
Trustless unknown-order groups
Samuel Dobson1,*, Steven Galbraith1, Benjamin Smith2
1University of Auckland, New Zealand
2Inria andLaboratoire d’Informatique (LIX),CNRS,École polytechnique, Institut Polytechnique deParis, Palaiseau,
France

Abstract Groups forwhich it is computationally difficult to compute the order have important applications including
time-lock puzzles, verifiable delay functions, and accumulators. In some scenarios it is acceptable to have a trusted
party that generates the group and knows the group order, but in many situations this is not acceptable. It is
therefore necessary to consider groups that can be efficiently constructed in such a way that not even the entity who
constructed the group knows its order. We call this trustless setup. We argue that the impact of Sutherland’s generic
group-order algorithm has been overlooked in this context, and that current parameters do not meet claimed security
levels. We propose updated parameters, and a model for security levels of unknown-order groups that captures the
subtlety of trustless setup. The most popular candidates for trustless unknown-order groups are ideal class groups
of imaginary quadratic fields; we show how to compress their elements from ≈ 2 log2(N) to ≈ 3

2 log2(N) bits, where
N is the group order. Finally, we analyse Brent’s proposal of Jacobians of hyperelliptic curves as a source of
unknown-order groups. Counter-intuitively, despite the theoretical existence of polynomial-time order-computation
algorithms for hyperelliptic Jacobians, we conjecture that Jacobians offer shorter keylengths than class groups at
the security levels used in practice.

Keywords: Unknown order groups, ideal class groups, hyperelliptic curves
2010 Mathematics Subject Classification: 94A60, 11Y40

1 INTRODUCTION
Interest in groups of unknown order has been fuelled in recent years by applications such as delay functions [11],

accumulators [12], and zero-knowledge proofs of knowledge [16]. As the name suggests, a group G has unknown
order if it has a compact representation, but it is infeasible for anyone to compute the order of G efficiently without
access to any secret information used to construct G. In the case of trustless setup, the order should not even be
known to the creator(s) of the group. Some use-cases may require additional properties, such as the low order or the
adaptive root assumptions. In order to be useful, group operations in G should be efficiently computable; elements
of G should have a compact representation; and it should be possible to efficiently sample random elements of G.

Previously, there have been two proposals for concrete unknown-order groups: RSA groups [52], and ideal class
groups of imaginary quadratic fields [46, 15]. Brent briefly suggested hyperelliptic Jacobians as unknown-order
groups [13]; but unlike RSA and class groups, Jacobians have received little further attention.

RSA groups are groups of the form (Z/NZ)×, where N = pq is the product of two primes. Computing the order
of (Z/NZ)× is equivalent to factoring N . A trusted party can efficiently generate an RSA modulus that resists all
known attacks (including Sutherland’s algorithm). Sander [54] gave an algorithm to trustlessly generate a modulus
N such that (with very high probability) N has two large factors—he calls this an RSA-UFO (unknown factorisation
object). However, to match even the lower security of 1024-bit RSA moduli, RSA-UFOs need “bit length (much)
greater then 40,000 bits”; this is far too large to be efficient in most unknown-order group applications.

Class groups, on the other hand, can be generated without trusted setup, and so have received a lot of recent
attention (see e.g. [46, 64, 12]). Buchmann and Hamdy [14] suggested that 1665-bit discriminants (≈ 833-bit
orders) provide security equivalent to 3072-bit RSA (i.e., 128-bit security); more recently, Biasse, Jacobson Jr.,
and Silvester [9] claim that 1827-bit discriminants (≈ 914-bit orders) are required to reach the same security level.

But the usual notions of security level are not appropriate when evaluating class-group security for applications
such as accumulators, where the group is fixed. The computational assumptions underlying security are not defined
for a fixed group, and there is no random self-reduction to show that all instances have the same security. We argue
that much larger group sizes are needed for secure unknown-order groups in applications where the group is fixed
for many users and used for a long period of time.

Precisely, we propose a new security model for unknown-order groups, depending on two parameters (λ, ρ).

Definition 1. Let Gen be an algorithm outputting groups. We say that Gen reaches security level (λ, ρ) if with
probability 1 − 1/2ρ over the outputs of Gen, any algorithm A given an output G of Gen requires at least 2λ bit
operations to succeed in computing #G with probability close to 1.

*Corresponding Author: samuel.dobson.nz@gmail.com

1

A similar concept of security is implicit in [4], which considers the security of cryptosystems depending on
a prime system parameter p provided by a possibly malicious party, when in practice the users only verify the
primality of p—and thus ensure the security level of the system—up to a certain probability (if at all). One
recommendation of [4] is that users “ensure that composite numbers are wrongly identified as being prime with
probability at most 2128”, corresponding to ρ = 128.

In our context, the probabilistic nature of security is not due to malicious parties, or unreliable verification, but
rather to a fundamental mathematical fact: the distribution of random abelian group orders. Our security definition
is motivated by Sutherland’s generic group order algorithm [58], whose runtime depends on the (unknown) order
itself, rather than the supposed size of the order.

The relevance of Sutherland’s algorithm to cryptographic unknown-order groups seems to have been overlooked,
but in §3.2we show that it attacks some class groupswith parameters that arewidely considered secure. For example:
Sutherland’s algorithm can compute the order of a class group with 1827-bit discriminant (i.e., 914-bit group order)
in ≈ 259 operations with probability ≈ 2−58, or in ≈ 2114 operations with probability ≈ 2−20. The problem is that
among class groups with prime discriminants of a given size, there is a set of weak instances depending on the
order. A randomly-generated group is only vulnerable with small probability; but since the order is unknown, we
cannot check for vulnerability without simply attempting to run the algorithm for the given time (in contrast, in the
RSA setting with trusted setup, the group order is known to its generator, who can thus easily choose a group that
is not vulnerable). For these reasons, we consider that 1827-bit discriminants (and even the 2048-bit discriminants
suggested in [12, 16]) do not meet the requirements for 128-bit security.

We propose new group sizes in response, depending on (λ, ρ). A paranoid choice, (λ, ρ) = (128, 128), requires
group sizes of around 3400 bits. A more realistic (but still cautious) choice, (λ, ρ) = (128, 55), requires 1900-bit
group sizes (and so 3800-bit discriminants; more than double the previous suggestion). Table 2 gives sizes of
group orders for various combinations of (λ, ρ). An alternative would be to use multiple smaller groups in parallel,
however we believe this approach is less efficient than working in a single larger group.

Our second major result is a more compact representation of class group elements. Inspired by a signature-
compression method of Bleichenbacher [10], in §3.3 we compress elements of class groups to 3/4 the size of the
usual representation—a particularly welcome saving in the light of our updated, much larger class group parameters.

Our third and more speculative contribution, in §4, is an analysis of Brent’s proposal of subgroups of Jacobians
of hyperelliptic genus-3 curves as a source of unknown-order groups with trustless setup. We find that Jacobians
offer a distinct advantage over class groups at the same security level: the element representation size is smaller (2/3
the size if our new class group compression algorithm is used; if not, 1/2 the size), since point compression for curves
is optimal. Using Jacobians also allows us to take advantage of the wealth of algorithms for group operations and
exponentiation that have been developed and implemented for hyperelliptic discrete-log-based cryptography, which
may be more efficient than their class-group equivalents (though the lack of recent competitive implementations
makes it difficult to compare Jacobians and class groups in terms of real-world speed).

We acknowledge that there are, in theory, polynomial-time algorithms to compute the group order of hyperelliptic
Jacobians [50, 31]. However, there is evidence that these algorithms are already impractical for discrete-log-based
cryptographic group orders of around 256-bits, let alone the much larger group orders that we have in mind. While
curves of any genus ≥ 2 might be considered, we suggest that genus-3 curves are the best choice: their point-
counting algorithms are already very complex, and their DLP is harder relative to higher-genus curves. Naturally,
if Schoof-type algorithms for genus 3 could be made efficient over large prime fields, then these groups would
become insecure—but at least we have provided motivation for such work.

Some unknown-order group protocols make stronger assumptions: for example, that finding elements of a given
order is hard, or that extracting roots of a given element is hard. In §5 we consider the problem of constructing
points of known order in class groups and Jacobians, and explain how we might work with Jacobians when the
low-order or adaptive root assumptions are imposed.

Acknowledgements. We thank Dan Boneh, Benjamin Wesolowski, Steve Thakur, and Jonathan Lee for their
valuable comments, feedback and suggestions on an earlier version of this work. We also thank Edward Chen, Luca
De Feo, and Jean Kieffer for beneficial discussion, and the anonymous reviewers for their feedback and comments.

Notation. Recall that Õ(x) = O((log x)c · x) for some constant c, and for subexponential algorithms, Lx(α) =
exp [(1 + o(1))(log x)α(log log x)1−α] for 0 ≤ α ≤ 1.

