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Abstract

We construct a multikey fully-homomorphic encryption scheme (multikey FHE) with
one-round threshold decryption in the plain model, i.e. without a trusted setup, assuming
the intractability of standard problems over lattices. Prior to our work, such a scheme was
only known to exist assuming sub-exponentially hard indistinguishability obfuscation.

1 Introduction

Fully-homomorphic encryption [Gen09] (FHE) allows one to compute arbitrary functions on en-
crypted data. An important limitation of FHE is that it requires all of the data to be encrypted
under the same public key in order to perform homomorphic evaluations. Consequently, López-
Alt et al. [LTV12] proposed a multiparty extension of FHE, namely, multikey FHE, where
each party can sample a key pair (ski, pki) locally and encrypt its message under its own public
key. Then one can publicly evaluate any (polynomially computable) function over the result-
ing ciphertexts ci = Enc(pki,mi), each encrypted under an independently sampled public key.
Naturally, decrypting the resulting multikey ciphertext requires one to know all the secret keys
for the parties involved.

In this work we are interested in multikey FHE schemes with a 1 round decryption protocol
[MW16]: Given a multikey ciphertext c = Enc((pk1, . . . , pkN ), f(m1, . . . ,mN )), the decryption
consists of (i) a local phase, where each parties independently computes a decryption share ρi
using its secret key ski, and a (ii) public phase, where the plaintext m can be publicly recovered
from the decryption shares (ρ1, . . . , ρN ).

Other than being an interesting primitive on its own, multikey FHE with 1 round decryp-
tion implies a natural solution for secure multi-party computation (MPC) with optimal round
complexity and communication complexity independent of the size of the function being com-
puted [MW16]. Additionally, multikey FHE with 1 round decryption has interesting applications
to functional encryption [AJS17], program obfuscation [AJN+16], time-lock puzzles [MT19,
BDGM19], and many other cryptographic primitives. To the best of our knowledge, all known
multikey FHE schemes with 1 round decryption assume a trusted setup [CM15, MW16, BP16,
PS16] or require non-standard assumptions, such as the existence of sub-exponentially secure
general-purpose obfuscation [DHRW16].

1.1 Our Results

In this work we build a multikey FHE with 1 round decryption in the plain model, i.e. without
a trusted setup, from standard assumptions over lattices. This resolves a central open question
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in the area, which was explicitly stated in [MW16, BP16, CCS19]. Specifically, we prove the
following theorem.

Theorem 1.1 (Informal). If the Learning with errors (LWE), Ring LWE and the Decisional
Small Polynomial Ratio (DSPR) problems1 are hard, then there exists leveled multikey FHE.
Additionally assuming circular security of our scheme, there exists multikey FHE.

The RingLWE and the DSPR problems are needed to prove semantic security of the multi-
key FHE (without 1 round decryption) proposed in [LTV12]. Stated differently, the semantic
security of such a scheme implies the existence of a multikey FHE with 1 round decryption.
Our construction achieves a relaxed security notion where, among other differences, we re-
quire computational indistinguishability of simulated decryption shares, whereas the works of
[MW16, BP16, PS16] achieved statistical indistinguishability. (See Section 2.4 for details.) To
the best of our knowledge, this definition suffices for all applications of multikey FHE.

Our work builds on the recent result of Ananth et al. [AJJ20] who study a related notion
of multiparty homomorphic encryption (MHE), which is defined similarly to multikey FHE,
with the key difference that the computation required to reconstruct the output is at least
as high as recomputing the whole function. Assuming the hardness of LWE, Ananth et al.
provide a construction of MHE with semi-honest security, where the size of decryption shares
depends on the depth of the circuit being evaluated. Our work resolves all of these limitations
of their work; in particular, we construct a multikey FHE scheme with semi-malicious security
(as in [MW16]) with compact decryption and without depth-dependence (albeit with a circular-
security assumption in the latter case, as in prior works).

As an important corollary of our main result, we obtain a 2-round MPC protocol for general
functions from the same assumptions, with communication complexity independent of the cir-
cuit size. This is in contrast with prior 2-round protocols in the plain model [QWW18, ABJ+19,
AJJ20] where the communication complexity depends on the depth of the circuit being evalu-
ated. Since 2 rounds are optimal, this settles the question of the communication complexity of
multiparty computation (from standard assumptions) up to polynomial factors in the security
parameter.

1.2 Technical Overview

In the following we give a high-level overview of the techniques that we develop in order to
achieve our result and we refer the reader to the technical sections for precise statements.

Multikey FHE from MPC. Up until now, multikey FHE (with 1 round decryption) has
been thought of as a tool to construct 2-round MPC protocols with low communication. How-
ever, we seem to have reached a roadblock in the kind of multikey FHE scheme that we know
how to construct from standard assumptions: On the one hand, we have multikey FHE schemes
without a setup, but with unstructured decryption circuit [LTV12] (and therefore not admitting
a 1-round decryption procedure). On the other hand, we know of schemes that admit a 1-round
decryption protocol, but they all require a trusted setup [CM15, MW16, BP16, PS16].

In this work, we ask the reverse question: Can existing 2-round MPC protocols help us
constructing better multikey FHE schemes? The starting point of this work is the following
observation. Let us assume for the moment that a secure 1-round MPC for all functions could
exist. Then we could turn any multikey FHE in the plain model (e.g. that described in [LTV12])
into a multikey FHE with 1-round decryption, by simply evaluating the decryption circuit (no

1A description of both Ring LWE and DSPR assumptions can be found on pages 23 and 25, rescptively, of
[LATV13] (version updated on 22 Oct 2014).
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matter how complex it is) under the hood of the MPC. While this scenario is clearly unrealistic
(1-round MPC is trivially impossible), it turns out the the intuition is still useful. Equipped
with 2-round MPC, we can realize the above intuition as follows.

Encryption: The encryption procedure consists of the encryption Enc(pk,m) of a multikey
FHE in the plain model (without 1-round decryption) and the first message of a 2-round
MPC on input the secret key sk.

Decryption: Given an evaluated ciphertext c, each party computes locally the second
message of the 2-round MPC for the function

Φ(sk1, . . . , skN ) : Dec((sk1, . . . , skN ), c)

and broadcasts it. The plaintext can be publicly recovered by all parties by simply com-
pleting the execution of the MPC.

In the above outline we implicitly assumed that the 2-round MPC satisfies two properties:
The scheme has (i) delayed function, i.e. the function to be computed can be specified in the
second round and has (ii) public reconstruction, i.e. the output of the MPC can be publicly
recovered given the transcript of the MPC. To instantiate this version of MPC we leverage
recent works [GS18, BL18] that built 2-round MPC satisfying both properties2 from the minimal
assumption that 2-round oblivious transfer exists. It is important to observe that, although the
communication complexity of the protocols in [ACGJ18, ACGJ19] grows polynomially with the
size of the function evaluated, this does not affect the compactness of the resulting multikey
FHE. This is because the size of the function Φ computed by the MPC is fixed, and in particular
is independent of the size of the function that is homomorphically evaluated.

Unfortunately, the above construction does not quite achieve the security requirements for a
multikey FHE. The reason is that all known 2-round MPCs in the plain model are non-reusable,
i.e. the first message of the MPC can be used to securely compute a single function. This implies
that the 1-round decryption procedure can be run exactly once per ciphertext, which is not what
we would expect from a multikey FHE. Thus, the question of constructing multikey FHE in the
plain model boils down to building reusable 2-round MPC, also in the plain model.

Reusable MPC. The recent work of Ananth et al. [AJJ20] on multiparty homomorphic
encryption provides a construction of 2-round reusable MPC in the plain model, based on the
hardness of LWE. Loosely speaking, their work shows a transformation from a non-reusable
2-round MPC with succinct first-round messages to a reusable 2-round MPC. In this context,
succinct first-round messages means that the size of first-round messages of the MPC (for
all parties) does not in any way depend on the size of the function being computed, and in
particular is bounded by some polynomial poly(λ,N ), where λ is the security parameter and
N is the number of parties.

In the same work, [AJJ20] also provide a generic compiler to turn any 2-round MPC into
a 2-round MPC with succinct first-round messages. However this transformation falls short
of our requirements: in particular, it yields a semi-honest protocol even if we were to start
with a semi-malicious MPC protocol.3 Recall that semi-malicious security is a strengthening
of the semi-honest definition and requires security to hold for well-formed messages but for

2Although the schemes were not presented with the delayed function property, they can be easily modified to
satisfy this notion. This fact was already observed and used in [ACGJ18, ACGJ19].

3This is not just an artifact of the proof, but one can find an explicit attack for the scheme in [AJJ20] if the
adversary is allowed to choose its random coins.
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any choice of the random coins. Semi-maliciousness is, in fact, the de-facto security notion for
multikey FHE (in the plain model) as defined in [MW16] and it is often leveraged in the usage of
(multikey) FHE as a building block in more complex protocols (e.g. [MW16, BHP17, BGJ+17],
to mention a few) where semi-malicious security is useful.

The remainder of this overview (and the technical bulk of this work) is, therefore, dedicated
to constructing a (non-reusable) 2-round semi-malicious MPC with succinct first-round mes-
sages. Once we have such a protocol, we can apply the reusability transformation of [AJJ20]
(which preserves semi-malicious security) to obtain a reusable 2-round semi-malicious MPC
protocol.

Towards this end, we observe that the protocol described above (when instantiated with
a non-reusable MPC) almost achieves the succinct first-round messages property. The main
challenge is that the size of the first message grows additionally with (i) the size of the inputs
and (ii) the size of the output of the function being evaluated. We are going to overcome these
challenges via generic transformations to our 2-round MPC.

Removing Input Dependency. It turns out that the issue of input dependency can be
resolved with a very simple trick: Instead of running our MPC on its input x, we set the input
to be the seed of a PRG seed ∈ {0, 1}λ. Then, instead of evaluating Φ on (x1, . . . , xn), the MPC
computes

Φ̃(w1,...,wN )(seed1, . . . , seedN ) = Φ(PRG(seed1)⊕ w1, . . . ,PRG(seedN )⊕ wN )

where the values wi = PRG(seed)⊕ x1 are hardwired in the description of the function and are
communicated along with the first message of the MPC by each party. Technically, the size of
each wi still depends on the input size so the first message is not properly succinct. However,
the observation is that these (w1, . . . , wN ) are reusable across multiple executions, even if the
underlying MPC is not. Therefore, such an MPC satisfies the structural requirements on the
first messages imposed by [AJJ20], as far as the dependency on the inputs is concerned.

