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Abstract

We suggest an alternative method of generating groups of unknown order for constructions such as
cryptographic accumulators, by using the Jacobian groups of hyperelliptic curves (especially of genus 3).
We propose that this construction is more efficient in practice than other proposals such as the use of
ideal class groups of imaginary quadratic fields. We suggest that both the group operation and the size
of element representation is an improvement over class groups. We also offer potential parameter choices
for security with respect to best current algorithms for calculating the order of these groups.

1 Introduction

Groups of unknown order have several applications, such as in delay functions [BBF18] and cryptographic
accumulators. Accumulators are a construction which allow efficient representation of a set of elements in
a much smaller (ideally constant) size than the set itself. Given an accumulator, a membership witness
is used to prove that an element is indeed a part of the set represented - with appropriate soundness and
completeness properties. Some accumulators also provide additional functionality such as dynamic insertion
of new elements into the underlying set, deletions of elements, and non-membership proofs.

Accumulators have attracted attention in recent years due to their potential in blockchain situations. Specif-
ically, there have been proposals to represent the current state of the bitcoin blockchain as a small size
accumulator rather than as an unbounded set of unspent transaction outputs (UTXOs) [Dry19, BBF19].
Spending of a UTXO would then require a proof that the UTXO is indeed in the accumulator.

One popular construction is known as the RSA accumulator, where an odd prime p can be accumulated
by raising the current state of the accumulator Ai = AS

0 to that prime power, producing a new accumu-
lator Ai+1 = Ap

i . The membership of p in Ai+1 is witnessed by Ai (membership verification is done via

Ap
i

?
= Ai+1). An actor who knows the order of the empty accumulator as a group element, can efficiently

create membership proofs for elements not contained in the accumulator, a violation of the accumulator
security. Thus a group of unknown order is required. Previous suggestions have discussed using a trusted
setup to generate such a group of unknown order (i.e. generating an RSA modulus with secret factorisation),
or using class groups of imaginary quadratic orders.

In this work we propose an alternative method of obtaining a group of unknown order, without trusted
setup, using hyperelliptic curves of genus 2 or 3. This construction is more efficient than using class groups,
both in size of element representation (a factor of 4) and efficiency in computing the group operation. We
acknowledge that there are potentially polynomial-time algorithms to compute the group order of Jacobians
of genus 2 and 3 curves [Pil90, GH00]. However, there is evidence that these algorithms are not practical for
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cryptographically-sized parameters and so these groups may be secure for the applications we have in mind.
Both genus 2 and 3 curves can be considered, but we suggest that genus 3 are a safer choice since the point
counting algorithms become more complex in that case.

1.1 Acknowledgements

We would like to thank Dan Boneh and Benjamin Wesolowski for their valuable comments, feedback and
suggestions on this work.

2 Preliminaries

Notation. The Õ(x)-notation is defined as Õ(x) = O((log x)c · x) for some constant c.

2.1 Groups of unknown order

As the name implies, a group of unknown order is a group whose order should be infeasible to calculate. The
order of the group somehow acts as secret information, which is known either to the creator of the group
(trusted setup), or to no-one. In order to be useful, the group operation should be able to be computed
efficiently, and it should be possible to represent elements of the group in a practical form. Despite not
knowing the order of the group, it should also be possible to generate random elements in the group.

An additional requirement often used follows directly from Wesolowski’s [Wes19] adaptive root assump-
tion: that it should be infeasible to find any non-trivial element in the group with known order. More
generally, it should be infeasible to compute random roots of any non-trivial element in the group. This
assumption is relied upon in constructions such as the Proof of Exponentiation (PoE). We briefly recall this
construction, as it will be a useful example later.
We have as parameters a group, G, chosen according to security parameter λ. The Proof of Exponentiation
takes as input u,w ∈ G and x ∈ Z, and aims to prove that ux = w. It proceeds interactively with a
challenge-response format, although can be made non-interactive (see [Wes19] Appendix D for details).

1. The verifier sends a random prime ` ∈ Primes(λ) to the prover.

2. The prover computes q = bx/`c and sends Q = uq ∈ G to the verifier.

3. The verifier computes r = x mod `, and accepts if Q`ur = w

In order to illustrate the necessity of the adaptive root assumption for security of this protocol, we shall take
the example of −1 ∈ G (a known element of order 2). Then for any valid proof that ux = w, we can also
easily generate a false proof of the contradictory statement ux = −w, by setting Q′ = −1 · Q in the proof.
Then, because ` is odd, −1 ·Q`ur = −w will hold despite the fact that ux 6= −w. That is why when using
the RSA group, it is important to take it as a quotient over 〈−1〉.