2 SUTHERLAND’S ALGORITHM: THE SECURITY OF GENERIC GROUPS
Sutherland’s primorial-steps algorithm [58, Algorithm 4.2] computes the order of an element in a generic group;

it can be used to probabilistically determine the exponent of a group. Remarkably, it runs in O(
√

N/log log N) =

2

o(
√

N) time (where N is the group order) in the worst case, but in fact the expected runtime depends heavily on the
multiplicative structure of N . The algorithm runs particularly quickly when N is smooth, which we do not expect
(or desire!) in unknown-order groups; but it also poses a significant threat to a larger class of groups.

Sutherland’s algorithm is based on Shanks’ baby-step giant-step (BSGS) algorithm, but one can also use Pollard
rho. Suppose we wish to compute the order of α. Instead of computing consecutive powers of α in the baby-steps,
we compute a new element β = αE such that the order of β is coprime to all primes 2, 3, . . . , pn ≤ L for a chosen
bound L, by taking E to be the product of the pi , each raised to an appropriate exponent blogpi

(M)c (where M is
an upper bound of the group order). The baby-steps are then all powers of β with exponents coprime to Pn, and
the giant-step exponents are multiples of Pn, where Pn =

∏n
i=1 pi . As in BSGS, a collision allows |β | to be learnt,

which then allows |α | to be computed very efficiently.
Sutherland shows that if the order N of α is uniformly distributed over [1, M] (for sufficiently large M) and

L = M1/u , then this is a O(M1/u) time and space algorithm that successfully computes N with probability
P ≥ G(1/u, 2/u) [58, Proposition 4.7]. Here G(r, s) is the semismooth probability function

G(r, s) = lim
x→∞

ψ(x, xs, xr)/x

for 0 < r < s < 1, where ψ(x, y, z) is the number of integers up to x semismooth with respect to y and z (that is,
all prime factors less than y, with at most one greater than z).

Table 1: Asymptotic semismoothness probabilities from [58] and [6]
u G(1/u, 2/u) u G(1/u, 2/u) u G(1/u, 2/u)

2.1 0.9488 5.0 0.4473 12.0 4.255e-12
2.9 0.5038 6.0 1.092e-03 16.0 6.534e-19
3.0 0.4473 10.0 5.382e-09 20.0 2.416e-26

For each choice of ρ (corresponding to the probability that a weak group is generated), one must determine u
such that 1/2ρ ≈ G(1/u, 2/u). It then follows that the group size should be at least uλ bits so that a 1/u-th root
attack requires at least 2λ operations. Table 1 gives some numerically computed values for G(1/u, 2/u) from [6]
and [58]. Using the method of Banks and Shparlinski [7] to approximate the density of semismooth numbers,
we calculate that for a success probability of less than 2−100, we should take u = 22.5; for 2−128, we should take
u = 26.5.

As we mentioned in the introduction, taking (λ, ρ) = (128, 55) leads to ≈ 1920-bit group orders, because ρ = 55
corresponds to u = 15, and 15·128 = 1920. Amore conservative choicewould be (λ, ρ) = (128, 128), corresponding
to u ≈ 26.5 and implying 3392-bit groups. Table 2 gives sizes of group orders for various combinations of (λ, ρ).
Once again we stress that our setting is different to the usual world of security levels. We are dealing with a fixed
class of weak instances of the computational problem.

Table 2: Group size (bits) for various attack success probabilities 2−ρ and running costs 2λ
ρ

40 55 64 80 100 128

λ

55 660 825 880 1045 1265 1430
80 960 1200 1280 1520 1840 2080
100 1200 1500 1600 1900 2300 2600
128 1536 1920 2048 2432 2944 3392

We remark that Sutherland’s algorithm is less of a threat to unknown order groups with trusted setup. For
example, if there is an authority that can be trusted to generate an RSA modulus N = pq where p and q are safe
primes, then the order of Z×N cannot be computed using Sutherland’s approach.

3 IDEAL CLASS GROUPS AS UNKNOWN-ORDER GROUPS
In this section we reconsider ideal class groups as a source of trustless unknown-order groups. We briefly recall

the relevant background on class groups in §3.1; detailed references include [19] and [23]. We then reconsider
class-group security in §3.2, and give a new compression algorithm for class group elements in §3.3.

3

3.1 BACKGROUND ON IDEAL AND FORM CLASS GROUPS
An imaginary quadratic field is an algebraic extension

K = Q(
√

d) = {a + b
√

d | a, b ∈ Q}

where d < 0 is a square-free integer. The discriminant ∆ of K is d if d ≡ 1 (mod 4), or 4d otherwise (so ∆ ≡ 0, 1
(mod 4)). The ring of integers OK is Z[ω], where ω = 1

2 (1 +
√

d) when d ≡ 1 (mod 4) and ω =
√

d otherwise.
The ideal class group is the quotient Cl(OK) = JK/PK , where JK is the (abelian) group of non-zero fractional

ideals of OK , and PK < JK is the subgroup of non-zero principal fractional ideals. In practice, we representCl(OK)
using the isomorphic form class group Cl(∆) of binary quadratic forms of discriminant ∆ (the disciminant of K).
We let (a, b, c) denote the binary quadratic form

(a, b, c) = ax2 + bxy + cy2 ∈ Z[x, y] with b2 − 4ac = ∆ .

We can represent this form using only two coefficients (a, b), because c is uniquely determined by c = (b2 −∆)/4a.
A form (a, b) is positive definite if a > 0. As with ideal classes, there is an equivalence relation on quadratic
forms: f and g are equivalent if f (x, y) = g(αx + βy, γx + δy) for some α, β, γ, and δ in Z with αδ − βγ = 1 (that
is, if they are in the same orbit under SL2(Z)). Equivalent forms always have the same discriminant.

We represent each equivalence class in Cl(∆) using the unique reduced form in the class. A form (a, b, c)
is reduced if |b| ≤ a ≤ c; and if |b| = a or a = c, then b ≥ 0. Lagrange, and later Gauss and then Zagier,
gave algorithms to find the equivalent reduced form for any binary quadratic form. The identity in Cl(∆) is the
equivalence class of the form (1, 0,−k) if ∆ = 4k, or (1, 1, k) if ∆ = 4k + 1. The group law in Cl(∆), known as
composition of forms, is due to Gauss; this does not usually output a reduced form, so reduction is an additional
step. We shall not give these algorithms here, but refer the reader to [19].

The order of Cl(OK) is the class number of K , denoted h(∆). It follows from the Brauer–Siegel theorem
(see [38]) that for sufficiently large negative discriminants, on average the class number satisfies

log h(∆) ∼ log
√
|∆| as ∆→ −∞ (1)

We can therefore conservatively assume≈ 1
2 log2 |∆|-bit group sizes for cryptographic-sized negative discriminants.

The use of class groups in cryptography was first suggested by Buchmann and Williams [15]. Hafner and
McCurley [37] gave a sub-exponential L |∆ |(1/2) algorithm for computing the order of Cl(∆). Thus, the order of
a class group Cl(∆) of negative prime discriminant ∆ ≡ 1 (mod 4) is believed to be difficult to compute, if ∆
is sufficiently large. Lipmaa [46] proposed that Cl(∆) can be used as a group of unknown order without trusted
setup, simply by selecting a suitably large ∆ and choosing an element in Cl(∆) to be treated as a generator (it is not
possible to know if it generates the whole of Cl(∆), or just a subgroup; we discuss this further below).

3.2 THE SECURITY OF IDEAL CLASS GROUPS
Until now, cryptographic class group parameters have mainly been proposed with an eye to resisting subex-

ponential algorithms for computing orders of quadratic imaginary class groups. In this section we re-assess the
security these parameters in the light of Sutherland’s algorithm, and propose new (much larger) parameter sizes
targeting the 128-bit security level.

Hafner and McCurley gave their L |∆ |(1/2) algorithm to compute the order of quadratic imaginary class groups
in 1989 [37]; Buchmann extended this to compute the group structure and discrete logarithms. See Biasse et
al. [9] for a more up-to-date evaluation of the security of ideal class groups. The important thing to note is
that these algorithms all have the same subexponential complexity L |∆ |(1/2), depending essentially on the size
of |∆|. In contrast, Sutherland’s algorithm has exponential worst-case runtime, but performs much faster with a
non-negligible probability depending on the structure of the class group—a factor that Hafner–McCurley cannot
exploit. When computing the order of a random class group, therefore, the small probability that Sutherland’s
algorithm outperforms Hafner–McCurley must be taken into account.

The cryptographic parameter sizes in [38] and [14] both suppose that Hafner–McCurley is the best known algo-
rithm. Concretely, it is suggested that a 1665-bit negative fundamental discriminant, which means an approximately
833-bit group order (cf. Eq. (1)), should provide 128-bit security. Biasse, Jacobson Jr., and Silvester [9] improve on
previous attacks and suggest 1827-bit discriminants (which implies ≈ 914-bit orders) are needed to achieve 128-bit
security. These estimates have been quoted in more recent works, including [16] which estimates that 1600-bit
discriminants provide 120-bit security, and [12] which proposes a slightly more conservative discriminant size of
2048 bits for 128-bit security.

