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Abstract. The area of leakage resilient cryptography aims to provide
proofs under the assumption that the side channel leakage of implemen-
tations behaves in a certain way, e.g., the leakage is bounded, hard-to-
invert, or simulatable. On the other hand, it is often hard to show that
a practical implementation has such a behavior. Moreover, these mod-
els are typically targeted exclusively towards side channel attacks and
hence, other implementation attacks like fault attacks are excluded. In
this paper, we provide an alternative approach that we call accumulated
leakage. In our model, no a priori restriction or assumption on the leak-
age is made. Instead, leakage resilience bounds are expressed in terms
of an accumulated gain, which is a function of the leakage obtained by
an attacker. In particular, we express the accumulated gain as a func-
tion of the number of computations of a primitive using a secret that
an attacker can observe, one of the major restrictions that determines
whether a certain implementation attack is possible or not. Having the
advantage of a scheme expressed with the help of accumulated leakage,
we have two roads to go. One option is to stick to the a priori bounding
made in, e.g., the bounded leakage model and put an a priori restric-
tion on the maximum allowed leakage per primitive call. Another option
is to compute the accumulated gain based on measurements a posteri-
ori. As a proof of concept, we apply the accumulated leakage concept to
a sponge-based stream encryption scheme called asakey: first, a formal
leakage resilience analysis is delivered as a function of the accumulated
gain, and second, leakage measurements on permutations are performed
to demonstrate how the accumulated gain can be estimated a posteriori.
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1 Introduction

With the rise of the Internet of Things (IoT), devices performing cryptographic
tasks become ubiquitous. As a consequence, an increasing number of devices
operates in environments where attackers do not only have remote access to their



interfaces, but also physical access. In such a scenario, implementation attacks,
like side channel attacks [25] and fault attacks [9], are a major threat to the
security that such devices aim to provide. Hence, research for protection against
implementation attacks nowadays plays an important part in cryptography.

One approach in this direction is the concept of leakage resilient cryptogra-
phy [20]. The goal of this research direction is to design modes of operation that
remain secure under specific assumptions on the leakage an adversary can receive.
Leakage resilience gave rise to cryptographic schemes with very strong security
guarantees, for example, modes of operation that are provably secure against all
side channel attacks assuming that the leakage in each round is bounded [36].
Hence, it has attracted the interest of a lot of researchers proposing several
leakage resilient symmetric cryptographic schemes [2-4,17,19,21,29,35,46,47].

On the downside, the promises delivered by leakage resilience come with
an assumption on the leakage. A typical example is the assumption that the
leakage is bounded [20] or hard-to-invert [18]. Showing that an assumption on
the leakage actually holds turns out to be quite hard, and in practice, side
channel analysis of leakage resilient schemes typically just considers which side
channel attacks can be performed. See, e.g., work on evaluating the security
of a leakage resilient pseudo random function [30,31,44,45]. One attempt that
has been made to bring the theory of leakage resilient cryptography closer to
practice is simulatable leakage [39]. The high-level idea of simulatable leakage is
to consider the distance of a cryptographic scheme from a simulator that does
not possess the key, but that still generates leakage that is indistinguishable
from the device using the actual key. However, Longo et al. [26] pointed out
some obstacles with the practical realization of such simulators, and — to the
best of our knowledge — the instantiation of simulators is still an open problem.
In this light, the requirement to have implementations that ultimately leak as
specified by a model might be asking too much.

However, if we look at leakage resilient constructions, we see that indepen-
dent of the modeling of the leakage, all these constructions aim to limit the
number of observations an attacker can make per evaluation of an underlying
primitive using a certain key. Considering this from an implementation attack
perspective, such limitations on the number of observations make a lot of sense.
Attacks like statistical fault attacks (SFA) [22], statistical ineffective fault at-
tacks (SIFA) [12,13], or differential power analysis (DPA) [25] get better with
increasing data complexity an attacker is able to exploit per secret state it tries to
recover. Complementing that, these attacks can also get better with the number
of observations where the input, as well as the secret of the underlying primitive,
remain the same. For instance, such observations can be used to reduce the noise
of traces used in a DPA, simple power analysis (SPA), or template attack [28].
Furthermore, also fault attacks can utilize different faults on executions with the
same input, like differential fault attacks (DFA) [9].

In this paper, we take a different approach and aim to model the impact of
implementation attacks more broadly. We do so by introducing the concept of
accumulated leakage that allows us to abstract side channel attacks and fault



attacks in the leakage resilient analysis. In a nutshell, the goal of the analysis
of our leakage resilient scheme in the accumulated leakage model is to provide a
limit on the data complexity for the underlying primitives. This way of modeling
leakage is fully backwards compatible and we can easily transform the resulting
bounds to the bounded leakage model in the non-adaptive or adaptive leakage
setting. Furthermore, accumulated leakage allows us to focus on evaluating im-
plementations of the underlying building block using standard side channel and
fault attacks. The results of these evaluations can then be used in the bound for
the leakage resilient scheme to express the advantage of an adversary. We will
discuss our contributions in more detail below.

1.1 Accumulated Leakage

First, we introduce and formalize the concept of accumulated leakage in Section 2.
The core idea of accumulated leakage is that one expresses an accumulated gain
during the experiment. This is a function in terms of all information a side chan-
nel attacker has observed so far, and it changes in the course of the attack. The
final estimation of the accumulated gain, i.e., the actual side channel effect on a
scheme, can be measured a posteriori. This approach allows us to discard many
restrictions imposed by typical leakage resilience analysis. As a pleasant bonus,
this also evades the discussion on whether adaptive or non-adaptive leakage must
be considered: it is covered within the accumulated gain.

Note that this stands in sharp contrast with bounded or hard-to-invert leak-
age, where the leakage per query is generously bounded. For example, in the
bounded leakage model, one assumes that each evaluation leaks at most A > 0
bits of secret data, and these linearly add up for multiple evaluations. For the
sake of comparison, consider the following example. Take the AES block cipher,
and assume that an adversary can learn evaluations of AESk(-) for secret K.
In the bounded leakage model, one assumes that each evaluation leaks A bits of
data, but this means that after |K|/\ evaluations, the security proof becomes
meaningless. In contrast, in the accumulated leakage model, one assumes that
up to the i-th query, the attacker has learned f; bits of data, which is a func-
tion of all information the attacker has observed so far. These values fi, fa, ...
remain yet undetermined, and must be substantiated with side channel exper-
iments. Comparing both approaches, necessarily f; < i - A, but typically, the
difference is much larger as we will demonstrate in our practical experiments
(see Section 1.4).

However, please note that the accumulated gain is backwards compatible and,
if it is wished, it can be used in a similar way to bounded leakage. Analogue
to the bounded leakage model, we can a priori assume that each evaluation
leaks at most A > 0 bits of secret data, and these linearly add up for multiple
evaluations in order to give the accumulated gain. However, in contrast to the
bounded leakage model that models the leakage function directly, we only model
the effect of an attack, namely that an attacker gets a certain advantage in
guessing a secret. Hence, we can also naturally include fault attacks, as detailed
next.



