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Abstract. The design of glitch-resistant higher-order masking schemes
is an important challenge in cryptographic engineering. A recent work
by Moos et al. (CHES 2019) showed that most published schemes (and
all efficient ones) exhibit local or composability flaws at high security
orders, leaving a critical gap in the literature on hardware masking. In
this paper, we first extend the simulatability framework of Beläıd et al.
(EUROCRYPT 2016) and prove that a compositional strategy that is
correct without glitches remains valid with glitches. We then use this ex-
tended framework to prove the first masked gadgets that enable trivial
composition with glitches at arbitrary orders. We show that the resulting
“Hardware Private Circuits” approach the implementation efficiency of
previous (flawed) schemes. We finally investigate how trivial composition
can serve as a basis for a tool that allows verifying full masked hard-
ware implementations (e.g., of complete block ciphers) at any security
order. The tool checks that a synthesized HDL code fulfills the topo-
logical requirements of the composability theorems. As side products,
we improve the randomness complexity of the best published refreshing
gadgets, show that some S-box representations allow latency reductions
and confirm practical claims based on implementation results.

1 Introduction

State-of-the-art. Over the last decade, the secure and efficient masking of
block cipher implementations against side-channel attacks in hardware has been
shown to be a very difficult task. One of the main issues it faces is that transient
computations (usually denoted as glitches in the literature) can “re-combine”
the shares of a masked hardware implementation, and therefore reduce its secu-
rity order [26]. While some early attempts tried to mitigate glitches directly at
the hardware level, it rapidly appeared that dealing with such low-level physical
effects creates hard-to-fulfill engineering constraints [19]. This observation mo-
tivated the design of “Threshold Implementations” (TIs) [28], which solved the
problem at the algorithmic level and in a principled manner. For this purpose,
TIs add a “non-completeness” requirement to all the intermediate computations
in a masked implementation (i.e., no combinatorial logic should manipulate all
the shares), and store the results of these non-complete operations in registers,
in order to block the propagation of the glitches.



The main scientific challenge in the design of TIs (and masked circuits in
general) is to best trade the computation, memory, latency and randomness
requirements that such countermeasures incur. As a result, and ever since the
introduction of the TI concept, a wide literature has tried to minimize these
quantities. These optimizations were directly successful for low (typically first)
security order(s), as witnessed by [29,10,16]. By contrast, their generalization to
higher security orders turned out to be tricky. For example, the first proposal of
higher-order TI of Bilgin et al. [9] was rapidly shown insecure against multivari-
ate attacks [30]. Various follow-up papers then proposed efficient and innovative
ways to implement higher-order masking in hardware. We mention for example
the Consolidated Masking Scheme (CMS) in [13], the Domain-Oriented Masking
(DOM) in [23,24], the Unified Masking Approach (UMA) in [22] and the Generic
Low Latency Masking (GLM) in [21]. Yet, and in contrast with the literature in
software-oriented masking schemes (see [7,8] for example), none of these propos-
als came with a security proof in a formal model such as Ishai et al.’s probing
model [25]. Furthermore, a recent work by Moos et al. showed that this lack of
proof is not only a theoretical concern, and that the higher-order generalizations
of all these schemes suffer from local or composability flaws [27].1 These results
are therefore revealing a gap in the hardware masking literature (i.e., the lack
of efficient solutions for arbitrary-order secure and glitch-resistant implementa-
tions), and come as an advocacy for the design of new schemes with provable
guarantees, for example in the hardware extension of the probing model (i.e.,
the robust probing model) put forward by Faust et al. [18].

In this respect, a partial solution to overcome this challenge is to use (what
we denote as) direct verification tools that test implementations exhaustively,
as initially proposed in the software context by Barthe et al. [4] and generalized
to the hardware context with glitches in [11,2]. However, such tools are com-
putationally limited to the analysis of small circuits and low security orders.
So for analyzing full circuits at arbitrary security orders, one generally requires
stronger properties from the masked gadgets in order to enable composition theo-
rems that can then be exploited in (what we denote as) composition verification
tools [5]. Unfortunately, when directly putting such composition requirements
together with the glitch-resistance requirements, the cost and latency overheads
over efficient schemes such as TIs, DOM, UMA and GLM become significant. To
the best of our knowledge, the only solution in this direction is the proposal by
Faust et al. to implement a “glitch-robust Strong Non-Interfering (SNI)” mul-
tiplication in two cycles [18]. The latter can then be made trivially composable
by refreshing one of the two inputs in another two cycles (following the strategy

1 By local flaws, we mean cases where a single masked gadget (e.g., a multiplication,
S-box, . . . ) does not deliver its security guarantees. An example of local flaw is the
attack against the scheme of Schramm and Paar [33] by Coron et al. [14]. Com-
posability flaws happen when the combination of locally secure gadgets leads to
additional weaknesses. Such a flaw is at the root of the attack against the scheme of
Rivain and Prouff [31] exhibited by Coron et al. [15].
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of Goudarzi and Rivain [20] proven by Cassiers and Standaert [12]), leading to
a total of four cycles per multiplication, which limits its concrete relevance.2

Our contributions. The first main contribution of the paper is the formaliza-
tion and a proof of the intuition from [18] that any (simulation-based) compo-
sitional strategy that is correct in the standard probing model remains valid in
the robust probing model. Along the way, we additionally clarify a few subtleties
such as the treatment of glitches that span multiple gadgets.

Following this formalization effort, the second contribution of the paper is to
close the aforementioned gap in the hardware-oriented masking literature, and to
propose efficient (low-latency) and glitch-resistant refreshing and multiplication
gadgets that provably compose at arbitrary orders. We denote the resulting
circuits as Hardware Private Circuits (HPC) since they can be viewed as a
specialization of Ishai et al.’s private circuits to the hardware context [25].

Our first HPC multiplication gadget (HPC1) is a trade-off between the ef-
ficient (but non-composable) “DOM-indep” multiplication from [23,24] and the
conservative proposal by Faust et al. Our second HPC multiplication gadget
(HPC2) is based on the PINI1 gadget of [12]. It has lower randomness cost but
is limited to the binary field F2 (whereas the HPC1 gadget works for any fi-
nite field). Both gadgets satisfy the hardware version of the Probe Isolating Non
Interference (PINI) concept introduced with the trivial composition framework
in [12]. We show that using the PINI framework allows latency gains compared to
SNI-based multiplications. For the HPC1 gadget, we additionally design new and
randomness-efficient (SNI) hardware refresh gadgets (needed for this multipli-
cation) that achieve minimum latency by performing most of the computations
“off-path” and limiting the “on-path” computation to a single XOR.

Our third main contribution tackles the risk that even abstract circuits built
only from glitch-robust and trivially composable gadgets may not translate into
concrete implementations with the corresponding security guarantees. Typical
reasons include programming bugs and synthesis optimizations which may break
the topological requirements that circuits must fulfill for our composition theo-
rems to apply. We contribute to this problem by proposing a new tool for (what
we denote as) full verification.3 It takes as input the HDL code describing a
masked implementation based on composable gadgets, and can verify its ro-
bust probing security after synthesis. This result answers a problem left open
by Barthe et al. in [5] who described maskComp, an efficient composition verifi-
cation tool applying to abstract algorithms based on composable gadgets, but
not the resulting programs and their physical defaults. As a result, to the best
of our knowledge for the first time, we can efficiently verify synthesized masked
hardware implementations of complete block ciphers at any security order.

We additionally (1) improve the randomness complexity of the best reported
refresh gadgets in the literature and demonstrate their relevance in a hardware

2 By trivially composable, we mean that implementations mixing such multiplications
with linear operations performed independently on each share are secure.

3 Available under open-source license at https://github.com/cassiersg/fullverif.
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implementation context; (2) show that some S-box representations allow further
latency reductions and describe how to find such a representation for small S-
boxes; (3) confirm our practical claims based on implementation results.

Paper structure. We start with some background about the circuit model we
consider, (robust) probing security and composability notions (Section 2). We
then analyze the solutions that are the basis of our investigations, namely the
DOM scheme and Faust et al.’s implementation of the Ishai, Sahai and Wagner
(ISW) multiplication (Section 3). We follow with a high-level presentation of
our compositional strategy and new constructions (Section 4). Our verification
tool is described in Section 5 and implementation results are in Section 6. We
conclude with the formalization of our claims and security proofs (Section 7).

Cautionary note. Our new gadgets and full verification tool are based on a
trivial compositional strategy. This appears as a natural first step in order to fix
the flaws exhibited in [27]. Yet, trivial composability is not a necessary condition
for (robust) probing security and we also prove that any (simulation-based) com-
positional strategy is eligible to design robust masking schemes. So as discussed
in Section 2.3, finding out whether more efficient circuits could be obtained
(possibly at higher verification cost) thanks to other compositional strategies is
an interesting open problem. In this respect, we insist that our implementation
results show that HPC gadgets already approach the level of performance of
(flawed) DOM implementations which have low latency. So at least for ISW-like
masking schemes and with respect to the latency metric, margins for improve-
ments without significant area overheads (e.g., as in [21]) are limited.

2 Background

2.1 Circuit model

We use a circuit model based on the one of [25]: a circuit is a directed acyclic
graph whose vertices are gates and edges are wires carrying elements from a
finite field. Circuits may also have input and output connections. We focus on
the binary field case which is most frequently used in practice. Nevertheless,
all the mathematical results and the HPC1 schemes work for larger fields F2n .
We denote field additions by ⊕ and field multiplications by ⊗. We consider
various kinds of gates for the circuit: combinational gates which implement field
operations, random gates with fan-in 0 that produce a uniformly distributed
random element, and register gates whose functionality is discussed next.

2.2 Standard probing model and security

The t-probing model [25] provides a framework to analyze at an abstract level
the security of masked circuits and formalizes the notion of security order. In this
model, an adversary can probe up to t wires of a circuit, and each probe gives
access to the field element carried by the probed wire. A circuit is secure in the
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t-probing model if the values obtained from the probes are (jointly) independent
of any sensitive variable. Masking aims to achieve security in the t-probing model
by splitting every sensitive variable into at least t+1 shares. We focus on d = t+1
additive masking: a sensitive variable x is represented by a (t+ 1)-sharing (xi)i
(where i is named the share index) such that x = x0 ⊕ · · · ⊕ xt and any set of t
shares of x is uniformly distributed. A (d,mi,mo)-gadget is a circuit that takes
as inputs mi d-sharings and has mo output d-sharings. We usually denote by xi,j
(respectively yi,j) the j-th share of the i-th input (respectively output) sharing
of a gadget. The index ∗ represents the whole set of possible values (e.g., x∗,∗
denotes all the shares of all the input sharings).

