
1

Certificateless Homomorphic Signature Scheme
for Network Coding

Jinyong Chang, Bilin Shao, Yanyan Ji, and Genqing Bian

Abstract—Homomorphic signature is an extremely important public key cryptographic technique for network coding to defend against
pollution attacks. As a public key cryptographic primitive, it also encounters the same problem that how to confirm the relationship between
some public key pk and the identity ID of its owner. In the setting of network coding, the intermediate and destination nodes need to use
source node S’s public key to check the validity of vector-signature pairs. Therefore, the binding of S and its corresponding public key
becomes crucial. The popular and traditional solution is based on certificates which is issued by a trusted certification authority (CA) center.
However, the generation and management of certificates is extremely cumbersome. Hence, in recent work [20], Lin et al. proposed a new
notion of identity-based homomorphic signature, which intends to avoid using certificates. But the key escrow problem is inevitable for
identity-based primitives. In this paper, we propose another new notion (for network coding): certificateless homomorphic signature (CLHS),
which is a compromise for the above two techniques. In particular, we first describe the definition and security model of certificateless
homomorphic signature. Then based on bilinear map and the computational Diffie-Hellman (CDH) assumption, give a concrete
implementation and detailedly analyze its security. Finally, performance analysis illustrates that our construction is practical.

Index Terms—Homomorphic Signature, Certificateless Signature, CDH Assumption, Network Coding.

F

1 Introduction

U nlike traditional store-and-forward routing mechanisms, net-
work coding allows its intermediate nodes encode their

incoming packets before forwarding them, which has been mathe-
matically proven to enhance the network robustness and maximize
the network throughput [1], [18], [26]. Hence, in recent years,
it has received extensive attentions and been applied to various
computer network systems, including wireless networks [22], P2P
systems [9] and multicast networks [28]. However, it is also well-
known that it is extremely vulnerable under pollution attack [7],
since the polluted packets will further contaminate other packets
after the random combinations of intermediate nodes, which not
only leads to incorrect decoding for the destination nodes but also
wastes network resources.

Linearly homomorphic signature scheme is a popular crypto-
graphic primitive, which can detect and filter the polluted packets
and hence defend against pollution attack for network coding [4],
[12]. In contrast to homomorphic message authentication code
scheme [10], it is in the public key setting. Therefore, all the
nodes in the network only need to obtain public key of source
node S instead of sharing a common secret key (with S), which
is more appropriate for offline systems, such as robust distributed
file storage [15].

It is also well-known that for any public key cryptographic
primitives, how to assure the corresponding relationship between
a public key and user’s identity is an extremely important and
complicated problem. The most popular and traditional way is
based on public key infrastructure (PKI), in which this problem
is resolved by issuing certificates (essentially a signature for the
public key) by a trusted certification authority (CA). Any user,

• Jinyong Chang and Genqing Bian are with school of information and con-
trol engineering, Xi’An University of Architecture and Technology, Xi’An,
710055, Shaanxi, P.R. China and also with department of mathematics,
Changzhi University, Changzhi, 046011, Shanxi, P.R. China.

• Bilin Shao and Yanyan Ji are with school of management, Xi’An University
of Architecture and Technology, Xi’An, 710055, Shaanxi, P.R. China.

Manuscript received *; revised *.

who wants to use someone’s public key, first checks the validity
of this public key’s certificate so that confirming the relationship
between public key and its corresponding identity. However, in
practice, how to generate and manage so many certificates is a
cumbersome task for PKI. In addition, the verification for each
certificate also somewhat degrades the performances of original
algorithms.

To avoid the using of certificates, in 1984, Shamir first intro-
duced identity-based cryptography [23]. The basic idea is using
user’s information, such as email address, ID card number or
telephone number etc., as his/her public key, which removes the
necessity of public key certificate. But the user’s secret key is
generated by combining this public key with a master key owned
by an entity named Key-Generation-Center (KGC).

Therefore, in 2018, Lin et al. introduced the notion of identity-
based homomorphic signature scheme, presented an elegant con-
struction based on the computational Diffie-Hellman (CDH) as-
sumption, and tried to use it to Blockchain [20]. Of course,
this scheme can also be used in network coding to simplify the
management of public key. In the next section, we will present
the model of applying identity-based homomorphic signature to
network coding.

However, the inherent problem for any identity-based primitive
lies in the escrow of key, which means that any user’s private key
is known by the entity of KGC. Hence, KGC can literally forge
any signature of any user if he wants. Obviously, this is the case
that any signer does not want to see. As a result, the network
coding system based on identity-based homomorphic signature
also encounters the same problem. How to tackle it seems to be
not mentioned in the existing literatures.

Our Contributions. In this paper, we try to give a solution
of the above problem. Concretely, we introduce the notion of
certificateless homomorphic signature (CLHS) scheme, which
is a compromise primitive between identity-based homomorphic
signature and a normal homomorphic signature, and apply it to



2

network coding. In particular, our contributions consist of the
following aspects.

• For the first time, we introduce the notion of CLHS, define
its security model.

• Based on the CDH assumption and the known certificate-
less signature (CLS), we present a concrete instantiation
of CLHS and the corresponding security proof.

• By fixing series of parameters, we give the simulations
of the algorithms, including the signature, verification as
well as combination for different packets. The performance
analysis illustrates that our construction is practical.

Related Works. Homomorphic signature scheme was firstly pro-
posed by Johnson et al. in [16]. This definition is applied to
network coding to defend against pollution attack by Boneh et al.
in [7]. The classic construction of homomorphic signature is based
on pairings, random oracle, and the CDH assumption. After that,
some other constructions based on lattice, standard model also
appear, such as [4], [6], [8], [25]. The property of homomorphic is
extended to polynomial function in [5]. In recent works [19], [20],
Lin et al. respectively considered the new definitions of identity-
based homomorphic signature and homomorphic proxy signature
schemes. Later, Chang et al. further considered the related-key-
attack on identity-based homomorphic signature [11].

Certificateless public key cryptography is proposed by Al-
Riyami and Paterson in 2003 [3], who intends to eliminate the key
escrow problem for KGC. In this work, they suggested certificate-
less public key encryption and certificateless signature schemes.
After this pioneering result, many certificateless techniques were
developed in [13], [24]. In [27], Zhang et al. further considered the
security model for certificateless signature and then presented an
elegant construction based on the CDH assumption and pairing.
In [14], Huang et al. also constructed a certificateless signature
scheme with enough short-size signature based on bilinear map.
In recent work [17], Karati et al., tried to apply certificateless
signature scheme to industrial internet of things (IIoT) to realize
the lightweight authentication for IIoT.

Organizations. The later parts will be organized as follows. First,
in Section 2, we will introduce some basic notations, system model
of network coding and some basic notions, which mainly includes
certificateless signature scheme, certificateless homomorphic sig-
nature scheme as well as their security models. Then a concrete
construction of CLHS and its security proof will be given in
Section 3. Finally, the performance analysis and conclusions can
be found in Section 4 and Section 5, respectively.

