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Abstract. Implementation attacks such as power analysis and fault at-
tacks have shown that, if potential attackers have physical access to
a cryptographic device, achieving practical security requires more con-
siderations apart from just cryptanalytic security. In recent years, and
with the advent of micro-architectural or hardware-oriented attacks, it
became more and more clear that similar attack vectors can also be ex-
ploited on larger computing platforms and without the requirement of
physical proximity of an attacker. While newly discovered attacks typi-
cally come with implementation recommendations that help counteract
a specific attack vector, the process of constantly patching cryptographic
code is quite time consuming in some cases, and simply not possible in
other cases.
What adds up to the problem is that the popular approach of leakage
resilient cryptography only provably solves part of the problem: it dis-
cards the threat of faults. Therefore, we put forward the usage of leakage
and tamper resilient cryptographic algorithms, as they can offer built-
in protection against various types of physical and hardware oriented
attacks, likely including attack vectors that will only be discovered in
the future. In detail, we present the — to the best of our knowledge —
first framework for proving the security of permutation-based symmetric
cryptographic constructions in the leakage and tamper resilient setting.
As a proof of concept, we apply the framework to a sponge-based stream
encryption scheme called asakey and provide a practical analysis of its
resistance against side channel and fault attacks.

Keywords: leakage resilience, accumulated leakage, sponge-based en-
cryption, side channel measurements, fault attacks

1 Introduction

In the 1990’s, implementation attacks like side channel attacks [46] and fault
attacks [16] have demonstrated that, while a cryptographic algorithm may be
mathematically secure, its real world instance may still be broken quite easily.



Hence, whenever devices operate in environments where attackers have physical
access, countermeasures against side channel and fault attacks are of utmost
importance. This is a major real-world concern: with the rise of the Internet of
Things (IoT), devices performing cryptographic tasks have become ubiquitous,
and many of them are physically accessible by attackers.

However, in recent years, it became more and more apparent that for per-
forming side channel or fault attacks, the physical presence of an attacker is not
a necessity. In particular, it turned out that micro-architectural attacks [37] or
hardware-oriented attacks can achieve similar effects, are entirely software con-
trolled, and can thus often be performed even remotely. First successful remote
side channel attacks exploited timing variations due to caching in modern CPU’s,
and have been shown to work on implementations of DES [74] and AES [4].
Recently, even software-based DPA attacks on the AES instruction of modern
CPU’s have been proven to be feasible [48]. Remote fault attacks have further
been shown to work quite easily by exploiting bit-faults in RAM [38,39, 47, 77].
The recent Plundervolt attack [58] has even demonstrated that remotely trig-
gered fault attacks can extract the secret key from AES executions performed
in secured enclaves.

The usual way of mitigating these newly discovered attacks involves updat-
ing, e.g., the microcode of CPUs, or providing software patches. However, some
attacks like RowHammer [44, 62], work due to the RAM’s physical properties
and are hard to patch without losing too much performance. Moreover, it is
quite likely that not every attack vector, be it a physical one or a remote one, is
discovered yet. Because of these reasons, it might be useful to put more focus on
cryptographic algorithms that provide a certain amount of resilience against side
channel and fault attacks, not only in their “classical” embedded environments
but also in general, and as a second line of defense.

One popular approach to the design of cryptographic algorithms that with-
stand side channel attacks is the concept of leakage resilient cryptography [29].
The goal of this research direction is to design modes of operation that are prov-
ably secure under specific assumptions on the leakage an adversary can receive.
Leakage resilience gave rise to cryptographic schemes with very strong security
guarantees, for example, modes of operation that are provably secure against all
side channel attacks assuming that the leakage in each round is bounded [63].
Hence, it has attracted the interest of a lot of researchers proposing several
leakage resilient symmetric cryptographic schemes [3,6,7,25,28,32,53,61,78,79].

Leakage resilient schemes come with some modeling of leakage, for example,
with the assumption that the leakage is bounded [29] or hard-to-invert [27].
Showing that an assumption on the leakage actually holds, turns out to be quite
hard, and in practice, side channel analysis of leakage resilient schemes typically
just considers which side channel attacks can be performed. See, e.g., work on
evaluating the security of a leakage resilient pseudo random function [54,55,75,
76]. One attempt that has been made to bring the theory of leakage resilient
cryptography closer to practice is simulatable leakage [70]. The high-level idea
of simulatable leakage is to consider the distance of a cryptographic scheme from
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a simulator that does not possess the key, but that still generates leakage that is
indistinguishable from the device using the actual key. However, Longo et al. [50]
pointed out some obstacles with the practical realization of such simulators, and
— to the best of our knowledge — the instantiation of simulators is still an open
problem. On the downside, the promises delivered by leakage resilience focus on
various assumptions on the leakage, but typically do not consider fault attacks.
Hence, the so gotten schemes provide provable security against certain types of
side channel attacks, but do not provide any insurance against fault attacks,
or any other attack that leaks entropy of a state in general. Especially in the
remote scenario there is no reason for an attacker to not use fault attacks if it
is possible to induce faults, e.g., by using RowHammer [39,44].

If we look at existing leakage resilient constructions, we see that indepen-
dent of the modeling of the leakage, all these constructions aim to limit the
number of observations an attacker can make per evaluation of an underlying
primitive using a certain key. Considering this from an implementation attack
perspective, such limitations on the number of observations make a lot of sense.
Attacks like statistical fault attacks (SFA) [34], statistical ineffective fault at-
tacks (SIFA) [19, 20], or differential power analysis (DPA) [46] get better with
increasing data complexity an attacker is able to exploit per secret state it tries to
recover. Complementing that, these attacks can also get better with the number
of observations where the input, as well as the secret of the underlying primitive,
remain the same. For instance, such observations can be used to reduce the noise
of traces used in a DPA, simple power analysis (SPA), or template attack [52].
Fault attacks can also utilize different faults on executions with the same input,
like differential fault attacks (DFA) [16].

1.1 Accumulated Interference (AI)

In this paper, we take a different approach and aim to model the impact of
implementation attacks more broadly. We do so by introducing the concept of
accumulated interference (AI) that allows us to abstract side channel attacks
and fault attacks in the leakage resilient analysis. In a nutshell, accumulated
interference models an entropy loss of the associated states of a cryptographic
permutation by learning information about the associated states via side channel
and fault attacks, or basically by any possible setting in which leakage occurs.
Accumulated interference, as we formalize in Section 2, aims to express the ac-
cumulated gain during an experiment. It is a function in terms of all information
an attacker has observed so far by using side channel and fault attacks, and it
changes in the course of the attack. Then, the goal of the analysis of a leakage
and tamper resilient scheme in the accumulated interference model is to pro-
vide a limit on the data complexity for the underlying primitives. This way of
modeling side channel and fault attacks allows to either evaluate the capabilities
of an attacker “a posteriori” on a real implementation, or fully define a model
“a priori” akin to the bounded leakage model in the non-adaptive or adaptive
leakage setting, with the bonus that accumulated interference covers fault at-
tacks as well. This way, our approach is backwards compatible, but at the same
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time more general as it allows for more accurate modeling. We will discuss these
features of accumulated interference and how it can be used in practice, below.

1.2 Coverage of Fault Attacks

Typical methods in leakage resilient cryptography aim to precisely model the
gain an attacker can get with the help of the physical leakage. For instance, in
the bounded leakage model the leakage function can be any arbitrary function of
the secret state with bounded output length, or any function that preserves some
min-entropy of the secret state. Later, hard-to-invert leakage was introduced,
which, on a high level, requires that the leakage has the property that even
under knowledge of the leakage, the secret state is hard to guess [27, 35]. This
model, intuitively, corresponds to requiring that a certain pseudo-entropy of the
secret state, i.e., the amount of information that the secret state has from the
viewpoint of a computationally bounded attacker, should be preserved.

However, these attempts to model the gain an attacker can get from physical
leakage leave out the threat of fault attacks. This is a weak point in existing
approaches, since in scenarios where side channel attacks are applicable, an at-
tacker can typically also apply a wider range of implementation attacks, such as
fault attacks. Hence, our concept of accumulated interference does not aim to
model the physical leakage prior to an implementation attack, but rather at the
end of the attack. Therefore, accumulated interference is agnostic to the type of
implementation attack and hence our results are naturally applicable to a wide
range of attack scenarios, including fault attacks.

