,d, l̂abi,d)← GSim(1w, 1h, (est

(2)
i,d ,msg

(2)
i,d )).

B. Set labi,d := (l̂abi,d, l̂abi,d).

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1} where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(b) For d = k,

i. For each i ∈ I, compute ri,d := Gpq [d](ri,d−1), and for each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Initialize FMS.Sim with inputs (1λ, z, I, {xi, ri,d}i∈I). Denote this instance of the simulator

by FMS.Simd. Run FMS.Simd to obtain
(
CRS, {msg

(1)
i,d}i∈H

)
.

iii. Ignore FMS.Simd’s output, and send back {msg
(1)
i,d,pq [d]}i∈I .

iv. FMS.Simd queries {x̃i, r̃i,d}i∈I to its ideal functionality, which is ignored.
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v. If k 6= m,

A. For each i ∈ [n], c ∈ {0, 1},
• Compute zci,d+1 := (st

(1)
i,d+1,c,msg

(1)
i,d+1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,d))).

• For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,d), (t, z

c
i,d+1[t])).

• Set K̂c
i,d+1 := {Kc

i,t}t∈[`].

B. Provide

(
K̂0

1,d+1 . . . K̂
0
n,d+1

K̂1
1,d+1 . . . K̂

1
n,d+1

)
to FMS.Simd, who responds with {msg

(2)
i,d}i∈H .

vi. Otherwise, if k = m,

A. Query the ideal functionality FC with {xi}i∈I and receive {yi}i∈I .
B. Provide {yi}i∈I to FMS.Simd, who responds with {msg

(2)
i,d}i∈H .

vii. For each i ∈ H,

A. Set est
(2)
i,d := enc(ski,~0) and compute (C̃i,d, l̂abi,d)← GSim(1w, 1h, (est

(2)
i,d ,msg

(2)
i,d )).

B. Set labi,d := (l̂abi,d, l̂abi,d).

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1} where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For k < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

9. Send
{(

msg
(2)
i,0 , {C̃i,d, elabi,d}d∈[m]

)}
i∈H

to A on behalf of the honest parties. A responds with{(
msg

(2)
i,0 , {C̃i,d, elabi,d}d∈[m]

)}
i∈I

.

10. Compute {yi}i∈H as follows.

(a) Provide the {msg
(2)
i,0 }i∈I to FMS.Sim0. If FMS.Sim0 outputs continue then continue and otherwise

set {yi}i∈H := ⊥ and skip to step 11.

(b) For d ≤ k,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d).

ii. Provide the {msg
(2)
i,d}i∈I to FMS.Simd. If FMS.Simd outputs continue then continue and oth-

erwise set {yi}i∈H := ⊥ and skip to step 11.

(c) For k < d ≤ m, and i ∈ H,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d).

ii. Decrypt st
(2)
i,d := dec(ski, est

(2)
i,d ).

iii. if d < m, compute

(
K̂0

1,d+1 . . . K̂
0
n,d+1

K̂1
1,d+1 . . . K̂

1
n,d+1

)
:= MPC3(st

(2)
i,d , {msg

(2)
j,d}j∈[n]),

else, compute yi := MPC3(st
(2)
i,m, {msg

(2)
j,m}j∈[n]).

11. Output {yi}i∈H and A’s output. If q 6= Q go back to step 6.
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6.3 Hybrids

We prove the security of r.MPC in two sequences of hybrids. The first sequence of hybrids begins with
real world execution HybA0 , and ends with r.SimA1 . The second sequence begins with r.SimAk and end with
r.SimAk+1, for any k ∈ [m − 1]. Noting that r.SimAm does not require the inputs of honest parties completes
the proof. The first sequence is given below.

HybA0 (1λ, z, I, {xi}i∈[n]) : Hybrid HybA0 corresponds to the real world execution of r.MPC in the presence

of the adversary A.

1. Skip.

2. For each i ∈ H, sample ri,0, ski ← {0, 1}λ.

3. Sample CRS from the prescribed distribution. Then, for each i ∈ H, compute (st
(1)
i,0 ,msg

(1)
i,0 ) ←

MPC1(1λ,CRS, i, (xi, ri,0)).

4. Send
(
CRS, {msg

(1)
i,0 }i∈H

)
to A on behalf of the honest parties. A responds with {msg

(1)
i,0 }i∈I .

