
Improvement on a Masked White-box
Cryptographic Implementation

Seungkwang Lee and Myungchul Kim

Information Security Research Division, ETRI
skwang@etri.re.kr

Abstract. White-box cryptography is a software technique to protect
secret keys from attackers who have access to memory for cryptographic
algorithms. By adapting techniques of differential power analysis to com-
putation traces consisting of runtime information, Differential Compu-
tation Analysis (DCA) has been recovered the secret keys from white-
box cryptographic implementations. In order to thwart DCA, a masked
white-box implementation has been suggested. However, each byte of the
round output was not masked and just permuted by byte encodings. This
is the main reason behind the success of DCA variants on the masked
white-box implementation. In this paper, we improve the masked white-
box cryptographic implementation in such a way to protect against DCA
variants by obfuscating the round output with random masks. Specifi-
cally, we implement a white-box AES implementation combined with
masking techniques applied to the key-dependent intermediate value and
the several outer-round outputs. Our analysis and experimental results
show that the proposed method can protect against DCA variants in-
cluding DCA with a 2-byte key guess, collision and bucketing attacks.
This work requires approximately 3.7 times the table size and 0.7 times
the number of lookups compared to the previous masked WB-AES im-
plementation.

White-box cryptography, AES, DCA, collision attack, bucketing attack, coun-
termeasure.

1 Introduction

One of the most important issues in software implementations of cryptographic
algorithms is to protect the secret key from various threats. White-box cryp-
tography is a software technique to protect the key from white-box attackers
who can access and modify all resources in the device. In general, white-box
cryptography precomputes a series of lookup tables for all input values for each
operation and obfuscates the tables with linear and nonlinear transformations
(i.e. encoding) to prevent the key from being analyzed [10, 11, 16]. Given the
key-instantiated lookup tables above, actual encryption or decryption consists
of table lookups that replace most of operations.

2

It is not possible to extract the key from white-box cryptographic implemen-
tations simply by observing the intermediate values in memory. Previously, the
key extraction from white-box cryptography was largely dependent on crypt-
analysis [4, 14, 19, 23, 24, 27], which requires detailed knowledge of the target
implementations. Recent attacks, on the other hand, have adapted techniques of
differential power analysis and thus an in-depth understanding of the target im-
plementation is not necessary. In particular, it is possible to conduct statistical
analysis on white-box cryptography [26]. In addition, Differential Computation
Analysis (DCA) [7] uses Correlation Power Analysis (CPA) [9] as a subroutine to
calculate Pearson’s correlation coefficient, but this shows the improved efficiency
by using computation traces (also known as software execution traces) consisting
of noise-free information such as memory accesses, instead of the noisy power
traces.

One of the most well-known techniques protecting against statistical side-
channel analysis like CPA is masking [1, 5, 12, 22], which randomizes every
intermediate values for each execution of encryption. In [17], a masked white-
box AES (WB-AES) implementation for preventing DCA is proposed. This is
a customized version of masking that uses random masks for each value of the
intermediate value and thus eliminates the need to mask the entire tables every
time an encryption operation is performed. However, it has been broken by
various variants of DCA. For example, each subbyte of the first round output can
be the target by making a 2-byte key guess [25]. A collision-based DCA attack
in [25] is also similar to this attack, but the analysis method of computation
traces is different. A bucketing attack [28] can also be successful with chosen-
plaintext sets, in which the plaintexts are divided into two set based on the
predefined four bits of a hypothetical round output. Here it is important to
notice that these vulnerabilities come from the fact that this masked WB-AES
implementation does not apply masking on the round output.

In this paper, we improve a masked WB-AES implementation in such a way
to protect against these recently published vulnerabilities. The key point is to
apply masking not only to the intermediate values but also to the round out-
puts computed with less than 128 bits of the key. Our evaluation shows that
the proposed method provides protection against DCA-variant attacks and the
additional cost is a table size that is 3.7 times larger than the previous masked
WB-AES implementation. The rest of the paper is organized as follows. Section 2
briefly explains a masked WB-AES implementation and the Walsh transforms
used to evaluate the correlation between the encoded lookup value and the hy-
pothetical value. Section 3 reviews the vulnerabilities to DCA-variant attacks.
Section 4 presents our improvement on a masked WB-AES implementation and
Section 5 evaluates its security and performance. Finally, Section 6 concludes
this paper.

3

2 Background

This section provides a brief overview of a masked WB-AES implementation for
128-bit key size and the Walsh transform.

2.1 Masked WB-AES Implementation

By pushing the initial AddRoundKeys into the first round, the AES-128 algo-
rithm can be expressed as follows, with two round keys involved in the final
round:

state ← plaintext
for r = 1 · · · 9

ShiftRows(state)

AddRoundKey(state, k̂r−1)
SubBytes(state)
MixColumns(state)

ShiftRows(state)

AddRoundKey (state, k̂9)
SubBytes(state)
AddRoundKey(state, k10)
ciphertext ← state,

where kr is a 4 × 4 matrix of round keys in the round r, and k̂r is the result of
applying ShiftRows to kr. To generate lookup tables for the above algorithms,
T-boxes combined with SubBytes and AddRoundKeys are defined as:

T ri,j(p) = S(p⊕ k̂r−1i,j), for i, j ∈ [0, 3] and r ∈ [1, 9],

T 10
i,j (p) = S(p⊕ k̂9i,j)⊕ k10i,j for i, j ∈ [0, 3],

where S and p denote the AES S-box and a subbyte of the plaintext, respectively.
From the first to the ninth rounds, column vectors in the MixColumns matrix
MC are multiplied with values from T-boxes. Let [x0, x1, x2, x3]T be a column
vector of the state after mapping the round input to T-boxes. Then we have:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

x0
x1
x2
x3

= x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02

= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3,

where MCi∈{0,1,2,3} denotes the i-th column vector of MC. We call each of the
right-hand side terms y0, y1, y2, and y3. The lookup table of decomposed Mix-

4

Columns is then defined by Tyi as follows:

Ty0(x0) = x0 · [02 01 01 03]T

Ty1(x1) = x1 · [03 02 01 01]T

Ty2(x2) = x2 · [01 03 02 01]T

Ty3(x3) = x3 · [01 01 03 02]T .