Previous work with groups of unknown order has primarily centred around two ideas - RSA groups [RSW96],
and class groups of imaginary quadratic orders [BW88]. The former is a group of the form (Z/NZ)∗ for N
the product of two primes pq. Calculating the order of this group is equivalent to factorising N . The main
drawback of this method is that it requires a trusted setup to generate N (or at least trust that the factori-
sation of N being used is not known to anyone / has been lost). Class groups do not require a trusted setup
to generate, thus have received a lot of attention (for example [Wes19, BBF19, BH01]), and are discussed
more below in section 2.3.

Brent [Bre00] briefly mentioned using the Jacobian of a hyperelliptic curve as a group of unknown or-
der. This follows work by Koblitz [Kob89] on the use of Jacobians as groups in which the discrete logarithm
problem is infeasible. Unlike the use of class groups of imaginary quadratic fields, this Jacobian idea has
received very little further attention.
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2.2 Accumulators

Accumulators were originally introduced by Benaloh and de Mare [BdM94], who defined the RSA accumu-
lator. This accumulator was made dynamic by Camenisch and Lysyanskaya [CL02], and universal through
the work of [LLX07]. See also [BP97].

An accumulator should be representable with small, ideally constant size, relative to the size of the set
they represent. A membership witness for an element x allows anyone with the accumulator to verify that
x is indeed in the accumulator. There are a number of additional properties which accumulators may have,
giving flexible use in various situations. For example, a dynamic accumulator is one which allows inser-
tion and deletion of accumulated elements, whereas a static accumulator supports neither operation (the
set must be fixed at the start). A universal accumulator is one which also supports proofs of non-membership.

When discussing the security of cryptographic accumulators, a few important properties shall be defined.
An accumulator is complete if for any instance of the accumulator A, any element x and any valid mem-
bership or non-membership proof (if x is in A or not, respectively) for x in A, verification of the proof with
x and A returns true. An accumulator is sound if for any instance of the accumulator A and element x
not in the accumulator, it is infeasible for an adversary to generate an accepting proof of membership for
x in A, and also for an element y which is in A, it is infeasible for an adversary to generate an accepting
proof of non-membership for y in A. Finally we define undeniability which is often used to define a secure
accumulator:

Definition 1 (Undeniability) An accumulator is undeniable if, for any given empty accumulator A0 gen-
erated with security parameter λ, and any probabilistic polynomial time adversary A, the probability that A
can produce a new accumulator state A, an element x, and both a proof of membership for x in A and a
proof of non-membership for x in A, is negligible in λ.

Lipmaa [Lip12] proposed the static root accumulator as an alternative to the RSA accumulator, without
a trusted setup, using groups of unknown order (the class group of an imaginary quadratic field). Further
work expanding on this idea of unknown order groups was done by Boneh et al. [BBF19], who propose a
dynamic accumulator with efficient (non)membership proof aggregation using groups of unknown order.

It is possible to use the quotient group (Z/NZ)∗/{−1, 1} where N is an RSA modulus, to construct an
accumulator. But this is only secure if a trusted setup process is used to generate N in such a way that no
adversary knows it. Trusted setup is an undesirable property in some settings (including the bitcoin UTXO
setting), hence the proposals of class groups.

2.3 Ideal and form class groups

The ideal class group of an imaginary quadratic field has been suggested in the literature as a suitable group
of unknown order. We now recall some background theory on these groups. Good references for this section
include Cohen [Coh10] and Cox [Cox89].

An imaginary quadratic field is an algebraic extension

K = Q(
√
d) = {a+ b

√
d | a, b ∈ Q}

where d < 0 is a square-free integer of degree two (i.e. d satisfies a quadratic form f(d) = 0). The dis-
criminant of K is ∆ = d if d ≡ 1 (mod 4), or ∆ = 4d otherwise (∆ ≡ 0, 1 (mod 4) since only 0 and 1 are
quadratic residues mod 4). Also, the ring of integers OK is generated by {1, ω}, where ω = 1

2 (1 +
√
d) when

d ≡ 1 (mod 4) and ω =
√
d otherwise.

Denote by JK the group of non-zero fractional ideals of OK . Let PK < JK be the subgroup of non-zero
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principal fractional ideals. Then the ideal class group is the quotient group Cl(OK) = JK/PK . This is the
abelian group of fractional ideal classes under the equivalence relation a ∼ b iff (α)a = (β)b for some princi-
pal ideals (α), (β). We denote the class of an ideal a as [a]. The identity of the group is [(1)], and the order
of this group is the class number of K (it is always finite when constructed with a ring of integers such as OK).

