
MACAO: A Maliciously-Secure and Client-Efficient
Active ORAM Framework

Thang Hoang
CSE, University of South Florida

hoangm@mail.usf.edu

Jorge Guajardo
Robert Bosch LLC — RTC

Jorge.GuajardoMerchan@us.bosch.com

Attila A. Yavuz
CSE, University of South Florida

attilaayavuz@usf.edu

Abstract—Oblivious Random Access Machine (ORAM) allows
a client to hide the access pattern and thus, offers a strong level of
privacy for data outsourcing. An ideal ORAM scheme is expected
to offer desirable properties such as low client bandwidth, low
server computation overhead and the ability to compute over
encrypted data. S3ORAM (CCS’17) is an efficient active ORAM
scheme, which takes advantage of secret sharing to provide ideal
properties for data outsourcing such as low client bandwidth, low
server computation and low delay. Despite its merits, S3ORAM
only offers security in the semi-honest setting. In practice, an
ORAM protocol is likely to operate in the presence of malicious
adversaries who might deviate from the protocol to compromise
the client privacy.

In this paper, we propose MACAO, a new multi-server ORAM
framework, which offers integrity, access pattern obliviousness
against active adversaries, and the ability to perform secure
computation over the accessed data. MACAO harnesses authen-
ticated secret sharing techniques and tree-ORAM paradigm to
achieve low client communication, efficient server computation,
and low storage overhead at the same time. We fully implemented
MACAO and conducted extensive experiments in real cloud
platforms (Amazon EC2) to validate the performance of MACAO
compared with the state-of-the-art. Our results indicate that
MACAO can achieve comparable performance to S3ORAM while
offering security against malicious adversaries. MACAO is a
suitable candidate for integration into distributed file systems
with encrypted computation capabilities towards enabling an
oblivious functional data outsourcing infrastructure.

I. INTRODUCTION

Originally introduced in [30], Oblivious Random Access
Machine (ORAM) offers a strong level of privacy for data
outsourcing by enabling data confidentiality and access pat-
tern obliviousness simultaneously. Since then, many ORAM
schemes have been proposed in both the single-server and
distributed settings [30], [59], [64], [51], [63], [9], [66].
ORAM is accepted as a fundamental building block of privacy-
preserving data outsourcing applications in the single client
or multi-client setting [45], [15], [10] for passive and active
security [70], [41], [44], [56], [62], [69], [45].

A. ORAM Challenges and Desired Properties

As a core building block of any oblivious data storage ser-
vice, ORAM is expected to offer the following ideal properties:

• Low communication and storage overhead: Some of the
most efficient ORAM constructions (e.g., Tree-ORAM [59],
Path-ORAM [64], Circuit-ORAM [66], rORAM [14]) focused
on the passive setting, where the server exclusively offers a
storage-only service (i.e., no computation). It has been shown
that there is a logarithmic communication lower bound in
passive ORAM [40], [31], [12]. This overhead, however, can
be costly in the standard client-server setting [70], [41], [62],
[69]. In particular, most efficient passive ORAM schemes must
transmit 40×-80× extra blocks from the server to the client
and vice versa to access a block [64], [66], [59]. Given a large
block size, this overhead makes ORAM often unsuitable for
bandwidth-constrained clients (e.g., home Internet, mobile data
plans). Other works (e.g., [61]) offer low client communication
overhead at the expense of large client storage. For practical
oblivious file systems, it is desirable that the underlying
ORAM scheme provides both, low communication and low
storage overhead at the client.
• Low computational overhead: To achieve low communica-
tion, active ORAM schemes have been proposed, in which the
server can perform some computation on behalf of the client
[5], [22], [25], [47], [46], [21], [53]. However, most of these
constructions cannot surpass the logarithmic communication
bound, unless sophisticated cryptographic primitives such as
partially/somewhat/fully Homomorphic Encryption (HE) [50],
[27] are used (e.g., Onion-ORAM [22]). While recent years
have seen considerable improvements in the performance of
HE implementations, the use of HE still incurs high computa-
tional overhead at the client and server during the online ac-
cess. As a result, the access latency may significantly increase,
thereby degrading the quality of service.
• Secure computation over encrypted data: It is highly de-
sirable for an oblivious data outsourcing service to offer not
only oblivious access but also secure computation over the out-
sourced data. Akin to the services offered by secure multi-party
computation, such an ORAM offers an ideal cryptographic
framework to construct privacy-persevering and functional data
outsourcing services. Most proposed ORAM schemes do not
offer this computation feature. To the best of our knowledge,
only Onion-ORAM [22] and S3ORAM [33] support secure
computation on accessed data. Unfortunately, Onion-ORAM is
known to be inefficient, while S3ORAM only offers security
against passive adversaries.
• Security against active adversaries: As previously men-
tioned, S3ORAM [33] offers advantages in terms of com-
putational overhead, low bandwidth and client storage but it
only offers security in the semi-honest model (i.e., passive
adversaries). In practice, an ORAM protocol is likely to
operate in the presence of active adversaries, who might inject
malicious inputs into the protocol to compromise the client

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24313
www.ndss-symposium.org

TABLE I: Summary of state-of-the-art ORAM schemes.

Scheme Bandwidth Overhead† Block
Size∗

Client
Block Storage‡ # servers§ Security Comp. over

Enc. DataClient-server Server-server
Ring-ORAM [53] O(logN) - Ω(1) O(logN) 1 Semi-Honest ×
CKN+18 [16] O(logN) - Ω(log2N) O(1) 3 Semi-Honest ×
GKW18 [32] O(logN) - Ω(1) O(logN) 2 Semi-Honest ×
S3ORAM [33] O(1) O(logN) Ω(log2N) O(1) 2t+ 1 Semi-Honest X
Path-ORAM [64] O(logN) - Ω(1) O(logN) 1 Malicious ×
Circuit-ORAM [66] O(logN) - Ω(1) O(logN) 1 Malicious ×
SS13 [61] O(1) O(logN) Ω(log2N) O(

√
N) 2 Malicious ×

LO13 [42] O(logN) - Ω(1) O(1) 2 Malicious ×
Onion-ORAM [22] O(1) - Ω(log6N) O(1) 1 Malicious X

MACAO (Πrss) O(1) O(logN) Ω(logN) O(logN)
3 Malicious X

MACAO (Πspdz) t+ 1

• We refer reader to §V-B for the detail experimental comparisons between MACAO schemes and some of these counterparts.
†Bandwidth overhead denotes the number of blocks being transmitted between the client and the server(s) or between the servers.
∗This indicates the minimal block size needed to absorb the transmission cost of the retrieval query and the eviction instructions, thereby
achieving the desirable client-bandwidth overhead.
‡Client block storage is defined as the number of data blocks being temporarily stored at the client. This is equivalent to the stash component
used in [64], [53], which, therefore, does not include the cost of storing the position map of size O(N logN). Notice that all the ORAM
schemes in this table, except [42], [32], require such a position map component. However, we can apply recursive technique in [59] to store
the position map on the server at the cost of increasing a small number of communication rounds [61], [59].
§S3ORAM and Πspdz offer the property that allows a certain number of colluding servers in the system (privacy level t ≥ 1) by increasing the
number of servers. Other multi-server ORAM schemes do not offer this scalability (t = 1) efficiently, and require a fixed number of servers.

access pattern and data integrity. While malicious security can
be easily achieved with passive ORAMs (e.g., using Merkle
tree or authentication techniques), it has not been extensively
explored in the active ORAM setting. Devadas et al. [22]
proposed a solution to achieve malicious security for active
ORAM. However, it requires the client to transmit a large
portion of data and perform homomorphic computations to
verify the integrity of server computation. This strategy may
significantly increase the access delay due to the increase of
bandwidth and computation overhead at the client.

Our objective is to create an active ORAM framework
that achieves low client communication and storage over-
head, efficient computation, and security against active ad-
versaries simultaneously. Our framework creates synergies
among various secure multi-party computation techniques,
information-theoretic message authentication codes and tree-
ORAM paradigm to achieve these properties while offering a
natural extension for secure computation over the encrypted
data. The overall goal is to develop ORAM schemes that are
suitable for privacy-preserving distributed applications such
as oblivious distributed file systems.

B. Our Contributions

In this paper, we propose MACAO, a comprehensive
MAliciously-secure and Client-efficient Active ORAM frame-
work. MACAO harnesses suitable secret sharing techniques, ef-
ficient eviction strategy along with information-theoretic Mes-
sage Authentication Code (MAC), which (i) offers integrity
check, (ii) prevents malicious behaviors and (iii) achieves
a comparable efficiency to state-of-the-art ORAM schemes
simultaneously. Our MACAO framework comprises two main
multi-server ORAM schemes: Πrss and Πspdz. We design Πrss

based on replicated secret sharing [35], which requires three
servers and there is no collusion among the servers (privacy
level t = 1). On the other hand, Πspdz is built on SPDZ
secret sharing [20] following the preprocessing model, which

can operate in the `-server setting (` ≥ 2) with the optimal
level of privacy (i.e., t = ` − 1). We construct a series of
authenticated PIR protocols based on RSS and SPDZ and
prove that they are secure against the malicious adversary.
Additionally, we propose several optimization tricks to reduce
the bandwidth overhead at the cost of reducing information-
theoretic to computational security. Table I outlines some
key characteristics of MACAO compared with state-of-the-art
ORAM schemes.

In summary, our main contributions are as follows.

• Multi-server active ORAM with security against active
adversaries: MACAO offers data confidentiality and integrity,
access pattern obliviousness in the presence of malicious
adversaries. MACAO enables the client to detect, with high
probability, if the malicious server(s) has tampered with the
inputs/outputs of the protocol.
• Oblivious distributed file system applications and secure
computation: Our MACAO framework relies on secret sharing
as the core building block, which offers additive and multi-
plicative homomorphic properties. Therefore, after a block is
accessed, it can be computed further directly on the server(s).
This property permits MACAO to serve as a core building
block towards designing a full-fledged Oblivious Distributed
File System (ODFS) with secure computation capacity.
• Full-fledged implementation and performance evaluation:
We fully implemented MACAO framework and compared its
performance with state-of-the-art ORAM schemes on real-
cloud platforms (i.e., Amazon EC2). Our experimental results
confirmed the efficiency of MACAO, in which it is up to
seven times faster than single-server ORAMs. The delay of
MACAO schemes is comparable to S3ORAM [33] while
offering malicious security. We provide detail cost analysis
of MACAO schemes in §V-B4.