(1)

The first WB-AES implementation proposed by Chow et al. [10] applies 32×32
linear transformations and concatenated nibble encodings on the right-hand side
to obfuscate key-dependent intermediate values. This encoded lookup table is
commonly named TypeII. When the XOR table to combine the output of the
decomposed MixColumns is generated, no inverse linear transformation is in-
volved because of the distributive property of matrix multiplication over logical
bitwise XOR. On the other hand, the nibble encoding prevents the size of the
XOR table from becoming large by allowing two 4-bit inputs. This XOR table is
aptly named TypeIV II. Next, the TypeIII table replaces the 32×32 linear trans-
formations applied to the TypeII output with 8×8 linear transformations, and
the TypeIV III table recombines the TypeIII output for computing the round
output. By doing so, an input to the next round TypeII can be 8 bits in length
thereby keeping the entire table size from becoming large. Finally, TypeV is a
looup table generated with the input decoding for T 10 in the final round. Note
that TypeI used for the external encoding is not considered in this paper for the
interoperability of encryption and decryption operations.
Fig. 2 briefly describes TypeIII, TypeIV, and TypeV.

To prevent the key leakage by statistical analysis [7, 26] two things are added in
this masked WB-AES implementation. First, each byte at the right-hand side of
Equation (1) is concealed by masks randomly picked for each value of xi∈{0,1,2,3}.
It is a customized masking method that differs from the existing masking tech-
nique that uses the same mask value. Therefore, the newly defined TypeII-M
consists of the masked Tyi∈{0,1,2,3} values and the mask values used as shown
in Fig. 1. Next, TypeIV IIA combines the masked Tyi output, and TypeIV IIB
produces the round output by XORing the output value of TypeIV IIA and
the mask used. This is the outline of CASE 1 [21] that provides the basic re-
quirements of a masked WB-AES implementation and Fig. 3 describes the table
lookup overview.

Second, the nibble encodings are replaced by byte encodings for some inner
round outputs depending on the security requirement (CASE 2 or 3). This is
because the mask completely disappears in the round output after the masked
MixColumns outputs are combined. However, the next section will review the
DCA-variant attacks on the byte encoding and we do not use it. In this study, we
propose a method to improve a masked WB-AES implementation by applying
masking to round output values for removing the problematic correlation without
the use of byte encodings.

5

N(in) N(in)

8 × 8
L

��,�
�

���

4

M
M

M
M

8

: A random mask is XORed to the input

Input decoding from Round 2 to 9

N(out) N(out)…

32 × 32
L

N(out) N(out)…

32 × 32
L

4

M

Used masks

Fig. 1: TypeII-M in the masked WB-AES implementation. L: linear transforma-
tion, N : nibble encoding/decoding.

N(in) N(in)

32 × 8

L

N(out) N(out)…

4

4

(a) TypeIII

N(in)

XOR

N(in)

N(out)

4

4
(b) TypeIV

N(in) N(in)

8 × 8
L

!",$%&

4

4

(c) TypeV

Fig. 2: Other lookup tables in CASE 1.

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII-M TypeII-M

TypeIV_IIA

TypeIV_IIB

8

32

32

TypeII-M TypeII-M

(a) TypeII-M and TypeIV II tables. Dashed line: used masks. (ShiftRows omit-
ted)

TypeIII TypeIII

TypeIV_III

8

32

TypeIII TypeIII

32

TypeIV_IIB

32

(b) TypeIII and TypeIV III tables.

Fig. 3: Overview of table lookups in CASE 1.

7

2.2 Walsh Transform

Consider a DCA attacker who knows the accurate target values by accessing
memory while the encryption is performed. This attacker learns the intermedi-
ate values from the computation traces, and runs a CPA attack as a subroutine
to calculate Pearson’s correlation coefficient with the hypothetical values. Here,
the computation trace serves to provide noise-free information of intermediate
values. If one can directly observe the noise-free values of intermediate values,
the Walsh transform consisting of easy operations can be an alternative to CPA
for calculating the correlation [17, 26]. In this paper, we use the Walsh trans-
form because we have generated the lookup table and all intermediate values are
obtainable. The following is the definitions of the Walsh transform from [26].

Definition 1. Let x = 〈x1, . . ., xn〉, ω = 〈ω1, . . ., ωn〉 be elements of {0, 1}n
and x ·ω = x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function of n variables. Then
the Walsh transform of the function f(x) is a real valued function over {0, 1}n
that can be defined as Wf (ω) = Σx∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, . . . , xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ d, it is called a balanced d-th order
correlation immune function or an d-resilient function.

In Definition 1, let x be a hypothetical intermediate value to be analyzed and ω
be the operand of the inner product with the Hamming weight (HW) 1 used to
select a specific bit of x. The reason why the HW of ω is 1 is because it is difficult
to analyze the key through HW or multi-bit based correlation analysis due to
the encodings, whereas single-bit analysis is successful. On the other hand, f(x)
represents the real lookup values and provides the noise-free intermediate values
like the computation trace. To indicate a particular bit of the n-bit lookup value,
f(x) is represented as n Boolean functions. In Definition 2, Wfi = 0 means no
correlation, whereas a large absolute value of Wfi means that there is a large
correlation at the i-th bit of f(x) and x · ω.

3 Vulnerability to DCA variants

This section reviews DCA and its variants on WB-AES implementations. If a
white-box cryptographic algorithm is implemented without masking, DCA can
break it using computation traces. In the case of a masked implementation, the
key can be revealed by extending DCA with a 2-byte key guess, or by running
collision and bucketing attacks.
Before going on, we note that Higher-order DCA [6] does not work on the cus-
tomized version of the masked implementation that applies a different random
mask for each value of the target intermediate value. In the case of Linear De-
coding Analysis (LDA) [15], the key is analyzed by solving the system of linear

8

equations that the matrix-unknown coefficient multiplication becomes the hy-
pothetical intermediate value, where the matrix consists of intermediate values
obtained from the corresponding computation traces. If the system is solvable
for a hypothetical key, it is probably the correct key. If the system is unsolvable
for every hypothetical key, then the attack fails. However, LDA is not allowed
in the masked WB-AES implementation because the matrix is randomized due
to the mask which makes the system unsolvable.