2.3 Composability

The composition of t-probing secure gadgets is not always t-probing secure [15].
Since testing probing security exhaustively is computationally hard as the secu-
rity order and size of a circuit increase [4,11,2], various stronger security defini-
tions have been proposed in order to enable the secure compositions of gadgets,
paving the way to the security analysis of full circuits.

The definition of simulatability is a key ingredient for such a secure composi-
tion of gadgets: if any set of probes on a gadget can be simulated using some of
its input shares, the security analysis of a composition of gadgets can be made
by analyzing those sets of input probes only. A technique for using simulatability
to prove the security of composite circuits (i.e., circuits made of the connection
of multiple gadgets) that we call “probe propagation” has been introduced in [7].
Probe propagation works by analyzing gadgets in the composite circuit from the
outputs to the inputs, and for each gadget replaces probes on its outputs and
internal wires with simulator probes (i.e., the input wires needed for simulation)
on its input wires. This technique ends with a set of input wires of the whole
composite circuit. Knowing this set allows to simulate all the probes, hence if
those inputs are independent of any secret, so are the probes.

Simulatability-based definitions can then be introduced by specifying prop-
erties of the input wires required for simulation, given a set of probes. In other
words, they describe how probes propagate through a gadget. Let us consider a
generic composite circuit structure where the connections between various gad-
gets are specified, as well as the number of inputs and outputs of each gadget
and their functionality (i.e., the logic gate they implement), but not the gadgets
themselves. A (simulatability-based) compositional strategy is a policy that as-
signs a property (in the form of a simulatability-based definition) to each of the
gadgets. It guarantees that if the circuit is instantiated with gadgets that satisfy
those definitions, then the circuit is probing secure. There exists a large vari-
ety of compositional strategies based on diverse simulatability-based definitions,
such as NI, SNI, MIMO-SNI, PINI and f -NI [5,12,3].

We next introduce the NI definition which can be seen as the most basic
simulatability property, the SNI definition and the PINI definition.
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Definition 1 (t-Non-Interference [5]). A gadget with one output sharing is t-
Non-Interferent (t-NI) if any set of at most t probes on its wires can be simulated
with t shares of each of its mi input sharings.

In other words, a probe inside or on the output of a NI gadget propagates into
one probe on each of the input sharings of the gadget. Many gadgets are NI,
such as the trivial implementation of linear operations (where the operation is
implemented share-by-share). Using only NI gadgets is not sufficient to guarantee
probing security. In order to propose a sound compositional strategy for any
composite circuit structure, Barthe et al. introduced the stronger SNI notion.

Definition 2 (t-Strong Non-Interference [5]). A gadget with one output
sharing is t-Strong Non-Interferent (t-SNI) if any set of at most t1 probes on its
wires and t2 probes on wires from its output sharings such that t1 + t2 ≤ t can
be simulated with t1 shares of each of its mi input sharings.

Informally, SNI guarantees independence between the inputs and outputs even in
presence of a t-probing adversary which has access to the internals of the circuit:
a probe inside a SNI gadget propagates into one probe on each of the input
sharings and a probe on an output share of a SNI gadget does not propagate.

Finally, Probe-Isolating Non-Interference (PINI) has been recently intro-
duced as an alternative basis for composing masked gadgets. Intuitively, PINI
formalizes the splitting of a circuit into t + 1 shares. If there are no connec-
tions between the circuit shares (such as for the trivial implementation of linear
operations), then each probe can propagate only into one circuit share, which
implies that at least one circuit share remains “untouched” by probes and guar-
antees probing security. For gadgets which have connections between circuit
shares (such as multiplications), the PINI definition imposes that they can be
simulated as if these connections did not exist.

Definition 3 (Probe-Isolating Non-Interference [12]). Given a gadget G,
let I be a set of at most t1 probes on its internal wires and O a set of probes on
its output shares. Let A be the set of the share indexes of the shares in O, and
t2 = |A|. Let I and O be chosen such that t1 + t2 ≤ t. The gadget G is t-PINI
iff for all I and O there exist a set of at most t1 share indexes B such that
observations corresponding to I and O can be simulated using only the shares
with indexes A ∪B of each input sharing.

Based on these definitions, secure composition can follow two main approaches.

Trivial composition is to the strongest possible form of composition. It was ini-
tially proposed by Barthe et al. who proved that if all the gadgets in a circuit
are SNI, then the circuit is probing secure [5]. The main drawback of this com-
positional strategy is that it comes with significant performance overheads. In
particular, the trivial implementation of linear operations is only NI and must be
“refreshed” to satisfy SNI. The Probe Isolating Non-Interference (PINI) frame-
work introduced in [12] provides an alternative and more efficient path to trivial
composition: a circuit is probing secure if all its gadgets are PINI and the trivial
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implementation of masked linear operations is PINI. Two PINI multiplication
gadgets are proposed in [12]: a SNI refresh followed by a SNI multiplication (the
strategy of Gourdarzi and Rivain), and an ad-hoc gadget named PINI1.

Optimized composition is a complementary approach which aims at enabling
more efficient masked implementations at the cost of more circuit-specific efforts
in their design and evaluation. For example, one can combine NI and SNI gad-
gets so that the amount of refreshing in a protected implementation (hence its
randomness complexity) is minimized. The (abstract) maskComp tool of Barthe
et al. proposed at CCS 2016 is an example of such an approach, where all the
multiplications are SNI and the number of SNI refreshes is optimized [5]. Another
example can be found in [7], where it is shown that the AES S-box can be im-
plemented securely with a mix of NI/SNI multiplications and SNI refreshes. The
Tight Private Circuits (TPC) recently introduced by Beläıd et al. establish yet
another set of composition rules with additional optimizations that specifically
apply to block ciphers with surjective linear layers [8].

The following sections exploit the trivial composition approach which allows
the simplest possible composition rules, and serves as an excellent basis for full
verification. We use the PINI framework for this purpose because of the more
efficient implementations it enables (compared to using only SNI gadgets) and
because it is a natural formalization of the concept of domain (used in DOM)
which is quite suitable to design masking schemes that prevent physical defaults
such as glitches. Finding out whether an optimized compositional strategy can be
exploited in the robust probing model and lead to different performance trade-
offs is an interesting scope for further research. For example, generalizing the
maskComp/TPC tools to this hardware context could lead to reduced randomness.
By contrast, it is unlikely to reduce the circuits’ latency with such strategies,
since the glitch-robust SNI multiplications they rely on (which can be obtained
by adding an output register to the DOM-indep multiplication, or by considering
the solution of Faust et al. without input refreshing) require two cycles. For this
latency budget (and even less thanks to our optimized S-box representations),
our gadgets enable trivial composition without the additional refresh gadgets
that maskComp/TPC aim to minimize (& sometimes cancel).

2.4 Circuits with glitches: the robust probing model

The standard probing model does not handle physical phenomena such as glitches
that are encountered when implementing masked circuits in hardware. Since the
present work aims at designing gadgets that compose in the presence of glitches,
we next describe how to capture them thanks to the robust probing model in-
troduced by Faust et al. [18] as a way to formalize those non-idealities.

In the “glitch-robust” probing model, a probe on a wire does not only give
access to the value carried by the wire, but also recursively to all the input wires
of the combinational gate that generates the value on that wire. For simplicity,
we sometimes name a probe in the glitch-robust probing model an extended
probe, and a probe in the standard probing model a standard probe.
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In order to limit the power of extended probes, a new kind of gate is intro-
duced: the registers. Registers are sequential gates with one input wire and one
output wire that implement the identity function. Formally, for a given execu-
tion of a circuit C and an extended probe on a wire p, the adversary has access
to the tuple of values Crob,p. Let Cstd,p be the value carried by the wire p (i.e.,
the value associated to the probe in the standard probing model). If the gate
that generates the value on p is a combinational gate, then Crob,p is defined as
{Cstd,p} ∪ Crob,w1

∪ · · · ∪ Crob,wn
where w1, . . . , wn are the input wires of the

combinational gate. If the gate is a register, then Crob,p = {Cstd,p}. That is, a
register stops the glitches and probes on registers cannot be extended.

A register has however two adverse impacts: it uses additional hardware
resources (i.e., silicon area, power) and it acts as a synchronization barrier, in-
creasing the latency of the computation (by one clock cycle).

Following, the definition of probing security in the robust probing model is
a direct adaptation of the standard probing security: a circuit is glitch-robust
t-probing secure if the values obtained from any set of t extended probes are
jointly independent of any sensitive variable.

Remark. In some way, a glitch-extended probe propagates to inputs of its com-
binational circuit. It should be noted that this propagation is distinct from the
simulation-based propagation of probes: in the first case the propagation is due
to physical glitches and is stopped by registers while in the second case the
propagation is determined by statistical properties of the computed values.

3 Analysis of the state-of-the-art: DOM & Faust et al.

As mentioned in introduction, our following results correspond to a trade-off
between the efficient DOM (precisely, DOM-indep) multiplication [23,24] and
a conservative proposal by Faust et al. [18]. Both of them can be viewed as
solutions to implement the ISW multiplication in hardware. In this section, we
discuss these two state-of-the-art solutions and their limitations.

We start with the DOM implementation of the ISW multiplication described
in Algorithm 1. If it was implemented using only combinational logic and no
registers, then glitch-extended probes would completely break its security: an
extended probe on ci indeed contains all the shares of b. The idea of DOM, which
is formalized by the PINI definition, is to isolate domains (that we also name
circuit shares) by ensuring that any wire crossing domains (i.e., corresponding
to terms ai ⊗ bj ⊕ rij) goes through a register.4 As a result, extended probes on
the outputs contain only terms ai ⊗ bj ⊕ rij , which are independent from the
input shares if rij is not known by the adversary.

Formally, the DOM gadget is glitch-robust NI (i.e., the definition of NI where
probes are glitch-extended). Intuitively, this can be seen as follows: the most
powerful extended probes are ai ⊗ bj ⊕ rij and ci (other extended probes are
essentially subsets of those probes). By building adequately the required inputs

4 Registers for the ai ⊗ bi’s are usually added for synchronization.
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Algorithm 1 DOM implementation of the ISW multiplication (in one cycle).

Input: shares (ai)0≤i≤d−1 and (bi)0≤i≤d−1, such that
⊕

i ai = a and
⊕

i bi = b.
Output: shares (ci)0≤i≤d−1, such that

⊕
i ci = a⊗ b.