In addition, it is important to point out that in the context of
a multi-server active ORAM scheme with malicious security,

2

we also achieve the following important properties, previously
only attained in passive schemes in the semi-honest setting.

• Low client storage and communication overhead: MACAO
offers O(1) client-bandwidth overhead, compared with
O(logN) of the most efficient passive ORAM schemes (e.g.,
[64], [53]). Moreover, MACAO features a smaller block size
than other active ORAM schemes that also achieve the constant
client-bandwidth blowup (e.g., S3ORAM [33], Onion-ORAM
[22], Bucket-ORAM [25]). Observe that while asymptotically
comparable to [22], [25], in practice MACAO schemes are
more efficient since they feature a smaller block size.
• Low computational overhead at both client and server sides:
In MACAO, the client and server(s) only perform bit-wise
and arithmetic operations (e.g., addition, multiplication) during
the online access. This is more efficient than other ORAM
schemes requiring heavy computation due to partially/fully
HE [22]. MACAO offers up to three orders of magnitude
improvement over Onion-ORAM [22] thanks to the fact that
all HE operations in MACAO are pre-computed in the offline
phase between the servers and independent of the client and
on-line (read or eviction) access phase. Therefore, the online
access latency of Πspdz is not impacted by the delay of HE.
On the other hand, Πrss does not require any pre-computation
or HE operations. Due to the efficient computation at both
client and server sides and the low client-bandwidth overhead,
MACAO achieves low end-to-end delay to access a large block
in a large database in real-world settings.

As a final remark, observe that in this paper, we focus on
oblivious access in the single-client setting, where the client
is fully trusted. This is in contrast to some of the distributed
ORAM research targeting the fully distributed model, where
there is no trusted party (i.e., client) at all [24], [67], [23],
[38]. The problem of multi-client access to ORAM as in [41],
[44], [45], [56], [70] is also outside of the scope of this study.
We provide a further discussion of these works in §VI.

II. PRELIMINARIES

Notation. x
$← S denotes that x is randomly and uniformly

selected from S. |S| denotes the cardinality/size of S. We
denote a finite field as Fp, where p is a prime. Vectorized
variables are denoted by bold symbols. Given a,B as vec-
torized variables, a × B denotes the matrix multiplication.
A[i, j] denotes accessing the element at row i and column j
of A. Unless otherwise stated, a ·b (or ab) denotes the scalar
multiplication, and all arithmetic operations are performed over
Fp, and the index starts from 0.

A. Secret Sharing

A secret sharing scheme allows a secret value to be shared
and computed securely among multiple untrusted parties. We
recall an additive secret sharing scheme, which comprises two
algorithms as follows.

• (s0, . . . , s`−1)← Create(s, `): Given a secret s ∈ Fp and a
number of parties ` as input, it outputs random values si as
the shares for ` parties such that s =

∑
i si. We denote the

additive share of a value s for party Pi as JsKi, i.e., JsKi = si.
• s← Recover

(
s0, . . . , s`−1

)
: Given ` shares as input, it

returns the secret as s←
∑
i si.

(〈s〉0, . . . , 〈s〉`−1)← AuthCreate(α, s, `):
1: (JsK0, . . . , JsK`−1)← Create(s, `)
2: (JαsK0, . . . , JαsK`−1 ← Create(αs, `)
3: return (〈s〉0, . . . , 〈s〉`−1), where 〈s〉i ← (JsKi, JαsKi)

s← AuthRecover
(
α, (〈s〉0, . . . , 〈s〉`−1)

)
:

1: s← Recover(JsK0, . . . , JsK`−1)
2: σ ← Recover(JαsK0, . . . , JαsK`−1)
3: if αs 6= σ then return ⊥
4: return s

Fig. 1: Authenticated secret sharing [20].

Security. Additive secret sharing is t-private in the sense that
no set of t or fewer shares reveals any information about the
secret. More formally, ∀s, s′ ∈ Fp, ∀L ⊆ {0, . . . , `− 1} such
that |L| ≤ t and for any S = {s0, . . . , s|L|−1} where si ∈
Fp, the probability distributions of

{
si∈L : (s0, . . . , s`−1) ←

Create(s, `)
}

and
{
s′i∈L : (s′0, . . . , s

′
`−1)← Create(s′, `)

}
are

identical and uniform.

Additive homomorphic properties. Additive secret sharing
offers additive homomorphic properties as follows. Given
additive shares Js1K and Js2K and c ∈ Fp, each party can locally
compute the additive share of addition and scalar multiplication
as Js1 + s2K← Js1K + Js2K and JcsK← cJsK.

Homomorphic multiplication via replicated secret sharing.
Replicated Secret Sharing (RSS) scheme enables homomor-
phic multiplication over additive shares with information-
theoretic security [35]. In the three-party setting, each party
Si ∈ {S0, S1, S2} stores two additive shares of a secret s ∈ Fp,
JsKi and JsKi+1

1. To compute JuvK from JuK and JvK, RSS
proceeds as follows. First, each party Si (locally) computes
xi ← JuKiJvKi+JuKiJvKi+1+JuKi+1JvKi and represents xi with
the addition of random values as xi = r

(i)
0 + r

(i)
1 + r

(i)
2 . Each

Si retains (r
(i)
i , r

(i)
i+1) and sends (r

(i)
i−1, r

(i)
i) and (r

(i)
i , r

(i)
i+1) to

other parties Si−1 and Si+1, respectively. Finally, each Si ob-
tains the shares of multiplication result by (locally) computing
JuvKi ← r

(0)
i + r

(1)
i + r

(2)
i and JuvKi+1 ← r

(0)
i+1 + r

(1)
i+1 + r

(2)
i+1.

Authenticated homomorphic multiplication in the online/
offline model. We recall the authenticated secret sharing in
[20], in which each secret s is attached with an information-
theoretic Message Authenticated Code (MAC) computed as
αs, where α is a global MAC key owned by the dealer. We
denote the authenticated share of a secret s as 〈·〉, which
contains the additive share of s and the additive share of
αs as 〈s〉 = (JsK, JαsK), where JαsK is created in the same
manner as JsK. Figure 1 presents the algorithms to create
authenticated shares and recover the secret. We present a
homomorphic multiplication protocol with malicious security,
which follows the pre-computation model [20], [36] using
Beaver multiplication triples [7] of the form (a, b, c), where
c = ab. In this setting, each untrusted party Si owns a
share of the MAC key as JαKi. In the offline phase, all
untrusted parties harness homomorphic encryption and zero-
knowledge protocols [36], [20] to compute the authenticated
share of the Beaver triple and its MAC in such a way that
no party learns about (a, b, c) and α. To this end, each Si
obtains (〈a〉i, 〈b〉i, 〈c〉i), where 〈a〉i = (JaKi, JαaKi) and so
forth. In the online phase, given 〈u〉 = (JuK, JαuK) and

1We note that the subscript index in this case is modulo 3.

3

〈v〉 = (JvK, JαvK) and all parties want to compute 〈uv〉,
each Si first (locally) computes JεKi ← JuKi − JaKi, and
JρKi ← JvKi − JbKi. All parties come together to open ε and
ρ by each Si broadcasting JεKi and JρKi. Finally, each Si
(locally) computes the authenticated share of the multiplication
as 〈uv〉i = (JuvKi, JαuvKi), where JuvKi ← JcKi + εJbKi +
ρJaKi + ερ and JαuvKi ← JαcKi + εJσbKi + ρJσbKi + ερJαKi.
At the end of the protocol, all parties can verify the integrity
of opened values as follows. Let xj be an opened value and
JαxjKi is the share of its MAC to Si. Let bj be a random
value that all parties agree on. Each Si locally computes
x←

∑
j bjxj , JyKi ←

∑
j bjJαxjKi and JωKi ← JyKi−xJαKi.

All parties come together to open ω as ω ←
∑
iJωKi. If ω = 0,

all the opened values pass the integrity check.

B. Multi-server Private Information Retrieval

Private Information Retrieval (PIR) enables retrieval of an
item yi from an a set of items Y = (y0, . . . , yN−1), without re-
vealing i to the data storage provider. We present a multi-server
PIR protocol [18], [29] between a client and ` servers each
storing a replicate of Y as follows. Given the index idx of the
record to be retrieved and the number of records N , the client
generates Q = (q0, . . . , qN−1) ∈ {0}N , and then sets qidx = 1.
The client generates random queries Xi = (xi,0, . . . , xi,N−1)

such that Q =
∑`
i=0Xi, and then sends Xi to Si. Each Si

computes and responds with Ri =
∑
j xi,j · yj . The client

obtains yidx by computing yidx =
∑
iRi.

Security. A multi-server PIR protocol is correct if the client
always obtains the correct item with probability 1. A multi-
server PIR protocol is t-private if any coalition of t servers
reveals no information about the index of the item [29].

C. Tree-ORAM

We recall the Tree-ORAM paradigm by Shi et al. [59].
Basically, data blocks are organized into a full binary tree
stored at the untrusted server, where each block is assigned
to a path pid selected uniformly at random. A tree of height
H can store up to N = A·2H+1 blocks, where A is a constant.
Each node in the tree is called a “bucket”, which has Z slots to
contain data blocks. The path information of blocks in the tree
is stored in a position map component pm. There are two main
subroutines in the tree-ORAM access structure: retrieval and
eviction. To access a block, the client first reads the block by
executing the retrieval protocol on the path of the block stored
in the position map. The client updates the block and assigns it
to a new path selected uniformly at random. Finally, the client
executes the eviction protocol on a random/deterministic path,
which writes the block back to the top levels of the tree and
obliviously pushes blocks down from top to bottom levels.

