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Abstract

We re-visit Unclonable Encryption as introduced by Gottesman in 2003 [9]. We look
at the combination of Unclonable Encryption and Key Recycling, while aiming for low
communication complexity and high rate.
We introduce a qubit-based prepare-and-measure Unclonable Encryption scheme with re-
usable keys. Our scheme consists of a single transmission by Alice and a single classical
feedback bit from Bob. The transmission from Alice to Bob consists entirely of qubits.
The rate, defined as the message length divided by the number of qubits, is higher than
what can be achieved using Gottesman’s scheme [9]. We provide a security proof based
on the diamond norm distance, taking noise into account.

1 Introduction

1.1 Doing better than One-Time Pad encryption

Classically, the best confidentiality guarantee is provided by One-Time Pad (OTP) encryption.
If Alice and Bob share a uniform n-bit secret key, they can exchange an n-bit message with
information-theoretic security. In the classical setting Eve is able to save a copy of the
ciphertext. For the message to remain secure in the future, two conditions must be met:

1. The key is used only once.

2. The key is never revealed.

If a quantum channel is available, these conditions can both be relaxed. (i) Quantum Key
Recycling (QKR) [5,12,15] schemes provide a way of re-using encryption keys. (ii) Unclonable
Encryption (UE) [9] guarantees that a message remains secure even if the keys leak at some
time in the future.
In this paper we introduce a sheme that achieve both the key recycling and UE properties,
and we explicitly prove that this can be achieved with low communication complexity. Our
scheme acts only on individual qubits with simple prepare-and-measure operations.

1.2 Quantum Key Recycling

The most famous use of a quantum channel in the context of cryptography is Quantum Key
Distribution (QKD). First proposed in 1984 [4], QKD allows Alice and Bob to extend a
small key, used for authentication, to a longer key in an information-theoretically secure way.
Combined with classical OTP encryption this lets Alice and Bob exchange messages with
theoretically unconditional security. The QKD field has received a large amount of atten-
tion, resulting in QKD schemes that discard fewer qubits, various advanced proof techniques,
improved noise tolerance, improved rates, use of EPR pairs, higher-dimensional quantum sys-
tems etc. [1,2,8,10,13,16,19–22]. Much less known is that the concept of QKR was proposed
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two years before QKD [5]. QKR allows for the re-use of the secret encoding key when no
disturbance is detected. QKD and QKR have a lot in common. (i) They both encode classical
data in quantum states, in a basis that is not a priori known to Eve. (ii) They rely on the
no-cloning theorem [25] to guarantee that without disturbing the quantum state, Eve can not
gain information about the classical payload or about the basis.
The security of QKD has been well understood for a long time [e.g. 8,19–21], while a security
proof for qubit-based QKR has been provided fairly recently [12]. A cipher with near optimal
rate using high-dimensional qudits was introduced in 2005 [7]. Unfortunately, their method
requires a quantum computer to perform encryption and decryption. In 2017, a way of doing
authentication (and encryption) of quantum states with Key Recycling was proposed [18].
However this work did not lead to a prepare-and-measure variant.
The main advantage of QKR over QKD+OTP is reduced round complexity: QKR needs only
two rounds. After the communication from Alice to Bob, only a single bit of authenticated
information needs to be sent back from Bob to Alice. Recently, it was shown that QKR over
a noisy quantum channel can achieve the same communication rate as QKD (in terms of
message bits per qubit) even if Alice sends only qubits [14]; a further reduction of the total
amount of communicated data.

1.3 Unclonable Encryption

In 2003, D. Gottesman introduced a scheme called Unclonable Encryption1 (UE) [9] where
the message remains secure even if the encryption keys leak at a later time (provided that
no disturbance is detected). His work was motivated by the fact that on the one hand
many protocols require keys to be deleted, but on the other hand permanent deletion of
data from nonvolatile memory is a nontrivial task. In this light it is prudent to assume that
all key material which is not immediately discarded is in danger of becoming public in the
future; hence the UE security notion demands that the message stays safe even if all this key
material is made public after Alice and Bob decide that they detected no disturbance. (In case
disturbance is detected, the keys have to remain secret forever or permanently destroyed.)
Gottesman remarked on the close relationship between UE and QKD, and in fact constructed
a QKD variant from UE. The revealing of the basis choices in QKD is equivalent to revealing
keys in UE. It is interesting to note that Gottesman’s UE construction allows partial re-use
of keys. However, it still expends one bit of key material per qubit sent. In the current paper
we introduce qubit-based UE without key expenditure.
Since QKR sends a message directly instead of establishing a key for later use, QKR protocols
are natural candidates to have the UE property. In the case of noiseless quantum channels,
the high-dimensional encryption scheme [7] and the qubit-based schemes [12,15] seem to have
UE; for noisy channels [15] with modified parameters also seems to have UE. However, none
of these conjectures have been explicitly stated or proven, which is a shame since resilience
against key leakage is an interesting security feature. The QKR protocol where Alice sends
only qubits [14] is clearly not unclonable, due to the fact that single-use keys are stored at
the end of each round.

1This is slightly different from the unclonability notion of Broadbent and Lord [3] which considers two
collaborating parties who both wish to recover the plaintext.
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2 Contributions

We investigate the possibility of constructing an Unclonable Encryption scheme with recy-
clable keys, while aiming for low communication complexity and high rate.
We consider the following setting. Alice and Bob have a reservoir of shared key material. Alice
sends data to Bob in N chunks. Each chunk individually is tested by Bob for consistency
(sufficiently low noise and valid MAC). In case of reject they have to access new key material
from the reservoir. In case of accept, Alice and Bob re-use their key material; this may
be done either by keeping keys unchanged or by re-computing keys without accessing the
reservoir. If the N ’th round was an accept, all keys of round N are assumed to become
public.

• We define the Key Recycling (KR) and Unclonable Encryption (UE) properties in terms
of the diamond norm. For this definition we show a relation between KR and UE: If a KR
scheme re-uses all its long-term secrets in unchanged form upon accept, then it also has
the UE property.

• We introduce KRUE, a qubit-based prepare-and-measure scheme that satisfies KR and UE.
(Upon accept some of the keys are kept and some are updated.) Alice sends a single
transmission, which consists entirely of qubits. Bob responds with a single classical feedback
bit. We provide a security proof by upper bounding the diamond distance between the
protocol and its idealized functionality. In particular, we use a reduction to the diamond
distance that is associated with the security of QKD [19]. In the case of a noiseless channel
this reduction is almost immediate, without involving any inequalities. For a noisy quantum
channel KRUE’s asymptotic communication rate equals the asymptotic QKD rate minus
h(β), where β is the bit error rate of the quantum channel and h is the binary entropy
function. The difference in rate is caused by the fact that part of the message in KRUE is a
new mask for protecting a syndrome in the next round.

• Next we introduce KRUE∗, a stripped down version of KRUE which needs an external mecha-
nism for transporting the next-round mask. For the external mechanism we propose a QKR
scheme [14]. This has the advantage that Alice still needs only a single transmission which
consists entirely of qubits. The rate of the combined scheme QKR+KRUE∗ is higher than
the rate of KRUE but lower than the QKD rate. Also, if one would combine Gottesman’s
scheme with a secure key update mechanism in order to get the KR property, the rate of
that combination would be half the rate of QKR+KRUE∗.

The outline of the paper is as follows. After introducing notation and preliminaries in Sec-
tion 3, we introduce the attacker model and security definition in Section 4. We then introduce
the KRUE protocol (Section 5) and provide its security proof (Section 6). In Section 7 we in-
troduce KRUE∗ and discuss its composition with QKD and QKR as external mechanisms to
transport the new mask. Finally, in Section 8 we compare our schemes to existing qubit-based
alternatives.