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$←− F2n ;

uij ← Reg [ai ⊗ bj ⊕ rij ];
uji ← Reg [aj ⊗ bi ⊕ rij ];

end for
end for
for i = 0 to d− 1 do

ci ← Reg [ai ⊗ bi]⊕
⊕d−1

j=0,j 6=i uij ;
end for

sets, the simulator is able, for each pair (i, j), to either know ai and bj , or to
assert that there is no probe on uij , uji and at most one probe on ci or cj .
Therefore, the simulator is able to simulate either by knowing the inputs, or
by knowing that the adversary sees uij from the extension of ci (or uji from
the extension of cj) as a fresh random. This (actually a stronger variant) is
proven in Proposition 1. The DOM multiplication is not SNI with glitches (since
an extended probe on an output cannot be simulated without input shares) and
using a NI multiplication is not enough for secure composition. A simple example
(although admittedly contrived) is the evaluation of x⊗x: a probe on an internal
variable of the multiplication may require two shares of x to be simulated, which
breaks the probing security. (More practical examples are discussed in [27].)5

In order to solve this issue, Faust et al. start by adding one register layer
between the computations of ci and the outputs. This corresponds to adding
a Reg [·] around the computations of the last line of Algorithm 1. It makes the
gadget glitch-robust SNI in two cycles, since the output probes are then stored in
(stable) registers and cannot anymore be extended. Hence, they are as powerful
as in the standard probing model and the proof that the ISW algorithm is SNI
applies (modulo modifications for internal extended probes).

To make their multiplication trivially composable, Faust et al. then addi-
tionally exploit the “double-SNI” strategy initially proposed by Goudarzi and
Rivain [20]: it consists in the use of a SNI multiplication gadget of which one
input is systematically refreshed with one SNI refresh gadget. The refresh gadget
is simply the SNI multiplication with the constant 1 as second input.

Yet, although Faust et al. prove that their multiplication (i.e., the DOM mul-
tiplication with an additional output register) is glitch-robust SNI, they do not
prove that the composition strategy of Goudarzi and Rivain remains secure in
the glitch-robust t-probing model when glitch-robust SNI gadgets are used. Fur-
thermore, their solution is quite expensive: the SNI multiplication has a latency

5 A “DOM-dep” multiplication was proposed in [23], which would be needed to com-
pose securely, but was broken in [27] with no obvious fix.
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of two cycles, which means that the double-SNI gadget has a latency of four
cycles w.r.t. one of the inputs and two cycles w.r.t. the other one. The refresh
gadget is also expensive in randomness compared to the state-of-the-art SNI
refreshes in the standard probing model [7,6,3].

The one-cycle DOM glitch-robust NI multiplication and (2+2)-cycles Faust
et al. “double-SNI” multiplication are illustrated in Figures 1a and 1b.

DOM

a b

c

(a) DOM [23,24].

DOM

Reg

Reg

DOM

b 1a

c
Mul

Ref

(b) Faust et al. [18].

DOM

Reg

Share 0

ba

c
Mul

Ref

(c) HPC1 (new).

HPC2

a b

c

(d) HPC2 (new).

Fig. 1: Hardware-oriented multiplications gadgets. Left and right triangles mark
sequential logic; they indicate the output latency with respect to the left and
right input, respectively. Rounded corners indicate combinational logic.

4 Efficient, glitch-resistant and composable gadgets

We now introduce our strategy for trivial composition in presence of glitches,
together with efficient gadgets that can be used in this strategy. We focus on
intuitive explanations, postponing formal definitions and proofs to Section 7.
First of all, we propose in Section 4.1 a general technique for applying some
standard probing model compositional strategies to the glitch-robust probing
model. Those strategies are the ones based on simulatability (e.g., using NI,
SNI, PINI). We do this by defining glitch-robust simulatability, by which defini-
tions of glitch-robust NI, SNI, PINI, . . . follow immediately. We show that they
enjoy the same composition properties as their standard probing model coun-
terparts. Second, we introduce in Sections 4.2 and 4.4 two glitch-robust PINI
multiplication gadgets for any masking order. The first one (HPC1) is based on
the refresh-then-multiply technique and is generic: it works for any field Fq. The
second one (HPC2) is more randomness-efficient, but works only in F2. We also
present in Section 4.3 new constructions for glitch-robust SNI refresh gadgets
that are used in HPC1. Finally, we explore how the latency characteristics of
HPC multiplication gadgets can be taken into account in logic circuit optimiza-
tions, in order to further reduce the overall latency.
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4.1 Composability with glitches

We first analyze composition in presence of glitches. For that purpose, we define
the concept of glitch-robust simulatability. As mentioned previously, the defi-
nitions of glitch-robust NI, SNI and PINI can be adapted directly from their
standard probing model counterparts, by replacing the term “probe” (resp.,
“simulated”) by “glitch-extended probe” (resp., “glitch-robustly simulated”).

Based on these definitions, it seems natural to assume that simulation-based
proofs apply just as for their standard counterparts (i.e., without glitches), which
was implicitly assumed by Faust et al. [18]. We next formalize this expectation
in Theorem 1 and show that despite essentially correct, some subtleties have to
be considered, such as the treatment of glitches that span multiple gadgets.

Definition 4 (Glitch-robust simulatability). A set of extended adversarial
probes P in a gadget G can be glitch-robustly simulated by a set of input shares
I = {(i1, j1), . . . , (ik, jk)} if there exists a randomized simulator algorithm S
such that the distributions Grob,P (x∗,∗) and S(xi1,j1 , . . . , xik,jk) are equal for
any value of the inputs x∗,∗ when there are no glitches on the inputs.

Glitch-robust simulatability is illustrated in Figure 2. The first circuit shows
that if a probe is at the output of a register, the glitches do not extend the
probe. However, the inputs of the circuit are still needed to simulate the circuit
and the probes still propagate, as it is the case in the standard probing model.
In the second circuit, we see that extended probes are more powerful than non-
extended ones: in the standard probing model, no input would be needed to
simulate the probe (the probe is $ + x+ y, hence independent of both x and y),
however due to glitches, the input belongs to the extended probe y. The register
prevents glitch propagation, hence the input x is not needed for simulation. For
the third circuit, both inputs x and y are needed (both in the standard and
glitch-robust probing models): the probes $ and $ + x+ y depend on x and y.

x

y
z

(a)

$

x

y

z

(b)

$

x

y

z

(c)

Fig. 2: Glitch-robust simulatability examples. Red letters are probed variables,
red wires are glitches (probe extensions), blue variable are inputs needed for
simulation and the $ sign denotes a random gate.

This definition of glitch-robust simulatability is stronger than standard sim-
ulatability: probes are more powerful and inputs given to the simulator are the
same. It however relies on the hypothesis that there are no glitches on the in-
puts, which simplifies analysis of individual gadgets but is unrealistic when the
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gadgets are integrated in a larger circuit. This actually not an issue: if glitches
on an input share affect the probes, then the input itself affects the probes and
thus the glitch-robust simulator can be extended to deal with glitches on the
inputs. This idea is formalized in Lemma 1, Section 7.1. The lemma actually
shows that including glitches on inputs would lead to an equivalent definition.

Next, we (informally) introduce a generic composition theorem showing that
any simulation-based compositional strategy in the standard probing model also
applies to the glitch-robust probing model.

Theorem 1 (Glitch-robust composability (informal)). Let G be a compo-
sition of gadgets where any set of probes in a gadget is glitch-robust simulatable.
Restricting a glitch-robust simulator to a standard probing model simulator by
discarding some of its inputs, any set of probes in G that can be simulated in the
standard probing model using some of the input shares of G can be simulated in
the glitch-robust probing model using the same input shares.

This theorem is a consequence of Lemma 1 and of the way simulation-based
composition works. We formalize it (along with the notion of simulation-based
compositional strategy) and prove it in Section 7.1.

As a result, the idea of share isolation from the PINI definition is still valid in
face of extended probes due to glitches. Therefore, the main properties of PINI
are also satisfied by glitch-robust PINI:

– Affine gadgets implemented in the trivial way with t + 1 shares are glitch-
robust t-PINI since the propagation and extension of probes are limited to
one share (thanks to actual share isolation in the gadget).

– The glitch-robust composability theorem (Theorem 1) implies that the com-
position of glitch-robust t-PINI gadgets is glitch-robust t-PINI.

– Finally, a glitch-robust t-PINI gadget with at least t+1 shares is glitch-robust
t-probing secure since t extended probes can be simulated with t shares of
each input sharing, which are independent of any sensitive value.

These observations lead to the Hardware Private Circuits (HPC) trivial com-
position strategy for glitch-robust masking: using trivial implementations for
affine gadgets, along with glitch-robust PINI multiplication gadgets.

A first instance of the HPC strategy was proposed by Faust et al.: the
Goudarzi and Rivain refresh-then-multiply gadget is proven to be PINI in [12]
using a simulation-based proof. Therefore, Theorem 1 applies and the gadget
made of glitch-robust SNI refresh and multiplication is glitch-robust PINI.

4.2 Generic Hardware Private Circuits (HPC1)

We introduce a first efficient glitch-robust PINI multiplication gadget, next de-
noted as Hardware Private Circuits 1 (HPC1), and prove it secure at all orders
and for any field Fq. It is based on the refresh-then-multiply technique and is
represented in Figure 1c which highlights the similarities and differences with
the DOM multiplication (to which we add a refresh gadget) and the Faust et al.
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multiplication (to which we remove an output register and optimize the input
refresh gadget). The figure also shows the latency of the gadget: once cycle with
respect to one input, and two cycles with respect to the other input.

The main observation here is that while not SNI, the DOM multiplication
actually enjoys a property that is stronger than NI, which we use in the HPC1
scheme (we find the same property when removing the register layer on the
output of the multiplication of Faust et al.). We next introduce this property
and defer its formalization and the full proof of HPC1 to Section 7.2.

We already discussed that each extended probe in the DOM multiplication
can be simulated using either ai and bi (which satisfies the glitch-robust PINI
definition) or ai and bj (which does not satisfy PINI), showing that it is glitch-
robust NI. The additional property of DOM is that the output probes ci depend
on only the share ai of a (and some bj). Therefore, adding a glitch-robust SNI
refresh on the input b of the DOM gadget makes it glitch-robust PINI, since
it stops the propagation of the probe bj to the input, and the required inputs
ai satisfy the PINI definition. Interestingly, this result suggests that the probe
isolation framework is well suited to enable composition with glitches at limited
latency budget. For example, such guarantees would not be possible using the
SNI abstraction (since the DOM multiplication is not glitch-robust SNI).

HPC1 also enjoys optimized glitch-robust SNI refreshes with one cycle of
latency and reduced randomness compared to Faust et al., as detailed next.

4.3 New refresh gadgets

In this section, we improve glitch-robust SNI refresh gadgets compared to the
state-of-the-art (the SNI multiplication by 1 of Faust et al.). We describe several
SNI refresh gadgets covering realistic orders d, have best-known randomness
complexity (in small fields), are glitch-robust and have a latency of one cycle.