1.2 Coverage of Fault Attacks

Typical methods in leakage resilient cryptography aim to precisely model the
gain an attacker can get with the help of the physical leakage. For instance, in
the bounded leakage model the leakage function can be any arbitrary function of
the secret state with bounded output length, or any function that preserves some
min-entropy of the secret state. Later, hard-to-invert leakage was introduced,
which, on a high level, requires that the leakage has the property that even under
knowledge of the leakage, the secret state is hard to guess [18,23]. However, such
attempts to model the gain an attacker can get from physical leakage leave out
the threat of fault attacks.

This is a weak point in existing approaches, since in scenarios where side
channel attacks are applicable, an attacker can typically also apply a wider
range of implementation attacks, such as fault attacks. Hence, our concept of
accumulated leakage does not aim to model the physical leakage prior to an
implementation attack, but rather at the end of the attack. Therefore, accumu-
lated leakage is agnostic to the type of implementation attack and hence our
results are naturally applicable to a wide range of attack scenarios, including
fault attacks.

1.3 Application of Accumulated Leakage

We demonstrate how the concept of accumulated leakage can be incorporated
in leakage resilience analyses.

The first exposition is on a simple key recovery attack game against a keyed
random function, in Section 3. The example might sound impractical at first
sense, but it appears typically within larger security analyses. In addition, a
keyed random function is the simplest possible example to demonstrate how our
framework functions. The reason for this is that a keyed random function is
perfectly indistinguishable from a random function as long as an adversary does
not guess the key, and the main target of side channel attacks in this context
would be to recover the key.

Our analysis on the keyed random function shows that if an adversary learns
q evaluations of the keyed random function, the key entropy equals |K| in the
first one, |K| — f1 in the second one, |K| — f5 in the third one, and so on, where
fi denotes the accumulated gain over time.

The second exposition of accumulated leakage is a more complete one: in
Section 4 we apply it to a nonce-based sponge-based stream encryption scheme
called asakey. The asakey encryption mode is derived from the encryption part
of ISAP [14,15]: it initializes a sponge state with a secret key, then it absorbs
the nonce bit-by-bit to obtain a secret inner part of the sponge that is used “as a
key” to a plain nonce-based sponge encryption mode with high rate. By doing a
direct analysis of asakey and by in addition confiding on the accumulated leakage
model, we obtain a bound that (i) is simpler than the one that would be obtained
by relying on the general leakage resilience of the duplex [17] modularly, and that
(ii) is more accurate in the leakage estimation.



1.4 Justification of Accumulated Leakage

Of course, a proper bound on the accumulated gain must still be computed,
and this depends on the concrete implementation and the side channel and fault
attacks an attacker can do. Simply said, the analysis so far is agnostic to the
concrete attacks within the leakage parameters fi, fo,.... While the naive a
priori bound considering bounded leakage f; < i- A would work, a more accurate
estimation should give a higher level of confidence. Such an estimation could be
made based on dedicated analysis that depends on (i) the primitive that leaks,
(ii) the scheme in which it leaks, and (iii) the type of side channel attack.

In Section 5, we perform an exemplary analysis of an implementation of
the asakey scheme of Section 4 instantiated with the standardized KECCAK-
p[1600,12] permutation [33] as used by KANGAROOTWELVE [7] and KEYAK [6].
We analyze the implementation using the two attack vectors of differential power
analysis (DPA) [25] and statistical ineffective fault attacks (SIFA) [12,13]. Those
results not only provide an estimation of the expected loss of security when in-
serted in the asakey security bound of Theorem 2, but also show that a bounded
leakage approach is often way too optimistic on how information of single leak-
ages (experiments) can be combined.

As an example, have a look at Figure 3b in Section 5. The graph shows how
security degrades with the number of queries assuming A-bit leakage per query
and how it typically degrades in an implementation attack which can also be
expressed in accumulated leakage. It shows that a bound of f; <i- A is generally
very loose. Taking different prior models, such as that of hard-to-invert leakage,
would yield a line that is close to that of the bounded leakage model.

In order to get the best possible picture on the security in the accumulated
leakage model, it is important to utilize the attack vectors as good as possible.
Hence, e.g., work that aims to bound model errors in side channel attacks is also
relevant in our context [10].

2 A Formalization of Implementation Attacks

Let k, m,n be three natural numbers. We denote by {0, 1}" the set of n-bit strings
and by {0,1}* the set of arbitrarily long strings. The set of families of 2¥ n-bit
permutations is denoted perm(k,n). If &k = 0, we simply write perm(n). Similarly,
the set of families of 2% m-to-n-bit functions is denoted func(k,m,n). Again, if
k = 0, we simply write func(m, n). If we consider functions with arbitrary domain
and/or range, we replace m and/or n by . We cheat and assume that this set is
still finite, assuming that there is always an upper bound on length of arbitrary
strings. If m < n, for string X € {0,1}" we denote by left,,(X) the m leftmost
bits of X and by right,,(X) the m rightmost bits. For a finite set X', X s x
denotes the event of uniformly randomly sampling of an element X from X
We will be concerned with adversaries A that are given access to one or more
oracles O, and after interaction with O they output a decision bit b: b < AO.
For two oracles O and P, the adversarial advantage of distinguishing the two is



defined as
Ap(0; P)=[Pr(1+ A% —Pr(1+ A")]. (1)

2.1 Leakage Resilience

Let F be a cryptographic function with key size k. Let ro be a random oracle
with the same interface as Fx. In a black-box scenario, one quantifies security
of F as the advantage of an adversary A in distinguishing Fx for K < {0,1}*
from a random oracle ro:

AdvEP(A) = A (Fi 5 ro) . (2)

The adversary is typically bounded by a certain query complexity and time
complexity (memory is usually not considered). A comparable definition occurs
in the ideal primitive model. Suppose that F is based on a random function
£ func(m, n) for some natural numbers m, n. The adversary would, in addition
to the oracle Fx or ro in (2), have access to the random function f:

AdviP(A) = Ap (Fi%,f; ro,f) . (3)

The time complexity is then called primitive complexity and measures queries
to f. If f would be a function with bi-directional interface, for example if it is
drawn uniformly from perm(n), the adversary would have bi-directional access
to it.

In the context of leakage resilient cryptography [2,19-21,36,41,47], the ad-
versary gets access to a leaky version of the function Fg:

L[Fk] .

The function evaluates Fx as usual but in addition leaks certain secret infor-
mation to the adversary. Now, the adversary has to distinguish the challenge
oracle Fg from random ro as before, but in addition it gets access to L [Fx]. The
resulting advantages are then expressed as

AdvE(A) = Ap (L[Fk],Fx ; L[Fk],ro) (4)

for the standard model, and
Advi"(A) = A (L[], Fie.f5 L[F], ro.f) . (5)
for the ideal model. Naturally, the adversary is not allowed to query the leaky

and the challenge oracle on identical inputs.

2.2 Accumulated Leakage

So far, we did not specify how leakage occurs in calls to L [Fx]. In the accumu-
lated leakage model, we define the accumulated gain that represents the leakage,
basically the entropy loss, that has occurred.