3 Preliminaries

3.1 Notation and terminology

Classical Random Variables are denoted with capital letters, and their realisations with lower-
case letters. The expectation with respect to X is denoted as Ex f(x) =

∑
x∈X Pr[X = x]f(x).
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For the ` most significant bits of the string s we write s[:`]. The Hamming weight of a string
s is denoted as |s|. The notation ‘log’ stands for the logarithm with base 2. The notation h
stands for the binary entropy function h(p) = p log 1

p + (1 − p) log 1
1−p . Sometimes we write

h(p1, . . . , pk) meaning
∑k

i=1 pi log 1
pi

. Bitwise XOR of binary strings is written as ‘⊕’. The
Kronecker delta is denoted as δab. We will speak about ‘the bit error rate β of a quantum
channel’. This is defined as the probability that a classical bit x, sent by Alice embedded in
a qubit, arrives at Bob’s side as the flipped value x̄. A linear error-correcting code with a
` × n generator matrix G can always be written in systematic form, G = (1`|Γ), where the
`× (n− `) matrix Γ contains the checksum relations. For message p ∈ {0, 1}`, the codeword
cp = p ·G then has p as its first ` bits, followed by n− ` redundancy bits.
For quantum states we use Dirac notation. A qubit with classical bit x encoded in basis b is
written as |ψbx〉. The set of bases is B. In case of BB84 states we have B = {x, z}; in case of
6-state encoding B = {x, y, z}. The notation ‘tr’ stands for trace. Let A have eigenvalues λi.
The 1-norm of A is written as ‖A‖1 = tr

√
A†A =

∑
i |λi|. States with non-italic label ‘A’,

‘B’ and ‘E’ indicate the subsystem of Alice/Bob/Eve.
Consider classical variables X,Y and a quantum system under Eve’s control that depends on
X and Y . The combined classical-quantum state is ρXY E = Exy |xy〉〈xy| ⊗ ρE

xy. The state

of a sub-system is obtained by tracing out all the other subspaces, e.g. ρY E = trXρ
XY E =

Ey |y〉〈y| ⊗ ρE
y , with ρE

y = Ex ρE
xy. The fully mixed state on HA is denoted as χA. We also use

the notation µX = Ex |x〉〈x| for a classical variable X that is not necessarily uniform.
We write S(H) to denote the space of density matrices on Hilbert space H, i.e. positive semi-
definite operators acting on H. Any quantum channel can be described by a completely
positive trace-preserving (CPTP) map E : S(HA) → S(HB) that transforms a mixed state
ρA to ρB: E(ρA) = ρB. For a map E : S(HA) → S(HB), the notation E(ρAC) stands for
(E ⊗ 1C)(ρAC), i.e. E acts only on the ‘A’ subsystem. Applying a map E1 and then E2

is written as the combined map E2 ◦ E1. The diamond norm of E is defined as ‖E‖� =
1
2 supρAC∈S(HAC) ‖E(ρAC)‖1 with HC an auxiliary system that can be considered to be of the
same dimension as HA. The diamond norm ‖E − E ′‖� can be used to bound the probability
of distinguishing two CPTP maps E and E ′ given that the process is observed once. The
maximum probability of a correct guess is 1

2 + 1
4‖E − E ′‖�. In quantum cryptography, one

proof technique considers Alice and Bob performing actions on noisy EPR pairs. These
actions are described by a CPTP map E acting on the input EPR states and outputting
classical outputs for Alice and Bob, and correlated quantum side information for Eve. The
security of such a protocol is quantified by the diamond norm between the actual map E and
an idealised map F which produces perfectly behaving outputs (e.g. perfectly secret QKD
keys). When ‖E − F‖� ≤ ε we can consider E to behave ideally except with probability ε;
this security metric is composable with other (sub-)protocols [21].
A family of hash functions H = {h : X → T } is called pairwise independent (a.k.a. 2–
independent or strongly universal) [24] if for all distinct pairs x, x′ ∈ X and all pairs y, y′ ∈ T
it holds that Prh∈H [h(x) = y∧h(x′) = y′] = |T |−2. Here the probability is over random h ∈ H.
We define the rate of a quantum communication protocol as the number of message bits
communicated per sent qubit.

3.2 Post-selection

For protocols that are invariant under permutation of their inputs it has been shown [6] that
security against collective attacks (same attack applied to each qubit individually) implies
security against general attacks, at the cost of extra privacy amplification. Let E be a protocol
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that acts on S(H⊗nAB) and let F be the perfect functionality of that protocol. If for all input
permutations π there exists a map Kπ on the output such that E ◦ π = Kπ ◦ E , then

‖E − F‖� ≤ (n+ 1)d
2−1 max

σ∈S(HABE)

∥∥∥(E − F)(σ⊗n)
∥∥∥

1
(1)

where d is the dimension of the HAB space. (d = 4 for qubits). The product form σ⊗n

greatly simplifies the security analysis: now it suffices to prove security against ‘collective’
attacks, and to pay a price 2(d2− 1) log(n+ 1) in the amount of privacy amplification, which
is negligible compared to n.

3.3 Noise symmetrisation with random Pauli operators

In [19] it was shown that for n-EPR states in factorised form, as obtained from e.g. Post-
selection, a further simplification is possible. For each individual qubit j, Alice and Bob
apply the Pauli operation σαj to their half of the EPR pair, with αj ∈ {0, 1, 2, 3} random and
public; then they forget α. The upshot is that Eve’s state (the purification of the Alice+Bob
system) is simplified to the 4× 4 diagonal matrix Diag(1− 3

2γ,
γ
2 ,

γ
2 ,

γ
2 ). Only one parameter

is left over, the bit error probability γ caused by Eve. This symmetrisation trick is allowed
when the statistics of the variables in the protocol is invariant under the Pauli operations.

4 Attacker model and security definitions

4.1 Attacker model

We work in same setting as Gottesman [9], as discussed in Section 1.3. We distinguish between
on the one hand long-term secrets and on the other hand short-term secrets. A variable is
considered short-term only if it is created2 and immediately operated upon locally (without
waiting for incoming communication), and then deleted. All other variables are long-term.
(An example of a short-term variable is a nonce that is generated, immediately used a function
evaluation and then deleted. On the other hand, all keys that are stored between protocol
rounds are long-term.)
We consider two world views.

• World1. All secrets can be kept confidential indefinitely or destroyed.

• World2. Long-term secrets are in danger of leaking at some point in time.

There are several motivations for entertaining the second world view. (a) It is difficult to
permanently erase data from nonvolatile memory. (b) Whereas everyone understands the
necessity of keeping message content confidential, it is not easy to guarantee that protocol
implementations (and users) handle the keys with the same care as the messages.
QKR protocols are typically designed to be secure in world1. In this paper we prove security
guarantees that additionally hold in world2. One way of phrasing this is to say that we add
‘user-proofness’ to QKR.
Alice sends data to Bob in N chunks. We refer to the sending of one chunk as a ‘round’.3 In
each round Bob tells Alice if he noticed a disturbance (‘reject’) or not (‘accept’). In case
of reject they are alarmed and they know that they must take special care to protect the

2Performing a measurement on a quantum state is also considered to ‘create’ a classical variable.
3One data transmission will be called a pass. A round consists of multiple passes.
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keys of this round indefinitely (i.e. a fallback to World1 security). Crucially, we assume that
a key theft occurring before the end of round N is immediately noticed by Alice and/or Bob.
Without this assumption it would be impossible to do Key Recycling in a meaningful way.
We allow all keys to become public after round N .
The rest of the attacker model consists of the standard assumptions: no information, other
than specified above, leaks from the labs of Alice and Bob; there are no side-channel attacks;
Eve has unlimited (quantum) resources; all noise on the quantum channel is considered to be
caused by Eve.

4.2 Security definitions

Let ρMKK̃TE = ρMKK̃TE
accept + ρMKK̃TE

reject be the state after execution of a quantum encryption
protocol, where M is the classical message, K stands for all the keys (and other long-term
secrets), K̃ the updated keys, T the transcript observed by Eve, and E Eve’s quantum side
information. The two parts, associated with outcomes accept and reject respectively, are
sub-normalized. In some existing QKR protocols, e.g. [12], the keys remain unchanged
(K̃ = K) in case of accept, whereas in other protocols, e.g. [14], there is always a key
update. Alice and Bob share a ‘reservoir’ of key material from which key refreshes are done
in case of reject.
The Encryption property (ENC) is defined as follows.

