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Abstract

The HADES design strategy combines the classical SPN construction
with the Partial SPN (PSPN) construction, in which at every encryption
round, the non-linear layer is applied to only a part of the state. In a
HADES design, a middle layer that consists of PSPN rounds is surrounded
by outer layers of SPN rounds. The security arguments of HADES with
respect to statistical attacks use only the SPN rounds, disregarding the
PSPN rounds. This allows the designers to not pose any restriction on
the MDS matrix used as the linear mixing operation.

In this paper we show that the choice of the MDS matrix significantly
affects the security level provided by HADES designs. If the MDS is
chosen properly, then the security level of the scheme against differential
and linear attacks is significantly higher than claimed by the designers.
On the other hand, weaker choices of the MDS allow for extremely large
invariant subspaces that pass the entire middle layer without activating
any non-linear operation (a.k.a. S-box).

We showcase our results on the Starkad and Poseidon instantiations
of HADES. For Poseidon, we significantly improve the lower bounds on
the number of active S-boxes with respect to both differential and linear
cryptanalysis provided by the designers – for example, from 28 to 60
active S-boxes for the t = 6 variant. For Starkad, we show that the t = 24
variant proposed by the designers admits an invariant subspace of a huge
size of 21134 that passes any number of PSPN rounds without activating
any S-box. Furthermore, we show that the problem can be fixed easily by
replacing t with any value that is not divisible by four.
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1 Introduction

Substitution-permutation network (SPN) is a classical design strategy of cryp-
tographic permutations, used in the AES [8] and in numerous other modern
cryptosystems. An SPN iterates many times a sequence of operations called
‘round’, which consists of a layer of local non-linear operations (S-boxes) and a
global linear mixing layer. The wide trail strategy, employed in the AES, allows
designing SPNs with an easily provable lower bound on the number of active
S-boxes in any differential or linear characteristic, thus providing a security
guarantee with respect to the most common statistical cryptanalytic attacks.

In 2013, Gerard et al. [5] proposed the Partial SPN (PSPN) construction,
in which the S-box layer is applied to only a part of the state in each round (in
exchange for somewhat increasing the number of rounds). This approach, that
has obvious performance advantages in various scenarios, was used in the block
ciphers Zorro [5] and LowMC [1]. A drawback of this approach is that ‘clean’
security arguments (like the wide trail strategy) are not applicable for PSPNs,
and thus, the security of these designs was argued by more ad-hoc approaches.
These turned out to be insufficient, as Zorro was practically broken in [2] and the
security of the initial versions of LowMC was shown in [3, 4] to be significantly
lower than claimed by the designers.

At Eurocrypt 2020, Grassi et al. [7] proposed the HADES design strategy
that combines the classical SPN construction with the PSPN construction. In
a HADES design, a middle layer of PSPN rounds is surrounded by two lay-
ers of SPN rounds. The scheme allows enjoying ‘the best of the two worlds’ –
the efficiency provided by the PSPN construction, along with the clean secu-
rity arguments applicable for the SPN construction. Specifically, the security
arguments of the cryptosystem with respect to statistical (e.g., differential and
linear) attacks are provided only by the SPN (a.k.a. ‘full’) rounds, using the
wide trail strategy. The security arguments with respect to algebraic attacks
use also the PSPN rounds, and take advantage of the fact that a partial non-
linear layer increases the algebraic degree in essentially the same way as a ‘full’
non-linear layer. The linear layer in the HADES design is implemented by an
MDS matrix (see [8]), which guarantees that if the number of S-boxes in any
full round is t, then any differential or linear characteristic over two full rounds
activates at least t + 1 S-boxes. Since the PSPN rounds are not used in the
security arguments with respect to statistical attacks, the HADES designers do
not impose any restriction on the MDS used in the scheme. As a specific ex-
ample of an MDS, they propose using Cauchy matrices over finite fields (to be
defined in Section 2).

The designers of HADES presented applications of their strategy for se-
curing data transfers with distributed databases using secure multiparty com-
putation (MPC). Subsequently, Grassi et al. [6] proposed Starkad and Posei-
don – hash functions whose underlying permutations are instantiations of the
HADES methodology, aimed at applications for practical proof systems, such
as SNARKs, STARKs, or Bulletproofs. The HADES family of algorithms (in-
cluding various Starkad and Poseidon variants) is a candidate in the STARK-
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Security t RF = Full RP = Partial S-boxes S-boxes S-boxes
Level Rounds Rounds in RF in RP in total

128 2 8 82 12 41 53
128 4 8 83 20 36 56
128 6 8 84 28 32 60
256 8 8 127 36 42 78
128 16 8 64 68 12 80

Table 1: The lower bound on the number of active S-boxes in a differential/linear
characteristic, for the full rounds (shown by the designers) and for the PSPN
rounds (our results), for various versions of Poseidon

Friendly Hash Challenge [11], which makes understanding its security level prac-
tically important.

In this paper we study the effect of the MDS matrix on the security level of
HADES designs. We show that when the MDS is chosen properly, the PSPN
rounds can be taken into consideration in the security arguments against differ-
ential and linear attacks, leading to a very significant improvement in the lower
bound on the number of active S-boxes in differential and linear characteristics.
On the other hand, we show that a weaker choice of the MDS matrix may lead
to existence of huge invariant subspaces for the entire middle layer that do not
activate any S-box (for any number of PSPN rounds).

To be specific, we focus on the variants of Starkad and Poseidon suggested
in [6]. Interestingly, our results point out a sharp difference between the cases
of a prime field (Poseidon) and a binary field (Starkad).

In the case of Poseidon (which operates over a prime field GF (p)), for all
variants proposed in [6], we significantly improve the lower bound on the number
of active S-boxes in differential and linear characteristics. The improvement
is especially large for variants with a small number of S-boxes in each round
(denoted in [7] by t). For example, for t = 6 (which is the main reference
variant provided in the supplementary material of [6]), the designers claim a
lower bound of 4 · (6 + 1) = 28 active S-boxes, based on application of the wide
trail strategy to the ‘full’ rounds. We prove that the PSPN rounds must activate
at least 32 S-boxes, thus more than doubling the lower bound on the number of
active S-boxes to 60. For the t = 2 variant, the improvement is most striking:
there are at least 41 active S-boxes in the PSPN rounds, while the designers’
bound for the SPN rounds is 12 S-boxes. We obtain the new lower bounds
using an automated characteristic search tool for PSPNs proposed in [2]. A
comparison of our new lower bounds and the lower bounds of the designers is
presented in Table 1.

In the case of Starkad (which operates over a binary field GF (2n)), perhaps
surprisingly, there is a significant difference between different values of t. For t =
24 (which is the main reference variant provided in the supplementary material
of [6]), we show that there exists an invariant subspace U of size 218·63 = 21134
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t Dimension of t Dimension of t Dimension of
invariant subspace invariant subspace invariant subspace

4 2 6 0 8 6
10 0 13 0 16 14
18 0 21 0 24 18
28 14 32 30 42 0
46 0 47 0 48 42
50 0 51 0 52 26
56 42 64 62 70 0

Table 2: The dimension of the invariant subspace whose elements do not activate
S-boxes for any number of PSPN rounds, as a function of t (the number of S-
boxes in each round), for a Starkad cipher over the field GF (263)

that does not activate the S-box in the PSPN rounds. This means that U passes
any number of PSPN rounds, without activating any S-box! On the other hand,
for t = 47 and t = 51 (the other variants of Starkad considered in [6]), there
are no t-round differential or linear characteristics that do not activate any
S-box.1 We show that these results are not a coincidence, but rather follow
from properties of Cauchy matrices over binary fields. Specifically, we prove the
following:

Theorem 1. Let F = GF (2n) be a binary field. Let t = 2k · s where s ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad
specification. Then there exists a linear subspace U ⊂ Ft of dimension at least
(1 − k+1

2k
)t such that for any ` ∈ N and for any x ∈ U , the top n bits of M `x

are equal to zero. Consequently, application of any number of PSPN rounds to
any x ∈ U does not activate any S-box.