In practice, it is most efficient to represent Cl(OK) using binary quadratic forms. The ideal class group
of an imaginary quadratic field of discriminant ∆ < 0 is isomorphic to the form class group of the same
discriminant. We shall denote by (a, b, c) the binary quadratic form

(a, b, c) = ax2 + bxy + cy2 ∈ Z[x, y]

Its discriminant is ∆ = b2 − 4ac. Note that for Cl(∆), we can represent forms using only two elements
(a, b) because then c is uniquely determined by the equation c = (b2 − ∆)/4a. A form is positive defi-
nite if a > 0. Just as in the ideal class group, we have an equivalence relation on these quadratic forms.

Two forms f, g are considered equivalent, f ∼ g, if there exists a matrix

(
α β
γ δ

)
∈ SL2(Z) such that

f(x, y) = g(αx + βy, γx + δy). Equivalent forms always have the same discriminant so the class group of
forms under this relation, denoted Cl(∆), is well defined.

We represent each equivalence class in Cl(∆) using the unique reduced form in that equivalence class.
Lagrange, and later Gauss and then Zagier, gave algorithms for finding an equivalent reduced form for any
binary quadratic form. A reduced form (a, b, c) of discriminant ∆ is one where |b| ≤ a ≤ c, and if |b| = a or
a = c, then b ≥ 0 (Definition 5.3.2 of [Coh10]).

The group law in the form class group is known as composition of forms, and is due to Gauss (it corre-
sponds exactly to multiplication of ideals in Cl(OK), defined by ab = {

∑
aibi | ai ∈ a, bi ∈ b}). We shall not

give the algorithm explicitly here, the reader can consult [Coh10] for more information. The group law on
the classes is well-defined but does not usually result in a reduced form, so reduction is an additional step.
The identity in Cl(∆) is the equivalence class of the principal form ((1, 0,−k) when ∆ = 4k, (1, 1, k) when
∆ = 4k + 1). Refer to Proposition 5.3.3 of [Coh10].

2.3.1 Cryptographic use

The order of a class group of a negative prime discriminant ∆, where ∆ ≡ 1 (mod 4) and ∆ is sufficiently
large, is believed to be difficult to compute. Thus simply by selecting a suitable ∆, the class group can be
used as a group of unknown order without a trusted setup. This is the idea presented by Wesolowski [Wes19].
In practice, as discussed above, the equivalent form class group Cl(∆) would be used rather than computing
with ideals.

The use of class groups in cryptography was first suggested by [BW88]. A sub-exponential algorithm for
computing the order of the class group was given by [HM89] - for a class group of discriminant ∆, the com-
plexity is L|∆|(1/2). To generate a class group of unknown order, we must randomly select an appropriate
∆ value, and then give a chosen element in the group which we shall treat as a generator (it is not possible
to know if it really is a generator of the whole group or not, which we shall discuss below).

2.4 Hyperelliptic curves

Good references for the theory of hyperelliptic curves are [MWZ96] and [Gal12].

Let k be a field with algebraic closure k. A hyperelliptic curve C of genus g is a curve of the form
y2 + h(x)y = f(x), where h, f ∈ k[x], h has degree at most g, and f is monic with deg f = 2g + 1
(we ignore the other general case where deg f = 2g + 2). C has no singular points, that is, no points
(u, v) ∈ k×k that satisfy both C and its partial derivatives. For an extension field K/k, we denote by C(K)
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the set of points {P |P ∈ K × K} satisfying C (the finite points), together with the projective point at
infinity ∞ ∈ P 2(k). Unlike (genus 1) elliptic curves, these points do not form a group. Instead, the group
we use is the class group of degree 0 divisors of the curve, also known as the Jacobian.

For a point P , recall that the opposite point P̃ = (x,−y − h(x)). The opposite of the point at infinity
is itself, ∞ = ∞̃. Points which are their own opposite in this way are special, otherwise they are ordinary.

The coordinate ring of a hyperelliptic curve C over K is the quotient ring K[C] = K[x, y]/(y2+h(x)y−f(x)),
where the modulus is the ideal generated by the equation of C. Elements of k[C] (an integral domain) are
called polynomial functions on C. Every polynomial function G(x, y) can be written in the form a(x)−b(x)y,
a, b ∈ k[x]. The conjugate of G, written as G, is a(x) + b(x)(h(x) + y). The norm N(G) = GG.

The function field K(C) of C over field K is the field of fractions of the coordinate ring K[C]. Take
R ∈ k(C) and P 6=∞ ∈ C(K). We say that R is defined at P if and only if there exists polynomial functions
G,H ∈ k[C] such that R = G/H and H(P ) 6= 0 (in this case, R(P ) = G(P )/H(P )).

