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Abstract

We propose a candidate Ciphertext-Policy Attribute Based Encryption (CP-ABE) scheme
for circuits, with ciphertext size that depends only on the depth of the policy circuit (and not
its size). This, in particular, gives us a Broadcast Encryption (BE) scheme where all parameters
(in particular, the size of the keys and ciphertexts) have a poly-logarithmic dependence on the
number of users, a task that was only known to be achievable assuming ideal multilinear maps
or indistinguishability obfuscation. Our construction relies on techniques from lattice-based
(and in particular LWE-based) cryptography, but we are unable to provide a security proof. We
analyze some attempts at cryptanalysis.

1 Introduction

Broadcast Encryption (BE) [FN93] is an important multi-user generalization of public-key encryp-
tion where a broadcaster can send the same message m to an arbitrary subset S ⊆ U , where U
is the universe of all the N possible users. A trivial, communication-inefficient, way of achieving
this would involve the broadcaster encrypting m separately with the public keys of all users in S,
resulting in a ciphertext of size O(|S|) (ignoring dependence on the security parameter). Broadcast
encryption seeks to achieve the same end goal with a much better ciphertext size, ideally, O(λ)
independent of the size of the set S or the universe U . (In the context of BE, it is assumed that the
decryptor knows the set S, either out-of-band, or as an addendum to the ciphertext. In any case,
the description of S is not counted towards the ciphertext size or the communication complexity.)
One could ask for more: that is, that all parameters of the system, including the (common) public
key, the users’ private keys as well as the ciphertext grow polylogarithmically in |U|.

The first solution to the broadcast encryption problem was proposed by Boneh, Gentry and
Waters [BGW05] using bilinear maps on elliptic curves.1 Their construction had ciphertexts of
size O(1) and user secret keys of size O(1), however the public key had size O(N). Subsequently,
there were constructions from indistinguishability obfuscation (iO) [BZ17] and from multilinear
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maps [BWZ14], the latter of which achieved polylog(N) size for ciphertexts, secret keys and the
public key. (We recently learned of a related work that is not yet published, see Section 1.4.)

Whereas multilinear maps do not yet have a secure instantiation, there has been a long and
productive line of research that, loosely speaking, translates schemes instantiated based on either
iO or multilinear maps, into ones based on more standard assumptions, typically the learning with
errors assumption (LWE) [Reg05]. This leads us to ask:

Can we construct (quasi-)optimal broadcast encryption systems from LWE?

While we do not provide a complete answer in this paper, we propose a novel “LWE-inspired”
construction based on a natural extension of known learning with errors structures. We hope that
both the construction and the assumption will prove useful, both in constructing truly LWE-based
broadcast encryption and in other LWE-based constructions of advanced cryptographic objects.

A More General Problem: Succinct CP-ABE. It is possible to cast the BE problem as
a special case of another cryptographic task which is by itself very interesting, namely that of
constructing succinct ciphertext-policy attribute-based encryption schemes, as explained below.

Consider a setting where the set S is specified succinctly, say via a Boolean circuit f that
takes as input x ∈ {0, 1}logN , and encodes membership in S via the relation f(x) = 1 if and
only if x ∈ S. The BE succinctness property now translates naturally to the requirement that
the parameters of the scheme scale polylogarithmically with N , equivalently polynomial in the bit-
length of x, regardless of the description size of f (where, as above, we assume that the circuit that
computes f is known to the decryptor and does not count towards the ciphertext size). We note
that in this context we can allow N to grow even exponentially with the security parameter, so
long as the circuit representing S is bounded by poly(λ). This notion is called ciphertext-policy
ABE (CP-ABE).

To describe the state of the art on constructing ABE from LWE, it is useful to introduce the
notion of key-policy ABE (KP-ABE). This is the dual notion to CP-ABE in which the index x is
specified as a part of the ciphertext, and the functions f are associated with decryption keys.

It is shown in [GVW13,BGG+14] how to construct KP-ABE when f is computable by (a-priori
bounded) polynomial depth Boolean circuits. To be more precise, these schemes [GVW13,BGG+14]
show that for any polynomials in the security parameter k = k(λ), d = d(λ) there exists a KP-ABE
scheme where the class of policies is the class of all k(λ)-input depth-d(λ) circuits. The parameters
of the scheme scale polynomially with k, d, and in addition, the key size may also scale with the size
of the circuit representing f . In particular, in [GVW13] the key size scales with |f | · poly(λ, k, d),
but in a later construction of Boneh et al. [BGG+14] the key size is a fixed polynomial poly(λ, k, d)
independent of |f | (but knowledge of f itself is of course needed for decryption). This is the starting
point of our work.

This can be converted into a CP-ABE scheme by simply using a universal circuit to represent a
function f as an attribute and an input x as a circuit. This transformation will result in CP-ABE
for a restricted function class and with undesirable parameters. Concretely, this will only allow for
any polynomials s, d in the security parameter, to construct CP-ABE for functions with circuits of
size s and depth d (note that this is more restrictive than having one scheme working for arbitrary
size circuits). Furthermore, the ciphertext size will now be |f | · poly(λ, s, d) even in the [BGG+14]
scheme and it is not known how to improve this dependence on f . That is, even if an f being
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encrypted has a very small circuit, the CP-ABE ciphertext will scale with the worst-case s, d.2

This scheme is unsatisfactory for two reasons: one is the global bound on s, and the other is the
dependence of the ciphertext size on s (i.e. succinctness). This work addresses both aspects and we
refer to “succinct CP-ABE (for circuits)” as a scheme which addresses both these issues.3 In other
words, for any polynomials in the security parameter k = k(λ), d = d(λ), we wish to construct
a CP-ABE scheme where the class of policies is the class of all k(λ)-input depth-d(λ) circuits.
Furthermore, the size of the ciphertext encrypting a policy circuit f should have size independent
of the circuit size of f .