In contrast to work only covering passive side channel attacks, we also con-
sider the fact that in fault attacks, an attacker does not only learn information
about the secret states but is also able to change computations. As our building
blocks are cryptographic permutations, we can model this effect of faults as an
entropy loss of the computed permutation output by τ ≥ 0 bits. This covers a
wide range of faults, including biased faults, or setting τ bits of the output of a
permutation to zero. This model can also include attacks that alter the program
flow, by, e.g., not computing the permutation and effectively replacing it by the
identity function. Then, τ corresponds to the width b of the permutation. Un-
fortunately, this then typically means that such a strong attacker can break the
scheme. Interestingly, bit-flips or random faults often do not directly change the
entropy of the permutations output. However, they do allow an attacker to learn
information about the output and hence, are covered within the accumulated
interference.

1.3 A Priori Bounding of AI

One way to approach accumulated interference is by bounding it a priori. In
this approach, one assumes that each evaluation of a cryptographic permutation
allows an attacker to reduce the secret state’s entropy by at most λ ≥ 0 bits, and
these linearly add up for multiple evaluations in order to give the accumulated
gain. This means that per evaluation, an attacker can at most learn a total of λ
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bits of information of the secret state, influence λ bits of information of the secret
state, or a partial combination of both. Details about this approach are outlined
in Section 2.3. This approach is comparable to the one that has usually been
adopted in leakage resilient proofs with bounded leakage. It is a clean approach
and allows to reason about leakage in a quite simple way. On the other hand, it
is not hard to see that it is a conservative way of estimating adversarial power.

1.4 A Posteriori Evaluation of AI

Alternatively, we can bound the actual effect of implementation attacks a pos-
teriori. This approach allows us to discard many restrictions imposed by typical
leakage resilience analysis. As a pleasant bonus, this also evades the debate
on whether adaptive or non-adaptive leakage must be considered: it is covered
within the accumulated gain.

Note that this stands in sharp contrast with bounded or hard-to-invert leak-
age, where the leakage per query is generously bounded. For example, in the
bounded leakage model, one assumes that each evaluation leaks at most λ ≥ 0
bits of secret data, and these linearly add up for multiple evaluations. For the
sake of comparison, consider the following example. Take a permutation p pro-
cessing some input M concatenated with a secret key K: p(M‖K)⊕M‖K. Let
us assume that an adversary can learn evaluations of p(M‖K)⊕M‖K for secret
K. In the bounded leakage model, one assumes that each evaluation leaks λ bits
of data, but this means that after |K|/λ evaluations, the security of the scheme
is void. In contrast, in the accumulated interference model, one assumes that up
to the i-th query, the attacker has learned fi bits of data, which is a function
of all information the attacker has observed so far. These values f1, f2, . . . re-
main yet undetermined, and must be substantiated with implementation attack
experiments. Comparing both approaches, necessarily fi ≤ i · λ, but typically,
the difference is much larger as we will demonstrate in our practical experiments
(see also Section 1.6).

1.5 Application of AI

We demonstrate how the concept of accumulated interference can be incorpo-
rated in leakage and tamper resilience analyses. Here, we stress that, despite the
fact that AI can truly cover any type of entropy loss, side channels and tamper-
ing are the most well-known and most threatening types of attacks. In Section 3
we apply accumulated interference to a nonce-based stream encryption scheme
called asakey. The asakey encryption mode is derived from the encryption part
of ISAP [21,22] and is a logical way of performing encryption with the sponge: it
initializes a sponge state with a secret key, then it absorbs the nonce bit-by-bit
to obtain a secret inner part of the sponge that is used “as a key” to a plain
nonce-based sponge encryption mode with high rate. By doing a direct analysis
of asakey and by in addition confiding on the accumulated interference model,
we obtain a bound that (i) is simpler than the one that would be obtained by
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relying on the general leakage resilience of the duplex [25] modularly, and that
(ii) covers also fault attacks.

1.6 Justification of AI

In Section 4, we perform an exemplary analysis of an implementation of the
asakey scheme of Section 3 instantiated with the Keccak-p[1600,12] permu-
tation [59] as used by KangarooTwelve [14] and Keyak [13]. We analyze
the implementation using the two attack vectors of differential power analysis
(DPA) [46] and statistical ineffective fault attacks (SIFA) [19,20]. Those results
show that a bounded leakage approach is often way too optimistic from an at-
tackers point of view on how information of single leakages (experiments) can
be combined.

As an example, have a look at Figure 3b in Section 4. The graph shows how
security degrades with the number of queries assuming λ-bit leakage per query
and how it typically degrades in an implementation attack which can also be
expressed in accumulated interference. It shows that a bound of fi ≤ i · λ is
generally quite loose.

In order to get the best possible picture on the security in the accumulated
interference model, it is important to utilize the attack vectors as good as pos-
sible. Hence, e.g., work that aims to bound model errors in side channel attacks
is also relevant in our context [17].

2 A Formalization of Implementation Attacks

Let m,n be two natural numbers. We denote by {0, 1}n the set of n-bit strings
and by {0, 1}∗ the set of arbitrarily long strings. The set of families n-bit permu-
tations is denoted perm(n). Similarly, the set of m-to-n-bit functions is denoted
func(m,n). If m ≤ n, for string X ∈ {0, 1}n we denote by leftm(X) the m left-

most bits of X and by rightm(X) the m rightmost bits. For a finite set X , X
$←− X

denotes the event of uniformly randomly sampling an element X from X .
We will be concerned with adversaries A that are given access to one or more

oracles O, and after interaction with O they output a decision bit b: b ← AO.
For two oracles O and P, the adversarial advantage of distinguishing the two is
defined as

∆A (O ; P) =
∣∣Pr

(
1← AO

)
−Pr

(
1← AP

)∣∣ . (1)

2.1 Leakage and Tamper Resilience

Let F be a cryptographic function with key size k. Let ro be a random oracle
with the same interface as FK . In a black-box scenario, one quantifies security

of F as the advantage of an adversary A in distinguishing FK for K
$←− {0, 1}k

from a random oracle ro:

Advbb
F (A) = ∆A (FK ; ro) . (2)
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The adversary is typically bounded by a certain query complexity and time
complexity (memory is usually not considered). A comparable definition occurs
in the ideal primitive model. Suppose that F is based on a random permutation

p
$←− perm(b) for some natural number b. The adversary would, in addition to the

oracle FK or ro in (2), have bi-directional access to the random permutation p:

Advi-bb
F (A) = ∆A

(
Fp
K , p

± ; ro, p±
)
. (3)

The time complexity is then called primitive complexity and measures queries
to p.

In the context of leakage resilient cryptography [3,28,29,32,63,71,79], the ad-
versary gets access to a leaky version of the function FK denoted as L [FK ]. Since
we also consider that an attacker can tamper (fault), we will instead consider
an extended function, namely a leaky tampered, or more broadly interference
function:

I [FK ] .

The function evaluates a tampered version of FK and in addition leaks certain
secret information to the adversary. Now, the adversary has to distinguish the
challenge oracle FK from random ro as before, but in addition it gets access to
I [FK ]. The resulting advantages are then expressed as

Advai
F (A) = ∆A (I [FK ] ,FK ; I [FK ] , ro) (4)

for the standard model, and

Advi-ai
F (A) = ∆A

(
I [Fp

K ] ,Fp
K , p

± ; I [Fp
K ] , ro, p±

)
. (5)

for the ideal model. Naturally, the adversary is not allowed to query the leaky
tampered and the challenge oracle on identical inputs.

2.2 Accumulated Interference (AI)

So far, we did not specify how leakage occurs in calls to I [FK ]. In the accumu-
lated interference model, we define the accumulated gain that represents leakage
and tampering, basically the entropy loss, that has occurred. We remark that
this modeling straightforwardly generalizes to pseudo-entropy loss, noting that
measuring the entropy is slightly more generous to the adversary.

Generally, suppose that for a certain secret state that is input to a crypto-
graphic primitive, the adversary has obtained q leakages from executions of p.
This is done for r different inputs,

X = (X1, . . . , Xr) ,

occurring

q = (q1, . . . , qr)
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times respectively. The incurred accumulated gain is defined as

AGatk(X, q, r) ,

where atk ∈ {spa, dpa, sfa, . . .} denotes the attack that the adversary performs.
As the name suggests, the leakage accumulates. For i ∈ {1, 2, . . . }, we denote

by ri the amount of different inputs up to the i-th query, and likewise define Xi =
(X1, . . . , Xri) as the inputs, with occurrences qi = (q1, . . . , qri) respectively.

We remark that the definition is purposely general: the model should apply
to many different modes, types of leakages, types of tampering, and types of
attacks. In particular, the indication of the attack type atk is important, as the
adversarial advantage differs depending on the performed attack, which might
be a DPA attack, a SIFA attack, or anything else. In Section 4, we estimate the
function AGatk(X, q, r) for different attack types.