Generally, suppose that for a certain secret state that is input to a crypto-
graphic primitive, the adversary has obtained ¢ leakages. These are for r different
inputs,

X =(X1,...,X,),
occurring

q:(q17"'7q7")

times respectively. The incurred accumulated gain is defined as
AGatk(Xv q, T) )

where atk € {spa,dpa, sfa, ...} denotes the attack that the adversary performs.

We remark that the definition is purposely general: the model should apply
to many different modes, types of leakages, and types of attacks. In particular,
the indication of the attack type atk is important, as the adversarial advantage
differs depending on the performed attack, which might be a DPA attack, a STFA
attack, or anything else. In Section 5, we estimate the function AGaw (X, g, 1) for
different attack types. The generality of our model comes at the price of strict-
ness, which is unavoidable: original leakage resilience models (such as bounded
leakage) are very well-defined but hard to apply in practice, whereas accumulated
leakage is general but better to apply in practice.

As the name suggests, the leakage accumulates. For i € {1,2,...}, we denote
by r; the amount of different inputs up to the i-th query, and likewise define X; =
(X1,...,Xr,) as the inputs, with occurrences q; = (q1, . .., gr;) respectively.

3 Accumulated Leakage in Random Function Key
Recovery

We consider a simple, isolated, security experiment, namely that of key recovery
of a random function. This event would never occur in isolation, but it would
rather be a part in a larger puzzle. We discuss this particular example as it
clearly demonstrates how our accumulated leakage resilience concept occurs on
a security proof.

Theorem 1. Let k,m,n be three natural numbers. Let rf < func(k,m,n) be

a random function, and let ro & func(m,n) be a random function. Let F €
func(k, m,n) be defined as F(X) = rfx(X). For any adversary A with con-
struction complexity q and primitive complexity p,

Advi"(A) = Ap (L[FR] PR, rf 5 L[FE] , ro, rf)

< p 1
- Z 2k—AGatk(Xi,7qiﬂ'i) ’
i=1

where X ; denotes the inputs of the queries made to L [F}f{] up to primitive query
i, q; their occurrences, and r; the length of these tuples.
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Fig. 1: Encryption scheme. The state parameters (S;, T;) will be used in the proof
of Theorem 2.

Proof. 1t is easy to see that the two oracles are perfectly indistinguishable as
long as the adversary never queries its unkeyed primitive rf on key K. Consider
any primitive query (K;, X;) for ¢ € {1,...,p}. Suppose that, prior to this i-th
primitive query, the adversary has queried its construction oracle for r; different
inputs, namely X, each occurring g;, respectively. Then, the probability that
K; = K is at most

1
2k —AGaek(X4,q;,7m35)

The bound is obtained by summing over : = 1,...,p. a

As we can see from Theorem 1, the attacker is in principle able to utilize the
leakage of all previous operations in his attack. This means that both max(r;)
and max(qg;) are bounded by the number of primitive queries p. Although this
shows that accumulated leakage lets us nicely describe how a side channel attack
on an instantiation of a random function, e.g., AES-PRF [32], behaves, we cannot
draw any conclusion on the leakage resilience on this level of abstraction.

4 Accumulated Leakage in Sponge-Based Stream
Encryption

We consider a nonce-based sponge-based stream encryption called asakey. The
scheme is a slight variant of the encryption part of ISAP [14,15], using a bitwise
absorption of the nonce similarly as [43]. The asakey encryption scheme is pa-
rameterized by natural numbers k, b, ¢, r, where k < min{¢,r} and c+r = b, and
it is based on a cryptographic permutation p € perm(b). Instead of initializing
the sponge state with a nonce and a key, it first processes the nonce bit-wise in
order to obtain a secret state that functions “as a key” (hence the name). The
asakey encryption scheme is specified in Algorithm 1 and depicted in Figure 1.
As it is a stream encryption scheme, the decryption is identical with P and C
swapped.

4.1 Security

A variation of this scheme was already proven leakage resilient by Dobraunig
and Mennink [17], but in that work, the result was derived as a corollary of



Algorithm 1 asakey encryption scheme

Input: (K,N,P) € {0,1}* x {0,1}* x {0,1}*
Output: C € {0,1}*!
S« p(0" ¥ K)
Ni||... [Nk <~ N
fort=1,...,k do
S« p(S @ Ni[0° 1)
S + NJ|[0°="*||right_(S)
4+ O
while |Z| < |P| do
S« p(S)
Z + Z||left(S)
return left|p| (P @ Z)

the leakage resilience of the duplex, a versatile permutation-based cryptographic
mode. By now performing a direct analysis, we obtain a simpler bound and we
also more clearly demonstrate how the accumulated leakage model can be used.
The result uses the notion of the multicollision limit function from Daemen
et al. [11]. For natural numbers g, c,r, consider the experiment of throwing ¢
balls uniformly at random in 2" bins, and let u be the maximum number of balls
in a single bin. The multicollision limit function 1!, is defined as the smallest
natural number v such that
Pr(,u>u)§%. (6)
Daemen et al. [11] analyzed v?, in detail. As a rule of thumb [17], the term
behaves as follows:

L < {(r+c)/10g2 <%) ,for g <27,

(r+c)-4,forqgz2".

,C

We are now ready to state security of the stream encryption algorithm asakey of
Algorithm 1. The proof is given in Section 4.2.

Theorem 2. Let k,b,c,r be four natural numbers such that k < min{e,r} and
c+r = b. Consider asakey of Algorithm 1 instantiated with a random permutation
p & perm(b), and let ro & func(x, ) be a random function. For any adversary
A with construction complexity q, total number of encrypted message blocks @),
and with primitive complexity p,

Advil (A) = Ap (L [asakey? ], asakeyf, p* ; L [asakey ], ro, p¥)

asakey
u 1 Ve +1 Q+2qk +1
< Z + r,c + q
= - 2k7AGatk(Xi,qi,ri) QCfAGatk(Xi,qi,ri) 2b7AGatk(Xi,q,i,ri)

L (@+2k)g+ 2R (T2 4 (CHETR) 4 ()
2c 2b ’




where X; denotes the primitive evaluations in all queries made to L [asakey%]
up to primitive query i with the same inner part as primitive query i, q; their
occurrences, and r; the length of these tuples.

Simply speaking, the goal of our scheme is to limit the input complexity
per evaluation of p with the same secret state. As we will detail in Section 4.2,
for all i, each X contained in X; of AGaek(X,,q,,r;) shares the same inner
part right.(X;). As long as no bad event occurs (specified in the proof), all
permutation queries within all construction queries have a differing inner part
right,(T;). Since the nonce N is required to be unique (proper evaluations of the
mode within an authenticated encryption scheme prevent an attacker to be able
to decrypt on new data) and either is absorbed bitwise or as a whole, it follows
that r; < 2. Hence, the input complexity per permutation evaluation within our
scheme is effectively bounded to 2. We evaluate the effects of different bounds
on r; for concrete implementation attacks in Section 5.