Suppose we try to compute the order of a random class group with 1827-bit fundamental negative discriminant
using Sutherland’s algorithm. Sutherland’s algorithm has some important practical speedups when specialized

4

from generic groups to class groups—for example, class group element negation is practically free, so time and
memory can be reduced by a factor of

√
2 (see [58, Remark 3.1])—but these improvements do not significantly

impact security levels. The performance of Sutherland’s algorithm on a given quadratic imaginary class group
depends entirely on the class number.

Hamdy and Möller [38] show that imaginary class numbers are more frequently smooth (although not signif-
icantly so) than uniformly random integers of the same size. We may therefore conservatively approximate the
smoothness probability of random class group orders as being that of random integers. With the results of §2, the
probability that a random class group with 1827-bit fundamental negative discriminant has less than 128 bits of
security (u = 7.1) is at least 2−14.3, and the chance it has less than 64-bit security is 2−50. If a system is using a fixed
class group as an accumulator, then we need to ask if these probabilities of weakness are acceptable. We claim that
such groups do not satisfy Definition 1 for (λ, ρ) = (128, 128), and so the security is weaker at these discriminant
sizes than was previously thought.

Bach and Peralta [6] give G(1/u, 2/u) for u = 20 as 2.415504 × 10−26 ≈ 2−85. Thus, even for 85-bit security,
we require 3400-bit discriminants. Using Banks and Shparlinski [7]’s method of approximating G(1/u, 2/u),
we estimate that for 100-bit security with respect to Sutherland’s algorithm, a discriminant of around 4500 bits
would be required. For 128-bit security, u = 26.5 gives G(1/u, 2/u) ≈ 2−128, which implies a group order
N ≈ 2128×26.5 = 23392, and hence we estimate that ∆ should be approximately 6784 bits. We emphasize that
G(1/u, 2/u) is only a lower bound for the success probability of Sutherland’s algorithm, but this should still serve
at least as a guideline.

3.3 COMPRESSING IDEAL CLASS GROUP ELEMENTS
Bleichenbacher [10] proposed a beautiful algorithm to compress Rabin signatures, and his methods can also be

used to compress elements in ideal class groups. As far as we know, this simple observation has not yet been made
in the literature.

3.3.1 BLEICHENBACHER’S RABIN SIGNATURE COMPRESSION ALGORITHM
A Rabin signature on a message m under the public key N (an RSA modulus) is an integer σ such that

σ2 ≡ m (mod N) .

Normally σ is the same size as N , but Bleichenbacher showed how to bring this down to
√

N . The continued
fraction algorithm (or the Euclidean algorithm) can be used to compute integers s and t with 0 < s <

√
N and

|t | ≤
√

N such that σt ≡ s (mod N): see Algorithm 1 and Lemma 1 below. The compressed signature is t. Given
m and t, let x = mt2 mod N; then s2 ≡ x (mod N), but 0 < s <

√
N , so we can recover s from m and t by taking

the integer square root of x; and then it is trivial to recover σ ≡ s/t (mod N) (note that if t is not invertible modulo
N , then we have found a factor of N , and the signature scheme is broken). We may therefore replace σ with t,
which has half the bitlength of σ.

Algorithm 1: PartialXGCD.
Input: Integers a > b > 0
Output: Integers s in [0,

√
a] and t in [−

√
a,
√

a] such that s ≡ bt (mod a)
1 (s, s′, t, t ′, u, u′) ← (b, a, 1, 0, 0, 1)
2 while s >

√
a do // Invariants: 0 ≤ s < s′, |u| < |u′ |, |t ′ | < |t |, s = au + bt, s′ = au′ + bt ′

3 q← s′ div s // Euclidean division without remainder
4 (s, s′, t, t ′, u, u′) ← (s′ − qs, s, t ′ − qt, t, u′ − qu, u)

5 return (s, t)

Lemma 1. Given integers a > b > 0, Algorithm 1 returns (s, t) such that s ≡ bt (mod a) and |s |, |t | ≤
√

a.

Proof. Algorithm 1 is a truncated version of the extended Euclidean algorithm, stopping when s ≤
√

a rather than
s = 0. The invariants s′ > s ≥ 0, |u′ | > |u|, |t ′ | < |t |, s = au + bt, and s′ = au′ + bt ′ are easily verified; in
particular, s ≡ bt (mod a). Another invariant, |s′t | ≤ a, is proven in [28, Lemma 2.3.3]. Since s takes a sequence
of strictly decreasing values, at some point 0 ≤ s ≤

√
a and s′ >

√
a; this is where the loop terminates. It remains

to show that at this point, we also have |t | ≤
√

a: but this follows from the invariant |s′t | ≤ a and s′ >
√

a. �

5

3.3.2 AN IMPROVED CLASS GROUP ELEMENT COMPRESSION ALGORITHM

Suppose we have a reduced form (a, b, c) in Cl(∆). Since b2 − 4ac = ∆ is a known constant, it suffices to store
(a, b). Since the form is reduced, we have |b| ≤ a <

√
|∆|, so the pair (a, b) can be encoded in approximately

log2(|∆|) bits: this is the traditional “compressed” representation of a class group element.
But we can do better. Since b2 − 4ac = ∆, we have

b2 ≡ ∆ (mod a)

—a relation reminiscent of the Rabin signature verification equation. The situation is not exactly the same—a is
not an RSA modulus, and b is in (−a, a] rather than [0, a)—but it is not difficult to adapt signature compression to
class group element compression, encoding the coefficient b in half the space.

First, we reduce to the case where b ≥ 0: we store the sign of b as ε = 1 if b < 0, and 0 otherwise, and replace
b with |b|. We will treat the special cases a = b and (a, b) = (1, 0) later; in the meantime, we may suppose that
0 < b < a. Using Algorithm 1, we compute integers s and t such that bt ≡ s (mod a) and |s |, |t | ≤

√
a; then

s2 ≡ ∆t2 (mod a) .

Given a and t, we can compute x = ∆t2 mod a, and then x = s2 as integers because 0 ≤ s < a; so s can be
recovered as the exact (positive) integer square root. Now bt ≡ s (mod a), and the Bleichenbacher approach
suggests compressing b to t and recovering b as s/t (mod a); but since a is not an RSA modulus, we may—and
often do—have gcd(a, t) , 1, and then t cannot be inverted modulo a.

To fix this, we compress (a, b) to to (a′, g, t ′, b0, ε), where g = gcd(a, t), a′ = a/g, t ′ = t/g, b0 = |b| mod g,
and ε and t are defined as above. To decompress, we compute a = a′g, t = t ′g, x = t2∆ mod a, and s =

√
x (if

x = 0 ≡ a (mod a), then s is taken to be
√

a, not 0). Let b′ ≡ s′/t ′ (mod a), where s′ = s/g; then b′ ≡ b (mod a′),
and we can compute b (mod a) from b ≡ b0 (mod g) and b ≡ b′ (mod a′) using the Chinese Remainder Theorem.
If ε = 1 then we correct the sign, replacing b with −b; and after computing c (if required) as (b2 − ∆)/(4a), we are
done.

For the special case a = b, we exceptionally let t = 0; this is not ambiguous, because t = 0 cannot occur in
any other case. The compressed form is then (a′, g, t ′, b0, ε) = (1, a, 0, 0, 0). For (a, b) = (1, 0), we compress to
(0, 0, 0, 0, 0). Again, this is unambiguous: no other element of Cl(∆) compresses to this value.

Algorithms 2 and 3 make the compression and decompression procedures completely explicit. Note that

log2 a′ + log2 g = log2 a ≈ log2
√
|∆|

and
log2 t ′ + log2 b0 ≤ log2 t ′ + log2 g = log2 t ≈ 1

2 log2
√
|∆| .

Algorithm 2 therefore compresses the form (a, b, c) to a 3
4 log2 |∆|-bit representation, three-quarters of the size

of the traditional (a, b). When a party receives a compressed group element it is necessary for them to execute
Algorithm 3 before performing group operations on the element.