Next we have to specify how we model tampering with I [FK ], besides the
fact that an attacker can learn about secret states via accumulated interference.
Conceptually, this is very simple, since we work in the random permutation
model using b-bit permutations. Hence, for every new input to p, we expect a
new random value (bar repetition). Faulting the computation of p is modeled as
reducing the entropy of the b-bit value by τ bits.

2.3 A Priori Modeling of AI

To give some intuition for the usability of the definition of accumulated gain, we
first briefly explain how one would use this notion when leakage and tampering
is bound a priori. (Looking ahead to Section 4, this is a rather conservative and
pessimistic way of looking at this accumulated gain, and more accurate bounds
are possible.)

Since we focus on permutation-based cryptography, we consider the leakage
associated with a call to an underlying cryptographic permutation p. In an a
priori bounding, we consider that an attacker can at most learn λ bits of infor-
mation of the processed inputs and generated output of p per call to p via side
channel or fault attacks.

If a certain cryptographic construction, such as a keyed sponge, is evaluated
on top of the cryptographic permutation p, it therefore makes sense to evaluate
how many times a single input X has occurred in the evaluations to p. In the
context of the definition of accumulated gain, X = (X1, . . . , Xr) considers the
inputs to p, and q = (q1, . . . , qr) the occurrences. From this, one can conclude
that one learns at most r · max(q) · λ bits of information about the secret.
However, the counting must also take into account the number of times a single
value X has been created as output of a previous call to p, which happens a yet
to determine π number of times. Therefore, we can bound the accumulated gain
by

AGapriori(X, q, r) ≤ (r ·max(q) + π)λ .

This will be discussed in more detail in Section 3.3.
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Algorithm 1 asakey encryption scheme

Input: (K,N,P ) ∈ {0, 1}k × {0, 1}k × {0, 1}∗
Output: C ∈ {0, 1}|P |
S ← p(0b−k‖K)
N1‖ . . . ‖Nk ← N
for i = 1, . . . , k do

S ← p(S ⊕Ni‖0b−1)

S ← N‖0b−c−k‖rightc(S)
Z ← ∅
while |Z| < |P | do

S ← p(S)
Z ← Z‖leftr(S)

return left|P |(P ⊕ Z)

p

0

K

Nk

1

p

C1

r

c

N1

1

p

. . .

. . .b − 1 b − 1

P1

p

. . .

. . .

b − k

k

p

r

c

N‖0∗

c

r

S0 T0 S1 T1 Sk Tk Sk+1 Tk+1 Sk+2 Tk+2

Fig. 1: Encryption scheme. The state parameters (Si, Ti) will be used in the proof
of Theorem 1.

3 AI in Sponge-Based Stream Encryption

We consider a nonce-based sponge-based stream encryption called asakey. The
scheme is a slight variant of the encryption part of ISAP [21,22], using a bitwise
absorption of the nonce similarly as [73]. The asakey encryption scheme is pa-
rameterized by natural numbers k, b, c, r, where k ≤ min{c, r} and c+r = b, and
it is based on a cryptographic permutation p ∈ perm(b). Instead of initializing
the sponge state with a nonce and a key, it first processes the nonce bit-wise in
order to obtain a secret state that functions “as a key” (hence the name). The
asakey encryption scheme is specified in Algorithm 1 and depicted in Figure 1.
As it is a stream encryption scheme, the decryption is identical with P and C
swapped.

3.1 Security

A variation of this scheme was already proven leakage resilient by Dobraunig
and Mennink [25], but in that work, the result was derived as a corollary of
the leakage resilience of the duplex, a versatile permutation-based cryptographic
mode. By now performing a direct analysis, we obtain a simpler bound and we
also more clearly demonstrate how the accumulated interference model can be
used.
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The result uses the notion of the multicollision limit function from Daemen
et al. [18]. For natural numbers q, c, r, consider the experiment of throwing q
balls uniformly at random in 2r bins, and let µ be the maximum number of balls
in a single bin. The multicollision limit function νqr,c is defined as the smallest
natural number ν such that

Pr (µ > ν) ≤ ν

2c
. (6)

Daemen et al. [18] analyzed νqr,c in detail. As a rule of thumb [25], the term
behaves as follows:

νqr,c .

{
(r + c)/ log2

(
2r

q

)
, for q . 2r ,

(r + c) · q2r , for q & 2r .

We are now ready to state security of the stream encryption algorithm asakey of
Algorithm 1. The proof is given in Section 3.2.

Theorem 1. Let k, b, c, r be four natural numbers such that k ≤ min{c, r} and
c+r = b. Consider asakey of Algorithm 1 instantiated with a random permutation

p
$←− perm(b). For any adversary A with construction complexity q, total number

of encrypted message blocks Q, and with primitive complexity p,

Advi-ai
asakey(A) ≤

p∑
i=1

(
1

2k−τ−AG(i)
+
νQ−qr−τ,c−τ + 1

2c−τ−AG(i)
+
Q+ 2qk + 1

2b−τ−AG(i)

)

+
(Q+ 2qk)q + 2νQ−qr−τ,c−τ

2c−τ
+

(
Q+2qk+1

2

)
+ 2
(
Q+qk+1+p

2

)
2b−τ

.

Here, AG(i) is short for AGatk(Xi, qi, ri), where Xi denotes the primitive eval-
uations in all queries made to I [asakeypK ] up to primitive query i with the same
inner part as primitive query i, qi their occurrences, and ri the length of these
tuples. In addition, we allow tampering with p as long as P (p(X) = Y ) ≤ 2−(b−τ)

for newly queried X, or instead an attacker can at most tamper with τ bits of
the state.

Simply speaking, the goal of our scheme is to limit the input complexity
per evaluation of p with the same secret state. As we will detail in Section 3.2,
for all i, each Xj contained in Xi of AGatk(Xi, qi, ri) shares the same inner
part rightc(Xj). As long as no bad event occurs (specified in the proof), all
permutation queries within all construction queries have a differing inner part
rightc(Tj). An a priori bounding of AGatk(Xi, qi, ri) in the bounded leakage
model is given in Section 3.3. A further investigation of how AGatk(Xi, qi, ri)
can be upper bounded for concrete implementation attacks is given in Section 4.

We note that, since the nonce N is absorbed bitwise before it is absorbed as a
whole, it follows that ri ≤ 2. Hence, the input complexity per permutation eval-
uation within our scheme is effectively bounded to 2. This still leaves the option
open to fault inputs of repeated calls to the permutation to virtually enhance ri.
To salvage asakey in this setting, we discuss in Section 3.4 a strengthened version
of asakey that prevents this under additional assumptions by limiting max(qi).
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3.2 Proof of Theorem 1

Write E = asakey for brevity. Without loss of generality, all construction queries
that A makes are for plaintext 0∗; all that matters is the length of the queries.
So the adversary can make q construction queries of the form (Nj , `j , Zj), where
Nj ∈ {0, 1}k denotes the nonce, `j ∈ N the requested number of key stream
blocks, and Zj ∈ ({0, 1}r)`j the resulting key stream. All nonces Nj are unique,
and the lengths `j sum to Q. For each query j, we define Sj,l and Tj,l for l =
0, . . . , k+ `j as indicated in Figure 1. Evaluations of I [Ep

K ] may leak information
upon every evaluation of p, i.e., of every transition from Sj,l to Tj,l. The adversary
can additionally make p direct queries to p±, which are denoted (Xi, Yi). Recall
that for query i, we defined AG(i) = AGatk(Xi, qi, ri) as the accumulated gain
up to query i, where Xi denotes the primitive evaluations in all queries made
to I [Ep

K ] up to primitive query i with the same inner part rightc(Xi), qi their
occurrences, and ri the length of these tuples. The adversary may in addition
fault the computation of p so that P (p(X) = Y ) ≤ 2−(b−τ) in each primitive
evaluation in a construction query.