Removing Output Dependency. Removing the dependency with respect to the output
size requires much more work. To this end, we introduce the notion of split multikey FHE,
an extension of the recently introduced split FHE [BDGM20] in the multiparty settings. Split
multikey FHE is a three round primitive, where all parties (i) establish the public parameters
of the system in the first round of interaction (this is known in the literature as distributed
setup). Then each party can (ii) sample a key pair locally and encrypt their message under
their public key. Analogously to (plain) multikey FHE, any function can be publicly computed
over ciphertexts under independent keys, without the need to decrypt. The crucial property
of split mutikey FHE is that, given an evaluated ciphertext and their secret key, each party
can compute locally a small decryption hint, of size much smaller than the one of the evaluated
ciphertext. Collecting all the decryption hints of all parties, allow anyone to (iii) decrypt the
evaluated ciphertext and recover the output of the computation.

For the moment we are going to assume that such a split multikey FHE exists and we are
going to demonstrate how to use it to remove the output dependency for a 2-round MPC. We
defer the outline on the construction of split multikey FHE to a later part of this overview.
Equipped with this tool, we can generically remove the output dependency from our 2-round
MPC as follows.

First Message: The first message consists of the first message of a 2-round MPC (with
delayed function) where the input of each party is set to the seed of a PRG seedi together
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with its real input xi. Additionally, the parties send the first message of the split multikey
FHE to establish the public parameters of the scheme pp.

Second Message: Each party sample a key pair (ski, pki)← KeyGen(pp) and computes an
encryption of its input ci ← Enc(pki, xi), where the random coins for these operations are
taken deterministically from PRG(seedi). The second message of each party consists of
(pki, ci) along with the second message of the MPC for the function Φ, defined as follows.

Φ(seed1, x1, . . . , seedN , xN ) : The function recomputes the keys ((sk1, pk1), . . . , (skN , pkN ))
and the ciphertexts (c1, . . . , cN ) for all parties, then it evaluates the function f homomor-
phically c̃ ← Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )). Finally it outputs all of the decryption
hints (h1, . . . , hN ) for c̃.

Output Reconstruction: The homomorphically evaluated ciphertext c̃ can be publicly re-
constructed, given the second messages. Then one recovers the decryption hints (h1, . . . , hN )
from the output of the MPC to decrypt c̃.

First observe that, although the first message of the underlying MPC might depend polyno-
mially on the size of its output, the function Φ only computes the decryption hints. Since
(h1, . . . , hN ) are of size independent of the output |f(x1, . . . , xN )|, it follows that the communi-
cation complexity of the resulting protocol does not depend on the size of the output. Clearly, in
order to achieve security, the decryption hints must not reveal anything beyond f(x1, . . . , xN ).
Thus what is left to be shown, is how to construct a secure split multikey FHE.

Split Multikey FHE. In the following we show how to construct split multikey FHE, as-
suming the hardness of the learning with errors (LWE) problem. Before delving into the details
of our construction we shall clarify the relation with [BDGM20], and in particular with the
notion of program obfuscation [GGH+13]. It was shown in [BDGM20] that split FHE alone
suffices to construct general purpose obfuscation, although their construction introduces some
new assumptions about the circular dependency of the cryptography primitives used.

In order to obtain a construction from (plain) LWE we are going to relax the requirement
for split (multikey) FHE. Specifically, we are going to allow the parties to additionally output a
large auxiliary information α (of size possibly proportional to the output size). The condition
that we impose, is that the computation of α does not depend on the evaluated ciphertext.
One can think of α as a one-time re-randomization factor for the evaluated ciphertext. Note
that even this relaxed notion of split multikey FHE suffices to remove the output dependency
from a 2-round MPC: Since the computation of α does not depend on c̃, the parties can simply
output it together with the second message of the MPC. Note that the size of the auxiliary
information α prevents us from using this primitive to construct obfuscation, but it is still
useful to remove the output dependency of the first message of the MPC. The reason is that
we are not compressing the size of the output, but merely delaying it by one round.

Augmenting [BHP17]. Our starting point is the multikey FHE scheme with distributed
setup introduced in [BHP17]. Although we are not aware of any direct method to compute short
decryption hints, this scheme has some useful properties, which we recall in the following. The
scheme admits a 1-round setup, where all parties contribute to construct the public parameters
and it admits multikey homomorphic evaluation of any polynomially computable function. The
resulting ciphertext C defines a linear function LC such that

LC(s1, . . . , sN ) = q/2 · f(x1, . . . , xN ) + e (mod q)
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where q is the LWE modulus, si ∈ {0, 1}η (for some η ∈ poly(λ,N )) are the secret keys of each
party, and the variable e is a bounded noise term. Note that, since LC is a linear function, we

can equivalently define the linear functions L
(1)
C . . . L

(N)
C such that

N∑
i=1

L
(i)
C (si) ≈ q/2 · f(x1, . . . , xN ).

Intuitively, we are going to use the linear structure of the decryption algorithm to key-switch into
a scheme for which we can define short decryption hints. Specifically, letting ` = |f(x1, . . . , xN )|
be the size of the output of f , we are going to augment each public key of the scheme
from [BHP17] with the following elements

(Ai,Bi = Ai ·Ri + Ei + si ⊗G)

where Ai←$Z`×nq is a uniform matrix, Ri corresponds to the LWE secret key, and Ei is the
LWE noise, both of appropriate dimensions. Here G denotes the gadget matrix [MP12] and we
define G−1 to be the corresponding bit-decomposition operator. For the sake of this outline,
we omit the precise definitions and we are just going to use the fact that

si ⊗G ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
=
(
sTi L

(i)
C1
, . . . , sTi L

(i)
C`

)
=
(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)

(1)

where L
(i)
C1
. . . L

(i)
C`

are the vector representations of the linear functions defined by the evaluated
ciphertexts C1 . . .C`. Before delving in the details of the computation of the decryption hints,
observe that the elements (Ai,Bi) essentially correspond to a (redundant) encryption of the
secret key si. Therefore the security of the augmented scheme follows from that of [BHP17],
with an additional invocation of the LWE assumption.

Decryption Hints and Auxiliary Information. We are now ready to describe the com-
putation of the decryption hints. First observe that, given ` evaluated ciphertexts C1 . . .C`,
one can key-switch them into encryptions under Ri by computing

N∑
i=1

Bi ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
≈

N∑
i=1

Ai ·Ri ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+ si ⊗G ·G−1

(
L
(i)
C1
, . . . , L

(i)
C`

)
≈

N∑
i=1

Ai ·Ri ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+
(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)

≈
N∑
i=1

Ai ·Ri ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+ f(x1, . . . , xN )

omitting small noise terms and applying Equation 1. Note that Ai is a publicly available matrix,
so it is tempting to set the decryption hint hi of the i-th party to

hi = Ri ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
∈ Znq .

While this would satisfy the compactness requirement (|hi| is independent of `), it turns out
that this attempt is completely insecure since it reveals some non-trivial information about the
secret key Ri. To amend this, we define the decryption hint to be

hi = Ri ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+ ρi
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where ρi←$Znq is a uniformly sampled mask. At this point the hint is uniformly distributed
over Znq but we need to absorb the shift introduced by the mask ρi. This is done by setting the
auxiliary information αi to

αi = Ai · ρi + ei ∈ Z`q
where the noise term ei is introduced to be able to simulate the decryption hints and the
auxiliary information in the security proof. Observe that, while the size of αi is proportional to
`, its computation is independent of the evaluated ciphertexts, as desired. A routine calculation
shows that the hints (h1, . . . , hN ) and the auxiliary information (α1, . . . , αN ) suffice to recover
the output of the function f(x1, . . . , xN ) from the evaluated ciphertexts, for an appropriate set
of parameters. This concludes the description of our split multikey FHE.

Putting Things Together. We conclude by summarizing the conceptual steps that are taken
to construct our multikey FHE in the plain model.

Step I: Combine a non-reusable 2-round MPC (e.g. [GS18, BL18]) with a multikey FHE
with unstructured decryption (e.g. [LTV12]) to obtain a non-reusable 2-round MPC where
the size of the fist message depends on:

– The size of the inputs.

– The size of the output.

– The number of parties.

– The security parameter.

Step II: Apply a generic transformation to make the size of the first message independent
of the size of the inputs.

Step III: Remove the dependency of the first message from the size of the output via
split multikey FHE with distributed setup.

Step IV: Apply the compiler from [AJJ20] to obtain a reusable 2-round MPC with
communication complexity proportional to the size of the function.

Step V: Combine (again!) the resulting reusable 2-round MPC with the multikey FHE
of [LTV12] to obtain a multikey FHE in the plain model with 1-round decryption.

1.3 Perspectives and Open Problems

One of the main technical innovations of our work is the concept of split multikey FHE, which we
believe to be an object of independent interest. For example, it naturally yields a 2-round MPC
protocol with a input- and function-independent pre-processing with the following features: (i)
The pre-processing is non-interactive (consists of a single round of broadcast among all parties)
and its size depends only on the size of the output and on the security parameter. Furthermore
(ii) the online communication depends on the size of the inputs, the number of parties, and the
security parameter, and in particular is independent of the size of the output. Note that the
pre-processing is not reusable, but this is the best that we can hope for without implying some
form of obfuscation [HW15].

Our work leaves open some interesting directions for future research. The most compelling
problem is to construct a multikey FHE with 1-round decryption assuming only the hardness of
the (plain) learning with errors (LWE) problem. Another relevant direction is to improve the
practical efficiency of our proposal and to obtain a more direct construction of multikey FHE
from lattice assumptions.
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2 Preliminaries

We denote by λ ∈ N the security parameter. We we say that a function negl(·) is negligible
if it vanishes faster than any polynomial. Given a set S, we denote by s←$S the uniform
sampling from S. We say that an algorithm is PPT if it can be implemented by a probabilistic
Turing machine running in time poly(λ). Matrices are denoted by M and vectors are denoted
by v. We denote the infinity norm of a vector by ‖v‖∞. We recall the smudging lemma
from [AIK11, AJL+12].