2 Preliminaries

Basic Notations. In this paper, we denote by λ the security
parameter. For a set S , s

$
←− S means that randomly choose an

element s from S . For a natural number q, [q] denotes the set
of {1, 2, · · · , q}. If q is a prime, then Zq is a finite field and
Z∗q = Zq\{0}. PPT means probabilistic polynomial time. A function
f (λ) is called negligible if for any c > 0, there exists a k0 ∈ Z
satisfying that, for all λ > k0, it holds that f (λ) < λ−c. We use
a boldface type v to denote a vector and vi to denote its i-th
component.

Fig. 1. Secure Network Coding

2.1 System Model

2.1.1 Secure Network Coding

In the model of combining network coding with homomorphic
signature, there are three types of nodes: Source nodes, interme-
diate nodes and destination nodes. (A lite version can be found in
Fig. 1)

• A source node S first generates the signing key pair
(pk, sk). For the data packets, which are depicted as
some vectors v1, · · · , vm, S respectively computes the
corresponding signatures σ1, · · · , σm and sends the pairs
(v1, σ1), · · · , (vm, σm) to the adjacent intermediate nodes.

• For some intermediate node Ni, it may receive (vi1 , σi1 ),
· · · , (vi` , σi` ) and first checks the validity of all the pairs.
If any of them can not pass the verification, then this pair
is seen as a “polluted” one and hence is discarded. Then,
for the “unpolluted” pairs, use the combination algorithm
(of the homomorphic signature scheme) to obtain a “com-
bined” signature σ′ for the vector v′, which is a (random)
linear combination of the “unpolluted” vector, and transmit
the new pair (v′, σ′) to its adjacent nodes.

• For the destination node Ri, it must collect “enough” pairs
(v′1, σ

′
1), · · · (v′n, σ′n) so that the original vectors v1, · · · , vm

can be recovered from them. It also checks the validity
of all the pairs. For the “polluted” ones, discard them and
finally recover the original vectors v1, · · · , vm.

2.1.2 Certification-Based Network Coding

In the above model of network coding, the implicit condition is
that the intermediate and destination nodes correctly get the public
key pk of the source node S. However, how to authenticate the
relationship between pk and the target identity ID? The traditional
and popular method is issuing a certification for S by a trusted
CA. That is, S requests a certification C for its public key pk
in advance and publishes (pk,C). For other nodes, who need to
verify the signatures using S’s public key, they first check the
public-certification pair (pk,C). If it is valid, then pk is seen as
true public key of S.

In fact, there may be many source nodes S1,· · · ,Sn in the
whole system, who need to register and obtain the corresponding
certifications for their public keys from the CA center. In this case,
we call it certification-based network coding. In Fig. 2, we present
a simplified version, in which there are two source nodes S1 and
S2.



3

Fig. 2. Certification-Based Network Coding

Fig. 3. Identity-Based Network Coding

2.1.3 Identity-Based Network Coding

As Lin et al. said in [20], the management of certifications is
extremely cumbersome and the using of them sometimes degrades
the performances of algorithms or schemes. Hence, they intro-
duced the identity-based homomorphic signature scheme. Here,
we remark that their scheme can also be used in network coding,
which is called identity-based network coding.

In the model of identity-based network coding, the public key
certification for each source node is not used since the only public
key pk (of KGC) is universal. That is, for the intermediate and
destination nodes in different coding process, the verifications of
signatures only need the common public key pk of KGC.

Concretely, for any source node Si, it submits identity IDi to
KGC. Then KGC will return a secret key skIDi , which will be used
to sign all the vectors. For the adjacent intermediate or destination
nodes of Si, they will verify the vector-signature pairs using pk
and perform the following steps in network coding. A lite version
can be found in Fig. 3.

2.1.4 Certificateless Network Coding

As we said in Introduction, the essential problem for identity-
based network coding lies in the key escrow. For example, in
Fig. 3, KGC knows the two signing keys skID1 , skID,2. If KGC
is malicious, then the consequences will be disastrous. Hence,
avoiding key escrow seems to be an urgent tasks for identity-
based network coding. As a result, we propose a new terminology
named certificateless network coding, which is a combination

Fig. 4. Certificateless Network Coding

of certificateless homomorphic signature (we will define in later
subsection) and network coding.

In particular, in certificateless network coding, KGC only
returns a partial private key PPID (for source node S) after
receiving S’s identity ID. For S, he will choose a secret value
sID and generate the full private key skID (i.e. signing key) by
combining sID and PPID. Hence, the signatures for vectors will
be computed by using skID. Meanwhile, S’s public key pkID is
also computed from sID. Then the intermediate and destination
nodes will obtain pkID and verify the vector-signature pairs based
on pkID. A lite version can be found in Fig. 4. We remark that
the values PPID, sID, skID and pkID are respectively computed
by the corresponding algorithms in certificateless homomorphic
signature scheme.

Because KGC only contributes a partial private key, which is
not the true signing key skID, it can not forge the signatures for
S even if KGC is malicious. In addition, in above certificateless
network coding, the relationship between public key pkID and
S’s identity ID is still not authenticated. In other words, the
intermediate and destination nodes may receive an incorrect public
key pk′ID instead of pkID. Here, we call it key replacement attack.
Therefore, in the security model of our certificateless homomor-
phic signature scheme, two types adversaries will be considered:
a usual adversary AI and a KGC-type adversary AII , which will
respectively simulate the key replacement attack and malicious
KGC attack.

Since certificateless homomorphic signature scheme is the core
of certificateless network coding, we will mainly focus on how
to present its definition, security model and construction in the
following sections.

2.2 Bilinear Map

Let G1 G2 be two cyclic groups with the same (prime) order q and
e be a map from G1×G1 to G2 which can be efficiently computable
and satisfies the following: For any two generators g, h ∈ G1,

1) Non-Degenerate Property. e(g, h) , 1G2 , where 1G2 is
the identity element of G2.

2) Bilinear Property. For any a, b ∈ Zq, it holds that

e(ga, hb) = e(g, h)ab.

2.3 CDH Assumption

The CDH assumption on a cyclic group G with generator g refers
to that it is “hard” to compute gab for any PPT adversary when



4

given the items g, ga, and gb. Formally, let the order of G be q and
randomly choose a, b

$
←− Z∗q. Then give the tuple (q,G, g, ga, gb)

to a PPT adversary whose goal is to compute and output gab.
However, the adversary can successfully output gab with at most
negligible probability. Here, the probability is taken over the
selection of a, b.

2.4 Certificateless Signature Scheme

Denote by CLS a certificateless signature scheme, which consists
of the following algorithms.

• CL-Setup: For the input of security parameter λ, generate
and output the public parameter params as well as master
key msk. This algorithm is usually run by KGC. We always
assume that params is publicly and authentically available,
but msk is only known by KGC.