Definition 1 An encryption scheme with output ρMKTE is called ε-encrypting (ε-ENC) if it
satisfies

‖ρMTE − ρM ⊗ ρTE‖1 ≤ ε. (2)

Furthermore we will work with the following definitions.

Definition 2 A scheme with output ρMKK̃TE is called ε-recycling (ε-KR) if (i) the reservoir
is not accessed for creating the updated keys K̃accept and (ii) it satisfies

‖ρMK̃TE − ρK̃ ⊗ ρMTE‖1 ≤ ε. (3)

Definition 3 A scheme with output ρMKK̃TE is called ε-unclonable (ε-UE) if it satisfies

‖ρMKK̃TE
accept − ρM ⊗ ρKK̃TE

accept ‖1 ≤ ε. (4)

Note that other definitions exist. For instance, [12] has a recycling definition that allows Eve
to have partial information about one of the keys (the measurement basis), as long as the
min-entropy is high enough. Our preference for the above KR and UE definitions stems from
(i) the fact that it allows for a unified treatment of all the keys; (ii) compatibility with the
proof technique of [6, 19], which makes it possible to prove security of high-rate schemes.
Furthermore our KR definition is compatible with [7]. Also note that our KR and UE do not
automatically imply ENC. The ENC property has to be considered as a separate requirement.
For the combination of ENC and KR we have the following two lemmas.

Lemma 1

‖ρMK̃TE − ρM ⊗ ρK̃ ⊗ ρTE‖1 ≤ ε =⇒ ε-ENC ∧ 2ε-KR (5)
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Proof. Taking the lhs of (5) and tracing over K̃ yields ε-ENC. Furthermore, using the triangle

inequality we write ‖ρMK̃TE − ρK̃ ⊗ ρMTE‖1 ≤ ‖ρMK̃TE − ρM ⊗ ρK̃ ⊗ ρTE‖1 +‖ρM ⊗ ρK̃ ⊗
ρTE − ρK̃ ⊗ ρMTE‖1. Both terms individually are bounded by ε by the lhs of (5); the first
term directly, the second term after taking the K̃-trace. This proves 2ε-KR. �

Lemma 2

(K̃accept = K) ∧ ε1-ENC ∧ ε2-KR =⇒ (ε1 + ε2)-UE. (6)

Proof. With K̃accept = K we have ‖ρMKK̃TE
accept −ρM⊗ρKK̃TE

accept ‖1 ≤ ‖ρMKTE
accept −ρM⊗ρK⊗ρTE

accept‖1
+‖ρM ⊗ ρK ⊗ ρTE

accept − ρM ⊗ ρKTE
accept‖1. The first term is bounded by taking the trace over K

and using ε1-ENC. For the second we take the trace over M , yielding ‖ρKTE
accept−ρK⊗ρTE

accept‖1.
This expression is bounded by ε2, which is seen by taking the M -trace of (3). �

Lemma 1 allows us to prove both ENC and KR by upperbounding a single quantity. Lemma 2
is an important statement: any ENC scheme that upon accept re-uses its keys in unmodified
form and satisfies KR is automatically a UE scheme. It is interesting to note that [12]
has K̃accept = K but does not satisfy KR, whereas [14, 15] satisfies KR but does not have
K̃accept = K. By Theorem 4 in [7] and Lemma 2, the high-dimensional scheme of Damg̊ard
et al. [7] has the UE property.

4.3 CPTP maps

We consider again the sequence of N chunks. The KR property must hold in the first N − 1
rounds. The ENC and UE property must hold in all rounds. We write the statements of
Section 4.2 in terms of CPTP maps, to make contact with the proof technique of Section 3.2.
The different nature of the KR and UE property forces us to introduce two different notations
for the CPTP map that is executed by Alice and Bob. On the one hand, we write EKR for
one round of the protocol, where at the end of the round the old keys (from the beginning of
the round) are traced away. On the other hand, we write EUE for one round without such a
tracing operation. (The ENC property is not made explicit in this notation.) The following
condition implies that the above given security properties hold except with probability ε,

∀j∈{1,...,N}
∥∥∥E(j)

UE ◦ E
(j−1)
KR ◦ · · · ◦ E(1)

KR −F
(j)
UE ◦ F

(j−1)
KR ◦ · · · ◦ F (1)

KR

∥∥∥
�
≤ ε, (7)

where the superscript is the round index, and F stands for the idealized version of the protocol.
We can arrive at a simplified statement using the following lemma.

Lemma 3 For any CPTP maps A,A′,B,B′, it holds that

‖A ◦ B −A′ ◦ B′‖� ≤ ‖A−A′‖� + ‖B − B′‖�. (8)

Proof:

‖A ◦ B −A′ ◦ B′‖� = ‖A ◦ B −A′ ◦ B′ +A′ ◦ B − A′ ◦ B‖� (9)

≤ ‖(A−A′) ◦ B‖� + ‖A′ ◦ (B − B′)‖� (10)

≤ ‖A−A′‖� + ‖B − B′‖� (11)

where the last inequality holds because a CPTP map can never increase the trace distance.
�
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Using Lemma 3 it is easily seen that the following condition implies (7),

(N − 1)‖EKR −FKR‖� + ‖EUE −FUE‖� ≤ ε. (12)

It is therefore sufficient to upper bound the single-round quantities ‖EKR−FKR‖� and ‖EUE−
FUE‖�. The ideal mapping F is obtained from E as follows. From E(ρABE) one traces out
those classical variables that are supposed to remain unknown to Eve, and takes a tensor
product with an isolated mixed state of these variables. In the case of EKR the relevant
variables are the message m and the next-round keys, which we denote here as k̃. In the case
of EUE it is only the message, and only the accept part of the mapping is relevant. (Upon
reject the functionality of EUE is ideal by definition.) Hence we have

‖EKR −FKR‖� =
1

2
sup
ρABE

∥∥∥EKR(ρABE)− E
mk̃

|mk̃〉〈mk̃| ⊗ trMK̃ EKR(ρABE)
∥∥∥

1
(13)

‖EUE −FUE‖� =
1

2
sup
ρABE

∥∥∥EacceptUE (ρABE)− E
m
|m〉〈m| ⊗ trM EacceptUE (ρABE)

∥∥∥
1
, (14)

where in (14) the reject part vanishes as we have implicitly assumed that E has ideal
functionality in the reject case, i.e. ENC holds.

5 The proposed scheme, KRUE

We propose a qubit-based prepare-and-measure scheme for Unclonable Encryption with Key
Recycling. We will refer to it as KRUE.

5.1 Pairwise independent hashing with easy inversion

We will need the privacy amplification step to be easily computable in two directions. Un-
fortunately the code-based construction due to Gottesman [9] does not work with the proof
technique of [19], which requires a family of universal hash functions. We will be using a fam-
ily of invertible functions F : {0, 1}ν → {0, 1}ν that has the collision properties of a pairwise
independent hash function. An easy way to construct such a family is to use multiplication in
GF (2ν). Let u ∈ GF (2ν) be randomly chosen. Define Fu(x) = u ·x, where the multiplication
is in GF (2ν). A pairwise independent family of hash functions Φ from {0, 1}ν to {0, 1}`, with
` ≤ ν, is implemented by taking the ` most significant bits of Fu(x). We denote this as

Φu(x) = Fu(x)[:`]. (15)

The inverse operation is as follows. Given c ∈ {0, 1}`, generate random r ∈ {0, 1}ν−` and
output F inv

u (c||r). It obviously holds that Φu(F inv
u (c||r)) = c. Computing an inverse in

GF (2ν) costs O(ν log2 ν) operations [17].