Lemma 1 (Smudging). Let B1 = B1(λ) and B2 = B2(λ) be positive integers and let e1 ∈
{1, . . . , B1} be a fixed integer. Let e2←$ {1, . . . , B2} chosen uniformly at random. Then the
distribution of e2 is statistically indistinguishable from that of e2+e1 as long as B1/B2 = negl(λ).

2.1 Learning with Errors

We recall the (decisional) learning with errors (LWE) problem as introduced by Regev [Reg05].

Definition 2.1 (Learning with Errors). The LWE problem is parametrized by a modulus q,
positive integers n,m and an error distribution χ. The LWE problem is hard if the following
distributions are computationally indistinguishable:

(A, s> ·A + e) ≈ (A,u)

where A is chosen uniformly from Zn×mq , s is chosen uniformly from Znq , u is chosen uniformly
from Zmq and e is chosen from χm.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ
is a discrete Gaussian distribution with parameter σ = βq ≥ 2

√
n (i.e. the distribution over Z

where the probability of x is proportional to e−π(|x|/σ)
2
), is at least as hard as approximating

(for a quantum algorithm) the shortest independent vector problem (SIVP) to within a factor
of γ = Õ(n/β) in worst case dimension n lattices. We refer to β = σ/q as the modulus-to-noise
ratio, and by the above this quantity controls the hardness of the LWE instantiation. LWE
with super-polynomial β is conjectured to be hard for all PPT machines. We can truncate
the discrete gaussian distribution χ to σ · ω(

√
log(λ)) while only introducing a negligible gap

between the distributions. Consequently, we omit the actual distribution χ but only use the
fact that it can be bounded by some (small) value Bχ.

2.2 Pseudorandom Generators

A pseudorandom generator (PRG) [ILL89] stretches random strings into strings that look uni-
formly random to a computationally bounded adversary.

Definition 2.2 (Pseudorandom Generator). A function PRG : {0, 1}λ → {0, 1}θ is pseudoran-
dom if θ > λ and if the following distributions are computationally indistinguishable:

r ≈ PRG(seed)

where r←$ {0, 1}m and seed←$ {0, 1}λ.
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2.3 Multi-Party Computation Protocols

In the following we recall the definition of multi-party computation (MPC) protocols [Gol09].
In this work we consider MPC protocols where all communications happen through a broadcast
channel and that consist only in two rounds of interaction among parties. Furthermore, we
require that they satisfy the following properties:

(1) Public Reconstruction: At the end of the second round of the protocol, the output of the
computation can be publicly reconstructed based on the transcript of the protocol.

(2) Delayed Function: The computation of the first message does not depend on the function
f but only on the inputs.

Note that we can assume that condition (1) holds without loss of generality, since any MPC
protocol can be modified to achieve this property in a natural way. So the only non-trivial
requirement is condition (2). All known 2-round (semi-honest) MPC based on the minimal
assumption of 2-round (semi-honest) oblivious transfer [GS18, BL18] can be modified to achieve
this property, as discussed in [ACGJ18, ACGJ19].

Definition 2.3 (MPC Protocol). A 2-round protocol Π for a function family F is a tuple of
deterministic polynomial-time algorithms (First, Second,Output) defined as follows.

Firsti
(
1λ, xi, si

)
: On input the security parameter 1λ, an input xi ∈ {0, 1}k, and a random tape

si ∈ {0, 1}s, return the first round message yi for the party Pi.

Secondi
(
1λ, xi, si, f, (y1, . . . , yN )

)
: On input the security parameter 1λ, an input xi ∈ {0, 1}k,

a random tape si ∈ {0, 1}s, the circuit representation of a function f , and the first round
messages (y1, . . . , yN ), return the second round message zi for the party Pi.

Output
(
1λ, (z1, . . . , zN )

)
: On input the security parameter 1λ and the second round messages

(z1, . . . , zN ), return the output of the computation.

The MPC protocol must satisfy correctness in the following sense.

Definition 2.4 (Correctness). For all integers λ ∈ N, all inputs (x1, . . . , xN ) ∈ {0, 1}k·N , all
functions f ∈ F , and all random tapes (s1, . . . , sN ) ∈ {0, 1}s·N it holds that

Output
(

1λ, (z1, . . . , zN )
)

= f(x1, . . . , xN )

where zi =
{

Secondi
(
1λ, xi, si, f, (y1, . . . , yN )

)}
i∈[N ]

and yi =
{

Firsti
(
1λ, xi, si

)}
i∈[N ]

.

We now define security for MPC. In this work we are interested in the semi-malicious notion of
security, where the adversary is required to behave honestly but can choose the random coins of
the corrupted parties arbitrarily. We first define the non-reusable variant of this notion, where
security is required to hold for a single execution of the MPC protocol.

Definition 2.5 (Semi-Malicious Security). Let N be a positive integer and let Π be a 2-round
MPC protocol for a function family F . Then Π is secure against semi-malicious adversaries
if there exists a PPT algorithm Sim such that for all λ ∈ N, all I ⊂ {1, . . . , N}, all inputs
(x1, . . . , xN ), all random tapes (s1, . . . , sN ) ∈ {0, 1}s, all functions f ∈ F , it holds that the
following distributions are computationally indistinguishable:(

f, {xi, si}i∈I ,
{
yi = Firsti(1

λ, xi, si),Secondi
(
1λ, xi, si, f, (y1, . . . , yN )

)}
i∈N

)
≈ Sim

(
1λ, I, {xi, si}i∈I , f, f(x1, . . . , xN )

)
9



We then define semi-malicious security in the reusable settings, where the first message of the
MPC is fixed and security is required to hold for arbitrarily (but polynomially) many instances
of the second message.

Definition 2.6 (Reusable Semi-Malicious Security). Let N be a positive integer and let Π be
a 2-round MPC protocol for a function family F . Then Π is reusably secure against semi-
malicious adversaries if there exists a PPT algorithm Sim and a negligible function negl such
that for all λ ∈ N and all PPT algorithms A = (A0,A1) it holds that∣∣∣Pr[ExpA,Real(1

λ) = 1]− Pr[ExpA,Ideal(1
λ) = 1]

∣∣∣ ≤ negl(λ)

where the two experiments are defined as follows.

ExpA,Real(1
λ):

• (I ⊂ {1, . . . , N}, {xi}i∈N , {si}i∈I , st)← A0(1
λ)

• Sample {si←$ {0, 1}s}i/∈I and compute {yi ← Firsti(1
λ, xi, si)}i∈N

• Return AO1 (st, {yi}i∈N )

where O takes as input a function f ∈ F and returns
{

Secondi
(
1λ, xi, si, f, (y1, . . . , yN )

)}
i/∈I .

ExpA,Ideal(1
λ):

• (I ⊂ {1, . . . , N}, {xi}i∈N , {si}i∈I , st)← A0(1
λ)

• Compute (st′, {yi}i∈N )← Sim0

(
1λ, I, {xi, si}i∈I

)
• Return AO1 ← (st, {yi}i∈N )

where O takes as input a function f ∈ F , computes (st′′, {zi}i/∈I)← Sim1(st′, f, f(x1, . . . , xN )),
sets st′ = st′′, and returns {zi}i/∈I .

On Public Reconstruction. We now argue that any N -party MPC protocol Π (possibly
without public reconstruction) can be transformed into an (N−1)-party MPC protocol Π′ with
public reconstruction. By the correctness of Π, there exists at least one party Pi that obtains
the output at the end of the interaction. Then Π′ proceeds as follows: On input a function f ,
the parties jointly execute Π for the function g, defined as

g(x1, . . . , xn) = f(x1, . . . , xi−1, xi+1, . . . , xn)

i.e. it ignores the i-th input. The input xi and the state si of Pi are sampled by an arbitrary
party Pj 6=i and sent along with the first message of the protocol. Since the state and the input
of Pi are publicly known, its messages can be locally simulated by all parties. At the end of
the interaction, the output of the computation can be publicly recovered, since xi and si are
publicly known. Correctness and (semi-honest) security directly carry over from Π.

2.4 Multikey Fully-Homomorphic Encryption

A multikey FHE allows one to compute functions over ciphertexts encrypted under different
and independently sampled keys. One can then decrypt the result of the computation by
gathering together the corresponding secret keys and run a decryption algorithm. In this work
we explicitly distinguish between two families of schemes, depending on structural properties of
the decryption algorithm.
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(1) 1-Round Decryption: The decryption algorithm consists of two subroutines (i) a local
phase (PDec) where each party computes a decryption share of the ciphertext based
only on its secret key and (ii) a public phase (Rec) where the plaintext can be publicly
reconstructed from the decryption shares. This variant is the focus of our work.

(2) Unstructured Decryption: The decryption is a (possibly interactive) protocol that takes
as input a ciphertext and all secret keys and returns the underlying plaintext. No special
structural requirements are imposed.

In this work we are interested in constructing the former, which has a wider range of applications,
such as a natural 2-round MPC protocol with low communication. However, the latter is going
to be a useful building block in our transformation.

Definition 2.7 (Multikey Homomorphic Encryption). A multikey FHE scheme Ψ for N parties
and for the function family F consists of the following efficient algorithms.

KeyGen(1λ) : On input the security parameter 1λ, the key generation algorithm returns a key
pair (sk, pk).

Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm returns a
ciphertext c.

Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )) : On input a vector of public keys (pk1, . . . , pkN ), an N -
argument function f ∈ F , and a vector of ciphertexts (c1, . . . , cN ), the evaluation algorithm
returns an evaluated ciphertext c.

Dec((sk1, . . . , skN ), c) : On input a vector of secret keys (sk1, . . . , skN ) and a ciphertext c, the
decryption protocol returns a message m. We say that a multikey FHE has a 1-round
decryption if the decryption protocol consists of the algorithms PDec and Rec with the
following syntax.

PDec(sk, c, i) : The partial decryption algorithm takes as input a secret key sk, a ciphertext
c, and an index i, and returns a decryption share ρi.

Rec(ρ1, . . . , ρN ) : The reconstruction algorithm takes as input a set of decryption shares
(ρ1, . . . , ρN ) and returns a message m.

We say that the scheme is fully homomorphic if it is homomorphic for P/poly. In the following
we define correctness for multikey FHE with 1-round decryption, the more general notion can
be obtained by modifying our definition in a natural way. Note that we only define correctness
for a single application of the homomorphic evaluation procedure, although one can define the
more general notion of multi-hop correctness [GHV10].