We note that under assumptions related to bilinear maps, it is known how to construct CP-ABE
for the class of all Boolean formulas [GPSW06, LOS+10], however the ciphertext size scales with
poly(λ, |ϕ|) where ϕ is the formula representing the policy. This does not have the succinctness
property that we desire and therefore BE is not implied.

1.1 Our Results: LWE-Inspired BE and CP-ABE Candidates

In this work, we present a candidate construction of a succinct CP-ABE scheme, and by extension
we obtain a quasi-optimal BE scheme. Our construction is based on a heuristic that allows to
“invert” the key-succinctness of the BGG+ KP-ABE scheme. We do not have a security reduction
for this heuristic, and we pose its security as an open problem.

A Historical Note. We have been circulating this candidate since 2015 and sharing it with
researchers in the field, in attempt to find a proof or an attack. Some approaches for attacks were
proposed by us and by others, but it so far appears that the scheme withstands those attempts.
The scheme in this paper is identical to the scheme that we circulated in 2015, and we did not
need to make any adjustments in order to maintain (heuristic) security. This somewhat boosts
our confidence in the security of the scheme, but we were nevertheless unable to come up with a
proof, or even to come up with a closed-form assumption that implies the security of our candidate.
We therefore believe that at this point it may be justified to publish our candidate and utilize the
collective wisdom of the cryptographic community to find a proof or an attack. We outline some
of the main cryptanalysis attempts in Section 1.3 and Section 5 and explain the reasons why they
do not seem to apply. A technical overview of our construction is provided in Section 1.2 below.

1.2 Technical Overview

As explained above, our scheme starts from the KP-ABE scheme of [BGG+14], which has suc-
cinct keys and non-succinct ciphertexts, and attempts to turn it on its head, to achieve CP-ABE
with succinct ciphertexts (and keys). We use LWE-inspired techniques in order to (heuristically)
guarantee collusion resistance. Details follow.

The BGG+ Key Policy ABE Scheme. The high-level idea of the BGG+ scheme is a method
of encrypting the attribute x in a way that allows for a specific type of homomorphic evaluation.

2We note that in the context of KP-ABE, the explicit dependence on the input size k was removed in [BV16,
GKW16], but this does not lead to removing the dependence on s in the CP-ABE setting due to the use of universal
circuits, which require a fixed input length.

3Removal of the dependence on d is also important, but this seems problematic even in the KP-ABE setting.
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In particular, the encryption algorithm takes as input a master public key (A0,A1, . . . ,Ak) where
each matrix lives in Zn×mq , and attributes x ∈ {0, 1}k and encrypts it as(

sA0, s(A1 + x1G), . . . , s(Ak + xkG)
)

+ e

where s ∈ Z1×n
q is a uniformly random row vector (“the LWE secret”) and G is the “gadget matrix”

from [MP12]. The vector e is the “LWE noise vector” which contains short entries (Gaussians, al-
most always); we will omit the noise vector henceforth and take care to only multiply the ciphertext
by small values so that the presence of noise does not significantly change the output. We also
ignore the way the encrypted message is encoded in the ciphertext. For the purpose of this expo-
sition one can simply think about using the above to encrypt 0, and using a completely random
ciphertext for 1, so that the LWE assumption guarantees that the two are indistinguishable to an
adversary, but given a proper key they can be distinguished. We note that more elegant encoding
methods exist.

Before describing the decryption process, we note an important decomposability feature of this
encryption procedure that was already utilized in [BV16]. The encryption process can be split
into an “offline step” that is computed before the attribute x is known, and an “online step” whose
complexity, and in particular its dependence on x, are extremely simple. Explicitly, in the offline
phase, one can compute c0 = sA0, and then for all i ∈ [k] and b ∈ {0, 1} the value ci,b = s(Ai−bG).
Then, in the offline phase, simply output c0 and ci,xi for all i.

The key technique in [BGG+14] is a two-fold homomorphic evaluation procedure which works
as follows. Given ~A = (A1, . . . ,Ak), a function f , and x ∈ {0, 1}k, it is possible to derive a matrix
H with relatively small values (essentially exponential in the depth of f , which should be considered
small in our setting), s.t.

(~A + xG)H = Af + f(x)G .

The matrix Af itself can be efficiently derived from ~A and f without any knowledge or dependence
on x. (We use xG as shorthand for x⊗G = (x1G, . . . , xkG).)

Using this evaluation procedure, it is possible, given the ciphertext and f, x, to derive(
sA0, s(~A + xG)H

)
=
(
sA0, s(Af + f(x)G)

)
(1)

up to (somewhat increased but, with proper choice of parameters, still small) noise.
The secret key for f is a pair of “relatively short” vectors (r0, rf ) s.t. A0r0 + Afrf = 0

(mod q). Such vectors can be derived given a so-called lattice trapdoor for A0. Decryption involves
multiplying Eq. (1) by the column vector consisting of r0 and rf , and checking that the result is
small. It is easy to check that decryption succeeds if f(x) = 0.