5.2 Protocol steps

Alice and Bob have agreed on a MAC function Γ : {0, 1}λ×{0, 1}`−λ → {0, 1}λ, the function
families F and Φ as discussed in Section 5.1, with ν = k, and a linear error correcting
code which has encoding function Enc : {0, 1}k → {0, 1}n in systematic form and decoding
Dec : {0, 1}n → {0, 1}k.
In round j, Alice wants to send a message µj ∈ {0, 1}`−(n−k)−2λ−1. We will often drop
the index j for notational brevity. The key material shared between Alice and Bob consists
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of a mask z ∈ {0, 1}`, a MAC key kMAC ∈ {0, 1}λ, a basis sequence b ∈ Bn, a MAC key
kfb ∈ {0, 1}λ for the feedback bit, a one-time pad kOTP ∈ {0, 1} for the feedback bit, a key
u ∈ {0, 1}k for universal hashing and a key e ∈ {0, 1}n−k to mask the redundancy bits. They
have a reservoir of spare key material (krej) from which to refresh their keys in case of reject.
In each round Alice and Bob perform the following steps (see Fig. 1):
Encryption:

Alice generates random strings κ ∈ {0, 1}λ+1+n−k and r ∈ {0, 1}k−`. She computes the
authentication tag τ = Γ(kMAC, µ‖κ), the augmented message m = µ‖κ‖τ , the ciphertext
c = z ⊕m, the reversed privacy amplification p = F inv

u (c‖r) ∈ {0, 1}k and the qubit payload
x = Enc(p)⊕ (~0k‖e) ∈ {0, 1}n. She prepares |Ψ〉 =

⊗n
i=1 |ψbixi〉 and sends it to Bob.

Decryption:
Bob receives |Ψ〉′. He measures |Ψ〉′ in the basis b. The result is x′ ∈ {0, 1}n. He decodes
p̂ = Dec(x′ ⊕ (~0k‖e)). He computes ĉ = Φu(p̂) and µ̂‖κ̂‖τ̂ = ĉ ⊕ z. He sets ω = 1 (accept)
if Γ(kMAC, µ̂‖κ̂) == τ̂ , otherwise ω = 0 (reject). He computes τfb = Γ(kfb, ω ⊕ kOTP) and
sends ω ⊕ kOTP and τfb to Alice.
Key Update:
Alice and Bob perform the following actions (a tilde denotes the key for the next round):
In case of accept: Re-use b, u, kMAC, z. Set next round keys: (k̃fb, k̃OTP, ẽ) = κ.
In case of reject: Re-use b, u, kMAC. Take fresh z̃, k̃fb, k̃OTP, ẽ from krej.

Receive ⌧ 0fb,!0 � kOTP.
Verify ⌧ 0fb == �(kfb,!0 � kOTP)

Always re-use kMAC, u, b
Next round keys in Accept case:
Re-use z, set (k̃fb, k̃OTP, ẽ) = 

Reject case: z̃, k̃fb, k̃OTP, ẽ from krej

Measure | bi
xi

0i in the bi basis yielding x0

Decoding: p̂ = Dec(x0 �~0ke)
Ciphertext: ĉ = �u(p̂)
Message: µ̂k̂k⌧̂ = ĉ � z

Only if �(kMAC, µ̂k̂) == ⌧̂ and
Dec succeeds: ! = 1, ! = 0 otherwise
⌧fb = �(kfb,! � kOTP)

BobAlice

nO

i=1

| bi
xi
i

Take random  2 {0, 1}�+1+n�k

And r 2 {0, 1}k�`

Tag: ⌧ = �(kMAC, µk)
Message: m = µkk⌧
Ciphertext: c = z � m
Privacy Ampl.: p = F inv(ckr)
Payload: x = Enc(p) �~0ke

Prepare n quantum states: | bi
xi
i

! � kOTP, ⌧fb

Shared secret keys:
z, u, b, e, kMAC, kfb, kOTP, krej

Always re-use kMAC, u, b
Next round keys in Accept case:
Re-use z, set (k̃fb, k̃OTP, ẽ) = ̂

Reject case: z̃, k̃fb, k̃OTP, ẽ from krej

Figure 1: Protocol steps of a single round.

After round N , according to the attacker model, all keys from all rounds leak4 except for

4Optionally this leakage can be made part of the protocol, i.e. Alice and Bob publish the keys.
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masks z associated with reject events. I.e. what leaks is: b, u, kMAC, {k(j)
fb , k

(j)
OTP, e

(j)}Nj=1,

and if round N was accept also z(N).
Remarks:

• The augmented message m contains the three keys k̃fb, k̃OTP, ẽ for the next round. This
means that qubits are ‘spent’ in order to send something other than µ, which reduces the
communication rate. Here the mask e ∈ {0, 1}n−k for the redundancy bits is the dominant
part; its size is asymptotically nh(β) bits, giving rise to a rate penalty term h(β) familiar
from QKD.

• The accept/reject feedback bit is encrypted, which temporarily prevents Eve from gaining
information from ‘oracle’ access to the feedback. This allows us to re-use b in unmodified
form after accept.

• Even in the case of known plaintext, from Eve’s point of view the ‘payload’ x ∈ {0, 1}n
in the state

⊗n
i=1 |ψbixi〉 is uniformly distributed. The z masks ` bits; then appending r

increases that to k bits; finally the e masks the n− k redundancy bits.

5.3 EPR version of the protocol

We will base the security proof on the EPR version of the protocol, making use of Post-
selection (Section 3.2) and the random-Pauli noise symmetrisation technique (Section 3.3).
n noisy singlet states are produced by an untrusted source, e.g. Eve. One half of each EPR
pair is sent to Alice, the other half to Bob. Alice and Bob apply the random Pauli operations
as described in Section 3.3. Then Alice measures her qubits in the bases b ∈ Bn resulting in
a string s ∈ {0, 1}n. Bob too measures his qubits in basis b, which yields t ∈ {0, 1}n. Alice
computes x as specified in Section 5.2, then computes a = x ⊕ s and sends a to Bob over
an authenticated classical channel. Bob receives a, computes x′ = t̄ ⊕ a and performs the
decryption steps specified in Section 5.2.
We are allowed to use Post-selection because our protocol is invariant under permutation of
the EPR pairs. A permutation re-arranges the noise in the observed strings s and t over the
bit positions {1, . . . , n}; however, the error correction step is insensitive to such a change.
The use of the noise symmetrisation technique is allowed because the statistics is invariant
under the Pauli operations. In the case of BB84 encoding and 6-state encoding, the Paulis
cause bit flips in the string x ∈ {0, 1}n in positions known to Alice and Bob, which does not
change the protocol in any essential way.5 Security of the EPR version implies security of the
prepare-and-measure protocol of Section 5.2.

6 Security proof for the EPR verison of the protocol

6.1 CPTP maps

We now specify the exact form of the CPTP map which represents one round. We start with
EUE and write EKR = TKR◦EUE, where TKR is a partial trace operation. The EUE can be viewed
as four consecutive maps: an initialization step I where the input variables are prepared; a
measurement step M; a post-processing step P representing all further computations; a

5In 8-state encoding [23], applying a Pauli changes the basis b in a way known to Alice and Bob. Again,
this does not affect the security.
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partial trace step TUE where all variables that are not part of the output or the transcript are
traced away,

EUE = TUE ◦ P ◦M ◦ I. (16)

The initialization merely appends the input variables,

I(ρABE) = E
mbzue

|mbzue〉〈mbzue| ⊗ ρABE. (17)

Here b, z, u, e are uniform, but m not necessarily. The measurement acts on the b-space and
ρABE, outputting the strings s, t and Eve’s state ρE

bst, which is correlated to the measurement
basis b and the outcomes s, t,

M(|b〉〈b| ⊗ ρABE) = E
st
|bst〉〈bst| ⊗ ρE

bst. (18)

Here the distribution of s and t is governed by the i.i.d. noise with noise parameter γ. The
marginals of s and t are uniform, while for all j ∈ {1, . . . , n} it holds that Pr[sj = tj ] = γ.
In the post-processing the flag ω is computed as a function of s and t which we will denote as
θst. Let nβ be the number of errors that can be corrected by the error-correcting code. Then

θst =

{
1 if |s̄⊕ t| ≤ nβ
0 if |s̄⊕ t| > nβ

. (19)

We will use the notation Pcorr(n, β, γ) for the probability of the event θst = 1.