3.1 DCA

Originally, CPA using Pearson’s correlation coefficient is one of the power anal-
ysis methods to recover the key based on the fact that the power consumption
is proportional or inversely proportional to the HW of the data currently being
processed. Let denote N power traces by V1..N [1..κ], and a hypothetical key by
k∗, where κ is the number of sample points. For K different hypothetical keys,
En,k∗ (1 ≤ n ≤ N , 0 ≤ k∗ < K) implies the power estimate in the n-th trace.
Then, the estimator r at the j-th sample point is defined as

rk∗,j =

∑N
n=1(En,k∗ − Ek∗) · (Vn[j]− V [j])√∑N

n=1(En,k∗ − Ek∗)2 ·
∑N
n=1(Vn[j]− V [j])2

,

where Ek∗ and V [j] are means of Ek∗ and V [j], respectively [20]. The hypothetical
key that produces the highest peak in the correlation plot is judged to be the
key.
This CPA attack works on a white-box implementation because the linear trans-
formation and the nibble encoding do not eliminate correlation [2, 18]. In the
repository of public white-box cryptographic implementations and DCA at-
tacks [13], DCA also adapts CPA using Daredevil [8], a software tool to perform
CPA. The difference from the classical power analysis is that DCA improves the
efficiency of CPA by collecting noise-free computation traces collected by ob-
serving memory, instead of power traces collected by an oscilloscope. In average,
DCA recovers 14.3 out of 16 subkeys from Chow’s WB-AES implementation us-
ing only 200 computation traces, whereas no key is recovered from the masked
WB-AES implementation [17].

However, the masked WB-AES implementation cannot prevent DCA variants
exploiting the round output which is not masked. Among several variants, we
begin with DCA with a 2-byte key guess [25]. In order to reduce the 232 key
space to 216 for guessing a subbyte of the first round output in AES-128, two
bytes in a column of the plaintext state can be fixed to zero or a some value.
For example, if (p0, p1, p2, p3) is the first column of the plaintext state and if
p0, p1 are fixed to 0, the first byte of the round output can be written as s =
S(p2 ⊕ k02,2) ⊕ S(p3 ⊕ k03,3) ⊕ c for some constant c. Then, DCA with 216 key
space is successful because S(p2⊕ k02,2)⊕S(p3⊕ k03,3) is correlated to s which is
in turn correlated to its encoded value.

9

3.2 Collision Attack

By fixing two input bytes, a collision attack [25] can also be mounted with 216 key
space. This is similar to the principle of 2-byte key guess described earlier, and
is based on the fact that if a hypothetical subbyte of the round output collides
for a pair of inputs, so does its encoded value in the computation trace. For each
pair of inputs and their computation traces, an attacker compares the values of
each sample position in the two traces and gives 1 if the two values are equal,
and 0 if they are different, to generate a collision computation trace (CCT).
Similarly, the collision prediction is composed of 0 and 1 which are assigned in
the same way by comparing two hypothetical subbytes of the round outputs for
each pair of the inputs and a hypothetical key. Thus, there is a perfect match
between the target sample position in the CCT and the collision prediction for
the correct hypothetical key. Here we do not take into account the improved
mutual information analysis [25] because this is similar to the collision in many
respects and succeeds if and only if the collision attack succeeds.

3.3 Bucketing Attack

Extended statistical bucketing analysis [28], as a variant of the collision attack,
is based on the fact that if two correct hypothetical intermediate values com-
puted by a pair of plaintexts do not collide, their corresponding encoded values
should not collide as well. Bucketing Computational Analysis (BCA) applies this
principle to white-box cryptography using computation traces. For example, an
attacker can divide the first subbyte of plaintexts into two sets with two dis-
tinct values for the lower four bits of the S-box output. By fixing the remaining
15 subbytes of the plaintext, the attacker can be convinced that the two sets
of plaintexts produce disjoint sets of the lower four bits of the first subbyte in
the first round output. This attack works even on the masked WB-AES imple-
mentation because the round output is not masked and protected by the nibble
encoding. Thus, this attacker can confirm or deny a hypothetical key by observ-
ing whether or not the first subbyte in the round output is disjoint depending
on the chosen-plaintext set.
Zero Difference Enumeration (ZDE) [3] may also be considered similar to BCA.
ZDE works by selecting special pairs of plaintexts that allow the significant
number of intermediate values computed by the correct hypothetical key to be
identical. However, this is known to be inefficient taking 500 × 218 traces to
recover a subkey of AES, and also the selected pairs of plaintexts are unable to
make identical intermediate values in the masked WB-AES implementation.

4 Proposed Method

Most of DCA-variant attacks on the previous masked WB-AES implementation
analyze the round output in which the masks are removed. In this section, we
propose a method to provide the masked round output and unmask it in the

10

input decoding phase of the next round. The following explains how to modify
TypeII and TypeV, depending on the presence or absence of masked inputs and
outputs, and how to connect to other tables.

TypeII MO (Masked Out). This puts the random masks on the Tyi output
value, encodes the masked value and the mask used. This is used in the first
round because each subbyte of the first round output only involves 32 bits of the
key. Note that all 128 bits of the key affect each subbyte of the round output
after the output value of the second MixColumns multiplication is XORed. For
the same reason, this is also used in the eighth round because each subbyte of the
ninth round input needs to be protected by masking, as only six bytes of the key
are associated with it in terms of decryption that goes back from ciphertexts.

The difference from TypeII-M used in the previous masked WB-AES implemen-
tation is the method of encoding masks. As shown in Fig. 1 and Fig. 3, the
masked Tyi values were previously unmasked before the TypeIII lookup, and
thus the intermediate value and the mask share the same matrix for the linear
transformation in order to take advantage of the distributive property of matrix
multiplication over XOR.