Algorithm 2: Element compression for Cl(∆)
Input: A reduced form (a, b, c) in Cl(∆) (c may be omitted)
Output: A compressed form (a′, g, t ′, b0, ε)

1 if (a, b) = (1, 0) then return (0, 0, 0, 0, 0)
2 if a = b then return (1, a, 0, 0, 0)

3 ε ←

{
1 if b < 0
0 otherwise

4 b← |b|
5 (s, t) ← PartialXGCD(a, b) // Now s ≡ bt (mod a), with |s | and |t | <

√
|a|

6 g ← gcd(a, t)
7 (a′, t ′) ← (a/g, t/g)
8 b0 ← b mod g

9 return (a′, g, t ′, b0, ε)

6

Algorithm 3: Element decompression for Cl(∆)
Input: A compressed form (a′, g, t ′, b0, ε) and ∆
Output: A reduced form (a, b, c) in Cl(∆) (c may be omitted)

1 if (a′, g, t ′, b0, ε) = (0, 0, 0, 0, 0) then return (1, 0,−∆/4)
2 if t ′ = 0 then return (a, a, (a2 − ∆)/(4a))
3 (a, t) ← (g · a′, g · t ′)
4 x ← t2∆ mod a
5 if x = 0 then
6 x ← a

7 s←
√

x // Integer square root
8 s′← s/g // Exact integer division

9 b′← s′ · t−1 (mod a′)
10 b← CRT((b′, a′), (b0, g)) // b ≡ b′ (mod a′) and b ≡ b0 (mod g)

11 if ε = 1 then
12 b← −b

13 return (a, b, (b2 − ∆))

4 HYPERELLIPTIC JACOBIANS AS UNKNOWN-ORDER GROUPS
We now revisit Brent’s proposal of hyperelliptic Jacobians as a concrete source of unknown-order groups,

focusing on genus g = 3. Hyperelliptic Jacobians can be seen as the ideal class groups of quadratic function
fields. We will argue that even despite the existence of theoretical polynomial-time point-counting algorithms,
these Jacobians may still present a more efficient alternative to class groups at the same security levels.

4.1 HYPERELLIPTIC CURVES
We briefly recall the relevant background here; details can be found in [47] and [28]. The reader familiar with

hyperelliptic curves may skip this section.
Let q be an odd prime power. A hyperelliptic curve C of genus g > 1 over Fq is defined by an equation

y2 = f (x), where f is a monic, squarefree polynomial of degree 2g + 1 over k.1 A (finite) point on C is an (x, y)
in F

2
q satisfying the defining equation of C; there is also a unique point at infinity, denoted∞.
A divisor on C is a formal sum of points D =

∑
mPP where mP = 0 for all but finitely many P. The degree

of a divisor is deg D =
∑

mP . The divisors form a group Div(C), and the divisors of degree zero form a proper
subgroup Div0(C) of Div(C). We let P(C) denote the set of principal divisors of C: that is, divisors of the form
(γ) =

∑
P∈C ordP(γ)P for some γ in the function field Fq(C) = Fq(x)[y]/(y2 − f (x)) (here ordP(γ) is the order of

vanishing of γ at P). Principal divisors have degree 0, so P(C) ⊂ Div0(C); the Jacobian is the quotient group

JC � Div0(C)/P(C) (2)

(also known as the degree-0 Picard group, denoted by Pic0(C)).
We compute with elements of JC using the Mumford representation [48]. Each divisor class contains a unique

reduced divisor in the form P1 + · · · + Pr − r∞ (with the Pi not necessarily distinct) with r ≤ g and Pi , P̃j for all
i , j. The reduced divisors correspond to pairs of polynomials 〈u(x), v(x)〉, where u is monic, deg v < deg u ≤ g

and v2 ≡ f (mod u). The roots of u(x) are the x-coordinates of the points in the support of the divisor. The divisor
classes defined over Fq—that is, such that u and v have coefficients in Fq—form a finite group, denoted JC(Fq).
The Hasse–Weil bound tells us that #JC ∼ qg; more precisely,

(
√

q − 1)2g ≤ #JC(Fq) ≤ (
√

q + 1)2g .

The group law on JC(Fq) can be computed using Cantor’s algorithm [17] (see also [22]). Efficient explicit
formulae exist for g = 2 (see [44]) and g = 3 (see [26]).

4.2 THE SECURITY OF HYPERELLIPTIC JACOBIANS
Let C be a hyperelliptic curve of genus g over Fq , where q = pn, and JC its Jacobian. Recall that #JC(Fq) ≈ q3.

For JC(Fq) to be useful as an unknown-order group, calculating #JC(Fq) should be infeasible. Besides generic

1We do not need the more general case of nonsingular curves y2 + h(x)y = f (x), where deg f = 2g + 1 or 2g + 2, and degh ≤ g.

7

algorithms, two classes of algorithms specific to hyperelliptic Jacobians are relevant here: point-counting and
discrete-log algorithms.

As a base-line, C must be chosen such that JC(Fq) resists Sutherland’s algorithm with acceptable probability,
as in §2. Sutherland’s algorithm has some important practical optimizations when specialized to hyperelliptic
Jacobians—for example, we can exploit the fact that negation is effectively free to decrease storage and runtime
by a factor of up to

√
2 (see [58, Remark 3.1]), and even if a Jacobian is not directly vulnerable to Sutherland’s

algorithm, its order may be deduced from that of vulnerable twists, as in [59]—but these improvements do not
significantly impact security levels.

To reach acceptable security levels against Sutherland’s algorithm using genus 3 curves then q must be subex-
ponentially large. Looking at Table 2, the cautious (λ, ρ) = (128, 55) level requires 1920-bit groups, or q ≈ 2640;
the paranoid (128, 128) level requires 3392-bit groups, or q ≈ 21131. Fields of this size also address the concerns
of Lee [45].

4.2.1 POINT-COUNTING ALGORITHMS
Computing #JC(Fq) is a classic problem (called “point counting”) in algorithmic number theory: the goal is

to compute the zeta function of C, from which we immediately get #JC(Fq). The many dedicated point-counting
algorithms fall naturally into two broad classes: p-adic algorithms and `-adic “Schoof-type” algorithms. The p-adic
algorithms (notably Kedlaya’s algorithm [41] and its descendants [39]) have complexity polynomial with respect
to g and n, but exponential in log p. Taking q = p, we can ignore these algorithms.

Schoof-type algorithms compute #JC(Fq) in polynomial time for fixed g. Indeed, from a theoretical point
of view, the existence of Schoof-type algorithms may make the use of hyperelliptic Jacobians as unknown-order
groups seem perverse. But Schoof-type algorithms are totally impractical over large prime fields, even in genus as
small as 3. To understand why, we need to look at how they operate.

First, consider the case of elliptic curves (g = 1). Schoof’s ground-breaking Õ(log5 q) algorithm [55], the first
polynomial-time point-counting algorithm for elliptic curves, computes the characteristic polynomial of Frobenius
for a series of small prime `, using polynomial arithmeticmodulo the division polynomialsΨ` , before combining the
results with the Chinese Remainder Theorem to compute the zeta function.2 Its successor, the Schoof–Elkies–Atkin
(SEA) algorithm [56], runs in time Õ(log4 q), and has made elliptic-curve point counting routine.

Pila generalised Schoof’s algorithm to higher-dimensional Abelian varieties [50], including all Jacobians of
curves. Pila’s algorithm is polynomial-time in p and n, but badly exponential in g; as far as we know, it has never
been implemented. The task gets a little simpler when we specialize from general abelian varieties to hyperelliptic
Jacobians. The crucial objects are the analogue of the division polynomials: these are multivariate division ideals
vanishing on coordinates of points in torsion subgroups (in this sense, Ψ` generates the `-division ideal in genus
g = 1). Cantor constructs generators for the `-division ideal in [18] (see also [21]); in genus 3, the degrees of
Cantor’s `-division polynomials are bounded by O(`2) (see [1]).

Schoof-type point-counting is already challenging in genus 2. Several genus-2 algorithms have been imple-
mented and analysed, beginningwith Gaudry andHarley [31] andGaudry and Schost [34]. Pitcher’s PhD thesis [51]
gave a genus-2 algorithm with complexity O((log q)7). Gaudry and Schost [35] used an improved algorithm, with
a mixture of Pitcher’s approach and exponential birthday-paradox algorithms, to find a curve of secure order over
the 127-bit Mersenne prime field F2127−1. In their experiments, they claimed around 1,000 CPU hours on average
to compute the order of a random genus-2 curve over this 127-bit field. Computing `-division ideals and analysing
the action of Frobenius on them can become impractical for even moderately small `: the computations mentioned
above, with an 8GB limit on RAM, used primes ` ≤ 31 (the earlier [34] used ` up to 19). They also used small
prime powers `k = 216, 36, 54, and 72. These ` and `k are not sufficient to determine the group order; to finish
the order computation, they used one- or two-dimensional random walks (a low-memory square-root algorithm:
see [33] for details). We underline the fact that finishing this point-counting computation is a situation where in
practice, an exponential algorithm is more practical than a polynomial-time one!

We have found no practical work for general genus-2 curves going beyond ` = 31 in the literature. Abelard’s
PhD thesis [1] discusses the feasibility of continuing with larger `. With time complexity Õ(`6 log q) and space
complexity Õ(`4 log q), running time becomes more of an issue than memory: for 192-bit q, the computation
for ` = 53 could take around 1000 CPU-days, yet still leave a search space of ≈ 295 elements in the exponential
“collision” step of the algorithm.

This practical work has not been extended to genus 3. The main obstruction is the complexity of computing
with division ideals. Some theoretical analysis and projected complexities appear in [2]. Some first steps have been
made for the very special class of genus-3 Jacobians with known and efficiently computable real multiplication

2 Recall that if E is an elliptic curve, then for all positive integers n there exists a division polynomial Ψn(X) such that Ψn(x(P)) = 0 if and
only if P , 0 is in the n-torsion of E . For odd prime `, the degree of Ψ` is (` − 1)/2.

