
A Note on Secure Multiparty Computation via
Higher Residue Symbol Techniques∗

Ignacio Cascudo† Reto Schnyder‡

March 10, 2020

Abstract

We generalize a protocol by Yu [12] for comparing two integers
with relatively small difference in a secure multiparty computation
setting. Yu’s protocol is based on the Legendre symbol. A prime
number p is found for which the Legendre symbol in Fp agrees with
the sign function for integers in a certain range {−N, . . . , N}. This
can then be computed efficiently.

We generalize this idea to higher residue symbols in cyclotomic
rings Z[ζr] for r a small odd prime. We present a way to determine
a prime number p such that the r-th residue symbol (· | p)r agrees
with a desired function f : A→ {ζ0r , . . . , ζr−1r } on a given small subset
A ⊂ Z[ζr], when this is possible. We also explain how to efficiently
compute the r-th residue symbol in a secret shared setting.

1 Introduction

In secure multiparty computation (MPC), a group of parties, each of which
has some secret data, wish to collaboratively compute a function on it with-
out revealing their inputs. A common technique for this is to represent the
inputs as elements of a finite field Fp and represent the function as an arith-
metic circuit over that finite field, i.e. a number of sums and products over

∗This work is supported by Aalborg University under the SECURE project.
†IMDEA Software Institute, Madrid, Spain. Email: ignacio.cascudo@imdea.org.

Much of this work was carried out while Ignacio was with the Department of Mathematics,
Aalborg University, Denmark.
‡Department of Mathematics, Aalborg University, Aalborg, Denmark. Email:

reto@math.aau.dk

1

Fp involving the inputs and public values, and then process this circuit gate-
by-gate. For example in secret-sharing based secure multiparty computation
protocols, inputs are secret shared among the parties using a linear secret
sharing scheme, such as Shamir’s scheme [11] or additive secret sharing. In
such a scheme, addition of two secrets and multiplication of a secret by a
public value can be done by simply performing the operation locally. Mul-
tiplication of two secrets can be achieved with a small amount of additional
communication between the parties. See for example the book [4] for de-
tails about how this plays out in a number of secret-sharing based MPC
protocols. But many other operations are more complicated to perform in
a secret shared setting, especially those that do not correspond to natural
operations in a finite field. Examples for this are size comparison, integer di-
vision and modular reduction by values that are coprime to p. Protocols that
compute such operations often rely on decomposing a shared value into its
binary representation, after which the operation can be performed on secret
shared bits [e.g. 5]. However, this decomposition involves a significant com-
putational and communication overhead, so there is much interest in more
straightforward protocols for these operations. There are other protocols
which don’t rely on the decomposition of shared values, but still operate in
a bitwise manner by using random pre-decomposed sharings [9].

An alternative idea for comparison of secret values is given in [12]. Their
protocol attempts to compute the sign of a secret shared value [a]Fp by com-
puting the Legendre symbol (a | p). For this to work, they must choose
the prime modulus p in such a way that all values {1, . . . , N} are quadratic
residues modulo p, for a relatively large N , and that −1 is a quadratic non-
residue. Then, it holds that sgn(a) = (a | p) for −N ≤ a ≤ N . Two integers
a and b can then be compared by computing sgn(a − b) = (a − b | p), as-
suming |a− b| ≤ N . The Legendre symbol can be computed relatively easily
in a secret-shared setting using a few rounds of precomputation and a sin-
gle online round. Yu shows that at any given order of magnitude, a prime
p can be found which satisfies the desired properties with N being of size
Ω(log p). The inspiration for this protocol comes from [7], where the idea is
first presented for the special case N = 2, p = 7.

In [1], the authors improve on Yu’s method and extend the range where
the comparison is valid by a factor of roughly three, for a given modulus size.
They achieve this by computing the residue symbol on a small neighbourhood
of the input value and performing a majority vote. They also provide another
protocol that increases the valid range by a factor of five compared to Yu,
but requires an additional online round.

2

Our contribution. In this paper, we present a generalization of the idea
of [12] by using the residue symbol in a cyclotomic ring Z[ζr], for some odd
prime r. The goal is to compute a chosen function f : A → {0, . . . , r − 1}
in a limited domain A ⊂ Fp[ζr]. We develop a method for finding a prime
number p such that the r-th power residue symbol coincides with f on the
domain A, when this is possible:(

a

p

)
r

= ζf(a)r for a ∈ A.