A divisor on C is a formal sum of points D =
∑
mPP where mP = 0 for all but finitely many points

on C. The divisors form a group Div C. The degree of a divisor is degD =
∑
mP . The divisors of degree

zero Div0(C) is a proper subgroup of Div(C). A principal divisor is a divisor of the form (γ) =
∑

P∈C mPP

for a function γ ∈ k(C), where mP = ordP (γ) is the order of the zero or pole of γ at the point P . Denote by
P(C) the set of principal divisors of C. It is a fact that principal divisors have degree 0, so P(C) < Div0(C).
So we may define the quotient group

Jac(C) ∼= Div0(C)/P(C) (1)

This is known as the (degree 0) Picard group or Jacobian of C, also sometimes denoted by Pic0. Two divisors
D1, D2 ∈ Div0 are equivalent if D1 −D2 ∈ P(C). For each element in this group, it is possible to associate
to it a unique equivalent divisor in Div0(C) called a reduced divisor. It is these reduced divisors which
are used for computation in this group. A reduced divisor is one of the form D =

∑
miPi − (

∑
mi)∞,

where all the mi ≥ 0 and the points Pi are finite. If mP 6= 0 for some P , then either mP̃ = 0 if P is or-
dinary or mP̃ = mP = 1 if P is special. Finally,

∑
mi ≤ g. If all these conditions hold, the divisor is reduced.

Representing reduced divisors is done with Mumford representation [Mum07]. A reduced divisor is given
uniquely as a pair of polynomials 〈u(x), v(x)〉, where deg v < deg u ≤ g and u divides v2 + hv − f [Can87].
Specifically, the roots of u(x) are the x-coordinates of the points in the support of the divisor. The divisor
is prime if u(x) is irreducible over Fq.

If we have a curve C of genus g over the finite field of cardinality q, the Fq-rational points of the Jaco-
bian form a finite group of order bounded by (

√
q−1)2g ≤ #Jac(C) ≤ (

√
q+ 1)2g, by the Hasse-Weil bound.

To compute the group law on the elements of the Jacobian of a curve, Cantor gave an algorithm in
1987 [Can87]. See also [CL12]. More efficient explicit formulae have been given for genus 2 (see [Lan05])
and 3 (see [FWG07]).

On elliptic curves, it is well known that division polynomials exist for all n ∈ Z+, where the roots of
the n-th division polynomial are the points with order n, i.e. E[n]. The hyperelliptic curve analogue of
these polynomials are division ideals - homogenous ideals vanishing on the torsion subgroups. In this sense,
the genus one division ideals are the principal ideals generated by the n-division polynomials. But in gen-
eral genus, there does exist a system of equations for each ` whose solutions give points/divisors of order `
[Can94, CFA+05]. A useful result of [Abe18] is that in genus 3, the degrees of Cantor’s `-division polynomials
are bounded by O(`2).
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3 Security of genus 2 and 3 curves

In order for a group of unknown order to be useful in its named role, calculating the order of the group
should be infeasible. In the case of hyperelliptic curves, calculating the order of the Jacobian is equivalent to
computing the zeta function of the curve and thus to counting points on the curve (more information can be
found in [CFA+05]). We now survey some previous work in this area, in order to suggest feasible parameter
sizes for secure constructions. Note that if the DLP can be efficiently solved, then the group order can also
be calculated, because if we solve the DLP for xG = O (the discrete log of the identity with respect to the
group generator), then we find the order of the generator which is a divisor of the size of the group. Thus,
previous work on solving the DLP is also important here. See also the discussion by Avanzi, Thériault, and
Wang [ATW08].

For large genus, there exist sub-exponential attacks on the DLP, for example [Eng02]. However this does not
impact the small genus 2 and 3 case. Gaudry et al. [GTTD07] (and also Nagao [Nag04]) presents algorithms
for the discrete logarithm problem on low genus g curves, in time Õ(q2−2/g). This improves over [Gau00]
which gave an O(q2) algorithm, and the single large prime algorithm of [Thé03].

Theorem 1 (Theorem 1, [GTTD07]) Let g ≥ 3 be fixed. Let C be a hyperelliptic curve of genus g over
Fq such that the Jacobian group Jac(C) is cyclic. Then the discrete logarithm problem in Jac(C) can be
solved in expected time

Õ
(
q2− 2

g

)
as q tends to infinity.

This has better performance for genus 3 than “square root” (of the group order) type algorithms like Pol-
lard’s Rho algorithm with complexity Õ(q1.5). In genus 2, Pollard’s Rho algorithm is more efficient (Õ(q)).

The base field should be chosen with large prime characteristic, because for small characteristic, algorithms
such as that by Kedlaya [Ked01] are possible.