Our goal is to bound

∆A

(
I [Ep

K ] ,Ep
K , p

± ; I [Ep
K ] , ro, p±

)
, (7)

where ro is a random oracle. As Dobraunig and Mennink [25], we first replace
p with a function f : {0, 1}b → {0, 1}b that has the same interface, and that
simply returns uniform random responses lazily, and aborts if there is a collision.
Formally, f maintains an initially empty list F in which its input-output tuples
will be stored. For a query f(X) with (X, ·) /∈ F , the function f response Y ∈
{0, 1}b in a random way. In detail, if f is called directly or indirectly through

Ef
K , it generates Y

$←− {0, 1}b. If it is evaluated through I
[
Ef
K

]
, the adversary

may fault p, and a certain Y drawn with probability at most 2−(b−τ). Then, if
(·, Y ) ∈ F , it aborts; otherwise, it stores (X,Y ) in F . It operates symmetrically
for inverse queries. Clearly, f and p are perfectly indistinguishable as long as the
former does not abort, and hence,

∆A

(
I [Ep

K ] ,Ep
K , p

± ; I
[
Ef
K

]
,Ef
K , f
±) ,

∆A

(
I [Ep

K ] , ro, p± ; I
[
Ef
K

]
, ro, f±

)
≤
(
Q+qk+1+p

2

)
2b−τ

,

noting that p is evaluated a total amount of at most Q + qk + 1 + p times. We
get

(7) ≤ ∆A

(
I
[
Ef
K

]
,Ef
K , f
± ; I

[
Ef
K

]
, ro, f±

)
+

2
(
Q+qk+1+p

2

)
2b−τ

. (8)

To analyze the remaining distance of (8), we define four bad events, where ν =

νQ−qr−τ,c−τ is defined using the multicollision limit function:

Bcc there exist distinct and non-trivial (j, l), (j′, l′) such that Sj,l = Sj′,l′ ;
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Bcp there exist (j, l), i such that Sj,l = Xi or Tj,l = Yi;

BmcS there exist distinct (j, l)1, . . . , (j, l)ν+1 with l1, . . . , lν+1 ≥ k + 2 such that

leftr(S(j,l)1) = · · · = leftr(S(j,l)ν+1
) ;

BmcT there exist distinct (j, l)1, . . . , (j, l)ν+1 with l1, . . . , lν+1 ≥ k + 2 such that

leftr(T(j,l)1) = · · · = leftr(T(j,l)ν+1
) .

For Bcc, two tuples are non-trivial if either l 6= l′ or l = l′ ≥ argminι(Nι 6= N ′ι).
This condition is needed to exclude trivial collisions for different queries whose
nonces share a prefix. The bad events BmcS and BmcT are introduced to aid in
bounding the occurrences of Bcc and Bcp.

We write Bmc = BmcS ∨ BmcT and B = Bcc ∨ Bcp ∨ Bmc. One can note that,
as long as ¬B holds, the stream generation part of any evaluation of Ef consists
of “fresh” evaluations of f, i.e., evaluations that are not defined by F yet. This
means that their responses are randomly drawn from {0, 1}b, and that the re-
sulting key stream Zj ∈ ({0, 1}r)`j is perfectly indistinguishable from random.
Therefore, we obtain for the remaining distance of (8):

∆A

(
I
[
Ef
K

]
,Ef
K , f
± ; I

[
Ef
K

]
, ro, f±

)
≤ Pr

(
AI[Ef

K ],Ef
K ,f
±

sets B
)
. (9)

The remaining probability is bounded by Lemma 1 below. The proof of Theo-
rem 1 is completed by combining this lemma with (7), (8), and (9).

Lemma 1. We have

Pr
(
AI[Ef

K ],Ef
K ,f
±

sets B
)
≤

p∑
i=1

(
1

2k−τ−AG(i)
+

ν + 1

2c−τ−AG(i)
+
Q+ 2qk + 1

2b−τ−AG(i)

)

+
(Q+ 2qk)q + 2ν

2c−τ
+

(
Q+2qk+1

2

)
2b−τ

.

Proof. For brevity, write

Pr (B) := Pr
(
AI[Ef

K ],Ef
K ,f
±

sets B
)
, (10)

and likewise for the sub-events Bcc, Bcp, and Bmc. By basic probability theory,

Pr (B) = Pr (Bcc ∨ Bcp ∨ Bmc)

≤ Pr (Bcc ∨ Bcp | ¬Bmc) + Pr (Bmc) .

In fact, following Dobraunig and Mennink [25], we will introduce one layer of
granularity in the reasoning. Note that the adversary can trigger a total amount
of at most Q+ qk+ 1 + p primitive evaluations. These are all evaluated in some
sequential order. For α = 1, . . . , Q+ qk+ 1 + p, one can write Bx(α) as the event

12



that the α-th query triggers the particular event Bx, and Bx(≤ α) as the event
that one of the first α queries triggers the particular event Bx. Then,

Pr (B) ≤
Q+qk+1+p∑

α=1

Pr (Bcc(α) | ¬B(≤ α− 1) ∧ ¬Bmc(α)) (11a)

+

Q+qk+1+p∑
α=1

Pr (Bcp(α) | ¬B(≤ α− 1) ∧ ¬Bmc(α)) (11b)

+ Pr (Bmc) . (11c)

We will henceforth proceed the same way as [25]. We will consider any of the
Q+ qk + 1 + p evaluations of f that might happen, and analyze the probability
that this particular query α sets Bcc(α) or Bcp(α), assuming that the events were
not set prior to this query. One can also adopt a similar reasoning for Bmc, but
for that event, instead, a direct reasoning is more convenient.

Probability that a query sets Bcc (Eq. (11a)) Consider any two distinct and
non-trivial queries (j, l) and (j′, l′). Without loss of generality, (j′, l′) is the newer
one, i.e., either j < j′ or (j = j′ and l < l′). We will consider the probability
that any new construction query hits an older tuple. Note that Sj,0 = 0b−k‖K
for all j, and this is the first evaluation of f made in construction queries. We
have the following cases:

– l′ = 0. This case would imply that j′ = 1 and (j′, l′) cannot be the newer
query;

– l′ ∈ {1, . . . , k}. In this case, Sj′,l′ is randomly generated and it hits any older
state value with l 6= k + 1 with probability 1/2b−τ , where we note that the
adversary can fault at most τ bits. The case of l = k + 1 is different: the
adversary might have set a nonce as input that matches the leakage that
it might have obtained from an earlier evaluation of Sj′,l′−1 (noting that
although (j′, l′) is newer than (j, l), (j′, l′−1) might predate it). In this case,
yet, a collision happens with probability at most 1/2c−τ ;

– l′ = k + 1. In this case, the attacker has set the outer part, and the state
equals any older state with probability 1/2c−τ ;

– l′ ∈ {k + 2, k + 3, . . . }. In this case, Sj′,l′ is randomly generated and it hits
any older state value with probability 1/2b−τ .

There is 1 unique state with l = 0, qk states with l ∈ {1, . . . , k}, q states with
l = k + 1, and Q − q states with l ∈ {k + 2, k + 3 . . . }. By summing over all
possible choices of distinct (j, l) and (j′, l′), we obtain

(11a) ≤

(
qk · (1 + qk−1

2 + (Q− q))
2b−τ

+
qk · q
2c−τ

)

+
q · (1 + qk + q−1

2 + (Q− q))
2c−τ
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+
(Q− q) · (1 + qk + q + Q−q−1

2 )

2b−τ

≤ (Q+ 2qk)q

2c−τ
+

(
Q+2qk+1

2

)
2b−τ

. (12)

Probability that a query sets Bcp (Eq. (11b)) Consider any construction
query (j, l) and any primitive query i. Note that, upon the i-th primitive query,
the accumulated gain for states with the same inner part rightc(Xi) is defined as
AG(i). This bound represents the entropy loss of guessing that state value. For a
construction query, on the other hand, the entropy loss is already τ bits (at most).
Intuitively, these accumulate resulting in an entropy of at least b − τ − AG(i)
bits. Formally, we make the following distinction:

– l = 0. Note that Sj,0 = 0b−k‖K for all j, so there is only one occurrence of
this construction query. If the primitive query is a forward query, without loss
of generality its first b−k bits are 0. It satisfies Sj,0 = Xi with probability at
most 1/2k−τ−AG(i). Note that, indeed, the adversary might have tampered
τ bits. It satisfies Tj,0 = Yi with probability 1/2b. On the other hand, if the
primitive query is an inverse query, it satisfies Tj,0 = Yi with probability at
most 1/2b−τ−AG(i) and Sj,0 = Xi with probability 1/2b. Therefore, restricted
to the case l = 0 (which is just 1 unique construction query), the event
happens with probability at most

1

2k−τ−AG(i)
+

1

2b−τ−AG(i)
;

– l ∈ {1, . . . , k}. Note that this involves qk construction queries, but the adver-
sary knows nothing about these states, besides leakage and the fact that it
might have tampered τ bits. If the primitive query is a forward query, it sat-
isfies either of Sj,l = Xi and Tj,l = Yi with probability at most 1/2b−τ−AG(i).
For inverse queries, the analysis is identical. Therefore, restricted to the case
l ∈ {1, . . . , k} (which are at most qk construction queries), the event happens
with probability at most

2qk

2b−τ−AG(i)
;