In this work, the mask is not immediately combined with the masked Tyi val-
ues, but with the other mask values to provide the masked round output. Fig. 4a
shows that 8×8 linear transformations are used on the mask in TypeII MO be-
cause the masks are joined together between masks. This is because the mask
itself is a random value generated in a uniform distribution and independent of
the key, so there is no reason to apply a linear transformation of large diffusion
effects. For this reason, the masks do not require the process of replacing linear
transformations by TypeIII and TypeIV III, thereby reducing the overall table
size and the number of lookups.

Let denote TypeIV IIM the TypeIV table used to combine the mask connected
by dotted lines in Fig. 4a. Then, the TypeIV II table combines only the masked
Tyi values and prepares a masked round output as shown in Fig. 5a.

After computing the masked round output above, TypeIII and TypeIV III re-
place the 32×32 linear transformation with 8×8 linear transformations like in the
case of Chow’s WB-AES implementation. Then we have two 4×4 state matrices,
vs (value state) and ms (mask state), where vs is the masked round output and
ms is the mask value. This lookup sequence is illustrated in Fig. 8a.

TypeII MIMO (Masked In Masked Out). Because the first round output
is masked, the TypeII table of the second round takes each byte of vs and ms as
input, decodes and XORs each other.The result is a subbyte of the first round
output and an input to T 2 at the same time. As explained, all bits of the key
are not associated with each intermediate byte until the output value of the
second round MixColumns is combined. Therefore, masking is again applied to
the second round Tyi values to protect them.

Here, we call it TypeII MIMO, which takes the masked input and provides the
masked Tyi values. TypeII MIMO is again divided into two types, depending on

11

N

8 × 8
L

��,�
�

���

…

32 × 32
L

4

8 × 8
L

M
M

M
M

8

Used masks

4

N

N NN N N N

8 × 8
L

8 × 8
L

N N

8 × 8
L

N N

No input decoding in Round 1

TypeII-MIMO

(a) TypeII MO. No input decoding is
performed for the first round because
there is no external encoding.

��,�
�

���

…

32 × 32
L

M
M

M
M

8

Used masks

4

N N

⊕

8 × 8
L

8 × 8
L

N N N N

4

…

32 × 32
L

4

N N

(b) TypeII MIMO in the second round.

��,�
�

���

…

32 × 32
L

8 × 8
L

M
M

M
M

8

Used masks

4

N NN N N N

8 × 8
L

8 × 8
L

N N

8 × 8
L

N N

⊕

8 × 8
L

8 × 8
L

N N N N

4

(c) TypeII MIMO in the ninth round.

Fig. 4: Modified TypeII tables for the masked outputs.

12

the linear transformation applied to the mask. If the masked round output is
unmasked before looking up the TypeIII table, like in the case of the previous
masked WB-AES implementation shown in Fig. 3a, a 32×32 linear transforma-
tion is applied. Otherwise, if the masked round output and the mask values are
separated into vs and ms, and passed to the next round, an 8×8 linear transfor-
mation is applied. In the second round, the XOR operations between the masked
Tyi values keep the intermediate values masked until each subbyte of the round
output is computed. For this reason, a 32×32 linear transformation is applied
to the mask in the second round as plotted in Fig. 4b and the unmasking is
conducted with the TypeIV tables as shown in Fig. 5b. The overall sequence of
table lookups in the second round is shown in Fig. 8b.
On the other hand, each subbyte of the ninth round output needs to be masked.
This is because if the two subkeys hidden in T 10 of the final round are correctly
guessed by the attacker, the hypothetical subbyte of the ninth round output
computed inversely from the ciphertext will correlate with the corresponding
subbyte of the encoded ninth round output. Thus, the masked Tyi values and
the masks are XORed separately and passed to the input of TypeV MI in the
final round as shown in Fig. 5c and Fig. 8c. By abuse of notation, we continue
to use the same names for TypeII MIMO and TypeIV IIM in the second and
ninth rounds for the simplicity although they differ in the linear transformation
applied to the mask and the number of copies of the TypeIV table, respectively.
The size of each table and the number of lookups are analyzed in the next section.

TypeII . The TypeII table (Fig. 6) for the rest of the inner rounds (third to
seventh) is used in the same way as used in Chow’s WB-AES implementation,
since masking is not applied to inputs and outputs. The replacement of linear
transformations are also processed in the same way with TypeIII and TypeIV III
as depicted in Fig. 8d.

TypeV MI (Masked In). For the final round, the TypeV MI table is gener-
ated in such a way to take each byte from vs and ms, decode, and XOR them.
This result value will be an input byte to T 10 as shown in Fig. 7. Without the
external encoding, each TypeV MI output becomes a subbyte of the ciphertext
(Fig. 8e).

5 Evaluation

We evaluate our proposed method in terms of security and performance. To
be specific, we demonstrate protection against of DCA and DCA variants de-
scribed in Section 3, and analyze the table size and the number of lookups.
Briefly speaking, we have generated the lookup tables following the proposed
WB-AES implementation, and conducted various experiments. First, the corre-
lation between the TypeII MO lookup value and the hypothetical value of the
SubBytes output in the first round is analyzed with the Walsh transform. In ad-

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII_MO

TypeIV_II

TypeIV_IIM

8

32

32

TypeII_MO TypeII_MO TypeII_MO

32

(a) TypeII MO and TypeIV in the first and eighth rounds.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII_MIMO

TypeIV_II

TypeIV_IIM

8

32

32

32

TypeII_MIMO TypeII_MIMO TypeII_MIMO

0 1 2 3 4 155 6 7 8 9 10 11 12 13 14

(b) TypeII MIMO and TypeIV in the second round.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeII_MIMO

TypeIV_II

TypeIV_IIM

8

32

32

32

TypeII_MIMO TypeII_MIMO TypeII_MIMO

0 1 2 3 4 155 6 7 8 9 10 11 12 13 14

(c) TypeII MIMO and TypeIV in the ninth round.