First, we take the order-generic and randomness efficient (O(d log d)) SNI
refresh of Battistello et al. [6] and adapt it to the glitch-robust setting by adding
a register after each XOR gate. This construction and its security proof are
detailed in Section 7.3. The main drawback of this construction is its high latency
of 2 log2(d) − 1 clock cycles. Next, we solve this latency issue by introducing a
generic technique to reduce the latency of any glitch-robust SNI refresh gadget
to one cycle. It works by using the original gadget while providing it with an
all-zero input sharing, then XORing its output with the sharing to be refreshed
and adding a register layer after that. Intuitively, the original refresh gadget
outputs a “glitch-robust SNI-secure” sharing of zero (we formalize this notion
in Section 7.4), which can then be simply XORed with the sharing that must be
refreshed. The output register layer prevents output probes from being extended
to the inputs of the refresh. Our construction is illustrated in Figure 1c, in the
“Ref” frame (where “Share 0” is a SNI refresh provided with an all-zero input). In
this way, the latency of the original gadget does not matter: since it is not on the
main datapath, it can be computed in advance. The cost of this transformation
is at most d registers, since the XOR gates added compensate those that can be
removed due to XORing with the all-zero sharing.

13



Finally, to further reduce randomness utilization, we provide a set of new opti-
mized glitch-robust SNI refresh gadgets for low (and arguably all the practically-
relevant) orders (i.e., d ∈ {2, . . . , 16}, see Figure 3), which require less random-
ness. These gadgets were proven robust-SNI with the maskVerif tool [2]. The ran-
domness complexity of the new refresh gadgets compares favorably to the state-
of-the-art for both hardware and software implementations (see Appendix A,
Table 2). Randomness gains of more than 30% are obtained for d ∈ {3, 4, 5, 7, 8}.

These new refresh gadgets are adaptations of the gadgets in [3], modified by
first adding registers where needed, and then optimizing their randomness com-
plexity by relaxing the parallel constraint (at the cost of making some software
bitslice implementation strategies impossible). Optimization was performed by
hand, iteratively solving flaws found by maskVerif.

y0 ← Reg [x0 + r0]
y1 ← Reg [x1 + r0]

(a) d = 2

t0 ← Reg [r0 + r1]
y0 ← Reg [x0 + r0]
y1 ← Reg [x1 + r1]
y2 ← Reg [x2 + t0]

(b) d = 3

t0 ← Reg
[
s0 + (s0 � 1)

]
y ← Reg

[
x + t0

]
(c) d = 4, 5

t0 ← Reg
[
s0 + (s0 � 1)

]
t1 ← Reg

[
s1 + (s1 � 3)

]
t2 ← Reg

[
t0 + t1

]
y ← Reg

[
x + t2

]
(d) d = 13, . . . , 16

Fig. 3: Optimized refresh gadgets for some d. (The full set of gadgets d = 2, . . . , 16
is shown in Appendix A and is available at https://github.com/cassiersg/

opt-refresh.) The input sharing is denoted as x and the output sharing as y.
All ri variables are independent uniformly random elements, and si are vectors
of d independent random elements. The (· � i) operator applied to a vector
denotes a rotation of its elements: the first element becomes the i+ 1-th, etc.

4.4 Randomness-optimized AND gadget (HPC2)

In this section, we present a multiplication gadget (Algorithm 2) for the practically-
relevant field F2 that has the same randomness cost as the DOM gadget. This
gadget is based on the PINI1 multiplication of [12], and adapted to the hardware
context by adding registers where needed to prevent glitches.

We explain briefly the main argument of the proof that this gadget is glitch-
robust PINI and defer the full proof to Section 7.5.

First, lets us recall the “masked shares multiplication” trick of [12]: whereas
ISW-based multiplication schemes such as DOM compute terms ai ⊗ bj ⊕ rij ,
the HPC2 gadget computes āi ⊗ rij ⊕ ai(rij ⊕ bj) (̄· denotes the NOT gate). In
the standard probing model, this trick ensures that any single probe does not
depend jointly on ai and bj , enabling the gadget to be PINI. If there is more than
one probe, both ai and bj are known to the simulator. In presence of glitches,
registers are added as follows: Reg [āi ⊗ rij ] ⊕ Reg [ai ⊗ Reg [bj ⊕ rij ]]. None of
the glitch-extended probes in this computation depends on both ai and bj :

– extended probes on āi⊗rij and bj⊕rij do not contain bj and ai, respectively;
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Algorithm 2 Glitch-robust HPC2 multiplication for F2.

Input: shares (ai)0≤i≤d−1 and (bi)0≤i≤d−1, such that
⊕

i ai = a and
⊕

i bi = b.
Output: shares (ci)0≤i≤d−1, such that

⊕
i ci = a⊗ b.

for i = 0 to d− 1 do
for j = i + 1 to d− 1 do

rij
$←− F2;

rji ← rij ;
end for

end for
for i = 0 to d− 1 do

for j = 0 to d− 1, j 6= i do
uij ← āi ⊗ Reg [rij ];
vij ← bj ⊕ rij ;

end for
end for
for i = 0 to d− 1 do

ci ← Reg [ai ⊗ Reg [bi]]⊕
⊕d−1

j=0,j 6=i (Reg [uij ]⊕ Reg [ai ⊗ Reg [vij ]]);
end for

– for the extended probe on ai⊗Reg [bj ⊕ rij ], we observe ai and bj ⊕ rij does
not depend on bj , since it is masked with a fresh random rij (remember that
we assume there is a single probe);

– for the extended probe on Reg [āi ⊗ rij ]⊕Reg [ai ⊗ Reg [bj ⊕ rij ]], we observe
āi ⊗ rij and ai ⊗ (bj ⊕ rij). If ai = 0, then those observations are rij and 0,
while if ai = 1, the observations are 0 and bj ⊕ rij (bj is perfectly masked).
In both cases, observations are independent of bj .

Note that this last probe is the reason why the HPC2 gadget is restricted to F2:
in larger fields, āi would be replaced by ai ⊕ 1 for correctness, but it would not
be true anymore that one of ai or ai ⊕ 1 is zero.

4.5 S-box optimizations

One quite peculiar feature of HPCs is the latency asymmetry that is caused by
the fact that only one of their inputs must be refreshed. Take for example a simple
(tree-based) implementation of the function f(a, b, c, d) = (a⊗ b)⊗ (c⊗d): it will
have a latency of four cycles, and three registers will be needed to synchronize
the non-refreshed inputs. In this respect, an interesting observation is that if we
can find a logic representation of a function to mask (e.g., an S-box) such that
one input of each AND gate in the second (or later) stage of the circuit is a
linear combination of inputs in an earlier stage, then we can reduce the latency
by one cycle. For deep circuits, such an optimization therefore has the potential
to reduce the latency by a factor two.

Concretely, we modified a baseline tool from Ko Stoffelen [35] in order to
construct circuits that fulfill these conditions. Searching over circuit represen-
tations (for a given function) is a complex task. We used SAT (satisfiability)
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solvers, which work well for small S-boxes. The advance that we give (on top of
the existing tool [35] which generates a circuit representation for a SAT solver)
is to jointly encode the SAT solver problem to minimize the number of AND
gates for a given AND depth target, while also constraining the logical equations
so that one input of each AND gate is always assigned a linear combination of
the main inputs and any signal generated in previous AND stages.

We then applied this approach to a set of 4-bit S-boxes to demonstrate its
generality and efficiency, using the same SAT solver CryptoMiniSat-5 [34] as used
in [35].6 Precisely, we considered the PRESENT, PRINCE, Rectangle, Class13,
Skinny, involutive Class-13 and Prost S-boxes. The resulting circuit with such
an asymmetric structure is given in Figure 4 for PRESENT – the S-box circuits
are given in Appendix B for completeness. They all cost 4 AND gates (except
for PRINCE which costs 6 AND gates) and have AND depth 2, while the XOR
gate count varies between 13 and 24. Note that we did not minimize XOR counts
and therefore we do not claim any optimality in that respect. This is because for
masked implementations, the XOR’s associated area/latency penalty becomes
negligible compared to the AND’s-cost as d increases.

(a) 
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Fig. 4: PRESENT S-box circuit with AND depth 2 and 4 AND gates. SAT solu-
tion without optimization (a) and with asymmetry optimization (b).

5 Full verification tool

Despite the previous masking schemes being relatively simple and their com-
posability guarantees being strong, implementing them still requires a skilled
hardware designer. Besides implementing the correct functionality, which can be
tested through standard techniques such as test vectors, all the assumptions of
the underlying security proofs must also be fulfilled to ensure security.

In this respect, while it appears that masking composition proofs are only
concerned with high-level assumptions, such as the kind of gadgets and the
structure of the circuit, they in fact make other assumptions (implicit or not)

6 https://www.msoos.org/cryptominisat5.
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which can be falsified by hardware implementations, have no impact on the
functionality of the implementation, and are thus hard to verify by classical
testing. Examples of such assumptions include:

– each gadget is used with fresh, independent randomness;
– no more computation on shares is performed than specified by the algorithms

(e.g., in parallel with or after useful computations are finished);
– the order of the shares in a sharing should not be shuffled.

We next describe a tool that allows verifying all these assumptions.7 At a high
level, it takes a Verilog implementation as an input and outputs another, pre-
synthesized implementation (that is equivalent to the input implementation),
along with the result of the verification (error or success). It works by following
the steps illustrated in Figure 5 that we detail next.

Verilog source

Yosys
Pre-synthesized

netlist .v

Pre-synthesized
netlist .json

Testbench Simulation

Physical gadgets Dataflow graph Erase MUXes

Validity and
sensitivity

Misc.
Checks

Composition
check

Verification
result

Fig. 5: Process of the verification tool.

First, the open-source synthesizer Yosys [36] is used to produce a netlist of all
the gadgets, while preserving the hierarchy of the gadgets. Second, this netlist
is simulated using a user-provided testbench (using IcarusVerilog). Third, the
netlist is analyzed to build a graph of physical gadgets, which is then unrolled
over all execution cycles, leading to a dataflow graph. This graph is close to the
gadget composition graphs that we analyze in composition proofs, but with two
major differences: it contains so-called “MUX gadgets” (MUXing two sharings
according to a non-sensitive control signal), and it contains gadgets for which
the inputs are invalid (i.e., do not carry a meaningful value). The next stage is

7 A library of elementary gadgets (XOR, NOT, AND HPC1 and HPC2, MUX, SNI
refresh. . . ) is provided with the tool. Those are annotated with keep and preserve

attributes where needed in order to prevent security-damaging optimizations.
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to remove the MUX gadgets from the graph, which is simple: for each cycle, the
control signal of the MUX is known (this is the single step where the result of
the simulation is used), thus the MUX can be replaced by wires from the inputs
to the outputs. Then, we annotate each sharing with validity (“Does it contain a
meaningful value ?”) and sensitivity (“Does it depend on the input sharings ?”)
information. Using these annotations, various additional checks are performed.
Finally, the composition strategy is verified on the dataflow graph, of which
we remove all the gadgets for which no input is sensitive. In the case of trivial
composition, it simply checks that all the gadgets satisfy the security property
(e.g., PINI). This may involve recursively checking a gadget if it is a composition
of sub-gadgets, verifying that it is physically isolating shares (e.g., for linear
operation gadgets) or just assuming that it is correct based on annotations.
This last case happens for the multiplication gadgets. Automatically verifying
them using a tool such as maskVerif is left to future work.