Pcorr(n, β, γ)
def
= E

st
θst =

bnβc∑

c=0

(
n

c

)
γc(1− γ)n−c. (20)

The result of applying I,M,P is given by

(P ◦M ◦ I)(ρABE) = E
mbzuest

|mbzuest〉〈mbzuest| ⊗ ρE
bst ⊗

∑

capxx′ωz̃

E
r
|capxx′ωz̃r〉〈capxx′ωz̃r|

δa,s⊕xδc,m⊕zδp,F inv
u (c‖r)δx,p‖[Red(p)⊕e]δx′,t̄⊕aδω,θst

[
ωδz̃z +

ω

2`
]
. (21)

Here r is uniform and ‘Red(p)’ stands for the redundancy bits appended to p in the systematic-
form ECC encoding Enc(p). In the final step TUE we trace away all variables that are not
part of the transcript or the output: s, t, c, p, x, x′, r. These variables exist only temporarily
and can be quickly discarded by Alice and Bob; they are never stored in nonvolatile memory.
The a and ω are observed by Eve as part of the communication. (The ω in encrypted form,
but the key is assumed to leak in the future.) The b, z, u, e are assumed to leak in the future
and thus they have to be kept as part of the state. We obtain6

EUE(ρABE) = E
mbzue

∑

az̃ω

|mbzueaz̃ω〉〈mbzueaz̃ω| ⊗ E
st
ρE
bst

∑

p

2`δΦu(p),m⊕z

2−kδs⊕a,p‖[Red(p)⊕e]δω,θst

[
ωδz̃z + ω2−`

]
. (22)

6Note that tracing out u or zz̃ in (22) yields a state in which the m-subspace is completely decoupled from
the rest of the Hilbert space. This shows that the scheme, when merely viewed as an encryption scheme,
protects m unconditionally as soon as the adversary does not know u or zz̃.
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As discussed in Section 4, only the accept part (the ω = 1 part) of the idealized FUE is
relevant. This is obtained as Faccept

UE (ρABE) = Em |m〉〈m| ⊗ trMEaccept
UE (ρABE). We get

Faccept
UE (ρABE) = E

mbzue

∑

az̃

|mbzueaz̃〉〈mbzueaz̃|δz̃z

⊗E
st
ρE
bstθst

∑

p

2`−kδs⊕a,p‖[Red(p)⊕e] E
m′
δΦu(p),m′⊕z. (23)

Note that this expression is sub-normalized; its trace equals Pcorr. We write

(Eaccept
UE −Faccept

UE )(ρABE) = E
mbzue

∑

az̃

|mbzueaz̃〉〈mbzueaz̃|δz̃z

⊗E
st
ρE
bstθst

∑

p

2`−kδs⊕a,p‖[Red(p)⊕e][δΦu(p),m⊕z − E
m′
δΦu(p),m′⊕z]. (24)

For the description of EKR we have to take (22) and trace out z, e, ω.

EKR(ρABE) = E
mbu

2−n
∑

az̃

|mbuaz̃〉〈mbuaz̃| ⊗ E
st
ρE
bst

[
θstδΦu((s⊕a)[:k]),m⊕z̃ + 2−`θst

]
. (25)

The ideal functionality FKR has m, b, u, z̃ decoupled from the rest of the system. We have
FKR(ρABE) = Embu 2−`

∑
z̃ |mbuz̃〉〈mbuz̃| ⊗ trMBUZ̃EKR(ρABE), which yields

FKR(ρABE) = E
mbu

2−n−`
∑

az̃

|mbuaz̃〉〈mbuaz̃| ⊗ E
st

E
b′
ρE
b′st. (26)

Note that Est Eb′ ρE
b′st = ρE.

Lemma 4 Let ρABE denote the purification of a 4n-dimensional state ρAB. Let b ∈ Bn be a
qubit-wise orthonormal basis. It holds that ρE

b = ρE.

Proof: Let PA
bs denote a projection operator on subsystem ‘A’ corresponding to a measurement

in basis b with outcome s ∈ {0, 1}n. We have ρE
b

def
= Est ρE

bst =
∑

st tr AB(PA
bs ⊗ PB

bt ⊗ 1)ρABE

= tr AB([
∑

s P
A
bs]⊗ [

∑
t P

B
bt ]⊗ 1)ρABE = ρE. We use the fact that

∑
s P

A
bs = 1 and

∑
t P

B
bt = 1

for any b. �
Lemma 4 allows us to write

(EKR−FKR)(ρABE) = E
mbu

2−n−`
∑

az̃

|mbuaz̃〉〈mbuaz̃|⊗E
st
ρE
bstθst[2

`δΦu((s⊕a)[:k]),m⊕z̃−1]. (27)

6.2 Intermezzo: QKD asymptotics

In Appendix A, we consider a version of QKD where privacy amplification is implemented as
in Section 5.2, and the syndrome is sent to Bob in OTP’ed form; we show that this leads to
a bound of the form

‖EQKD −FQKD‖� ≤ 1
2 E
mbu

1

2n+`

∑

ac

∥∥∥∥E
st
ρE
bstθst2

`[δc,m⊕Φu(a⊕s) − E
m′
δc,m′⊕Φu(a⊕s)]

∥∥∥∥
1

, (28)

which after some algebra gives rise to

‖EQKD −FQKD‖� ≤ min
(
Pcorr,

1

2
E
b

tr
√

2` E
ss′
δss′ρ

E
bsρ

E
bs′

)
, (29)
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and that from (29) the well known asymptotic QKD rates is obtained: 1−2h(β) for BB84 and
1 − h(1 − 3β

2 ,
β
2 ,

β
2 ,

β
2 ) for 6-state QKD. If the syndrome (σ = Synx) is sent in the clear, the

right hand side of (28) acquires an extra
∑

σ outside the trace norm and a factor δσ,Syn(s⊕a)

inside the trace norm; the effect on (29) is an extra factor 2n−k under the square root; while
this alteration reduces the threshold value `max by an amount n − k, it has no effect on the
rate since OTP’ing the syndrome would incur a penalty of exactly the same size.

6.3 Achievable rate

In the analysis we do not explicitly write down contributions from the authentication failure
probability. It is implicit that each MAC adds a term 2−λ to the overall security parameter.

Theorem 1 The KRUE protocol satisfies the ENC, KR and UE properties as defined in Sec-
tion 4 while achieving the following asymptotic rate,

r4state = 1− 3h(β) ; r6state = 1− h(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 )− h(β). (30)

In other words, the achievable rate is worse than the QKD rate by a term h(β).
Proof of Theorem 1: Because of the inclusion of n − k + λ + 1 extra bits in the augmented
message m, the asymptotic rate of the protocol is `max/n− h(β). We need to determine the
value of `max for both the UE and KR property separately and take the smaller of the two.
Part 1. First we note that (24) is the difference of two sub-normalised states that both have
trace equal to Pcorr. This immediately yields the bound ‖EUE−FUE‖� ≤ Pcorr. Furthermore,
from (24) we get

‖EUE −FUE‖� = E
mbzue

1
2n

∑

a

∥∥∥∥∥E
st
ρE
bstθst

∑

p

2`+n−kδs⊕a,p‖[Red(p)⊕e][δΦu(p),m⊕z − E
m′
δΦu(p),m′⊕z]

∥∥∥∥∥
1

(31)
which resembles (28). The main difference is the 2n−k

∑
p δs⊕a,p‖[Red(p)⊕e]. In the derivation

as shown in Appendix A, upon doubling as in (44) applying the Eu then yields instead of δss′

the following expression,

(2n−k)2
∑

pp′

δpp′δs⊕a,p||(e⊕Redp)δs′⊕a,p′||(e⊕Redp′) = (2n−k)2δss′δe,(s⊕a)[k+1:n]⊕Red((s⊕a)[:k]). (32)

The factor (2n−k)2δe,···, together with the Ee outside the trace norm, together have the same
effect as having the plaintext syndrome in the QKD derivation: a factor 2n−k under the
square root in (29). Asymptotically this yields `uncl,4state

max = n − 2nh(β) and `uncl,6state
max =

n− nh(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 ).