4.2 Proof of Theorem 2

Write E = asakey for brevity. Without loss of generality, all constructions queries
that A makes are for plaintext 0*; all that matters is the length of the queries.
So the adversary can make ¢ construction queries of the form (Nj, ¢}, Z;), where
N; € {0,1}* denotes the nonce, £; € N the requested number of key stream
blocks, and Z; € ({0,1}")% the resulting key stream. All nonces N; are unique,
and the lengths ¢; sum to Q. For each query j, we define S;; and T}; for [ =
0,...,k+¢; as indicated in Figure 1. Evaluations of L [E},;| may leak information
upon every evaluation of p, i.e., of every transition from S;; to T};. The adversary
can additionally make p direct queries to pT, which are denoted (X, Y:). Recall
that for query i, we defined AGaux (X, g;, ;) as the accumulated gain up to query
i, where X; denotes the primitive evaluations in all queries made to L [E%] up
to primitive query ¢ with the same inner part right.(X;), g; their occurrences,
and r; the length of these tuples.
Our goal is to bound

Ap (L[ER], E%. p* 5 L[ER],ro,p*) , (7)

As Dobraunig and Mennink [17], we first replace p with a function f : {0,1}> —
{0,1}® that has the same interface, and that simply returns uniform random re-
sponses lazily, and aborts if there is a collision. Formally, f maintains an initially
empty list F in which its input-output tuples will be stored. For a query f(X)
with (X,-) ¢ F, the function f generates Y <~ {0,1}" and returns this value. If
(,Y) € F, it aborts; otherwise, it stores (X,Y) in F. It operates symmetrically
for inverse queries. Clearly, f and p are perfectly indistinguishable as long as the
former does not abort, and hence,

(Q+qk+1+p)

AA (L[E%]’Eg(vpi ; L [EfK] 7Ef[(7fi) < +’
p

An (L [E?(] , 10, Pi ; L [EfK] ,rovfi) < (Zib) ,

10



noting that in the former case p is evaluated a total amount of at most @ + gk +
1+ p times and in the latter case it is evaluated at most p times. As in [17], the
transition is a purely probabilistic issue, and it does not concern leakage. We get

Q+qk+1+p D
(7) < An (L [Ef] , Ef, ¥ L[ER],ro, f5) + S 5 )+ )

(®)

To analyze the remaining distance of (8), we define three bad events, where
v= l/f?c_ 9 is defined using the multicollision limit function:

badc. : 3 distinct and non-trivial (j,1), (j/,1') such that S;; = S; 1, 9)
bade, : 3 (4,1),i such that S;; = X; or Tj; =Y, (10)
badmes : 3 distinet (5,01, ..., (4, 0)ps1 with l1,..., 41 > k + 2 such that
leftr(s(j,l)l) == leftr(s(j,l),,+1) s
(11)
badmer : 3 distinct (,0)1, ..., (J,1)y1 with Iy,...,l,41 > k + 2 such that
leftr(T(j’l)l) == leftr(T(j,l),/+1) :
(12)

For bad., two tuples are non-trivial if either | # 1’ or [ =’ > argmin, (N, # N}).
This condition is needed to exclude trivial collisions for different queries whose
nonces share a prefix. The bad events bads and bad,.t are strictly seen not
needed to bound the remaining distance of (8), bad.. and bad, alone suffice.
Yet, they will be used to actually bound the occurrences of bad.. and badc,.

We write badme = badmcs V badmt and bad = badc. V badc, V badme. One can
note that, as long as —bad holds, the stream generation part of any evaluation
of Ef consists of “fresh” evaluations of f, i.e., evaluations that are not defined by
F yet. This means that their responses are randomly drawn from {0, 1}, and
that the resulting key stream Z; € ({0,1}")% is perfectly indistinguishable from
random. Therefore, we obtain for the remaining distance of (8):

An (L[ER] B, £ 5 L[ER] 1o, ) < Pr (AHFIE™ sets bad) . (13)

The remaining probability is bounded by Lemma 1 below. The proof of Theo-
rem 2 is completed by combining this lemma with (7), (8), and (13).

Lemma 1. We have

Pr (A"[E5’<]’Ef}<’fi sets bad)

b
1 v+ 1 Q +2gk + 1
< Zl (QkAGatk(Xi,qi,’ri) + 2c—AGaw(X4,9;,73) + b—AGaex(Xi,9;,74)

(Q+2qk)q +2v (2
9¢ 2

11



Proof. For brevity, write
Pr (bad) := Pr (AL[E‘K])E‘I«fi sets bad) , (14)

and likewise for the sub-events badc., badc,, and badm.. By basic probability
theory,

Pr (bad) = Pr (bad. V badc, V badmc)
< Pr (badc. V badcp, | “badmc) + Pr (badmc) -

In fact, following Dobraunig and Mennink [17], we will introduce one layer of
granularity in the reasoning. Note that the adversary can trigger a total amount
of at most ) + gk + 1 4+ p primitive evaluations. These are all evaluated in some
sequential order. For a« = 1,...,Q + gk + 1 + p, one can write bad,(«) as the
event that the a-th query triggers the particular event bad,. Then,

Q+qk+1+p
Pr(bad) < Y Pr(badec(a)|-bad(l...a—1) A -badm(a)) (15a)
a=1
Q+qk+1+p
+ > Pr(badg(a) | —bad(l...a — 1) A =badmc(a)) (15b)
a=1

+ Pr(badmc) . (15c¢)

We will henceforth proceed the same way as [17]. We will consider any of the
Q@ + gk + 1 + p evaluations of f that might happen, and analyze the probability
that this particular query « sets badc.(a) or bade, (), assuming that the events
were not set prior to this query. One can also adopt a similar reasoning for bad e,
but for that event, instead, a direct reasoning is more convenient.

Probability that o query sets badec (Eq. (15a)). Consider any two distinct and
non-trivial queries (7,1) and (j,1"). Without loss of generality, (j,1’) is the newer
one, i.e., either j < j' or (j = j/ and | < I’). We will consider the probability
that any new construction query hits an older tuple. Note that S;o = 0 k| K
for all j, and this is the first evaluation of f made in construction queries. We
have the following cases:

— I’ = 0. This case would imply that j° = 1 and (j',1’) cannot be the newer
query;

— ' e{1,...,k}. In this case, S; v is randomly generated and it hits any older
state value with [ # k + 1 with probability 1/2°; The case of | = k + 1 is
different: the adversary might have set a nonce as input that matches the
leakage that it might have obtained from an earlier evaluation of Sj/ ;1
(noting that although (j’,1) is newer than (j,1), (j/,!' — 1) might predate
it). In this case, yet, a collision happens with probability at most 1/2¢;

— I = k + 1. In this case, the attacker has set the outer part, and the state
equals any older state with probability 1/2¢;
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—U'e{k+2k+3,...}. In this case, Sj ;s is randomly generated and it hits
any older state value with probability 1/2°.