Fig. 5: Masked round output and XOR. Solid line: masked value. Dotted line:
mask.

14

N

8 × 8
L

��,�
�

���

…

32 × 32
L

4

8

4

N

N N

TypeII

Fig. 6: TypeII used in the inner rounds [10].

��,�
��

⊕

8 × 8
L

8 × 8
L

N N N N

4

8

Fig. 7: TypeV MI in the final round.

15

Round 2

Round 10

Round 9

Round 1 & 8

Round 3 - 7

TypeII_MO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeII_MI TypeIV_II TypeIII TypeIV_III

TypeII TypeIV_II TypeIII TypeIV_III

TypeII_MIMO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeV_MI

(a) Round 1 and 8
Round 2

Round 10

Round 9

Round 1 & 8

TypeII_MO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeII_MIMO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeV_MI

TypeII_MIMO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

(b) Round 2

Round 2

Round 10

Round 9

Round 1 & 8

Round 3 - 7

TypeII_MO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeII_MI TypeIV_II TypeIII TypeIV_III

TypeII TypeIV_II TypeIII TypeIV_III

TypeII_MIMO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeV_MI

(c) Round 9

Round 2

Round 10

Round 9

Round 1 & 8

Round 3 - 7

TypeII_MO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeII_MI TypeIV_II TypeIII TypeIV_III

TypeII TypeIV_II TypeIII TypeIV_III

TypeII_MIMO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeV_MI

(d) Round 3 to 7

Round 2

Round 10

Round 9

Round 1 & 8

Round 3 - 7

TypeII_MO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeII_MI TypeIV_II TypeIII TypeIV_III

TypeII TypeIV_II TypeIII TypeIV_III

TypeII_MIMO TypeIV_II TypeIII TypeIV_III

TypeIV_IIM

TypeV_MI

(e) Round 10

Fig. 8: Lookup sequence for each round. Solid arrow: masked value. Dotted arrow:
mask.

16

dition, the correlation between the masked round output and the hypothetical
round output computed by a 2-byte key guess is also analyzed. Next, a perfect
match for a collision attack is tested on the masked round output. Finally, we
check if the chosen plaintexts of the bucketing attacker can make disjoint sets
on the masked round output when the hypothetical key is correct.

5.1 Security analysis and Experimental Results

We analyze and demonstrate hereafter the protection against the vulnerabilities
explained in Section 3. We first show protection against DCA on the TypeII MO
outputs in the first round. In fact, the masked Tyi output in the first round is
not different from the previous implementation [17] proven secure against DCA.
For the first subbyte p ∈ {0, 1}8 of the plaintext and a hypothetical subkey
k, the correlation between each bit of the hypothetical S-box output and its
corresponding TypeII MO values can be quantified by

Wfi(ω) = Σp∈{0,1}8(−1)fi(p)⊕(s(p⊕k)·ω),

where fi(p) is the i-th bit of the left 32-bit value of the TypeII MO output de-
picted in Fig. 4a. Because this equation tests all possible values of p and we
know the value of fi(p), the correlation can be analyzed accurately as if it is
analyzed by a large number of random plaintexts in DCA. Fig. 9 is the result of
the Walsh transform for the first subkey and shows that the key leakage did not
occur when each bit of the SubBytes output was analyzed. A DCA attack using
10,000 computation traces also failed as shown in TABLE 1.

Table 1: DCA ranking for the proposed WB-AES implementation when con-
ducting mono-bit CPA on the SubBytes output in the first round with 10,000
software traces.

XXXXXXXXXTargetBit
SubKey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 216 5 39 111 148 132 176 199 246 66 69 104 25 86 72 208
2 191 174 116 72 219 18 67 3 15 226 178 240 146 196 151 121
3 90 144 170 201 182 4 29 81 166 120 237 124 227 159 216 226
4 251 91 185 150 218 2 142 39 97 50 132 8 81 157 229 185
5 45 173 192 101 10 146 45 33 177 206 136 14 135 71 22 234
6 191 146 101 121 146 93 188 60 234 28 165 38 201 244 236 88
7 38 252 16 188 105 222 185 69 124 21 50 100 44 101 3 215
8 39 98 97 252 124 138 88 46 219 130 193 230 20 30 29 194

Second, a DCA attack with a 2-byte key guess can be protected. As explained
previously, the first subbyte of the round output without masking can be repre-

17

−40

0

40

0 10 20 30
i

W
fi

(a) ω = 1.

−60

−30

0

30

0 10 20 30
i

W
fi

(b) ω = 2.

−60

−30

0

30

60

0 10 20 30
i

W
fi

(c) ω = 4.

−40

0

40

0 10 20 30
i

W
fi

(d) ω = 8.

−40

0

40

0 10 20 30
i

W
fi

(e) ω = 16.

−60

−30

0

30

0 10 20 30
i

W
fi

(f) ω = 32.

−60

−30

0

30

60

0 10 20 30
i

W
fi

(g) ω = 64.

−60

−30

0

30

60

0 10 20 30
i

W
fi

(h) ω = 128.

Fig. 9: The Walsh transforms on the TypeII MO outputs (except the mask) in
the first round. Black: correct key; gray: wrong key.

18

sented by a function of p2 and p3 as:

s(p2, p3) = S(p2 ⊕ k02,2)⊕ S(p3 ⊕ k03,3)⊕ c

if the attacker fixes the first two bytes to zero in the first column of the plaintext
state. In the case of the masked round output, this can be written as:

ŝ(p2, p3) = s(p2, p3)⊕ r2(p2)⊕ r3(p3)⊕ cr,

where cr is a fixed mask for c, and r2 and r3 are random bijections which act
like random mask selection with uniform distributions. By representing r2(p2)⊕
r3(p3)⊕ cr ⊕ c as r(p2, p3), a function of p2 and p3, we have

ŝ(p2, p3) = S(p2 ⊕ k02,2)⊕ S(p3 ⊕ k03,3)⊕ r(p2, p3).