Note that only the choice of which property to check for each sub-gadget (i.e.,
the “Composition check” box in the figure) is specific to our trivial composition
strategy. Therefore, the tool would require only minor modifications to be able
to check other composition strategies (such as optimized SNI-based ones).

During the processing stages, many security checks are performed. We list
the main ones along with the stage where they are performed.

Physical gadgets:
– Any input sharing of a gadget must be connected to one and only one source

gadget of which it is an output sharing;
– Each wire belonging to a sharing is only used as part of that sharing and

not elsewhere;
– All the gadgets are connected to the same clock signal, otherwise cycle-

based analysis of dataflow over time cannot be done properly. Handling
more complex clock circuits (although still all synchronous, such as divided
clocks) is left to future work.

Dataflow graph:
– No combinational loop exists in the circuit;

Misc. checks:
– All outputs of the composite gadget (at the specified cycle) should be con-

nected to valid sharings;
– Each random input of a gadget is connected to a wire carrying randomness;
– Each random input of a gadget having a sensitive input should be connected

to a fresh random bit. For this check, a dataflow graph of the sub-circuit
handling randomness (i.e., wires, registers, MUXes) is built;

– At the cycle after all the outputs have been produced, there should be no
sensitive sharing remaining in the gadget (otherwise non-verified computa-
tions might happen, since we stop analysis at that cycle).

Related works. Other tools have been proposed to verify different properties of
masked circuits. We next provide a brief account of the state-of-the-art to situate
our contribution. The main tools to which our proposal compares are listed in
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Table 1. Such tools can verify abstract implementations or concrete ones (i.e.,
actual code, including physical defaults); they can also aim at direct verification
(which is limited to small circuits and security orders) or composition-based
verification. The fullVerif tool we propose is the first one that can verify the
composability of concrete hardware implementations including glitches.

Abstract Concrete

Direct Barthe et al. [4]
REBECCA [11]
maskVerif [2]

Composition-based
maskComp [5]

fullVerif (new)
Tight Private Circuits [8]

Table 1: Masking formal verification tools’ overview.

Some other works are less directly comparable, either because they span
multiple table cells or because they aim at different goals. For example, the
work of Eldib et al. in [17] aims at similar goals as the one of Barthe et al.
from Eurocrypt 2015 [4], but it is more concrete (i.e., it applies to concrete C
implementations) while still ignoring physical defaults. The work of Arribas et
al. rather considers the verification of more specific properties that are required
for TIs (namely, non-completeness and uniformity) [1].

We finally mention that the impact of extended probes in the randomness
distribution circuit remains excluded from all these tools and, to the best of our
knowledge, has never been analyzed. We leave it as an interesting scope for fur-
ther investigations, together with the general challenge of better understanding
the randomness’ requirements in masked implementations.

6 Implementation results

In this section, we validate the claimed efficiency of HPCs. This is done for
a complete (although non-optimized) encryption architecture test-case which
allows realistic estimations of actual area constraints and randomness resources
required. We selected the (128-bit version of the) PRESENT block-cipher for
this purpose, as it is one of the most popular lightweight ciphers and has been
shown to enable efficient masked implementations [29]. Its 4-bit S-box is also
well suited to our optimizations of Section 4.5. The obtained results should
be representative of other similar (lightweight) ciphers. The section starts by
describing our generic architecture, follows with some design considerations, and
finally exhibits the good performances that our approach allows.

We evaluate four types of masked implementations, all based on trivial com-
position.8 The strategies therefore differ only by their AND gadget:

8 The HPC1 and HPC2 implementations are available at https://github.com/

cassiersg/present_hpc.
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– The gadget of Faust et al.: [18] (where we eliminate some logic in the refresh
by propagating the constant sharing (1, 0, . . . , 0) where it is safe to do so).
It uses 4 cycles per AND gate and is based on the standard description of
the PRESENT S-box with AND depth 2 (so takes 8 cycles per S-box).

– The HPC1 gadget with optimized refresh gadget (Figure 1c) and the HPC2
gadget (Algorithm 2), with the S-box architecture optimized for latency from
Section 4.5. These implementations require 3 cycles for the full S-box.

– The DOM-indep glitch-robust NI gadget, with the standard description of
the PRESENT S-box (our optimization would not reduce the latency in this
case), leading to 2 clock cycle for the S-box. While this last design does not
come with composability guarantees, we use it as a lower bound for the cost
of our masked implementations.

In all cases, the S-boxes are fully pipelined: it requires only one more clock cycle
for each additional evaluation (if there is no data dependency across evalua-
tions). This list already highlights one of the concrete achievements of this work.
Namely, compared to the Faust et al design, the latency is reduced from 8 to 3
cycles, and compared to the DOM design, only a small overhead is observed.
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Fig. 6: Architecture of the PRESENT encryption core with serialization (SER)
of parallel operations to reduce area cost.

Architecture. We refer to Figure 6 for a detailed illustration of our hardware
architecture. With the aim of providing a scalable example, we use the number of
shares as main parameter. Besides, in order to allow understanding the natural
space/speed trade-off in hardware implementations, we use a SER (serialization)
factor as a secondary design parameter. Basically, we serialize the computation
within an encryption round by this factor and consequently reduce the area by
the same factor (e.g., SER=1 is a fully parallel design, SER=2 is a serialization
of 2 blocks of 8 S-boxes each, SER=4 is a serialization of 4 blocks, . . . ).
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Our architecture is geared towards simplicity, genericity and reproducibility
rather than minimal area/power. This is not an issue since the cost of the archi-
tecture is constant for all the implementations we compare. It is built around a
128d-bit state register, which feeds the serialized S-boxes. The outputs of the S-
boxes are stored in a shift register whose output is connected to the state register
through the bit-permutation layer. The key schedule unit uses two more S-boxes
and is similar to the main datapath (but does not require a shift register).
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Fig. 7: Randomness and latency cost comparisons for a PRESENT core.

Comparison. Starting the comparison with one main objective of the work,
Figure 7a shows the cycle count in function of the serialization factor SER for
our architecture (which is independent of the number of shares d). With SER=1
the HPC1 and HPC2 designs have a 60% latency reduction compared to Faust
et al. and a 25% latency increase compared to DOM. As SER increase, the
S-box (internal) pipeline starts to be filled during encryption rounds, leading to
a total latency increase, hence reduced factors of gain. We also show the HPC1
gadget (or equivalently HPC2, since they have the same latency characteristics)
without our S-box architecture optimization (“HPC1 unopt.”), which confirms
that the latency gain over Faust et al. is primarily due the to improved gadgets,
but that the optimization helps further approaching the efficiency of DOM.9

Moving on to discuss the cost associated with randomness generation, Fig-
ure 7b shows the total randomness cost (refresh and multiplication) for the
entire PRESENT core per encryption as a function of d. The cost for DOM
and HPC2 is half of the cost of Faust et al., while HPC1 is in-between (thanks
to the improved refresh gadgets). A designer can immediately deduce the total
randomness requirements from his (hers) TRNG/PRNG.

Further investigating the area utilization of the proposed designs, Figure 8
shows the gate equivalent (GE) count as a function of d for two exemplary
serialization factors. Overall, the area differences are (relatively) more important
for SER = 1 (Figure 8a) than for SER = 8 (Figure 8b), because all non-S-box
related logic is mostly independent of SER, and the S-box cost is proportional

9 We do not show the “unopt.” case in our other analyzes since it leads to almost
identical results as the optimized case for the other metrics.
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Fig. 8: Area utilization (in kGE, post-synthesis) of a PRESENT-128 core in a
commercial 65 nm ASIC technology.

to 1/SER. Furthermore, relative area differences are more significant for higher
d values, because the S-box cost is quadratic in d while the one of the other parts
is linear in d. HPC1 and HPC2 have similar cost, in-between DOM and Faust et
al. For very low masking orders (d = 2, 3), HPC2 is slightly more area efficient,
while HPC1 is getting better at higher orders.

We note that randomness generation is out-of-scope for this work, therefore
we did not include any random number generator in the area measurements and
assume it comes from some RNG, the cost of which can be estimated from the
randomness requirement of Figure 7b) and the RNG technology used.

We conclude that glitch-resistant and composable gadgets can be obtained at
affordable cost. On the one hand, our implementations significantly outperform
the ones based on the Faust et al. multiplication for all performance metrics. On
the other hand, their latency and randomness are comparable with (flawed and
potentially problematic at high orders) approaches such as DOM.

In order to confirm that these implementations satisfy minimum concrete
security guarantees, we synthesized our architecture on a Xilinx Spartan FPGA
and ran leakage detection tests. These preliminary results are provided in Ap-
pendix C. We leave the thorough investigation of the worst-case security of our
implementations as a scope for further investigations.

7 Security proofs

We finally prove the main results outlined in Section 4.

7.1 Glitch-robustness proofs

First, we show that considering glitches on the input shares of a gadget would
lead to an equivalent definition of robust simulatability.

Lemma 1. Let G be a gadget and P a set of extended probes that can be glitch-
robustly simulated using a set of inputs I by a simulator S. In presence of glitches
on the inputs of G, there exists a simulator Sg that can simulate P using extended
probes on inputs I.
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Proof. For a probe p ∈ P , let Gg
rob,p (resp., Grob,p) be the wires to which the

extended probes p expands to when there are (resp., there are no) input glitches.
Then, any wire w belonging to Gg

rob,p either belongs to Gg
rob,p and can be simu-

lated by Sg (by using S), or is due to a glitch on an input. Let i be that input
wire, then w belongs to the extended probe Gg

rob,p, and i belongs to Grob,p which
implies that i ∈ I since S must have knowledge of i to simulate p. Therefore,
the simulator Sg has access to w through the extended input probe i. ut

Next, we prove our main composition result in the glitch-robust model.