5. Skip.

6. A outputs the description of a circuit Cq, set pq := 〈Cq〉. The following steps are repeated for each
circuit query q ∈ [Q].

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) Skip.

(b) Skip.

(c) For each i ∈ H, compute (st
(2)
i,0 ,msg

(2)
i,0 )← MPC2(N, st

(1)
i,0 , {msg

(1)
j,0}j∈[n]).

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) Skip.

(c) For 0 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))),

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

9. Send
{(

msg
(2)
i,0 , {C̃i,d, elabi,d}d∈[m]

)}
i∈H

to A on behalf of the honest parties. A responds with{(
msg

(2)
i,0 , {C̃i,d, elabi,d}d∈[m]

)}
i∈I

.

10. Compute {yi}i∈H as follows.

(a) Compute

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
:= MPC3(st

(2)
i,0 , {msg

(2)
j,0}j∈[n]).

(b) Skip.

(c) For 0 < d ≤ m, and i ∈ H,
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i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d)).

ii. Decrypt st
(2)
i,d := decski(est

(2)
i,d ).

iii. if d < m, compute

(
K̂0

1,d . . . K̂
0
n,d

K̂1
1,d . . . K̂

1
n,d

)
:= MPC3(st

(2)
i,d , {msg

(2)
j,d}j∈[n]),

else, compute yi := MPC3(st
(2)
i,m, {msg

(2)
j,m}j∈[n]).

11. Output {yi}i∈H and A’s output. If q 6= Q go back to step 6.

HybA1 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA1 , we simulate the 0’th MPC. Indistinguishability follows from the

security of FMS.MPC. Note that steps 7.(a) and 7.(b) are exactly the same, so we didn’t necessarily have to
branch based on I and H in this hybrid. This is for convenience, to clearly see the difference with the next
hybrid.

1. For each i ∈ I sample ri ← {0, 1}λ.

2. For each i ∈ H, sample ri,0, ski ← {0, 1}λ.

3. Initialize FMS.Sim with inputs (1λ, z, I, {xi, ri}i∈I). Denote this instance of the simulator by FMS.Sim0.

Run FMS.Sim0 to obtain
(
CRS, {msg

(1)
i,0 }i∈H

)
.

4. Send
(
CRS, {msg

(1)
i,0 }i∈H

)
to A on behalf of the honest parties. A responds with {msg

(1)
i,0 }i∈I .

5. FMS.Sim0 queries {x̃i, r̃i}i∈I to its ideal functionality FN. For each i ∈ I, set xi := x̃i and ri,0 := r̃i.

6. A outputs the description of a circuit Cq, set pq := 〈Cq〉. The following steps are repeated for each
circuit query q ∈ [Q].

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) Skip.

(c) For 0 < d ≤ m, and i ∈ H,
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i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

9. Send
{(

msg
(2)
i,0 , {C̃i,d, elabi,d}d∈[m]

)}
i∈H

to A on behalf of the honest parties. A responds with{(
msg

(2)
i,0 , {C̃i,d, elabi,d}d∈[m]

)}
i∈I

.

10. Compute {yi}i∈H as follows.

(a) Provide the {msg
(2)
i,0 }i∈I to FMS.Sim0. If FMS.Sim0 outputs continue then continue and otherwise

set {yi}i∈H := ⊥ and skip the next step.

(b) Skip.

(c) For 0 < d ≤ m, and i ∈ H,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d)).

ii. Decrypt st
(2)
i,d := dec(ski, est

(2)
i,d ).

iii. if d < m, compute

(
K̂0

1,d . . . K̂
0
n,d

K̂1
1,d . . . K̂

1
n,d

)
:= MPC3(st

(2)
i,d , {msg

(2)
j,d}j∈[n]),

else, compute yi := MPC3(st
(2)
i,d , {msg

(2)
j,d}j∈[n]).

11. Output {yi}i∈H and A’s output. If q 6= Q go back to step 6.

HybA2 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA2 we invoke the security of PRG at depth d = 1 for each honest

party i ∈ H. We replace all honest parties PRG outputs for depth 1 with U(i, p∗q [1], c) and V(i, p∗q [1], c), for
all circuit queries q ∈ [Q] (note these values are the same for each query since they correspond to the single
root of the tree).