• CL-Partial-Private-Key-Extract: For the inputs of
msk and user’s identity ID, this algorithm generates a
partial private key PPID for ID. Usually, this algorithm
is also run by KGC and its output PPID is confidentially
given to user ID over an authentic channel.

• CL-Set-Secret-Value: For the input of user’s identity
ID, this algorithm generates a secret value sID.

• CL-Set-Private-Key: For the inputs of user’s secret
value sID and the partial private key PPID, this algorithm
generates the full private key S KID for user ID.

• CL-Set-Public-Key: For the input sID, this algorithm
generates and outputs the corresponding public key PKID

for user with the identity of ID.
Normally, the algorithms CL-Set-Private-Key and
CL-Set-Public-Key are run by user for itself after run-
ning CL-Set-Secret-Value.

• CL-Sign: For the inputs of user’s identity ID, its public
key PKID, private key S KID and a message m, this algo-
rithm generates a signature σ for the message m.

• CL-Verify: Given the inputs of user’s public key PKID,
its identity ID and the message-signature pair (m, σ), this
algorithm outputs 1 (accept) or 0 (reject).

Security. Here, we adopt the security model in [27], in which two
types of adversaries AI and AII are considered. The former one
denotes a usual adversary who can replace any user’s public key
at its will, while the latter one describes a malicious KGC. Hence,
two games Game-I and Game-II, which are respectively played
by the two adversaries and their challengers, are considered.
Game-I:

• Initialization-I. A challenger CHI runs the algorithm

(params,msk)← CL-Setup(λ).

Give params to AI and keep msk secret.
• Queries-I. The adversary AI can adaptively make the

following queries. For convenience, the challenger initial-
izes an empty “query-answer” list, which will record AI’s
queries and his own answers.

– Extract-Partial-Private-Key: For the queried i-
dentity ID, the challenger runs

PPID ← CL-Partial-Private-Key-Extract(ID)
(1)

and return PPID to the adversary AI . Add (ID,
PPID) to the “query-answer” list.

– Extract-Private-Key: For the input ID, CHI first
checks if (ID, PPID) is in the “query-answer” list.
If it is, recover PPID. Otherwise, run (1). Then
compute

sID ← CL-Set-Secret-Value(ID), (2)

and

S KID ← CL-Set-Private-Key(PPID, sID). (3)

Give S KID to AI and add (ID, PPID, sID, S KID) to
the “query-answer” list.

– Request-Public-Key: For the queried ID, the
challenger checks if (ID, sID) appears in “query-
answer” list. If it is, recover sID. Otherwise, run
(2). Then compute

PKID ← CL-Set-Public-Key(sID). (4)

Give PKID to AI and add (ID, sID, PKID) to the
“query-answer” list.

– Replace-Public-Key: The adversary AI is allowed
to replace PKID with any value PK′ID he would like
to set. Add (ID, PKID, PK′ID) to the “query-answer”
list. Note that, in this oracle, the adversary does not
need to give the corresponding secret value for the
replaced public key.

– Signing-Queries: WhenAI submits (ID,m) to this
oracle, the challenger first checks if (ID, PPID,
sID, S KID, PKID) appears in the “query-answer”
list. If it is, recover S KID. Otherwise, run (1), (2),
and (4) to generate PPID, sID and PKID, respective-
ly. Then compute S KID by running (3). After those
steps, the challenger runs

σ← CL-Sign(ID, PKID, S KID,m) (5)

and returns it to the adversary. Finally, add

(ID, PPID, sID, S KID, PKID,m, σ)

to the “query-answer” list.
Note that, if PKID has been changed into PK′ID by
AI’s Replace-Public-Key query, then CHI may not
have the correct S KID and hence can not correctly
answer this query. In this case, AI needs to addi-
tionally give sID, which is corresponding to PK′ID,
to the challenger.

Output-I. At the end, the adversary outputs a tuple of

(ID∗, PKID∗ ,m∗, σ∗).

We remark that, ID∗ should not be queried to Extract-
Private-Key oracle. Moreover, ID∗ should not be si-
multaneously queried to both Replace-Public-Key oracle
and Extract-Partial-Private-Key oracle. m∗ should not be
queried for signature w.r.t. ID∗ and PKID∗ .

If it holds that

1← CL-Verify(ID∗, PKID∗ ,m∗, σ∗), (6)

then we call AI wins the game. Denote by AdvEUF
AI ,CLS

(λ) AI’s
advantage, which equals to the probability of AI winning the
game.



5

Game-II:

• Initialization-II. A challenger CHII runs the algorithm

(params,msk)← CL-Setup(λ).

Give params and msk to AII .
• Queries-II. The adversary AII is allowed to adaptively

make the following queries. Note that, the adversary has
the master key msk and it can compute any user’s partial
private key PPID. Hence, we require that it also submits
PPID (if necessary), which will be no longer generated
by the challenger. For convenience, the challenger still
initializes an empty “query-answer” list.

– Extract-Private-Key: AII submits (ID, PPID) to
the challenger. Then the challenger runs (2) and (3).
Return S KID to AII and add (ID, PPID, sID, S KID)
to the “query-answer” list.

– Request-Public-Key: AII submits (ID, PPID) to
the challenger in this oracle. Then CHII checks
if (ID, sID) appears in the “query-answer” list. If
it is, recover sID. Otherwise, run (2) to obtain
sID. Then run (4) to generate PKID. Give PKID to
the adversary and add (ID, PPID, sID, PKID) to the
“answer-query” list.

– Signing-Queries: This oracle is same as Signing-
Queries oracle in Game-I except that PPID is pro-
vided by the adversary AII .

• Output-II. Finally, AII outputs a tuple of (ID∗, PKID∗ ,
m∗, σ∗). Here, ID∗ should not be queried to Extract-
Private-Key oracle and m∗ also should not be queried
to Signing-Queries oracle w.r.t. the identity ID∗ and the
corresponding public key PK∗.

If the output satisfies (6), thenAII is called winning the game.
Denote by AdvEUF

AII ,CLS
(λ) AII’s advantage, which equals to the

probability of AII winning the game.
If for both PPT adversaries AI and AII , their advantages

AdvEUF
AI ,CLS

(λ) and AdvEUF
AII ,CLS

(λ) are negligible, then we call the
scheme CLS is existentially unforgeable (EUF) under the chosen
message attacks. Or shortly, CLS is a secure certificateless signa-
ture scheme.

2.5 Certificateless Homomorphic Signature Scheme

In this subsection, we formally introduce the notion of certifi-
cateless homomorphic signature (CLHS) scheme and its security
model. First, a CLHS scheme CLHS consists of the following eight
algorithms.

• Setup. Input: the security parameter λ. Output: public
parameter params and a master key msk. Usually, this
algorithm is run by KGC. The parameter params is pub-
licly and authentically available, and msk is only known
by KGC.