Circuit-ORAM eviction. We recall an efficient eviction
strategy by Wang et al. in [66] over the ORAM-tree structure,
which attempts to push the blocks on the eviction path towards
the leaf as much as possible in only a single scan from the
root to leaf. For efficiency, at any time of operation, the client
should hold at most one block to be pushed down, and it should
be dropped to somewhere before the client can pick another
block. Therefore, the ideal way is to always pick the deepest
blocks so that they can have a higher chance to be dropped
later. To achieve this, the client scans the meta-data component
of the eviction path to prepare which blocks should be picked

and dropped at each level of the path. Once the client begins
to scan the block starting from the root, the client downloads
the entire bucket in the currently scanning level to make the
drop and pick operations oblivious.

III. SYSTEM AND SECURITY MODELS

System architecture. Our system model consists of a client
and ` servers (S0, . . . , S`−1). We assume that the channels
between all the players are pairwise-secure. That is, no player
can tamper with, read, or modify the contents of the com-
munication channel of other players. We define a multi-server
ORAM scheme as follows.

Definition 1 (Multi-server ORAM). A Multi-server ORAM
scheme is a tuple of two PPT algorithms ORAM =
(Setup,Access) as follows.

• ~T← Setup(DB, 1λ): Given database DB and security pa-
rameter λ as input, it outputs a distributed data structure ~T.

• data′ ← Access(op, bid, data): Given an operation type
op ∈ {read, write}, an ID bid of the block to be accessed,
a data data, it outputs a block content data′ to the client.

Multi-server ORAM security model. The client is the
only trusted party. The servers are untrusted and can behave
maliciously, in which they can tamper with the inputs and/or
outputs of the ORAM protocol. Our security model captures
the privacy and verifiability of the honest client in the presence
of a malicious adversary corrupting a number of servers in
the system. The privacy property ensures that the adversary
cannot infer the client access pattern or database content. The
verifiability ensures that the client is assured to gain access to
the trustworthy data from the server with integrity guarantee,
and they can detect and abort the protocol if one of the
servers cheats. Following the simulation-based security model
in multi-party computation [13] and single-server ORAM [22],
we define the security of multi-server ORAM in the malicious
setting by augmenting the S3ORAM security model [33] to
account for malicious adversaries as follows.

Definition 2 (Simulation-based multi-server ORAM security
with verifiability). We first define the ideal and real worlds
as follows.

Ideal world. Let Foram be an ideal functionality, which
maintains the latest version of the database on behalf of the
client, and answers the client’s requests as follows.

• Setup: An environment Z provides a database DB to the
client. The client sends DB to the ideal functionality Foram.
Foram notifies the simulator Soram the completion of the setup
operation and the DB size, but not the DB content. Soram
returns ok or abort to Foram. Foram then returns ok or ⊥ to
the client accordingly.

• Access: In each time step, the environment Z specifies an
operation op ∈

{
read(bid,⊥),write(bid, data)

}
as the client’s

input, where bid is the ID of the block to be accessed and
data is the block data to be updated. The client sends op to
Foram. Foram notifies the simulator Soram (without revealing
the operation op to Soram). If Soram returns ok to Foram, Foram

sends data′ ← DB[bid] to the client, and updates DB[bid] ←
data accordingly if op = write. The client then returns the

4

block data data′ to the environment Z . If Soram returns abort
to Foram, Foram returns ⊥ to the client.

Real world. In the real world, an environment Z gives
the client a database DB. The client executes Setup protocol
with servers (S0, . . . , S`−1) on DB. At each time step, Z
specifies an input op ∈

{
read(bid,⊥),write(bid, data)} to

the client. The client executes Access protocol with servers
(S0, . . . , S`−1). The environment Z gets the view of the
adversary A after every operation. The client outputs to the
environment Z the data of block with ID bid being accessed
or abort (indicating abort).

We say that a protocol ΠF securely realizes the ideal
functionality Foram in the presence of a malicious adversary
corrupting t servers iff for any PPT real-world adversary that
corrupts up to t servers, there exists a simulator Soram, such that
for all non-uniform, polynomial-time environment Z , there
exists a negligible function negl such that
|Pr[REALΠF ,A,Z(λ) = 1]−Pr[IDEALForam,Soram,Z(λ) = 1]| ≤ negl(λ).

IV. THE PROPOSED FRAMEWORK

In this section, we describe our ORAM framework in
detail. We first present how state-of-the-art active ORAM
schemes are vulnerable against the active adversary. We then
develop sub-protocols that are used to build our framework.

A. ORAM in the Malicious Setting

In passive ORAM schemes (e.g., [64], [66], [59]), the
server only acts as a storage-only service, which processes data
sending and receiving requests by the client. Therefore, any
malicious behavior can be easily detected by creating a MAC
for each ORAM block being requested [64]. Malicious security
is more difficult to achieve in the active ORAM setting, where
the client delegates the computation to the server for reduced
bandwidth overhead. Next, we review the attack introduced
in [22] to illustrate the vulnerability of state-of-the-art active
ORAM schemes in the malicious setting.

Most efficient active ORAMs (e.g., [33], [21], [53]) follow
the tree-ORAM paradigm and harness PIR techniques to
implement the retrieval phase efficiently. As outlined in §II-B,
to privately retrieve the block indexed i, the client creates a
PIR query, which is a unit vector v where all elements are
set to zero, except the one at index i being set to 1. Such a
query is either encrypted with HE or secret-shared. According
to the PIR, the server computes a homomorphic inner product
between v and the vector containing ORAM blocks on the
retrieval path. So, if the adversary modifies ORAM blocks
that will be likely multiplied with the ciphertext/share of the
zero components in the retrieval vector, the final inner product
will still be correct. In this case, the client is unable to tell
whether the adversary has modified the ORAM structure, but
the malicious server has learned if the vector component was
zero or not, thus violating the privacy of the query. In the tree
paradigm, the upper levels of the tree will likely contain blocks
that have been recently accessed. By modifying data blocks
in upper levels, the malicious server can learn whether the
same blocks have been accessed again with high probability.
To prevent this, Devadas et al. [22] suggested the client to
download a large portion of data blocks, and apply the same
homomorphic computation (like what server did) on them (as
what should be done at the server), to verify if computation

Inputs: Client has input α and Si has inputs(
〈U〉i, 〈V〉i, 〈U〉i+1, 〈V〉i+1

)
, where 〈U〉i = (JUKi, JαUKi)

and so forth. Each Si has JrKi as the shares of a random value r ∈ Fp.
1. Every Si locally computes Xi ← JUKi × JVKi + JUKi × JVKi+1 +

JUKi+1 × JVKi and Yi ← JUKi × JαVKi + JUKi × JαVKi+1 +
JUKi+1 × JαVKi.

2. Every Si represents Xi and Yi as the sum of random matrices as Xi =

R
(i)
0 + R

(i)
1 + R

(i)
2 , where R

(i)
j

$← Fm×k
p and Yi = T

(i)
0 + T

(i)
1 +

T
(i)
2 , where T

(i)
j

$← Fm×k
p . Si retains (R

(i)
i ,R

(i)
i+1,T

(i)
i ,T

(i)
i+1) and

sends (R
(i)
i−1,R

(i)
i ,T

(i)
i−1,T

(i)
i) to Si−1, (R

(i)
i ,R

(i)
i+1,T

(i)
i ,T

(i)
i+1)

to Si+1.
3. Every Si computes 〈Q〉i = (JQKi, JαQKi) and 〈Q〉i+1 =

(JQKi+1, JαQKi+1), where JQKi ← R
(0)
i +R

(1)
i +R

(2)
i , JQKi+1 ←

R
(0)
i+1 +R

(1)
i+1 +R

(2)
i+1, JαQKi ← T

(0)
i +T

(1)
i +T

(2)
i , JαQKi+1 ←

T
(0)
i+1 + T

(1)
i+1 + T

(2)
i+1.

Output: Each Si sends JrKi to all other servers to compute r as r ←∑
iJrKi. All servers set rt ← rt for t = 1, . . . ,mp. Every

Si computes and sends to the client JxKi ←
∑

j

∑
k rtJQ[j, k]Ki,

JxKi+1 ←
∑

j

∑
k rtJQ[j, k]Ki+1, JyKi ←

∑
j

∑
k rtJαQ[j, k]Ki,

JyKi+1 ←
∑

j

∑
k rtJαQ[j, k]Ki+1, where t = jp+k . If (JxKi, JyKi)

received from Si and Si−1 are inconsistent or αx 6= y, where x ←∑
iJxKi and y ←

∑
iJyKi, the client sends ⊥ to all servers and aborts.

Otherwise, the client sends ok and every Si accepts 〈Q〉i, 〈Q〉i+1 as
its correct authenticated shares of U×V.

Fig. 2: Authenticated matrix multiplication with RSS.

at the server is consistent with the one computed locally. This
technique, however, incurs high bandwidth and computation
overhead at the client.

B. Our Sub-Protocols

In this section, we design some sub-protocols for our
MACAO framework. These sub-protocols offer security against
the attacks targeting the inner product between the client
queries and the ORAM data as presented above. We present
the security proof of sub-protocols in the Appendix.

1) Authenticated Matrix Multiplication in the Shared Set-
ting: We construct matrix multiplication protocols using RSS
and SPDZ schemes described in §II-A.

• Matrix multiplication with RSS: We first extend RSS to
be secure against a malicious adversary in the three-server
setting. The key idea is to create an information-theoretic
MAC for each secret as proposed in [20]. Let u, v be two
secrets to be multiplied. The dealer (i.e., the client in our
model) creates the authenticated shares of u and v, i.e.,
〈u〉 = (JuK, JαK) and 〈v〉 = (JvK, JαvK), and distributes them
appropriately to servers accordingly. More specifically, ev-
ery Si receives (〈u〉i, 〈u〉i+1, 〈v〉i, 〈v〉i+1). All servers jointly
execute the RSS multiplication protocol to compute JuvK
over JuK, JvK, and JαuvK over JαuK, JvK (or JαvK, JuK),
resulting in 〈uv〉 = (JuvK, JαuvK). To this end, every Si
sends 〈uv〉i, 〈uv〉i+1 to the client. The client executes x ←
AuthRecover

(
α, (〈uv〉0, . . . , 〈uv〉`−1)

)
and aborts if x =⊥.