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,U(i, p∗q [1], c))).

ii. For each t ∈ [`], set Kc
i,t := PRF(V(i, p∗q [1], c), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.
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(a) Skip.

(b) For d = 1,

i. For each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Skip.

iii. Skip.

iv. Skip.

v. Skip.

vi. Skip.

vii. For each i ∈ H,

A. Compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))).
B. Skip.

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(V(i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

HybA3 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA3 , we invoke the security of PRF at depth d = 1 for each honest

party i ∈ H.

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,U(i, p∗q [1], c))).

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) For d = 1,

i. For each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Skip.

iii. Skip.

iv. Skip.
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v. Skip.

vi. Skip.

vii. For each i ∈ H,

A. Compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))).
B. Skip.

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

HybA4 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA4 we copy the labels corresponding to the input that will be un-

covered at depth 1 for all honest parties i ∈ H and all circuit queries q ∈ [Q]. Indistinguishability follows
from semantic security of LabEnc.

During the security reduction, we only rely on indistinguishability of ciphertexts encrypted under keys
Ki,d \ K̂c

i,d, which are not used for anything beyond encypting the labels. Further, there is one challenge
ciphertext for each party, label index t ∈ [`] and circuit query, i.e. |H|`Q in total.

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,U(i, p∗q [1], c))).

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) For d = 1,

i. For each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Skip.

iii. Skip.

iv. Skip.

v. Skip.

vi. Skip.
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vii. For each i ∈ H,

A. Compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))).
B. Write labi,d as {labi,d,t,b}t∈[`],b∈{0,1}, and set labi,d := (l̂abi,d, l̂abi,d), where l̂abi,d :={

lab
i,d,t,

(
z
pq [d]

i,d

)
t

}
t∈[`]

.

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

HybA5 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA5 , we make the keys Kc
i,t at depth d = 1 for all honest parties

i ∈ H independent of zci,1[t]. Therefore, they are also independent of (st
(1)
i,1,c,msg

(1)
i,1,c) of MPC1. The fact

that each pair of messages are identical and LabEnc randomly permutes the output order of each ciphertext
pair implies perfect indistinguishability.

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,U(i, p∗q [1], c))).

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, 0)).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) For d = 1,

i. For each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Skip.

iii. Skip.

iv. Skip.

v. Skip.

vi. Skip.

vii. For each i ∈ H,

A. Compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))).
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B. Write labi,d as {labi,d,t,b}t∈[`],b∈{0,1}, and set labi,d := (l̂abi,d, l̂abi,d), where l̂abi,d :={
lab

i,d,t,
(
z
pq [d]

i,d

)
t

}
t∈[`]

.

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

HybA6 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA6 we simulate the honest party’s garbled circuits at depth d = 1

for each circuit query q ∈ [Q] . In total, we simulate |H|Q garbled circuits. Indistinguishability follows from
simulation security of garbling.

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,U(i, p∗q [1], c))).

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, 0)).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) For d = 1,

i. For each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Skip.

iii. Skip.

iv. Skip.

v. Set (st
(2)
i,d ,msg

(2)
i,d )← MPC2(1λ,CRS, i, st

(1)
i,d,pq [d], {msg

(1)
j,d,pq [d]}j∈[n]).

vi. Skip.

vii. For each i ∈ H,

A. Compute (C̃i,d, l̂abi,d)← GSim(1w, 1h,Wrap(ski, (st
(2)
i,d ,msg

(2)
i,d ))).

B. Set labi,d := (l̂abi,d, l̂abi,d).

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).
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D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

HybA7 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA7 , for all honest parties i ∈ H, circuit queries q ∈ [Q] and depth

d = 1, we replace the encryption of est
(2)
i,1 with an encryption of zero, i.e enc(ski,~0). Indistinguishability

follows from semantic security of enc. During the security reduction, there will be |H|Q challenge ciphertexts.

In step 10.(b).(ii), we do not decrypt est
(2)
i,d , and instead use st

(2)
i,d from step 8.(b).(v).

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,U(i, p∗q [1], c))).

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, 0)).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .

8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) For d = 1,

i. For each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Skip.

iii. Skip.

iv. Skip.

v. Set (st
(2)
i,d ,msg

(2)
i,d )← MPC2(1λ,CRS, i, st

(1)
i,d,pq [d], {msg

(1)
j,d,pq [d]}j∈[n]).

vi. Skip.

vii. For each i ∈ H,

A. Set est
(2)
i,d := enc(ski,~0) and compute (C̃i,d, l̂abi,d)← GSim(1w, 1h, (est

(2)
i,d ,msg

(2)
i,d )).