• Partial-Private-Key-Extract. Input: the master key
msk and a user’s identity ID. Output: the partial private
key PPID for ID. Generally, this algorithm is also run by
KGC to generate partial private key for any user.

• Set-Secret-Value. Input: user’s identity ID. Output: a
secret value sID.

• Set-Private-Key. Input: user’s secret value sID and its
partial private key PPID. Output: a full private key S KID.

• Set-Public-Key. Input: user’s secret value sID. Output:
public key PKID.
Normally, the two algorithms Set-Private-Key and
Set-Public-Key are run by user for itself after running
Set-Secret-Value.

• Sign. Input: a tuple of

(ID, PKID, S KID, id, v),

where v is a vector belonging to some file with identifier
id. Output: a signature σ.

• Verify. Input: a tuple of

(ID, PKID, id, v, σ).

Output: 1 (accept) or 0 (reject).
• Combine. Input: a user’s identity ID, a public key PKID,

a file identifier id and the tuples

(c1, v1, σ1), · · · , (c`, v`, σ`).

Here, the vectors v1, · · · , v` should belong to the same
identifier id. Output: a signature σ for the “combined” vec-
tor v =

∑`
i=1 civi w.r.t. ID, or a symbol ⊥, which denotes

that the inputs are incorrect and hence incombinable.

Correctness. The correctness requires that, for any

msk, PPID, sID, S KID, PKID

generated by respectively running above algorithms, all id ∈ {0, 1}∗

and any message vector v, the following two conditions hold.

1) 1← Verify (ID, PKID, id, v, Sign(ID, PKID, S KID, id, v)),
2) If for 1 ≤ i ≤ `,

1← Verify(ID, PKID, id, vi, σi),

then it holds that

1← Verify
(
ID, PKID, id,

∑
civi,

Combine
(
ID, PKID, id, (c j, v j, σ j)`j=1

))
.

Security. Here, we still consider two kinds of adversaries AI and
AII , who respectively denote a usual adversary and a malicious
KGC. The security of CLHS is modeled by two games Game-I and
Game-II, which are respectively played by AI with its challenger
CHI and AII with its challenger CHII .

Game-I: This is a game designed for the adversary AI and its
challenger CHI .

• Setup-I: The challenger runs (params,msk)← Setup(λ).
Keep msk secret and return params to AI . In addition, the
challenger also initializes an empty “query-answer” list,
which will be used to store all the following queries and
their answers (from the challenger).

• Queries-I:AI is allowed to adaptively make the following
queries.

– Extract-Partial-Private-Key. When AI submits
the identity ID and wants to obtain its partial private
key, the challenger runs

PPID ← Partial-Private-Key-Extract(msk, ID),
(7)

and give it to the adversary. Then store (ID, PPID)
to the “query-answer” list.



6

– Extract-Private-Key. When AI submits the iden-
tity ID and wants to get the corresponding private
key, the challenger first checks if (ID, PPID, sID)
appears in the “query-answer” list. If it is, recover
PPID and sID. Otherwise, run (7) to obtain PPID

and generate

sID ← Set-Secret-Value(ID). (8)

Then compute

S KID ← Set-Private-Key(PPID, sID). (9)

Return S KID to AI , and add (ID, PPID, sID, S KID)
to the “query-answer” list.

– Request-Public-Key: When the adversary queries
the public key of the identity ID, CHI first checks if
(ID, sID) appears in the “query-answer” list. If it is,
recover sID. Else, run (8) to get sID. Then compute

PKID ← Set-Public-Key(sID), (10)

and return it to AI . Add (ID, sID, PKID) to the
“query-answer” list.

– Replace-Public-Key. The adversary is allowed to
replace some public key PKID of ID with another
value PK′ID chosen by himself. The challenger adds
(ID, PKID, PK′ID) to the “query-answer” list.
Note that, it is not necessary to provide the secret
value of PK′ID whenAI making this kind of queries.

– Signing-Queries. When the adversary queries the
signature of a vector v, which belongs to the i-
dentifier id, with respect to the identity ID and
PKID, the challenger first finds S KID from the list
of query-answer. If it does not exist, generate it
by respectively running (7), (8), and (9) to get
PPID, sID, and S KID. Then run

σ← Sign(ID, PKID, S KID, id, v),

and return it to AI .
If PKID has been replaced by the adversary, then
CHI may not be able to find S KID and hence the
answers for signature queries may not be correct.
In this case, we stipulate that the adversary needs
to additionally submit sID, which is corresponding
to the replaced PKID.

• Challenge-I : Finally, the adversary submits the tuple of

(ID∗, PKID∗ , id∗, v∗, σ∗).

Here, ID∗’s private key should not be extracted. Moreover,
ID∗ can also not be an identity for which the public key has
been replaced but its partial private key has been extracted.
In addition, (id∗, v∗) should not be queried for signature
with respect to ID∗, PKID∗ .

In this case, we call AI wins the above Game-I if

1← Verify(ID∗, PKID∗ , id∗, v∗, σ∗), (11)

and one of the following holds:

• Case 1. The identifier id∗ does not equal to any id appeared
in the “query-answer” list and v∗ , 0. (Type 1 Forgery)

• Case 2. id∗ = id0, where id0 is some identifier queried by
AI to the signature oracle, but v∗ does not belong to the

subspace V0 spanned by the vectors queried to signature
oracle with the same id0. (Type 2 Forgery)

Define the advantage AdvEUF
CLHS,AI (λ) as the probability of AI

winning the above game.

Game-II : This is a game played by another adversaryAII and its
challenger CHII .

• Setup-II: First, CHII runs (params,msk)← Setup(λ) and
gives (params,msk) to A. In addition, the challenger also
initializes an empty “query-answer”list.

• Queries-II: The adversary AII is allowed to adaptively
make the following queries:

– Extract-Partial-Private-Key: The adversary runs

PPID ← Partial-Private-Key-Extract(msk, ID)

to obtain the partial private key for any identity ID.
This can be done by the adversary itself since it
owns the master key. For consistency, AII needs
to submit PPID (if necessary) when it making the
following queries about ID.

– Extract-Private-Key: When the adversary submits
the identity ID and the corresponding partial private
key PPID, the challenger first checks if (ID, sID)
appears in the “query-answer” list. If it is, recover
sID. Else, runs

sID ← Set-Secret-Value(ID), (12)

to obtain sID. Then compute

S KID ← Set-Private-Key(PPID, sID), (13)

return the value S KID to the adversary and add
(ID, PPID, sID, S KID) to the “query-answer” list.

– Request-Public-Key: WhenAII submits ID, PPID

and intends to obtain the corresponding public key,
the challenger first checks if (ID, sID) appears in the
“query-answer” list. If it is, recover sID. Otherwise,
run (12) to get sID. Then compute

PKID ← Set-Public-Key(sID). (14)

Give PKID to AII and add (ID, sID, PKID) to the
“query-answer” list.