Part 2. First we note that (27) is the difference of two sub-normalised states that both have
trace equal to Pcorr. This immediately yields the bound ‖EKR−FKR‖� ≤ Pcorr. Furthermore,
from (27) we find

‖EKR −FKR‖� = 1
2 E
mbu

1

2n+`

∑

az̃

∥∥∥∥E
st
ρE
bstθst[2

`δΦu((s⊕a)[:k]),m⊕z̃ − 1]

∥∥∥∥
1

. (33)

This expression very closely resembles (28), with z̃ precisely playing the role of c, and the
term Em′ δc,m′⊕Φu(a⊕s) replaced by the constant ‘1’. Carrying the ‘1’ through steps (44)
and further in Appendix A yields the same result as the QKD derivation, except for one
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important difference: the (s + a)[:k] restriction to the first k bits yields a modification of
δss′ to the first k bits only. In the end result the parameter n is entirely replaced by k.
Hence we obtain asymptotically `KR,4state

max = k − kh(β) = n(1 − h(β))2 and `KR,6state
max =

k + kh(β)− kh(1− 3β
2 ,

β
2 ,

β
2 ,

β
2 ) = n[1− h(β)][1 + h(β)− h(1− 3β

2 ,
β
2 ,

β
2 ,

β
2 )].

It is easily seen that `UE
max ≤ `KR

max. For brevity we use shorthand notation h = h(β) and
H = h(1 − 3β

2 ,
β
2 ,

β
2 ,

β
2 ), noting that H > h and H < 2h. For BB84 encoding we see

`KR
max/`

UE
max = (1−h)2

1−2h ≥ 1. For 6-state we see `KR
max/`

UE
max = (1−h)(1+h−H)

1−H = 1−H+h(H−h)
1−H ≥ 1. �

Remark: In the zero-noise case (β = 0) there is no syndrome mask e. Then we have, without
inequalities,
‖EUE−FUE‖� = ‖EKR−FKR‖� = ‖EQKD−FQKD‖� = Emubza ‖Est θstρE

bst

[
2`δΦu(s⊕a),m⊕z−1

]
‖1,

i.e. the security of QKD immediately implies UE and KR.
Also note that for β = 0 we can invoke Lemma 2 to prove UE; we can view the keys kfb and
kOTP as ‘external’ to the proof, e.g. replace kfb by the existence of an authenticated channel
and spend one bit to mask the feedback ω.
For β > 0 we are not allowed to invoke Lemma 2, since not all the key material is carried to
the next round in unmodified form: upon accept the e is updated. The e plays an integral
role in the bounding of the diamond norm (31) and cannot be moved outside that part of the
proof.

7 Combining protocols

In the protocol as detailed in Section 5, the key ẽaccept is transported in an UE manner. This
is in a sense ‘overkill’ since the attacker model assumes that long-term keys such as ẽ will leak
eventually. In this section we explore alternative ways of transporting ẽaccept which yield a
better rate. We consider only large-message asymptotics.
We introduce the following modified protocol, which we will refer to as KRUE∗. The message
m (Fig.1) now contains µ but not κ. The κ is received in a different manner, but still together
with the qubits of the KRUE∗ scheme. Ignoring the missing κ, the asymptotic rate of KRUE∗ itself
equals the QKD rate: rKRUE

∗
4 = 1−2h(β) for 4-state encoding and rKRUE

∗
6 = 1−h(1− 3β

2 ,
β
2 ,

β
2 ,

β
2 )

for 6-state encoding.

7.1 Combining KRUE∗ with QKD

Here we consider KRUE∗ where κ is received One-Time-Padded over the classical channel, and
the OTP key comes from running QKD7 before KRUE∗. Compared to our original scheme
KRUE, the net difference is:

• Increased round complexity. Even assuming the most efficient form of QKD, Alice needs at
least one extra pass to Bob. The KRUE∗ qubits cannot be sent in the same pass as the QKD
qubits, since QKD requires Bob to respond to Alice before the QKD key can be estabished.

• Better rate. The asymptotic rate is rQKD+KRUE∗

4 = [1−2h(β)]2

1−h(β) for 4-state encoding and

rQKD+KRUE∗

6 =
[1−h(1− 3β

2
,β
2
,β
2
,β
2

)]2

1−h(1− 3β
2
,β
2
,β
2
,β
2

)+h(β)
for 6-state. This can be seen as follows. Let µ ∈ {0, 1}L.

Sending µ via KRUE∗ needs n = L/rKRUE
∗

qubits. The size of the syndrome is nh(β).

7In case of QKD failure, Alice and Bob try QKD again. It does not matter if Eve observes the number of
QKD failures.
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Creating the OTP key using QKD takes nh(β)/rQKD qubits. The total number of qubits
is L(rQKD + h(β))/(rQKD)2.

The combined scheme has the UE property regarding the message µ. First, by composability
it is safe to use the QKD key in any manner. Second, by the UE property of KRUE∗, µ is
secure even if all keys, including everything contained in κ, eventually leak.

Interestingly, the rate rQKD+KRUE∗

4 that we achieve here is twice the rate of QKD followed by
Gottesman’s Unclonable Encryption scheme [9].8

7.2 Combining KRUE∗ with QKR

Now Bob receives κ via the ‘Quantum Alice and Silent Bob’ QKR scheme [14]. Again, in case
of QKR failure Alice and Bob can just keep trying the QKR until it succeeds. (This is the
case because the only purpose is to transport random keys for the next round.) The scheme
of [14] has the following properties, (i) its asymptotic rate equals the QKD rate; (ii) Alice
sends only qubits and no classical communication.
The advantage of using QKR over QKD is that everything can be sent in the same pass.
Hence the combination KRUE∗+QKR achieves the same rate as KRUE∗+QKD but has better
round complexity (only one pass from Alice).

Theorem 2 Let PKR be a ε1-KR scheme in which Alice makes one pass. Let PUE be a ε2-KR,
ε3-UE scheme in which Alice makes one pass. Let Q be the composition of PKR and PUE such
that Alice sends her messages in parallel, and the message of PKR is used as key material in
PUE. Then Q is (ε1 + ε2)-KR, and it is ε3-UE with respect to the message of PUE.

Proof: We consider the EPR version of Q. Eve creates a state that can be written as

ρA1B1A2B2E, where the labels ‘1’ and ‘2’ refer to the EPR pairs intended for PKR and PUE

respectively, and A,B refers to the EPR parts going to Alice and Bob. As in Section 4.3 we
introduce different notation for the same CPTP map depending on the property that we are
looking at (KR or UE). Thus we have CPTP maps Q1KR, Q1UE, Q2KR, Q2UE, with

(Q2KR ◦ Q1KR)(ρA1B1A2B2E) = Q2KR(ρM1K̃1T1A2B2E) = ρK̃1T1M2K̃2T2E (34)

(Qacc
2UE ◦ Q1UE)(ρA1B1A2B2E) = Qacc

2UE(ρM1K1K̃1T1A2B2E) = ρM1K1K̃1T1M2K2K̃2T2E
[Ω=1] . (35)

With respect to the KR property, the ideal functionality is Qideal
2KR ◦ Qideal

1KR. With respect to
UE the ideal functionality is as follows. In case of reject there are no requirements. In case
of accept the M2 is protected by Qacc,ideal

2UE even if Q1UE does not behave ideally; hence the

ideal functionality is described by the mapping Qacc,ideal
2UE ◦ Q1UE. We have

(Qideal
2KR ◦ Qideal

1KR)(ρA1B1A2B2E) = Qideal
2KR(ρM1K̃1 ⊗ ρT1A2B2E) = ρK̃1M2K̃2 ⊗ ρT1T2E (36)

(Qacc,ideal
2UE ◦ Q1UE)(ρA1B1A2B2E) = Qacc,ideal

2UE (ρM1K1K̃1T1A2B2E)

= ρM2 ⊗ ρM1K1K̃1T1K2K̃2T2E
[Ω=1] . (37)

8The rate for that combination is obtained as follows. The UE step needs nUE = L/[1 − 2h(β)] qubits.
Then nUE bits of key need to be refreshed using QKD; this takes nQKD = nUE/[1− 2h(β)] qubits. The rate is

L/(nUE + nQKD) = 1
2
· [1−2h(β)]2

1−h(β) .
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It is given that ‖Q1KR−Qideal
1KR‖� ≤ ε1, and ‖Q2KR−Qideal

2KR‖� ≤ ε2, and ‖Q2UE−Qideal
2UE‖� ≤ ε3.