Theorem 1 implies that for any t that is divisible by 4, there is a huge
subspace U of size at least 2nt/4 that passes any number of PSPN rounds without
activating any S-box. (This follows from applying the theorem with k = 2 and
s = t/4.) In fact, we conjecture that the lower bound on the dimension of the
subspace in Theorem 1 can be improved to (1− 2

2k
)t (which would fully explain

the size of the invariant subspace for the t = 24 variant of HADES). We verified
this conjecture experimentally for many values of n and t, including all variants
of Starkad proposed in [6]. The sizes of the invariant subspace for n = 63 and
several representative values of t are given in Table 2.

An especially notable case is Starkad variants with t = 2k. For such variants,
we show that the MDS is essentially an involution.

1We note that for the specific variants with t = 47, 51 proposed in [6], there does exist
a large subspace that does not activate any S-box in the PSPN rounds, since the number
of these rounds (25 for t = 47 and 24 for t = 51) is smaller than t. While this might me
indesirable, this is an inevitable result of the choice of the number of PSPN rounds, that does
not depend on the MDS matrix.
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Theorem 2. Let F = GF (2n) be a binary field, and let t = 2k for k ∈ N. Let M
be a t-by-t Cauchy matrix over mathbbF constructed according to the Starkad

specification. Then M2 = αI, where α = (
∑2k+1−1

j=2k j−1)2. Consequently, there

exists a linear subspace U ⊂ Ft of dimension at least t − 2 such that for any
` ∈ N and for any x ∈ U , the top n bits of M `x are equal to zero.

As can be seen in Table 2, Theorem 2 is tight for all checked variants (i.e.,
n = 63 and t = 4, 8, 16, 32, 64).

We obtain Theorems 1 and 2 via an extensive study of properties of Cauchy
matrices over binary fields. As Cauchy matrices are widely used (e.g., for er-
ror correcting codes, see [9]), these linear-algebraic results are of independent
interest.

While we have not yet studied possible applications of the invariant subspace
we found to attacks on Starkad, it seems clear that having such a large invariant
subspace that bypasses the middle layer is undesirable. On the other hand, our
results show that this deficiency can be fixed easily: it is sufficient to choose
a value of t that is not divisible by 4 (see Table 2). Furthermore, we show
that various other mild changes (such as slightly altering the way in which the
sequences {xi}, {yj} used in the construction of the Cauchy matrix are selected)
are also sufficient for avoiding the existence of an invariant subspace.

Hence, our results (both on Poseidon and on Starkad) suggest that properly
designing the MDS matrix and taking it into consideration in the analysis allows
significantly improving the security guarantee of HADES constructions with
respect to statistical attacks.

This paper is organized as follows. We briefly describe the HADES construc-
tion and its instantiations, Starkad and Poseidon, in Section 2. In Section 3 we
present our results on variants of Poseidon. In Section 4 we explore a special
class of matrices over binary fields (which includes Cauchy matrices of the type
used in Starkad) and obtain the linear-algebraic results required for proving
Theorems 1 and 2. In Section 5 we present our results on variants of Starkad,
and in particular, prove Theorems 1 and 2. We conclude the paper with a
discussion and open problems in Section 6.

2 The HADES construction

In this section we briefly describe the structure of a HADES permutation [7].
A block cipher / permutation designed according to the HADES strategy

employs four types of operations:

1. AddRoundKey, denoted by ARK(·) – a bitwise XOR of a round subkey
(or a round constant for unkeyed designs) with the state;

2. Full S-box Layer, denoted by S(·) – parallel application of t copies of an
identical S-box to the entire state;
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Figure 1: The HADES construction

3. Partial S-box Layer, denoted by S∗(·) – application of a single S-box to a
part of the state, while the rest of the state remains unchanged;

4. Mixing Layer, denoted by M(·) – multiplication of the entire state by an
MDS matrix.

A full round is defined as M ◦ S ◦ ARK(·), and a partial round is defined
as M ◦ S∗ ◦ARK(·). The cipher consists of Rf full rounds, followed by RP full
rounds, followed by Rf full rounds, where the parameters P, f are chosen by
a complex rule intended mainly to thwart algebraic attacks. The structure of
HADES is demonstrated in Figure 1.

In this paper, we study the Poseidon and Starkad permutations [6], built
according to the HADES design strategy. Poseidon works over a finite field
GF (p), while Starkad works over a binary field GF (2n). Starkad uses only the
S-box S(x) = x3, while Poseidon uses also x−1 and x5. For our purposes, the
choice of the S-box is not relevant.

The block ciphers are parameterized by RP , Rf (as in HADES), n – the
logarithm of the field size, and t – the number of S-boxes applied in each full
round.

The MDS matrix. The design component on which we focus in this work is
the MDS matrix used in the linear layer. In the case of a binary field GF (2n),
the matrix is a so-called Cauchy matrix, constructed as follows.
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First, a constant r is chosen. Then, one sets up two sequences {xi}, {yj} of
length t, by choosing a staring point x0 and setting

∀i ∈ [t] : xi , x0 + i− 1, yi , xi + r,

where + denotes integer addition. The t-by-t MDS matrix M is set as

Mi,j = (xi ⊕ yj)−1,

where the inversion is taken in the field GF (2n). In all Starkad variants pre-
sented in [6], the parameters x0, r are set to 0, t, respectively. The construction
for a prime Fp (on which we do not focus) is similar to the binary case.

3 Improved Security Bounds for Poseidon Per-
mutations

In this section we show that the lower bounds on the number of active S-boxes
in a differential or a linear characteristic obtained by the designers of Poseidon,
can be improved significantly by taking into consideration active S-boxes in
PSPN rounds and lower bounding their number.

In order to lower-bound the number of active S-boxes, we use a generic
characteristic search algorithm for PSPNs, presented by Bar-On et al. [2] at
Eurocrypt 2015. For a parameter a, the algorithm allows computing the (prov-
ably) minimal number r of rounds such that any r-round differential/linear
characteristic must activate at least a+ 1 S-boxes.

The idea behind the algorithm is to enumerate patterns of active/non-active
S-boxes and to check the validity of each pattern by posing a homogeneous
linear equation on each non-active S-box, and linearizing the output of active
S-boxes by introducing new variables. As for checking an r-round variant, the

algorithm has to sieve
(
rt′

≤a
)

possible patterns of active S-boxes, where t′ is
the number of possible S-boxes in each PSPN round, the running time of the
algorithm is determined by the parameters a, r, t′. In addition, the complexity
depends on t – the number of S-boxes in each full round, which affects the
complexity of multipication by the MDS matrix (an operation used extensively
in the algorithm). As a result, for smaller values of t, we were able to run the
algorithm up to larger values of a.