– Signing-Queries: When the adversary queries the
signature of a vector v, which belongs to the iden-
tifier id, with respect to the identity ID and PPID,
the challenger first finds S KID and PKID from the
list of “query-answer”. If they do not exist, generate
them by running (12), (13) and (14). Then compute

σ← Sign(ID, PKID, S KID, id, v),

and return it to AII . Finally, store

(ID, PPID, sID, S KID, PKID)

to the “query-answer” list.

• Challenge-II : Finally, the adversary outputs a tuple of

(ID∗, PKID∗ , id∗, v∗, σ∗).

We remark that ID∗ and (id∗, v∗) should not be issued
as a Extract-Private-Key query and a signing query (with
respect to ID∗ and PKID∗ ), respectively.



7

The adversary AII is called winning Game-II if (6) holds and
either Case 1 or Case 2 (in Game-I) holds. Define the advantage
AdvEUF

CLHS,AII (λ) as the probability of AII winning the above game.
The scheme CLHS is called existentially unforgeable (EUF)

under the chosen message attacks if both of the advantages
AdvEUF

CLHS,AI (λ) and AdvEUF
CLHS,AII (λ) are negligible. Or shortly, CLHS

is a secure certificateless homomorphic signature scheme.

3 A Concrete Scheme and Its Security Proof
Next, we give a concrete construction of CLHS scheme CLHS
based on a standard certificateless signature scheme CLS, which
is described in Section 2.4.

• Setup: For the security parameter λ, choose two groups
G1, G2 with the same order q ≥ 2λ, and a bilinear map
e : G1 × G1 → G2. Let g be a generator of G1, randomly
choose x

$
←− Z∗q and set h = gx. Denote by H1 and H2 two

hash functions from {0, 1}∗ to G1. Then run

(params′,msk′)← CL-Setup(λ).

Finally, output the public parameter

params = (q, g, h, e,G1,G2,H1,H2, params′)

and the master key msk = (msk′, x).
• Partial-Private-Key-Extract: When given the mas-

ter key msk = (msk′, x) and an identity ID for some user,
this algorithm computes

PPID,1 ← CL-Partial-Private-Key-Extract(msk′, ID)

and
PPID,2 ← H1(ID)x.

Output
PPID = (PPID,1, PPID,2).

• Set-Secret-Value: For the input ID, run

sID,1 ← CL-Set-Secret-Value(ID),

and randomly choose

sID,2 := y
$
←− Z∗q.

Set sID = (sID,1, sID,2) and output it.
• Set-Private-Key: For the input sID = (sID,1, y) and the

corresponding PPID = (PPID,1, PPID,2), run

S KID,1 ← CL-Set-Private-Key(sID,1, PPID,1),

set
S KID,2 =

(
PPID,2

)y
= H1(ID)xy,

and output S KID = (S KID,1, S KID,2).
• Set-Public-Key: For the input sID = (sID,1, y), run

PKID,1 ← CL-Set-Public-Key(sID,1),

and compute PKID,2 = hy. Set PKID =
(
PKID,1, PKID,2

)
and output it.

• Sign: For the input of the tuple (ID, PKID, S KID, id, v),
where v = (v1, · · · , vN) ∈ ZN

q , this algorithm runs as fol-
lows. The signer maintains a list L to record the identifier
id and its related information. First, check if id appears in
L.

– If it is not, randomly choose r
$
←− Zq, let w = gr and

run

σ1 ← CL-Sign(ID, PKID,1, S KID,1, (id, w)).

Add (id, (r, w, σ1)) into L.
– Else, retrieve (r, w, σ1) from the list L.

Then randomly choose s
$
←− Z∗q and compute

σ2 =
(
S KID,2

)∑N
j=1 v j

H1(ID)s ·

N∏
j=1

H2 (id, ID, PKID, j)v j


r

.

Output Q = (w,σ1, σ2, s) as the signature.
• Verify: For the input of the tuple (ID, PKID, id, v,Q), first

parse Q as (w,σ1, σ2, s), PKID as
(
PKID,1, PKID,2

)
. Then

run
b← CL-Verify(ID, PKID,1, (id, w), σ1).

If b = 0, stop and output 0. Else, check if

e(σ2, g) = e
(
H1(ID), PKID,2

)∑N
j=1 v j ·

e

H1(ID)s ·

N∏
j=1

H2 (id, ID, PKID, j)v j , w

 .
If it holds, then output 1. Otherwise, output 0.

• Combine : For the inputs of ID, PKID, id and the tuples

(c1, v1,Q1), · · · , (c`, v`,Q`),

this algorithm first parses

Qi = (w(i), σ(i)
1 , σ

(i)
2 , s

(i)),

for 1 ≤ i ≤ `, and check if w(1) = · · · = w(`).

– If it isn’t, output ⊥.
– Else, continue to check if

1← Verify(ID, PKID, id, vi,Qi),

for 1 ≤ i ≤ `. If one of them does not hold, output
⊥. Else,

σ2 =
∏̀
i=1

(
σ(i)

2

)ci
, s =

∑̀
i=1

cis(i).

Finally, output Q = (w(1), σ(1)
1 , σ2, s) as the signature of

“combined” vector v =
∑`

i=1 civi.

The correctness of this scheme can be easily verified. About
its security, we have the following:
Theorem 1. If the underlying CLS scheme is secure and the CDH

assumption in G1 holds, then the above scheme CLHS is also
secure (in the random oracle model).

Proof. Since there are two kinds of adversaries in the security
model, we present the proof in the following two parts: Part 1 and
Part 2.

Part 1. Let AI be an adversary in Game-I against the scheme
CLHS. We will construct another adversary BI breaking the secu-
rity of the underlying CLS scheme or the CDH assumption. In
particular, BI first randomly choose b

$
←− {0, 1}. If b = 0, then he

guesses AI will output a Type 1 forgery and hence attacks on the
security of CLS scheme. Otherwise, he guesses AI will output a
Type 2 forgery and chooses to attack on the CDH assumption.



8

Now, we introduce the construction of BI when b = 0.
Concretely, given the public parameter params′, BI generates a
bilinear map e on two cyclic groups G1,G2 with the same order q.
Let g be a generator of G1. Then randomly choose x

$
←− Z∗q, set

h = gx, and params = (q, g, h, e,G1,G2, params′),

and return params to AI . The two hash functions H1 and H2 are
modeled as random oracles and simulated by BI . For convenience
to simulate, he initializes two empty lists LH1 and LH2 . In addition,
he also maintains a “query-answer” list, which will store all the
following queries (fromAI) and the corresponding answers. Then
answer A’s queries as follows.

• Hash-Queries. For the query ID to H1, BI first checks if
there exists (ID,H1(ID)) in LH1 . If it is, return H1(ID) to

AI . Otherwise, randomly choose H1(ID)
$
←− G1 and return

it to AI . Then add (ID,H1(ID)) to LH1 . The simulation of
H2 oracle is also similar.