The resulting scheme is a KP-ABE scheme with succinct keys, since the keys contain, apart from
f itself, two vectors with short entries whose dimensions are independent of f . The ciphertexts,
however, are not succinct: for each attribute bit we need to include an entire vector ci,xi .

An Approach for (Ciphertext-Policy) ABE with Succinct Ciphertexts. We would like
to turn the aforementioned KP-ABE scheme on its head: if we could only invert the roles of the
secret key and ciphertext, we would be in good shape, since now the ciphertexts will encode f
and be succinct, and the keys will depend on x. However, duality of this sort does not seem
straightforward. We therefore consider the following high level outline.
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Whenever we wish to encrypt a message with respect to policy f , we will generate a new instance
of the KP-ABE scheme. We will generate a key with respect to f and then toss the master secret
key of the scheme. We then produce the offline phase of the encryption, i.e. create all ciphertext
pieces c0 and {ci,b}i∈[k],b∈{0,1}. Now, seemingly, all we need to do is find a way to encode the ci,b
pieces so that user x can only recover ci,xi . This can easily be done using IBE or (again) KP-ABE
as is done in [BV16], by just encrypting each ci,b with respect to attribute (i, b) and provide user x
with a key that decrypts all ciphertexts with attribute (i, xi). Indeed, this will provide functionality,
and even security against an adversary that only gets access to a single decryption key, but not
collusion resistance: if users x, x′ come together, they will be able to learn, for some i, both ci,0
and ci,1, which will render the ciphertext completely insecure. To solve the collusion resistance
problem, we will devise a variant of IBE/ABE that, during the decryption process, modifies the s
part of the ciphertext, so that users x, x′ will each receive a variant of ci,xi or ci,x′i respectively, but
such that each of them corresponds to a different s. If we were able to do this in such a way that
the s values are completely uniform and independent, and such that in some way the noise values
in the ci,xi pieces are also randomized, then we will have solved the problem. Unfortunately we
cannot achieve this and we therefore resort to a heuristic.

Before describing our heuristic, let us point out that even the variant which enjoys only one-key
security (and is not collusion resistant) is not fully succinct, in the sense that the ciphertext size
grows with k (times a polynomial in the security parameter). However, this level of succinctness is
sufficient for all purposes covered in this work, in particular for broadcast encryption.

Our Heuristic: Select on the Left, Decrypt on the Right. We first “beef up” the KP-ABE
scheme. Instead of using a single vector s, we will use a matrix S, or equivalently we will generate a
number of independent ciphertexts with independent s values. Intuitively, this will be useful since
it will allow us to define, for each x, its own personal sx that will be defined as (roughly) a subset
sum of the rows of S, with coefficients that will be specified for x. This modification changes very
little in the semantics of the scheme. It still has the same offline/online nature, only now the pieces
C0 ≈ SA and Ci,b ≈ S(Ai+bG) are matrices and not vectors. Recall that decryption only involves
multiplying the respective ciphertext pieces on the right, first by the matrix H and then by the
secret key vectors (r0, rf ). We will therefore mask the ciphertext pieces, using an encoding that is
decryptable on the left.

Concretely, we will consider matrices B0 and {Bi,b}, and set Ĉi,b = Bi,bŜ + Ei,b + Ci,b, and

likewise Ĉ0 will encrypt C0. Note that the same Ŝ is used in all new ciphertext pieces, but each
one uses a separate B and separate noise. In itself, the LWE assumption implies that without any
additional information on the B matrices, the Ĉ pieces are indistinguishable from uniform, even
given arbitrary side information on the C pieces.

Now, in order to allow decryption, we will provide user x with a short vector tx which is sampled
randomly (from a discrete Gaussian) subject to txBi,xi = 0 (mod q) for all i, and in addition
txB0 = 0 (mod q). Such a vector can be efficiently sampled if the B matrices are generated
together with a trapdoor for the intersection of lattices that they represent – the details are not
very important at this point.

Note that given tx, it is possible to derive txĈi,xi ≈ txCi,xi , but for Ĉi,x̄i the vector tx is
useless (at least heuristically) and does not enable deriving any useful variant of Ci,x̄i . Since the
decryption procedure is performed by right multiplication, correctness is maintained even when
applying decryption to the txCi,xi values. The hope is that collusion attacks are prevented since
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an adversary that is given, say, tx, tx′ for two attribute vectors x and x′ should not be able to
correlate the ciphertext pieces that it derives in the selection process.

This completes the description of our scheme. Note that we obtain succinct ciphertexts and
succinct keys. We only use the “symmetric key” version of the KP-ABE scheme, and only use it
to generate a single key. These are very appealing properties in terms of functionality, but we have
to be very careful when arguing about its security. We will discuss this in the following section.

1.3 Security and Attempted Cryptanalysis

Our heuristic scheme is based on similar logic to the one standing behind the [BGG+14] KP-ABE
scheme. We mask a set of values using LWE instances of the form SA + E, and provide a trapdoor
that exposes only certain relations between the masked values. Let us try to speculate what would
be the nature of a security proof for our scheme, and focus on possible aspects where problems could
arise. We consider the weakest notion of security, namely fully selective security, and focus only on
the broadcast encryption application rather than consider CP-ABE in full generality. Specifically,
we consider a security game, where the adversary selects k which is logarithmic in the security
parameter, and then specifies two disjoint sets X,S ⊆ {0, 1}k. The set X indicates “corrupted”
x values, and the set S indicates the recipients of the broadcast. The adversary then receives the
public parameters of the scheme, the secret keys for all x ∈ X, and a ciphertext encrypting a
random bit with respect to the set S. The adversary is required to guess the value of the encrypted
bit with non-trivial success probability.