As in [12], our protocol requires an offline precomputation phase, but has
an online phase consisting of a single round. As an added benefit, the output
of f is obtained in a one-hot encoding, which can be helpful if it is e.g. used
in a condition for a branching algorithm.

Unfortunately, we are not currently aware of a practical use of our pro-
tocol, since the limitations on the size of A are too strict. However, we hope
that our new ideas motivate future work that can lessen these restrictions
and find applications where our idea outperforms existing solutions.

Outline of the paper. In Section 2, we present basic definitions and facts
about the power residue symbol in a cyclotomic ring. We then present the
idea of our protocol in Section 3, and in Section 4 we explain in detail how
to compute the residue symbol. Then, in Section 5, we present a method
for finding an appropriate modulus p given a desired function to compute.
Finally, to illustrate our ideas, we give a toy example in Section 6.

2 The Power Residue Symbol

Let r be an odd prime. Let R = Z[ζr] be the r-th ring of cyclotomic integers,
considered as a subring of C. Here, ζr is a primitive r-th root of unity. If b
is an ideal of R, we denote by Nb its norm.

Definition 1 (See [8, Prop. 14.2.1]). Let p be a nonzero prime ideal of R
such that r /∈ p, and let a ∈ R \ p. Then, there exists an integer s, unique
modulo r, such that

ζsr ≡ a
Np−1

r (mod p).

We define the r-th power residue symbol as(
a

p

)
r

= (a | p)r = ζsr .

3

If a ∈ p, we define (a | p)r = 0. It holds that a is an r-th power modulo p if
and only if (a | p)r = 1. Clearly, the power residue symbol is multiplicative
in the first argument. That is, for a, b ∈ R, we have(

ab

p

)
r

=

(
a

p

)
r

(
b

p

)
r

.

If b is any proper ideal of R not containing r, we extend the power residue
symbol multiplicatively. That is, if b factors into prime ideals as b = p1 · · · ps,
then (

a

b

)
r

=
s∏

i=1

(
a

pi

)
r

.

Finally, if b ∈ R is any element coprime to r, we simply define(
a

b

)
r

=

(
a

(b)

)
r

,

where (b) is the ideal generated by b.

Definition 2 (See [8, p. 206]). An element a ∈ R is called primary if it is
coprime to r, not a unit and congruent to a rational integer modulo (1−ζr)2.

If a ∈ R is coprime to r and not a unit, then there is a unique k ∈
{0, . . . , r − 1} such that ζkr a is primary.

Theorem 3 (Eisenstein Reciprocity, [8, Theorem 1, p. 207]). Let b ∈ Z be
coprime to r and not a unit. Let a ∈ R be primary and coprime to b. Then,(

a

b

)
r

=

(
b

a

)
r

.

Theorem 4 (See [3, Theorem 4.9]). The group of units R∗ is the direct
product of the group of roots of unity in R and the group of positive real units
(R ∩ R>0)

∗.

Lemma 5. Let a, b ∈ R, such that b is coprime to r and a is coprime to
b. Suppose that each of a and b is either real or purely imaginary. Then,
(a | b)r = 1.

Proof. First, note that for any prime ideal p not containing r, we have(
−1

p

)
r

≡ (−1)
Np−1

r (mod p),

4

which is 1 if p lies above an odd prime number, and −1 if it lies above 2.
But in the second case, −1 ≡ 1 (mod p), so either way, (−1 | p)r = 1.

Let now c ∈ R \ p, and let (c | p)r = ζsr . We have

c
Np−1

r = ζsr + k with k ∈ p,

c
Np−1

r = ζ−sr + k with k ∈ p,

where · denotes complex conjugation, and we see that (c | p)r = (c | p)r.
By multiplicativity, these two properties apply also if we replace the lower
argument p by any b ∈ R coprime to r.

Hence, for a and b as in the statement of the lemma, we get(
a

b

)
r

=

(
a

b

)
r

=

(
±a
±b

)
r

=

(
a

b

)
r

,

which therefore has to be 1.