– l = k + 1. Note that this involves q construction queries, and the adversary
might have set the outer part of the state to a value N‖0∗. In addition, it
might have tampered τ bits of the inner part. If the primitive query is a
forward query, there is at most one construction query whose first r bits are
equal to the first r bits of X. It satisfies Sj,k+1 = Xi for that particular
state with probability at most 1/2c−τ−AG(i). It satisfies Tj,k+1 = Yi with
probability 1/2b. On the other hand, if the primitive query is an inverse
query, there is at most one construction query whose first r bits are equal
to the first r bits of Y . It satisfies Tj,k+1 = Yi for that particular state with
probability at most 1/2c−τ−AG(i) and Sj,k+1 = Xi with probability 1/2b.
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Therefore, restricted to the case l = k+1 (which are q construction queries),
the event happens with probability at most

1

2c−τ−AG(i)
+

q

2b−τ−AG(i)
;

– l ∈ {k+2, k+3, . . . }. Note that this involves Q−q construction queries. If the

primitive query is a forward query, by ¬BmcS there are at most ν = νQ−qr−τ,c−τ
possible construction queries with leftr(Sj,l) = leftr(Xi). It satisfies Sj,l = Xi

for any of these ν states with probability at most 1/2c−τ−AG(i). It satisfies
Tj,l = Yi with probability 1/2b. For inverse queries, the analysis is identical,
relying on ¬BmcT. Therefore, restricted to the case l ∈ {k + 2, k + 3, . . . }
(which are at most Q − q construction queries), the event happens with
probability at most

ν

2c−τ−AG(i)
+

Q− q
2b−τ−AG(i)

.

By summing over all possible types of queries, we obtain

(11b) ≤
p∑
i=1

(
1

2k−τ−AG(i)
+

ν + 1

2c−τ−AG(i)
+
Q+ 2qk + 1

2b−τ−AG(i)

)
. (13)

Probability that a query sets Bmc (Eq. (11c)) Recall that Bmc = BmcS ∨
BmcT. We start with BmcT. The state values Ti,j are randomly generated using a
random function, and Q− q values are generated. Thus, BmcT is a balls-and-bins
experiment with Q− q balls thrown into 2r bins. There is a catch here, namely
that an adversary can fault p and change the probability with which a ball falls
in a specific bin to at most 2−(r−τ). To maximize its success probability, we can
simply assume that it always faults (w.l.o.g.) the first τ bits to 0. This reduces
the probability of throwing the Q− q balls into 2r−τ bins. The event BmcT is set
for the Ti,j ’s if there is a bin with more than ν = νQ−qr−τ,c−τ balls. By (6), this
happens with probability at most ν/2c−τ . The analysis of BmcS is symmetric,
noting that Si,j+1 has the same distribution as Ti,j for j 6= 0, k + 1. Thus,

(11c) ≤ 2ν

2c−τ
. (14)

Conclusion The proof is completed by a direct combination of (10), (11), (12),
(13), and (14). ut

3.3 A Priori Bounding

We will consider how the bound of Theorem 1 looks like if we restrict our focus
to a priori bounding, assuming that an attacker can only get/influence λ bits of
information per call to the permutation p. We can start from the reasoning of
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Section 2.3, put r = 2 as the rate is limited to one, and put π ≤ max(qp) as
parts of the input of one permutation are in general also the output of another
permutation. We thus obtain

AGbounded(Xi, qi, ri) ≤ 3 max(qp)λ ,

where max(qp) ≥ max(qi) is the maximum number that a permutation in asakey
gets evaluated on the same input. We obtain the following corollary.

Corollary 1. Let k, b, c, r be four natural numbers such that k ≤ min{c, r} and
c+r = b. Consider asakey of Algorithm 1 instantiated with a random permutation

p
$←− perm(b). For any adversary A with construction complexity q, total number

of encrypted message blocks Q, and with primitive complexity p, that can obtain
λ bits of information per leakage and can tamper with p as long as P (p(X) =
Y ) ≤ 2−(b−τ) for newly queried X,

Advi-ai
asakey(A) ≤ p

2k−τ−3max(qp)λ
+

pνQ−qr−τ,c−τ + p

2c−τ−3max(qp)λ
+
pQ+ 2pqk + p

2b−τ−3max(qp)λ

+
(Q+ 2qk)q + 2νQ−qr−τ,c−τ

2c−τ
+

(
Q+2qk+1

2

)
+ 2
(
Q+qk+1+p

2

)
2b−τ

.

Note that, by default, asakey does not put a restriction on max(qp). However,
in the case of side channel attacks, the major benefit an attacker can gain via
measurements of the same input is to reduce the noise of the measurements.
Hence, by assuming that the noise stays high enough and never becomes zero,
the effect of max(qp) can be absorbed into λ. This in principle corresponds to
non-adaptive leakage models. As we further show in Section 4, similar arguments
are also valid for a wide range of fault attacks, including SFA and SIFA.

However, considering faults, there also exist attack vectors that have the
potential to benefit from repetitions with the same input, most notably DFA.
Another attack vector that benefits from repetitions is by using faults to virtually
increase ri beyond 2 in, e.g., combined attack with DPA. We have designed asakey
in such a way that it becomes very hard to actually exploit the fact that max(qp)
is essentially unbounded. See also Appendix A. Nevertheless, in Section 3.4, we
show a strengthened version of asakey, that allows to put a bound on max(qp)
under additional assumptions on the capabilities of an attacker.

3.4 Strengthened asakey

As we have seen in the last section, asakey as described in Algorithm 1 does not
come with a limitation in max(qp). In this section, we will discuss a stateful,
but functionally equivalent version called strengthened asakey shown in Algo-
rithm 2. Together with an additional assumption of the faulting capabilities of
an attacker, we can limit max(qp) to a constant χ.

The high level idea of Algorithm 2 is simple. First, we put a restriction on
the nonce, by initializing the nonce N to zero for the first use and require it
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Algorithm 2 Strengthened asakey encryption scheme

Input: (K,P ) ∈ {0, 1}k × {0, 1}∗
State: (N,H) ∈ {0, 1}k × {{0, 1}b}k
Output: C ∈ {0, 1}|P |

if N = 0 then
N ← N + 1
S ← p(0b−k‖K)
for i = 1, . . . , k do

Hi ← S
S ← p(S)

else
∆N ← N ⊕ (N − 1)
o← Position of leading 1 of ∆N
N ← N + 1
Ho ← Ho ⊕ 1
S ← p(Ho)
for i = o+ 1, . . . , k do

Hi ← S
S ← p(S)

S ← N‖0b−c−k‖rightc(S)
Z ← ∅
while |Z| < |P | do

S ← p(S)
Z ← Z‖leftr(S)

return (N − 1, left|P |(P ⊕ Z))S

to be incremented by one for each subsequent use of strengthened asakey. In
addition, we store all intermediate states that occur while absorbing the single
nonce bits. Since we store all intermediate states, we can start the calculation
at the point of the first differing state. Hence, the same state values are never
processed twice by a call to p in the absence of faults. We additionally assume
that an attacker tampers the sequence

∆N ← N ⊕ (N − 1)

o← Position of leading 1 of ∆N

N ← N + 1

Ho ← Ho ⊕ 1 ,

so that it leads to a nonce re-use, or skip the updates of H, less than χ times.
This essentially leads to a bounding of max(qp) ≤ χ. We obtain the following
corollary:

Corollary 2. Let k, b, c, r be four natural numbers such that k ≤ min{c, r} and
c+r = b. Consider asakey of Algorithm 1 instantiated with a random permutation

p
$←− perm(b). For any adversary A with construction complexity q, total number

of encrypted message blocks Q, and with primitive complexity p, that can obtain
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λ bits of information per leakage, can perform above-mentioned attack at most
χ times, and can tamper with p as long as P (p(X) = Y ) ≤ 2−(b−τ),

Advi-ai
asakey(A) ≤ p

2k−τ−3χλ
+
pνQ−qr−τ,c−τ + p

2c−τ−3χλ
+
pQ+ 2pqk + p

2b−τ−3χλ

+
(Q+ 2qk)q + 2νQ−qr−τ,c−τ

2c−τ
+

(
Q+2qk+1

2

)
+ 2
(
Q+qk+1+p

2

)
2b−τ

.

Note that a mode bounding max(qp) can also be achieved by just storing
the state Hk and using the inverse of p. Essentially, the “re-keying” function of
asakey is then traversed in a tree-like fashion as in [45]. As in this case, inverse
evaluations of p happen, which can also be faulted, minor modifications to the
proof are due. In bad events Bcc and Bcp, the collision analysis is identical for
l > 0 and gives slightly smaller bounds for l = 0, and the bounds on these
two bad events do not worsen. Inverse queries do not affect the analysis of bad
events BmcS and BmcT, which were symmetrical in the first place. In this case,
we can bound max(qp) ≤ χ, where an attacker can effectively manipulate the
absorption of an Ni for at most χ times.