Let us take the cryptanalyst’s perspective and see what kind of potentially-sensitive information
can be derived from the adversary’s view of the experiment. Assume that the set X is simply a
set of randomly selected identities. Then it must be the case that for every index i, roughly half
x ∈ X have xi = 0 and half have xi = 1. This means that the adversary obtains many short tx
that annihilate Bi,0 (and likewise many other short vectors that annihilate Bi,1). Therefore, the
adversary can use these values to reconstruct a trapdoor for all individual matrices Bi,b. While
this feature appears to be concerning, it does not seem to lead to a break of any sort. Indeed, what
is needed in order to learn meaningful information is a trapdoor that simultaneously annihilates,
e.g. both Bi,0 and Bi,1 for some i. This perspective can be generalized further to notice that as
a necessary condition for security, it should not be possible, given secret keys for the set X, to
efficiently generate a valid key for any x∗ 6∈ X. Doing so would immediately violate security. This
again translates to a question on “mixing and matching” or “malleability” of lattice trapdoors. We
show in Section 5 that learning with error trapdoors have a “non-malleability” property so that it is
computationally intractable to mix-and-match lattice trapdoors in a way that will compromise the
hardness of LWE on a lattice to which an explicit trapdoor has not been given. This is true even if
this target lattice is an intersection of lattices for which we provide a trapdoor. This suggests that
this attack direction might not be successful.

Of course, so far we only considered very limited attack strategies, namely ones that only
observe the set of keys of colluding adversarial parties, and not the challenge ciphertext itself.
Indeed, when trying to convert ABE schemes into the stronger notions of Functional Encryption
(FE) or Witness Encryption (WE), collusion resistance is lost because even keys that are not
authorized to decrypt reveal sufficient information about the encryption randomness, which allows
to recover it and break security. In this context, we usually consider the set of linear equations
that are obtained by applying the keys that the adversary has to the ciphertext. Of course none
of the keys individually will decrypt, but each such attempted decryption implies a linear equation
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over the unknowns which are the randomness in the encryption (in our case the matrix S and the
LWE noise values). The hope is to obtain sufficiently many such equations to recover, say, S. At
first glance, this approach appears to be successful. It appears that given sufficiently many keys, it
should be possible to generate more equations than variables, and thus supposedly break security.
However, a seemingly minor detail plays an important role here. The set of equations that can
be obtained in this way is linearly independent over the integers, but the equations themselves
are only applicable modulo q, and it turns out (not surprisingly, as we explain below) that the
equations obtained are not full rank modulo q, and thus the information obtained in this way
appears to be useless to an attacker. This is indeed a significant difference between our approach
and the aforementioned approaches towards FE, WE. In our case, the adversary is unable to obtain
equations over the integers, only modular ones (since decrypting with a non-certified key should
not yield any functionality, as opposed to FE where all keys have correctness requirement with
respect to all ciphertexts). To illustrate this issue, consider a plain LWE instance of the form
(A,b = sA + e). Now assume that we are given a short full rank matrix T s.t. AT = 0. This
matrix is a trapdoor for A and can be used to recover the secrets s, e via computing the value bT
(mod q) and noticing that this is equal to the value eT over the integers. Since T is invertible over
the integers e can be recovered, which leads to recovery of s as well. However, if b = sA + y for a
non-short y (y can still be very structured, e.g. LWE instance with respect to a known matrix B),
this approach fails. This is because now we can only obtain yT (mod q), and we note that modulo
q the matrix T is degenerate since it lies in the mod-q kernel of A. It appears that all “linear”
cryptanalysis attempts fall into this framework, but we are unable to show a formal statement of
this form.

To conclude, it appears that attacks that were successful in other contexts are not applicable
to our scheme. This is of course far from constituting a proof of security. As explained above, we
hope that one of the readers of this manuscript will be able to advance it, either in the direction of
a proof, or in the direction of finding new attacks.

1.4 Other Related Works

We recently learned of a yet unpublished work by Agrawal and Yamada [AY20] that construct
broadcast encryption and succinct ciphertext-policy ABE relying on the LWE assumption in addi-
tion to groups with bilinear maps. Their proof of security relies on the generic model for groups
with bilinear maps. Let us point out a few points of comparison.

As explained above, our scheme predates this work. In terms of techniques, their scheme also
starts with a KP-ABE scheme with succinct keys and attempts to “turn it on its head”. They
use the bilinear structure to prevent collusion by only allowing the parties to see their ciphertext
in the exponent of a group generator which is distinct for each user.

In terms of the final result, our work relies only on the lattice structure, allows CP-ABE for
all functions, but has no proof of security. Their work relies on (standard) LWE and generic
bilinear groups (and therefore immediately broken by quantum attacks). Their CP-ABE scheme
only supports NC1 functions, whereas we support all polynomial-time computable functions, with
an a-prior bounded (polynomial) depth. However it has the significant advantage of being provably
secure in a reasonable (yet heuristic) attack model.