Definition 2.8 (Correctness). A multi-key homomorphic encryption scheme Ψ = (KeyGen,Enc,
Eval,PDec,Rec) for N parties is correct if for all λ ∈ N, all N -argument functions f ∈ F , all
inputs (m1, . . . ,mN ), all (ski, pki) in the support of KeyGen(1λ), and all ciphertexts (c1, . . . , cN )
in the support of (Enc(pk1,m1), . . . ,Enc(pkN ,mN )), it holds that

Rec(ρ1, . . . , ρN ) = f(m1, . . . ,mN ).

where ρi ← PDec(ski,Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )), i).

We say that a scheme is compact if the size of the evaluated ciphertexts does not depend on the
size of the circuit representation of f and only grows with the security parameter (and possibly
the number of keys N). Furthermore, we require that the runtime of the decryption algorithm
(and of its subroutines PDec and Rec) is independent of the size of the circuit representation of
f . We now recall the standard notion of semantic security for public-key encryption [GM82].
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Definition 2.9 (Semantic Security). A public-key encryption scheme Ψ = (KeyGen,Enc,Eval,
PDec,Rec) is semantically secure if for all λ ∈ N and for all pairs of messages (m0,m1), the
following distributions are computationally indistinguishable:

Enc(pk,m0) ≈ Enc(pk,m1)

where (sk, pk)←$ KeyGen(1λ).

We define the notion of simulation security for multikey FHE with 1-round decryption. Intu-
itively, this notion says that the decryption share do not reveal anything beyond the plaintext
that they reconstruct to. In this work we present a unified notion that combines semantic se-
curity and computational indistingushability of partial decryption shares. This is a weakening
of the definition given in [MW16], where the simulated decryption shares were required to be
statistically close to the honestly compute ones. To the best of our knowledge, this weaker
notion is sufficient for all applications of multikey FHE. Note that by default we consider a
semi-malicious adversary, that is allowed to choose the random coins of the corrupted parties
arbitrarily.

Definition 2.10 (Simulation Security). A multi-key homomorphic encryption scheme (KeyGen,Enc,
Eval,PDec,Rec) is simulation secure if there exists a PPT algorithm Sim = (Sim0,Sim1) and
a negligible function negl such that for all λ ∈ N, all polynomials N = N(λ), and all PPT
algorithms A = (A0,A1) it holds that∣∣∣Pr[ExpA,Real(1

λ) = 1]− Pr[ExpA,Ideal(1
λ) = 1]

∣∣∣ ≤ negl(λ)

where the two experiments are defined as follows.

ExpA,Real(1
λ):

• (I ⊂ {1, . . . , N}, {mi}i∈N , {ri, r̃i}i∈I , st)← A0(1
λ)

• Sample {(ri, r̃i)←$ {0, 1}∗}i/∈I

• Compute {(ski, pki)← KeyGen(1λ; ri)}i∈N and {ci ← Enc(pki,mi, r̃i)}i∈N

• Return AO1 (st, {pki, ci}i∈N )

where O takes as input a function f , computes c ← Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )), and
returns {PDec (ski, c, i)}i/∈I .
ExpA,Ideal(1

λ):

• (I ⊂ {1, . . . , N}, {mi}i∈N , {ri, r̃i}i∈I , st)← A0(1
λ)

• Compute (st′, {pki, ci}i∈N )← Sim0

(
1λ, I, {mi, ri, r̃i}i∈I

)
• Return AO1 ← (st, {pki, ci}i∈N )

where O takes as input a function f , computes (st′′, {ρi}i/∈I)← Sim1(st′, f, f(m1, . . . ,mN )), sets
st′ = st′′, and returns {ρi}i/∈I .

3 Split Multikey FHE

In the following we define and construct split multikey FHE with distributed setup, which is
going to be instrumental to improve on the communication complexity of MPC protocols.
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3.1 Distributed Setup

We first relax the definition of multikey FHE to allow for a one-time setup that sets the public
parameters that are going to be taken as input by all algorithms. We require that the public
parameters pp consists of the concatenation of strings (pp1, . . . , ppN ) each independently sam-
pled by each party involved. We refer to this notion as distributed setup, and we recall the
definitions from [BHP17].

Definition 3.1 (Multikey FHE with Distributed Setup). A multikey FHE scheme Ψ has a
distributed setup if there exists the following efficient algorithm.

Setup(1λ, i) : On input the security parameter 1λ and an index i, the setup algorithm outputs a
string ppi.

We then define the public parameters to pp = (pp1, . . . , ppN ) and we assume that all other
algorithms take pp as an additional input.

We require the scheme to satisfy semantic security and simulatability as defined before, except
that they are required to hold for all possible choices of {ppi}i∈I , where I is the set of corrupted
parties. Note that we consider adaptive choices of the adversarial public parameters, i.e. the
corrupted parties can sample their ppi depending on the honestly chosen {ppj}j /∈I .

In the following we recall the salient features of a multikey FHE scheme with distributed
setup proposed in [BHP17].

Theorem 3.2 ([BHP17]). Assuming the hardness of the LWE problem with super-polynomial
modulo-to-noise ratio, there exists a multikey FHE with distributed setup such that the following
conditions are satisfied.

(1) The public parameters are jointly sampled by all parties and consist of the concatenation of
N matrices P1‖ . . . ‖PN , where each matrix Pi←$Zη×nq is locally sampled by each party.
The parameter η is set to η = (Nn+ 1) log(q) + 2λ = poly(λ,N ).

(2) For any depth parameter d, the public key are of size |pk| = poly(λ,N ) · d, whereas the
secret keys are binary vectors s ∈ {0, 1}η, regardless of the depth parameter. Then there
exists an evaluation algorithm Eval that given as input:

(a) N public keys (pk1, . . . , pkN ) supporting d-depth computations.

(b) An N -argument boolean function function f : ({0, 1}∗)N → {0, 1} whose circuit
representation has depth at most d.

(c) Encryptions of each argument mi under the corresponding public key ci ← Enc(pki,mi).

The Eval algorithm returns a matrix C that defines a linear function LC such that

LC(s1, . . . , sN ) = q/2 · f(m1, . . . ,mN ) + e (mod q)

where |e| < B̃ = Bχ ·poly(λ). Note that, since LC is a linear function we can equivalently

define the linear functions L
(1)
C . . . L

(N)
C such that

N∑
i=1

L
(i)
C (si) = q/2 · f(m1, . . . ,mN ) + e (mod q).

(3) By further making a circular-security assumption, there exists a scheme that supports
evaluation of circuits of any depth without increasing the length of public keys.
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3.2 Split Decryption

We define the notion of multikey FHE with split decryption [BDGM20]. Loosely speaking, split
decryption requires that the decryption procedure consists of a (i) local phase, where each party
computes a small decryption hint, and a (ii) public phase, where the plaintext is recovered from
the evaluated ciphertexts together with the decryption hints. In this work we consider a specific
notion of split decryption, where the hint is further decomposed in two components:

(1) A short component h, of size independent of that of the evaluated ciphertext.

(2) An auxiliary information α without any bound on the size, but whose computation does
not depend on the evaluated ciphertext, nor the secret key.

This relaxation of the notion will allow us to obtain a construction from the standard LWE
problem. The formal definition is given in the following.

Definition 3.3 (Multikey FHE with Split Decryption). A multikey FHE scheme Ψ has split
decryption if the decryption protocol consist of the algorithms Aux, Hint, and HRec with the
following syntax.

Aux(pk, i) : On input a public key pk and an index i the auxiliary algorithm, returns an auxiliary
information αi and a state sti.

Hint(sk, c, st, i) On input the secret key sk, a ciphertext c, a state st, and an index i, the hint
algorithm returns a decryption hint hi.

HRec(c, (h1, . . . , hN ), (α1, . . . , αN )) : The reconstruction algorithm takes as input a ciphertext
c, a set of decryption hints (h1, . . . , hN ), and a set of auxiliary information (α1, . . . , αN ),
and returns a message m.

The definition of correctness is adapted to the modified syntax in a natural way.

Definition 3.4 (Correctness). A multi-key homomorphic encryption scheme with split decryp-
tion Ψ = (KeyGen,Enc,Eval,Aux,Hint,HRec) for N parties is correct if for all λ ∈ N, all N -
argument functions f ∈ F , all inputs (m1, . . . ,mN ), all (ski, pki) in the support of KeyGen(1λ),
and all ciphertexts (c1, . . . , cN ) in the support of (Enc(pk1,m1), . . . ,Enc(pkN ,mN )), it holds that

HRec(c, (h1, . . . , hN ), (α1, . . . , αN )) = f(m1, . . . ,mN ).

where c← Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )), hi ← Hint(ski, c, sti, i), and (αi, sti)← Aux(pki, i).

We require that the hints are short, i.e. their size does not depend on the size of the output
|f(m1, . . . ,mN )| and in particular is bounded by some fixed polynomial poly(λ). Note that we
do not impose any structural requirement on the auxiliary information α. The definition of
semantic security is unchanged.

In the following we define the notion of simulatability for decryption hints, which demands
that the decryption hints together with the auxiliary information allow one to decrypt only the
designated ciphertext and do not reveal anything beyond that.

Definition 3.5 (Simulation Security). A multi-key homomorphic encryption scheme with split
decryption Ψ = (KeyGen,Enc,Eval,Aux,Hint,HRec) for N parties is simulation secure if there
exists a PPT algorithm Sim such that for all λ ∈ N, all I ⊂ {1, . . . , N}, all messages (m1, . . . ,mN ),
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all functions f ∈ F , all (ski, pki) in the support of KeyGen(1λ), all ci in the support of Enc(pki,mi),
it holds that the following distributions are statistically indistinguishable:

{Hint(ski,Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )), sti, i), αi}i/∈I
≈ Sim

(
1λ, I, {ski}i∈I ,Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )), f(m1, . . . ,mN )

)
where (αi, sti) ← Aux(pki, i) and the randomness is taken over the coins of the simulator Sim
and the algorithms Aux and Hint, and all other messages are fixed.