In practice, this assumption is then fulfilled by placing implementation coun-
termeasures ensuring that the absorption of the Ni is done correctly. One way
of doing this is to use some form of redundancy to detect a malicious fault
injection during the absorption. Having a high degree of redundancy just dur-
ing the absorption is a small cost compared to the cost of having redundancy
for the whole cipher, as it is typically required to protect non-tamper resilient
algorithms against fault attacks.

4 Practical Results on AI

In this section, we evaluate if implementations of (strengthened) asakey can
actually withstand side-channel attacks and fault attacks by the examples of
differential power analysis (DPA) and statistical ineffective fault attacks (SIFA).
More implementation attacks are discussed in Appendix A. We chose to evalu-
ate an instance of asakey based on the Keccak-p[1600,12] permutation using a
plain AVR assembler optimized version of Keccak-p from the Extended Kec-
cak Code Package (XKCP) [12] running on an XMEGA 128D4 microprocessor.
We have decided to use this platform, since a plain 8-bit implementation on a
low noise microprocessor strongly favors an attacker, with implementation at-
tacks getting typically much harder on more powerful CPUs or dedicated ASIC
implementations.

To make the evaluation less time consuming, we assume that the secret part
is always 128 bits and that the attacker is in control of the rest of the input
bits and knows the output except 128 bits. Clearly, such a simplified scenario
strongly favors the attacker and, as a consequence, the achieved results drasti-
cally underestimate the actual security of this implementation of asakey, which is
fine as long as we can show that the simpler construction is already sufficiently

18



hard to attack. For a more thorough evaluation, more experiments on all the
possible configurations of the permutation (see Figure 2) would need to be done.

We evaluate the information an attacker can extract via multiple different at-
tack vectors. For each attack vector, we get a certain guessing advantage that an
attacker can achieve using a certain amount of measurements. Our construction
in Section 3 efficiently bounds the data complexity (max(ri) = 2) an attacker is
able to exploit per secret state it tries to recover. Hence, for attacks like SIFA,
or DPA that perform better with increasing data complexity, we effectively end
up with a security margin. In other words, we get some impression on how much
an attacker has to improve over our already optimistically performed attacks.

In essence, this is a situation that is well-known in symmetric cryptography,
where round-reduced variants of symmetric primitives are attacked and the se-
curity margin up to the full round version gives some measure how much an
attacker has to improve to threaten the whole scheme. As in our case here, there
is usually also no guarantee in symmetric cryptography that a certain attack
vector (e.g., differential cryptanalysis [15]) is the best attack vector on a cer-
tain scheme, nor that one cannot exploit a certain attack vector better than
previously demonstrated.

Note that asakey can only loosely limit max(qi) ≤ q. Consequently, asakey
does not provide mode-level protection against certain attack types that solely
rely on the exploitation of constant inputs, like simple power analysis (SPA) and
template attacks [52]. Protection against such attacks thus has to be achieved by
either (i) using the stateful mode strengthened asakey that can effectively limit
max(qi) presented in Section 3.4, or (ii) using implementation countermeasures
(like hiding) against this specific attack vector.

Nevertheless, asakey can still offer some protection against fault attacks that
utilize different faults on executions with the same input, like differential fault
attacks (DFA) [16] since DFA needs to be mounted on the key stream generation
phase and (i) fresh nonces prevent the repeated usage of keys during encryption,
and (ii) asakey’s hard-to-invert key derivation significantly increases the difficulty
of DFA-based key recovery attacks during decryption (see Appendix A).

In the first part of this section, we discuss the simplified attack scenario
that we subsequently use to optimistically estimate the effectiveness of various
kinds of implementation attacks on asakey. We then present concrete attack
evaluations, starting with attacks that are limited by max(ri), and interpret the
influence of these attacks on our bound. A complementary discussion attacks
that are limited by max(qi) can be found in Appendix A.

4.1 Primitive Under Attack

We will give an impression on how AGdpa(Xi, qi, ri), and AGsifa(Xi, qi, ri) of
Theorem 1 behave. Before doing so, we have to settle the implementation that
we consider. We assume an implementation that for each new encryption always
starts with the first permutation call that involves the key. Hence, we know from
Section 3.1 that for such an implementation, max(ri) = 2. To limit the amount
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Fig. 2: The Keccak-p permutation as scrutinized in current analysis.

of experiments we have to do, we can perform all experiments with the Keccak-
p[1600,12] permutation in a best-case configuration for an attacker as shown in
Figure 2.

In this setting, the goal of an attacker is to recover as much information as
possible about the secret states, which are 128 bits placed at the last two lanes of
Keccak-p[1600,12]. The attacker has ultimate control over the 1472-bit input I
and is able to observe O. Please note that the degrees of freedom available to an
attacker in the scenario shown in Figure 2 are always strictly better compared to
our mode in Figure 1. Hence, we consider experiments based on the configuration
shown in Figure 2 to be a valid estimation of the security we can expect from
an implementation of our mode shown in Figure 1 on the inspected platform.

For DPA and SIFA, the goal is to recover the secret state SKI at the input
of the permutation, and we show how AGatk(Xi, qi, ri) changes for increasing
ri. We do not take advantage in the attack that due to the construction of our
scheme, there exists also a previous permutation call, where the inner part of
this previous call Sprev

KO
matches the inner part of the next permutation call SKI ,

simply because it is unclear how to take this into account to improve our attacks.
Also note that for attacks using faults, the data complexity at the input for some
secret state SKI is not strictly bounded by ri. An attacker could artificially
increase the data complexity by placing additional faults, e.g., at the input of
the permutation and exploit that in this case max(qi) is not strictly bounded.
However, this requires a quite powerful attacker capable of precisely inserting
faults and also complicates and often prohibits the detection on whether a fault
was ineffective or not.

In an implementation attack, we usually end up with a list of candidates for
the secret bits we aim to recover. In the spirit of Selçuk [69], we express the guess-
ing advantage in bits as log2 (#total candidates) − log2 (#candidates to test),
where the number of candidates to test are the candidates states, which are
ranked equal or higher compared to the correct secret state.

4.2 Differential Power Analysis (DPA)

In our power analysis experiment, we consider a DPA attack on a microproces-
sor implementation of the Keccak-p[1600,12] permutation. The target software
implementation is the AVR assembler optimized version of Keccak-p from the
Extended Keccak Code Package (XKCP) [12]. The power measurements were
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conducted on a ChipWhisperer-Lite side channel evaluation board [60] featur-
ing an XMEGA 128D4 microprocessor as the victim. We assume that the initial
state of the permutation is initialized with a 128-bit key that is located in the
last two lanes, the remaining input bits are under the control of the attacker.

During the experiment we send random inputs I to the device and mea-
sure the power consumption of the following Keccak-p[1600,12] permutation.
The resulting output O is not needed in this attack. The strategy of the power
analysis follows the principles presented by Taha and Schaumont [72] who thor-
oughly analyzed different DPA attack strategies for various instantiations of
MAC-Keccak schemes. In our case each column of the state contains at most
one key bit at the beginning of the permutation. We can hence use a rather
simple strategy based on the prediction of the Hamming weight of intermediate
values during the computation of θ in the first round. In software, θ is usually
implemented in two steps. First, the parity of each column in the state S(x, y, z)
is calculated which results in θplane:

θplane(x, z) =

4⊕
i=0

S(x, i, z) .

The output of θ then corresponds to the XOR of every state bit with 2 bits from
θplane:

S(x, y, z) = S(x, y, z)⊕ θplane(x− 1, z)⊕ θplane(x+ 1, z − 1) .

In our experiment we focus on the values of the last two lanes of θplane since
only these have key bits in the corresponding sheet. While predicting values of
entire 64-bit lanes is not really practical, we can exploit the fact that the 8-bit
microprocessors need to calculate operations using 8-bit registers. We can hence
simply guess 8 key bits, predict the Hamming weight of the corresponding 8 bits
in θplane, and check whether or not our prediction correlates with the recorded
power traces for multiple runs using differing I.

The results of the experiments, depicted in Figure 3, show how many power
traces are needed until key bits can be reliably extracted. After having observed
about 36 power traces the correlation of predictions using the correct key guess
reliably scores the highest. The corresponding advantage of an attacker at this
point is therefore 8 bits. Using the same set of power traces all remaining key bits
can be recovered by simply adjusting the location of the key guess in the state.