Acknowledgements. We thank Shweta Agrawal, Dan Boneh, Yilei Chen, Sam Kim, Alex Lom-
bardi, Rotem Tsabary, and Hoeteck Wee for discussions about the scheme and attempts at proofs
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and cryptanalysis.

2 Preliminaries

2.1 Attribute Based Encryption (ABE)

Let F = {Fλ}λ be an ensemble of function classes such that Fλ ⊆ {0, 1}∗ → {0, 1}. We assume that
the functions are represented as Boolean circuits. A ciphertext-policy attribute based encryption
(CP-ABE) scheme is defined by ppt algorithms ABE = (ABE.Params,ABE.Enc,ABE.Keygen,ABE.Dec)
such that:

• The setup algorithm ABE.Params(1λ) takes the security parameter and the input length of
the supported functions as input and outputs a master secret key msk and a set of public
parameters pp.

• The encryption algorithm ABE.Encpp(µ, f) uses the public parameters pp and takes as input
a function f ∈ Fλ and a message µ from a message space M =Mλ. It outputs a ciphertext
ct ∈ {0, 1}∗.

• The key generation algorithm ABE.Keygenmsk(x) uses the master secret key msk and takes as
input an attribute vector x ∈ {0, 1}k. It outputs a secret key skx.

• The decryption algorithm ABE.Decpp(skx, x, f, ctf ) takes as input a function secret key skf ,
an attribute x ∈ {0, 1}∗, a function f and a ciphertext ctf , and outputs a message µ′ ∈M.

Remark 1. It is often the case that a construction of ABE (whether key or ciphertext policy) is
applicable to a parameterized class of functions. For example, we may be able to construct ABE

for all F (c) = {F (c)
λ }λ, where F (c)

λ denotes the set of all circuits of depth λc, but such that the
parameters of the scheme vary with c. In such cases, we sometimes consider c (or λc in this
case), as an additional input to the setup algorithm rather than an external specification of the
function class. Usually, and specifically in the context of this manuscript, when the setup algorithm
takes additional inputs, we explain how these inputs refer to the function classes supported by the
construction.

Remark 2. We note that the ABE setup algorithm needs to know (and can run in time polynomial
in) the input length of the functions, but not the size of the circuit computing the supported
functions. This is a key feature of CP-ABE schemes which cannot be obtained generically from
KP-ABE schemes, flipping the role of the function and input using a universal circuit.

Definition 2.1 (Correctness of CP-ABE). A scheme ABE is correct if the following holds. Consider
a sequence of functions {fλ ∈ Fλ}λ and a sequence of attributes {xλ ∈ {0, 1}∗}λ, such that for all
λ, the input size of fλ is exactly |xλ| and fλ(xλ) = 0.4 For all such sequences and for any sequence
{mλ ∈Mλ}λ, it holds that

Pr[ABE.Decpp(skx, x, f, ctf ) 6= µ] = negl(λ) ,

where (msk, pp) = ABE.Params(1λ, 1k), ct = ABE.Encpp(µ, f), skf = ABE.Keygenmsk(x).

4Recall our convention that f(x) = 0 is the event when decryption succeeds.
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Definition 2.2 (Security for CP-ABE). Let ABE be a CP-ABE encryption scheme as above, and
consider the following game between the challenger and adversary.

1. The challenger generates (msk, pp) = ABE.Params(1λ, 1k), and sends pp to the adversary.

2. The adversary makes arbitrarily many key queries by sending attributes xi to the challenger.
Upon receiving such an attribute, the challenger creates ski = ABE.Keygenmsk(xi) and sends
ski to the adversary.

3. The adversary sends a function f and a pair of messages µ0, µ1 to the challenger. The
challenger samples b ∈ {0, 1} and computes the challenge ciphertext ct∗ = ABE.Encpp(µb, f).
It sends ct∗ to the adversary.

4. The adversary makes arbitrarily many key queries as in Step 2 above.

5. The adversary outputs b̃ ∈ {0, 1}.

6. Let legal denote the event where all key queries of the adversary are such that f(xi) = 1. If
legal, the output of the game is b′ = b̃, otherwise the output b′ is a uniformly random bit.

The advantage of an adversary A is |Pr[b′ = b]− 1/2|, where b, b′ are generated in the game played
between the challenger and the adversary A(1λ).

The game above is called the adaptive security game for ABE, and it has relaxed variants. In
the selective security game, the adversary sends f before Step 1.

The scheme ABE is adaptively/selectively secure if any ppt adversary A only has negligible
advantage in the adaptive/selective security game (respectively).

Negated Policies. We allow decryption when f(x) = 0 and require that in the security game all
queries are such that f(xi) = 1. In LWE-based constructions it is often much more convenient to
work with this negated version of the policy, which explains the apparent strangeness. This variant
is obviously equivalent.

Succinct Ciphertext-Policy ABE. The key succinctness property we care about in this work
is that the ciphertext size depends polynomially in the input length of the functions, namely k, and
the security parameter, but is otherwise independent of the size of the functions being encrypted.
As a result of a technical deficit common to all known LWE based ABE schemes, we will allow the
ciphertext size to grow with the depth of the circuits (but not the size).