• Extract-Partial-Private-Key. When AI submits ID, BI

also gives it to his own Extract-Partial-Private-Key oracle
and gets the response PPID,1. Then compute PPID,2 =

H1(ID)x and return

PPID = (PPID,1, PPID,2).

Add (ID, PPID) to the “query-answer” list.
• Extract-Private-Key. For the query ID to this oracle, BI

submits it to his own Extract-Private-Key oracle and gets
the response S KID,1. Then choose y

$
←− Z∗q and compute

S KID,2 = H1(ID)xy. Return S KID = (S KID,1, S KID,2) to
AI . Finally, add

(ID, sID, S KID) = (ID, (⊥, y), (S KID,1, S KID,2))

to the “query-answer” list.
• Request-Public-Key. When AI requests ID’s public key,
BI also submits it to its own Request-Public-Key o-
racle and obtains the response PKID,1. Then check if
(ID, sID) = (ID, (⊥, y)) appears in the “query-answer” list.
If it is, obtain this y. Otherwise, randomly choose y

$
←− Z∗q.

Compute PKID,2 = hy and return PK = (PKID,1, PKID,2) to
AI . Finally, store

(ID, sID, PKID) = (ID, (⊥, y), (PKID,1, PKID,2))

into the “query-answer” list.
• Replace-Public-Key. If AI replaces some

PKID = (PKID,1, PKID,2)

with another value

PK′ID = (PK′ID,1, PK′ID,2),

thenBI submits (ID, PK′ID,1) as his public-key replacement
query on PKID,1. Then record (ID, PKID, PK′ID) into the
“query-answer” list.

• Signing-Queries. For the signing query (ID, PKID, id, v),
BI first checks if (ID, S KID) appears in the “query-answer”
list.

– If it is not, submit ID to his own Extract-Private-
Key oracle and obtain S KID,1. Then choose y

$
←− Z∗q

and compute S KID,2 = H1(ID)xy. Add

(ID, S KID) = (ID, (S KID,1, S KID,2))

to the “query-answer” list.
– Else, recover S KID from the “query-answer” list.

Then perform the remaining steps in Sign using this S KID.
Note that, if the public key PKID is replaced by another
one PK′ID, then AI has to submit the corresponding secret
value s′ID according to the stipulation of our security
model. Now, BI can still compute the full secret key S KID

by querying the partial private key PPID,1 and combining
it with s′ID. Hence, the simulations for signatures in this
case are still correct.

Finally, AI submits a tuple of

(ID∗, PKID∗ , id∗, v∗,Q∗),

where PKID∗ = (PKID∗,1, PKID∗,2), Q∗ = (w∗, σ∗1, σ
∗
2, s
∗). Then BI

outputs (
ID∗, PKID∗,1, (id∗, w∗), σ∗1

)
as his own forgery.

If AI’s output is a successful Type 1 forgery, then it holds that

1← CL-Verify(ID∗, PKID∗,1, (id∗, w∗), σ∗1),

and this id∗ does not appear in the “query-answer” list as a
signature query. Therefore, BI’s output is a successful forgery for
the CLS scheme.

Next, we introduce the construction of BI when b = 1.
Concretely, BI will attack on the CDH assumption on group G1

by using AI as a subroutine. Given the tuple (q,G1, g, g
a, gb), BI

wants to compute and output gab.

First, choose a bilinear map e : G1 × G1 → G2, x
$
←− Z∗q, and

set h = gx. Then run

(params′,msk′)← CL-Setup(λ),

and give
params = (q, g, h, e,G1,G2, params′)

to AI . Moreover, he also initializes four lists LH1 , LH2 , L, and
“query-answer” lists, which will be used to respectively store
AI’s H1-query, H2-query, identifiers in signing-queries, and other
query-answer pairs.

• H1-Hash Queries. Without loss of generality, we assume
that the identity ID∗ (in the Type 2 forgery) has been
queried to H1-oracle when the adversary AI outputting
the final forgery, and AI will (in)directly make qH1 times

H1-oracle queries. Then BI randomly choose η
$
←− [qH1 ],

which will be a guess that ID∗ was queried to H1-oracle
in the η-th query. For the k-th query IDk, BI answers as
follows.

– If k , η, randomly choose tk
$
←− Z∗q, set

H1(IDk) = gtk ,

and store (IDk,H1(IDk), tk) to the list LH1 .
– If k = η, set H1(IDη) = gb and store(

IDη,H1(IDη),⊥
)

to LH1 .



9

• H2-Hash Queries. For the input (id, ID, PKID, j) to H2-
oracle, BI randomly chooses α j, β j

$
←− Z∗q and computes

H2(id, ID, PKID, j) = (gb)α jgβ j = gbα j+β j .

Return it to AI and add(
(id, ID, PKID, j), gbα j+β j , α j, β j

)
to LH2 .

• Extract-Partial-Private-Key. If AI submits ID to this
oracle, BI checks if (ID, PPID) appears in the “query-
answer” list. If it is, recover PPID. Otherwise, run

PPID,1 ← CL-Partial-Private-Key-Extract(msk′, ID),

and query ID to H1-oracle. Then compute

PPID,2 = H1(ID)x,

and return (ID, PPID) = (ID, (PPID,1, PPID,2)) to the ad-
versary. Finally, store (ID, PPID) to the “query-answer”
list.

• Extract-Private-Key. For the queried ID, BI obtains PPID

by querying it to the above Extract-Partial-Private-Key
oracle. Assume ID is the k-th query to H1-oracle. If k = η,
stop the simulation. Otherwise, he runs

sID,1 ← CL-Set-Secret-Value(ID)

and randomly chooses sID,2 := yk
$
←− Z∗q. Compute

S KID,1 ← CL-Set-Private-Key(sID,1, PPID,1),

and
S KID,2 =

(
PPID,2

)yk = gtk xyk .

Finally, return S K = (S KID,1, S KID,2) to AI and add

(ID, PPID, sID, S KID) =
(
ID, PPID, (sID,1, sID,2), S KID

)
to the “query-answer” list.

• Request-Public-Key. When AI requests the public key
of ID, BI queries ID to H1-oracle. Assume ID is the k-
th query to H1-oracle. Then check if (ID, sID) is in the
“query-answer” list. If it is, recover sID. Otherwise, run

sID,1 ← CL-Set-Secret-Value(ID)

and randomly choose yk
$
←− Z∗q for k , η. Compute

PKID,1 ← CL-Set-Public-Key(sID,1),

and

PKID,2 =

{
gyk x, k , η;
(ga)x, k = η.

Finally, return PKID = (PKID,1, PKID,2) to AI and add

(ID, sID, PKID) = (ID, (sID,1, yk/⊥), PKID)

to the “query-answer” list.
• Replace-Public-Key. WhenAI replaces PKID with PK′ID,
BI updates it in the “query-answer” list.