3.3 Construction

In the following we describe our construction for a split multikey FHE with distributed setup,
assuming the hardness of the LWE problem. As a building block for our scheme, we use the
multikey FHE with distributed setup (Setup,KeyGen,Enc,Eval,Dec) introduced in [BHP17]. By
Theorem 3.2, the existence of such a scheme is implied by the hardness of the LWE problem
(with super-polynomial modulo-to-noise ratio). We now define the gadget matrix G, which is
going to be useful for our purposes.

Definition 3.6 (Gadget Matrix [MP12]). Let g = (1, 2, 4, . . . , 2blog(q)c) and let gη be the column
concatenation of η-many copies of g, i.e. gη = (g, . . . ,g)︸ ︷︷ ︸

η

. We define the gadget matrix G to be

G =


gη 0 . . . 0
0 gη . . . 0
...

...
. . .

...
0 0 . . . gη

 ∈ Z`×η`dlog(q)eq .

We also define G−1 : Zη`q → Zη`dlog(q)eq to be the binary decomposition operator.

For notational convenience we denote

x⊗G =


(x1 · g, . . . , xη · g) 0 . . . 0

0 (x1 · g, . . . , xη · g) . . . 0
...

...
. . .

...
0 0 . . . (x1 · g, . . . , xη · g)

 .

where x ∈ {0, 1}η. Let L̄ be the (column) vector representation of ` linear functions (L1, . . . , L`) ∈
Zη`q . We are going to use the fact that

x⊗G ·G−1(L̄) =
(
xTL1, . . . ,x

TL`
)

= (L1(x), . . . , L`(x)) . (2)

We describe our construction below for functions with `-bits of outputs f : ({0, 1}∗)N → {0, 1}`.
Throughout the following description we assume that q is an even number, although the con-
struction can be easily adapted to arbitrary moduli.

Setup: On input the security parameter 1λ, the setup algorithm returns Pi ← Setup(1λ, i).
We define the public parameters of the scheme to be pp = P1‖ . . . ‖PN .
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Key Generation: On input the public parameters pp, the key generation algorithm sam-
ples a key pair (sk, pk) ← KeyGen(pp) and parses sk = s ∈ {0, 1}η. Then it samples

two uniform matrices A←$Z`×nq and R←$Zn×η`dlog(q)eq and a matrix E←$χ`×η`dlog(q)e

from the error distribution. The secret key is set to R and the public key to:

(pk,A,B = A ·R + E + s⊗G).

Encryption: On input a public key (pk,A,B) and a message m, the encryption algorithm
computes and returns c← Enc(pk,m).

Evaluation: On input a set of public keys ((pk1,A1,B1), . . . , (pkN ,AN ,BN )), an `-bit
output function f and a set of ciphertexts (c1, . . . , cN ), the evaluation algorithm defines
fi as the function that returns the i-th output bit of f and computes

Ci ← Eval((pk1, . . . , pkN ), fi, (c1, . . . , cN ))

for all i ∈ {1, . . . , `}. The algorithm returns (C1, . . . ,C`).

Auxiliary: On input a public key (pk,A,B) and an index i, the auxiliary algorithm sam-
ples a uniform ρ←$Znq and sets the state st = ρ. Then it computes the auxiliary
information as

α = Aρ + ẽ

where ẽ←$ {−B, . . . , B}`.

Hint: On input a secret key R, an `-bits evaluated ciphertext (C1, . . . ,C`), a state ρ, and
an index i, the hint algorithm computes

h = R ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+ ρ

where L
(i)
Cj

is the vector representation of the i-th linear function induced by the j-th
evaluated ciphertext.

Reconstruction: On input an `-bits evaluated ciphertext (C1, . . . ,C`), a set of hints
(h1, . . . , hN ), and a set of auxiliary information (α1, . . . , αN ), the reconstruction algo-

rithm sets L
(i)
Cj

to be the vector representation of the i-th linear function induced by
the j-th evaluated ciphertext. Then it computes

m̃ =
N∑
i=1

Bi ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
−Ai · hi + αi

and rounds each component to the nearest multiple of q/2 to obtain bm̃e. The algo-
rithm returns 2/q · bm̃e.

3.4 Analysis

We first argue that our scheme as described above satisfies correctness.

Theorem 3.7 (Correctness). Let q/4 > B̃ +N · (Bχ · ` · η · dlog(q)e+B). Then the scheme as
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described above is correct.

Proof. Consider the vector m̃ as computed in the reconstruction algorithm. Then we substitute

m̃ =

N∑
i=1

Bi ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
−Ai · hi + αi

=
N∑
i=1

(Ai ·Ri + Ei + si ⊗G) ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
−Ai · hi + αi

=
N∑
i=1

(Ai ·Ri + Ei) ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+
(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)
−Ai · hi + αi

by the Equation 2. By the definition of hi we have that

Ai · hi = Ai ·
(
Ri ·G−1

(
L
(i)
C1
, . . . , L

(i)
C`

)
+ ρi

)
and therefore

m̃ =

N∑
i=1

Ei ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
+
(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)
−Ai · ρi + αi

=

N∑
i=1

Ei ·G−1
(
L
(i)
C1
, . . . , L

(i)
C`

)
︸ ︷︷ ︸

e′i

+
(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)

+ ẽi

since αi = Aiρi + ẽi. By the correctness of the multikey FHE with distributed setup (Theo-
rem 3.2) we obtain

m̃ =

N∑
i=1

(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)

+ e′i + ẽi

= q/2 · (f1(m1, . . . ,mN ), . . . , f`(m1, . . . ,mN )) + e +

N∑
i=1

e′i + ẽi

= q/2 · (f1(m1, . . . ,mN ), . . . , f`(m1, . . . ,mN )) + e + e′ + ẽ

where ‖e‖∞ ≤ B̃. On the other hand, by definition of E we have that ‖e′‖∞ ≤ N · Bχ ·
` · η · dlog(q)e, and by definition of α we have that ‖ẽ‖∞ ≤ N · B. Thus, as long as q/4 >
B̃ +N · (Bχ · ` · η · dlog(q)e+B), correctness always holds.

We now show that our construction satisfies the structural requirements for a split multikey
FHE (with distributed setup). This is easily proven by the fact that the hint of each party h is
an n-dimensional vector in Znq and in particular is independent of `, the size of the output of f .

Next we show that our scheme satisfies the notion of simulatability for the decryption hints.
Note that we show only simulatability against a maximally corrupted subset of N − 1 parties,
similarly as in [MW16].

Theorem 3.8 (Simulation Security). Let
(
B̃ +Bχ · ` · η · dlog(q)e

)
· B−1 = 2−λ. Then the

scheme as described above is simulation secure.
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Proof. On input the secret keys {si}i∈I of the corrupted parties, the evaluated ciphertext
(C1, . . . ,C`), and the function output (µ1, . . . , µ`) = f(m1, . . . ,m`), the simulator samples a
uniform hj←$Znq , where j /∈ I is the index of the honest party. Then it computes the auxiliary
information as

α̃j = q/2 · (µ1, . . . , µ`)−
∑
i∈I

(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)
−Bj ·G−1

(
L
(j)
C1
, . . . , L

(j)
C`

)
+ Aj · hj + ẽ

where ẽ←$ {−B, . . . , B}`. Recall that, by the correctness of the multikey FHE with distributed
setup (Theorem 3.2), it holds that

N∑
i=1

(
L
(i)
C1

(si), . . . , L
(i)
C`

(si)
)

= q/2 · (µ1, . . . , µ`) + e.

Furthermore, the proof of Theorem 3.7 shows that

Aj · hj = αj − ẽ + Bj ·G−1
(
L
(j)
C1
, . . . , L

(j)
C`

)
− e′j −

(
L
(j)
C1

(sj), . . . , L
(j)
C`

(sj)
)

where αj is the honestly computed auxiliary information. This means that the difference be-
tween the simulated α̃j and the honest αj is bounded by ‖e + e′j‖∞. Thus as long as the
following distributions are statistically close

ẽ ≈ ẽ + e + e′j

then so is the output of the simulator. Since ‖e + e′j‖∞ ≤ B̃ + Bχ · ` · η · dlog(q)e and(
B̃ +Bχ · ` · η · dlog(q)e

)
·B−1 = 2−λ, then the indistinguishability follows by Lemma 1.

Finally we show that the scheme satisfies semantic security.

Theorem 3.9 (Semantic Security). If the LWE with super-polynomial modulo-to-noise ratio is
hard, then the scheme as described above is semantically secure.

Proof. By a standard hybrid argument, we have that the matrix B is computationally indistin-

guishable from a uniform U←$Z`×η`dlog(q)eq . Then semantic security follows from the security
of the underlying multikey FHE with distributed setup (Theorem 3.2).

3.5 Parameters

The above analysis fixes a set of constraints on the parameters. In the following we show
assignments that satisfy these equations and lead to an instance of LWE which is conjectured
to be hard. By correctness we require that

q/4 > B̃ +N · (Bχ · ` · η · dlog(q)e+B)

whereas simulation security demands that

B̃ +Bχ · ` · η · dlog(q)e
B

= 2−λ.

Recall that B̃ = Bχ · poly(λ). Fix some bound for the initial noise Bχ ∈ poly(λ), then setting
B = 2O(λ log(λ)) · Bχ and q = 2ω(λ log(λ)) · Bχ we can ensure that both of the conditions are
simultaneously satisfied. The parameter n is free and we can take it to be large enough so that
the corresponding LWE instance is conjectured to be hard.
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4 Bootstrapping Multikey FHE

In the following we show a construction of a multikey FHE with 1 round decryption assuming
the existence of the following tools:

(1) Two-round MPC Π = (Firsti,Secondi,Output) with delayed function and public recon-
struction and

(2) Multikey FHE Ψ = (KeyGen,Enc,Eval,Dec) with unstructured decryption.

We present our scheme below and we defer the discussion about plausible instantiations for the
underlying building blocks to Section 6.

Key Generation: On input the security parameter 1λ, the key generation algorithm sam-
ples a random string si←$ {0, 1}s and a key pair (ski, pki) ← KeyGen(1λ). Then it
computes yi ← Firsti(1

λ, sk1, si). The algorithm sets the secret key to sk = (ski, si)
and the public key to pk = (pki, yi).

Encryption: On input a public key pk = (pki, yi) and a message m, the encryption algo-
rithm computes and returns ci ← Enc(pki,m).