Theorem 1 (Glitch-robust composability). For a gadget G made of the
composition of gadgets Gi, let Srob

i be a glitch-robust probing simulator for each
gadget Gi, and let Sstd

i be its restriction to a standard probing simulator (by dis-
carding its outputs corresponding to probe extensions). Let P be a set of standard
probes that can be simulated using some inputs I of G using the simulators Sstd

i

according to a simulatability-based compositional strategy (i.e. each simulator is
asked to simulate some probes Pi using inputs Ii of Gi where wires in Ii are
either in I or in some Pi′ and P ⊂

⋂
i Pi). In the glitch-robust probing model,

the set of extended probes P can be simulated using inputs I (on which there are
no glitches by the definition of simulatability).

Proof. From simulators Srob
i , Lemma 1 gives simulators Srob,g

i that work with
glitches on the inputs of the gadgets. The compositional strategy can then be
applied with the simulators Srob,g

i as it would be in the restricted probing model

with simulators Sstd
i , except that the Srob,g

i take extended probes as inputs and
produces extended probes. ut

7.2 HPC1 is glitch-robust PINI

In this section, we prove that the gadget described in Section 4.2 is glitch-robust
PINI. In order to keep the proof simple, we use a composability-based approach.
We first give the property (introducing a new technical simulatability-based
definition) that is satisfied by the DOM gadget. Then, we prove that composing
this gadget with a glitch-robust SNI refresh at one of the inputs (giving the
HPC1 multiplication) is glitch-robust PINI.

Definition 5 (t-Limited-PINI). Let G be a gadget, S a set of its input shar-
ings, P1 a set of t1 (extended) internal probes and A a set of t2 share indexes
such that t1 + t2 ≤ t. Let P2 be the set of all output shares of G whose index is
in A. The gadget G is (glitch-robust) t-Limited-PINI (t-LPINI) with respect to I
if, for any P1 and A, there exists a set B of at most t1 shares indexes such that
the set of (extended) probes P1 ∪ P2 can be (glitch-robustly) simulated using the
shares with indexes in A ∪ B for input sharings not in I, and at most t shares
of each input sharing in I.

Remark. t-LPINI stands between t-PINI and t-NI: if the set S is empty, t-LPINI
is the same as t-PINI; if it contains all the input sharings, t-LPINI is t-NI.
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Lemma 2. Let G be a (glitch-robust) t-LPINI gadget with respect to the set of
input sharings S. Let G′ be the gadget built by adding a (glitch-robust) t-SNI
refresh gadget to each of the input sharings of G that are in S. The gadget G′ is
(glitch-robust) t-PINI.

Proof. Internal or output probes of G can be simulated by input in one circuit
share for sharings not in S, by the t-LPINI definition. For input sharings in S,
no input share is required thanks to the SNI gadget. Furthermore, each probe
inside a SNI refresh gadget can be simulated using one share of one input sharing,
which satisfies the definition. Combining both kinds of probes does not cause any
issue, since the total number of probes in G is at most t and the total number
of (adversarial of propagated) probes on a SNI refresh gadget is also at most t.
The glitch-robust result follows from Theorem 1. ut

Corollary 1. A multiplication gadget built from a (glitch-robust) t-LPINI mul-
tiplication (with S = {s0}) where the input sharing s0 is refreshed by a t-SNI
refresh is t-PINI.

We conclude by proving that the DOM multiplication is glitch-robust LPINI.

Proposition 1. The DOM-indep multiplication gadget (Algorithm 1) with d
shares is glitch-robust (d− 1)-LPINI with respect to input set {b}.

Proof. Let us build a simulator. Let P be the set of adversarial extended probes,
and set I = J = ∅. Wlog, let use assume that the only extended probes in P
are of the form uij or ci, since any other extended probe is less powerful (i.e.
the corresponding wires of a probe are all contained in the corresponding wires
of either a uij or ci probe). The glitch-extended probe on ai⊗ bi will be ignored
since ci supersedes it (simulating it requires knowledge of ai and bi).

For all ci probes in P , set I ← I ∪ {i} and J ← J ∪ {i}. Then, for each uij
probe in P , if i 6∈ I, set I ← I ∪ {i}, otherwise set I ← I ∪ {j}; and if j 6∈ J ,
set J ← J ∪ {j}, otherwise set J ← J ∪ {i}. We observe that the sets I and J ,
which are the inputs needed for simulation, satisfy the LPINI definition.

Simulation of the probes proceeds as follows: for each pair (i, j) such that
either there is a probe uij or there is a probe ci: if i ∈ I and j ∈ J , compute
ai ⊗ bj and uij = ai ⊗ bj ⊕ rij using the provided inputs (and set rij = rji to a
fresh random if it is not yet set), otherwise set uij to a fresh random. Simulation
is completed by computing ci as it is done by the true gadget.

We conclude the proof by showing that the simulation is indistinguishable
from the gadget. The simulator behaves in the same way as the circuit, except
when it needs to simulate uij where i 6∈ I or j 6∈ J . In this case, uij is not
probed but appears in a probe, therefore ci is probed. This implies that i ∈ I,
thus j 6∈ J , which implies that neither cj nor uji are probed. Since uij contains
the random rij , which itself does not appear in any probe except ci (through
uij), uij behaves as a fresh random from the point of view of the adversary,
which is what the simulator generates. ut
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Remark This proof shows that DOM is glitch-robust LPINI with respect to
either {a} or {b}. (This does not imply that it is LPINI w.r.t. ∅, i.e., PINI).

7.3 Randomness-efficient generic glitch-robust SNI refresh

The refresh gadget of Battistello et al. [6] is the SNI refresh with best known
asymptotic complexity in F2 (O(d log d)). We briefly recall its working princi-
ple (restricting to the cases where d is a power of 2). First, for input sharing
(xi)i=0,...,d−1, the half refresh gadget Rhalf

d outputs

yi =

{
xi ⊕ ri if i < n/2,

xi ⊕ ri−n/2 if i ≥ n/2.

For d = 2, the SNI refresh gadget is the half refresh (RBat.
2 = Rhalf

2 ), while for
d > 2, RBat.

2 is defined as follows (input (ai)i and output (di)i):

(bi)i=0,...,d−1 ← Rhalf
d

(
(ai)i=0,...,d−1

)
,

(ci)i=0,...,d−1 ←
(
RBat.

d/2

(
(bi)i=0,...,d/2−1

)
, RBat.

d/2

(
(bi)i=d/2,...,d−1

))
,

(di)i=0,...,d−1 ← Rhalf
d

(
(ci)i=0,...,d−1

)
.

This gadget can be made glitch-robust by adding a register after each XOR
in the half refresh gadgets, which results in a latency of 2 log2(d)− 1.

We next sketch how the standard probing model proof from [6] can be
adapted to the glitch-robust case. Proceeding by induction, the base case d = 2 is
glitch-robust SNI. There are two kinds of probes to consider: probes on the inner
SNI refresh gadgets and extended probes on the input and output half refresh
gadgets. The probes on the internal SNI refresh gadgets are handled inductively
as in the original proof. For the output half refresh gadgets probes, we adapt
Lemma 4 from [6] by allowing extended probes {a1, r, a1⊕ r} and {a2, r, a2⊕ r}
in V, and the proof of the lemma is trivially extended if the integer restriction
on t1 and t2 is relaxed to being half of integers.

For the input half refresh, referring to the proof of Lemma 6 in [6] the only
non-trivial case happens when one of R1 and R2 is saturated (let us assume wlog
it is R2). In this case, extended probes {ad/2+i, ri, ad/2+i ⊕ ri} are simulated by
requiring input ad/2+i, and probes {ai, riai ⊕ ri} are not more powerful than
their non-extended ai ⊕ ri counterparts (since if ai ⊕ ri is probed, the simulator
requires the inputs ai and ad/2+i), hence we can safely ignore them.

7.4 Glitch-robust SNI refresh gadgets with minimal latency

In this section, we prove that our generic latency-reducing transformation is
correct. This transformation reduces the latency of any glitch-robust SNI refresh
to once cycle (which is the minimum possible) at zero cost (see Section 4.3).
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We formalize (and extend to the glitch-robust probing setting) the idea
from [3] that if a sharing of zero can be generated without adversarial probes
and is then XORed with the input x, one directly obtains a SNI refresh. Of
course, adversaries can also probe the generation of this randomness, and we
next show how this “zero probe requirement” can be relaxed if the generation of
the 0-sharing is done in a proper way. For hardware implementations, registers
are needed in the generation of the 0-sharing, and after the XOR operation. We
then show that a correct way to instantiate the 0-sharing generation is to use a
(glitch-robust) SNI refresh and to feed it with an all-zero input sharing.

First, we formally define what is a 0-sharing generation gadget and give the
security property it should satisfy.

Definition 6 (0-sharing generation gadget). A 0-sharing generation gadget
is a gadget with no inputs and one output sharing of t+ 1 shares r0, . . . , rt such
that r0 ⊕ · · · ⊕ rt = 0.

Definition 7. A gadget with no inputs and one output sharing is (glitch-robust)
Strongly Output Independent (SOI) if there exists a simulator S such that for
any sets I and O, the distributions of the (extended) probes for the two following
games are identical. Let I be a set of (extended) probes in the gadget and O a set
of (extended) probes on the output of the gadget such that |I|+ |O| = t = d− 1.

Real. The output of the real game is the values corresponding to the probes
(I,O) for an execution of the gadget.

Simulated. The simulator S outputs sets of probes (O1, O2) such that O1 ∪
O2 = O and |O1| ≤ |I| and simulates the probes belonging to I and O1. S takes
as input I and O. The probes corresponding to O2 are generated independently
according to the uniform distribution: PO2

← $.

We next prove that a glitch-robust SNI refresh gadget connected to an all-zero
input sharing is glitch-robust SOI.

Proposition 2. Let z ← R(x) be a glitch-robust t-SNI refresh gadget whose
outputs can be written as zi = xi ⊕ yi, where yi is independent of x.10 The
gadget G = R(0, . . . , 0) is glitch-robust t-SOI.

Proof. A t-SOI simulator proceeds as follows given sets I and O: first, run the R
t-SNI simulator (with I as internal probes and O as output probes, answering “0”
to oracle requests), then set O1 as the set of probes zi in O whose corresponding
input xi is asked to the oracle by the SNI simulator. Set O2 = O\O1. Finally,
output the values for the probes in I and O1 obtained from the SNI simulator.
The sets O1 and O2 satisfy the SOI definition: their union is O and |O1| ≤ |I|
by the SNI definition.

To complete the proof, we show that the statistical distribution of the output
of the simulator satisfies the definition. For probes in I and O1, correct simulation
is a consequence of SNI simulation and correctness of the oracle.