We now develop an authenticated matrix multiplication
protocol based on the extended RSS. Given two matrices
U ∈ Fm×np and V ∈ Fn×pp , U × V incurs O(mnp)
number of pair-wise multiplications. Simply using RSS for
each multiplication requires O(mnp) shares being sent from
one server to the other servers. Instead of doing so, we can
perform the local matrix multiplication over the shares and
then only re-share the computation result. This strategy saves
a factor of n number of shares to be transferred among three

5

Initialize: The servers invoke the pre-computation to generate suffi-
cient number of authenticated shares of matrix multiplication triples
(〈A〉, 〈B〉, 〈C〉).

Inputs: The client has input α and every Si has inputs
(
JαKi, 〈U〉i, 〈V〉i

)
.

Each Si has JrKi, Jr̂Ki as the shares of random values r, r̂ ∈ Fp.
1. Every Si locally computes JEKi ← JUKi − JAKi, and JPKi ← JVKi −

JBKi and broadcast JEKi, JPKi.
2. All servers open E and P by locally computing E ←

∑
iJEKi, P ←∑

iJPKi .
3. Every Si locally computes 〈Q〉i = (JQKi, JαQKi), where JQKi ←

JCKi +E× JBKi + JAKi ×P+E×P and JαQKi ← JαCKi +E×
JαBKi + JαAKi ×P + JαKiE×P.

Output: Each Si sends JrKi, Jr̂Ki to all other servers to open r, r̂ as r ←∑
iJrKi, r̂ ←

∑
iJr̂Ki. All servers set rt ← rt and r̂t ← r̂t for

t = 1, . . . ,mp. Every Si locally computes and sends to the client x←∑
j

∑
k

(
rtE[j, k]+r̂tP[j, k]

)
and JyKi ←

∑
j

∑
k

(
rtJαE[j, k]Ki+

r̂tJαP[j, k]Ki
)
, where JαEKi = JαUKi − JαAKi, JαPKi = JαVKi −

JαBKi and t = jp+ k. The client computes y ←
∑

iJyKi. If αx 6= y,
the client sends⊥ to all servers and aborts. Otherwise, the client sends ok
and every Si accepts 〈Q〉i as its correct authenticated share of U×V.

Fig. 3: Authenticated matrix multiplication with SPDZ.

servers. Let 〈U〉 = (JUK, JαUK) and 〈V〉 = (JVK, JαVK) be
the authenticated share of U and V, respectively. Figure 2
presents our matrix multiplication protocol with RSS scheme
in the three-server setting with malicious security.

Lemma 1. In the 3-server setting, the matrix multiplication
protocol via RSS in Figure 2 is secure against a malicious
adversary corrupting an arbitrary server.

In our framework, we only employ RSS for the specific
three-server setting, where no server can collude with each
other (level 1 of privacy). Although a higher privacy level can
be achieved with the general (` − t)-threshold RSS, where
` = 2t + 1 is the number of servers and t is the privacy
level, it requires

(
`
t

)
shares for each secret,

(
`−1
t

)
of which are

stored in each server. This significantly increases the server
storage, I/O access, communication and computation overhead,
and therefore it is not desirable. In the following, we construct
another matrix multiplication protocol, which is more suitable
for applications that need a high privacy level.

• Matrix multiplication with SPDZ: Inspired by [48], we de-
velop an efficient authenticated matrix multiplication protocol
with SPDZ sharing. As discussed previously, the computation
of U × V, where U ∈ Fm×np ,V ∈ Fn×pp incurs O(mnp)
numbers of multiplication. Simply using the original SPDZ
multiplication protocol [20] for the matrix multiplication will
increase the communication overhead among the servers sig-
nificantly2. To save a factor of n the bandwidth overhead,
instead of using the standard Beaver triples of the form
(a, b, ab), we generate matrix multiplication triples (A,B,C),
where C = A×B. Now we assume that each server Si stores
an authenticated share of the triple as (〈A〉i, 〈B〉i, 〈C〉i).
Figure 3 describes the matrix multiplication protocol by SPDZ.
Note that in our setting, the client owns the global MAC key
α so they they can check the integrity of computation at the
end of the protocol. In other words, servers do not need to
multiply their share of the MAC key with the random linear
combination of opened values.

Corollary 1. In the `-server setting, the matrix multiplication

2The authors in [8] observed that the offline phase can be optimized for
functions. The approach is however, different. We are not aware of other
published results that optimized the offline phase for matrix multiplication.

Parameters: N denotes the number of shared items in the shared database.
Inputs: The client has inputs (idx, α) and each server Si has inputs(

〈B〉i, 〈B〉i+1

)
.

1. For each authenticated shared database 〈B〉i, stored on Si and Si−1:
a) The client generates a random binary string of length N,

R(i) = (r
(i)
0 , . . . , r

(i)
N−1). The client generates R(i−1) =

(r
(i−1)
0 , . . . , r

(i−1)
N−1) by flipping the idx-th bit of R(i), i.e.,

r
(i−1)
idx = r̄

(i)
idx and r

(i−1)
j = r

(i)
j for all j 6= idx. The client

sends R(i) to Si and R(i−1) to Si−1.
b) Si computes and responds with xi =

∑
j

(
JbjKi · r

(i)
j

)
and yi =∑

jJαbjKi · r
(i)
j , where

∑
represents the bit-wise XOR and · rep-

resents the bit-wise AND. Similarly, Si−1 computes and responds
with xi−1 =

∑
j

(
JbjKi ·r

(i−1)
j

)
and yi−1 =

∑
jJαbjKi ·r

(i−1)
j .

c) The client computes x′i = xi ⊕ xi−1 and y′i = yi ⊕ yi−1.
2. The client interprets x′i and y′i as the i-th authenticated share of the

retrieved block b, i.e., 〈b〉i = (JbKi, JαbKi) = (x′i,y
′
i). The client

executes b← AuthRecover
(
α, (〈b〉0, . . . , 〈b〉2)

)
.

Output: The client outputs b.

Fig. 4: Authenticated XOR-PIR on additively shared database.

protocol by SPDZ in Figure 3 is secure against a malicious
adversary corrupting (`-1) servers.

2) Authenticated PIR in the Shared Setting: We construct
several PIR protocols in the shared setting with malicious
security that will be used in our ORAM framework. In contrast
to standard the PIR, where the database is public, the database
in our setting is shared with authenticated secret sharing in
Figure 1 and each server in the system stores one or multiple
shares of the database. In this setting, each database item is
split into m chunks as bi = (bi,1, . . . , bi,m), where bij ∈ Fp.
So a database with N items can be interpreted as a m × N
matrix B =

(
bi
)
∈ Fm×Np . Let 〈B〉 = (JBK, JαBK) =((

JbiK
)
,
(
JαbiK

))
be the authenticated share of B. Our PIR

protocols are as follows.

• XOR-PIR: We extend the original XOR-PIR protocol [18] to
privately retrieve a block in the shared setting with malicious
security. In this paper, we consider the three-server case;
however it can be extended to the general `-server setting.
In this setting, the client creates three authenticated shares
for database B as

(
〈B〉0, . . . , 〈B〉2

)
← AuthCreate(α,B, 3).

Each Si stores two out of three authenticated shares as
(〈B〉i, 〈B〉i+1). Our main idea is to harness the XOR-PIR
protocol in [18] to retrieve each authenticated share of the
database block, and then verify the integrity of the block from
the shares. Figure 4 presents our protocol in details.

Lemma 2. In the 3-server setting, the XOR-PIR protocol on
an authenticated shared database in Figure 4 is secure against
a malicious adversary corrupting an arbitrary server.

• RSS-PIR: We construct a PIR protocol with malicious
security based on the RSS matrix multiplication protocol
presented in §II-A. Similar to XOR-PIR, we consider the 3-
server setting, where each server Si stores two authenticated
shares (〈B〉i, 〈B〉i+1) of database B. Figure 5 presents the
protocol in detail.

Corollary 2. In the 3-server setting, the RSS-PIR protocol on
an authenticated shared database in Figure 5 is secure against
a malicious adversary corrupting an arbitrary server.

6

Parameters: N denotes the number of shared items in the shared database.
Inputs: The client has inputs (idx, α) and each server Si has inputs(

〈B〉i, 〈B〉i+1,
)
.

1. The client creates an indicator Q = (q0, . . . , qN−1) for the block to be
retrieved, i.e., qidx = 1 and qj = 0 for 0 ≤ j 6= idx < N . The client
creates shares of Q by executing Create algorithm on each qi, resulting
in JQK0, . . . , JQK`−1. The client sends JQKi to Si for 0 ≤ i ≤ 2.

2. Every Si executes step 1 of the matrix multiplication protocol based on
RSS scheme in Figure 2. Specifically, every Si locally computes and
responds with xi = JQKi× JBKi + JQKi× JBKi+1 + JQKi+1× JBKi
and yi = JQKi × JαBKi + JQKi × JαBKi+1 + JQKi+1 × JαBKi.

3. The client computes b←
∑

i xi and t←
∑

i yi.
Output: If αb = t, the client outputs b as the correct block. Otherwise, the

client outputs ⊥.

Fig. 5: Authenticated RSS-PIR on additively shared database.

Parameters: N denotes the number of shared items in the shared database.
Inputs: The client has inputs (idx, α) and each server Si has input 〈B〉i.
1. The client creates an indicator Q = (q0, . . . , qN−1) for the block to

be retrieved, i.e., qidx = 1 and qj = 0 for 0 ≤ j 6= idx < N . The
client creates the authenticated shares of Q by executing AuthCreate
algorithm on each qi, resulting in 〈Q〉0, . . . , 〈Q〉`−1. The client sends
〈Q〉i to Si for 0 ≤ i < `.

2. The client and all servers jointly execute the SPDZ-based matrix multi-
plication protocol in Figure 3 to compute 〈Q × B〉. If the client does
not abort, every Si sends its output 〈Q×B〉i to the client.

3. The client executes b← AuthRecover(α, 〈Q×B〉0, . . . , 〈Q×B〉`−1).
Output: The client outputs b as the retrieved block.

Fig. 6: Authenticated SPDZ-PIR on additively shared database.