For t = 2, the algorithm is not needed. Indeed, the MDS property of the
matrix guarantees that both S-boxes are active every second round, and hence,
the lower bound on the number of active S-boxes in an r-round characteristic is
at least r/2. The t = 2 variant of Poseidon has 82 PSPN rounds, and thus, any
characteristic over the PSPN rounds has at least 41 active S-boxes. Interestingly,
the lower bound obtained by the designers using the wide trail strategy is much
lower – only 12 active S-boxes.

For t = 6, which is the main variant proposed by the designers, we were able
to run the algorithm up to a = 8, showing that there is no characteristic with
at most 8 active S-boxes for 22 rounds. As this variant of Poseidon contains
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Security t RF RP Field a S-boxes S-boxes S-boxes
level in Rf in RP in total

128 2 8 82 GF (p) - 12 41 53
128 4 8 83 GF (p) 12 20 36 56
128 6 8 84 GF (p) 8 28 32 60
256 8 8 127 GF (p) 7 36 42 78
128 16 8 64 GF (p) 5 68 12 80

Table 3: Lower bounds on the number of active S-boxes in a differential or
a linear characteristic over the PSPN rounds, for variants of Poseidon. The
column ‘a’ denotes the number of active S-boxes checked by our algorithm.

84 possible rounds, our result implies that any characteristic for the PSPN
rounds of Poseidon activates at least 32 S-boxes. This number if higher than
the lower bound proved by the designers – 28 active S-boxes in the SPN rounds.
Combining the bounds, we obtain a provable lower bound of 60 active S-boxes
for the entire cipher, more than doubling the bound proved by the designers.

For large values of t (e.g., t = 16), the lower bound that follows from the
wide trail strategy becomes much more effective, and on the other hand, the
number of PSPN rounds is reduced. As a result, our lower bound for the PSPN
rounds is less effective for these variants.

It should be emphasized that for all variants and for all values of a we were
able to check, the minimal number of rounds for which any characteristic must
activate at least a+ 1 S-boxes is t+ 2a – matching exactly the generic estimate
of [2]. This suggests that in this respect, the MDS matrices of all Poseidon
variants achieve the effect of ‘random’ matrices.

The lower bounds we obtained on the number of active S-boxes for different
variants of Poseidon, along with the maximal values of a we were able to check,
are presented in Table 3. The code we used is publicly available.2 The exact
description of the algorithm is given in Appendix A.

4 A Class of Matrices over a Binary Field and
its Properties

In this section we study the properties of a certain class of matrices over com-
mutative rings with characteristic 2 (e.g., binary fields GF (2n)). As we will
show in Section 5, the MDS matrix used in Starkad belongs to this class (for all
variants of Starkad), and thus, the results of this section will allow us to study
the security of the middle layer of Starkad constructions.

2The link to the code is: https://anonymous.4open.science/r/bc580cca-659f-4e8f-b8c1-
9dfcd5fb75a2/.
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4.1 Special matrices and their basic properties

Special matrices3 are matrices of order 2k (for k ∈ N∪{0}) over a ring R, defined
in the following inductive way.

Definition 3. For k = 0, any 1 × 1 matrix over R is a special matrix. For

k ≥ 1, a matrix M ∈ R2k×2k is a special matrix if M =

[
A B
B A

]
, where A and

B are special matrices.

The following proposition summarizes some basic properties of special ma-
trices. Most importantly, it shows that special matrices commute.

Proposition 4. Let R be a ring, let k ≥ 0, and let Sk be the set of all 2k × 2k

special matrices over R. Then Sk is a commutative subring of R2k×2k .

Proof. We have to show that for any k ≥ 0, if M1,M2 ∈ R2k×2k are special
matrices, then:

1. −M1,M1 +M2, and M1 ·M2 are special matrices;

2. M1 and M2 commute.

The proof is a simple induction on k; we provide it for the sake of completeness.
For k = 0 the claim is obvious. For k > 0, assume the claim holds for k − 1,
and let

M1 =

[
A B
B A

]
,M2 =

[
C D
D C

]
be 2k × 2k special matrices. We have M1 + M2 =

[
A+ C B +D
B +D A+ C

]
. As by

the induction hypothesis, A+C and B +D are special matrices, M1 +M2 is a
special matrix as well.

Similarly, for any c ∈ R (and in particular, for c = −1),

c ·M1 =

[
c ·A c ·B
c ·B c ·A

]
,

and thus by the induction hypothesis, c ·M1 is a special matrix.
Furthermore, we have

M1 ·M2 =

[
A · C +B ·D A ·D +B · C
B · C +A ·D B ·D +A · C

]
=

[
X Y
Y X

]
,

where X = A · C +B ·D and Y = A ·D +B · C. By the induction hypothesis
X and Y are special matrices, and thus, M1 ·M2 is a special matrix as well.

3We refrain from giving a meaningful name to this class of matrices, since most probably
it was already considered in previous works (which we were not able to find so far).
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To show that special matrices commute, we first observe that they are sym-
metric. Indeed, we have

MT
1 =

[
AT BT

BT AT

]
=

[
A B
B A

]
= M1,

where the middle equality follows by induction on k. Now, let M1,M2 be special
matrices. We have

M1 ·M2 = (M1 ·M2)T = MT
2 ·MT

1 = M2 ·M1,

where the first equality uses the fact that M1 ·M2 is a special matrix, and hence,
is symmetric. This completes the proof.

4.2 Special matrices over commutative rings of character-
istic 2

When R is a commutative ring of characteristic 2 (i.e., a commutative ring such
that for any x ∈ R, we have x + x = 0), special matrices over R have more
interesting structural properties, as is shown in the following two propositions.

In particular, a special matrix has a single eigenvalue and is ‘almost’ an
involution, and we have det(M1 +M2) = detM1 + detM2 for any pair M1,M2

of special matrices over R.

Proposition 5. Let R be a commutative ring of characteristic 2, let k ∈ N∪{0},
and let M ∈ R2k×2k be a special matrix. Then:

1. M has exactly one eigenvalue, which is the sum of elements in each of its
rows. Consequently, the characteristic polynomial of M is

fM (x) = (x− λ(M))2
k

,

where λ(M) is the unique eigenvalue of M , and det(M) = λ(M)2
k

.

2. We have M2 = λ(M)2 · I.

Proof. By induction on k. For k = 0 the claim is obvious. For k > 0, assume

the claim holds for k − 1, and let M =

[
A B
B A

]
be a 2k × 2k special matrix.

The characteristic polynomial of M , which we denote by fM (λ), satisfies

fM (λ) = det(λ · I −M) = det(

[
λ · I −A −B
−B λ · I −A

]
)

= det(λ · I −A+B) · det(λ · I −A−B),

where the last equality uses the well-known formula

det(

[
X Y
Y X

]
) = det(X + Y ) · det(X − Y ),
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which is a special case of Theorem 13 below. As char(R) = 2, we have

fM (λ) = det(λ · I −A+B) · det(λ · I −A−B) = det(λ · I − (A+B))2.

Since A + B is a special matrix by Proposition 4, we can use the induction
hypothesis to deduce

fM (x) = fA+B(x)2 = (x− λ(A+B))2
k

.