There is 1 unique state with | = 0, gk states with [ € {1,...,k}, ¢ states with
l=k+1, and Q — q states with [ € {k + 2,k + 3...}. By summing over all
possible choices of distinct (j,1) and (j',1’), we obtain

k—1
(15a) < (qk-(1+‘122b+(62—q))+ql;q>
L (tak+ 2 +(@Q-9)  (Q-q) (+ak+q+ =)
2¢ 20
Q+2qk

9c 2b

Probability that a query sets bade, (Eq. (15b)). Consider any construction query
(j,1) and any primitive query . Note that, upon the i-th primitive query, the
accumulated gain for states with the same inner part right.(X;) is defined as
AGax (X4, q;, 7). This bound represents the entropy loss of guessing that state
value. We make the following distinction:

— 1 =0. Note that S; o = 0°%||K for all j, so there is only one occurrence of
this construction query. If the primitive query is a forward query, without
loss of generality its first b—k bits are 0. It satisfies S; 0 = X; with probability
at most 1/2F~AGax(Xiqimi) Tt satisfies T;o = Y; with probability 1/2°.
On the other hand, if the primitive query is an inverse query, it satisfies
T;0 = Y; with probability at most 1/20~AG(Xi:ai) and S, = X; with

probability 1/2°. Therefore, restricted to the case I = 0 (which is just 1

unique construction query), the event happens with probability at most

1 1
2k —AGaw(Xi,q;,73) + 2b—AGaw(X4,q;,7m:) ’

— 1 e {l1,...,k}. Note that this involves ¢k construction queries, but the ad-
versary knows nothing about these states, besides leakage. If the primitive
query is a forward query, it satisfies either of S;; = X; and T}, = Y; with
probability at most 1/ 2b—AGax(X4.4:73)  For inverse queries, the analysis is
identical. Therefore, restricted to the case I € {1,...,k} (which are at most
gk construction queries), the event happens with probability at most

2qk )
2b—AGax (Xi,q;,m:)

— | = k + 1. Note that this involves ¢ construction queries, and the adversary
might have set the state to a value N||0*. If the primitive query is a forward
query, there is at most one construction query whose first r bits are equal
to the first r bits of X. It satisfies S;r41 = X; for that particular state
with probability at most 1/26_AG“1‘(X“‘11'*”). It satisfies Tj 41 = Y; with
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probability 1/2°. On the other hand, if the primitive query is an inverse
query, there is at most one construction query whose first r bits are equal
to the first r bits of Y. It satisfies T} 41 = Y; for that particular state with
probability at most 1/20_AG“‘<(X'“‘1W”) and Sj i1 = X; with probability
1/2b. Therefore, restricted to the case | = k + 1 (which are g construction
queries), the event happens with probability at most

1 n q )
2c—AGaw(X4,9;,7:) 2b—AGaw(Xi,9;,7:) ’

— 1l e {k+2,k+3,...}. Note that this involves Q) —g¢ construction queries. If the
primitive query is a forward query, by —badnycs there are at most v possible
construction queries with left,(S;;) = left,(X;). It satisfies S;; = X; for any
of these v states with probability at most 1/2¢~AGax(Xi:qimi) Tt satisfies
T;; =Y; with probability 1/ 2°. For inverse queries, the analysis is identical,
relying on —badcr. Therefore, restricted to the case l € {k+2,k+3,...}
(which are at most @ — ¢ construction queries), the event happens with
probability at most

v Q—q

2c—AGaw(X3,9;,7:) + 20— AGarx(X4,q;,7m3)

By summing over all possible types of queries, we obtain

p
1 v+1 Q+2qk+1
(15b) S Z <2k—AGatk(Xivqi,’f‘i) + QC—AGm(Xi,qi,n) + 2b—AGatk(X'i7qi77'i) ’
=1

(17)

Probability that a query sets badme (Eq. (15¢)). Recall that badne = badmes V
badmct. We start with badmcr. The state values T; ; are randomly generated using
a random function, and @ — ¢ values are generated. Thus, bady1 is a balls-and-
bins experiment with @ — ¢ balls thrown into 2" bins. The event bad,.T is set for
the T; ;’s if there is a bin with more than v = foc_q balls. By (6), this happens
with probability at most ©/2¢. The analysis of badycs is symmetric, noting that
Si.j+1 has the same distribution as T; ; for j # 0,k + 1. Thus,

(15¢) < Zl (18)

Conclusion. The proof is completed by a direct combination of (14), (15), (16),
(17), and (18). O
4.3 On the Usage with Bounded Leakage

Our approach of accumulated leakage is backwards compatible with bounded
leakage. In other words, our model allows to provide a bound for leakage in
the spirit of bounded leakage. Let us consider asakey and bound the leakage
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to A bits per execution of the underlying permutation. Then, we get for non-
adaptive bounded leakage AGpoungea(Xi,q;, ) = (max(r;) + 1)\ = 3\, where
the addition of 1 comes from the fact that we have one matching Y to all X
with the same inner part that can leak. In the case of adaptive bounded leakage,
we get AGuoundea(X i, @;,7i) = (2max(g;))A < 2¢\, where the multiplication by
2 comes also from the fact that each leaking input X has one leaking output Y
of a permutation.

Note that bounded leakage puts restrictions on the leakage function, and
hence is only valid for side channel attacks. Our way of modeling stays valid
even in the case of fault attacks. More generally, one of the significant ideas in
accumulated leakage is to provide a leakage model that allows for direct com-
patibility with practical side-channel and fault evaluations of implementations
of primitives. Hence, by knowing the bounds on the data complexity imposed by
the leakage resilient mode, an evaluation of the security boils down to focusing
on attacks on the isolated implemented primitive. The results of these attacks
then paint a clear picture of the security of the investigated implementation un-
der the current attacks. In addition, by increasing the data complexity beyond
what would be covered by the proven bound gives an indication of how much
more data would be needed for a break. This leaves an implementation with
some kind of security margin that is comparable to the security margin we have
in the cryptanalysis of (round reduced) symmetric primitives. In particular, it
gives a rough estimate of how much an attacker has to improve its techniques
until it breaks the implementation. We will show the employment of this concept
in the following section.

5 Practical Results on Accumulated Leakage

In this section, we exemplify the usability of the model of Section 2. We give
practical results on the amount of information an attacker can get about the
secret permutation state in asakey. To make the evaluation less time consuming,
we assume that the secret part is always 128 bits and that the attacker is in
control of the rest of the input bits and knows the output except 128 bits. Clearly,
such a simplified scenario strongly favors the attacker and, as a consequence, the
achieved results drastically underestimate the actual security of asakey, which is
fine as long as we can show that the simpler construction is already sufficiently
hard to attack. For a more thorough evaluation, more experiments on all the
possible configurations of the permutation (see Figure 2) would need to be done.

We evaluate the information an attacker can extract via multiple different at-
tack vectors. For each attack vector, we get a certain guessing advantage that an
attacker can achieve using a certain amount of measurements. Our construction
in Section 4 efficiently bounds the data complexity (max(r;) = 2) an attacker is
able to exploit per secret state it tries to recover. Hence, for attacks like statisti-
cal fault attacks (SFA), statistical ineffective fault attacks (SIFA), or differential
power analysis (DPA), that perform better with increasing data complexity, we
effectively end up with security margin. In other words, we get some impres-
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sion on how much an attacker has to improve over our already optimistically
performed attacks.