• SPDZ-PIR: We construct a maliciously-secure PIR protocol
based on the SPDZ matrix multiplication (Figure 6). This
protocol works in the general `-server setting, in which every
Si stores a single authenticated share of the database as 〈B〉i.
Corollary 3. In the `-server setting, the SPDZ-PIR protocol on
an authenticated shared database setting in Figure 6 is secure
against a malicious server corrupting up to (`− 1) servers.

3) Oblivious Eviction via Permutation Matrix: As outlined
in §II-C, the core idea of the eviction in [66] is to maximize
the number of data blocks that can be pushed down in a
single block scan on the eviction path via strategic pick
and drop operations. To make these operations oblivious,
the client needs to download and upload the entire bucket
for each level scan, thereby suffering from the logarithmic
communication overhead. Inspired by [33], our framework
harnesses the permutation matrix concept to implement the
Circuit-ORAM eviction strategy in a more communication-
efficient manner. Figure 7 presents our algorithm with the
highlights as follows. For each level h on the eviction path
v, we create a (Z + 1) × (Z + 1) matrix Ih initialized with
zeros. We consider the data to be computed with Ih as a
matrix Uh ∈ F(Z+1)×m

p containing Z blocks from the bucket
at level h and the block supposed to be held by the client3.
The main objective is to perform V>h = U>h × Ih, where
Vh ∈ F(Z+1)×m

p contains the new data for the bucket at level
h and the new block to be picked for deeper levels. Therefore,
to drop the holding block to an empty slot indexed x in the
bucket at level h, the client sets Ih[Z, x]← 1 (line 12). To pick
a block at slot x′, the client sets Ih[x′, Z] ← 1 (line 17). To
skip this level (no drop or pick), the client sets Ih[Z,Z]← 1,

3Remark that each database block is split into m chunks ci ∈ Fp.

(
b, (I0, . . . , IH)

)
← CreatePermMat(v):

1: hold← ⊥, dest← ⊥, b← {0}|b|
2: (deepest, deepestIdx)← PrepareDeepest(v)
3: target← PrepareTarget(v)
4: if target[0] 6= ⊥ then
5: hold← deepestIdx[0]; dest← target[0]
6: b← S[hold], S[hold]← {}
7: for h = 0 to H do
8: Ih[i, j]← 0 for 0 ≤ i ≤ Z, 0 ≤ j ≤ Z
9: if hold 6= ⊥ then

10: if h = dest then . Drop the on-hold block to this level
11: hold← ⊥, dest← ⊥,
12: Ih[Z][x]← 1 where xh is an empty slot index at level h
13: else . Move the on-hold block to the next level
14: Ih[Z][Z]← 1

15: if target[h] 6= ⊥ then . Pick a block at this level
16: Ih[x′][Z]← 1 where x′ ← deepestIdx[h]
17: hold← x′, dest← target[h]

18: for each real block bid at level h do . Preserve existing blocks
19: if pm[bid].pIdx mod Z 6= deepestIdx[h] then
20: Ih[x̂][x̂]← 1 where x̂← pm[bid].pIdx mod Z

21: return
(
b, (I0, . . . , IH)

)
Fig. 7: Permutation matrix for Circuit-ORAM eviction.

which moves the holding block to the next level (line 14).
To preserve an existing block at this level, the client sets
Ih[x̂, x̂] ← 1 where x̂ is the slot index of the block in the
bucket (lines 18-20).

C. MACAO Schemes

In this section, we construct two ORAM schemes in our
framework called Πrss and Πspdz by putting sub-protocols in
the previous section altogether. Our constructions follow the
general tree-ORAM access structure [59] outlined in §II-C,
which contains two main subroutines including retrieval and
eviction. At the high level idea, our ORAM schemes use multi-
server authenticated PIR protocols in §IV-B2 to implement the
retrieval. For the eviction, our ORAM schemes harness the
concept of permutation matrix in §IV-B3 and the homomorphic
matrix multiplication protocols in §IV-B1. We first give the
storage layout at the client- and server-side, and then present
our ORAM schemes in detail.

Server layout. Our constructions follow the tree-ORAM
paradigm outlined in §II-C. In Πrss scheme, there are three
servers and each server Si ∈ {S0, S1, S2} stores two authen-
ticated shares of the tree as

(
〈T〉i, 〈T〉i+1

)
. In Πspdz scheme,

there are ` ≥ 2 servers, where each Si ∈ {S0, . . . , S`−1} stores
an authenticated share 〈T〉i and an additive share of the global
MAC key, JαKi.

Client state. The client maintains the position map of the
form pm := (bid; pid, pIdx), where bid is the block ID, 0 ≤
pid < 2H is the path ID and 0 ≤ pIdx < ZH is the index of
the block in its assigned path. Notice that pm can be stored
remotely at the servers by recursive ORAM [64] and meta-
data construction as discussed in [33] (see §IV-E). For ease of
presentation, we assume that pm is locally stored. Since we
follow Circuit-ORAM eviction, the client needs to maintain the
stash component (S) to temporarily store blocks that cannot
be evicted back to the tree. This stash can also be stored at the
server-side for reduced storage overhead (see §IV-E2). Finally,
the client stores the global MAC key α.

Figure 8 presents the general access structure of MACAO

7

data′ ← Access(op, bid, data):
1: (pid, pIdx)← pm[bid]
2: data′ ← Retrieve

(
pid, pIdx

)
3: if data′ =⊥ then
4: return abort
5: if op = write then
6: b← data

7: pm[bid].pid
$← {0, . . . , 2H − 1}

8: Evict()
9: return data′

Fig. 8: MACAO access structure.

b← Πrss.Retrieve
(
pid, pIdx

)
:

1. return b, where b← The client executes either XOR-PIR protocol in
Figure 4 or RSSS-PIR protocol in Figure 5 with 3 servers, in which
the client has input (pIdx, α) and each Si has inputs as the blocks
along the path pid of 〈T〉i, 〈T〉i+1.

Fig. 9: Πrss retrieval.

schemes. In the following, we present in detail the retrieval
and eviction phases of each scheme.

1) Πrss Scheme: Our Πrss scheme operates on the specific
three-server setting. Πrss employs either XOR-PIR or RSS-PIR
protocol for oblivious retrieval, and RSS matrix multiplication
for eviction as follows.

Retrieval. Figure 9 presents the retrieval phase of Πrss

scheme. Since we perform the PIR on the retrieval path, all
the buckets on the path are interpreted as the database input of
the PIR protocols. As a result, the length of the PIR query is
Z(H + 1) and the database input is interpreted as a matrix of
size Z(H+1)×m. Notice that we can use XOR-PIR and RSS-
PIR protocols interchangeably in this phase. The difference is
that XOR-PIR incurs less computation than RSS-PIR (XOR vs.
arithmetic operations) with the smaller size of the client queries
(binary string vs. finite field vector). As a trade-off, it doubles
the number of data to be downloaded, and the computed blocks
on the servers are in the form of XOR shares. This XOR-share
format does not allow for further (homomorphic) arithmetic
computations after being accessed once.

Πrss.Evict():
Parameters: ne denotes the number of eviction operations initialized at 0, H

denotes the height of ORAM tree, ` = 3 denotes the number of servers
in the system.

Inputs: The client has input α and every Si has inputs
(
〈T〉i, 〈T〉i+1

)
.

Client:
1. v ← DigitReverse2(ne mod 2H), ne ← ne + 1
2.
(
b, (I0, . . . , IH)

)
← CreatePermMat(v)

3. (〈b〉0, . . . , 〈b〉`−1)← AuthCreate(α,b, `)
4. (JIhK0, . . . , JIhK`−1)← Create(Ih, `) for 0 ≤ h ≤ H
5. Send

(
〈b〉i, (JI0Ki, . . . , JIHKi)

)
to Si and Si−1 for 0 ≤ i < `

Server: For each level h of the eviction path v starting from the root:
6. Every Si forms authenticated shared matrices 〈Bh〉i, 〈Bh〉i+1 by

concatenating the bucket P(v, h) of 〈T〉i, 〈T〉i+1 with 〈b〉i, 〈b〉i+1,
respectively.

7. All parties execute RSS-based matrix multiplication protocol in Figure 2,
where the client inputs α and every Si inputs

(
JIhKi, 〈Bh〉i, JIhKi+1,

〈Bh〉i+1

)
. Let 〈Bh × Ih〉i, 〈Bh × Ih〉i+1 be the output of Si.

8. Every Si interprets the last row of 〈Bh × Ih〉i, 〈Bh × Ih〉i+1 as the
holding blocks 〈b〉i, 〈b〉i+1 for the next level h+ 1, respectively, and
updates the bucket P(v, h) of 〈T〉i, 〈T〉i+1 with the other rows.

Fig. 10: Πrss eviction.

b← Πrss.Retrieve
(
pid, pIdx

)
:

1. return b, where b← The client executes SPDZ-PIR in Figure 6 with
` servers, in which the client has input (pIdx, α) and each Si has
inputs as the blocks along the path pid of 〈T〉i.

Fig. 11: Πspdz retrieval.

Πspdz.Evict():
Parameters: Same as Figure 10, except ` ≥ 2.
Inputs: The client has input α and every Si has inputs

(
JαKi, 〈T〉i

)
.

Client:
(
b, (I0, . . . , IH)

)
← Execute lines 1–3 in Figure 10.

1. (〈Ih〉0, . . . , 〈Ih〉`−1)← AuthCreate(Ih, `) for 0 ≤ h ≤ H
2. Send

(
〈b〉i, (〈I0〉i, . . . , 〈IH〉i)

)
to Si for 0 ≤ i < `

Server: For each level h of the eviction path v starting from the root:
3. Every Si forms authenticated shared matrices 〈Bh〉i by concatenating

the bucket P(v, h) of 〈T〉i with 〈b〉i, respectively.
4. All parties execute the SPDZ-based matrix multiplication protocol

in Figure 3, where the client inputs α and every Si has inputs(
JαKi, 〈Ih〉i, 〈Bh〉i

)
. Let 〈Bh × Ih〉i be the output of Si.