Evaluation: On input a set of public keys ((pk1, y1), . . . , (pkN , yN )), a function f and a
set of ciphertexts (c1, . . . , cN ), the evaluation algorithm computes and returns

c← Eval((pk1, . . . , pkN ), f, (c1, . . . , cN ))

along with (y1, . . . , yN ).

Partial Decryption: On input a secret key sk = (ski, si), an evaluated ciphertext c, and
an index i, the decryption algorithm computes and returns

zi ← Secondi(1
λ, ski, si, g, (y1, . . . , yN ))

where g is defined as

g(sk1, . . . , skN ) = Dec((sk1, . . . , skN ), c).

Reconstruction: On input the decryption shares (z1, . . . , zN ), the reconstruction algo-
rithm returns Output(1λ, (z1, . . . , zN )).

We argue that the scheme satisfies correctness.

Theorem 4.1 (Correctness). Let Π be a correct 2-round MPC with public reconstruction and
delayed function and let Ψ be a correct multikey FHE with unstructured decryption. Then our
scheme as described above is correct.

Proof. Consider the shares (z1, . . . , zN ) taken as input by the reconstruction subroutine. Sub-
stituting we have that

zi = Secondi(1
λ, ski, si, g, (y1, . . . , yN ))

where
yi = Firsti(1

λ, ski, si).
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By the correctness of the MPC we have that

Output(1λ, (z1, . . . , zN )) = Dec((sk1, . . . , skN ), c).

Invoking the correcntess of the multikey FHE we obtain

Dec((sk1, . . . , skN ), c)

= Dec((sk1, . . . , skN ),Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )))

= Dec((sk1, . . . , skN ),Eval((pk1, . . . , pkN ), f, (Enc(pk1,m1), . . . ,Enc(pkN ,mN ))))

= f(m1, . . . ,mN ).

as desired.

We now argue that the scheme is compact. First observe that the evaluated ciphertexts consist
of two components: (i) an evaluated ciphertext c and (ii) the set of first messages (y1, . . . , yN ).
The former is clearly independent of the circuit size by the compactness of the underlying
multikey FHE scheme, i.e. |c| = poly(λ,N, |f(m1, . . . ,mN )|). On the other hand the vector
(y1, . . . , yN ) grows with the size of the inputs an with the circuit representation of the function
that is computed. This means that the size of the vector (y1, . . . , yN ) depends polynomially on
N , the size of the inputs (sk1, . . . , skN ) and the circuit representation of the function g. That is
we have that |(y1, . . . , yN )| = poly(λ,N, |f(m1, . . . ,mN )|). So the overall size of the evaluated
ciphertexts is poly (λ,N, |f(m1, . . . ,mN )|) and in particular is independent of the size of f .
Thus compactness follows. Next we show that the scheme is simulation secure. Depending on
the instantiation of Π, we obtain two flavours of simulation security, i.e. reusable secure or not.

Theorem 4.2 (Semantic Security). Let Π be a semi-malicious (reusable, resp.) secure 2-
round MPC with public reconstruction and delayed function and let Ψ be a semantically secure
multikey FHE with unstructured decryption. Then our scheme as described above is (reusable,
resp.) simulation secure.

Proof. Consider the following sequence of hybrid distributions.

Hybrid H0: This is the distribution induced by the real experiment.

Hybrid H1: This distribution is identical to the previous one, except that messages {yi, zi}i∈I
of the honest parties are computed using the simulator of the MPC protocol. By the semi-
malicious security of Π, the resulting distribution is computationally indistinguishable from
that of the previous hybrid.

Hybrid H2: This distribution is identical to the previous one, except that the ciphertexts of the
honest parties are computed as encryptions of 0, padded to the appropriate length. I.e. it holds
that

{ci ← Enc(pki, 0)}i/∈I
where pk is sampled with the procedure specified in H1. Indistinguishability follows from
an invocation of semantic security of Ψ. The description of our simulator coincides with the
distribution induced by this hybrid. Observe that if Π is reusable secure, then so is the resulting
multikey FHE. This completes our proof.

5 Semi-Malicious Reusable MPC

In this section, we show how to construct a two-round MPC satisfying reusable semi-malicious
security (Definition 2.6) in the following steps.
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Our starting step is a delayed-function two-round semi-malicious non-reusable MPC with
first round complexity independent of the complexity of the function being securely computed.
We obtain this by applying the bootstrapping step described in Section 4 on any delayed-function
two-round semi-malicious MPC with public reconstruction property.

We formalize this in the following theorem.

Theorem 5.1. Assuming any multikey FHE assuming unstructured decryption (Section 2.4),
there exists a delayed-function semi-malicious secure multiparty computation protocol for a N -
party functionality satisfying the property that the computation of the first round messages of
all the parties is a polynomial in (λ,N, ``in , ``out), where `in is the input length of each party and
`out is the output length of the functionality. In particular, the complexity of computing the first
round messages is independent of the complexity of the function being securely computed.

Equipped with such a (non-reusable) semi-malicious MPC, we then show how to construct a
semi-malicious MPC in the following steps.

Step I: First, we show how to transform the MPC satisfying the property stated in
Theorem 5.1 into a two-round semi-malicious MPC with the following property:

– The first round messages are computed using two algorithms Reuse.First and NonReuse.First
such that the time to compute Reuse.First is a polynomial in (λ,N, `in, `out) and the
time to compute NonReuse.First is a polynomial in (λ,N, `out) (and in particular,
independent of the input length). That is, the first round messages computed by the
ith party is the concatenation of the outputs of Reuse.Firsti and NonReuse.Firsti.

Moreover, Reuse.First has the property that it is reusable for multiple executions of
secure MPC (we will state this more formally in the theorem statements).

Step II: Next, we show how to further transform the semi-malicious non-reusable MPC
obtained in the first step to obtain a semi-malicious non-reusable MPC satisfying the
following property:

– The first round messages are computed using two algorithms Reuse.First and NonReuse.First
such that the time to compute Reuse.First is a polynomial in (λ,N, `in) and the time
to compute NonReuse.First is a polynomial in (λ,N). In particular, the complexity of
the first round messages is completely independent of the output length of the func-
tionality being securely computed. As before, the first round messages computed by
the ith party is the concatenation of the outputs of Reuse.Firsti and NonReuse.Firsti.

Step III: Finally, we apply a modified version of reusability transformation of [AJJ20] on
the semi-malicious non-reusable MPC obtained from the second step to obtain a two-round
MPC satisfying reusable semi-malicious security (Definition 2.6).

5.1 Removing Input Dependency

In the following we show how to generically compile any MPC with delayed function and public
reconstruction where the first message possibly depends on the input size, to an MPC with
the same characteristic but where the first message is composed by two parts: (i) a non-
reusable component that is independent of the size of the inputs and a (ii) reusable component
that depends on the size of the input. While this transformation does not completely remove
the input dependence, it suffices to build an MPC that can be used as a building block for
Theorem 5.5. Our scheme builds on the following tools:
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(1) Two-round MPC Π = (Firsti,Secondi,Output) with delayed function and public recon-
struction satisfying the following property: the complexity of computing the first round
messages is a polynomial in λ, input lengths of all parties, output length of the function
and the number of parties.

(2) Cryptographic pseudorandom generator PRG : {0, 1}λ → {0, 1}poly(λ).

The scheme is described below.

First Message: On input the security parameter 1λ, the input x, and the random coins
s, the first message algorithm samples (deterministically from s) a uniform seed and
computes w ← PRG(seed)⊕ x. Then it returns

(w,Firsti(1
λ, seed, s)).

Second Message: On input the security parameter 1λ, an input x, the random coins
s, a function f , and the first messages ((w1, y1), . . . , (wN , yN )) the second message
algorithm defines the function g as

g(seed1, . . . , seedN ) = f(PRG(seed1)⊕ w1, . . . ,PRG(seedN )⊕ wN ).

Then it recomputes seed from s and returns Secondi(1
λ, seed, s, g, (y1, . . . , yN )).

Reconstruction: On input the security parameter 1λ and the second round messages
(z1, . . . , zN ), the output reconstruction algorithm returns Output(1λ, (z1, . . . , zN )).

Note that the component |wi| in the first message does depend on the size of the input |xi|
however it is reusable in the sense that it can be fixed for multiple (possibly independent)
instances of the MPC protocol. Clearly the component yi = Firsti(1

λ, seedi, si) cannot depend
on the size of the input. The following theorem shows that the transformation yeilds a secure
MPC protocol.

Theorem 5.2 (Input Independent MPC). Let Π be a two-round MPC protocol satisfying the
properties stated in Theorem 5.1, let PRG be a cryptographic pseudorandom generator, our
scheme as described above is a two-round semi-malicious MPC satisfying the following proper-
ties:

• The first round messages are computed using two algorithms Reuse.First and NonReuse.First
such that the time to compute Reuse.First is a polynomial in (λ, `in, `out) and the time to
compute NonReuse.First is a polynomial in (λ, `out) (and in particular, independent of the
input length). That is, the first round messages computed by the ith party is the concate-
nation of the outputs of Reuse.Firsti and NonReuse.Firsti.

• Moreover, the algorithm Reuse.First is reusable across multiple executions of secure MPC:
that is, in the offline phase, every party on input xi can compute Reuse.First and broadcast
its output. In the online phase, executed polynomially many times, all the parties securely
compute an N -party functionality on the same inputs (x1, . . . , xN ) with the only difference
being that the first round messages are computed using only NonReuse.First; in particular
the output of Reuse.First is reused for every execution of the online phase.
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Proof. Correctness follows trivially from the protocol inspection. To argue security we consider
the following sequence of hybrid distributions.

Hybrid H0: This is the distribution where the messages of the MPC are honestly computed.

Hybrid H1: This distribution is identical to the previous one, except that the messages of Π are
computed using the corresponding simulator. By the semi-malicious security of Π, the resulting
distribution is computationally indistinguishable from that of the previous hybrid.

Hybrid H2: This distribution is identical to the previous one, except that w is a uniformly
sampled string. This change is indistinguishable by the pseudorandomness if PRG. This hybrid
corresponds to the description of our simulator and completes the proof.