3 The Basic Idea

The basic idea of our protocol is the following. Suppose we are given a
function f : A → {0, . . . , r − 1}, where A is a subset of R. We hope to find
a prime number p such that the function f corresponds to the r-th power
residue symbol with lower argument p on A. That is,(

a

p

)
r

= ζf(a)r for a ∈ A. (1)

Then, we can securely compute f(a) by computing the residue symbol, which
can hopefully be done more efficiently.

We will see in Section 5 how we can find such a prime p. Note however,
that condition (1) often contains internal contradictions or other impossible
requirements. It is then necessary to adapt A and f to resolve these.

Remark 6. In practice, to avoid the aforementioned internal contradictions
in our requirements, the actual input values will first be encoded via some
(ideally linear) function mapping to A. One can try many such encodings
until one is found that is not contradictory. We will see an example of this
in Section 6.

Let us note some initial requirements on the prime p. First, we want that
p does not split in R, so that (p) is a prime ideal. We need this to be the

5

case so that we can use basic facts about (a | p)r, and so that F = R/(p) is
a finite field of size pr−1. For reasons we will see later, we also wish for the
value (ζr | p)r to be ζr. It would be possible to fix it to another primitive root
of unity, but that would complicate our analysis. We will show in Section 5
how to achieve this.

For our protocol, the parties will share their values as elements of the
finite fields Fp and F = R/(p). Note that a sharing of an element in F can be
considered as a sharing of r− 1 elements of Fp via the basis {1, ζr, . . . , ζr−2r }.
Either additive sharing or Shamir sharing can be used for this. In the case
of Shamir sharing, we require that the evaluation point of each party lies in
the base field Fp.

Since the residue symbol (a | p)r depends only on a modulo p, it is now
possible to evaluate the function f at a ∈ A by instead evaluating (a | p)r.
We will see in Section 4 how to do this efficiently.

Remark 7. In the above, instead of getting a sharing of the result f(a) ∈
{0, . . . , r − 1} directly, we end up with the root of unity ζ

f(a)
r ∈ F . If we

decompose (a | p)r = a0 + a1ζr + · · · + ar−2ζ
r−2
r with ai ∈ Fq, this almost

results in a one-hot encoding of f(a). The only difference is that r − 1 is
represented by ai = −1 for all i. A proper one-hot encoding can be computed
locally by setting br−1 = (1−a0−· · ·−ar−2)/r and bi = ai+br−1 for i < r−1.
If we prefer to share the result as a single value, we can then easily compute
that as 0b0 + 1b1 + · · ·+ (r − 1)br−1.

4 Secure Computation of the Residue Sym-

bol

We can compute the power residue symbol in a secret shared setting analo-
gously to how the Legendre symbol is computed in [12]. We note that only
the upper argument of the residue symbol is secret shared, whereas the lower
argument p is public. Let P1, . . . , Pn be the parties involved in the protocol.
We assume that the parties are semi-honest (also known as passive), i.e. they
will follow the specified instructions from the protocol. Many techniques are
known to upgrade such protocols to settings where parties may deviate from
the protocol (called malicious or active). Possible collusions of cheating par-
ties are modeled by means of an adversary that corrupts those parties and
sees all the information they know.

We consider a linear secret sharing scheme that allows to distribute a
secret value among the n parties, by giving each one a share, so that an ad-
versary corrupting up to some number t of parties can obtain no information

6

about the secret given those shares.
Therefore, any party can secret share an element of her choice x ∈ F ,

thereby creating a sharing [x]F . As mentioned in the introduction, given
[x]F , [y]F , parties can compute shares for x+ y, i.e. [x+ y]F without interac-
tion (so these operations are considered essentially “free”). We denote this
[x+ y]F = [x]F + [y]F . Likewise, given a public value a ∈ F and [x]F , parties
can compute without interaction [ax]F = a[x]F . Parties can also compute
shares for the product [xy]F (which we denote [xy]F = [x]F [y]F), although
this requires some additional communication, that depends on the specific
protocol we use. Parties can open a jointly shared value [x]F , so that every
party learns x. As explained below, parties can jointly create a sharing [r]F
of an element r that in the view of any party (and even in the joint view
of any subset of n − 1 parties) is uniformly random in F . Given [x]F , [r]F ,
where r is uniformly random in the sense above, opening [x+ r]F gives no
additional information about x apart from the a priori knowledge parties
might have about x. If parties open [xr]F and find out that xr 6= 0, the
only new information parties may learn about x is that x 6= 0, but all other
information about x is protected.