B. Set labi,d := (l̂abi,d, l̂abi,d).

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,
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i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

10. Compute {yi}i∈H as follows.

(a) Provide the {msg
(2)
i,0 }i∈I to FMS.Sim0. If FMS.Sim0 outputs continue then continue and otherwise

set {yi}i∈H := ⊥ and skip the next step.

(b) For d = 1, and i ∈ H,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d)).

ii. Skip.

iii. if d < m, compute

(
K̂0

1,d . . . K̂
0
n,d

K̂1
1,d . . . K̂

1
n,d

)
:= MPC3(st

(2)
i,d , {msg

(2)
j,d}j∈[n]),

else, compute yi := MPC3(st
(2)
i,d , {msg

(2)
j,d}j∈[n]).

(c) For 1 < d ≤ m, and i ∈ H,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d)).

ii. Decrypt st
(2)
i,d := dec(ski, est

(2)
i,d ).

iii. if d < m, compute

(
K̂0

1,d . . . K̂
0
n,d

K̂1
1,d . . . K̂

1
n,d

)
:= MPC3(st

(2)
i,d , {msg

(2)
j,d}j∈[n]),

else, compute yi := MPC3(st
(2)
i,d , {msg

(2)
j,d}j∈[n]).

HybA8 (1λ, z, I, {xi}i∈[n]) : In Hybrid HybA8 we simulate the MPC at depth d = 1 for all circuit queries

q ∈ [Q]. In total, Q MPCs are simulated. Indistinguishability follows from the security of FMS.MPC.

7. Compute {msg
(2)
i,0 }i∈H as follows.

(a) For each i ∈ I, c ∈ {0, 1},

i. Compute zci,1 := (st
(1)
i,1,c,msg

(1)
i,1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,0))).

ii. For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,0), (t, zci,1[t])).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(b) For each i ∈ H, c ∈ {0, 1},
i. Skip.

ii. For each t ∈ [`], set Kc
i,t := R((i, p∗q [1], c), (t, 0)).

iii. Set K̂c
i,1 := {Kc

i,t}t∈[`].

(c) Provide

(
K̂0

1,1 . . . K̂
0
n,1

K̂1
1,1 . . . K̂

1
n,1

)
to FMS.Sim0, who responds with {msg

(2)
i,0 }i∈H .
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8. Compute
{
{C̃i,d, elabi,d}d∈[m]

}
i∈H

as follows.

(a) Skip.

(b) For d = 1,

i. For each i ∈ I, compute ri,d := Gpq [d](ri,d−1), and for each i ∈ H, set ri,d := U(i, p∗q [d], pq[d]).

ii. Initialize FMS.Sim with inputs (1λ, z, I, {xi, ri,d}i∈I). Denote this instance of the simulator

by FMS.Simd. Run FMS.Simd to obtain
(
CRS, {msg

(1)
i,d}i∈H

)
.

iii. Ignore FMS.Simd’s output, and send back {msg
(1)
i,d,pq [d]}i∈I .

iv. FMS.Simd queries {x̃i, r̃i,d}i∈I to its ideal functionality, which is ignored.

v. Compute as follows.

A. For each i ∈ [n], c ∈ {0, 1},
• Compute zci,d+1 := (st

(1)
i,d+1,c,msg

(1)
i,d+1,c)← MPC1(1λ,CRS, i, (xi,Gc(ri,d))).

• For each t ∈ [`], set Kc
i,t := PRF(Hc(ri,d), (t, z

c
i,d+1[t])).

• Set K̂c
i,d+1 := {Kc

i,t}t∈[`].

B. Provide

(
K̂0

1,d+1 . . . K̂
0
n,d+1

K̂1
1,d+1 . . . K̂

1
n,d+1

)
to FMS.Simd, who responds with {msg

(2)
i,d}i∈H .

vi. Skip.

vii. For each i ∈ H,

A. Set est
(2)
i,d := enc(ski,~0) and compute (C̃i,d, l̂abi,d)← GSim(1w, 1h, (est

(2)
i,d ,msg

(2)
i,d )).