Smith [Smi09] gives a method of translating the DLP on a hyperelliptic curve into that on a non-hyperelliptic
curve for 18.57% of genus 3 curves. In these cases, the algorithm by Diem [Die06] can then be used to solve
the DLP in time Õ(q). Laine and Lauter [LL15] improve upon and examine this attack by Diem, including
analysis of the logarithmic factors involved, which they estimate to be (log2(q))2. They point out, however,
that the memory requirement for their attack is high - Õ(q3/4). See also [Lai15], which additionally discusses
ways to generate genus 3 curves which avoid isogeny attacks.

In previous work on generating secure hyperelliptic curves for cryptography, a focus was put on gener-
ating curves such that the order of the Jacobian had specific properties preventing known attacks. For
example, it should have a large prime factor, to avoid attacks such as Pohlig-Hellman. The largest prime
factor should also not divide qk−1 for small k (for example if the curve is supersingular), to avoid MOV-type
attacks [FR94]. Additionally, the curve should not have a p = char q order subgroup over Fp (it should not
be an anomalous curve) [Rüc99]. In the case of groups of unknown order, though, it is (by definition) not
possible to know whether the order is resistant to these attacks or not. But fortunately the smooth numbers
are very rare, so with very high probability a randomly generated hyperelliptic curve’s Jacobian will have a
large prime in its order factorisation. This is the same assumption that the security of ideal class groups of
unknown order rely on too [CL84].

There has been previous work done on Schoof-Pila-type [Sch85, Pil90] algorithms in genus 2, for exam-
ple by Gaudry [GH00, GS04]. The basic idea behind these algorithms is to compute elements of order `
using division polynomials/ideals, and then analyse the action of Frobenius on them, repeating this process
for multiple `. Often it becomes infeasible to perform this analysis for primes higher than some bound, after
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which an exponential baby-step giant-step algorithm is used to complete the algorithm. This work has not
been extended to genus 3, with [GH00] citing that in the g > 2 case, “the main difficulty is that it does
not appear possible to avoid manipulation of ideals.” Pitcher’s PhD thesis [Pit09] gave a Schoof-type point
counting algorithm on genus 2 with complexity O((log q)7). Gaudry and Schost [GS12] use an improved
algorithm following the approach of Pitcher (with improvements in the constant factors of the algorithm)
to find a curve of secure order in a 127-bit order field - a mixture of schoof-type and exponential BSGS
algorithms. In their experiments, they claim around 1,000 CPU hours to compute the order of a curve over
this field.

Also worth mentioning is the work by Sutherland in his PhD thesis [Sut07]. It uses generic group algo-
rithms in an o(

√
N) time algorithm for computing the order of elements in a group. This can then be used

to probabilistically identify the exponent of a group, and these methods were used to compute the structure
of some class groups. However this algorithm only performs well if the order of the group is very smooth,
which we do not expect or desire in a group of unknown order.

Previous work has been concerned with the generation of a curve with a secure, known order, for example
[GS12] and [HSS01]. [BCHL13] states that “one significant hurdle for genus 2 cryptography to overcome is the
difficulty of generating secure genus 2 curves: that is, such that the Jacobian has a large prime or almost prime
group order.” One such method, for example, is using complex multiplication (CM). Weng [Wen01, Wen03]
discuss ways to generate hyperelliptic genus 2 and 3 curves with a prescribed number of Fq-rational points
on its Jacobian. Because we wish to trustlessly ensure that the group order is unknown to all parties, these
methods should be avoided, and the curve should be generated in a nothing-up-my-sleeve type manner as
discussed in Section 4. In this use case, as long as the order is infeasible to compute, it does not matter
exactly what it is.

Thus to be fairly conservative, it would be safe to assume an Õ(q) algorithm for finding the order of the
group in the genus 3 case.

3.1 Constructing points of known order

It may be possible to construct points of small, known order on hyperelliptic curves using division ide-
als. Thus the adaptive root assumption is not met. For example, in the same way that −1 would allow
PoE(g,−y, x) to validate in the multiplicative RSA group [Wes19], here a point of order 2, P , would allow
a false proof of PoE(G, Y + P, x) where [x]G = Y .

Assuming there exists no feasible Schoof-type algorithm for counting points on genus 3 curves as above,
we implicitly assume that it becomes infeasible to construct points of order larger than some bound s:

Assumption 1 For a hyperelliptic curve of genus 2 or 3 over a finite field Fp for sufficiently large p, we
assume there exists an s ∈ Z>0 such that it is infeasible for anyone to compute roots of the `-th division
polynomials for ` > s.

With respect to Assumption 1 we suggest that the group [N ]Jac = {[N ]P |P ∈ Jac(C)}, where N = s! is a
smooth integer chosen to kill off all points of small order, is compatible with the adaptive root assumption.