The KR property of Q follows trivially from

∥∥∥Q2KR ◦ Q1KR −Qideal
2KR ◦ Qideal

1KR

∥∥∥
�
≤
∥∥∥Q1KR −Qideal

1KR

∥∥∥
�

+
∥∥∥Q2KR −Qideal

2KR

∥∥∥
�
≤ ε1 + ε2. (38)

The UE property with regard to M2 follows from

∥∥∥Q2UE ◦ Q1UE −Qideal
2UE ◦ Q1UE

∥∥∥
�
≤
∥∥∥Q2UE −Qideal

2UE

∥∥∥
�
≤ ε3. (39)

�
Remark. It is possible to send the current-round e via QKR instead of the next-round key e′.
This would make e into a short-term variable instead of a long-term key, and would make it
possible to elegantly use Lemma 2 in the security proof. However, it would also complicate
the security analysis of the combined scheme. We will not pursue this possibility here.

8 Comparison to other schemes

We briefly comment on the round complexity and the asymptotic rate of the protocols pro-
posed in this paper as compared to other schemes. The word ‘round complexity’ here is not
to be confused with the N rounds in our protocol. For a given message chunk µj we count
the number of times Alice has to send something, and refer to this number as Alice’s number
of passes. The rate is defined as the size of the message divided by the number of qubits.
We compare against other information-theoretically secure schemes which also do not use up9

key material,

• QKD+OTP. Key establishment using Quantum Key Distribution, followed by One Time
Pad classical encryption. We consider efficient QKD with negligible waste of qubits [16]
and the smallest possible number of communication rounds: only 2 passes by Alice.

• QKR. Qubit-wise prepare-and-measure Quantum Key Recycling as described in [14, 15].
Only a single pass by Alice is needed, since Alice and Bob already share key material.

• QKD+[9]. Key establishment using QKD, followed by Gottesman’s Unclonable Encryp-
tion [9]. At least two passes by Alice are needed.

• QKR+[9]. Key establishment using QKR, followed by Gottesman’s Unclonable Encryp-
tion. Only a single pass by Alice is needed when the two are performed in parallel 10.

The scheme properties are summarised in Table 1, and the rates are plotted in Fig. 2. (We only
show 4-state encoding. The comparison holds qualitatively for 6-state encoding as well, but
with slightly higher rates.) QKR is an improvement over QKD in terms of round complexity,
while achieving the same rate. However, QKD and QKR over a noisy channel do not have
the Unclonable Encryption property.
To our knowledge, the only existing scheme with an explicit proof of the UE property before
our work was Gottesman’s construction [9]. (And thus “QKD/QKR + [9]” was the only known
way to have UE without net expenditure of key material.) Our best performing scheme is

9Our schemes use up key material, but this is amortised over N rounds. We neglect this expenditure for
the purpose of the comparison.

10We don’t give a proof for this combination as [9] uses a different proof technique. Intuitively security is
the same as the combination described in Section 7.2
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Alice Asymptotic
Protocol #passes rate (4-state) Unclonability
QKD + OTP 2 1− 2h(β) no
QKR [14,15] 1 1− 2h(β) no

QKD + [9] 2 1
2 ·

[1−2h(β)]2

1−h(β) yes

QKR + [9] 1 1
2 ·

[1−2h(β)]2

1−h(β) yes

KRUE 1 1− 3h(β) yes

QKD + KRUE∗ 2 [1−2h(β)]2

1−h(β) yes

QKR + KRUE∗ 1 [1−2h(β)]2

1−h(β) yes

Table 1: Comparison of schemes that have no net expenditure of key material upon accept.
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Figure 2: Asymptotic communication rates (4-state) as a function of the noise parameter β.

QKR+KRUE∗, with one pass from Alice and double the rate of QKR + [9]. Our sub-optimal
scheme KRUE has a better rate than QKD/QKR + [9] at noise levels below β ≈ 0.052.
The above comparison does not contain the KR schemes [7, 12], because [7] is defined only
for the noiseless case β = 0, while [12] has low rate (≤ 1

3) and limited noise tolerance. Note
that [7] has the UE property by Lemma 2, and we suspect that [12] satisfies a version of
unclonability with a somewhat modified definition that allows for a reduction of the min-
entropy of some of the keys. We believe that the QKR scheme [15] can be tweaked to have
the UE property by doing more privacy amplification; this would probably lead to the same
rate as KRUE.
We briefly comment on the key sizes. The key material used in KRUE consists of the OTP
z ∈ {0, 1}`, the hash seed u ∈ {0, 1}k, the basis choice B ∈ Bn, the redundancy mask e ∈
{0, 1}n−k, the authentication keys kMAC ∈ {0, 1}λ, kfb ∈ {0, 1}λ and the OTP kOTP ∈ {0, 1}.
Counting only contributions proportional to n, the total size in bits is `+n+n logB+O(1).

With ` ≈ L+nh(β) and n ≈ L/[1−3h(β)] we can write the total size as L2+log |B|−2h(β)
1−3h(β) +O(1).

The keys are expended over a block of N rounds (or ≤ N in case of reject). If there are no
rejects, the ‘amortised’ key expenditure per round equals the above key size divided by N ,
which can be made much smaller than L.
The key size of QKR+KRUE∗ has a slightly different dependence on the noise parameter β.
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For the 4-state case, sending an L-bit message via KRUE∗ requires L+ 2n+O(1) bits of key,

with n ≈ L/[1−2h(β)]. Sending nh(β) bits via the QKR scheme [14] takes a further 4 nh(β)
1−2h(β)

bits. This adds up to L[1 + 2
[1−2h(β)]2

] +O(1) bits.

Gottesman’s scheme has somewhat shorter keys, total length L 2−h(β)
1−2h(β) + O(1), but it needs

to refresh ≈ L/[1− 2h(β)] bits every round.

9 Discussion

We have proven, in the proof framework developed by Renner et al., that quantum encryption
can have Unclonability (as defined by Gottesman) as well as Key Recycling in the case of
noisy channels. We achieve low communication complexity: there is no need for classical
communication from Alice to Bob. The communication rate of KRUE is 1− 3h(β) for 4-state

encoding and can be increased to [1−2h(β)]2

1−h(β) when combining our scheme with QKD or QKR.
Our scheme works by starting from QKR and making the privacy amplification a step in
the computation of the qubit payload. Gottesman’s construction [9] does something very
similar, and hence one might try to construct a variant of our UE-KR protocol that is closer
to [9]. This would have the advantage that there is no longer a seed u that needs to be
stored as part of the keys, as [9] employs ECC-based privacy amplification. However, the
proof technique that we use, with its reliance on hash families, does not work for ECC-based
privacy amplification.
Our best performing scheme, QKR+KRUE∗, has a lower rate than QKD/QKR. (But interest-
ingly the rate is positive on the same β-interval.) It is an open question whether the rate
decrease of UE schemes with respect to QKD is unavoidable. The error-correction redundancy
data has to be somehow protected; this requirement does not exist in QKD. Yet, the UE re-
quirement makes it difficult to protect the redundancy, as long-term keys will leak eventually.
Perhaps an error-correcting scheme like [11], which was used in [12], can help here.