8

endomorphisms in [3], following the analogous genus-2 algorithm in [32], but this approach does not apply to
general genus-3 hyperelliptic Jacobians.

Concretely, taking q ∼ 2100 in genus 3 would appear sufficient to resist point counting on most curves C, and
result in #JC(Fq) ∼ 2300; the much larger group and field sizes require to resist Sutherland’s algorithm render point
counting irrelevant as an attack.

The upshot is that while point-counting for fixed genus g > 2 is polynomial-time in theory, it remains
impractical—even infeasible—in the real world. This is already true of the relatively small field sizes relevant to
discrete-logarithm-based cryptography; it is even more so for the much larger, subexponential-sized fields required
to protect against Sutherland’s algorithm in the unknown-order setting.

Remark 1. Some work has been done on generating genus-2 and genus-3 Jacobians with a known number of
points using CM theory, for applications in DLP-based cryptography, notably by Weng [62, 63] (see also e.g. [35]
and [40]). Obviously, these curve-generation methods must be avoided for unknown-order applications.

Remark 2. One might hope that progress in computing higher-genus modular polynomials might yield a SEA
analogue improving substantially on pure Schoof-style point counting. However, any SEA analogue in genus g > 3
would actually be slower than pure Schoof. Indeed, the number of isogenies splitting [`] (and hence the degree of
the ideal that a SEA analogue would use at the prime `) is in O(`g(g+1)/2); this exceeds the degree of the `-division
ideal, which is in O(`2g). Even for g = 3, the asymptotic complexity of SEA is no better than that of Schoof.

4.2.2 DISCRETE LOGARITHM ALGORITHMS
If the DLP can be efficiently solved in a subgroup 〈G〉 ⊂ JC(Fq), the order of 〈G〉 can also be efficiently

computed: if xG = O, where is the cryptographic subgroup, then x is (a multiple of) the order. Suppose, then, that
we want to solve the DLP in JC(Fq), where C is a curve of genus g over Fq . Gaudry et al. [36] and Nagao [49]
present algorithms for small g running in time Õ(q2−2/g), improving on the O(q2) algorithm of [30], and the
single-large-prime algorithm of [61]. This has better performance for genus 3 than square-root algorithms like
Pollard Rho, which has expected runtime in Õ(q3/2); but in genus 2, Pollard Rho is more efficient, in Õ(q). Avanzi,
Thériault, and Wang [5] further discuss security in these cases.

Smith [57] gives a method of transferring the DLP from hyperelliptic to non-hyperelliptic genus-3 Jacobians
that applies to 18.57% of genus-3 curves; Diem’s algorithm [24] can then be used to solve the DLP in time Õ(q).
Laine and Lauter [43] examine and improve on Diem’s attack (including analysis of the logarithmic factors, which
they estimate to be O(log2 q)), but the memory requirement for their attack is high at Õ(q3/4). The practical
results from [43] suggest that even for q ∼ 2100, discrete logarithms require around 2113 field multiplications and
1.2× 1014TB of memory, assuming the reduction of [57] applies; if not, the algorithm of [36] would require on the
order of 2133 operations. Genus-3 hyperelliptic curves avoiding isogeny-based attacks are constructed in [42].

As g tends to infinity, there exist subexponential attacks on the DLP using index calculus (for example, [25]);
but these have no impact for fixed genus 2 and 3.

4.3 GENERATING HYPERELLIPTIC JACOBIANS OF UNKNOWN ORDER
Algorithm 4 (Gen) takes security parameters (λ, ρ) (as in Definition 1), and outputs a generator P for a group

G such that Sutherland’s algorithm running in time 2λ succeeds in computing #G with probability less than 1/2ρ.
The group G is realized as (a sub-group of) a genus-3 hyperelliptic Jacobian. Having chosen a suitable prime p as a
function of (λ, ρ), the algorithm samples a uniformly random monic irreducible degree-7 polynomial f (x) in Fp[x]
and polynomials u and v such that 〈u, v〉 is the Mumford representation of a divisor class P in JC(Fp), where C is
the curve defined by y2 = f (x). Being random, P generates a large-order subgroup of JC(Fp)with high probability.

Taking f to be random makes the probability that C is a “weak” curve overwhelmingly small. The order of
a random Jacobian should have a large prime factor, protecting against Pohlig–Hellman; the largest prime factor
should not divide qk − 1 for small k, protecting against MOV-type attacks [27]; and the group order should be
prime to p = char(Fq) to avoid “anomalous curve” attacks [53]. Randomly-sampled Jacobians do not have special
endomorphisms, such as the efficiently-computable real multiplication exploited for faster point counting in [3],
because these special classes of curves form positive-codimensional subspaces of the moduli space. Recent work
of Thakur [60] further discusses classes of curves to avoid. The security of random ideal class groups as groups of
unknown order depends on similar assumptions and heuristics [20].

Taking f irreducible over Fp ensures that JC(Fp) has no points of order 2. As we will see in §5, it may be
possible to construct points of small odd order. We could try this for a few small primes ` to eliminate C with small
factors in #JC(Fp), but this makes no significant difference to the probability of semismoothness of #JC(Fp), and
thus to Sutherland’s algorithm. Our simulations showed that rejecting random group orders divisible by the first
few primes decreased the semismoothness probability by less than a factor of 2.

9

Algorithm 4: Gen. Constructs a random unknown-order (subgroup of a) genus-3 hyperelliptic Jacobian.
Input: (λ, ρ)
Output: A prime p, a hyperelliptic genus-3 curve C/Fp , and P ∈ JC such that 〈P〉 has unknown order.

1 Determine n such that a random genus-3 curve over an n-bit prime field has λ-bits of security with
probability 1 − 1/2ρ

2 p← a random n-bit prime
3 Sample random u(x) = x3 + u2x2 + u1x + u0 in Fp[x]
4 Sample random v(x) = v2x2 + v1x + v0 in Fp[x]
5 repeat
6 Sample random w(x) = x4 + w3x3 + w2x2 + w1x + w0 in Fp[x]
7 f (x) ← v(x)2 + u(x)w(x)
8 until gcd(f (x), f ′(x)) = 1 and f is irreducible
9 P← 〈u, v〉

10 return (p,C, P) where C is the hyperelliptic curve y2 = f (x) over Fp

To ensure that not even the constructor of C knows #JC(Fp), and that C and P = 〈u, v〉 were indeed generated
randomly, we suggest that f and u be chosen by deterministic “nothing up my sleeve”-type process. For example,
the coefficients of f might be taken from the hash of a certain string. Suppose this process were manipulated by
taking multiple “seeds”, and testing each resulting curve for weakness. If the probability of encountering a weak
curve among random curves is δ, and testing for weakness costs 2n operations, then a malicious actor requires
around δ−12n operations to generate a weakC. A sceptical verifier, on the other hand, must only test the proposedC
just once to detect cheating, at a cost of just 2n operations. This imbalance of the cost of cheating versus verifying
is a deterrent for attackers, regardless of the weakness in question.

Now the order of the Jacobian JC(Fp) (and the subgroup generated by P) cannot feasibly be computed, not
even by the party who constructed the curve: we have achieved trustless setup. This group can then be used in
cryptographic constructions including accumulators and VDFs. Overall, the generation of a new hyperelliptic curve
is relatively cheap. Therefore, just as in the case of class groups, it should be feasible to generate a new group of
unknown order for each new instance of an accumulator or VDF if desired.

Elements of JC(Fq) are represented as pairs of polynomials 〈u, v〉 with deg v < deg u ≤ g, so elements can
be stored concretely with 6 elements of Fq , and further compressed to just 3 Fq-elements and 3 extra bits using
the method of [40].3 For (λ, ρ) = (128, 55), with ≈ 640-bit fields, this means that group elements can be stored
in ≈ 1920 bits; elements of a class group of equivalent security require ≈ 2860 bits with the compression of §3.3
(or ≈ 3840 bits without it). Moving to the more paranoid security level of (λ, ρ) = (128, 128), hyperelliptic
Jacobian elements require ≈ 3392 bits while class-group elements require ≈ 5088 bits (or ≈ 6784 bits without the
compression of §3.3). We therefore claim that genus-3 Jacobians offer more compact elements than class groups
at the same security level.

5 ELEMENTS OF KNOWN ORDER
We now briefly consider the problem of constructing points of known order in groups of unknown order. This

will give us an idea of how to work with Jacobians when the low-order or adaptive root assumptions are imposed.

5.1 LOW-ORDER ASSUMPTIONS AND COFACTORS
Common additional requirements on unknown-order groups include
• the low-order assumption: finding an element P of a given order s in G is hard (see [11, Def. 1]); and
• the adaptive root assumption: extracting roots of a given element—that is, given Q and s, find P such that

Q = [s]P in G—is hard (see [11, Def. 2] and [64]).
These assumptions only make sense if the adversary must solve arbitrary instances in a randomly-sampled G; it is
not possible to define security for a fixed G. Example 1 describes Wesolowski’s Proof of Exponentiation (PoE), a
protocol which requires these assumptions.