Thus, λ(A + B) is the only eigenvalue of M , and so we have fM (x) = (x −
λ(M))2

k

and det(M) = λ(M)2
k

, as asserted.
Since char(R) = 2, and as special matrices commute by Proposition 4, we

have

M2 =

[
A2 +B2 AB +BA
BA+AB A2 +B2

]
=

[
(A+B)2 0

0 (A+B)2

]
.

Since A + B is a special matrix, we can use again the induction hypothesis to
deduce

M2 =

[
(A+B)2 0

0 (A+B)2

]
=

[
λ(A+B)2 · I 0

0 λ(A+B)2 · I

]
= λ(M)2 · I.

Finally, note that in any special matrix, the sums of elements in all rows are
equal. Hence, the sum of elements in each row is an eigenvalue, that corresponds
to the eigenvector (1, 1, . . . , 1). This completes the proof.

Proposition 6. Let R be a commutative ring of characteristic 2, let k ∈ N∪{0},
and let M1,M2 ∈ R2k×2k be special matrices. Then

1. det(M1 +M2) = det(M1) + det(M2);

2. λ(M1 +M2) = λ(M1) + λ(M2);

3. λ(M1 ·M2) = λ(M1) · λ(M2),

where λ(M) denotes the unique eigenvalue of the special matrix M .

Proof. Let

M1 =

[
A B
B A

]
,M2 =

[
C D
D C

]
∈ R2k×2k .

We have

λ(M1 +M2) = λ(A+B + C +D) = λ(A+B) + λ(C +D) = λ(M1) + λ(M2),

where the first and last transitions follow from the fact that λ(M) = λ(A+B)
as was shown in the proof of Proposition 5, and the middle transition uses the
induction hypothesis.

Since char(R) = 2 and R is commutative, we have

det(M1 +M2) = λ(M1 +M2)2
k

= (λ(M1) + λ(M2))2
k

= λ(M1)2
k

+ λ(M2)2
k

= det(M1) + det(M2).
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Finally, as (1, 1, . . . , 1) is an eigenvector of both M1 and M2, corresponding to
the eigenvalues λ(M1) and λ(M2), respectively, it follows that λ(M1) · λ(M2) is
an eigenvalue of M1 ·M2, corresponding to the same eigenvector. As M1 ·M2

is a special matrix, Proposition 5 implies λ(M1 ·M2) = λ(M1) · λ(M2). This
completes the proof.

4.3 Nilpotent special matrices over commutative rings with
characteristic 2

In this subsection we consider the subring Nk of Sk which consists of the spe-
cial matrices M that are nilpotent (i.e., Nk = {M ∈ Sk : ∃t,M t = 0}). By
Proposition 5, Nk has a simple characterization: Nk = {M ∈ Sk : λ(M) = 0}.
We aim at showing that the product of any k + 1 matrices in Nk equals zero.
To this end, we need a somewhat complex inductive argument, which uses the
following auxiliary operator.

Definition 7. For any k ≥ 1, the operator ∗ : Sk → Sk−1 is defined as follows.

For any special matrix M =

[
A B
B A

]
∈ Sk, we define M∗ = A+B. (Note that

M∗ ∈ Sk−1 since the sum of special matrices is a special matrix.)

Basic properties of the operator ∗ are described in the following proposition.
The easy proof is provided for the sake of completeness.

Proposition 8. Let M1,M2 ∈ Sk for some k ≥ 1. We have:

1. (M1 +M2)∗ = M∗1 +M∗2 ;

2. (M1 ·M2)∗ = M∗1 ·M∗2 ;

3. λ(M∗1 ) = λ(M1).

Proof. Let M1 =

[
A B
B A

]
and M2 =

[
C D
D C

]
be special matrices. Then

(M1 +M2)∗ = A+B + C +D = M∗1 +M∗2 .

Furthermore, M1 ·M2 =

[
AC +BD AD +BC
AD +BC AC +BD

]
, and hence,

(M1 ·M2)∗ = AC +BD +AD +BC = (A+B) · (C +D) = M∗1 ·M∗2 .

Part (3) was shown in the proof of Proposition 5.

We now define, by induction on k+ `, the notion of a special matrix M ∈ Sk

which is a depth-` zero.

Definition 9. For ` = 0 and for any k ∈ N, a matrix M ∈ Sk is a depth-0 zero
if and only if λ(M) = 0.

For any `, k such that ` ≥ k, a matrix M ∈ Sk is a depth-` zero if and only
if it is the zero matrix.

For all k > ` ≥ 1, a matrix M =

[
A B
B A

]
∈ Sk is a depth-` zero if:

12



1. A and B are depth-(`− 1) zeros, and

2. M∗ = A+B is a depth-` zero.

The zero depth of a matrix M ∈ Sk is the maximal `, such that M is a depth-`
zero.

Intuitively, the higher is the zero depth of M ∈ Sk related to k, the ‘closer’
is M to the zero matrix. In particular, if the zero depth of M is 0, we only
know that λ(M) = 0. If the zero depth of M is k − 1, then M is ‘almost zero’,

in the sense that M =

[
X X
X X

]
, where X ∈ Sk−1 has zero depth k − 2. If the

zero depth of M is k, then M is the zero matrix.

The two following propositions relate the zero depth of the sum and the
product of special matrices to their zero depths.

Proposition 10. Let M1,M2 ∈ Sk be special matrices over a commutative ring
R with characteristic 2 that are depth-` zeros, and let c ∈ R. Then c ·M1 and
M1 +M2 are depth-` zeros as well.

Proof. For ` = 0, the assertion follows immediately from Proposition 6 (i.e.,
additivity of the eigenvalue for special matrices).

For ` ≥ 1, the proof is an easy induction on k. For k = 0 the claim is
obvious. Assume the claim holds for k − 1 and let

M1 =

[
A B
B A

]
,M2 =

[
C D
D C

]
∈ Sk

be depth-` zeros. By definition, A,B,C,D are depth-(`− 1) zeros, and thus, by
the induction hypothesis (or by Proposition 6, in the case ` = 1), A+C,B+D
(which are the blocks of M1 +M2) are depth-(`−1) zeros as well. Furthermore,
M∗1 = A + B and M∗2 = C + D are depth-` zeros, and thus, by the induction
hypothesis, (M1 + M2)∗ = A + B + C + D is a depth-` zero as well. Hence,
M1 +M2 is a depth-` zero. The proof for c ·M1 is similar.

Proposition 11. Let M,L ∈ Sk be special matrices over a commutative ring
R with characteristic 2, and assume that:

1. M is a depth-` zero for some ` < k;

2. L is a depth-0 zero.

Then M · L is a depth-(`+ 1) zero.

Proof. We prove the claim by induction on k+ `. For the base case, we consider
k = 1, ` = 0. In this case, since k = 1 and λ(M) = λ(L) = 0, M and L must be
of the form

M =

[
a a
a a

]
, L =

[
b b
b b

]
,

13



for some a, b. In such a case, M · L = 0, which is a depth-1 zero, as asserted.
Assume the assertion holds for all k′, `′ with k′ + `′ < k + `, and let

M =

[
A B
B A

]
, L =

[
C D
D C

]
∈ Sk

be such that M is a depth-` zero and λ(L) = 0. We have

M · L =

[
AC +BD AD +BC
AD +BC AC +BD

]
=

[
X Y
Y X

]
.