Computing random elements of F . The parties can compute a uni-
formly random element of F in the usual way, described in Algorithm 1.
Each party Pi chooses and shares a uniformly random value [xi]F . These
values are then summed up: [x]F =

∑n
i=0[xi]F . In this way, even with an

active adversary, the value x is uniformly random and secret if at least one
party is honest.

Computing a random solved instance. In a preprocessing phase, the
parties need to compute a random solved instance of the power residue sym-
bol. That is, they want a pair of shared values ([x]F , [x

′]F), where x′ = (x | p)r
and x is uniformly random and unknown to the parties. To do this, we pro-
ceed as in [12], and described in Algorithm 2. The parties first select two uni-
form random shared values [a]F and [b]F and multiply them: [d]F = [a]F [b]F .
They then compute and open f = dr. If this is zero, they abort. Otherwise,
they know that a and d are uniformly random and independent elements of
F ∗, since F is a finite field. The parties then compute an r-th root d̂ of f in
the clear. We see that d/d̂ is a uniformly random r-th root of unity. Hence,

[x]F =
[a]rF [d]F

d̂
, [x′]F =

[(
x

p

)
r

]
F

=
[d]F
d̂

constitute a uniformly random solved instance. Recall that we require (ζr | p)r =

ζr, so that (d/d̂ | p)r = d/d̂.

7

Computing the residue symbol. In the online phase, described in Al-
gorithm 3 the parties then wish to compute the residue symbol of a secret
shared value [a]F . We assume that a is known to be nonzero. This is achieved
by using a suitable encoding, as in Remark 6. Suppose we have a fresh ran-
dom solved instance ([x]F , [x

′]F). The parties compute and open ax, which is
uniformly random in F ∗ and hence doesn’t reveal any information about a.
They can then compute the residue symbol (ax | p)r in the clear, and finally
obtain [(

a

p

)
r

]
F

=

(
ax

p

)
r

· [x′]−1F .

Remark 8. Note that since x′ is an r-th root of unity, computing its inverse
is the same as computing its complex conjugate. This can be done locally
on each party’s share for additive sharing as well as Shamir sharing (if the
evaluation points lie in the base field Fp).

Computational cost. An invocation of Algorithm 1 costs n sharings,
which can be done in a single round. Here, n is the number of parties.

The offline phase (Algorithm 2) costs 2 invocations of Algorithm 1, as
well as 2 multiplications, 2 exponentiations to the power of r, and 1 opening.
The round complexity can be minimized as follows: Both random values [a]F
and [b]F can be generated in parallel in a single round. Then, [d]F = [a]F [b]F ,
[d]rF = [a]rF [b]rF and [a]rF [d]F = [a]r+1

F [b]F can be computed, and [d]rF opened,
in three rounds using an unbounded fan-in multiplication protocol [e.g. 2].
This gives a total round complexity of 4 rounds.

The online phase costs a single multiplication and one opening, which can
be done in a single round. Recall from Remark 8 that computing the inverse
of a root of unity can be done locally.

It should be noted that multiplication of elements in F is more expensive
than multiplication in Fq, a näıve implementation taking O(r2) multiplica-
tions in the base field, which however can be done in parallel in a single
round. Also, unbounded fan-in multiplication precludes the use of square-
and-multiply methods for computing exponentiation. However, since the
exponent r is typically very small, that is not necessary.

Algorithm 1 Choosing a random element of F .

Each party Pi selects and shares a uniformly random [xi]F ∈ F
[x]F ←

∑n
i=1[xi]F

return [x]F

8

Algorithm 2 Offline phase: Find a random solved instance ([x]F , [x
′]F) of

the residue symbol, i.e. x′ = (x | p)r.
[a]F ←R F
[b]F ←R F
[d]F ← [a]F [b]F
f ← [d]rF
if f = 0 then

abort
end if
d̂← r

√
f

[x′]F ← [d]F/d̂
[x]F ← [a]rF [x′]F
return ([x]F , [x

′]F)

Algorithm 3 Online phase: Compute the residue symbol of [a]F , given a
solved instance ([x]F , [x

′]F).

b← [a]F [x]F
c← (b | p)r
return c · [x′]−1F

5 Finding the Modulus

We are looking for a suitable prime modulus p. Recall from Section 3 that we
want (p) to be a prime ideal of R. This is equivalent to p being a generator of
the multiplicative group F∗r, by [8, Theorem 2, p. 196]. Hence, this condition
depends only on p modulo r. Furthermore, we wish to fix (ζr | p)r = ζr.
Since (

ζr
p

)
r

= ζ
pr−1−1

r
r ,

by definition, this is equivalent to having pr−1 ≡ r + 1 (mod r2). This gives
us the first equation for p: let

M0 = {q ∈ Z/r2Z | q is a generator of F∗r and qr−1 = r + 1}.