5.2 Removing Output Dependency

In the following we show a generic transformation to compile any MPC whose first message
depends on the output size into an MPC whose first message does not depend on the output
size, while preserving the security of the scheme. Our construction assumes the existence of the
following tools:

(1) Two-round MPC Π = (Firsti, Secondi,Output) satisfying the properties stated in Theo-
rem 5.2,

(2) Multikey FHE with distributed setup and split decryption Ψ = (Setup,KeyGen,Enc,Eval,
Aux,Hint,HRec), and

(3) Cryptographic pseudorandom generator PRG : {0, 1}λ → {0, 1}poly(λ).

Our compiler is described below.

First Message: On input the security parameter 1λ, the input x, and the random coins
s, the first message algorithm samples (deterministically from s) a uniform seed and
a block of the public parameters ppi ← Setup(1λ, i). Then it returns

(ppi,Firsti(1
λ, (seed, x), s)).

Second Message: On input the security parameter 1λ, an input x, the random coins
s, a function f , and the first messages ((pp1, y1), . . . , (ppN , yN )) the second message
algorithm sets pp = pp1‖ . . . ‖ppN and recomputes seed from s. The algorithm sets
(r(k), r(e), r(a))← PRG(seed) and computes

(sk, pk)← KeyGen(pp; r(k)) and c← Enc(pk, x; r(e))

and (α, st)← Aux(pk, i; r(a)).

Let g((seed1, x1), . . . , (seedN , xN )) be defined as follows:

• For all i ∈ {1, . . . , N} compute:

– (r
(k)
i , r

(e)
i , r

(a)
i )← PRG(seedi)

– (ski, pki)← KeyGen(pp; r
(k)
i )

– ci ← Enc(pki, xi; r
(e)
i )
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– (αi, sti)← Aux(pki, i; r
(a)
i )

• Compute c̃← Eval((pk1, . . . , pkN ), f, (c1, . . . , cN ))

• Return Hint(sk1, c̃, st1, 1)‖ . . . ‖Hint(skN , c̃, stN , N)

The second message algorithm returns

(f, pk, c, α,Secondi(1
λ, (seed, x), s, g, (y1, . . . , yN )))

Reconstruction: On input the security parameter 1λ and the second round messages
((f, pk1, c1, α1, z1), . . . , (f, pkN , cN , αN , zN )), the output reconstruction algorithm runs
(h1, . . . , hN )← Output(1λ, (z1, . . . , zN )) and recomputes

c̃← Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )).

Then it returns HRec(c̃, (h1, . . . , hN ), (α1, . . . , αN )).

To see why the the complexity of the first message of the resulting MPC is independent of
the size of the output, observe that each first message consists of two components: (i) the
public parameters ppi of the distributed setup of the underlying multikey FHE and (ii) the
first message of the underlying MPC. For an appropriate instantiation of multikey FHE with
distributed setup (such as the one presented in Section 3), the size of ppi is bounded by a
polynomial poly(λ,N ) and in particular is completely independent of the size of the circuit
being evaluated. To analyze the complexity of the first message of the underlying MPC observe
that the output of the function g as defined above consists of N short decryption hints, each of
size at most poly(λ), and in particular independent of the output size of f . It follows that the
size of the first message cannot depend on the output size of f .

One caveat that is introduced by our transformation is that it might potentially affect the
efficiency of the resulting MPC: Even if we start with an MPC with efficient output reconstruc-
tion (independent of the complexity of computing f), the output reconstruction algorithm of
the resulting output-independent MPC has to recompute (homomorphically) the function f .
We will discuss later how to generically bypass this shortcoming. In the following we show that
the compiler preserves all of the properties of the underlying MPC. In the following analysis
we assume without loss of generality that the the adversary always corrupts a maximally large
subset of exactly N −1 parties. Such an MPC can be then generically transformed to be secure
against an arbitrary subset of corrupted users [MW16] without affecting the efficiency nor the
assumptions.

Theorem 5.3 (Output Independent MPC). Let Π be a two-round semi-malicious MPC satis-
fying the properties stated in Theorem 5.2, let PRG be a cryptographic pseudorandom generator,
and let Ψ be a split multikey FHE with distributed setup.

Then our scheme as described above is a 2-round semi-malicious MPC satisfying the follow-
ing property:

• The first round messages are computed using two algorithms Reuse.First and NonReuse.First
such that the time to compute Reuse.First is a polynomial in (λ, `in) and the time to com-
pute NonReuse.First is a polynomial in λ. In particular, the complexity of the first round
messages is completely independent of the output length of f . As before, the first round
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messages computed by the ith party is the concatenation of the outputs of Reuse.Firsti and
NonReuse.Firsti.

• Moreover, the algorithm Reuse.First is reusable across multiple executions of secure MPC:
that is, in the offline phase, every party on input xi can compute Reuse.First and broadcast
its output. In the online phase, executed polynomially many times, all the parties securely
compute an N -party functionality on the same inputs (x1, . . . , xN ) with the only difference
being that the first round messages are computed using only NonReuse.First; in particular
the output of Reuse.First is reused for every execution of the online phase.

Proof. We first argue about correctness. By the correctness of the underlying MPC we have
that

hi = Hint(ski, c̃, sti, i)

for all i ∈ {1, . . . , N}, where c̃ = Eval((pk1, . . . , pkN ), f, (c1, . . . , cN )) and ci = Enc(pki,mi).
Therefore we have that

HRec(c̃, (h1, . . . , hN ), (α1, . . . , αN )) = f(m1, . . . ,mN )

for honestly computed auxiliary informtion, by the correctness of the split multikey FHE. To
show (semi-malicious) security we consider the following sequence of hybrid distributions.

Hybrid H0: This is the distribution induced by the real protocol.

Hybrid H1: In this distribution the messages of Π are computed using the corresponding simu-
lator. By the semi-malicious security of Π, the resulting distribution is computationally indis-
tinguishable from that of the previous hybrid.

Hybrid H2: Here the strings (r
(k)
i , r

(e)
i , r

(a)
i ), where the i-th party is the honest one, are computed

using truly random coins. Indistinguishability follows from the pseudorandomness of PRG.

Hybrid H3: This distribution is identical to the previous one except that the decryption hint
of the honest party is computed using the simulator of the multikey FHE, instead of using the
algorithm Hint. The distribution induced by this hybrid is statistically close to the previous
one.

Hybrid H4: Here ci is computed as Enc(pki, 0), where 0 is the 0-string padded to the appropri-
ate length. Indistinguishability follows from the semantic security of the multikey FHE with
distributed setup. Note that at this point any information about the input of the honest party
is lost and we can define the simulator to behave exactly as in this hybrid. This concludes our
proof.

5.3 Semi-Malicious Security Preserving Reusability Transformation

In the final step, we show how to transform a two-round semi-malicious MPC with non-reusable
first message but satisfying input independence and output independence (as guaranteed by
Theorem 5.3) into a two-round semi-malicious MPC with reusable first round message.

To achieve, our starting point is the theorem by [AJJ20] who show the following. We include
a proof sketch of the theorem in Appendix A.1.

Theorem 5.4 (Semi-Honest Reusability Compiler [AJJ20]). Let Π be a two-round (non-reusable)
delayed-function semi-honest secure computation protocol for f with the following property:

• The time complexity to compute the first round message is polynomial in λ, input, output
length of f .
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• The output length of the first round message is a fixed polynomial in λ and the number of
parties.

Then there exists a two-round secure computation protocol satisfying reusable semi-honest prop-
erty (Definition 2.6).

We modify the above compiler in two ways. Firstly, we weaken the requirement on the time
complexity of the first round messages of the underlying non-reusable protocol. The first round
message computation First consists of two algorithms Reuse.First and NonReuse.First; the runtime
complexity of Reuse.First is a fixed polynomial in λ and the runtime complexity of NonReuse.First
can depend on the input length. Secondly, we start with a non-reusable semi-malicious MPC
protocol and then we argue that the reusability compiler preserves the semi-malicious security;
thus, the resulting MPC protocol satisfies reusable semi-malicious security. Formally, we prove
the following theorem. The proof is more or less identical to the proof of Theorem 5.4 and
hence, we include a proof sketch in Appendix A.2.

Theorem 5.5 (Semi-Malicious Reusability Compiler). Let Π be any two-round semi-malicious
MPC satisfying the following properties:

• The first round messages are computed using two algorithms Reuse.First and NonReuse.First
such that the time to compute Reuse.First is a polynomial in (λ, `in) and the time to com-
pute NonReuse.First is a polynomial in λ. In particular, the complexity of the first round
messages is completely independent of the output length of f . As before, the first round
messages computed by the ith party is the concatenation of the outputs of Reuse.Firsti and
NonReuse.Firsti.

• Moreover, the algorithm Reuse.First is reusable across multiple executions of secure MPC:
that is, in the offline phase, every party on input xi can compute Reuse.First and broadcast
its output. In the online phase, executed polynomially many times, all the parties securely
compute an N -party functionality on the same inputs (x1, . . . , xN ) with the only difference
being that the first round messages are computed using only NonReuse.First; in particular
the output of Reuse.First is reused for every execution of the online phase.

Then there exits a two-round MPC satisfying reusable semi-malicious security (Definition 2.6).

6 Putting Things Together

The multikey FHE scheme Ψ can be built assuming the hardness of the learning with errors
over rings (RingLWE) and the decisional small polynomial ratio (DSPR) problem [LTV12]. On
the other hand, non-reusable 2-round MPC can be constructed from the minimal assumption of
any 2-round oblivious transfer [GS18, BL18]. Since (single key) homomorphic encryption with
re-randomizable ciphertexts suffices to build 2-round (semi-honest) oblivious transfer, we can
instantiate it from the scheme proposed in [LTV12] (see [CO17] for details). Stated differently,
assuming the semantic security of the scheme proposed in [LTV12] suffices to construct non-
reusable multikey FHE.

Other than being non-reusable, this instantiation has also the drawback that the size of the
public keys pk is bounded by poly(λ,N, |f(m1, . . . ,mN )|). I.e. it additionally grows with the
size of the output of f and therefore imposes a bound on the output size of the homomorphic
computation. However, the notion of non-reusable multikey FHE still suffices to construct
(non-reusable) 2-round MPC. This allows us to state the following lemma.
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Lemma 2. If the multikey FHE scheme from [LTV12] is semantically secure, then there exists
a (non-reusable) 2-round semi-malicious MPC where the communication complexity depends
polynomially on the size of the inputs, the size of the outputs, the security parameter, the
number of parties.