We consider several cases:

Case 1: 0 < ` < k− 1. First, we show that X + Y = (M ·L)∗ is a depth-(`+ 1)
zero. By Proposition 8, we have (M · L)∗ = M∗ · L∗. M∗ is a depth-` zero by
definition and λ(L∗) = λ(L) = 0. Thus, by the induction hypothesis (which can
be applied since ` < k − 1), M∗ · L∗ is a depth-(`+ 1) zero.

Now we show that X and Y are depth-` zeros. As λ(M) = 0, we have
λ(C) = λ(D). Denote λ(C) = λ(D) = γ, and let C ′ = C + γ · I,D′ = D+ γ · I.
We have

X = A · (C ′ + γ · I) +B · (D′ + γ · I) = A · C ′ +B ·D′ + γ ·M∗.

By Proposition 10, γ ·M∗ is a depth-` zero and by the induction hypothesis
(which can be applied since ` > 0), A · C ′ and B ·D′ are depth-` zeros as well.
Hence, by Proposition 10, X is a depth-` zero. The proof for Y is similar.

Case 2: ` = 0. In this case, the proof that X + Y is a depth-1 zero works like
in Case 1.

We now prove that X is a depth-0 zero; the proof for Y is similar. Since
M and L are depth-0 zeros, we have λ(A) = λ(B) and λ(C) = λ(D). Hence,
Proposition 6 implies

λ(X) = λ(AC +BD) = λ(A)λ(C) + λ(B)λ(D) = 0,

and thus, X is a depth-0 zero, as asserted.

Case 3: ` = k−1. In this case, the proof that X and Y are depth-` zeros works
like in Case 1. As X,Y ∈ Sk−1, this means that X = Y = 0, and thus, M · L
is the zero matrix, which is of course a depth-(` + 1)-zero. This completes the
proof.

Now we are ready to prove that the product of any k + 1 elements of Nk is
the zero matrix.

Proposition 12. Let M1, ...,Mk+1 be 2k-by-2k nilpotent special matrices over
a commutative ring R with characteristic 2. Then

k+1∏
i=1

Mi = 0.

14



Proof. By applying Proposition 11 on the sequence of products Pj =
∏j

i=1Mi,
we deduce that for all j ≥ 1, Pj is a depth-(j − 1) zero. In particular, Pk+1 =∏k+1

i=1 Mi is a depth-k zero, which means that it is the zero matrix by the
definition of zero depth.

4.4 Block matrices with special blocks

In this subsection we consider s-by-s block matrices over a commutative ring R
with characteristic 2, in which each block is a special 2k-by-2k matrix. We aim
at showing that the minimal polynomial of any such matrix is of degree at most
s(k+ 1). As an intermediate result, we show that the characteristic polynomial
of any such matrix has a very specific structure.

We use the following classical result (see, e.g., [10, Theorem 1]) on determi-
nants of block matrices with commuting blocks.

Theorem 13. Let `,m ∈ N. Let R be a commutative ring and let S be a
commutative subring of R`×`. Let X ∈ Sm×m be an m-by-m block matrix over
R with `-by-` blocks in S. Then detR(X) = detR(detS(X)).

The theorem asserts that if the blocks of the matrix commute, then in order
to compute its determinant, we can first compute the determinant of the ‘matrix
of blocks’ (an m-by-m matrix over the ring S), which in itself is an `-by-` matrix
over R, and then compute the determinant (over R) of this determinant.

In the case of block matrices over a commutative ring with characteristic 2
whose blocks are special matrices, the computation of the determinant can be
further simplified.

Proposition 14. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-
2k special matrix. Denote the blocks of M by {Mi,j}si,j=1. Let M ′ ⊂ Rs×s be
defined by M ′i,j = det(Mi,j). Then det(M) = det(M ′).

The proposition asserts that for block matrices with special blocks, in order
to compute the determinant, we can replace each block with its determinant
and compute the determinant of the resulting s-by-s matrix.

Proof. By Theorem 13, we have det(M) = detR(detS(M)). The expression
detS(M) is a sum-of-products of special matrices. As in the subring Sk of special
matrices, the determinant is multiplicative and additive by Proposition 6, the
expression detR(detS(M)) does not change if we replace each matrix in detS(M)
with its determinant. The result is exactly det(M ′). Thus, det(M) = det(M ′),
as asserted.

We are now ready for computing the characteristic polynomial of a block
matrix whose blocks are special matrices.
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Proposition 15. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-
2k special matrix. Denote the blocks of M by {Mi,j}si,j=1. Let M ′′ ⊂ Rs×s be
defined by M ′′i,j = λ(Mi,j), where λ(Mi,j) is the unique eigenvalue of the special
matrix Mi,j. Denote by p(x) = fM (x) and q(x) = fM ′′(x) the characteristic

polynomials of M and M ′′, respectively. Then p(x) = q(x)2
k

.

Proof. Since char(R) = 2, we have p(λ) = fM (λ) = det(λ · I + M). As the
blocks of λ · I + M are special matrices (over the commutative ring R[λ] that
has characteristic 2), by Proposition 14 the expression det(λ · I + M) does
not change if we replace each block with its determinant. For non-diagonal
blocks Mi,j , the replacement yields M ′i,j , where M ′ is as defined in the proof of
Proposition 14. For diagonal blocks Mi,i, by Proposition 6 we have

det(λ · I +Mi,i) = det(λ · I) + det(Mi,i) = λ2
k

+M ′i,i.

Therefore, we have

p(λ) = det(λ · I +M) = det(λ2
k

· I +M ′) = fM ′(λ2
k

).

Denote fM ′(x) =
∑s

l=0 fl({M ′ij}) · xl, where each fl({M ′ij}) is a sum of
products of M ′ij ’s. Recall that for any i, j,

M ′i,j = det(Mi,j) = (λ(Mi,j))
2k = (M ′′i,j)

2k .

As char(R) = 2 (and so, the function x 7→ x2
k

is linear over R), it follows that

for each l, fl({M ′i,j}) = fl({M ′′i,j})2
k

. Hence,

fM ′(λ2
k

) =

s∑
l=0

fl({M ′′i,j})2
k

(λ2
k

)l = (

s∑
l=0

fl({M ′′i,j})λl)2
k

.

Finally, as
∑s

l=0 fl({M ′′i,j})λl = fM ′′(λ), we obtain

p(λ) = fM ′(λ2
k

) = (fM ′′(λ))2
k

= q(λ)2
k

.

This completes the proof.

We are now ready to show that the degree of the minimal polynomial of a
block matrix whose blocks are special matrices is much lower than the degree
of its characteristic polynomial. Specifically, we prove that its degree is at most
s(k + 1), while the degree of the characteristic polynomial is s · 2k.

Proposition 16. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-
2k special matrix. Denote the blocks of M by {Mi,j}si,j=1. Let M ′′ ⊂ Rs×s be
defined by M ′′i,j = λ(Mi,j), where λ(Mi,j) is the unique eigenvalue of the special
matrix Mi,j. Denote by q(x) = fM ′′(x) the characteristic polynomial of M ′′.
Then q(M)k+1 = 0.
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Proof. First, we claim that q(M) is a block matrix whose blocks are nilpotent
special matrices (equivalently, special matrices whose unique eigenvalue is 0).
Indeed, the blocks of q(M) are special matrices, since they are sums-of-products
of special matrices. Hence, we can represent each such block (q(M))i,j in the
form

∑∏
Ai, where all Ai are special matrices. By Proposition 6, we have

λ(q(M)i,j) = λ(
∑∏

Ai) =
∑∏

λ(Ai) = (q(M ′′))i,j = 0,

where the last equality holds since q(M ′′) = 0 by the Cayley-Hamilton theorem.
Now, we can apply Proposition 12. Consider the matrix q(M)k+1. Each

block of this matrix is a sum of products of k + 1 nilpotent 2k-by-2k special
matrices. By Proposition 12, each such product is the zero matrix. Hence, each
block of q(M)k+1 is the zero matrix, and thus, q(M)k+1 = 0, as asserted.