3 Given that hyperelliptic Jacobians are a function-field analogue of ideal class groups of quadratic fields, it is natural to ask why the
almost-ideal hyperelliptic Jacobian element compression algorithm of [40] does not have an efficient class-group analogue. To compress a
Jacobian element 〈u, v〉, the algorithm of [40] begins by factoring u, a polynomial over a finite field; we know how to do this efficiently. A
class-group analogue compressing (a, b) would need to factor the integer a, which is a much harder problem.

10

Example 1 (PoE). Let G be a group, chosen according to security parameter λ. The Proof of Exponentiation
takes as input u and w in G and x in Z, and aims to prove that ux = w in significantly less time than it takes to
compute ux . It proceeds interactively as follows (although it can be made non-interactive: see [64]).

1. Verifier sends a random prime ` ∈ Primes(λ) to Prover.
2. Prover computes q = bx/`c and Q = uq , and sends Q to Verifier.
3. Verifier computes r = x mod `, and accepts if Q`ur = w

To see why the security of this protocol requires the low-order assumption, suppose we know an element ε of
order 2 in G (for example, if G is an RSA group, then we can take ε = −1). Then for any valid proof that ux = w,
we can easily generate a false proof of the contradictory statement ux = εw, by replacing Q with Q′ = εQ in the
proof. Since ` is odd, (Q′)`ur = εQ`ur = εw holds despite the fact that ux , εw. This is why when using RSA
groups, it is important to use the quotient (Z/NZ)∗/〈±1〉 to eliminate this element.

Suppose we are given an algorithm Gen constructing unknown-order groups reaching the (λ, ρ) security level.
If we can specify a set S containing the integers s such that we can construct elements of order s or extract s-th
roots in groups G output by Gen in < 2λ operations with probability > 2−ρ, then the low-order and adaptive-root
assumptions hold in the subgroup

[S]G = {[S]P | P ∈ G} where S := lcm(S) . (3)

We will propose conservative choices for S for concrete groups below. In the meantime, to give some concrete
intuition, if we take S = {1, . . . , 60} then S is an 84-bit integer, so multiplication by S is efficient.

The operation of protocols such as accumulators in [S]G is standard, but some protocols may need modification:
for example, proofs may require an extra check that an element is indeed in the group. The issue here is that given
a point Q in G, testing subgroup membership Q ∈ [S]G is not easy. However, the original point Q is effectively a
proof that [S]Q is in [S]G, because this can be easily verified; so Q should be sent instead of [S]Q in cryptographic
protocols, and the verifier can perform the multiplication by S themselves.

Using [S]G in place of G has an impact on efficiency, due to the extra scalar multiplications required. This
impact is highly protocol-dependent, but in most cases only a few extra multiplications should be needed. To give
a specific example, we revisit the PoE from Example 1 in Example 2. The verifier only needs to perform one extra
multiplication-by-S during verification when working in [S]G instead of G. We suggest that this is efficient enough
for practical use, and that other protocols using the adaptive root assumption can be modified in a similar way.

Example 2 (PoE in [S]G). We begin the PoE protocol with input U ∈ G, W ∈ [S]G, and x ∈ Z. The claim to be
proven is that [x][S]U = W in [S]G. The protocol proceeds as follows:

1. Verifier selects a random ` from Primes(λ) \ S and sends ` to Prover.
2. Prover computes q = bx/`c, computes Q = [q]U in G and sends Q to Verifier.
3. Verifier computes r = x mod `, and accepts if Q is in G and [S]([`]Q + [r]U) = W .

The security of this protocol depends on the choice of S. Given a valid proof of [x][S]U = W , in order to
falsely prove [x][S]U = W + P, the prover must compute [1/`]P for the ` chosen by the verifier. This may be
possible if the order of P is known, but this is supposed to be infeasible because ` is not in S.

Remark 3. The impact of finding small-order elements is highly domain-specific. For example, in the VDF of [64,
11], even if points of known order can be found, forging a false PoE still requires knowing the true result of the
exponentiation—and hence still requires computing the output of the VDF. Relying on a PoE would thus break the
requirement that the VDF output is unique, but it would still provide assurance of the delay. For accumulators, we
need an analogue of the strong RSA assumption rather than the adaptive root assumption: it should be hard to find
chosen prime roots of an element (recall that the membership witness of ` in A is the `-th root of A). This case can
be addressed differently, by simply disallowing the accumulation of small primes ` dividing elements of S. Finding
`-th roots with ` not in S is supposed to be infeasible, so here we do not need to use [S]G.

5.2 ELEMENTS OF KNOWN ORDER IN CLASS GROUPS AND JACOBIANS
For class groups, it is well-known that the factorization of ∆ reveals the 2-torsion structure of Cl(∆), and even

allows the explicit construction of elements of order 2. Similarly, for Jacobians, if C/Fq is defined by y2 = f (x),
then the factorization of f (x) reveals the 2-torsion structure of JC(Fq), and lets us construct explicit points of
order 2. This motivates the restriction to negative prime ∆ when using Cl(∆) as an unknown-order group, and our
restriction to irreducible f in Algorithm 4.

Belabas, Kleinjung, Sanso, and Wesolowski [8] give several constructions of special discriminants ∆ together
with a known ideal of small odd order in Cl(∆). Similarly, we can construct hyperelliptic Jacobians equipped with
a point of small order, as in Example 3.

11

Example 3. Let ` be an odd prime, and set g = (` − 1)/2. Choose a polynomial c(x) over Fq of degree ≤ g such
that f (x) := x` + c(x)2 is squarefree. Then C : y2 = f (x) is a hyperelliptic curve of genus g, and the divisor
D = (0, c(0)) − (∞) represents a nontrivial element of order ` in JC(Fq) (because `D is the principal divisor of the
function y − c(x)). Taking ` = 7 gives a family of genus-3 Jacobians with a known element of order 7.

These discriminants and curves generally do not occur when ∆ or f is chosen in a “nothing-up-my-sleeve”
way. In any case, the risk of choosing groups with constructible small-order elements can be eliminated by using a
smooth cofactor S.

There are three curve-specific methods for constructing elements of known small order, or deducing information
about small divisors of the order of a given element, which do not apply to class groups. The first is to use the
division ideals. This is practical for small primes like 2, 3, and 5 (reinforcing the need for the cofactor S above).
However, if we assume that there exists no feasible Schoof-type algorithm for counting points on genus 3 curves,
then we implicitly assume that it is infeasible to construct `-division ideals for ` larger than some bound that is
polynomial with respect to the security parameters.

The second method is to use repeated divisions by 2 in JC(Fq) to construct points of order 2k for arbitrarily
large k. Since 2k is coprime to all odd primes `, this allows malicious provers to easily find `-th roots for these
points (that is, given a point Q, find P such that [`]P = Q). But repeated division by 2 in JC(Fq) requires the
repeated extraction of square roots in Fp , which quickly requires repeated quadratic field extensions and the field
computations blow-up exponentially. Using hyperelliptic curves in the form y2 = f (x) with f (x) irreducible
ensures that the required square roots do not exist in Fp .

Similarly, we might calculate repeated divisions by very small odd primes. Using the group [S]JC(Fq) will
kill off powers of these small primes dividing the group order. It could also be possible to simply test for these
repeated divisions during the curve generation procedure, allowing parties to check for small factors of the group
order—and then kill these off with a tailored choice of S. It is an interesting open problem to generate an easily
verifiable proof that a Jacobian does not have any points of low order.

The third method involves the Tate pairing. Let C be a hyperelliptic curve over Fq , let ` be a prime (coprime
to q), and let k be the smallest positive integer such that ` | qk −1. The reduced `-Tate pairing is a bilinear mapping

t` : JC[`] × JC(Fqk)/`JC(Fqk) −→ µ` ⊂ F
×

qk ,

where µ` is the group of `-th roots of unity (see [29] for background on pairings on hyperelliptic curves). If we can
find points of known order `, then the `-Tate pairing can give information about the `-divisibility of other points.

Suppose we can find a point Q in JC(Fqk) of small known prime order `. Then for any point P in JC(Fq), we
can efficiently compute t`(Q, P) in µ` (assuming k is only polynomially large in log q). Now, if ` - Ord(P), then
P = `P′ for some P′, so t`(Q, P) = 1. By the contrapositive, if t`(Q, P) , 1, then ` divides the order of P.

Unfortunately, the converse is not so simple: t`(Q, P) = 1 for a single point Q of order ` does not imply
` - Ord(P). Instead, it must be shown that t`(Q, P) = 1 for all Q in JC[`]. Thus, we require a basis {Q1, . . . ,Q2g}

of JC[`] which we can test: if t`(Qi, P) = 1 for 1 ≤ i ≤ 2g, then the bilinearity of the Tate pairing implies t`(Q, P)
for all Q in JC[`], and hence that gcd(Ord(P), `) = 1.