Another important, related observation is that computing repeated divisions by 2 allows the computation of
a point of arbitrary 2k order. This is clearly coprime to all odd primes, so would allow a malicious prover to
easily to find `-th prime roots (given a point Q, find P such that `P = Q, ` an odd prime). Finding square
roots repeatedly will almost always cause the field of definition of these roots to blow up (requiring repeated
quadratic extensions) as this continues. By ensuring that the hyperelliptic curve generated was of the form
y2 = f(x) for f(x) irreducible above, we ensured that these square roots do not exist. But very similarly,
repeated powers of other small primes ≥ 3 can still possibly be calculated. Using the group [N ]Jac(C) will
certainly, with very high probability, kill off powers of these low primes dividing the group order. It could
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also possible to simply test for these repeated divisions during the curve generation procedure, allowing
parties to check for small factors of the group order (and then kill those off with a more tailored choice of N
above). It is a potential interesting open problem if it is possible to generate an easily verifiable proof that
a curve does not have any points of low order.

The issue now is that testing membership of an element in the group is not easy. The original point Y
is effectively a proof that [N ]Y lies in [N ]Jac because this can be easily verified. So Y should be sent instead
of [N ]Y in the protocol, and the verifier can perform the multiplication by N themselves. See Section 4 for
a illustrative example in the case of accumulators.

It is worth noting that the impact of being able to find small-order points is highly domain-specific. For
example, in the case of a VDF [Wes19, BBF18], to forge a false PoE even in the case that points of known
order can be found still relies on knowing the true result of the exponentiation. Thus, this would still require
computing the output of the VDF (although relying on a PoE would break the requirement that the VDF
output is unique). In the accumulator case, we need the strong RSA assumption rather than the adaptive
root assumption, which states that it should be hard to find chosen prime roots of an element (recall that
the membership witness of ` in A is the `-th root of A). This case can be addressed alternatively, simply
by disallowing the accumulation of small primes ` < s. Finding roots where ` > s is hard by Assumption 1
above. So here we do not even require the use of [N ]Jac(C).

The use of [N ]Jac can impact on efficiency in some ways, due to the extra multiplications required. This is
highly protocol-dependent, but in most cases, more than a few extra multiplications should not be needed.
For example, in the case of the PoE protocol below, the verifier only needs to perform one extra multipli-
cation by N during verification, compared to the original protocol in Jac(C). We suggest that this is still
efficient enough for practical usage.

3.2 Testing small divisors of orders with the Tate pairing

A good reference for the background of pairings on hyperelliptic curves is [GHV07].

If we can find points of known small order `, the Tate pairing can be used to learn information about
the order of other points - specifically whether they are divisible by ` or not.

Let k be a positive integer such that r|qk − 1, and let J be the Jacobian of a hyperelliptic curve over
Fqk . The reduced Tate pairing is a mapping

Tr : J [r]× J/rJ → µr

Where µr is the set of r-th roots of unity. If we have a point Q of small known prime order ` (i.e. Q ∈ J [`]),
then consider the `-th reduced Tate pairing T`. When paired with any other point P , we get T`(Q,P ) ∈ µ`.

Now if ` - Ord(P ), then P = `P ′ for some P ′, thus P ∈ `J . And if P ∈ `J , then T`(Q,P ) = 1 for
any Q ∈ J [`]. So certainly, if the order of P is not divisible by `, the pairing will give the identity. Equiva-
lently, a non-identity result from the pairing always implies the order of P is divisible by `.

Unfortunately, the converse is not so simple. t`(Q,P ) = 1 alone is not sufficient to imply that the or-
der of P is coprime to `. Rather than knowing only a single point Q of order `, to guarantee the converse
and prove the coprimality, it must be shown that t`(Qi, P ) = 1 for all Qi ∈ J [`]. Thus we require a basis
Q1, Q2 ∈ J [`] which we can test. If t`(Qi, P ) = 1 for both i = 1, 2, then the bi-linearity of the Tate pairing
implies it holds for all Q ∈ J [`], and thus that gcd(|P |, |Qi|) = 1.

Finally, we observe that t`(Q,P ) ∈ F∗qk , which as an extension, blows up as ` increases. So we assert
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that Assumption 1 still makes this an infeasible approach to learn any significant amount of information
about the orders of random points in the Jacobian, or any information at all in [N ]Jac.

4 Construction of accumulators from hyperelliptic curves

We suggest that hyperelliptic curves can be used as a more efficient alternative to the ideal/form class group
in situations where a group of unknown order is required. Here, we specifically propose this for the accu-
mulator use-case. After choosing appropriate genus (2 or 3) and order q of the base field Fq - which will
be discussed in Section 5 - a random non-supersingular hyperelliptic curve over that field can be generated
(see below). The Jacobian of this curve can be used as a group, while even the person generating the curve
cannot feasibly calculate the order of this group. Algorithms related to the calculation of the order are
discussed in the next section.