This can be rewritten as shown below by substituting the correct subkeys for
k02,2 and k03,3:

ŝ(p2, p3) = S(p2 ⊕ 0xAA)⊕ S(p3 ⊕ 0xFF)⊕ r(p2, p3).

Then the first subbyte of the first round output obtained from TypeIV II can
be expressed by ε(ŝ(p2, p3)), where ε is an encoding of the round output. Let’s
assume that the attacker already knows the subkey k02,2 = 0xAA, and the hy-
pothetical value is given by h(p2, p3, k) as follows:

h(p2, p3, k) = S(p2 ⊕ 0xAA)⊕ S(p3 ⊕ k),

where k is a hypothetical subkey. Then the correlation between ε(·) and h(·) can
be quantified by

Wεi(ω) =
∑

p2∈{0,1}8

∑
p3∈{0,1}8

(−1)εi(ŝ(p2,p3))⊕(h(p2,p3,k)·ω),

where εi(·) is the i-th bit of ε(·). Here we can know that ŝ(·) will no longer
correlate to h(·) if r(p2, p3) generates a random byte with a uniform distribution.
Our experimental result shows that DCA with a 2-byte guess cannot succeed
even if the attacker is able to correctly guess the remaining subkey k = 0xFF
as shown in Fig. 10. In other words, this means that ŝ(·) is not correlated to
h(, , k∗) due to the random masks, where k∗ denotes the correct subkey.

Third, the collision attack is also not allowed because the perfect match be-
tween the hypothetical value computed from the correct hypothetical key and
the target sample in the CCT will be violated in the masked round output. For
four positive integers a, b, c, d ∈ {0, 1}8, suppose that h(a, b, k∗) = h(c, d, k∗).
Then, the perfect match for the collision attack is valid if and only if ε(ŝ(a, b))
= ε(ŝ(c, d)) which in turn means ŝ(a, b) = ŝ(c, d) because ε is deterministic and
bijective. However, we know that Pr[ŝ(a, b) = ŝ(c, d)] = 1/256 because Pr[r(a, b)
= r(c, d)] = 1/256, and thus the perfect match is not guaranteed.

19

−500

0

500

0 2 4 6
i

W
fi

(a) ω = 1.

−500

0

500

1000

0 2 4 6
i

W
fi

(b) ω = 2.

−1000

−500

0

500

1000

0 2 4 6
i

W
fi

(c) ω = 4.

−1000

−500

0

500

1000

0 2 4 6
i

W
fi

(d) ω = 8.

−1000

−500

0

500

1000

1500

0 2 4 6
i

W
fi

(e) ω = 16.

−1000

−500

0

500

1000

0 2 4 6
i

W
fi

(f) ω = 32.

−2000

−1000

0

1000

2000

0 2 4 6
i

W
fi

(g) ω = 64.

−1000

−500

0

500

0 2 4 6
i

W
fi

(h) ω = 128.

Fig. 10: The Walsh transforms on the masked round output in the first round.
Black: correct key; gray: wrong key.

Let us demonstrate the perfect collision without round output masking. To do
so, we have collected the following set of pairs:

Iv = {(a, b) : a, b ∈ {0, 1}8|h(a, b, k∗) = v, for v ∈ {0, 1}8}.

20

Consider a vector Zv = [z1z2 · · · z`] defined as:

zi = ε(s(ai, bi)),∀(ai, bi) ∈ Iv,

where ` = |Iv|. Let Z∗ denote a vector consisting of ` identical constants. The
perfect match for the successful collision attack requires z1 = z2 = · · · = z` in
Zv, and the cosine similarity between Z∗ and Zv should be 1 because cos(0◦) =
1. Indeed, Fig. 11a shows that the correct subkey shows the cosine similarity 1
when the round output is not masked. This implies the success of the collision
attack.
To evaluate the effect of adding the mask on the round output, we have generated
the vector Z ′v as follows:

zi = ε(ŝ(ai, bi)),∀(ai, bi) ∈ Iv.

Then, the cosine similarity between Z∗ and Z ′v for the correct subkey looks ran-
dom like other wrong hypothetical subkeys as shown in Fig. 11b. This implies
that the masked round output protects against the collision attack.

Finally, the bucketing attack can also be protected. Before going on, we begin
with a demonstration of how it works on the previous WB-AES implementation.
For two bucket nibbles d0, d1 ∈ {0, 1}4 such that d0 6= d1, a bucketing attacker
defines two sets:

Jdi = {p ∈ {0, 1}8|s(p⊕ k) & 0xF = di},

where i = {0, 1}, and k is a hypothetical key. Let [0 0 p 0]T be the first column
of the plaintext state. Then the lower 4 bits of the first subbyte in the first round
output of AES-128 can be written as:

g(p) = (s(p⊕ k∗)⊕ c) & 0xF.

The bucketing attack is based on the fact that a correct subkey guarantees that
Bb0 ∩ Bb1 = ∅, where

Bbi = {bi|∀p ∈ Jdi , g(p) = bi)}.

Consider only the nibble encoding denoted by δ on the round output without
applying linear transformations:

gδ(p) = δ(s(p⊕ k∗)⊕ c) & 0xF.

Then, one can easily know that Bδb0 ∩ B
δ
b1

= ∅, where

Bδbi = {bi|∀p ∈ Jdi , gδ(p) = bi)},

For index = d0‖d1, such that d0 < d1 (for removing duplicated bucket nibbles),
our experimental result depicted in Fig. 12a shows that the correct key always
guarantees that Bδb0 and Bδb1 are disjoint. This is in contrast to a result of Bεb0

21

0.85

0.90

0.95

1.00

0 50 100 150 200 250
v

C
os

in
e

si
m

ila
rit

y

(a) Between Z∗ and Zv without round output masking.

0.82

0.84

0.86

0.88

0.90

0 50 100 150 200 250
v

C
os

in
e

si
m

ila
rit

y

(b) Between Z∗ and Z′v with round output masking.

Fig. 11: Cosine similarity without and with masking on the round output. Black:
correct key, gray: wrong key.