2.2 Learning with Errors and Lattice Trapdoors

This section summarizes tools from previous works that are used in our construction. This includes
the definition of the LWE problem and its relation to worst case lattice problems, the notion of
trapdoors for lattices and operations on trapdoors, and homomorphic evaluation of matrices with
special properties.
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Learning with Errors (LWE). The Learning with Errors (LWE) problem was introduced by
Regev [Reg05] as a generalization of “learning parity with noise” [BFKL93,Ale03]. We now define
the decisional version of LWE. (Unless otherwise stated, we will treat all vectors as column vectors
in this paper).

Definition 2.3 (Decisional LWE (DLWE) [Reg05]). Let λ be the security parameter, n = n(λ),
m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability distribution over Z. The
DLWEn,q,χ problem states that for all m = poly(n), letting A ← Zn×mq , s ← Znq , e ← χm, and
u← Zmq , the following distributions are computationally indistinguishable:(

A, sTA + eT
) c
≈
(
A,uT

)
There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between

DLWEn,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We write DLWEn,q,α to indicate
this instantiation. We now state a corollary of the results of [Reg05, Pei09, MM11, MP12]. These
results also extend to additional forms of q (see [MM11,MP12]).

Corollary 1 ( [Reg05, Pei09, MM11, MP12]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.

• If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(n/α) on any
n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set of
“short” vectors. The best known algorithms for GapSVPγ require at least 2Ω̃(n/ log γ) time [Sch87].
We refer the reader to [Reg05,Pei09] for more information.

In this work, we will only consider the case where q ≤ 2n. Furthermore, the underlying security
parameter λ is assumed to be polynomially related to the dimension n.

Lastly, we derive the following corollary which will allow us to choose the LWE parameters for
our scheme. The corollary follows immediately from the fact that the discrete Gaussian DZ,αq is

(αq · t, 2−Ω(t2))-bounded for all t.

Corollary 2. For all ε > 0 there exist functions q = q(n) ≤ 2n, χ = χ(n) such that χ is B-bounded
for some B = B(n), q/B ≥ 2n

ε
and such that DLWEn,q,χ is at least as hard as the classical hardness

of GapSVPγ and the quantum hardness of SIVPγ for γ = 2Ω(nε).

The Gadget Matrix. Let N = n · dlog qe and define the “gadget matrix” G = g ⊗ In ∈
Zn×Nq where g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qe

q . We will also refer to this gadget matrix as the

“powers-of-two” matrix. We define the inverse function G−1 : Zn×mq → {0, 1}N×m which expands
each entry a ∈ Zq of the input matrix into a column of size dlog qe consisting of the bits of the
binary representation of a. We have the property that for any matrix A ∈ Zn×mq , it holds that
G ·G−1(A) = A.
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Trapdoors. Let n,m, q ∈ N and consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q , we let A−1
τ (V)

denote the random variable whose distribution is a Gaussian Dm′
Zm,τ conditioned on A ·A−1

τ (V) =

V. A τ -trapdoor for A is a procedure that can sample from the distribution A−1
τ (V) in time

poly(n,m,m′, log q), for any V. We slightly overload notation and denote a τ -trapdoor for A by
A−1
τ .

The following properties had been established in a long sequence of works.

Corollary 3 (Properties of Trapdoors [Ajt96,Ajt99,GPV08,ABB10a,CHKP12,ABB10b,MP12]).
Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .

2. Given A−1
τ , one can obtain [A‖B]−1

τ and [B‖A]−1
τ for any B.

3. For all A ∈ Zn×mq and R ∈ Zm×N , with N = n dlog qe, one can obtain [AR + G‖A]−1
τ for

τ = O(m · ‖R‖∞).

4. There exists an efficient procedure TrapGen(1n, q) that outputs (A,A−1
τ0 ) where A ∈ Zn×mq for

some m = O(n log q) and is 2−n-uniform, where τ0 = O(
√
n log q log n).

3 The [BGG+14] KP-ABE Scheme

In this section, we recall the KP-ABE scheme of Boneh et al. [BGG+14]. This scheme will be the
basis of our construction in Section 4. We start by describing the notion of homomorphic evaluation
that underlies their construction.

Key-Homomorphic Evaluation. Let f be a boolean circuit of depth d computing a function
from {0, 1}k to {0, 1}, and assume that f contains only NAND gates. We will show a version of
f that computes on matrices. In particular, for every NAND gate whose inputs are associated to
matrices A1 and A2, we associate to the output the matrix

Anand := A1G
−1(A2)−G (2)

Note that

[A1 + x1G||A2 + x2G] ·
[

G−1(A2)
−x1I

]
= Anand + (1− x1x2)G

= Anand + NAND(x1, x2) ·G

which provides us with a mathematical framework for homomorphic evaluation.
In particular, given matrices ~A := (A1, . . . ,Ak), we can define the matrix Af associated to the

output wire of f . This has the associated homomorphic evaluation property that

[A1 + x1G|| . . . ||Ak + xkG] ·H
f,x,~A

= Af + f(x1, . . . , xk) ·G (3)

for some matrix H
f,x,~A

that has norm (n log q)O(d).
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The KP-ABE Scheme. We are now ready to describe the KP-ABE scheme of [BGG+14].

• Setup(1λ) generates a master public key

BGG.MPK = (A0,A1, . . . ,Ak)

and a master secret key BGG.MSK = TA0 , the lattice trapdoor of A0. This, as usual, is done
by running the trapdoor sampling algorithm (A0,T0)← TrapGen(1n, 1m, q).