5. Every Si interprets the last row of 〈Bh× Ih〉i as the holding block 〈b〉i
for the next level h+ 1, and updates the buckets P(v, h) of 〈T〉i with
the other rows.

Fig. 12: Πspdz eviction.

Eviction. Figure 10 presents the eviction protocol of Πrss

scheme in detail. We follow the deterministic eviction strategy
proposed in [28], where the eviction path is selected according
to the reverse-lexicographical order of the number of evictions
being performed so far (line 1). Intuitively, the client creates
the permutation matrices for Circuit-ORAM eviction plans
(line 2). The client creates authenticated shares for the block
fetched from the stash and the permutation matrices (lines 3,
4), and then distributes the shares to corresponding servers.
Notice that it is not necessary to create authenticated shares
of permutation matrices because RSS scheme only needs one
authenticated share to do the authenticated homomorphic mul-
tiplication. Once receiving all shares from the client, all servers
execute the RSS-based authenticated matrix multiplication
protocol in Figure 2 for each level h of the eviction path. The
servers form the authenticated shared matrices to be multiplied
with the shared permutation matrices by concatenating the
buckets at level h of the authenticated shared ORAM trees
with the authenticated shared blocks sent by the client. The
servers interpret the last row of the resulting matrices as the
authenticated shared blocks holding by the client for the next
level (h + 1), and update the h-leveled buckets of the shared
ORAM tree with the other rows of the resulting matrices.

2) Πspdz Scheme: Our Πspdz scheme operates on the gen-
eral `-server setting with the pre-computation model.

Retrieval. As presented in Figure 11, Πspdz employs the
SPDZ-PIR protocol, instead of RSS-PIR or XOR-PIR in Πrss,
to implement the private retrieval phase.

Eviction. Figure 12 depicts the eviction phase of Πspdz,
which is similar to that of Πrss, except that it employs matrix
multiplication protocol by SPDZ to implement the oblivious
pick and drop operations. In this case, the client creates and
sends to the servers the authenticated shares of the permutation
matrices, instead of only the additive shares as in Πrss.

3) MACAO Security: We now present the security of
MACAO schemes. The MACAO eviction follows the push-

8

down principle proposed in Circuit-ORAM [66] so that it has
the same overflow probability as follows.

Lemma 3 (Stash overflow probability). Let the bucket size
Z ≥ 2. Let st(MACAO[s]) be a random variable denoting the
stash size of a MACAO scheme after an access sequence s.
Then, for any access sequence s, Pr[st(MACAO[s]) ≥ R] ≤
14 · e−R.

Proof: (see [66])

The security of MACAO can be stated as follows.

Theorem 1 (MACAO security). MACAO framework is statis-
tically (information-theoretically) secure by Definition 2.

Proof: (see Appendix)

D. Cost Analysis

We analyze the asymptotic cost of our proposed
MACAO schemes. We treat some parameters as constant
including the finite field (p), the bucket size Z and the number
of servers ` (i.e., ` = 3 in Πrss and ` ≥ 2 in Πspdz). Following
the tree ORAM literature (e.g., [59], [64], [66]), we consider
the statistical security parameter as a function of database size,
i.e., λ = O(logN). Let L = Z(H + 1) = O(logN) be the
length of the path in the MACAO structure, and C = |b|/|Fp|
be the number of chunks per data block.

Client-server communication. In the Πrss retrieval, the client
sends six L-bit binary strings and receives six 2|b|-bit replies
if using XOR-PIR. If using RSS-PIR, the client sends six
(L|Fp|)-bit queries, and receives three 2|b|-bit replies. In the
Πrss eviction, the client sends to each server two authenticated
shares of a data block and (H + 1) permutation matrices of
size (Z + 1) × (Z + 1), where each element is log2 p bits.
Since L = O(logN) and p is fixed, the client communication
cost per Πrss access is O(|b| + logN). Πspdz has a similar
asymptotic bandwidth cost as Πrss because they only differ in
the fixed number of authenticated shares per server (2 vs. 1),
and the number of servers ` (yet ` is fixed).

Server-server communication. In Πrss, servers communicate
with each other only in the eviction phase, where two authenti-
cated shares of the entire eviction path is transmitted from one
server to the others. Hence, the server-server communication
is 4L(`−1)|b| = O(|b| logN). In Πspdz, servers need to com-
municate with each other not only in the eviction but also in
the retrieval phase. For each retrieval/eviction operation, every
server sends the authenticated shares of the entire path and the
client queries/matrices to all the others. Thus, its total server-
server communication is 2L(|Fp| + |b| + (Z + 1)2 + |b|) =
O(|b| logN).

Client computation. In Πrss retrieval, the client generates
4L random bits and performs XOR on L-bit data and |b|-
bit data four times if using XOR-PIR. If using RSS-PIR, the
client generates (` − 1)L|Fp| random bits. In both cases, the
client additionally performs 2C additions (for block and MAC
recovery) and C multiplications (for MAC comparison) over
Fp field. For each Πrss eviction, the client generates L(` −
1)(Z + 1)2 log2 p random bits, performs 2L(Z + 1)2(` − 1)
additions and L(Z + 1)2 multiplications over Fp. The cost of
Πspdz is similar to that of Πrss using RSS-PIR, but with ` ≥ 2.

Server computation. In Πrss retrieval, each server performs
XOR operations on 2|b|-bit strings approximately L times if
using XOR-PIR. If using RSS-PIR, each server performs 6LC
modular multiplications, 4LC additions over Fp. Each Πrss

eviction incurs 6LC multiplications and 16LC additions over
Fp with 4LC log2 p random bits being generated.

Client storage. In both Πrss and Πspdz, the position map is of
size N(log2N + log2 log2N). We follow the eviction in [66],
which requires the client to maintain a stash of sizeO(|b|λ) for
negligible overflow probability. In total, the asymptotic client
storage overhead is O(N(logN + log logN) + |b| logN).

Server Storage. An ORAM tree with N leaves can store 2N
data blocks. Each node in the tree can store Z blocks. In Πrss

and Πspdz schemes, each server stores one and two authenti-
cated shares of the ORAM tree, respectively. Therefore, the
storage overhead per server in Πrss and Πspdz is 4Z|b|N and
2Z|b|N bits = O(N), respectively.

E. Extensions

In this section, we describe some tricks that can be applied
to our MACAO schemes.

1) Reducing Bandwidth Overhead: Since our ORAM
framework relies on XOR secret sharing and additive secret
sharing as the main building blocks, the retrieval queries
and eviction data can be created and distributed in a more
communication-efficient manner. The client can generate the
authenticated shares of retrieval queries, data blocks and
permutation matrices using a Pseudo-Random Function (PRF)
instead of a truly random function. To reduce the commu-
nication overhead, the client can create random seeds for
such pseudo-random generator using a truly random function,
and securely send the seeds to (` − 1) servers so that they
can generate their own shares themselves. Since the client
only needs to send the shares to one server, this strategy
can significantly reduce the client bandwidth overhead. The
price to pay for this is the reduction of the security level
from information-theoretic to computational due to the pseudo-
random generation function. In Πrss scheme, we can further
apply this trick to reduce the server-server communication
overhead in the eviction phase. After performing the local
computation (e.g., line 1 in Figure 2), every server can generate
and send the seeds to other servers to let them calculate their
re-shared values. In this case, every server only needs to send
a shared matrix (instead of four) to one other server.

2) Reducing Client Storage Overhead: In our framework,
the client maintains two major components including a position
map of size O(N(logN + log logN) and a stash S of size
O(|b| logN). While the position map can be stored remotely
on the server-side using the recursion and meta-data techniques
[59], [22], we present two solutions to remove S at the client
as follows. The first solution is to store S remotely at the
server-side in the form of authenticated shares (JSK, JαSK),
and leverage homomorphic matrix multiplication protocols to
obliviously pick and drop the block from/into S. We treat S
as an additional level of the ORAM tree appended to the root
as suggested in [66]. Thus, when executing the PIR protocol
in the retrieval phase, we need to include the stash level, and
therefore, the retrieval query length (and the number of data
blocks in the path) will be (Z(H + 1) + λ) = O(logN). In
the eviction phase, to obliviously put a block b into S[x], the

9

client creates a unit vector v = (v0, . . . , vλ−1) where vx = 1
and vy = 0 for all 0 ≤ y 6= x < λ. The client creates and sends
authenticated shares 〈b〉 and 〈v〉, and every server performs
〈S〉 ← 〈b〉×〈v〉>+ 〈S〉. To obliviously pick a block at S[x′],
the client creates a unit vector v′ = (v0, . . . , vλ−1), where
ex′ = 1 and ey = 0 for all 0 ≤ y 6= x < λ. The client creates
and sends authenticated shares of v′ and the servers perform
〈b〉 ← 〈v′〉 × 〈S〉> and 〈S〉 ← 〈S〉 − 〈v′〉 × 〈S〉>.

The other method is to implement the triplet eviction
principle proposed in [22] using homomorphic properties of
additive shares as similar to [33]. Since this approach requires
the bucket size to be of size O(logN) for negligible overflow,
the computation and communication in the retrieval phase will
be increased by a factor of O(logN).

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

A. Implementation

We fully implemented both MACAO schemes in §IV-C
all the extensions in §IV-E. In Πspdz, we implemented only
the online phase of the SPDZ-based matrix multiplication
protocol since we assume that authenticated shares of Beaver-
like matrix triples were pre-computed sufficiently in the offline
phase. The implementation was written in C++ consisting of
more than 25K lines of code for the MACAO controllers at the
client- and server-side. We used three main external libraries:
(i) Shoup’s NTL library v9.10.0 [60] for the server computa-
tion; (ii) ZeroMQ library [2] for the network communication;
(iii) pthread for server computation parallelization. Our
implementation made use of SIMD instructions to optimize
the performance of bit-wise operations and vectorized compu-
tations on Intel x64 architecture. For the reduced bandwidth
trick, we used tomcrypt library [1] to implement seeded
pseudo-random number generators using sober128 stream
cipher. Each server stored a 128-bit secret seed shared with
the client. In Πrss scheme, each server stored two extra 128-
bit secret seeds shared with the other two servers, which are
used to re-share the local computation during the RSS-based
matrix multiplication in the eviction phase.