The utility of this approach is limited by the difficulty of constructing points of order `, but also by the field
extension degree k (since the coordinates of Q and the value of t`(Q, P) are in Fqk); and k, being the order of
q modulo `, tends to blow up with `. If q is well-chosen, then in practice we can learn very little information
about the orders of random points in JC(Fq), or any information at all for points in [S]JC(Fq) for a suitable S.
For the Jacobian case, we conjecture that S = {1, . . . , 60} is sufficient for a (128, 128) security level, based on the
discussion in §4.2.1. For class groups, S can either be empty in the case of a prime discriminant, or S = {2} if a
non-prime discriminant is used.

REFERENCES
[1] Simon Abelard. “Counting points on hyperelliptic curves in large characteristic: algorithms and complexity”.

PhD thesis. Université de Lorraine, 2018. url: https://tel.archives-ouvertes.fr/tel-01876314.
[2] Simon Abelard, Perrick Gaudry, and Pierre-Jean Spaenlehauer. “Improved complexity bounds for counting

points on hyperelliptic curves”. In: Foundations of Computational Mathematics 19.3 (2019), pp. 591–621.
[3] Simon Abelard, Pierrick Gaudry, and Pierre-Jean Spaenlehauer. “Counting points on genus-3 hyperelliptic

curves with explicit real multiplication”. In: The Open Book Series 2.1 (2019), pp. 1–19.
[4] Martin R. Albrecht et al. “Prime and Prejudice: Primality Testing Under Adversarial Conditions”. In:

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. Ed. by David Lie et al. ACM, 2018, pp. 281–298. doi:
10.1145/3243734.3243787. url: https://doi.org/10.1145/3243734.3243787.

12

https://tel.archives-ouvertes.fr/tel-01876314
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145/3243734.3243787

[5] Roberto Avanzi, Nicolas Thériault, and Zheng Wang. “Rethinking low genus hyperelliptic Jacobian arith-
metic over binary fields: Interplay of field arithmetic and explicit formulae”. In: Journal of Mathematical
Cryptology 2.3 (2008), pp. 227–255.

[6] Eric Bach and René Peralta. “Asymptotic semismoothness probabilities”. In: Mathematics of computation
65.216 (1996), pp. 1701–1715.

[7] William D. Banks and Igor E. Shparlinski. “Integers with a large smooth divisor”. In: Integers 7.A17 (2007),
pp. 1–11.

[8] Karim Belabas et al. A note on the low order assumption in class group of an imaginary quadratic number
fields. Cryptology ePrint Archive, Report 2020/1310. https://eprint.iacr.org/2020/1310. 2020.

[9] Jean-François Biasse, Michael J. Jacobson Jr., and Alan K. Silvester. “Security Estimates for Quadratic Field
Based Cryptosystems”. In: ACISP 2010. Vol. 6168. Lecture Notes in Computer Science. Springer, 2010,
pp. 233–247.

[10] Daniel Bleichenbacher. “Compressing Rabin Signatures”. In: CT-RSA 2004. Vol. 2964. Lectures Notes in
Computer Science. 2004, pp. 126–128.

[11] Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay Functions. Cryptology ePrint
Archive, Report 2018/712. https://eprint.iacr.org/2018/712. 2018.

[12] Dan Boneh, Benedikt Bünz, and Ben Fisch. “Batching Techniques for Accumulators with Applications to
IOPs and Stateless Blockchains”. In: Advances in Cryptology – CRYPTO 2019. 2019, pp. 561–586. isbn:
978-3-030-26948-7.

[13] Richard P. Brent. Public Key Cryptography with a Group of Unknown Order. Tech. rep. Oxford University,
2000.

[14] Johannes Buchmann and Safuat Hamdy. “A Survey on IQ Cryptography”. In: In Proceedings of Public Key
Cryptography and Computational Number Theory. 2001, pp. 1–15.

[15] Johannes Buchmann and Hugh C. Williams. “A key-exchange system based on imaginary quadratic fields”.
In: Journal of Cryptology 1.2 (June 1988), pp. 107–118. issn: 1432-1378. doi: 10.1007/BF02351719.
url: https://doi.org/10.1007/BF02351719.

[16] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK Compilers. Cryptology
ePrint Archive, Report 2019/1229. https://eprint.iacr.org/2019/1229. 2019.

[17] David G. Cantor. “Computing in the Jacobian of a hyperelliptic curve”. In: Mathematics of computation
48.177 (1987), pp. 95–101.

[18] David G. Cantor. “On the analogue of the division polynomials for hyperelliptic curves.” In: Journal für die
reine und angewandte Mathematik 447 (1994), pp. 91–146. url: http://eudml.org/doc/153593.

[19] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer Publishing Company, Incor-
porated, 2010.

[20] Henri Cohen and Hendrik W. Lenstra. “Heuristics on class groups of number fields”. In: Number Theory
Noordwijkerhout 1983. Springer, 1984, pp. 33–62.

[21] Henri Cohen et al. Handbook of elliptic and hyperelliptic curve cryptography. Chapman and Hall/CRC,
2005.

[22] Craig Costello and Kristin Lauter. “Group Law Computations on Jacobians of Hyperelliptic Curves”. In:
Proceedings of the 18th International Conference on Selected Areas in Cryptography. SAC’11. Toronto,
ON, Canada: Springer-Verlag, 2012, pp. 92–117. isbn: 978-3-642-28495-3. doi: 10.1007/978-3-642-
28496-0_6. url: http://dx.doi.org/10.1007/978-3-642-28496-0_6.

[23] David A. Cox. Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication.
Monographs and textbooks in pure and applied mathematics. Wiley, 1989. isbn: 9780471506546. url:
https://books.google.co.nz/books?id=pSMlAQAAIAAJ.

[24] Claus Diem. “An Index Calculus Algorithm for Plane Curves of Small Degree”. In: Algorithmic Number
Theory. Springer Berlin Heidelberg, 2006, pp. 543–557. isbn: 978-3-540-36076-6.

[25] AndreasEnge. “ComputingDiscrete Logarithms inHigh-genusHyperelliptic Jacobians in Provably Subexpo-
nential Time”. In:Math. Comput. 71.238 (Apr. 2002), pp. 729–742. issn: 0025-5718. doi: 10.1090/S0025-
5718-01-01363-1. url: http://dx.doi.org/10.1090/S0025-5718-01-01363-1.

[26] Xinxin Fan, ThomasWollinger, and Guang Gong. “Efficient explicit formulae for genus 3 hyperelliptic curve
cryptosystems over binary fields”. In: IET Information Security 1.2 (2007), pp. 65–81.

13

https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2018/712
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/BF02351719
https://eprint.iacr.org/2019/1229
http://eudml.org/doc/153593
https://doi.org/10.1007/978-3-642-28496-0_6
https://doi.org/10.1007/978-3-642-28496-0_6
http://dx.doi.org/10.1007/978-3-642-28496-0_6
https://books.google.co.nz/books?id=pSMlAQAAIAAJ
https://doi.org/10.1090/S0025-5718-01-01363-1
https://doi.org/10.1090/S0025-5718-01-01363-1
http://dx.doi.org/10.1090/S0025-5718-01-01363-1

[27] Gerhard Frey and Hans-Georg Rück. “A Remark Concerning M-divisibility and the Discrete Logarithm in
the Divisor Class Group of Curves”. In:Math. Comput. 62.206 (Apr. 1994), pp. 865–874. issn: 0025-5718.
doi: 10.2307/2153546. url: http://dx.doi.org/10.2307/2153546.

[28] Steven D. Galbraith. Mathematics of Public Key Cryptography. 1st. New York, NY, USA: Cambridge
University Press, 2012.

[29] Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. “Hyperelliptic Pairings”. In: Pairing-Based
Cryptography – Pairing 2007. Springer Berlin Heidelberg, 2007, pp. 108–131. isbn: 978-3-540-73489-5.

[30] Pierrick Gaudry. “An Algorithm for Solving the Discrete Log Problem on Hyperelliptic Curves”. In: Ad-
vances in Cryptology — EUROCRYPT 2000. Springer Berlin Heidelberg, 2000, pp. 19–34. isbn: 978-3-540-
45539-4.

[31] Pierrick Gaudry and Robert Harley. “Counting Points on Hyperelliptic Curves over Finite Fields”. In:
Algorithmic Number Theory. Springer Berlin Heidelberg, 2000, pp. 313–332. isbn: 978-3-540-44994-2.

[32] Pierrick Gaudry, David Kohel, and Benjamin Smith. “Counting Points on Genus 2 Curves with Real
Multiplication”. In: Advances in Cryptology—ASIACRYPT 2011 (Seoul, South Korea). Ed. by Dong Hoon
Lee andXiaoyunWang. Vol. 7073. Lecture Notes in Computer Science. Heidelberg: Springer, 2011, pp. 504–
519. doi: 10.1007/978-3-642-25385-0_27.

[33] Pierrick Gaudry and Éric Schost. “A Low-Memory Parallel Version of Matsuo, Chao, and Tsujii’s Algo-
rithm”. In: Algorithmic Number Theory. Ed. by Duncan Buell. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 208–222. isbn: 978-3-540-24847-7.