4.5 A stronger conjectured bound

We conjecture that Proposition 16 can be further improved, and that in fact,
the following holds:

Conjecture 17. Let k, s ∈ N. Let R be a commutative ring with characteristic
2, and let M be an s-by-s block matrix over R, each of whose blocks is a 2k-by-
2k special matrix. Denote the blocks of M by {Mi,j}si,j=1. Let M ′′ ⊂ Rs×s be
defined by M ′′i,j = λ(Mi,j), where λ(Mi,j) is the unique eigenvalue of the special
matrix Mi,j . Denote by q(x) = fM ′′(x) the characteristic polynomial of M ′′.
Then q(M)2 = 0.

We proved this conjecture for s = 2 by a direct computation (which we
omit here, being not sufficiently illuminating), and verified it experimentally for
many values of t, over various binary fields (including the field GF (233) used in
Starkad with t = 47). In particular, it matches all sizes of invariant subspaces
presented in Table 2. However, we were not able to prove the conjecture in
general at this stage.

5 A Large Invariant Subspace in the Middle Layer
of Starkad Permutations

In this section we apply the results on special matrices obtained in Section 4 to
show that for many choices of t (i.e., the number of S-boxes in each round), the
Starkad permutation admits a huge invariant subspace that allows bypassing
any number of PSPN rounds without activating any S-box. Subsequently, we
show that these invariant subspaces can be easily avoided, by a careful choice
of parameters, or by very mild changes in the design.

5.1 The Starkad MDS and special matrices

In this subsection we show that for any choice of the parameters, the Starkad
MDS is a block matrix over a binary field GF (2n) (which is, in particular, a
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commutative ring with characteristic 2), whose blocks are special matrices. This
will allow us to deduce Theorems 1 and 2 from the results on special matrices
obtained in Section 4.

We start with the case t = 2k.

Proposition 18. Let M ∈ GF (2n)2
k×2k be a Cauchy matrix generated from

the sequences {xi}, {yj}, where for each 1 ≤ i ≤ 2k, we have xi = i − 1 and
yi = xi +r (integer summation), for some r such that 2k|r. Then M is a special
matrix.

Proof. In the following, we use the symbols � and � to denote integer addition
and subtraction and ⊕ to denote bit-wise XOR, which is addition in the field.

We prove the claim by induction on k. For k = 0 the claim is obvious,

assume the claim holds for k − 1. Let M =

[
A B
C D

]
∈ F2k×2k be a Cauchy

matrix generated as described above. A is obviously a 2k−1 × 2k−1 Cauchy
matrix with

xi = i� 1, yi = xi � r,

and thus, by the induction hypothesis, is a special matrix.

D is a 2k−1 × 2k−1 Cauchy matrix with

xi = 2k−1 � i� 1, yi = xi � r,

for all 1 ≤ i ≤ 2k−1. Using the range of the i � 1’s, we conclude that xi =
2k−1� (i� 1) = 2k−1⊕x′i for x′i = i� 1. Similarly, as 2k|r, yi = xi� r = xi⊕ r.

Thus,

Dij = (xi ⊕ yj)−1 = (x′i ⊕ 2k−1 ⊕ xj ⊕ r)−1 = (x′i ⊕ 2k−1 ⊕ x′j ⊕ 2k−1 ⊕ r)−1

= (x′i ⊕ x′j ⊕ r)−1 = (x′i ⊕ (x′j � r))
−1 = Aij .

Hence, D = A.

Define r′ , 2k−1⊕ r. Notice that B is a Cauchy matrix with xi = i�1, yi =
xi � r � 2k−1. As 0 ≤ xi < 2k−1 and 2k|r, we have

yi = xi ⊕ 2k−1 ⊕ r = xi ⊕ r′ = xi � r
′.

As r′ is divisible by 2k−1, we can use the induction hypothesis to conclude that
B is also a special matrix.

C is a Cauchy matrix with xi = 2k�1�(i�1) = 2k−1⊕(i−1), yi = r�(i�1) =
r ⊕ (i� 1). Thus Cij = (xi ⊕ yj)−1 = ((i− 1)⊕ (j − 1)⊕ r′)−1 = Bij . Hence,
C = B. We proved that A,B are special and that C = B,D = A. Thus, M is
a special matrix, as asserted.

Corollary 19. For any t = 2k, the MDS in Starkad with t S-boxes in each SPN
round is a special matrix.
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Corollary 19 follows immediately from Proposition 18, since the sequences
{xi} and {yj} used in Starkad to generate the Cauchy matrix are exactly those
considered in the proposition, and since the parameter r is chosen in Starkad to
be equal to t.

Now we consider variants of Starkad with any number t of S-boxes in each round.

Proposition 20. Let t = 2k · s, for k ≥ 0 and s ≥ 1. Let M ∈ GF (2n)t×t

be a Cauchy matrix generated from the sequences {xi}, {yj}, where for each
1 ≤ i ≤ 2k, we have xi = i − 1 and yi = xi + r (integer summation), for some
r such that 2k|r. Then M is an s× s block matrix of 2k × 2k special matrices.

Proof. Divide the matrix M into s × s blocks of 2k × 2k matrices. Denote the
blocks by Mp,q, 1 ≤ p, q ≤ s. Let Mp,q be one of the blocks and we will prove
that it is a special matrix. Mp,q is a Cauchy matrix with

xi = (i� 1)� p2k = (i� 1)⊕ p2k, yi = (i� 1)� q2k � t = (i� 1)⊕ (q2k � t).

Define t′ , p2k ⊕ (q2k � t). We have

(Mp,q)ij = ((i� 1)⊕ (j � 1)⊕ (p2k ⊕ (q2k � t)))−1

= ((i� 1)⊕ (j � 1)⊕ t′)−1 = ((i� 1)⊕ ((j � 1)� t′))−1.

Notice that 2k|t′, and thus, Mp,q satisfies the assumption of Proposition 18, and
thus, is a special matrix. This completes the proof.

Corollary 21. For any t = 2k · s, the MDS in Starkad with t S-boxes in each
SPN round is an s-by-s block matrix, each of whose blocks is a special matrix.

Corollary 19 follows immediately from Proposition 18, since {xi}, {yj}, and
r used in Starkad satisfy the assumption of the proposition.

5.2 A large invariant subspace in Starkad with 4` S-boxes
in each full round

In this subsection we prove Theorems 1 and 2. The former shows that for any
t = 4`, Starkad with t S-boxes in each SPN round admits a large invariant
subspace. The latter asserts that if t is a power of 2, then the MDS of Starkad
with t S-boxes in each SPN round is essentially an involution.

First, we prove Theorem 1. Let us recall its statement.