Our implementation is available at https://github.com/
thanghoang/MACAO.

B. Performance Evaluation

We first describe our configuration and evaluation method-
ology followed by the main experimental results.

1) Configuration and Methodology: For the server-side, we
employed three c5.4xlarge Amazon EC2 instances each
equipped with 3.00 GHz 16-core Intel Xeon 8124M CPU,
16 GB RAM and 8 TB networked Elastic Block Storage (EBS)-
based SSD. For the client, we used a Macbook Pro with
2.6 GHz 6-core Intel Core i7 8850H CPU and 32 GB RAM.

Database. We used a random database of size ranging from
1 GB to 1 TB. We selected two standard data block sizes
including 4 KB and 256 KB as these are commonly used in
small-scale and large-scale file systems, respectively.

Network. We used a standard home Internet setting for
client-server communication. Specifically, the laptop client was
connected to the Internet via WiFi with 54.5 Mbps download,
5.72 Mbps upload throughput and 20ms round-trip latency

to Amazon EC2 servers. The server instances were set up
geographically close to each other, which resulted in the inter-
server throughput of 1 Gbps with 3ms round-trip latency.

Parameter choice and counterpart selection. We selected
S3ORAM and Path-ORAM as the main counterparts for
MACAO since S3ORAM is the most efficient multi-server
ORAM scheme (but with no malicious security), while the
others are state-of-the-art single-server ORAM schemes. Al-
though Onion-ORAM offers similar properties to MACAO
(e.g., constant bandwidth, malicious security), we did not
explicitly compare our framework with it because the delay of
Onion-ORAM was shown significantly higher than S3ORAM
and Path-ORAM in [33]. The main performance evaluation
metric is the end-to-end delay, which captures the processing
time at client- and server-side (e.g., I/O, computation) as well
as the network communication among parties. We configured
the system parameters for all schemes as follows so that they
achieve the same failure probability of 2−80.

• MACAO: We selected the bucket size Z = 2, stash size
|S| = 80 and performed two deterministic evictions per access
as suggested in [66]. We selected a 59-bit prime field for
the computational advantage of 64-bit architecture and the
optimization of NTL library. In this experiment, we demon-
strated the performance of Πrss with the RSS-PIR protocol
only. It is because this protocol allows to further enable secure
computation on the accessed block, and its delay is higher than
XOR-PIR (so the comparison with counterparts will be more
conservative).
• S3ORAM: We used the open-sourced implementation in
[34]. We selected Z = 74 and eviction frequency A = 37.
Notice that these selected parameters are more appropriate than
the ones in [33], which suffer from the bucket overflow failure.
Similar to MACAO, we selected a 59-bit prime field.
• Path-ORAM: We implemented a prototype of Path-ORAM.
We selected Z = 4 and |S| = 80 [64]. We used Intel AES-NI
library to accelerate cryptographic operations. We used AES
with counter mode (CTR) for encryption and decryption. We
created the MAC tag for each node in the Path-ORAM tree
using AES-128 CMAC.
• Ring-ORAM: We selected standard parameters as suggested
in [53] (i.e., Z = 16 and A = 20).
• Circuit-ORAM: We selected Z = 2, |S| = 80 and performed
two evictions per access as in [66]. Similar to Path-ORAM,
we used AES-128 CMAC for authentication and AES-CTR
for encryption with Intel AES-NI.

2) Setup Delay: We first discuss the time to set up nec-
essary MACAO components (e.g., authenticated shares of the
ORAM trees, position maps) on the client machine. The delay
grew linearly to the database size. Specifically, it took around
370 s to 357,601 s to construct Πrss components for 1 GB to
1 TB database with 4 KB block size. For Πspdz components,
it took 244 s to 241,553 s, which was round 1.5 times faster
than Πrss since Πspdz only needs 2 servers (vs. 3 in Πrss). With
255 KB block size, the setup delay was 142 s to 135,927 s for
Πspdz components, and 209 s to 215,482 s for Πrss components.
We note that we did not measure the preprocessing cost to
generate multiplication triples for Πspdz scheme as it is out-
of-scope of this paper. We refer curious readers to [36] for its
detailed benchmarks.

3) Overall Result: We present in Figure 13 the end-to-end
delay of MACAO schemes compared with selected counter-

10

https://github.com/thanghoang/MACAO
https://github.com/thanghoang/MACAO

20 22 24 26 28 210

0.2

0.4

0.6

0.8

1

1.2

|DB| (GB)

D
el

ay
(s

ec
)

Πrss Πprf
rss

Πspdz

Πprf
spdz

Path-ORAM Ring-ORAM
Circuit-ORAM S3ORAM

(a) Block size |b|= 4 KB

20 22 24 26 28 210
0

5

10

15

20

25

30

35

40

|DB| (GB)

D
el

ay
(s

ec
)

Πrss Πprf
rss

Πspdz

Πprf
spdz

Path-ORAM Ring-ORAM
Circuit-ORAM S3ORAM

(b) Block size |b|= 256 KB

Fig. 13: End-to-end delay of MACAO schemes and their counterparts.

parts with 4 KB and 255 KB block sizes and database sizes
from 1 GB to 1 TB. In the home network setting, all MACAO
schemes outperformed Path-ORAM and Circuit-ORAM in all
testing cases, especially when the block size was large (i.e.,
256 KB). Specifically, Path-ORAM and Circuit-ORAM took
369 ms to 650 ms and 625 ms to 1.2 s to access a 4 KB
block, respectively, whereas MACAO schemes took 198 ms to
336 ms. All MACAO schemes (except Πrss) were also faster
than Ring-ORAM for 4 KB block access. For 256 KB block
access, the performance gap between MACAO and single-
server ORAM schemes significantly increased since MACAO
featured the constant client-bandwidth blowup. In particular,
Path-ORAM, Circuit-ORAM and Ring-ORAM took 16 s to
32 s, 17 s to 34 s and 12 s to 24 s, respectively, for each
256 KB-block access, whereas MACAO schemes only took
3.3 s to 5.5 s. This resulted in MACAO being up to 7× faster
than single-server ORAM schemes.

On the other hand, the performance of MACAO schemes
was comparable to S3ORAM, where S3ORAM took 312 ms
to 451 ms per 4 KB-block access, and 1.78 s to 3.11 s per
256 KB-block access, respectively. Πspdz scheme was faster
than S3ORAM for 4 KB-block access since it operated on two
servers (vs. 3 in S3ORAM) with small amount of data, and
the retrieval phase of MACAO incurred less number of blocks
to be computed than S3ORAM (O(logN) vs. O(log2N)).
We notice that Πspdz operates on the preprocessing model,
where their online access operation performance depends on
the availability of authenticated matrix multiplication shares
computed in the offline phase. For 256 KB-block access,
S3ORAM was approximately 1.5 times faster than MACAO
schemes. This is mainly because MACAO schemes perform the
computation on the information-theoretic MAC components,
whose size is equal to the block size. Notice that S3ORAM
does not have the MAC and it does not offer integrity and
security against the malicious adversary.

One might also observe from Figure 13 that the bandwidth
reduction trick in §IV-E1 significantly lowered the end-to-
end delays of MACAO schemes (denoted as Πprf

rss and Πprf
spdz

schemes). This trick allowed us to reduce the performance gap
between the MACAO schemes using RSS and SPDZ when
the amount of data to be transmitted was large as in the
256 KB-block access. The price to pay for such efficiency
is the reduction from information-theoretic to computational

security. To aid more understanding, we provide the detailed
cost of MACAO schemes in the following section.

4) Cost Breakdown: We decomposed the delay of MACAO
schemes to investigate cost factors that impact the perfor-
mance. As shown in Figure 14, there were four main sources
of delay including client processing, server processing, client-
server communication and server-server communication.

Client-side processing. MACAO schemes incurred very low
computation at the client-side thereby, making them the ideal
choice for resource-limited clients such as mobile devices. The
client main task was to generate shares of the retrieval query
and permutation matrices for eviction by invoking pseudo/true-
random number generator. The client recovered the accessed
block and verified its integrity by performing some modular
additions and multiplications. All these operations are very
lightweight, all of which cost less than 4 ms and 40 ms for
4 KB and 256 KB block size on 1 TB database, respectively.

Disk I/O access. We disabled default caching mechanisms
[52] to minimize the impact of random access sequence on the
I/O latency. The disk access contributed a small amount to the
delay of MACAO schemes due to the following reasons. The
MACAO structure was stored on a network-based storage unit
called EBS with 2.1 Gbps throughput. Meanwhile, the amount
of data to be loaded per retrieval was small, which was only
4|b|(H+1) KB, where |b| ∈ {4, 256} and H ∈ {11, . . . , 27}
for up to 1 TB of outsourced data. In MACAO schemes, the
disk I/O access only impacted the retrieval, but not eviction.
This is because MACAO schemes follow the deterministic
eviction, where the data along the eviction path can be pre-
loaded into the memory before the push-down operation.
Hence, the data can be read directly from the cache if needed,
given that they were processed in the previous operations but
have not been written to the disk yet.

Server computation. This contributed a large portion to the
total delay, mostly due to the matrix multiplication in the
eviction phase. The server computation in Πrss was higher than
in Πspdz since it incurred more number of additions than Πspdz

for each homomorphic multiplication.

Client-server communication. MACAO schemes feature a
constant client-bandwidth blowup similar to S3ORAM. There-
fore, only the query size and the eviction matrix size increased

11

0 100 200 300 400 500

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

|D
B
|(

G
B

)

Client Computation Server Disk I/O Server Computation

20

22

24

26

28

210

Client-server Communication Saved by Reduced Bandwidth Trick

(a) |b|= 4 KB

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

|D
B
|(

G
B

)

Client-server Communication Inter-server Communication

20

22

24

26

28

210

Inter-server Communication Saved by Reduced Bandwidth Trick

(b) |b|= 256 KB
Fig. 14: Cost breakdown of MACAO schemes.

when the database size increased while the number of data
blocks to be transmitted remained the same. Therefore, al-
though it was one of the most significant factors contributing
to the total delay, the client-server communication cost of
MACAO schemes was likely to remain the same when in-
creasing the database size as shown in Figure 14, where most
of the time was spent to download/upload a constant number
authenticated shares of the data blocks. Πspdz incurred less
client-server communication delay than Πrss because it only
needs two servers, instead of three. Figure 14 also shows that
the bandwidth reduction trick significantly reduced the client
communication delay (the green bar with red filled pattern).
This trick allows the client to send the authenticated share
to only one server, thereby making the client-communication
overhead of Πrss and Πspdz schemes almost the same.