Then, we require that p ∈M0 (mod r2).
We now wish to impose a condition of the form (a | p)r = ζ`r for some

a ∈ R \ {0} and ` ∈ Z. We need to distinguish multiple cases.

9

Case 1: a is a unit. By Theorem 4, we can write a = ±ζkr u, where k ∈ Z
and u is a positive real unit. Applying Lemma 5, we see that(

a

p

)
r

=

(
±u
p

)
r

(
ζkr
p

)
r

= ζkr ,

which is independent of p. Requirements of this form are hence satisfied
either for all primes under consideration or for none. If it is never satisfied,
the requirements need to be adjusted.

Case 2: a is coprime to r and not a unit. There is some k ∈ Z such
that â = ζkr a is primary. So we want that p is coprime to a and

ζ`r
!

=

(
a

p

)
r

=

(
ζr
p

)−k
r

(
â

p

)
r

= ζ−kr

(
p

â

)
r

= ζ−kr

(
p mod N(â)

â

)
r

,

the last equation holds because the value of the residue symbol (p | â)r de-
pends only on p modulo â. This gives us another modular equation for p:
let

Ma =

{
q ∈ Z/N(â)Z

∣∣∣∣ (qâ
)

r

= ζ`+k
r

}
.

Then, we require that p ∈Ma (mod N(â)).

Case 3: a is not coprime to r. Let first µ = 1 − ζ2r , which is a prime
element of R. Note that(

µ

p

)
r

=

(
ζr
p

)
r

(
ζ−1r − ζr

p

)
r

= ζr

by Lemma 5, since ζ−1r − ζr is purely imaginary. The ideal (r) factors as
(µ)r−1 in R, so we can write a = µmã for some m > 0 and ã coprime to r.
(m is the valuation of a at (µ).) We proceed as before with ã instead of a.
If ã is a unit, then as in Case 1, the requirement is either always satisfied or
never. If ã is not a unit, let k ∈ Z such that â = ζkr ã is primary. We end up
with the set

Ma =

{
q ∈ Z/N(â)Z

∣∣∣∣ (qâ
)

r

= ζ`+k−m
r

}
,

and we require that p ∈Ma (mod N(â)).

10

5.1 Computing the Conditions

How do we find the elements of the set Ma? First, we note that Ma is con-
tained in (Z/N(â)Z)∗. Since it appears inevitable that our procedure takes
at least polynomial time in N(â), the brute force method of simply comput-
ing (q | â)r for each q ∈ (Z/N(â)Z)∗ seems viable. However, computation of
the residue symbol is relatively expensive in practice, so we use a method
that requires only few invocations of the residue symbol.

Since the residue symbol is multiplicative, the set

Ha =

{
q ∈ (Z/N(â)Z)∗

∣∣∣∣ (qâ
)

r

= 1

}
is a subgroup of (Z/N(â)Z)∗. If Ha is the entirety of (Z/N(â)Z)∗, the con-
dition p ∈ Ma (mod N(â)) is satisfied for all values or no value of p. In the
latter case, we need to adjust our parameters.

If however Ha is a proper subgroup, it follows that it has index r, and
that the set Ma is a coset of Ha. We use the fact that the index is known to
efficiently find a set of generators for Ha, after which the entirety of Ma can
easily be computed.

For this, we first need to find a set of generators g1, . . . , gn of (Z/N(â)Z)∗,
of orders k1, . . . , kn, which induce an isomorphism

Z/k1Z× · · · × Z/knZ
∼−→ (Z/N(â)Z)∗.

The Sage computer algebra system [10] contains a function that efficiently
provides these generators.

We describe the algorithm for computing a set of generators for the sub-
group Ha in the following setting, which is related to the hidden subgroup
problem.