Our protocols (temporarily) hide the accept/reject feedback bit ω. This is a technicality
that allows us to re-use b in un-altered form. The alternative would be to send ω in the clear
and then either (i) partially refresh b as in [15], or (ii) find a way to cope with a reduced
entropy of b as in [12]. Note that it is not realistic to hide a large accumulation of ω-feedbacks
from Eve. Alice and Bob would have to act for a long time in a way that, to an external
observer, does not depend on the ωs. However, Eve may be able to observe e.g. how often
Alice and Bob have to engage in QKD to refill their key ‘reservoir’, which reveals the total
number of rejects. For a small accumulation (e.g. size N) we expect that it is realistic to
hide the feedbacks temporarily.
The downside associated with encoding a message directly into qubits is the vulnerability to
erasures (particle loss) on the quantum channel. Whereas QKD can just ignore erasures, in
QKR they have to be compensated by the error-correcting code, which incurs a serious rate
penalty.
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A QKD asymptotics

We consider a QKD version that looks as much as possible like our protocol, and apply
Renner’s proof technique to quickly derive bounds on the diamond norm. For brevity we
ignore message authentication tags and their failure probability, since they do not affect the
asymptotics. We do not consider two-way postprocessing tricks like advantage distillation.
We refer to the resulting rates in this Appendix as the asymptotic rate of QKD-with-one-
way-postprocessing.

QKD Protocol.
Eve sends EPR pairs, in the singlet state. Alice and Bob randomly choose measurement bases
from the set B, perform their measurements, and then publicly announce their basis choices.
They disregard all events where they chose different bases, and are left with n bits. Alice has
measurement outcome s ∈ {0, 1}n, Bob has t ∈ {0, 1}n. Alice generates random x ∈ {0, 1}n,
u ∈ {0, 1}n. She computes a mask a = s ⊕ x and OTP z = Φu(x). She sends a to Bob over
an authenticated channel. She also sends the syndrome σ = Syn(x) ∈ {0, 1}n−k, either in the
clear or OTP’ed. (We will analyze both options.)
Bob computes x′ = t⊕ ā and tries to reconstruct x from x′ and σ. If he finds a x̂ satisfying
|x̂⊕ x′| ≤ nβ he sets ω = 1, otherwise ω = 0. He sends ω to Alice.
In case ω = 0 Alice sets c = ⊥. In case ω = 1 she sets c = m⊕ z. Alice sends c, u. If ω = 1
Bob reconstructs ẑ = Φu(x̂) and m̂ = c⊕ ẑ.
Analysis in case of OTP’ed syndrome.

Eve observes b, u, a, c, ω and holds a quantum state ρE
bst correlated to b, s, t. The message m

must be secure given Eve’s information. The output state of the QKD protocol is given by

EQKD(ρABE) = E
mbu

2−n
∑

acω

|mbuacω〉〈mbuacω| ⊗ E
st
ρE
bstδω,θst [ωδc,m⊕Φu(a⊕s) + ωδc⊥]. (40)

The idealized output state is obtained as Em |m〉〈m| ⊗ trMEQKD(ρABE), which yields

FQKD(ρABE) = E
mbu

2−n
∑

acω

|mbuacω〉〈mbuacω| ⊗ E
st
ρE
bstδω,θst [ω E

m′
δc,m′⊕Φu(a⊕s) + ωδc⊥]. (41)

The difference is given by

(EQKD −FQKD)(ρABE) = E
mbu

2−n
∑

ac

|mbuac, ω = 1〉〈mbuac, ω = 1|

⊗E
st
ρE
bstθst[δc,m⊕Φu(a⊕s) − E

m′
δc,m′⊕Φu(a⊕s)]. (42)

This expression can be seen as the difference between two sub-normalized states which both
have norm Pcorr. Hence an upper bound ‖EQKD − FQKD‖� ≤ Pcorr immediately follows.
Furthermore, from (42) it follows that

‖EQKD −FQKD‖� ≤ 1
2 E
mbu

2−n−`
∑

ac

∥∥∥∥E
st
ρE
bstθst2

`[δc,m⊕Φu(a⊕s) − E
m′
δc,m′⊕Φu(a⊕s)]

∥∥∥∥
1

. (43)

Expanding the trace norm as ‖A‖1 = tr
√
A†A we write the right hand side as

1
2 E
mbu

2−n−`
∑

ac

(44)

tr
√

E
ss′tt′

θstθs′t′ρ
E
bstρ

E
bs′t′2

2`[δΦu(a⊕s),m⊕c − E
m′
δΦu(a⊕s),m′⊕c][δΦu(a⊕s′),m⊕c − E

m′′
δΦu(a⊕s′),m′′⊕c].
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Using Jensen’s inequality for operators we ‘pull’ Eu and Em under the square root and then
make use of the pairwise-independent properties of Φu when acted upon with Eu. This yields

22` E
mu

[δΦu(a⊕s),m⊕c− E
m′
δΦu(a⊕s),m′⊕c][δΦu(a⊕s′),m⊕c− E

m′′
δΦu(a⊕s′),m′′⊕c] = 2`δss′(1− E

mm′
δmm′)

< 2`δss′ (45)

which leads to

‖EQKD −FQKD‖� < 1
2 E
b

tr
√

2` E
ss′tt′

θstθs′t′ρ
E
bstρ

E
bs′t′δss′ . (46)

Next we use θst ≤ 1 and Et ρE
bst = ρE

bs, yielding ‖EQKD −FQKD‖� < 1
2 Eb tr

√
2` Ess′ ρE

bsρ
E
bs′δss′ .

Combining the two obtained bounds gives

‖EQKD −FQKD‖� ≤ min
(
Pcorr,

1
2 E
b

tr
√

2` E
ss′
ρE
bsρ

E
bs′δss′

)
. (47)

Using Post-selection, random Paulis and smooth Rényi entropy techniques, it has been shown
[15, 19] that the right hand side of (47) can be upper bounded as ∝

√
2`−n+nh(β) for BB84

bases, and as ∝
√

2`−n−nh(β)+nh(1−3
2β,

β
2 ,
β
2 ,
β
2 ) for 6-state QKD.

When n is increased then either Pcorr becomes exponentially small (if Eve’s noise γ exceeds β)
or (when γ ≤ β) the expression under the square root becomes exponentially small, provided
` is set smaller than some threshold value `max. This threshold is given by `BB84

max = n−nh(β)
and `6state

max = n + nh(β) − nh(1 − 3
2β,

β
2 ,

β
2 ,

β
2 ). Taking into account the key expenditure for

masking the syndrome Syn(x), the asymptotic rate is r = `max/n−h(β), i.e. rBB84 = 1−2h(β);
r6state = 1− h(1− 3

2β,
β
2 ,

β
2 ,

β
2 ).

Analysis in case of plaintext syndrome
We indicate the differences w.r.t. the analysis above. Eq. (40) gains an extra part due to the
syndrome σ and becomes

Eplain
QKD(ρABE)= E

mbu
2−n

∑

acσω

|mbuacσω〉〈mbuacσω|⊗E
st
ρE
bstδω,θstδσ,Syn(a⊕s)[ωδc,m⊕Φu(a⊕s) +ωδc⊥].

(48)
The factor δσ,Syn(a⊕s) is carried along untouched in the whole computation up to (44), where it
gets doubled to δσ,Syn(a⊕s)δσ,Syn(a⊕s′). However, the δss′ produced in (45) undoes the doubling.

One extra step is needed. The sum
∑

e is rewritten as 2n−k · 1
2n−k

∑
σ, and Jensen’s inequality

is used, ‘pulling’ the averaging operation 1
2n−k

∑
σ into the square root, where it acts on

δσ,Syn(a⊕s), giving rise to a constant 2k−n.

‖Eplain
QKD −F

plain
QKD‖� ≤ min

(
Pcorr,

1
2 E
b

tr
√

2`2n−k E
ss′
ρE
bsρ

E
bs′δss′

)
. (49)

The `max is decreased by an amount n− k, but the rate is exactly the same as before, since
this time there is no key expenditure of n− k bits for encrypting the syndrome.
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[23] B. Škorić and M. de Vries, Quantum Key Recycling with eight-state encoding. (The Quantum One Time
Pad is more interesting than we thought), International Journal of Quantum Information (2017).

[24] M.N. Wegman and J.W. Carter, New hash functions and their use in authentication and set equality,
Journal of computer and system sciences 22 (1981), 265–279.

[25] W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299 (1982), 802–803.

21