• Enc(BGG.MPK, x, µ) where x ∈ {0, 1}k and µ ∈ {0, 1} does the following. Pick a random
LWE secret s ∈ Znq and output the ciphertext

BGG.ct := sT [A0||A1 + x1G|| . . . ||Ak + xkG] + eT

where e is a small Gaussian error.

The particular method of encrypting the message µ will not be particularly relevant to us;
for example, think of computing µ⊕GL(s) where GL(·) denotes the Goldreich-Levin hardcore
bit.

• KeyGen(BGG.MSK, f): Outputs a random trapdoor for the matrix [A0||Af ]. This can be
generated using TA0 using a trick due to [CHKP12] (see Corollary 3.)

• Dec(BGG.skf ,BGG.ct) uses Equation 3 to compute(
sT [A1 + x1G|| . . . ||Ak + xkG] + eT

)
·H

f,x,~A
≈ sT (Af + f(~x)G)

Thus, when f(x) = 0, we have (approximately) sT [A0||Af ] which can be decoded using the
functional key which is a trapdoor for [A0||Af ].

We will not provide an analysis of the parameters of the scheme here (we will do that in Section 4
for our CP-ABE scheme instead) and we will not provide the security reduction for the [BGG+14]
scheme (we refer the reader to the original paper.)

4 Our CP-ABE Scheme and Correctness

We describe our CP-ABE scheme below.

• Setup(1λ): Let k be the length of the attributes in the CP-ABE scheme and d be the maximum
depth of circuits that will be encrypted. Choose 2k uniformly random matrices Bi,b ∈ Zm×nq

in the public parameters (for i ∈ [k] and b ∈ {0, 1}), and let the master secret key be a “joint
trapdoor” for all the Bi,b.

More precisely, run TrapGen(12kn, 1m, q) to generate

(B,T)← TrapGen(12kn, 1m, q)

where B ∈ Zm×2kn
q . Let {Bi,b}i∈[k],b∈{0,1} be blocks of columns of B; thus,

B = [B1,0||B1,1|| . . . ||Bk,0||Bk,1]

12



In particular, by the properties of the trapdoor, we know that T has small entries, and that
for all i, b:

TBi,b = 0 (mod q)

Output
MPK = {Bi,b}i,b and MSK = T

• Enc(MPK, f, µ): To generate a ciphertext for a function f encrypting a message µ ∈ {0, 1},
do the following.

– Pick fresh ABE public parameters for the BGG+ ABE scheme.

(BGG.MPK,BGG.MSK)← BGG.Setup(1λ, 1k, 1d)

We recall that BGG.MPK consists of k+1 matrices A0,A1, . . . ,Ak ∈ Zn×`q and BGG.MSK
is the trapdoor for A0.

– Generate an BGG+ ABE secret key skf for the circuit f .

BGG.skf ← BGG.KeyGen(BGG.MSK, f)

We recall that BGG.skf is a pair of short vectors (r0, rf ) such that

[A0||Af ]

[
r0

rf

]
= 0 (mod q)

– Run the offline phase of the matrix-BGG+ encryption algorithm. That is, let

(C0, {Ci,b})← BGG.OfflineEnc(BGG.MPK)

We recall that Ci,b = S(Ai + bG) + Ei,b and C0 = SA0 + E0 where S ∈ Zm×nq is
a uniformly random matrix and E0, {Ei,b} are short error matrices of the appropriate
dimension.

Define the matrices

Ĉi,b := Bi,bŜi,b + Ci,b = Bi,bŜi,b + Ei,b + S(Ai + bG)

and
Ĉ0 := SA0 + E0 + µG

The ciphertext is

CTf :=

(
BGG.skf , Ĉ0, {Ĉi,b}i,b

)
• KeyGen(MSK, x): The key skx for an attribute vector x = (x1, ..., xk) is a short vector tx such

that for every i,
txBi,xi = 0 (mod q)

Such a vector can be generated by running TrapSamp with the matrix Bx := [B1,x1 || . . . ||Bk,xk ].
and the trapdoor T.

• Dec(x, skx, f, CTf ): To decrypt, compute

tx · [Ĉ0||Ĉ1,x1 || . . . ||Ĉk,xk ] ·
[

r0

Hf,xrf

]
(4)

and output 1 if the absolute value of this number is at most q/100 and 1 otherwise.
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Correctness. Let us rewrite the decryption expression 4. Here we will refer to the BGG+
decryption algorithm and its correctness from Section 3. We have

tx·[Ĉ0||Ĉ1,x1 || . . . ||Ĉk,xk ]

= tx · [C0||B1,x1Ŝ1,x1 + C1,x1 || . . . ||Bk,xk Ŝk,xk + Ck,xk ]

= tx · [C0||C1,x1 || . . . ||Ck,xk ]

= sx[A0||A1 + x1G|| . . . ||Ak + xkG] + tx · [E0||E1,x1 || . . . ||Ek,xk ] + [µtxG||0|| . . . ||0]

≈ sx[A0||A1 + x1G|| . . . ||Ak + xkG] + [µtxG||0|| . . . ||0]

where sx = txS. Now,

tx·[Ĉ0||Ĉ1,x1 || . . . ||Ĉk,xk ] ·
[

r0

Hf,xrf

]
≈ sx[A0||A1 + x1G|| . . . ||Ak + xkG] ·

[
r0

Hf,xrf

]
+ µtxGr0

≈ sx · (A0r0 + (Af + f(x)G)rf ) + µ · txGr0

≈ µ · txGr0

where the last equation holds if f(x) = 0. Since txGr0 is large mod q w.h.p., this lets us recover µ.