In essence, this is a situation that is well-known in symmetric cryptography,
where round-reduced variants of symmetric primitives are attacked and the se-
curity margin up to the full round version gives some measure how much an
attacker has to improve to threaten the whole scheme. As in our case here, there
is usually also no guarantee in symmetric cryptography that a certain attack
vector (e.g., differential cryptanalysis [8]) is the best attack vector on a certain
scheme, nor that one cannot exploit a certain attack vector better than previ-
ously demonstrated.

Note that our construction can limit max(g;), the number of calls to the
permutation with the same input, only during the key stream generation phase
of encryption operations by using fresh nonces. During decryption, or the re-
keying phase of encryption operations, the attacker can observe permutation calls
with constant inputs that our construction can only loosely limit by max(q;) <
q. Consequently, asakey does not provide mode-level protection against certain
attacks that naturally improve by repeated measurements of the same input
to reduce noise, like simple power analysis (SPA) and template attacks [28].
Protection against such attacks thus has to be achieved by either (i) using a
stateful mode that can effectively limit max(q;), or (ii) using implementation
countermeasures against only those attacks that cannot be prevented on mode-
level. Stateful modes can be built by employing techniques such as [36,40] where
sender and receiver operate on a “synchronized” state and hence, are able to
limit max(q;) to a small constant, e.g., 2 or 4. If this is not an option then one
could use asakey and only employ rather simple countermeasures like first-order
masking or shuffling to deal with SPA and template attacks.

At the same time, asakey can still offer some protection against fault at-
tacks that utilize different faults on executions with the same input, like dif-
ferential fault attacks (DFA) [9] since DFA needs to be mounted on the key
stream generation phase and (i) fresh nonces prevent the repeated usage of keys
during encryption, and (ii) asakey’s hard-to-invert key derivation significantly
increases the difficulty DFA-based key recovery attacks during decryption (see
Section 5.5).

In the first part of this section, we discuss the simplified attack scenario
that we subsequently use to optimistically estimate the effectiveness of various
kinds of implementation attacks on asakey. We then present concrete attack
evaluations, starting with attacks that are limited by max(r;), and interpret the
influence of these attacks on our bound. At the end, we discuss attacks that are
limited by max(g;).

5.1 Primitive Under Attack

We will give an impression on how AGgpa(X;,q;,7:), and AGgisa(Xi, g;,7:) of
Theorem 2 behave. Before doing so, we have to settle the implementation that
we consider. We assume an implementation that for each new encryption always
starts with the first permutation call that involves the key. Hence, we know from
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Fig. 2: The KECCAK-p permutation as scrutinized in current analysis.

Section 4.1 that for such an implementation, max(r;) = 2 and max(q;) < ¢. In
order to limit the amount of experiments we have to do, we can perform all ex-
periments with the KECCAK-p[1600,12] permutation in a best-case configuration
for an attacker as shown in Figure 2.

In this setting, the goal of an attacker is to recover as much information as
possible about the secret states, which are 128 bits placed at the last two lanes of
KECCAK-p[1600,12]. The attacker has ultimate control over the 1472-bit input I
and is able to observe O. Please note that the degrees of freedom available to an
attacker in the scenario shown in Figure 2 are always strictly better compared to
our mode in Figure 1. Hence, we consider experiments based on the configuration
shown in Figure 2 to be a valid estimation of the security we can expect from
our mode shown in Figure 1.

For DPA and SIFA, the goal is to recover the secret state Sk, at the input
of the permutation, and we show how AGau (X, q,,7:) changes for increasing
r;. We do not take advantage in the attack that due to the construction of our
scheme, there exists also a previous permutation call, where the inner part of
this previous call SE;°" matches the inner part of the next permutation call
Sk,, simply because it is unclear how to take this into account if in a scheme
all permutations are only evaluated in forward direction. Also note that for
fault attacks, the data complexity at the input for some secret state Sk, is not
strictly bounded by r;. An attacker could artificially increase the data complexity
by placing additional faults, e.g., at the input of the permutation and exploit
that in this case max(g;) is not strictly bounded. However, this requires a quite
powerful attacker and also complicates and often prohibits the detection on
whether a fault was ineffective or not.

In an implementation attack, we usually end up with a list of candidates for
the secret bits we aim to recover. In the spirit of Selguk [38], we express the guess-
ing advantage in bits as log, (#total candidates) — log, (#candidates to test),
where the number of candidates to test are the candidates states, which are
ranked equal or higher compared to the correct secret state.

5.2 Differential Power Analysis

In our power analysis experiment, we consider a DPA attack on a microproces-
sor implementation of the KECCAK-p[1600,12] permutation. The target software
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implementation is the AVR assembler optimized version of KECCAK-p from the
Extended Keccak Code Package (XKCP) [5]. The power measurements were
conducted on a ChipWhisperer-Lite side channel evaluation board [34] featuring
an XMEGA 128D4 microprocessor as the victim. As described in the previous
section we assume that the initial state of the permutation is initialized with a
128-bit key that is located in the last two lanes, the remaining input bits are
under the control of the attacker.

During the experiment we send random inputs I to the device and mea-
sure the power consumption of the following KECCAK-p[1600,12] permutation.
The resulting output O is not needed in this attack. The strategy of the power
analysis follows the principles presented by Taha and Schaumont [42] who thor-
oughly analyzed different DPA attack strategies for various instantiations of
MAC-KECCAK schemes. In our case each column of the state contains at most
one key bit at the beginning of the permutation. We can hence use a rather
simple strategy based on the prediction of the Hamming weight of intermediate
values during the computation of # in the first round. In software, 8 is usually
implemented in two steps. First, the parity of each column in the state S(x,y, 2)
is calculated which results in pjane:

4
Gplane(x, Z) = @ S(ll?, i, Z) .

=0

The output of 6 then corresponds to the XOR of every state bit with 2 bits from
eplane:

S(m,y,z) = S'(x,y,z) @ eplane(x - 17«3) (&) eplane(x + 1,2 — 1) .

In our experiment we focus on the values of the last two lanes of f1.ne since
only these have key bits in the corresponding sheet. While predicting values of
entire 64-bit lanes is not really practical, we can exploit that fact that the 8-bit
microprocessors need to calculate operations using 8-bit registers. We can hence
simply guess 8 key bits, predict the Hamming weight of the corresponding 8 bits
in Oplane, and check whether or not our prediction correlates with the recorded
power traces for multiple runs using differing I.

The results of the experiments, depicted in Figure 3, show how many power
traces are needed until key bits can be reliably extracted. After having observed
about 36 power traces the correlation of predictions using the correct key guess
reliably scores the highest. The corresponding advantage of an attacker at this
point is therefore 8 bits. Using the same set of power traces all remaining key
bits can be recovered by simply adjusting the location of the key guess in the
state.