We expect experiments on other platforms with larger architectures (such as
16-, 32-, 64-bit) to perform increasingly worse, mainly due to the fact that leakage
becomes less informative with increasing register sizes. Additionally, especially
on 32-bit or 64-bit platforms, checking all possible values of a 32 or 64-bit key
guess becomes very time consuming. Here one can fall back to guessing, e.g.,
only 16 key bits, thereby treating the remaining bits in a register simply as
noise. This however comes also at the cost of an increased amount of required
power traces.
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Fig. 3: DPA results for Keccak-p[1600,12] on an 8-bit microcontroller. After
having observed about 36 power traces the 128-bit key can be retrieved, 8-bit at
a time. The experiment was repeated 100 times, the results are averaged.

4.3 Statistical Ineffective Fault Attacks (SIFA)

Thanks to our new model of accumulated interference, we are also able to express
the gain an attacker gets from fault attacks within a leakage and tamper resilient
framework. The effect of fault attacks is split into two parts: (i) the accumulated
gain stemming from an attacker learning about the secret state by repeating
primitive queries while using a particular fault attack technique, and (ii) the
immediate entropy loss of the state as a direct possible consequence of the fault.
We now discuss both effects and focus on SIFA [19,20] on an 8-bit device for the
sake of example.

SIFA has been proven to be a very versatile attack vector that can be applied
to permutation-based schemes in a very straightforward way [24]. Although our
scheme in Section 3 is not an authenticated encryption scheme, it can still be
viewed as the initialization phase of a sponge-based stream cipher, similar as in
Keyak or Ketje.
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In our fault attack evaluation, we again consider the Keccak-p[1600,12]
permutation as used in Figure 2 where the input I is randomly chosen and
known by the attacker. We again target an AVR assembler optimized version
of Keccak-p from the Extended Keccak Code Package (XKCP) [12], running
on an 8-bit XMEGA 128D4 microprocessor. This time the ChipWhisperer-Lite
evaluation board [60] is used to generate a clock signal for the victim that can
additionally contain purpose-built glitches for causing erroneous computations.

Following a similar strategy as in [24], our goal is to collect certain I’s for
which an induced fault during the computation of χ in round 2 leads to a correct
computation of O. The location of the fault is hereby chosen such that an affected
state bit roughly depends on 25 bits of the initial state. Since not all bits influence
the target bit in a non-linear way, we can get a guessing advantage of at most 16
bits (see [24] for details). The main observation of SIFA (and Safe-Error Attacks
in general) is that the condition whether or not a fault is ineffective can depend
on the actual values that are used in the faulted computation. An ineffective fault
induction can hence be used to filter out a specific set of I’s that show a biased
distribution of certain state bits in the faulted location. Once such a set of I’s is
collected by the attacker the corresponding key bits can be enumerated and the
distribution of bits in χ in round 2 calculated. A key guess corresponding to a
strong bias in some state bits, when measured, e.g., using the Squared Euclidean
Imbalance (SEI), then indicates a correct key guess and vice versa. The more I’s
are collected the easier it is to distinguish the correct key guess from all wrong
key guesses.

A quick visual inspection of a power trace reveals that the computation of
χ in round 2 starts around clock cycle 9 550 when measured from the start of
the permutation. During the experiment we hence send random inputs I to the
device and inject a glitch into the clock signal once the victim starts to compute
χ in round 2. Each I is used twice, once with clock glitch, once without, so we
can check (by comparing O) whether or not the clock glitch affected the victim’s
computation. Note that in a more realistic attacker scenario the repetition of each
I is not really needed since either a redundancy-based fault countermeasure or
the authenticity check during authenticated decryption could indicate whether
or not an induced fault was ineffective.

For the key recovery we guess 25 key bits and calculate the distribution of
one affected state bit at the input of χ in round 2. If the exact location of the
affected state bits is not known to the attacker the previous step can simply be
repeated for all possible bit locations in the state. Again, a high SEI indicates
a correct key guess while a low SEI indicates either an incorrect key guess or
(if all key guesses result in low SEI) a wrong prediction of the location of the
affected state bits. In our experimental setup a clock glitch always affects 8 bits
of the state at once, probably because an instruction was skipped in χ in round
2. As a result we only find about one I per 256 faulted permutations where the
induced fault was ineffective. The total number of required faulted permutations
is thus comparably high, but, since every biased bit has a different dependency
to the key bits, we can recover significantly more key bits at once. The results of
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our evaluation are depicted in Figure 4. They show how many ineffective faults
were needed until the bias in one affected state bit was high enough so that the
correct key guess can be distinguished with high confidence. We looked at two
scenarios, one with the plain implementation of the permutation and one with
a simple additional hiding countermeasure where the permutation is using a
random dummy key in 50% of the cases. Depending on the scenario either about
20 I’s (5 120 faulted encryptions) or about 96 I’s (24 576 faulted encryptions)
are needed until a correct key guess can be distinguished with high confidence.
Do note however that, in contrast to the DPA attack, reducing the amount of
I’s at the cost of a reduced attacker advantage is more plausible here. Since each
state bit at the input of χ in round 2 has a partially different dependency on the
key bits, we can run the key recovery 8 times, thereby recovering significantly
more than 16 key bits using one set of I’s.

In addition to the gain an attacker gets per learning about the state with
the help of SIFA, we also have to consider the direct entropy loss of the state.
In our practical evaluation, we discuss the case of ineffective faults on an 8-bit
microprocessor. As shown by our experiments, we do fault injections targeting
8 bits of the state, which are ineffective with a probability of 1/256. Hence, we
expect an entropy loss within the state of around τ ≈ 8.

4.4 Interpretation of Results

Our evaluation of the DPA attack shows that having about 36 traces for different
inputs allows us to recover 8-bit of the secret state. Since nothing restricts us to
also recover the other state bytes using the same data, we can expect that it is
also possible to recover the whole 128-bit key. Not surprisingly, the evaluation
of the DPA attack shows furthermore that the advantage of an attacker that is
limited to the observation of just two inputs to the Keccak-p permutation is
rather negligible. Here, we remark that in asakey the data complexity is, indeed,
limited to 2. Also, we want to stress that these results are for an implementation
without countermeasures, using an evaluation setup that extremely favors the
attacker, and assuming that the attacker has control over 1472 bits of I (instead
of just one bit as in asakey).

If we have a look at fault attacks, and more specifically SIFA, the gain of
an attacker could be even bigger, assuming the unlikely but ideal case that all I
lead to ineffective faults. In the case of an attack on a completely unprotected
implementation, the guessing advantage grows almost linearly with the data
complexity (Figure 4a). In the presence of a simple hiding countermeasure like
dummy rounds the required data complexity for achieving the same guessing
advantage is however already impacted quite significantly (Figure 4b). Even in
the ideal case the advantage of an attacker is only 1 bit per targeted bit. Since we
targeted one complete byte in our experiments, we assume that the combined
advantage is 8 bit on average. Again, we stress that these results assume an
attacker that has control over 1472 bits of I (instead of just one bit as in asakey).

If we map our optimistic evaluation results to the accumulated interference
analysis of Section 3, we get max

(
AGdpa(Xi, qi, ri)

)
= 0.34 (from Figure 3b,
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(b) With hiding countermeasure: 50% of executions use a dummy key.

Fig. 4: Result of the SIFA evaluation on an 8-bit XMEGA 128D4 microprocessor
using clock glitches. The advantage of exploiting the bias in one bit is plotted.
The grey line shows the gain of i · λ, where λ is estimated by the biggest slope
gotten in the attack.

advantage for 2 traces (max(ri) = 2)), considering DPA as attack vector. If
we consider SIFA, we get one bit of advantage (from Figure 4a, advantage for
2 correct ciphertexts (max(ri) = 2)) per biased bit. Since in our SIFA attack
a whole byte is biased, we simply scale to max (AGsifa(Xi, qi, ri)) = 8. Since
all experiments have been performed for a secret portion of the state of 128
bits, we extrapolate these results for secrets bigger/smaller than 128 bits for
the sake of simplicity. For instance, for a k-bit state, we assume an attacker has
max

(
AGdpa,sifa(Xi, qi, ri)

)
= 9d k

128e. Since in a typical instance of asakey the

parameters satisfy b > c ≥ k, we have 9d b
128e > 9d c

128e ≥ 9d k
128e. To get more

precise numbers, the experiments need to be redone with the secret states in use.