Theorem 1. Let F = GF (2n) be a binary field. Let t = 2k · s where s ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad
specification. Then there exists a linear subspace U ⊂ Ft of dimension at least
(1 − k+1

2k
)t such that for any ` ∈ N and for any x ∈ U , the top n bits of M `x

are equal to zero. Consequently, application of any number of PSPN rounds to
any x ∈ U does not activate any S-box.
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Proof. Let M be a matrix that satisfies the assumptions of the theorem. By
Corollary 21, it is an s-by-s block matrix, where each block is a 2k-by-2k special
matrix. Hence, by Proposition 16, there exists a polynomial q′ of degree s(k+1)
such that q′(M) = 0.

Let
U = {x ∈ GF (2n)t : ∀0 ≤ i ≤ s(k + 1)− 1, (M ix)1 = 0},

where (X)1 stands for the top n bits of X that enter the unique S-box in the
PSPN rounds. Clearly, U is a linear subspace of dimension at least s(2k − (k+
1)) = (1− k+1

2k
)t. We claim that for any ` ∈ N and for any x ∈ U , the top n bits

of M `x are equal to zero. Indeed, using division of polynomials we can write
M ` = q′(M) · q0(M) + q1(M), where deg(q1(M)) < deg(q′(M)) = s(k + 1). We
have

(M `x)1 = (q′(M) · q0(M)x+ q1(M)x)1 = (q1(M)x)1 = 0,

where the second equality holds since q′(M) = 0 and the last inequality holds
since deg(q1(M)) < s(k + 1) and x ∈ U . This completes the proof.

As for any k ≥ 2 we have (k+1)/2k ≤ 3/4, Theorem 1 implies that whenever
the number t of S-boxes in each full round of Starkad is divisible by 4, there
exists a linear subspace of dimension at least t/4 that does not activate any
S-box for any number of PSPN rounds. If t is divisible by 8, the lower bound
on the dimension of the subspace increases to t/2, if 16|t, it increases to 11t/16,
etc.

In the cases where t is a power of 2, the structure of the Starkad MDS is
surprisingly simple, as is shown in Theorem 2. Let us recall its statement.

Theorem 2. Let F = GF (2n) be a binary field, and let t = 2k for k ∈ N.
Let M be a t-by-t Cauchy matrix over F constructed according to the Starkad

specification. Then M2 = αI, where α = (
∑2k+1−1

j=2k j−1)2. Consequently, there

exists a linear subspace U ⊂ Ft of dimension at least t − 2 such that for any
` ∈ N and for any x ∈ U , the top n bits of M `x are equal to zero.

Proof. Let M be a matrix that satisfies the assumption of the theorem. By
Corollary 19, M is a special matrix. By Proposition 5, we have M2 = α · I,
where α = λ(M)2, and λ(M) (i.e., the unique eigenvalue of M) is the sum of
elements in each row of M . By the construction of the Starkad MDS, these

elements are the inverses of {2k + i}2
k−1

i=0 . Hence,

α = (

2k+1−1∑
j=2k

j−1)2,

as asserted. Finally, the dimension of the subspace U is at least t− 2, since it is
sufficient to require x1 = 0 and (Mx)1 = 0, by the argument used in the proof
of Theorem 1. This completes the proof.

20



r Dimension of r Dimension of r Dimension of
invariant subspace invariant subspace invariant subspace

24 18 25 0 26 0
27 0 28 12 29 0
30 0 31 0 32 20
40 18 47 0 52 12
64 20 101 0 128 20

Table 4: The dimension of the invariant subspace whose elements do not activate
S-boxes for any number of PSPN rounds, as a function of r, for a Starkad
permutation over the field GF (263) with t = 24

5.3 The invariant subspaces can be avoided easily

While it is not clear whether the invariant subspaces presented above can be
exploited to attack the Starkad hash function, it seems clear that their existence
is an undesirable feature. The ‘good news’ are that these subspaces can be easily
avoided, by a careful choice of parameters. We present below three possible
ways to make sure that the middle layer of Starkad cannot be bypassed without
activating any S-box.

Choosing the value of t carefully. One possible way is to choose t that
is not divisible by 4. As was exemplified in Table 2 for several values of t,
in most cases4 where t is not divisible by 4, there is no invariant subspace of
the form described above. Furthermore, given a value of t, we can use the
strategy described in Section 3 to guarantee that any t-round characteristic
indeed activates at least one S-box.

Changing the parameter r. Another possible way is to change the param-
eter r used in the generation of the MDS matrix. Recall that the MDS matrix
is a Cauchy matrix, generated by the sequences {xi}, {yj}, where xi = i−1 and
yi = xi + r (integer addition). The designers fixed r = t.

The relation of the Starkad matrix to special matrices, proved in Proposi-
tion 20, assumes that r is divisible by 2k (which is obviously satisfied by r = t).
This suggests that choosing a different value of r might avoid the invariant sub-
space. Our experiments, performed with n = 263 and t = 24, indicate that
indeed, whenever r is not divisible by 4, there is no invariant subspace of the
form described above (see Table 4). As before, given such a value of r, we can use
the strategy described in Section 3 to guarantee that any t-round characteristic
indeed activates at least one S-box.

4We checked this experimentally, with numerous values of t and n. The only ‘counterex-
amples’ we are aware of occur for small values of n, that is, over small-sized binary fields.
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x0 Dimension of x0 Dimension of x0 Dimension of
invariant subspace invariant subspace invariant subspace

0 18 1 6 2 0
3 0 4 12 5 0
6 0 7 12 8 18
9 6 10 0 11 0
12 12 13 0 14 0
15 12 16 18 17 6

Table 5: The dimension of the invariant subspace whose elements do not activate
S-boxes for any number of PSPN rounds, as a function of x0 (the initial element
of the sequence {xi} used in the construction of the Cauchy matrix), for a
Starkad cipher over the field GF (263) with t = 24

Shifting the sequence {xi}. A third possible mild change is shifting the
sequence {xi}, namely, taking xi = x0 + i − 1 for some x0 6= 0. In this case,
our experiments (performed with n = 263 and t = 24, see Table 5) indicate
that non-divisibility of x0 by 4 is not a sufficient condition. However, there
exist many values of x0 for which there is no invariant subspace of the form
described above, and as before, for such values of x0 we can guarantee that any
t-round characteristic indeed activates at least one S-box using the technique of
Section 3.

6 Discussion and Open Problems

We conclude this paper with a discussion on the application of our results on
the HADES design strategy, and with a few open problems.

6.1 Discussion: PSPN rounds vs. SPN rounds

In this paper we showed that the MDS matrix used in HADES constructions
significantly affects the security level provided by the cryptosystem. This em-
phasizes the need of choosing the MDS matrix in the construction carefully, but
also gives rise to a more general question regarding the design strategy.

Specifically, we showed in Section 3 that when the MDS matrix is chosen
properly (which is the case for all suggested variants of Poseidon, an instan-
tiation of HADES for prime fields), the lower bound on the number of active
S-boxes in differential and linear characteristics can be significantly improved
by taking into consideration the PSPN rounds. In some of the cases, the lower
bound we obtain on the number of active S-boxes in the PSPN rounds is much
larger than the lower bound obtained by the designers using the wide-trail strat-
egy.

This gives rise to the question, whether full SPN rounds are ‘cost effective’
compared to PSPN rounds, in scenarios where the complexity is dominated by
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the number of S-boxes in the construction (which are the target scenarios of the
HADES design strategy).