We expect experiments on other platforms with larger architectures (such as
16-, 32-, 64-bit) to perform increasingly worse, mainly due to the fact that leakage
becomes less informative with increasing register sizes. Additionally, especially
on 32-bit or 64-bit platforms, checking all possible values of a 32 or 64-bit key
guess is not really practical anymore. Here one can fall back to guessing, e.g.,
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(b) The expected attacker advantage in guessing key bits when targeting 8 key
bits for 16 times in parallel. The grey line shows the gain of i - A\, where \ is
estimated by the biggest slope gotten from the DPA attack.

Fig.3: DPA results for KECCAK-p[1600,12] on an 8-bit microcontroller. After
having observed about 36 power traces the 128-bit key can be retrieved, 8-bit at
a time. The experiment was repeated 100 times, the results are averaged.

only 16 key bits, thereby treating the remaining bits in a register simply as noise.
This however comes also at the cost of a increased amount of required power

traces.

5.3 Statistical Ineffective Fault Attacks

Thanks to our new model of accumulated leakage, we are also able to express the
gain an attacker gets from a fault attack within a leakage resilient framework.
In this section we will, for the sake of example, focus on statistical ineffective
fault attacks (SIFA) [12,13].

SIFA has been proven to be a very versatile attack vector that can be applied
to permutation based schemes in a very straightforward way [16]. Although our
scheme in Section 4 is not an authenticated encryption scheme, it can still be
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viewed as the initialization phase of a sponge-based stream cipher, similar as in
KEYAK or KETJE.

In our fault attack evaluation, we again consider the KECCAK-p[1600,12]
permutation as used in Figure 2 where the input I is randomly chosen and
known by the attacker. We again target an AVR assembler optimized version
of KECCAK-p from the Extended Keccak Code Package (XKCP) [5], running
on an 8-bit XMEGA 128D4 microprocessor. This time the ChipWhisperer-Lite
evaluation board [34] is used to generate a clock signal for the victim that can
additionally contain purpose-built glitches for causing erroneous computations.

Following a similar strategy as in [16], our goal is to collect certain I’s for
which an induced fault during the computation of x in round 2 leads to a correct
computation of O. The location of the fault is hereby chosen such that an affected
state bit roughly depends on 25 bits of the initial state. Since not all bits influence
the target bit in a non-linear way, we can get a guessing advantage of at most 16
bits (see [16] for details). The main observation of SIFA (and Safe-Error Attacks
in general) is that the condition whether or not a fault is ineffective can depend
on the actual values that are used in the faulted computation. An ineffective fault
induction can hence be used to filter out a specific set of I’s that show a biased
distribution of certain state bits in the faulted location. Once such a set of I’s is
collected by the attacker the corresponding key bits can be enumerated and the
distribution of bits in x in round 2 calculated. A key guess corresponding to a
strong bias in some state bits, when measured, e.g., using the Squared Euclidean
Imbalance (SEI), then indicates a correct key guess and vice versa. The more I’s
are collected the easier it is to distinguish the correct key guess from all wrong
key guesses.

A quick visual inspection of a power trace reveals that the computation of
X in round 2 starts around clock cycle 9550 when measured from the start of
the permutation. During the experiment we hence send random inputs I to the
device and inject a glitch into the clock signal once the victim starts to compute
x in round 2. Each I is used twice, once with clock glitch, once without, so we
can check (by comparing O) whether or not the clock glitch affected the victim’s
computation. Note that in a more realistic attacker scenario the repetition of each
I is not really needed since either a redundancy-based fault countermeasure or
the authenticity check during authenticated decryption could indicate whether
or not an induced fault was ineffective.

For the key recovery we guess 25 key bits and calculate the distribution of
one affected state bit at the input of x in round 2. If the exact location of the
affected state bits is not known to the attacker the previous step can simply be
repeated for all possible bit locations in the state. Again, a high SEI indicates
a correct key guess while a low SEI indicates either an incorrect key guess or
(if all key guesses result in low SEI) a wrong prediction of the location of the
affected state bits. In our experimental setup a clock glitch always affects 8 bits
of the state at once, probably because an instruction was skipped in x in round
2. As a result we only find about one I per 256 faulted permutations where the
induced fault was ineffective. The total number of required faulted permutations,
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Fig. 4: Result of the SIFA evaluation on an 8-bit XMEGA 128D4 microprocessor
using clock glitches. The advantage of exploiting the bias in one bit is plotted.

is thus comparably high, but, since every biased bit has a different dependency
to the key bits, we can recover significantly more key bits at once. The results of
our evaluation are depicted in Figure 4. They show how many ineffective faults
were needed until the bias in one affected state bit was high enough so that the
correct key guess can be distinguished with high confidence. We looked at two
scenarios, one with the plain implementation of the permutation and one with
a simple additional hiding countermeasure where the permutation is using a
random dummy key in 50% of the cases. Depending on the scenario either about
20 I’s (5 120 faulted encryptions) or about 96 I’s (24576 faulted encryptions) are
needed until a correct key guess can be distinguished with high confidence. Do
note however that, in contrast to the DPA attack, reducing the amount of I'’s at
the cost of a reduced attacker advantage is more plausible here. Since each state
bit at the input of x in round 2 has a partially different dependency on the key
bits, we can run the key recovery 8 times, thereby recovering significantly more

than 16 key bits using one set of I’s.
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5.4 Interpretation of Results

Our evaluation of the DPA attack shows that having about 36 traces for different
inputs allows us to recover 8-bit of the secret state. Since nothing restricts us to
also recover the other state bytes using the same data, we can expect that it is
also possible to recover the whole 128-bit key. Not surprisingly, the evaluation
of the DPA attack shows furthermore that the advantage of an attacker that is
limited to the observation of just two inputs to the KECCAK-p permutation is
rather negligible. Here, we remark that in asakey the data complexity is, indeed,
limited to 2. Also, we want to stress that these results are for an implementation
without countermeasures, using an evaluation setup that extremely favors the
attacker, and assuming that the attacker has control over 1472 bits of I (instead
of just one bit as in asakey).

If we have a look at fault attacks, and more specifically SIFA, the gain of
an attacker could be even bigger, assuming the unlikely but ideal case that all T
lead to ineffective faults. In the case of an attack on a completely unprotected
implementation, the guessing advantage grows almost linearly with the data
complexity (Figure 4a). In the presence of a simple hiding countermeasure like
dummy rounds the required data complexity for achieving the same guessing
advantage is however already impacted quite significantly (Figure 4b). Even in
the ideal case the advantage of an attacker is only 1 bit per targeted bit. Since we
targeted one complete byte in our experiments, we assume that the combined
advantage is 8 bit on average. Again, we stress that these results assume an
attacker that has control over 1472 bits of I (instead of just one bit as in asakey).