[34] Pierrick Gaudry and Éric Schost. “Construction of Secure Random Curves of Genus 2 over Prime Fields”.
In: Advances in Cryptology - EUROCRYPT 2004. Springer Berlin Heidelberg, 2004, pp. 239–256. isbn:
978-3-540-24676-3.

[35] Pierrick Gaudry and Éric Schost. “Genus 2 point counting over prime fields”. In: Journal of Symbolic
Computation 47.4 (2012), pp. 368–400.

[36] Pierrick Gaudry et al. “A Double Large Prime Variation for Small Genus Hyperelliptic Index Calculus”. In:
Mathematics of Computation 76.257 (2007), pp. 475–492.

[37] James Lee Hafner and Kevin S. McCurley. “A rigorous subexponential algorithm for computation of class
groups”. In: Journal of the American Mathematical Society 2 (1989), pp. 837–850.

[38] Safuat Hamdy and BodoMöller. “Security of Cryptosystems Based on Class Groups of Imaginary Quadratic
Orders”. In: Advances in Cryptology — ASIACRYPT 2000. Vol. 1976. Lectures Notes in Computer Science.
Springer Berlin Heidelberg, 2000, pp. 234–247. isbn: 978-3-540-44448-0.

[39] David Harvey. “Kedlaya’s Algorithm in Larger Characteristic”. In: International Mathematics Research
Notices 2007 (Jan. 2007). issn: 1073-7928. doi: 10.1093/imrn/rnm095. eprint: https://academic.
oup.com/imrn/article-pdf/doi/10.1093/imrn/rnm095/1987034/rnm095.pdf. url: https:
//doi.org/10.1093/imrn/rnm095.

[40] Florian Hess, Gadiel Seroussi, and Nigel P. Smart. “Two topics in hyperelliptic cryptography”. In: Interna-
tional Workshop on Selected Areas in Cryptography. 2001, pp. 181–189.

[41] Kiran S. Kedlaya. “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology”. In:
Journal of the Ramanujan Mathematical Society 16 (2001), pp. 323–338.

[42] Kim H. M. Laine. “Security of Genus 3 Curves in Cryptography”. PhD thesis. University of California,
Berkeley, 2015.

[43] Kim Laine and Kristin Lauter. “Time-memory trade-offs for index calculus in genus 3”. In: Journal of
Mathematical Cryptology 9.2 (2015), pp. 95–114.

[44] Tanja Lange. “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves”. In: Applicable Algebra in Engi-
neering, Communication and Computing 15.5 (Feb. 2005), pp. 295–328. issn: 1432-0622. doi: 10.1007/
s00200-004-0154-8. url: https://doi.org/10.1007/s00200-004-0154-8.

[45] Jonathan Lee. The security of Groups of Unknown Order based on Jacobians of Hyperelliptic Curves.
Cryptology ePrint Archive, Report 2020/289. https://eprint.iacr.org/2020/289. 2020.

[46] Helger Lipmaa. “Secure Accumulators from Euclidean Rings without Trusted Setup”. In: Applied Cryptog-
raphy and Network Security. Ed. by Feng Bao, Pierangela Samarati, and Jianying Zhou. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 224–240. isbn: 978-3-642-31284-7.

14

https://doi.org/10.2307/2153546
http://dx.doi.org/10.2307/2153546
https://doi.org/10.1007/978-3-642-25385-0_27
https://doi.org/10.1093/imrn/rnm095
https://academic.oup.com/imrn/article-pdf/doi/10.1093/imrn/rnm095/1987034/rnm095.pdf
https://academic.oup.com/imrn/article-pdf/doi/10.1093/imrn/rnm095/1987034/rnm095.pdf
https://doi.org/10.1093/imrn/rnm095
https://doi.org/10.1093/imrn/rnm095
https://doi.org/10.1007/s00200-004-0154-8
https://doi.org/10.1007/s00200-004-0154-8
https://doi.org/10.1007/s00200-004-0154-8
https://eprint.iacr.org/2020/289

[47] Alfred Menezes, Yi-hong Wu, and Robert J. Zuccherato. An Elementary Introduction to Hyperelliptic
Curves. appendix in Algebraic Aspects of Cryptography by Neal Koblitz, Springer-Verlag, 1998, pages
155-178. 1996.

[48] David Mumford. Tata Lectures on Theta II. Birkhauser, Jan. 2007, pp. 207–213. isbn: 978-0-8176-4569-4.
doi: 10.1007/978-0-8176-4578-6_13.

[49] Koh-ichi Nagao. Improvement of Thériault Algorithm of Index Calculus for Jacobian of Hyperelliptic Curves
of Small Genus. Cryptology ePrint Archive, Report 2004/161. https://eprint.iacr.org/2004/161.
2004.

[50] Jonathan Pila. “Frobeniusmaps of abelian varieties and finding roots of unity in finite fields”. In:Mathematics
of Computation 55.192 (1990), pp. 745–763.

[51] Nicole L. Pitcher. “Efficient point-counting on genus-2 hyperelliptic curves”. PhD thesis. University of
Illinois at Chicago, 2009, p. 124. isbn: 9781109242188.

[52] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release crypto. Technical
Report MIT/LCS/TR-684. 1996.

[53] Hans-Georg Rück. “On the Discrete Logarithm in the Divisor Class Group of Curves”. In: Math. Comput.
68.226 (Apr. 1999), pp. 805–806. issn: 0025-5718. doi: 10.1090/S0025-5718- 99-01043-1. url:
http://dx.doi.org/10.1090/S0025-5718-99-01043-1.

[54] Tomas Sander. “Efficient Accumulators without Trapdoor Extended Abstract”. In: Information and Commu-
nication Security. Ed. by Vijay Varadharajan and Yi Mu. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 252–262.

[55] René Schoof. “Elliptic curves over finite fields and the computation of square roots mod p”. In:Mathematics
of computation 44.170 (1985), pp. 483–494.

[56] René Schoof. “Counting points on elliptic curves over finite fields”. en. In: Journal de Théorie des Nombres
de Bordeaux 7.1 (1995), pp. 219–254. url: http://www.numdam.org/item/JTNB_1995__7_1_219_0/.

[57] Benjamin Smith. “Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic
Curves,” in: Journal of Cryptology 22.4 (Oct. 2009), pp. 505–529. issn: 1432-1378. doi: 10.1007/s00145-
009-9038-1. url: https://doi.org/10.1007/s00145-009-9038-1.

[58] Andrew V. Sutherland. “Order computations in generic groups”. PhD thesis. Massachusetts Institute of
Technology, 2007.

[59] Andrew V. Sutherland. “A generic approach to searching for Jacobians”. In: Mathematics of Computation
78.265 (2009), pp. 485–507.

[60] Steve Thakur. Constructing hidden order groups using genus three Jacobians. Cryptology ePrint Archive,
Report 2020/348. https://eprint.iacr.org/2020/348. 2020.

[61] Nicolas Thériault. “Index Calculus Attack for Hyperelliptic Curves of Small Genus”. In: Advances in
Cryptology - ASIACRYPT 2003. Springer Berlin Heidelberg, 2003, pp. 75–92. isbn: 978-3-540-40061-5.

[62] Annegret Weng. “A class of hyperelliptic CM-curves of genus three”. In: Journal of the Ramanujan Mathe-
matical Society 16 (Jan. 2001).

[63] Annegret Weng. “Constructing hyperelliptic curves of genus 2 suitable for cryptography”. In: Mathematics
of Computation 72.241 (2003), pp. 435–458.

[64] Benjamin Wesolowski. “Efficient Verifiable Delay Functions”. In: Advances in Cryptology – EUROCRYPT
2019. 2019, pp. 379–407. isbn: 978-3-030-17659-4.

15

https://doi.org/10.1007/978-0-8176-4578-6_13
https://eprint.iacr.org/2004/161
https://doi.org/10.1090/S0025-5718-99-01043-1
http://dx.doi.org/10.1090/S0025-5718-99-01043-1
http://www.numdam.org/item/JTNB_1995__7_1_219_0/
https://doi.org/10.1007/s00145-009-9038-1
https://doi.org/10.1007/s00145-009-9038-1
https://doi.org/10.1007/s00145-009-9038-1
https://eprint.iacr.org/2020/348

	Introduction
	Sutherland's algorithm: the security of generic groups
	Ideal class groups as unknown-order groups
	Background on ideal and form class groups
	The security of ideal class groups
	Compressing ideal class group elements
	Bleichenbacher's Rabin signature compression algorithm
	An improved class group element compression algorithm

	Hyperelliptic Jacobians as unknown-order groups
	Hyperelliptic curves
	The security of hyperelliptic Jacobians
	Point-counting algorithms
	Discrete logarithm algorithms

	Generating hyperelliptic Jacobians of unknown order

	Elements of known order
	Low-order assumptions and cofactors
	Elements of known order in class groups and Jacobians