22

and Bεb1 shown in Fig. 12b which have a number of intersection elements due to
linear transformation providing the diffusion effect, where

gε(p) = ε(s(p⊕ k∗)⊕ c) & 0xF

and
Bεbi = {bi|∀p ∈ Jdi , gε(p) = bi)}.

Here, the bucketing attacker can find a key that most frequently makes Bεb0 ∩
Bεb1 = ∅, because the wrong hypothetical keys have never produced an empty
set. Fig. 12c shows that the correct key (0xAA) has 96 indexes (out of 120) that
lead to a disjoint set, and the other wrong hypothetical keys never make one.
To evaluate the effect of the masked round output against the bucketing attack,
we define ĝ for the lower 4 bits of the first subbyte in the masked round output
as follows:

ĝ(p) = ε(s(p⊕ k∗)⊕ c⊕ r(p)⊕ cr) & 0xF.

For each plaintext set Jdi , we have collected the target 4 bits into the set B̂bi
defined as:

B̂bi = {bi|∀p ∈ Jdi , ĝ(p) = bi)}.

Because r(p) generates random numbers, our experiment result shows that B̂b0
and B̂b1 are never disjoint for any pair of (d0, d1), where d0 < d1. Thus, the
bucketing attack does not work on the proposed method.

5.2 Performance

The total table size of our implementation is calculated as follows:

– TypeII MO : 2×4×4×256×4×2 = 65,536
– TypeII MIMO : 2×4×4×256×256×4×2 = 16,777,216
– TypeII : 5×4×4×256×4 = 81,920
– TypeIV IIM : 3×4×4×3×2×128 = 36,864
– TypeIV IIM : 4×4×4×2×128 = 16,384
– TypeIV II : 9×4×4×3×2×128 = 110,592
– TypeIII : 147,456
– TypeIV III : 110,592
– TypeV MI : 4×4×256×256 = 1,048,576

Thus the total size is 18,395,136 bytes (approximately 17.5 MB). The reason the
table size has increased compared to the previous one is the use of tables that
take a two-byte input. This total size is roughly 35.3 times and 3.7 times larger
than Chow’s WB-AES and the CASE 3 implementation of the previous masked
WB-AES, respectively, but there is a difference in the range of target attacks
and protected rounds.
Note that we do not compare with CASE 1 and CASE 2 in the previous version
of the masked implementation because these provide only partial protection.
The number of table lookups are counted as follows:

23

0

10

20

30

0 50 100 150 200 250
Index

|B
δ b0

 n
 B

δ b1
|

(a) With only the nibble encoding.

0

20

40

60

0 50 100 150 200 250
Index

|B
ε b0

 n
 B

ε b1
|

(b) With the nibble encoding and the linear transformation.

0

20

40

60

80

100

0 50 100 150 200 250
Key

of

 |B
ε b0

 n
 B

ε b1
|=

 0

(c) Number of indexes making a disjoint set for each key.

Fig. 12: Bucketing attack on the previous WB-AES implementation. Black: cor-
rect key, gray: wrong key. Index = d0‖d1 such that d0 < d1. The other indexes
are undefined.

24

10

20

30

0 50 100 150 200 250
Index

|B̂
b0

 n
 B̂

b1
|

(a) No disjoint sets for any pair of (d0, d1), where d0 < d1. Black: correct key, gray:
wrong key.

0

0 50 100 150 200 250
Key

of

 |
B̂

b0
 n

 B̂
b1

|=
 0

(b) Number of indexes making a disjoint set for each key. All are 0.

Fig. 13: Bucketing attack on the masked round output.

25

– TypeII MO : 2×4×4×2 = 64
– TypeII MIMO : 2×4×4×2 = 64
– TypeII : 5×4×4 = 80
– TypeIV IIM : 3×4×4×3×2 = 288
– TypeIV IIM : 4×4×4×2 = 128
– TypeIV II : 9×4×4×3×2 = 864
– TypeIII : 9×4×4 = 144
– TypeIV III : 9×4×4×3×2 = 864
– TypeV MI : 4×4 = 16

Then, these are 2,512 lookups in total. This is 1.2 times and 0.7 times compared
to Chow’s WB-AES and the CASE 3 implementation, respectively. As a result,
there is little difference in the number of lookups. Because of the relatively
large size of the table, available memory space on the target device should be
considered.

6 Conclusion and Discussion

Previously, a white-box cryptographic implementation was combined with the
masking technique to protect against DCA attacks. This implementation elimi-
nated all masks from the round output and applied byte encodings in some outer
rounds, which resulted in vulnerabilities to DCA-variant attacks. In this paper,
we also adapted masking techniques to the round output in order to depend
against existing DCA variants. Based on the previous masked WB-AES imple-
mentation, the several round outputs were masked and each mask was removed
in the input decoding of the next round. Our security evaluation showed that
this method can protect against DCA with a 2-byte key guess, collision and
bucketing attacks.
The downside of this work is the memory requirement that is nearly four times
larger than the previous masked WB-AES implementation. For this reason, it
will not be applicable to low-cost devices that have only a few hundred KB of
memory. However, it can be used in smart devices that provide enough memory
space. In fact, there is no serious problem with execution speed because the
number of table lookups is not large. As future work, this method has to combine
the protection of cryptanalysis to keep the key more secure.