The construction proceeds as follows. First, a large enough prime p should be randomly chosen as the
order of the base field Fp. To define the curve itself, it suffices that the polynomial h(x) = 0 (i.e. the curve
will have the form y2 = f(x)), and the coefficients of f be randomly selected in Fp. If we ensure that f is
irreducible over Fp, it is guaranteed that the group will have no points of order 2.

After generating a random curve over Fp, we also require a chosen element of its Jacobian to act as a
generator point for the group of unknown order. This can be done in a very similar manner, choosing ran-
dom coefficients for u(x) as the first polynomial in the mumford representation of a divisor. It can then be
checked whether a polynomial v(x) exists which satisfies v2 − f (recovering v can be done in the same way
as if from the compressed form a divisor [HSS01]). Of course, the order of the randomly selected point will
also be unknown so we cannot know whether it does generate the full group or a subgroup of it. But as
discussed more below, there is a high probability that a randomly selected element will not have a low order
- so it will generate at least a large order subgroup of the Jacobian.

To ensure that not even the creator of the curve knows its order and that it was indeed generated ran-
domly, we suggest that the coefficients should be chosen in some deterministic “nothing up my sleeve” type
manner. This applies to both the function f(x) and the specially chosen divisor polynomial u(x). For exam-
ple, the coefficients can be taken from the hash of a certain string. The resulting group and generator should
then be groups whose order is unknown to all - a trustless setup. This can then be used in constructions
such as accumulators, VDFs, and so on. Some important security considerations are discussed in the next
section, notably concerning points of small or known order.

Overall, the generation of a new hyperelliptic curve is also relatively cheap. Therefore, just as in the
case of class groups, it should be feasible to generate a new group of unknown order for each new instance
of an accumulator or VDF if desired.

With respect to Assumption 1, the accumulator should use the group [N ]Jac(C) for the newly generated
hyperelliptic curve C. The operation of the accumulator within that group is standard, but some protocols
will need modification - for example, proofs may require an extra check that an element is indeed in the
group. We shall specifically focus on Wesolowski’s Proof of Exponentiation (PoE) [Wes19] for illustration,
but expect that other protocols and uses of the adaptive root assumption can similarly be modified.

We begin the PoE protocol with input U ∈ Jac(C), W ∈ [N ]Jac, and x ∈ Z, with the claim that [x][N ]U = W
in [N ]Jac.

1. Verifier sends a random prime (` > s) ∈ Primes(λ) to the prover.

2. Prover computes q = bx/`c and sends Q = [q]U ∈ Jac(C) to the verifier.
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3. The verifier computes r = x mod `, and accepts if Q ∈ Jac(C) and [N ]([`]Q+ [r]U) = W

Observe that this modified protocol is compatible with Assumption 1. Specifically, given a valid proof of
[x][N ]U = W , in order to falsely prove [x][N ]U = W + P the prover has to be able to find [1/`]P for
whichever ` is chosen by the verifier. This may be possible if the order of P is known or if it is feasible
to compute the division polynomial. By Assumption 1, though, this becomes infeasible if ` > s, so even if
it is feasible to find points of known order or roots of elements in Jac(C), it is infeasible to do so in [N ]Jac(C).

Other than the use of a different group (and the above-mentioned additional checks of group membership),
the operation of the accumulator on the group is very similar to previous proposals.

5 Concrete parameter choices

With respect to the algorithms mentioned above, we shall now discuss choices of parameters for practical
security levels. The practicality of the above point counting/discrete logarithm algorithms has certainly
been debated, but we shall conservatively proceed assuming they can feasibly be used. The existence of
algorithms with certain time-complexities is allowable if we choose the parameters appropriately in concrete
situations. Despite the use of Õ complexity, for simplicity we will assume no logarithmic factors - which also
gives a more conservative analysis.

Choosing parameters q ∼ 2100 in the genus g = 3 case appears sufficient. This would result in the or-
der of the Jacobian of the curve being around 2300. The practical results from [LL15] suggest at this field
size, around 2113 field multiplications and 1.2 · 1014 TB of memory would be required to mount their attack
- even supposing the chosen genus 3 hyperelliptic curve could be mapped via [Smi09] to a non-hyperelliptic
one. The algorithm by [GTTD07] would give time complexity Õ(2133).