5 Conclusion

The number of devices performing some cryptographic task under the threat of
side channel and fault attacks is likely to rise year by year. This might either
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be due to the increased use of embedded devices operating in areas where they
are physically accessible, or just by the trend that more and more devices are
connected to the Internet and hence are open for remote side channels and fault
attacks. One solution is to resort to cryptographic constructions that provide
more resilience against side channel and fault attacks and do not collapse im-
mediately by the slightest sign of leakage or a fault. With respect to symmetric
cryptography in the presence of side channels, there already exists a huge number
of modes promising leakage resilience. However, on the side of resilience against
fault attacks, symmetric constructions promising both leakage and tamper re-
silience on a mode level are scarce. Hence, in this paper, we introduced the — to
the best of our knowledge — first framework showing that permutation-based
constructions can be leakage and tamper resilient.

We provided the stream cipher asakey and a version called strengthened
asakey together with an evaluation of their resistance against side channel and
fault attacks in an embedded scenario. However, this is clearly only one step in
the development of leakage and tamper resilient symmetric cryptography, and
still many open questions exist. One important question is whether we can move
away from the additional assumptions on the capabilities of an attacker and the
need for keeping state for strengthened asakey, while keeping the strong guaran-
tees on its leakage and tamper resilience. Furthermore, our way of modeling the
effects of faults is closely fitted to the random permutation model. Our way of
modeling the effects of faults largely benefits from the feature of public permuta-
tions that the isolated event of faulting a permutation, which is in turn modeled
as reducing the entropy of the b-bit value by τ bits or leaking λ bits of informa-
tion, itself cannot reveal the secret key. This is simply because a permutation is
keyless. Hence, modeling the effects of faults on block cipher based modes is left
as an open problem.
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Supporting Material

A Discussion on Attacks Limited by max(qi)

As already mentioned, in contrast to strengthened asakey in Section 3.4, pure
asakey as a mode does not limit max(qi). Hence, the mode itself only provides
full protection in case of attacks that scale with increasing max(ri), such as
pure DPA. For attacks that scale with increasing max(qi), the implementation
itself has to provide protection, so that, e.g., AGspa(Xi, qi, ri) for an SPA is
small, although max(qi) is essentially unbounded. In the case of passive side
channel attacks, like SPA or template attacks, this requirement is comparable to
a non-adaptive leakage assumption [28,32,79]. This means that for non-adaptive
leakage, it is usually assumed that an implementation provides enough protection
in case of repeated measurements of a primitive that processes the same input,
so that an attacker cannot learn more from repeated measurements than from
the first one. Also note that, form a practical perspective, achieving protection
against SPA attacks is still quite a bit cheaper to realize than protection against
DPA attacks, that are prevented by asakey and would otherwise usually require
the usage of expensive higher-order masking.

Since we introduce with accumulated interference a concept that also cov-
ers fault attacks, we can observe a similar behavior for fault attacks. Roughly
speaking, in the case of fault attacks, we have also attacks that mainly scale for
increasing max(ri), like SFA and SIFA, but also attacks that mainly scale with
increasing max(qi) like DFA. In theory, if max(qi) is not limited by a mode, we
have to shift protection against attacks that scale well with max(qi) to the imple-
mentation. To see how attacks that scale well with max(qi) impact unprotected
implementations of asakey, we give a discussion of DFA next.

To estimate the performance of Differential Fault Attacks (DFA) on un-
protected implementations of our studied Keccak-p[12,1600] permutation we
mainly refer to existing works by Bagheri et al. [2] and Luo et al. [51] who thor-
oughly analyzed the applicability of DFA attacks against SHA-3, and discuss
differences to our attack scenario. Since DFA requires the observation of faulty
computations, it can only be used to directly infer information about the later
rounds of the attacked permutation. Hence, when performing DFA, we first aim
to recover SKO which could then be used to also recover SKI .

Following the methods of Bagheri et al. [2] who studied the effects of single-
bit faults within Keccak-p, a single pair of correct and faulted computation can
directly leak 22 bits of the state before the S-box layer of the penultimate round.
By repeating this procedure about 80 times using different fault locations the
entire state before the S-box layer of the penultimate round can be recovered.
Luo et al. followed up on this work by analyzing fault injections with byte gran-
ularity (instead of bit granularity) and concluded that: (i) about 120 repetitions
are necessary if timing but not location of the fault can be precisely controlled



by the attacker, and (ii) as few as 17 repetitions are required if both timing and
location of the fault can be precisely controlled by the attacker [51].

The main difference between the setting of, e.g., SHA3-512 by Bagheri et
al. [2] and our scenario is the amount of bits of O that are directly observable
by the attacker. While 576 bits can be observed by the attacker in SHA3-512,
up to 1472 bits can be observed in our scenario. This does not immediately lead
to a reduced amount of necessary faulted executions since the state recovery via
DFA happens in the penultimate round. Some improvements can however be
expected since the available information about large parts of the final state can
still be used to infer some prior knowledge about state bits in the penultimate
round, which then reduces the required number of faulted executions.

Please note that for asakey this attack approach cannot be directly used to
extract the long term key, since the encryption part of asakey works with a
session key from a re-keying function that is hard to invert. To extract the long
term key, a multi-step approach is necessary. Using the notation from Figure 1,
it is necessary to:

1. Use DFA to recover a correct Sk+1;
2. While injecting a fault in the penultimate round of the last permutation call

of the re-keying function, use DFA to recover a faulty Sk+1;
3. Repeat step 2 until sufficiently many faulty Sk+1’s have been recovered.

Then, by also using the correct Sk+1, perform a DFA-style state recovery
within the re-keying function.

Therefore, extending DFA from Keccak-p to asakey requires roughly a squared
amount of faulted executions and has the additional requirement of performing
precise combinations of two faults per execution.

To sum up, to recover the 128-bit secret state using a DFA, significantly more
than one computation of the permutation using the same input is required to
get in our case AGdfa(Xi, qi, ri) = 128. Since the recovery of the long term key
K already requires two precise faults per execution, we consider such an attack
against an implementation that has cheap implementation-level countermeasures
like shuffling in place as hard.

B Related Work

As the name suggests, permutation-based cryptography is an area that enables
a wide range of symmetric cryptographic functionality based on unkeyed crypto-
graphic permutations as a building block. In this area falls ChaCha [5] as used in
TLS 1.3 [65], but also SHA-3 [11,59] using the sponge construction [8] and CAE-
SAR’s first recommendation for lightweight applications Ascon [23] that is based
on the duplex construction [10]. If we focus on sponge and duplex constructions,
their proofs of security are typically done in the so-called random permutation
model, where the actual used cryptographic permutation is replaced with a per-
mutation drawn from random. By using this technique, it has been shown that
the random sponge function is indifferentiable from a random oracle [9]. From
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that on, a plethora of results in the random permutation model have provided
more and more fine grained bounds for various functionalities enabled by the
sponge, duplex, and related constructions [1, 18, 43, 56, 57, 67, 68]. Just recently,
sponge-based cryptography made its jump out of the black-box model, show-
ing that it is able to provide leakage resilience efficiently [25, 26, 40]. However,
the threat of side channel attacks typically goes hand-in-hand with the threat
of fault attacks. Hence, different permutation-based constructions have been
proposed that also provide heuristic arguments for their security against fault
attacks [21,66], although no proof backing these arguments is given.

The work regarding the security of cryptographic implementations against
adversaries inducing faults already has a rich history. Early work of Gennaro et
al. [36] investigate the security of cryptographic algorithms against adversaries
that can tamper with the memory contents of a device. Later on, Ishai et al. [42],
also included computations in their scope and provided methods to generate
circuits that withstand tampering with any wire. The work on creating tamper-
proof circuits has been continued by Faust et al. [33]. Both works require the
ability of a circuit to “self-destruct”. Liu and Lysyanskaya [49] have shown that
it is possible to achieve any deterministic cryptographic functionality in a leak-
age and tamper resilient manner. This is possible assuming a split-state model
(e.g., an attacker having access to one memory part, but not the other and vice
versa), a common reference string, and a one-time leakage resilient public-key
cryptosystem. Besides that, tamper and leakage resilient public-key cryptosys-
tems exist [30,41], and recently, non-malleable secret sharing has been proposed
that can tolerate tampering and leakage [31]. If we consider the vast amount of
work aiming to achieve leakage and tamper resilient public-key cryptography or
hardware circuits, together with the pervasive threat of implementation attacks,
it is about time to develop a focused framework to realize efficient leakage and
tamper resilient symmetric permutation-based cryptography. Compared to typi-
cal solutions aiming to achieve protection of any functionality, our solution does
not require public-key cryptography, self-destruction capabilities, nor dedicated
hardware. Furthermore, we operate in a model that allows leaking from compu-
tations but also tampering with computations, including the memory associated
with these computations.
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