References

1. Akkar, M., Giraud, C.: An Implementation of DES and AES, Secure against Some
Attacks. In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings. pp. 309–318.
No. Generators (2001), http://dx.doi.org/10.1007/3-540-44709-1_26

2. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the Ineffectiveness of In-
ternal Encodings - Revisiting the DCA attack on White-box Cryptography. In: Ap-
plied Cryptography and Network Security - 16th International Conference, ACNS

26

2018, Proceedings. pp. 103–120. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
Springer, Germany (1 2018)

3. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.B.: Analysis of Software Counter-
measures for Whitebox Encryption. vol. 2017, pp. 307–328 (2017), http://tosc.
iacr.org/index.php/ToSC/article/view/596

4. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a White Box AES Imple-
mentation. In: Selected Areas in Cryptography, 11th International Workshop, SAC
2004, Waterloo, Canada, August 9-10, 2004, Revised Selected Papers. pp. 227–240
(2004), http://dx.doi.org/10.1007/978-3-540-30564-4_16

5. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In:
Selected Areas in Cryptography, 11th International Workshop, SAC 2004, Wa-
terloo, Canada, August 9-10, 2004, Revised Selected Papers. pp. 69–83 (2004),
http://dx.doi.org/10.1007/978-3-540-30564-4_5

6. Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-Order DCA against Stan-
dard Side-Channel Countermeasures. In: Polian, I., Stöttinger, M. (eds.) Con-
structive Side-Channel Analysis and Secure Design - 10th International Work-
shop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings. Lec-
ture Notes in Computer Science, vol. 11421, pp. 118–141. Springer (2019), https:
//doi.org/10.1007/978-3-030-16350-1_8

7. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential Computation Anal-
ysis: Hiding your White-Box Designs is Not Enough. vol. 2015, p. 753 (2015),
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#BosHMT15

8. Bottinelli, P., Bos, J.W.: Computational Aspects of Correlation Power Analysis
(2015), https://eprint.iacr.org/2015/260

9. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage
Model. In: Cryptographic Hardware and Embedded Systems - CHES 2004: 6th
International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings.
Lecture Notes in Computer Science, vol. 3156, pp. 16–29. Springer (2004)

10. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.V.: White-Box Cryptography and
an AES Implementation. In: Proceedings of the Ninth Workshop on Selected Areas
in Cryptography (SAC 2002). pp. 250–270. Springer-Verlag (2002)

11. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A White-Box DES Im-
plementation for DRM Applications. In: Security and Privacy in Digital Rights
Management, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, Novem-
ber 18, 2002, Revised Papers. pp. 1–15 (2002), http://dx.doi.org/10.1007/

978-3-540-44993-5_1
12. Coron, J., Goubin, L.: On Boolean and Arithmetic Masking against Differential

Power Analysis. In: Cryptographic Hardware and Embedded Systems - CHES 2000,
Second International Workshop, Worcester, MA, USA, August 17-18, 2000, Pro-
ceedings. pp. 231–237 (2000), http://dx.doi.org/10.1007/3-540-44499-8_18

13. Deadpool. A repository of various public white-box cryptographic implemen-
tations and their practical attacks.: https://github.com/SideChannelMarvels/

Deadpool/
14. Goubin, L., Masereel, J., Quisquater, M.: Cryptanalysis of White Box DES Im-

plementations. In: Selected Areas in Cryptography, 14th International Workshop,
SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected Papers. pp.
278–295 (2007), http://dx.doi.org/10.1007/978-3-540-77360-3_18

15. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to Reveal the Secrets of an
Obscure White-Box Implementation. IACR Cryptology ePrint Archive 2018, 98
(2018), http://eprint.iacr.org/2018/098

27

16. Joye, M.: On WhiteBox Cryptography (2008), http://joye.site88.net/papers/
Joy08whitebox.pdf

17. Lee, S., Kim, T., Kang, Y.: A Masked White-Box Cryptographic Implementation
for Protecting Against Differential Computation Analysis. IEEE Transactions on
Information Forensics and Security 13(10), 2602–2615 (Oct 2018)

18. Lee, S., Jho, N., Kim, M.: On the Key Leakage from Linear Transformations (2018),
https://eprint.iacr.org/2018/1047.pdf

19. Lepoint, T., Rivain, M., Mulder, Y.D., Roelse, P., Preneel, B.: Two Attacks
on a White-Box AES Implementation. In: Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16,
2013, Revised Selected Papers. pp. 265–285 (2013), http://dx.doi.org/10.1007/
978-3-662-43414-7_14

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security) (2007)

21. Masked WB-AES CASE1 sample binary.: https://github.com/

SideChannelMarvels/Deadpool/tree/master/wbs_aes_lee_case1

22. Messerges, T.S.: Securing the AES Finalists Against Power Analysis Attacks. In:
Fast Software Encryption, 7th International Workshop, FSE 2000, New York, NY,
USA, April 10-12, 2000, Proceedings. pp. 150–164 (2000), http://dx.doi.org/10.
1007/3-540-44706-7_11

23. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a Generic Class
of White-Box Implementations. In: Selected Areas in Cryptography, 15th Inter-
national Workshop, SAC 2008, Sackville, New Brunswick, Canada, August 14-
15, Revised Selected Papers. pp. 414–428 (2008), http://dx.doi.org/10.1007/

978-3-642-04159-4_27

24. Mulder, Y.D., Wyseur, B., Preneel, B.: Cryptanalysis of a Perturbated White-
Box AES Implementation. In: Progress in Cryptology - INDOCRYPT 2010 -
11th International Conference on Cryptology in India, Hyderabad, India, Decem-
ber 12-15, 2010. Proceedings. pp. 292–310 (2010), http://dx.doi.org/10.1007/
978-3-642-17401-8_21

25. Rivain, M., Wang, J.: Analysis and Improvement of Differential Computation At-
tacks against Internally-Encoded White-Box Implementations. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2019(2), 225–255 (2019), https://doi.org/10.13154/
tches.v2019.i2.225-255

26. Sasdrich, P., Moradi, A., Güneysu, T.: White-Box Cryptography in the Gray Box
- - A Hardware Implementation and its Side Channels -. In: Fast Software Encryp-
tion - 23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,
2016, Revised Selected Papers. pp. 185–203 (2016), http://dx.doi.org/10.1007/
978-3-662-52993-5_10

27. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-Box
DES Implementations with Arbitrary External Encodings. In: Selected Areas in
Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada, August
16-17, 2007, Revised Selected Papers. pp. 264–277 (2007), http://dx.doi.org/

10.1007/978-3-540-77360-3_17

28. Zeyad, M., Maghrebi, H., Alessio, D., Batteux, B.: Another Look on Bucketing At-
tack to Defeat White-Box Implementations. In: Constructive Side-Channel Analy-
sis and Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings. pp. 99–117 (2019), https://doi.org/10.
1007/978-3-030-16350-1_7