Finding a subgroup with known index. Suppose we are given an
abelian group of the form G = Z/k1Z × · · · × Z/knZ, where k1, . . . , kn ∈
Z>1. Suppose furthermore that we have access to the characteristic function
χ : G→ {0, 1} of a subgroup H ⊆ G of index dividing r, where r is a known
prime number. That is, χ(x) = 1 if and only if x ∈ H. The goal is to find a
set of generators of H, using only a small number of invocations of χ.

First, we note that by pulling H back along the projection homomorphism
π : Zn → G, we get a lattice H̃ containing k1Z × · · · × knZ. Let χ̃ = χ ◦ π
be the characteristic function of H̃. We now find a basis for H̃, which maps
to a set of generators of H. Every lattice contained in Zn has a unique basis

11

given by the columns of a full rank n×n integer matrix B in Hermite normal
form [6]. That is, B = (Bij) satisfies

Bij = 0 for 1 ≤ i < j ≤ n,

Bii > 0 for 1 ≤ i ≤ n,

0 ≤ Bij < Bii for 1 ≤ j < i ≤ n.

The determinant of B is equal to the index of the subgroup H in G, and
hence divides the prime r by assumption. This means that B has at most
one diagonal entry equal to r, with all others being 1.

For example, the matrix B might look like this:

B =

1 0 0 0
0 1 0 0
a1 a2 r 0
0 0 0 1

 ,

with 0 ≤ a1, a2 < r.
To find the basis h1, . . . , hn of H̃, we now proceed as in Algorithm 4. Let

e1, . . . , en be the standard basis vectors of Zn. We let i decrease from n to 1,
and so go through the columns of B from right to left.

1. For as long as χ̃(ei) = 1, we simply set hi = ei.

2. If χ̃(ei) = 0, we know that we have reached the column with r in the
diagonal, so we set hi = rei and fix J = i.

3. For each of the remaining values of i, we search for the unique a ∈
{0, . . . , r − 1} such that χ̃(ei + aeJ) = 1, and set hi = ei + aeJ .

This way, we can compute the basis of H̃ using at most (n − 1)r + 1
invocations of χ. Note that if the index of H is 1, the algorithm simply
returns the original basis e1, . . . , en.

Remark 9. In the case relevant to this paper, χ is given by the residue
symbol, which not only tells us whether an element is in H, but in which
coset of H it lies. In this case, the value a in step 3 above can be computed
with a single invocation of χ, which reduces the total number of invocations
needed to just n.

Remark 10. The algorithm can easily be generalized to the case where r
is not prime, in which case there may be multiple diagonal entries not equal
to 1. It requires at most nr invocations of χ.

12

Algorithm 4 Computing a basis of a sublattice H̃ ⊆ Zn of prime index r,
given the characteristic function χ̃ of H̃.
J ← 0
for i from n to 1 do

if J = 0 then
if χ̃(ei) = 1 then

hi ← ei
else

hi ← r · ei
J ← i

end if
else

for a from 0 to r − 1 do
if χ̃(ei + aeJ) = 1 then

hi ← ei + aeJ
end if

end for
end if

end for

6 Toy Example

We present an example, in which we compute reduction modulo 3 for inte-
gers x ∈ {0, . . . , n} for some small n. We pick r = 3. This example was
constructed with the help of the Sage computer algebra system [10].

Setting A = {0, . . . , n} and f(x) = x mod 3 cannot work for this, since
(x | p)r = 1 for all valid primes p and x ∈ Z, p - x, by Lemma 5. Instead, we
encode the problem as follows. Let n = 18, and

A = {11 + xζr | 0 ≤ x ≤ 18}
f(11 + xζr) = x mod 3.

This encoding was found by trial and error. Then, following our procedure
from Section 5, we get

M0 = {q ∈ Z/9Z | q is a generator of F∗3 and q2 ≡ 4} = {2}.

For e.g. a = 11 + 5ζr, we have f(a) = ` = 2, so we want (a | p)r = ζ2r .
We have N(a) = 91, so a is coprime to 3. Furthermore, â = ζra = 6ζr − 5 is

13

primary, so k = 1. We hence get

Ma =

{
q ∈ Z/91Z

∣∣∣∣ (qâ
)

r

= ζ`+k
r = ζ3r = 1

}
= {1, 2, 4, 8, 16, 17, 23, 27, 32, 34, 37, 45, 46,

54, 57, 59, 64, 68, 74, 75, 83, 87, 89, 90}.