• Signing-Queries. For the signing query (ID, PKID, id, v),
BI first obtains the private key S KID by querying ID to the
Extract-Private-Key oracle, which can be done only when
k , η. If k = η, only S KID,1 can be correctly generated but
the second part of private key S KID can not be calculated.

Hence, the simulation is divided into the following two
cases.

– k , η. If (ID, PKID, id) does not appear in the list
L, BI randomly chooses r

$
←− Z∗q, set w = gr and

compute

σ1 ← CL-Sign(ID, PKID,1, S KID,1, (id, w)).

Add (ID, PKID, id, (r, w, σ1)) to L. Otherwise, re-
trieve (r, w, σ1) from L.
Next, he chooses s

$
←− Z∗q, and computes

σ2 =
(
S KID,2

)∑N
j=1 v jH1(ID)s ·

N∏
j=1

H2 (id, ID, PKID, j)v j


r

according to the foregoing hash answers for k , η.
Then return Q = (w,σ1, σ2, s) to the adversary.

– k = η. If (ID, PKID, id) does not appear in the list
L, BI randomly chooses r

$
←− Z∗q, set w = (ga)r = gra

and compute

σ1 ← CL-Sign(ID, PKID,1, S KID,1, (id, w)).

Add (ID, PKID, id, (r, w, σ1)) to L. Otherwise, re-
trieve (r, w, σ1) from L.
Then compute

s = −
1
r

x
∑

v j −
∑

α jv j, and σ2 = w
∑
β jv j .

Return the signature Q = (w,σ1, σ2, s) to AI .
It can be verified that Q is a correct signature for v.
In fact, we know

1← CL-Verify(ID, PKID,1, (id, w), σ1),

and(
S KID,2

)∑N
j=1 v j

H1(ID)s ·

N∏
j=1

H2 (id, ID, PKID, j)v j


ra

=
(
gabx

)∑ v j
(
gbs ·

∏
g(α jb+β j)v j

)ra

=
(
gabx

)∑ v j
(
gbs · gb

∑
α jv j · g

∑
β jv j

)ra

= gab(x
∑
v j+rs+r

∑
α jv j) · (gra)

∑
β jv j

= w
∑
β jv j

= σ2.

Finally, when AI outputs its forgery

(ID∗, PKID∗ , id∗, v∗,Q∗),

where Q∗ = (w∗, σ∗1, σ
∗
2, s
∗). If ID∗ , IDη, then BI outputs ⊥. Else,

he can solve the CDH problem in G1 from AI’s Type 2 forgery.1

In particular, if AI’s output is a successful Type 2 forgery, then it
holds that

1← CL-Verify(ID∗, PKID∗,1, (id∗, w∗), σ∗1),

e(σ∗2, g) = e
(
H1(ID∗), PKID∗,2

)∑N
j=1 v

∗
j ·

e

H1(ID∗)s ·

N∏
j=1

H2 (id∗, ID∗, PKID∗ , j)v
∗
j , w∗

 , (15)

1. The probability of ID∗ = IDη equals to 1/qH1 since the choosing of η is
hidden in AI’s view.



10

and id∗ equals to some id0, which is the identifier queried byAI to
the signature oracle. Let (r, w) be the item stored in L for id0. Then
we can know that w∗ = w = gra. (If w∗ , w, then ((id∗, w∗), σ∗1)
will be a forgery for the underlying CLS scheme CLS w.r.t. ID∗

and PKID∗ .)
From (15), we know that

e(σ∗2, g) = e
(
H1(ID∗), PKID∗,2

)∑N
j=1 v

∗
j ·

e

H1(ID∗)s ·

N∏
j=1

H2 (id∗, ID∗, PKID∗ , j)v
∗
j , w∗


= e

(
gb, gax

)∑ v∗j
· e

(
gbs ·

∏
(gα jb+β j )v

∗
j , gra

)
= e

(
gabx

∑
v∗j , g

)
· e

(
gabrs+abr

∑
α jv
∗
j+ra

∑
β jv
∗
j , g

)
= e

(
gab

(
x
∑
v∗j+rs+r

∑
α jv
∗
j

)
w

∑
β jv
∗
j , g

)
.

According to the non-degenerate property of bilinear map, it
holds that

σ∗2 = gab
(
x
∑
v∗j+rs+r

∑
α jv
∗
j

)
w

∑
β jv
∗
j .

If

s , −
∑

α jv
∗
j −

1
r

x
∑

v∗j , (16)

or equally,

x
∑

v∗j + rs + r
∑

α jv
∗
j , 0,

then we can obtain

gab =

(
σ∗2

w
∑
β jv
∗
j

) 1
x
∑
v∗j +rs+r

∑
α jv
∗
j
,

which solves the CDH problem in G1. The event

s = −
∑

α jv
∗
j −

1
r

x
∑

v∗j

occurs with probability 1/q, which can be bounded using a similar
technique as in [7], [20], and hence is omitted here.

Part 2. Let AII be an adversary who attacks on the scheme CLHS
in Game-II and “stands for” a malicious KGC. Since the bounding
of AII’s advantage is extremely similar to that of AI , we only
present the basic ideas and the details are omitted.

Similarly, we need to construct another adversary BII to attack
on the security of CLS or the CDH assumption by using AII as
a subroutine, which is decided by AII’s forgery type. If AII’s
output is a Type 1 forgery, then BII will attack on CLS and hence
simulate the environments for AII by using the master key msk′

of CLS and the oracles he should obtain in Game-II of Section
2.4. Otherwise, he will attack on the CDH assumption in G1. In
this case, we remark that the whole master key msk = (msk′, x)
is generated by himself and hence he can correctly return msk to
AII . After that, he respectively “embeds” ga, gb in the Request-
Public-Key and the H1-oracle queries in a same way as that of Part
1. The remaining parts are also routine.

Combining the above Part 1 and Part 2 as well as the conditions
in Theorem 1, we know that our proposed scheme CLHS is secure.
This ends the proof of Theorem 1.

Fig. 5. Time for Sign on vector v with different dimensions.

Fig. 6. Time for Verify on vector v with different dimensions.

4 Performance Analysis

In this section, we consider the efficiency of our proposed scheme
in Section 3. In particular, we try to implement it within the frame-
work of “Charm” [2]. Note that a normal certificateless signature
scheme is needed, and hence we choose the one suggested by
Zhang et al. in [27]. Moreover, we chooses the 512-bit SS elliptic
curve from pairing-based cryptography (PBC) library [21] as the
basis of whole scheme. All the experiments are run on Intel Core
i5-6200U CPU @2.3GHz and 2GB RAM running Ubuntu 14.04
LTS 64-bit and Python 3.4.