As was emphasized by the HADES designers, PSPN rounds are more cost-
effective with respect to algebraic attacks, since when the linear layer is an
MDS, the increase of the algebraic degree obtained by a PSPN round is the
same as the increase obtained by an SPN round which uses t times more S-
boxes. It should be noted (and was also emphasized by the HADES designers)
that security with respect to algebraic attacks is determined not only by the
algebraic degree, and thus, a single PSPN round may provide less security with
respect to algebraic attacks than an SPN round. However, it seems clear that t
PSPN rounds provide a much larger security increase than a single SPN round,
while employing the same number of S-boxes.

The HADES designers motivate the use of the SPN rounds by protection
against statistical – mainly differential and linear – attacks, and in particular,
by the ability to use the wide trail strategy for proving lower bounds on the
number of active S-boxes in differential and linear characteristics. It turns out
however that when the MDS matrix is chosen properly, the number of active
S-boxes in a characteristic over PSPN rounds is not much smaller than the
respective number for SPN rounds that employ the same number of S-boxes.
Indeed, the wide trail strategy provides a tight lower bound of t + 1 active S-
boxes over two rounds with employ 2t S-boxes in total. For PSPN rounds with
a single S-box in each round, the analysis of [2] suggests that for a ‘good’ MDS,
the minimal number of active S-boxes over m rounds (which employ m S-boxes)
is m−t

2 +1. While the ratio t+1
2t obtained by SPN rounds is somewhat larger than

the ratio m−t+2
2m obtained for PSPN rounds, the asymptotic difference between

the ratios is small.
The wide trail strategy has the advantages of being generic, and of applica-

bility to any number of active S-boxes (compared to the algorithm of [2] we use
in this paper, which depends on the specific structure of the cipher and on the
available computational resources). However, if indeed the advantage of SPN
rounds with respect to statistical attacks5 is small, while the advantage of PSPN
rounds with respect to algebraic attacks is very large, then it might make sense
to change the balance between the numbers of rounds in favor of PSPN rounds.

6.2 Open problems

Is there a way to exploit the invariant subspace in Starkad? The main
open problem arising from this paper is, obviously, whether the large invariant
subspace found for variants of Starkad can be used to mount an attack on the
scheme. We have not explored this direction yet.

5It should be noted that in our analysis, we considered only differential and linear attacks,
and not other types of statistical attacks. However, for all other classes of attacks, the security
arguments provided for SPN constructions are heuristic, and hence, there is no clear way to
decide whether r full SPN rounds provide a better security guarantee against those attacks,
compared to tr PSPN rounds. Therefore, we focus on differential and linear attacks, for which
the results are ‘measurable’.
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Optimal bound on the size of the invariant subspace. Another open
problem is to prove Conjecture 17 – namely, to show that the dimension of the
invariant subspace for t = 2k ·s is at least t−2s. Numerous experiments suggest
that the conjecture (which would be tight if proved) indeed holds, and it seems
that a proof is not out of reach.

Improved cryptanalysis techniques for PSPN rounds. As was pointed
out by the HADES designers, the cryptanalysis tools available for PSPN designs
are very scarce. Developing new tools (and improving existing ones, like that
of [2] we used) may enable a wider use of PSPN rounds, and further development
of designs based on them. In particular, it seems unclear whether a design that
contains only PSPN rounds with a few S-boxes in each round is necessarily
problematic, despite the mixed success of previous designs of this class (Zorro
and LowMC).

Balancing the number of SPN vs. PSPN rounds in HADES designs.
As was mentioned in the above discussion, our results may suggest that one can
design more efficient instantiations of HADES by choosing the MDS properly,
taking into consideration the middle layer, and changing the balance between
SPN and PSPN rounds. It will be interesting to find out whether this is indeed
possible.
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A.1 Checking a single pattern

In order to check whether there exists a differential characteristic following a
specific pattern, one can use the following algorithm:

algorithm Check-Pattern(pattern), pattern ∈
(
[n]
a

)
1. ST := (It; 0a+t)

2. E := ∅

3. s := t+ 1

4. for every i = 1 : n

(a) if i ∈ pattern: ST1 ← es, s← s+ 1

(b) if i /∈ pattern: E ← E ∪ ST1
(c) ST ←M · ST

5. Solve the equation system E, return TRUE if and only if there exists
a nontrivial solution

Explanation of the algorithm. Each row of the state corresponds to the
coefficients in the linear combination of the t+a variables. Thus, the beginnings
of the rows consist of the unit vectors e1, . . . , et.

On a non-active S-box, we get a linear restriction by the coefficients in the
first row. On an active S-box, we replace the first row by a new variable, which
is represented by es.

The state is updated after the S-box layer, using the MDS matrix. When
we finish posing the linear equations, we can solve the system E using Gaussian
elimination and check whether there exists a solution. We note that for linear
characteristics, the same algorithm can be used, with the matrix (MT )−1 instead
of M .

A.2 Checking all r-round patterns with a active S-boxes

We can also iterate over all the patterns of length r with a active S-boxes, using
the following simple recursive algorithm:

function Search-Pattern(pref, s, a, i, n):
1. if i ≥ n− 1 ∧ Check-Pattern(pref) : output pref

2. if i < t+ 2s: Search-Pattern(pref,s, a, i+ 1, n)

3. if s < a ∧ 2s < i: Search-Pattern(pref ∪{i}, s+ 1, a, i+ 1, n)

Explanation of the algorithm. The word “pref” denotes a prefix of the
pattern, s is the number of active S-boxes in the prefix, i is the length of the
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prefix and n is the total number of S-boxes (i.e., the length of the final pattern).
It should thus always hold that s ≤ a, s ≤ i.

The function should be called with pattern = ∅, s = 0, a, i = 2, n = t+ 2a.
Note that we assume that the function was already called for each a′ ≤ a

and that no differential characteristic was found. We use this fact to reduce
the number of checked patterns, since if a pattern contains a previously checked
pattern as a substring, then we do not have to check it.

The condition for a non active S-box is : i < t + 2s. Indeed, if i ≥ t + 2s,
then the prefix already cannot contain active S-boxes (this is the case of a lower
a that was already checked), and thus we do not need to check this prefix at all.

The condition for an active S-box is: s < a ∧ 2s < i. Indeed, the condition
s < a is obvious. The condition 2s < i appears, since if 2s ≥ i then the suffix
(starting from i+ 1) is a pattern that was already checked, as it corresponds to
a′ = a − s, n′ = n − 2s = t + 2(a − s) = t + 2a′, and thus we do not need to
check this prefix.

The stopping condition is at n−1, as the last two S-boxes must be non-active
or otherwise the prefix will correspond to a′ = a − 1. By the same reasoning,
we start from i = 2, meaning that the first two S-boxes are also inactive.

27


	Introduction
	The HADES construction
	Improved Security Bounds for Poseidon Permutations
	A Class of Matrices over a Binary Field and its Properties
	Special matrices and their basic properties
	Special matrices over commutative rings of characteristic 2
	Nilpotent special matrices over commutative rings with characteristic 2
	Block matrices with special blocks
	A stronger conjectured bound

	A Large Invariant Subspace in the Middle Layer of Starkad Permutations
	The Starkad MDS and special matrices
	A large invariant subspace in Starkad with 4 S-boxes in each full round
	The invariant subspaces can be removed easily

	Discussion and Open Problems
	Discussion: PSPN rounds vs. SPN rounds
	Open problems

	Detailed Description of the Pattern Search Algorithm
	Checking a single pattern
	Checking all r-round patterns with a active S-boxes