Parameter Settings. Looking at the decryption equation, we see that the largest asymptotic
growth of error happens during the BGG+ decryption depth, i.e., multiplying by the matrix Hf,x

which increases the error by a multiplicative factor of (n log q)O(d). Thus, setting q � (n log q)O(d)

and m = cn log q for a sufficiently large constant c > 1 gives us decryption correctness.

Efficiency. The key parameter of interest to us is the size of the ciphertext. This consists of
the BGG+ secret key as well as the k elements of the BGG+ ciphertext. In total, the length is
poly(n, log q, k) which is polynomial in k and the circuit depth d, but otherwise independent of the
circuit size.

4.1 Broadcast Encryption

Recall that in broadcast encryption, we have a setup algorithm that generates a master public/secret
key pair for a universe of N = 2k users, an encryption algorithm that encrypts a message m to a
subset S ⊆ [N ] of users, a key generation algorithm that gives each user i ∈ [N ] its private key
ski, and finally a decryption algorithm that gets a user private key ski, a ciphertext ct as well as a
description of the intended broadcast set S, and outputs µ if and only if i ∈ S.

A construction of broadcast encryption now follows immediately from the succinct CP-ABE
scheme by instantiating the function f in the CP-ABE encryption by the indicator function fS
which, on input i, outputs 0 if and only if i ∈ S. The function fS can be implemented by a circuit
of size O(|S| · poly(log k)) and depth O(log |S|) = O(logN).

• The size of the ciphertexts in the scheme is poly(n, k, d) = poly(n, logN).

• The size of the keys in the scheme is poly(n, logN) as well, by inspection.

In other words, this gives us a broadcast encryption scheme with polylogarithmic size ciphertexts
and keys.
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5 Cryptanalysis: Non-Malleable LWE

In addition to what we described in the introduction, we describe yet another avenue for crypt-
analysis, and formally prove that it fails. This avenue leads to an interesting version of the LWE
assumption that we call non-malleable LWE which we prove is hard under the standard LWE
assumption.

In the CP-ABE experiment, we have 2k matrices Bi,b ∈ Zm×nq , for i ∈ [k] and b ∈ {0, 1}. For a

string x ∈ {0, 1}k, define a matrix Bx ∈ Zm×knq as follows:

Bx = [B1,x1 ||B2,x2 || . . . ||Bk,xk ]

We provide the adversary with trapdoors for the matrices Bx for polynomially many x, namely
short matrices Tx such that TxBx = 0 (mod q), and yet expect that LWE w.r.t. Bx∗ for any
different x∗ holds, namely that Bx∗s + e is pseudorandom where s is an LWE secret vector and e
is an LWE error vector. The non-malleable LWE experiment captures this requirement.

The (selectively) non-malleable LWE game proceeds as follows.

• The adversary picks a string x∗ ∈ {0, 1}k.

• The adversary is given the matrices {Bi,b}.

• The adversary asks for and obtains a trapdoor for any matrix Bx where x 6= x∗.

• The adversary obtains either an LWE sample relative to x∗, that is Bx∗s + e, or a uniformly
random string, and is asked to distinguish between them.

We now show that it is hard for the adversary to win the non-malleable LWE game.

Theorem 5.1. Non-malleable LWE is secure assuming LWE.

Proof. We will show that given trapdoor matrices TBx for all x 6= x∗,(∑
i∈[k]

Bi,x∗i

)
s + e

is indistinguishable from random. It is easy to see that this also implies that

[B1,x∗1
|| . . . ||Bk,x∗k

] ·


s1

s2

. . .
sk

+ e

is indistinguishable from random, as desired.
Given the challenge x∗, we program the matrices Bi,b as follows. The key idea is to find matrices

Gi,b where all matrices Gx with

Gx = [G1,x1 ||G2,x2 || . . . ||Gk,xk ]

for x 6= x∗ have full rank with known trapdoors, and
∑

i∈[k] Gi,x∗i
= 0 (mod q).

15



Once such matrices are found, set each

Bi,b =

[
Di,b

RDi,b + Gi,b

]
where Di,b are random and R has random small entries. The “ABB trick” (Corollary 3) now allows
us to find trapdoors for all Bx for x 6= x∗. At the same time,∑

i

Bi,x∗i
=

[ ∑
i Di,x∗i

R
∑

i Di,x∗i

]
so given (

∑
i Di,x∗i

)s + e, one can simulate (
∑

i Bi,x∗i
)s + e′.

Finally, to design the matrices Gi,b ∈ Z(2k−1)n log q×kn
q we do the following. We will set

Gi,b = u2i−1+b ⊗GT

for i < k, where uj is the j-th unit vector (written as a column vector) and G is the n × n log q
gadget matrix. For the last coordinate, we will set

Gk,x∗k
= vx∗ ⊗GT and Gk,1−x∗k = u2k−1 ⊗GT

where vx∗ = −
∑

i<k u2i−1+x∗i
.

An example with k = 3 is illustrated below. Let x∗ = 000.

G1,0 =


GT

0
0
0
0

 , G2,0 =


0
0

GT

0
0

 , G3,0 =


−GT

0
−GT

0
0

 ,

G1,1 =


0

GT

0
0
0

 , G2,1 =


0
0
0

GT

0

 , G3,1 =


0
0
0
0

GT

 ,
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