B. Set labi,d := (l̂abi,d, l̂abi,d).

C. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := R((i, p∗q [d], pq[d]), (t, b)).

D. Compute elabi,d ← LabEnc(Ki,d, labi,d).

(c) For 1 < d ≤ m, and i ∈ H,

i. If d < m, then compute (C̃i,d, labi,d)← Garble(1λ,Wrap(ski,MPC2(N, ·, ·))),
else, compute (C̃i,m, labi,m)← Garble(1λ,Wrap(ski,MPC2(C, ·, ·))).

ii. Set Ki,d := {Ki,t,b}t∈[`],b∈{0,1}, where each Ki,t,b := PRF(Hpq [d](ri,d−1), (t, b)).

iii. Compute elabi,d ← LabEnc(Ki,d, labi,d).

iv. Compute ri,d := Gpq [d](ri,d−1).

10. Compute {yi}i∈H as follows.

(a) Provide the {msg
(2)
i,0 }i∈I to FMS.Sim0. If FMS.Sim0 outputs continue then continue and otherwise

set {yi}i∈H := ⊥ and skip the next step.

(b) For d = 1,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).

B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d)).

ii. Provide the {msg
(2)
i,d}i∈I to FMS.Simd. If FMS.Simd outputs continue then continue and oth-

erwise set {yi}i∈H := ⊥ and skip to step 11.

(c) For 1 < d ≤ m, and i ∈ H,

i. For each j ∈ [n],

A. Compute l̂abj,d := LabDec(K̂
pq [d]
j,d , elabj,d).
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B. Evaluate (est
(2)
j,d ,msg

(2)
j,d) := GEval(C̃j,d, l̂abj,d)).

ii. Decrypt st
(2)
i,d := dec(ski, est

(2)
i,d ).

iii. if d < m, compute

(
K̂0

1,d . . . K̂
0
n,d

K̂1
1,d . . . K̂

1
n,d

)
:= MPC3(st

(2)
i,d , {msg

(2)
j,d}j∈[n]),

else, compute yi := MPC3(st
(2)
i,d , {msg

(2)
j,d}j∈[n]).

Observe that HybridA8 is exactly r.SimA1 (assuming that m > 1, so that steps 8.(b).(vi) and 10.(b).(iv) are
not invoked).

We iterate over following hybrids for ξ ∈ [m] until we obtain r.Simm.

HybA9+(7ξ−7)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−7) we change the ξth level of randomness (of the PRG)

for honest parties to uniform. This hybrid has a similar flavor as Hyb2 and is therefore omitted.

HybA9+(7ξ−6)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−6) we change the PRFs for honest parties at depth

(ξ + 1) to uniform. This hybrid has a similar flavor as Hyb3 and is therefore omitted.

HybA9+(7ξ−5)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−5) we copy the labels of the honest parties at depth

(ξ + 1). This hybrid has a similar flavor as Hyb4 and is therefore omitted.

HybA9+(7ξ−4)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−4) we make the keys Kc

i,t of the honest parties at depth

(ξ + 1) independent of zci,ξ+1[t] and hence of (st
(1)
i,ξ+1,c,msg

(1)
i,ξ+1,c) of MPC1. This hybrid has a similar flavor

as Hyb5 and is therefore omitted.

HybA9+(7ξ−3)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−3) we simulate the honest parties’ garbled circuits at

depth (ξ + 1). This hybrid has a similar flavor as Hyb6 and is therefore omitted.

HybA9+(7ξ−2)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−2) we replace for all i ∈ H, est

(2)
i,ξ+1 with an encryption

of zero, i.e enc(ski,~0). This hybrid has a similar flavor as Hyb7 and is therefore omitted.

HybA9+(7ξ−1)(1
λ, z, I, {xi}i∈[n]) : In Hybrid HybA9+(7ξ−1) we initialize and use FMS.Simξ+1 to generate for all

i ∈ H, msg
(2)
i,ξ+1. This hybrid has a similar flavor as Hyb8 and is therefore omitted.
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[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychro-
niadou. Laconic oblivious transfer and its applications. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 33–65. Springer, Heidelberg,
August 2017.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostrovsky,
and Vinod Vaikuntanathan. Reusable non-interactive secure computation. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2019, Part III, LNCS, pages 462–488. Springer,
Heidelberg, August 2019.

57
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