If we map our optimistic evaluation results to the accumulated leakage anal-
ysis of Section 4, we get max (AGapa(X,q;,7:)) = 0.34 (from Figure 3b, ad-
vantage for 2 traces (max(r;) = 2)), considering DPA as attack vector. If we
consider SIFA, we get one bit of advantage (from Figure 4a, advantage for 2
correct ciphertexts (max(r;) = 2)) per biased bit. Since in our SIFA attack a
whole byte is biased, we simply scale to max (AGsira(X,q;,7:)) = 8. Since
all experiments have been performed for a secret portion of the state of 128
bits, we extrapolate these results for secrets bigger/smaller than 128 bits for
the sake of simplicity. For instance, for a k-bit state, we assume an attacker has
max (Adea,sifa(XZ-, qi,ri)) = 9[%8]. Since in a typical instance of asakey the
parameters satisfy b > ¢ > k, we have 9(%81 > 91551 > 9[%}. To get more
precise numbers, the experiments need to be redone with the secret states in
use. We get

Q—q
i-Ir D Ve 'p+p  pQ+2pgk +p
AdVasakey(A) < SimmET T g tmT T ool
(Q+2qk)g+ 20 | (TH3H) 4 () + (5)
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for an adversary A with construction complexity ¢, total number of encrypted
message blocks ), and with primitive complexity p, only considering DPA and
SIFA.
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5.5 Discussion on Attacks Limited by max(q;)

As already mentioned, asakey as a mode strictly limits max(r;) for encryption
and decryption, but can limit max(g;) only during encryption. Hence, the mode
itself only provides full protection and a security margin in case of attacks that
scale with increasing max(r;), such as DPA. For attacks that scale with increas-
ing max(q;), the decryption implementation itself has to provide protection,
so that, e.g., AGgpa(X;,q;,7;) for an SPA is small, although max(g;) is es-
sentially unbounded. In the case of passive side channel attacks, like SPA or
template attacks, this requirement is comparable to a non-adaptive leakage as-
sumption [19,21,47]. This means that for non-adaptive leakage, it is usually
assumed that an implementation provides enough protection in case of repeated
measurements of a primitive that processes the same input, so that an attacker
cannot learn more from repeated measurements than from the first one. Also
note that, form a practical perspective, achieving protection against SPA at-
tacks is still quite a bit cheaper to realize than protection against DPA attacks,
that are prevented by asakey and would otherwise usually require the usage of
expensive higher-order masking.

Since we introduce with accumulated leakage a concept that also covers fault
attacks, we can observe a similar behavior for fault attacks. Roughly speaking,
in the case of fault attacks, we have also attacks that mainly scale for increasing
max(r;), like SFA and SIFA, but also attacks that mainly scale with increasing
max(g;) like DFA. Here, in contrast to passive side channel attacks, a notion
of non-adaptive fault attacks would make limited sense, since this basically as-
sumes an attacker that always makes the same fault at the same position within
an algorithm. Hence, in general, if max(q;) is not limited by a mode, we have
to shift protection against attacks that scale well with max(g;) to the imple-
mentation. To see how attacks that scale well with max(q;) impact unprotected
implementations of asakey, we give a discussion of DFA next.

To estimate the performance of Differential Fault Attacks (DFA) on un-
protected implementations of our studied KECCAK-p[12,1600] permutation we
mainly refer to existing works by Bagheri et al. [1] and Luo et al. [27] who thor-
oughly analyzed the applicability of DFA attacks against SHA-3, and discuss
differences to our attack scenario. Since DFA requires the observation of faulty
computations, it can only be used to directly infer information about the later
rounds of the attacked permutation. Hence, when performing DFA, we first aim
to recover Sk, which could then be used to also recover Sk,. Following the
methods of Bagheri et al. [1] who studied the effects of single-bit faults within
KECCAK-p, a single pair of correct and faulted computation can directly leak
22 bits of the state before the S-box layer of the penultimate round. By re-
peating this procedure about 80 times using different fault locations the entire
state before the S-box layer of the penultimate round can be recovered. Luo et
al. followed up on this work by analyzing fault injections with byte granularity
(instead of bit granularity) and concluded that: (i) about 120 repetitions are
necessary if timing but not location of the fault can be precisely controlled by
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the attacker, and (ii) as few as 17 repetitions are required if both timing and
location of the fault can be precisely controlled by the attacker [27].

The main difference between the setting of, e.g., SHA3-512 by Bagheri et
al. [1] and our scenario is the amount of bits of O that are directly observable
by the attacker. While 576 bits can be observed by the attacker in SHA3-512,
up to 1472 bits can be observed in our scenario. This does not immediately lead
to a reduced amount of necessary faulted executions since the state recovery via
DFA happens in the penultimate round. Some improvements can however be
expected since the available information about large parts of the final state can
still be used to infer some prior knowledge about state bits in the penultimate
round, which then reduces the required number of faulted executions.

Please note that for asakey this attack approach cannot be directly used to
extract the long term key, since the encryption part of asakey works with a
session key from a re-keying function that is hard to invert. To extract the long
term key, a multi-step approach is necessary. Using the notation from Figure 1,
it is necessary to:

1. Use DFA to recover a correct Siy1;

2. While injecting a fault in the penultimate round of the last permutation call
of the re-keying function, use DFA to recover a faulty Sj1;

3. Repeat step 2 until sufficiently many faulty Ski1’s have been recovered.
Then, by also using the correct Siy1, perform a DFA-style state recovery
within the re-keying function.

Therefore, extending DFA from KECCAK-p to asakey requires roughly a squared
amount of faulted executions and has the additional requirement of performing
precise combinations of two faults per execution.

To sum up, to recover the 128-bit secret state using a DFA, significantly more
than one computation of the permutation using the same input is required to
get in our case AGgysa(X,q;, ;) = 128. Hence, a mode that puts a small limit
on max(q,;) would provide protection against this attack vector.

6 Conclusion

In this paper, we complemented existing approaches in leakage resilient cryptog-
raphy and gave another method that aims to bring theory and practice closer
together. Similar to the cryptanalysis of symmetric cryptographic primitives, our
approach can also be purely driven by attacks. This allows for some benefits,
most importantly that our approach is not only restricted to side channel at-
tacks but is also able to include other implementation attacks, like fault attacks.
However, our approach also has some limitations, some of them inherited from
leakage resilience in general.

As our approach only focuses on the leakage resilience of the scheme, it does
not cover all sources of information leakage that can occur within a system. A
typical pitfall that is excluded is the loading of the secret key, that eventually
happens in software implementations. Furthermore, our coverage of potential
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side channel attacks and fault attacks in Section 5 is far from exhaustive and
should just give an impression of the underlying idea of our approach on accu-
mulated leakage. Dependent on the capabilities of an attacker, template attacks
are an attack vector that has been proven to threat leakage resilient implemen-
tations [31,44,45]. Nevertheless, we think that the ideas presented in this paper
provide a nice complement to existing models in leakage resilient cryptography.

The mode asakey presented in this paper only focuses on putting a limit on the
data complexity per permutation call (max(r;) = 2), but leaves the permutation
calls with same inputs unrestricted (max(q;) < ¢). An interesting research topic
are modes that also put a strict limit on max(q,). For instance, asakey could be
converted to such a mode, if we consider a synchronized sender and receiver that
always increase the nonce IV by one. If sender and receiver then always store Sy,
(see Figure 1) and utilize the inverse of p, the permutations within the scheme
have to be only called once in forward and inverse direction processing the same
inputs. Essentially, the “re-keying” function of asakey would be traversed in a
tree-like fashion as in [24].
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