Given this building block, we can now apply the results of Section 5 to (i) remove the dependency
on the size of the inputs and on the size of the outputs and consequently (ii) obtain a reusable
2-round MPC by an invocation of Theorem 5.5. I.e. we obtain the following implication.

Lemma 3. If the multikey FHE scheme from [LTV12] is semantically secure and the LWE
problem is hard, then there exists a reusable 2-round semi-malicious MPC.

Note that, in order to achieve reusability, we sacrificed both succinct communication complexity
and efficient reconstruction (both depend on the size of the circuit representation of the function
that we want to evaluate). To obtain our final result, we apply again the compiler presented
in Section 4. Note that in this context we can allow the computation and communication
complexity of the MPC to grow with the circuit size, since it is anyway computing a circuit
whose size is fixed. We also stress that, in the reusable settings, we can assume without loss of
generality that the homomorphically evaluated functions have one bit of output (thus removing
the dependency with respect of the output size), since we can compute multiple bits in parallel.
This yields our final result.

Lemma 4. If the multikey FHE scheme from [LTV12] is semantically secure and the LWE
problem is hard, then there exists a multikey FHE in the plain model.
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tanathan, and Daniel Wichs. Multiparty computation with low communication,

27

https://eprint.iacr.org/


computation and interaction via threshold FHE. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501.
Springer, Heidelberg, April 2012.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev.
Universal constructions and robust combiners for indistinguishability obfusca-
tion and witness encryption. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 491–520. Springer, Heidel-
berg, August 2016.

[AJS17] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Robust transforming combiners
from indistinguishability obfuscation to functional encryption. In Jean-Sébastien
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A Reusability Transformation

A.1 Proof Sketch of Theorem 5.4

We restate theorem 5.4 below.

Theorem A.1 (Semi-Honest Reusability Compiler [AJJ20]). Let Π be a two-round (non-
reusable) delayed-function semi-honest protocol with the following property:

• The time complexity to compute the first round message is polynomial in λ, input, output
length of f .

• The output length of the first round message is a fixed polynomial in λ and the number of
parties.

Then there exists a two-round protocol satisfying reusable semi-honest property (Definition 2.6).

Proof Sketch. Let us start with a simple example: the goal is to build a two-round semi-honest
MPC protocol for a circuit class C = {C0, C1} that allows for reusability of the first message for
only two different executions of the second round messages. The starting point is a non-reusable
protocol satisfying the efficiency requirements defined in the statement of the theorem above.

We employ a tree-based approach to solve this problem. Let xi, for i ∈ [N ], be the input of
the ith party.
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• The tree associated with this scheme consists of three nodes: a single root and two leaves.
The first leaf is associated with the circuit C0 and the second leaf is associated with the
circuit C1.

• Denote the non-reusable MPC associated with the root to be Π⊥, with the left leaf to be
Π0 and the right leaf node to be Π1.

• Denote C̃i,b to be the garbling of a circuit that takes as input Πb first round messages
computed on inputs x1, . . . , xN and generates the ith party’s second round round message
for the delayed-functionality (represented as a circuit) C.

• Finally, denote the circuit C⊥ to be the circuit that takes as input (x1, . . . , xN ) and
produces:

– wire labels, associated with C̃i,0 for the ith party’s first round message on input xi
in the protocol Π0 and,

– wire labels, associated with C̃i,1, for the ith party’s first round message on input xi
in the protocol Π1.

Armed with the above notation, we present an overview of construction of a two-round MPC
for C = {C0, C1} allowing for two-time reusability of the first round messages:

• The ith party, for i ∈ [N ], on input xi, produces the first round message firmsgi⊥ of the
protocol Π⊥. It broadcasts firmsgi⊥.

• Every party then receives the delayed function Cb, for b ∈ {0, 1}. On input Cb, the ith

party does the following:

– It computes the second round message of Π⊥ on input circuit C⊥ to obtain secmsgi⊥.

– It computes a garbled circuit C̃i,b as described above.

It then broadcasts (secmsgi⊥, C̃i,b) to all the parties.

• Finally, to reconstruct the output, perform the following operations:

– First compute the final reconstruction procedure of Π⊥ to obtain the wire labels
corresponding to all the garbled circuits C̃1,b, . . . , C̃N,b.

– Then evaluate all the garbled circuits to obtain the second round messages of the
protocol Πb.

– Using the second round messages of the protocol Πb, reconstruct the output Cb(x1, . . . , xN ).

Full-Fledged Tree-Based Approach. We can generalize the above approach to construct a
reusable two-round MPC scheme for any circuit class and that handles any polynomially many
queries. If s is the maximum size of the circuit in the class of circuits, we consider a binary tree
of depth log(s).

• Every edge in the tree is labeled. If an edge e is incident from the parent to its left child
then label it with 0 and if e is incident from the parent to its right child then label it with
1.
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• Every node in the tree is labeled. The label is the concatenation of all the edge labels on
the path from the root to the node.

• Every leaf is associated with a circuit of size s.

With each node v, associate with v a new instantiation of a one-time pMHE scheme, that we
denote by Πl(v), where l(v) is the label associated with node v. If v is the root node l(v) = ⊥.

Informally, the encryption algorithm of pMHE generates Π⊥ encryption of xi under the ith

secret key. During the evaluation procedure, on input C, we generate log(s) garbled circuits, one
for every node on the path from the root to the leaf labeled with C. The role of these garbled
circuits is to delegate the computation of the second round messages to the final decryption
phase. In more detail, the garbled circuit associated with the node v computes the second round
messages of the protocol Πl(v||0) and Πl(v||1) and outputs the corresponding wire labels for the
garbled circuits associated with its children.

During the final decryption, starting from the root node, each garbled circuit (of every party)
is evaluated to obtain wire labels of the garbled circuit associated with the child node on the
path from the root to the leaf labelled with C. Finally, the garbled circuit associated with the
leaf labelled with C is then evaluated to obtain the second round messages of ΠC . The second
round messages are then decoded to recover the final output C(x1, . . . , xN ).

A.2 Proof Sketch of Theorem 5.5

We first recall the state of the theorem 5.5.

Theorem A.2 ([AJJ20]). Let Π be a two-round semi-malicious MPC with succinct (non-
reusable) first message

• The first round messages are computed using two algorithms Reuse.First and NonReuse.First
such that the time to compute Reuse.First is a polynomial in (λ, `in) and the time to com-
pute NonReuse.First is a polynomial in λ. In particular, the complexity of the first round
messages is completely independent of the output length of f . As before, the first round
messages computed by the ith party is the concatenation of the outputs of Reuse.Firsti and
NonReuse.Firsti.

• Moreover, the algorithm Reuse.First is reusable across multiple executions of secure MPC:
that is, in the offline phase, every party on input xi can compute Reuse.First and broadcast
its output. In the online phase, executed polynomially many times, all the parties securely
compute an N -party functionality on the same inputs (x1, . . . , xN ) with the only difference
being that the first round messages are computed using only NonReuse.First; in particular
the output of Reuse.First is reused for every execution of the online phase.

Then there exits a two-round MPC satisfying reusable semi-malicious security (Definition 2.6).

Proof Sketch. As in the proof of the previous theorem, we prove the theorem by first considering
the following special case; the argument can be easily generalized for the general case. The goal
is to build a two-round semi-malicious MPC protocol for a circuit class C = {C0, C1} that
allows for reusability of the first message for only two different executions of the second round
messages. The starting point is a non-reusable semi-malicious protocol satisfying the efficiency
requirements defined in the statement of the theorem above.

We employ a tree-based approach to solve this problem. Let xi, for i ∈ [N ], be the input of
the ith party.
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• The tree associated with this scheme consists of three nodes: a single root and two leaves.
The first leaf is associated with the circuit C0 and the second leaf is associated with the
circuit C1.

• Denote the non-reusable MPC associated with the root to Π⊥, with the left leaf to be Π0

and the right leaf node to be Π1.

• Denote C̃i,b to be the garbling of a circuit that, has hardwired inside it the outputs of
Π⊥.Reuse.Firsti for every i ∈ [N ], it takes as input first round messages of Πb computed
using Πb.NonReuse.First on inputs x1, . . . , xN and generates the ith party’s second round
round message for the delayed-functionality (represented as a circuit) C.

• Finally, denote the circuit C⊥ to be the circuit 4 that takes as input (x1, . . . , xN ) and
produces:

– wire labels, associated with C̃i,0 for the ith party’s first round message on input xi
computed using only Π0.NonReuse.First and,

– wire labels, associated with C̃i,1, for the ith party’s first round message on xi com-
puted using only Π0.NonReuse.First.

Armed with the above notation, we present an overview of construction of a two-round MPC
for C = {C0, C1} allowing for two-time reusability of the first round messages:

• The ith party, for i ∈ [N ], on input xi, produces the first round message firmsgi⊥ =
(Reuse.firmsgi⊥,NonReuse.firmsgi⊥), computed using the algorithms Reuse.Firsti and NonReuse.Firsti
of the protocol Π⊥. It broadcasts firmsgi⊥.

• Every party then receives the delayed function Cb, for b ∈ {0, 1}. On input Cb, the ith

party does the following:

– It computes the second round message of Π⊥ on input circuit C⊥ to obtain secmsgi⊥.

– It computes a garbled circuit C̃i,b as described above.

It then broadcasts (secmsgi⊥, C̃i,b) to all the parties.

• Finally, to reconstruct the output, perform the following operations:

– First compute the final reconstruction procedure of Π⊥ to obtain the wire labels
corresponding to all the garbled circuits C̃1,b, . . . , C̃N,b.

– Then evaluate all the garbled circuits to obtain the second round messages of the
protocol Πb.

– Using the second round messages of the protocol Πb, reconstruct the output Cb(x1, . . . , xN ).

The above protocol can be easily generalized to obtain poly-time reusability of the first message.
To see why the resulting protocol satisfies semi-malicious security, note that if the adver-

sary sends garbled circuits in the second round using adversarially chosen randomness then this
corresponds to generating the second round messages of the underlying non-reusable protocol

4We consider the setting where the circuit is randomized; this is without loss of generality since we can assume
that the randomness for this circuit is supplied by the parties
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using adversarially chosen randomness. But since our underlying non-reusable protocol satis-
fies semi-malicious security, it follows that the resulting protocol also satisfies semi-malicious
security.
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