Here, we only give the implementations of the algorithm-
s Partial-Private-Key-Extract, Set-Private-Key, Sign
and Verify, in which the prior two algorithms are irrelevant to
the dimension of the signed vector. After choosing 100 different
identities IDs, we obtain the average times for extracting partial
private key and generating private key respectively equal to 11.38
ms and 9.24 ms.

For the algorithms Sign and Verify, the dimension of the
vector v increases from 10 to 100. Each instance is repeated 100
times and an average time is calculated. Then the time consuming
for them can be found in Fig. 5 and Fig. 6, respectively.

From the running time of those algorithms, we know that our
proposed scheme is practical and hence is suitable for network
coding.



11

5 Conclusions
In this paper, we first give the description of certificateless homo-
morphic signature scheme and introduce its security model. By
revising identity-based homomorphic signature, we naturally ob-
tain a construction of certificateless homomorphic signature. Then
we present the detailed security proof for it and its performance
analysis.

Acknowledgment
This work is supported in part by National Natural Science Foun-
dation of China (No. 61602061; No. 61672059; No. 61802392;
No. 61772520; No. 61772514), and in part by National Key R&D
Program of China (No. 2017YFB1400700).

References
[1] R. Ahlswede, N. Cai, S. Li, et al., “Network Information Flow,” in “IEEE

Transactions on Information Theory”, vol. 46(4), pp. 1204-1216, 2000.
[2] J. A. Akinyele, C. Garman, I. Miers et al., “Charm: A Framework

for Rapidly Prototyping Cryptosystems,” in Journal of Cryptographic
Engineering, vol. 3, no. 2, pp. 111-128, 2013.

[3] S. Al-Riyami, K. Paterson, “Certificateless Public Key Cryptography,” in
ASIACRYPT’2003, pp. 452-473, 2003.

[4] N. Attrapadun, B. Libert, “Homomorphic Network Coding Signatures in
the Standard Model,” in PKC, vol. 6571, pp. 17-34, 2011.

[5] D. Boneh, D. Freeman, “Homomorphic Signatures for Polynomial Func-
tions”, in EUROCRYPT’2011, pp. 149-168, 2011.

[6] Dan Boneh, D. Freeman, “Linearly Homomorphic Signatures over Binary
Fields and New Tools for Lattice-Based Signatures,” in PKC. Berlin,
Germany: Springer, vol 6571, pp. 1-16, 2011.

[7] Dan Boneh, D. Freeman, J. Katz, et al., “Signing a Linear Subspace:
Signature: Signature Schemes for Network Coding,” in PKC. Berlin,
Germany: Springer, vol. 5443, pp. 68-87, 2009.

[8] D. Catalano, “Homomorphic Signatures and Message Authentication
Codes,” in SCN’2014, LNCS 8642, pp. 514-519, 2014.

[9] J. Chang, H. Dai, M. Xu, et al.,“Security Analysis of a TELSA-Based
Homomorphic MAC Scheme for Authentication in P2P Live Streaming
System,” in Security and Communication Networks, vol. 9(16), pp. 3309-
3313, 2016.

[10] J. Chang, Y. Ji, M. Xu, et al., “ General Transformations from Single-
Genearation to Multi-Generation for Homomorphic Message Authenti-
cation Schemes in Network Coding,” in Future Generation Computer
Systems, vol. 91, pp. 416-425, 2019.

[11] J. Chang, H. Ma, A. Zhang, M. Xu, and R. Xue, “RKA Security of
Identity-Based Homomorphic Signature Scheme,” in IEEE Access, vol. 7,
pp. 50858-50868, 2019.

[12] W. Chen, H. Lei, K. Qi, “Lattice-Based Linearly Homomorphic Signa-
tures in the Standard Model,” in Theoretical Computer Science, vol. 634,
pp. 47-54, 2016.

[13] M. Choudary Gorantla, A. Saxena, “An Efficient Certificateless Signature
Scheme,” in Computational Intelligence and Security, pp. 110-116, 2015.

[14] X. Huang, Y. Mu, W. Susilo, D. Wong, and W. Wu, “Certificateless
Signature Revisited”, in ISC’2007, pp. 308-322, 2007.

[15] C. Gkantsidis, P. Rodriguez, “Network Coding for Large Scale Content
Distriubtion,” in IEEE INFOCOM’2005, pp. 2235-2245, 2005.

[16] R. Johnson, D. Molnar, D. Song, “Homomorphic Signature Schemes,” in
CT-RSA, vol. 2271, pp. 244-262, 2002.

[17] A. Karati, H. Islam, M. Karuppiah, “Provably Secure and Lightweight
Certificateless Signature Scheme for IIoT Environments,” in IEEE
Transactions on Industrial Informatics, to appear, DOI: 10.1109//TI-
I.2018.2794991.

[18] E. Kehdi and B. Li, “Null Keys: Limiting Malicious Attacks via Null
Space Properties of Network Coding,” in Proc. IEEE INFOCOM, 2009,
pp. 1224-1232.

[19] Q. Lin, J. Li, Z. Huang, et al., “A Short Linearly Homomorphic Proxy
Signature Scheme”, in IEEE ACCESS, vol. 6, pp. 12966-12972, 2018.

[20] Q. Lin, H. Yan, Z. Huang, et al., “An ID-Based Linearly Homomorphic
Signature Scheme and Its Application in Blockchain,” in IEEE ACCESS,
vol. 6, pp. 20632-20639, 2018.

[21] B. Lynn, “The Standard Pairing Based Crypto Library,” in
http://crypto.standford.edu/pbc.

[22] D. Petrovic, K. Ramchandran, J. Rabaey, “Overcoming Untuned Radios
in Wireless Networks with Network Coding,” in IEEE Transactions on
Information Theory, vol. 52(6), pp. 2649-2657, 2006.

[23] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” In
Crypto’1984, vol. 84, pp. 47-53, 1984.

[24] Y. Sun, F. Zhang, “Secure Certificateless Encryption with Short Cipher-
text,” in Chinese Journal of Electronics, vol. 19(2), pp. 313-318, 2010.

[25] F. Wang, Y. Hu, B. Wang, “Lattice-Based Linearly Homomorphic Signa-
ture Scheme over Binary Field,” in Science China Information Sciences,
vol. 56(11), pp. 1-9, 2013.

[26] X. Wu, Y. Xu, C. Yuen, et al., “A Tag Encoding Scheme against Pollution
Attack to Linear Network Coding,” in IEEE Transactions on Parallel and
Distributed Systems, vol. 25(1), pp. 33-42, 2014.

[27] Z. Zhang, D. Wong, J. Xu and D. Feng, “Certificateless Public-Key
Signature: Security Model and Efficient Construction,” in ACNS’2006,
LNCS 3989, pp. 293-308, 2006.

[28] Y. Zhu, B. Li, and J. Guo, “Multicast with Network Coding in Appli-
cation Layer Overlay Networks,” in IEEE Journal of Selected Areas in
Communications on Recent Advances in Service Overlay Networks, vol.
22(1), pp. 107-120, 2004.