10 As far as we know, this condition is satisfied by all the refresh gadgets in the additive
boolean masking literature (such as [25,3,6]).
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Finally, let us prove the independence and uniformity of the distribution
of the probes in O2. Without loss of generality, let O2 = {z1, . . . , zm} where
m = |O2| (shares are re-ordered if needed). In the computation z = R(x), the
assumption on the structure of R implies that zi = xi ⊕ yi, which we write in
vector form z := (z1, . . . , zm) = x ⊕ y. Since the SNI simulator can perfectly
simulate T = (I,O1,x ⊕ y) (where we consider I and O1 as vectors) for any
value of x, the distribution of the tuple is independent of x. Therefore, for any x
and any possible value t of the tuple, Pr[(I,O1,y) = t] = Pr[(I,O1,y ⊕ x) = t],
and thus for any fixed (I,O1), the distribution of y is uniform. ut

We finally show that the refresh construction based on a SOI 0-sharing generation
gadget XORed with the input sharing with an output register is SNI.

Proposition 3. Let G be a glitch-robust t-SOI 0-sharing generation gadget. The
gadget u ← G′(x) defined by r ← G(), u ← Reg [x⊕ r] is a glitch-robust t-SNI
refresh.

Proof. Let us give the following SNI simulator: for an internal probe set Pi and
an output probe set Po (such that |Pi| + |Po| ≤ t), run the glitch-robust t-SOI
simulator with I being the restriction of Pi to probes in the 0-sharing generation
and O being the randoms ri corresponding to probes ui in Po or appearing in the
extended probes Pi. The inputs asked to the SNI oracle are the xi that appear
in extended probes Pi and the xi corresponding to the elements ri in O1 (as
obtained from the SOI simulator).

The simulator can thus simulate all the probes in Pi: they either are in
I (hence are given by the SOI simulator) or are (subsets of) extended probes
(ri, xi, ri⊕xi), and thus obtained from the oracle and the SOI simulator. For the
probes yi in Po whose corresponding ri is in O1: the xi is known from the oracle
and ri from the SOI simulator, hence it can be simulated. The output probes
whose corresponding ri is in O2 can be simulated as fresh uniform independent
randoms since ri are independent of any other input/observation. ut

7.5 HPC2 is glitch-robust PINI

As a last result, we prove that the HPC2 gadget is glitch-robust PINI.

Proposition 4. The HPC2 multiplication gadget (Algorithm 2) with d shares
is glitch-robust (d− 1)-PINI.

Proof. Let us build a PINI simulator. We assume wlog that only ci, ai ⊗ bi,
uij , vij and ai ⊗ vij are probed (since other extended probes are less powerful).
Given a set of probes adversarial extended probes P and probed output shares
A, the set of required input shares X is computed as follows: for each probed
ci or ai ⊗ bi, add i to X. Then, for each i 6= j pair, if two out of uij , vij and
ai⊗ vij are probed, or if i of j belongs to X: add i and j to X. Otherwise, if uij
or ai × vij is probed, add i to X, and if vij is probed, add j to X. The set B is
computed as X \A.
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We observe that the set B satisfies the PINI definition: |B| ≤ |P | by con-
struction. All the values to be simulated that depend only on input shares with
index in X and on randomness are computed as specified by Algorithm 2 (re-
quired randomness is generated). The allows to simulate all ai ⊗ bi, uij and vij
extended probes by construction of X. Then, for all remaining extended probes
(ci (for which i ∈ A) and ai⊗vij), we observe that i ∈ X. They can therefore be
computed as it is done by the gadget, except when simulation of vij = bj ⊕ rij is
needed and j 6∈ X. In this case, the simulator simulates vij by sampling a fresh
random r′ij (we say that the simulator cheats for ij).

Let us now show that this algorithm produces the same probe distribution
as the true gadget. The behavior of the simulator is identical to the behavior
of the gadget, except when it cheats for ij. We next prove that if the simulator
cheats for ij, then rij is not observed in the set of probes, except through vij ,
therefore vij is indistinguishable from r′ij and simulation is correct.

The simulator cheats for ij only if j 6∈ X and a value depending on vij is
probed. The first condition implies that none of cj , uji, aj ⊗ vij and vij are
probed, and at most of ci, ai ⊗ vij , uij and vji can be probed. The second
condition implies that ci, or ai ⊗ vij is probed (vij cannot be probed due to
the previous observation). Therefore, the only values depending on rij that can
be probed are ci or ai ⊗ vij , and one (and only one) of those is probed. If
ai ⊗ vij is probed, then the simulation is correct: the extended probe expands
to {ai, vij , ai ⊗ vij}, which are the only observations depending on rij . If ci
is probed, then observations depending on rij are āi ⊗ rij and ai ⊗ vij , and
functions of these. If ai = 0, then ai ⊗ rij = 0 does not depend on rij , which
is thus only observed through vij , hence the simulation is correct. Otherwise,
we have āi = 0, which implies that āi ⊗ vij = 0, thus vij is not observed and
cheating is not observed. ut
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A Optimized refresh gadgets

The input (resp., output) sharing is denoted as x (resp., y). All ri variables are
independent uniform random elements, and si are vectors of d independent ran-
doms elements. The (· � i) operator applied to a vector denotes a rotation of its
elements: the 1st element becomes the i+1-th, etc. Registers are denoted as R [·].

d = 2
y0 ← R [x0 + r0]
y1 ← R [x1 + r0]

d = 3
t0 ← R [r0 + r1]
y0 ← R [x0 + r0]
y1 ← R [x1 + r1]
y2 ← R [x2 + t0]

d = 4, 5
t0 ← R

[
s0 + (s0 � 1)

]
y ← R

[
x + t0

]
d = 6

t0 ← R
[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t03 ← R

[
t03 + r0

]
y ← R

[
x + t0

]
d = 7

t0 ← R
[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t02 ← R

[
t02 + r1

]
t04 ← R

[
t04 + r0

]
t06 ← R

[
t06 + r1

]
y ← R

[
x + t0

]

d = 8
t0 ← R

[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t01 ← R

[
t01 + r1

]
t02 ← R

[
t02 + r2

]
t04 ← R

[
t04 + r0

]
t05 ← R

[
t05 + r1

]
t06 ← R

[
t06 + r2

]
y ← R

[
x + t0

]
d = 9

t0 ← R
[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t01 ← R

[
t01 + r1

]
t03 ← R

[
t03 + r2

]
t04 ← R

[
t04 + r0

]
t06 ← R

[
t06 + r1

]
t07 ← R

[
t07 + r2

]
y ← R

[
x + t0

]
d = 10

t0 ← R
[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t01 ← R

[
t01 + r1

]

t02 ← R
[
t02 + r2

]
t03 ← R

[
t03 + r3

]
t04 ← R

[
t04 + r4

]
t05 ← R

[
t05 + r0

]
t06 ← R

[
t06 + r1

]
t07 ← R

[
t07 + r2

]
t08 ← R

[
t08 + r3

]
t09 ← R

[
t09 + r4

]
y ← R

[
x + t0

]
d = 11

t0 ← R
[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t01 ← R

[
t01 + r1

]
t02 ← R

[
t02 + r2

]
t03 ← R

[
t03 + r3

]
t04 ← R

[
t04 + r4

]
t05 ← R

[
t05 + r0

]
t06 ← R

[
t06 + r1

]
t07 ← R

[
t07 + r2 + r5

]
t08 ← R

[
t08 + r3

]
t09 ← R

[
t09 + r4

]

t010 ← R
[
t010 + r5

]
y ← R

[
x + t0

]
d = 12

t0 ← R
[
s0 + (s0 � 1)

]
t00 ← R

[
t00 + r0

]
t01 ← R

[
t01 + r1

]
t02 ← R

[
t02 + r2 + r6

]
t03 ← R

[
t03 + r3

]
t04 ← R

[
t04 + r4

]
t05 ← R

[
t05 + r5 + r6

]
t06 ← R

[
t06 + r0

]
t07 ← R

[
t07 + r1

]
t08 ← R

[
t08 + r2 + r7

]
t09 ← R

[
t09 + r3

]
t010 ← R

[
t010 + r4

]
t011 ← R

[
t011 + r5 + r7

]
y ← R

[
x + t0

]
d = 13, . . . , 16

t0 ← R
[
s0 + (s0 � 1)

]
t1 ← R

[
s1 + (s1 � 3)

]
t2 ← R

[
t0 + t1

]
y ← R

[
x + t2

]

Table 2: Randomness cost of the best known SNI refresh gadgets at some orders
for both HW (glitch-robust) and SW implementations with our two construc-
tions. Green boxes indicate cases where our gadgets improve the randomness
complexity compared to both HW and SW state-of-the-art.

d HW [18] SW [3,6] HW-Gen. (App. 7.3) HW-Opt. (Fig. 3)

2 1 1 1 1
3 3 3 3 2
4 6 4 6 4
5 10 8 8 5
6 15 12 12 7
7 21 13 15 9
8 28 16 20 11
9 36 18 22 13
10 45 20 26 15
11 55 22 30 17
12 66 24 36 20
13 78 26 39 26
14 91 28 44 28
15 105 30 49 30
16 120 32 56 32
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B AND depth 2, 4 ANDs, 4-bit (optimized) S-boxes

PRESENT S.
l0 = x1 ⊕ x2

q0 = ¬l0
q1 = ¬x0

t0 = q0 ⊗ q1
l1 = x2 ⊕ x3

q2 = ¬l1 ⊕ x0

l3 = x0 ⊕ x3

q3 = l3 ⊕ l0
t1 = q2 ⊗ q3
q4 = ¬x2

t2 = q4 ⊗ x1

l4 = x0 ⊕ x2

l5 = t0 ⊕ t2
q6 = ¬l4 ⊕ l5
q7 = l1 ⊕ x1

t3 = q6 ⊗ q7
l7 = l5 ⊕ t3
y0 = x3 ⊕ l7
l8 = l5 ⊕ t1
y1 = l1 ⊕ l8
y2 = l4 ⊕ t3
y3 = l3 ⊕ t2

PRESENT S−1.
l0 = x0 ⊕ x2

l1 = x1 ⊕ x3

q0 = l1 ⊕ x2

q1 = ¬l0
t0 = q0 ⊗ q1
q2 = ¬x2 ⊕ t0
q3 = x1 ⊕ x2

t1 = q2 ⊗ q3
q4 = ¬l1
q5 = ¬l0
t2 = q4 ⊗ q5
q6 = q3 ⊕ t0 ⊕ t2
q7 = ¬x2 ⊕ x3

t3 = q6 ⊗ q7
q8 = t1 ⊕ t2
y0 = l0 ⊕ l1 ⊕ q8 ⊕ t3
y1 = l1 ⊕ x2 ⊕ q8
y2 = l0 ⊕ x3 ⊕ t1
y3 = l0 ⊕ l1 ⊕ t0 ⊕ t2