Similarly, we find Ma for all other a ∈ A.
Finally, we use brute force to find a prime p which lies in M0 and in each

Ma after the appropriate modular reduction. The smallest one is

p = 26 403 527.

We conclude that (
11 + xζr

p

)
r

= ζx mod 3
r

for 0 ≤ x ≤ 18.
One can show that it is not possible to extend the example above to

a = 11 + 19ζr.

7 Conclusion

We have introduced a protocol for secure multiparty computation which al-
lows the evaluation of certain desired functions f : A → {0, . . . , r − 1} on
secret shared values, for a small subset A ⊂ Z[ζr] of the r-th cyclotomic ring,
where r is a small prime. Our protocol is a generalization of a protocol by
Yu [12], and makes use of the residue symbol of Z[ζr], by getting it to agree
with the desired function on A. It uses only a single round in the online
phase, and a constant number of offline preprocessing rounds.

We can then use this idea to compute a function g over a more “natural”
domain, like A′ ⊂ Z, by first encoding it as a function f : A→ {0, . . . , r−1} in
a suitable way. As we have shown in the example, there may be different ways
of doing this encoding, and the feasibility and performance of our technique
may depend on the chosen encoding.

It is an open question to find concrete applications where our protocol
has significant advantages over alternative solutions, such as polynomial in-
terpolation. While our method requires fewer online rounds than polynomial
interpolation, it is also more restrictive in which functions and domains it
allows, and requires the use of a specific prime modulus p. It is therefore
also of interest to improve and formalize the methods of encoding a desired
function in such a way as to be compatible with the residue symbol, and so

14

that p remains reasonably small, which so far we have mostly done by trial
and error.

References

[1] Mark Abspoel et al. “Fast Secure Comparison for Medium-Sized Inte-
gers and Its Application in Binarized Neural Networks”. In: Cryptog-
raphers’ Track at the RSA Conference. Springer. 2019, pp. 453–472.

[2] Judit Bar-Ilan and Donald Beaver. “Non-cryptographic fault-tolerant
computing in constant number of rounds of interaction”. In: Proceed-
ings of the eighth annual ACM Symposium on Principles of distributed
computing. ACM. 1989, pp. 201–209.

[3] Yuri F. Bilu, Yann Bugeaud, and Maurice Mignotte. The problem of
Catalan. Vol. 9. Springer, 2014.

[4] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Se-
cure multiparty computation and secret sharing. Cambridge University
Press, 2015.

[5] Ivan Damg̊ard et al. “Unconditionally secure constant-rounds multi-
party computation for equality, comparison, bits and exponentiation”.
In: Theory of Cryptography Conference. Springer. 2006, pp. 285–304.

[6] Cynthia Dwork. “Lattices and their application to cryptography”. In:
Lecture Notes, Stanford University (1998).

[7] Uri Feige, Joe Killian, and Moni Naor. “A minimal model for secure
computation”. In: Proceedings of the twenty-sixth annual ACM sympo-
sium on Theory of computing. 1994, pp. 554–563.

[8] Kenneth Ireland and Michael Rosen. A classical introduction to modern
number theory. Vol. 84. Springer Science & Business Media, 1990.

[9] Takashi Nishide and Kazuo Ohta. “Multiparty computation for inter-
val, equality, and comparison without bit-decomposition protocol”. In:
International Workshop on Public Key Cryptography. Springer. 2007,
pp. 343–360.

[10] William A. Stein et al. Sage Mathematics Software (Version 7.5.1).
The Sage Development Team. 2017. url: http://www.sagemath.org.

[11] Adi Shamir. “How to share a secret”. In: Communications of the ACM
22.11 (1979), pp. 612–613.

[12] Ching-Hua Yu. “Sign Modules in Secure Arithmetic Circuits.” In:
IACR Cryptology ePrint Archive (2011).

15

http://www.sagemath.org

	Introduction
	The Power Residue Symbol
	The Basic Idea
	Secure Computation of the Residue Symbol
	Finding the Modulus
	Computing the Conditions

	Toy Example
	Conclusion