In the genus 2 case, q ∼ 2128 will give only around 49 bits of security on paper, according to the O(log7(x))
attack. Against such an algorithm, attaining 128-bit security would require an infeasibly large field order.
But rather than ruling out the use of genus 2 curves in high security situations entirely, we stress that this
is in the very worst case and ignores very large constant factors in the real runtime of such an attack In
practice the security is probably a lot better than this assumption, and there have not been any such large
scale computations reported. But even (optimistically) assuming this case has lower security, it could still
be useful for some applications.

Compared to class groups, to get a similar level of security against the sub-exponential L|∆|(1/2) algorithm,
a much larger negative prime discriminant of around 1208 bits would be required according to [HM00]. To
compare performance in practice, we generated random hyperelliptic curves of genus 3 over the finite field
Fp, p = 2101−69, and selected a random point as the generator point. We then ran basic timing experiments
in MAGMA for group operations. For the class groups, we used the open source rust implementation by KZen
Networks [KZe]. We used form groups of 996-bit negative prime discriminants in our tests (even smaller than
above) and randomly generated reduced forms as the generators. We found that for 100,000 group element
additions (point additions in the Jacobian, composition-then-reductions of quadratic forms), the hyperellip-
tic curve implementation in MAGMA performed around 28 times faster on average than the quadratic form test
(despite the security level difference). Of course, this is highly implementation dependent and optimisations
may be possible in both cases, but the result is in line with our claim that using a genus 3 hyperelliptic curve
is more practically efficient.

Because elements of the Jacobian are represented as a pair of polynomials 〈u, v〉 such that deg v < deg u < g,
the element can be stored concretely as just 5 coefficients of polynomials - a total of 5 elements of Fq. This
can be further reduced down to just 3 elements and 3 extra bits using the point compression of Hess, Seroussi,
and Smart [HSS01]. In that case that q ∼ 2100, this means elements can be stored in around 303 bits. On
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the other hand, representing a form or ideal class group can be done using two integers. A reduced form
implies that a ≤

√
|∆|/3 so for ∆ ∼ 21208 we have that a ∼ 2603 - so that elements are representable in

around 1206 bits. Hence we also propose that Jacobian elements are more compactly represented for the
same level of security.

We now come to concrete parameter choice suggestions for the bound s in Assumption 1. Because there has
been no previous work done on Schoof-type algorithms in genus 3 (due to the complexity of using division
ideals), we shall instead inspect progress in genus 2. Gaudry and Schost [GS12] in their 2012 work calculated
modular information for primes up to ` = 31. Memory restrictions prevented higher primes being used at
that time. This bound gave them around 30 bits of information when searching in a 127 bit field, giving a
cost of the BSGS step of around O(249). While no practical implementation beyond this has been presented
in the literature, Abelard’s PhD thesis [Abe18] discusses the feasibility of extending this work to higher
primes. Due to time complexity growing as Õ(`6 log q) and memory as Õ(`4 log q), it is in fact the running
time which becomes more of an issue than the memory. He states that in a 192-bit field, computation with
` = 53 could take around 1000 CPU days and would still result in a search space of ' 295 in the collision
step of the algorithm. Given the current understanding and previous work in genus 2, and considering the
inherent difficulty in performing similar work in genus 3, a bound such as s = 60 should thus be sufficient.
At this size, the memory and time constraints should be large enough to make computation infeasible. This
could even be raised to s = 70 or higher depending on the use-case.

Let us take s = 60 in order to make some concrete efficiency claims. The bit length of N = 60! is 273
bits. Consider the modified PoE from Section 4. The only performance impact the choice of s has is in the
final verification step, checking [N ]([`]Q + [r]U) = W . We observe that the choice of prime ` respects the
security parameter, so would perhaps be around the order of 100 or more bits, and r would be similar. So
the additional cost to the verifier is comparable to the existing cost of operation anyway. Thus we claim
that this should still be faster than using ideal class groups.

6 Conclusion

The trustless setup of accumulators is especially important in the stateless-blockchain setting, discussed by
Boneh, Bünz, and Fisch [BBF19]. Here, it is highly unfavourable to have a trusted setup, as the security
model of such systems discourages trust of any third party. Thus, an improvement to the practical efficiency
of the trustless setup case with groups of unknown order is a useful advancement in this setting. We propose
the use of Jacobian groups of genus 3 hyperelliptic curves as more efficient, practical alternatives in the
construction of unknown-order groups. This idea also applies to other constructions relying on such groups.
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[Sch85] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of computation, 44(170):483–494, 1985.

[Smi09] Benjamin Smith. Isogenies and the discrete logarithm problem in jacobians of genus 3 hyperel-
liptic curves,. Journal of Cryptology, 22(4):505–529, Oct 2009.

[Sut07] Andrew V Sutherland. Order computations in generic groups. PhD thesis, Massachusetts Insti-
tute of Technology, 2007.
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