PRINCE S.
q0 = x1 ⊕ x3

q1 = ¬q0 ⊕ x2

q2 = x2 ⊕ x3

q8 = x0 ⊕ x1

q5 = ¬q8 ⊕ q2
q4 = ¬x0 ⊕ x3

t0 = q0 · q1
q3 = q8 ⊕ x2 ⊕ t0
t1 = q2 · q3
t2 = q4 · q5
q7 = x2 ⊕ t2
t3 = (¬x3) · q7
q9 = x0 ⊕ t2
t4 = q8 · q9
q10 = q4 ⊕ t0 ⊕ t2
q11 = q4 ⊕ x2

t5 = q10 · q11
l3 = t1 ⊕ t2
l4 = t3 ⊕ t4
l5 = l3 ⊕ l4
y0 = q0 ⊕ t0 ⊕ t1 ⊕ t3
y1 = q0 ⊕ l5 ⊕ t5
y2 = q0 ⊕ l4
y3 = x3 ⊕ t0 ⊕ l3

PRINCE S−1.
q0 = x0 ⊕ x2

q1 = q0 ⊕ x3

q2 = ¬x2 ⊕ x3

q8 = ¬x1 ⊕ x3

q5 = ¬x1 ⊕ x2

q4 = ¬q1 ⊕ x1

t0 = q0 · q1
q3 = x1 ⊕ t0
t1 = q2 · q3
t2 = q4 · q5
q7 = x2 ⊕ t2
t3 = (¬x2) · q7
q9 = x0 ⊕ q8 ⊕ t2
t4 = q8 · q9
q10 = q4 ⊕ t0 ⊕ t2
q11 = q0 ⊕ x1

t5 = q10 · q11
l3 = t1 ⊕ t2
l4 = q0 ⊕ t3
l5 = l3 ⊕ l4
y0 = ¬l5 ⊕ t4 ⊕ t5
y1 = l4 ⊕ t0 ⊕ t5 ⊕ t2
y2 = ¬x2 ⊕ t0 ⊕ l3
y3 = l4 ⊕ t4

Rectangle S.
q0 = ¬x0

l0 = x0 ⊕ x2

l1 = x0 ⊕ x1

l3 = l0 ⊕ x1

q1 = ¬l0
t0 = q0 ⊗ q1
q2 = ¬(x0 ⊕ x3 ⊕ t0)
q3 = ¬l3
t1 = q2 ⊗ q3
q4 = ¬l0 ⊕ x3

q5 = ¬x2

t2 = q4 ⊗ q5
q6 = l0 ⊕ x1 ⊕ t2
q7 = l1 ⊕ x3

t3 = q6 ⊗ q7
l2 = t1 ⊕ t2
y0 = l0 ⊕ t0 ⊕ l2
y1 = l3 ⊕ l2 ⊕ t3
y2 = l1 ⊕ x3 ⊕ t0
y3 = l1 ⊕ t0 ⊕ t2

Rectangle S−1.
l0 = x1 ⊕ x2

l1 = l0 ⊕ x3

l2 = x0 ⊕ l1
t0 = x0 ⊗ x3

q2 = ¬l0 ⊕ t0
q3 = ¬t0 ⊕ x2

t1 = q2 ⊗ q3
q4 = ¬x0 ⊕ x1

t2 = q4 ⊗ x3

q6 = l0 ⊕ t2
q7 = ¬x2

t3 = q6 ⊗ q7
y0 = l2 ⊕ t1 ⊕ t2
y1 = l2 ⊕ t0
y2 = l1 ⊕ t2
y3 = l1 ⊕ t1 ⊕ t3

Class-13 S.
l0 = x0 ⊕ x1

l1 = l0 ⊕ x2

q0 = x1 ⊕ x3

l2 = q0 ⊕ x2

q1 = ¬l2
t0 = q0 ⊗ q1
q2 = l1 ⊕ x3 ⊕ t0
q3 = ¬x3

t1 = q2 ⊗ q3
q4 = ¬x3

t2 = q4 ⊗ x2

l3 = t0 ⊕ t2
q6 = l1 ⊕ t2
q7 = ¬x0

t3 = q6 ⊗ q7
y0 = l2 ⊕ t2 ⊕ t3
y1 = l0 ⊕ l3
y2 = l1 ⊕ t1 ⊕ l3
y3 = x1 ⊕ x2 ⊕ t2

Class-13 S−1.
l0 = x1 ⊕ x3

l1 = l0 ⊕ x2

l2 = x0 ⊕ x3

q0 = ¬l0
t0 = q0 ⊗ x1

q2 = l2 ⊕ x2 ⊕ t0
t1 = q2 ⊗ x2

q4 = ¬l2
q5 = x0 ⊕ l0
t2 = q4 ⊗ q5
l3 = t0 ⊕ t2
l4 = l3 ⊕ t1
q6 = x2 ⊕ t0
q7 = x0 ⊕ x2

t3 = q6 ⊗ q7
y0 = x2 ⊕ x3 ⊕ l4 ⊕ t3
y1 = l1 ⊕ l4
y2 = x1 ⊕ x2 ⊕ l3
y3 = l2 ⊕ t0

Skinny S.
q1 = x0 ⊕ x2

t0 = x3 ⊗ q1
q2 = x0 ⊕ x1 ⊕ t0
t1 = q2 ⊗ x0

q4 = x3

q5 = ¬x0 ⊕ x3

t2 = q4 ⊗ q5
l0 = t1 ⊕ t2
q7 = x1 ⊕ x3

q6 = ¬q1 ⊕ q7 ⊕ t2
t3 = q6 ⊗ q7
y0 = x0 ⊕ x3 ⊕ l0
y1 = l0 ⊕ t3
y2 = x1 ⊕ t0 ⊕ t2
y3 = x2 ⊕ t2

Skinny S−1.
q1 = x1 ⊕ x3

q0 = q1 ⊕ x2

t0 = q0 ⊗ q1
l0 = x0 ⊕ x1

q2 = l0 ⊕ t0
q3 = ¬x3

t1 = q2 ⊗ q3
l1 = x2 ⊕ x3

q5 = ¬l1
t2 = x2 ⊗ q5
q6 = l0 ⊕ x2 ⊕ t2
q7 = x0 ⊕ x2

t3 = q6 ⊗ q7
y0 = x1 ⊕ t2
y1 = q1 ⊕ t0 ⊕ t1 ⊕ t3
y2 = x0 ⊕ l1 ⊕ t3
y3 = x0 ⊕ q1 ⊕ t0

iClass13 S.
l0 = x2 ⊕ x3

l2 = x0 ⊕ x3

q0 = ¬x1

t0 = q0 ⊗ x3

q2 = l2 ⊕ t0
q3 = ¬x2

t1 = q2 ⊗ q3
q4 = l0
q5 = ¬x1

t2 = q4 ⊗ q5
l1 = t0 ⊕ t2
q6 = ¬x0 ⊕ x2 ⊕ l1
q7 = x0 ⊕ l0
t3 = q6 ⊗ q7
y0 = q7 ⊕ x1 ⊕ t1 ⊕ t2
y1 = q7 ⊕ t2
y2 = l0 ⊕ l1
y3 = l2 ⊕ t1 ⊕ t3

Prøst S.
q1 = x0 ⊕ x2

q0 = q1 ⊕ x1

t0 = q0 ⊗ q1
q2 = ¬q1 ⊕ x3 ⊕ t0
t1 = q2 ⊗ x0

q4 = x0 ⊕ x1

q5 = ¬x0

t2 = q4 ⊗ q5
l1 = t0 ⊕ t2
q6 = q0 ⊕ t2
t3 = q6 ⊗ x3

y0 = x1 ⊕ x2 ⊕ t2
y1 = q0 ⊕ x3 ⊕ l1
y2 = q1 ⊕ t0 ⊕ t1 ⊕ t3
y3 = q1 ⊕ l1 ⊕ t3
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C Leakage detection tests

C.1 Low-orders leakage detection checks

The evaluation setup which is used in this manuscript is composed of a Pico-
Scope oscilloscope and a SAKURA-G board. The SAKURA-G board embeds a
Xilinx FPGA (Spartan-6 in 45nm technology) was utilized to inhabit the eval-
uated PRESENT-128 architecture. The PicoScope 5244B oscilloscope was used
to capture the power supply current with a passive inductive probe (Tektronix-
CT1) connected serially to the measurement points. Sampling rate of 100 MS/s
was practiced and the device was clocked at 4 MHz. Inputs were asserted through
a UART interface to the FPGA. Fresh randomness was generated on the FPGA
with an AES architecture in CTR mode supplied with a random key.

For leakage detection the detection method used is the traditional univariate
one, based on Welch’s (two-tailed) T-test. It is computed on two input sequences
(Set0 and Set1). In this work we compare two classes of leakages with so-called
specific “fixed vs. fixed” tests to detect leakages, using the following statistic:

Tvalue = (µSet0 − µSet1)

/√
σSet0

2
/
|Set0|+ σSet1

2
/
|Set1|, (1)

where µ and σ are the populations’ mean and standard-deviation, respectively.
The leakages from the fixed sequences were recorded with fixed input and key.
Detection was assumed for estimated statistics beyond a certain threshold.In
addition, we use the generalization in [32] to analyze higher-order statistical
leakages. The left Subfigures column of Figure 9(a, c and e) shows the mean
leakage, the 1st and 2nd order leakage-detection (T-tests) of a 2-shared imple-
mentation. The right Subfigures column of Figure 9(b, d, f and g) shows the
mean leakage, the 1st, 2nd and 3rd order leakage-detection (T-tests) of a 3-
shared implementation. Figure 10 shows the mean leakage, the 1st, 2nd, 3rd and
4th order leakage-detection (T-tests) of a 4-shared implementation. As demon-
strated in the figures for an dth order implementation, leakage is only visible
at the dth statistical moment as exacted. The figures present the results with
240 · 103/6 · 106 and 9 · 106 traces (samples) for the 2/3 and 4-shares designs.
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(a) d = 2, average trace (b) d = 3, average trace

(c) d = 2, first order (d) d = 3, first order

(e) d = 2, second order (f) d = 3, second order

(g) d = 3, third order

Fig. 9: T-tests of masked PRESENT-128 HPC1 on FPGA for d = 2, 3.
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(a) d = 4, average trace (b) d = 4, first order

(c) d = 4, second order (d) d = 4, third order

(e) d = 4, fourth order

Fig. 10: T-tests of masked PRESENT-128 HPC1 on FPGA for d = 4.

35


	Hardware Private Circuits: From Trivial Composition to Full Verification
	Gaëtan Cassiers1, Benjamin Grégoire2,  Itamar Levi1,3, François-Xavier Standaert1*-0.2cm