Server-server communication. It is the second smallest
portion of the total delay. We can also see that the bandwidth
reduction trick also helped to reduce the server-server com-
munication in Πrss scheme (the yellow bar with red pattern in
Figure 14). The Πrss scheme had higher inter-server communi-
cation delay than Πspdz since three servers communicated with
each other, compared with only two in Πspdz.

Storage overhead. MACAO schemes harness the eviction
strategy in [66] so that they incur a constant server storage
blowup. In Πrss, every server stores two authenticated shares
of the ORAM tree so that storage overhead per server is 8|DB|
(i.e., 4 times blowup from [66]). On the other hand, every
server in Πspdz stores one authenticated shared ORAM tree,
and therefore, the server storage overhead is 4|DB| (2 times
blowup from [66]). Regarding the client storage, Πrss schemes
add an extra of O(N log logN) bits to the storage overhead of
[66], which is analytically |N | log2N + log2(log2N) + 80|b|
in total. Empirically, with 1 TB DB and 256 KB block size,
the client storage overhead of Πrss, Πspdz is 33.23 MB. With
1 TB DB and 4 KB block size, it is 1.33 GB.

5) MACAO Performance with Varying Privacy Levels: We
conducted an experiment to evaluate the performance of Πspdz

and Πprf
spdz schemes under higher privacy levels by increasing

the number of servers. Due to RSS, we did not evaluate Πrss

and Πprf
rss since they incur significant server storage for high

privacy levels. Figure 15 outlines the delay of Πspdz and Πprf
spdz

scheme under 1 TB database with 4 KB and 256 KB block
sizes. When increasing the number of servers, Πprf

spdz incurred

1 2 3 4 5

0

2

4

6

8

10

12

Privacy level (t)

D
el

ay
(s

ec
)

Πspdz (4 KB) Πprf
spdz (4 KB)

Πspdz (256 KB) Πprf
spdz (256 KB)

Fig. 15: End-to-end delay with varied privacy levels.

much less delay than Πspdz, especially in the 256 KB block
size setting, since the client only sent data to one server while
the other servers generated authenticated shares on their own.

VI. RELATED WORKS

Goldreich was the first to propose the ORAM concept for
software protection [30]. Since then, several ORAM schemes
have been proposed (e.g., [31], [51]); however, none of these
can achieve the logarithmic bandwidth overhead that was
proven as the ORAM lower bound under O(1) blocks of client
storage [31]. In 2011, Shi et al. proposed a breakthrough in
ORAM constructions by using a tree structure [59]. This tree
paradigm led to efficient ORAM scheme proposals (e.g., [64],
[66], [53], [28], [67], [14]) that can achieve the Goldreich-
Ostrovsky logarithmic communication bound in [31]. The most
simple and efficient ORAM based on tree-ORAM paradigm
is Path-ORAM [64], where the client only needs to perform
read and write operations over a data path, whereas the server
only needs to provide storage functionality (e.g., data sending
and receiving only). Tree-based ORAMs have been adapted to
enable access pattern obliviousness in many applications such
as secure processors [43], oblivious data structures [68], [37],
[54], multi-party computation [67] and oblivious storage [17],
[56], [41], [70], [49], [4]. There are several ORAM schemes
that are specifically designed for oblivious file systems (e.g.,
[6], [44], [45], [14], [10]). We note that all these schemes are
different from our framework, where they focused on some
specific properties in file system applications such as range
queries [14], multi-client [44], [10] and/or parallel access [15].

12

Recently, Larsen and Nielsen in [40] have re-confirmed the
existence of the logarithmic bandwidth overhead in passive
ORAM schemes (i.e., the server is storage-only). To reduce
the communication overhead, the concept of active ORAM
has been proposed, where the server can perform some com-
putation. Although many active ORAM schemes have been
presented (e.g., [53], [22], [25], [46], [5], [26], [21], [47]), most
of them either cannot surpass the logarithmic bound (i.e., [53],
[46]) or were shown insecure (i.e., [47], [3]). To the best of
our knowledge, only active ORAM schemes that harness HE
techniques [27], [19] can achieve the O(1) client bandwidth
overhead under reasonably large block sizes (e.g., O(log5N)
where N is the number of data blocks) [5], [22], [25]. Despite
their communication efficiency, it has been shown in [33], [47]
that performing HE computation during the ORAM access
incurred significantly more latency than streaming O(logN)
data blocks as in passive ORAM schemes.

To improve computation efficiency, ORAM has been ex-
plored in the distributed setting [61], [3], [33], [42], [32]. The
first multi-server ORAM was proposed by Stefanov et al. [61],
where the (single-server) Partition-ORAM [63] paradigm was
transformed into the multi-server setting to achieve O(1) client
bandwidth overhead and low computation at the servers. The
main limitation of this scheme is that it incurs high client
storage overhead (i.e., O(

√
N)) due to the Partition-ORAM

paradigm. Lu et al. [42] and Kushilevitz et al. [39] adapted
the hierarchical ORAM construction in [31] to the multi-server
setting to reduce the communication overhead. Abraham et al.
proposed a two-server ORAM scheme [3], which exploits the
XOR-PIR protocol [18] for oblivious retrieval. Gordon et al.
proposed a two-server ORAM scheme [32], which removes
the need of updating the position map component in the
tree-ORAM paradigm, thereby saving the factor of O(logN)
communication rounds incurred by accessing the position map
recursively at the server. Chan et al. [16] proposed a 3-server
construction with perfect security based on the hierarchical
model [31]. One of the most efficient multi-server ORAM
schemes is S3ORAM [33], which harnesses Shamir secret
sharing [57] to perform homomorphic computations efficiently
over the tree-ORAM layout with triplet eviction [22]. These
two schemes only offer semi-honest security.

Another line of distributed ORAM research focuses on
the context of multi-party computation in the RAM model
[24], [67], [23], [38]. We note that this setting is different
from the standard client-server setting, in which there is no
trusted party having full access to the data, and all the client
operations are emulated by multiple parties in a privacy-
preserving manner. The aim is to perform secure computation
in the RAM model where both instructions and functions
are hidden from participants and thus ORAM is simply used
as a building block. Due to the stronger privacy model, all
these distributed ORAM schemes are less efficient than the
distributed ORAM in the standard client-server setting. In
contrast to generic ORAM, there exist some special ORAMs
that conceal only either read or write patterns (but not both)
[11], [55], [65]. We note that most of these constructions are
more efficient than generic ORAMs since they target on the
specific operation type (read or write).

VII. DISCUSSION AND CONCLUSION

In this paper, we proposed a new multi-server active
ORAM framework called MACAO that provides integrity,

System call layer

Virtual File System (VFS)

NFS Client

RPC client
stub

Local file
system interface

System Call Layer

Virtual File System (VFS)

NFS server

RPC server stub

Local file system interface

MACAO Client

MACAO
Computation

Module

MACAO Server

Position
map

System Call Layer

Virtual File System (VFS)

NFS server

RPC server stub

Local file system interface

MACAO
Computation

Module

MACAO Server

⋮ ⋮⋮

netw
ork

Inter-server dedicated netw
ork

Fig. 16: The proposed ODFS model.

access pattern obliviousness against an active adversary,
and the ability to perform secure computation simultane-
ously. MACAO synergies authenticated secret sharing and tree
ORAM paradigm to offer low client communication and server
computation while achieving a high level of security and
privacy in the presence of active adversaries. We conducted
extensive experiments on actual cloud platforms to validate
the efficiency of MACAO compared with the state-of-the-art.

• Use-Case – Oblivious Distributed File System: Our main
objective to design MACAO is to enable oblivious storage
and secure computation against active adversaries in data
outsourcing applications. MACAO schemes can be integrated
into existing distributed file systems to enable secure com-
putation with strong security and privacy including data con-
fidentiality, integrity and access pattern obliviousness against
active adversaries. For instance, we sketch in Figure 16 an
instance of Oblivious Distributed File System (ODFS) by
integrating MACAO (i.e., gray boxes) into the Network File
System (NFS) [58]. Since NFS components are independent
with MACAO ones, the performance of ODFS can be easily
estimated given that the cost of every MACAO component was
presented in detail in §V-B. We leave the actual integration
and implementation of ODFS to our future work. Another
critical feature is to support the multi-user setting in ODFS,
where multiple users can obliviously access the outsourced
data concurrently. This requires a trusted proxy (as in [56])
to handle concurrent requests and enforce the access control
policy. Our MACAO can also serve as the oblivious access
protocol between the proxy and the servers. We leave such an
implementation to our future work.

REFERENCES

[1] “Libtomcrypt, a fairly comprehensive, modular and portable crypto-
graphic toolkit,” Available at https://github.com/libtom/libtomcrypt.

[2] “Zeromq distributed messaging,” Available at http://zeromq.org.
[3] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren,

“Asymptotically tight bounds for composing oram with pir,” in IACR
International Workshop on Public Key Cryptography. Springer, 2017,
pp. 91–120.

[4] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel sgx.” in NDSS, 2018.

[5] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam, “Verifiable oblivi-
ous storage,” in International Workshop on Public Key Cryptography.
Springer, 2014, pp. 131–148.

13

https://github.com/libtom/libtomcrypt
http://zeromq.org

[6] A. J. Aviv, S. G. Choi, T. Mayberry, and D. S. Roche, “Oblivisync:
Practical oblivious file backup and synchronization,” in NDSS, 2017.

[7] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[8] A. Ben-Efraim and E. Omri, “Turbospeedz: Double your online spdz!
improving SPDZ using function dependent preprocessing,” in Applied
Cryptography and Network Security — ACNS 2019, June 5-7, 2019, to
appear. Available at https://eprint.iacr.org/2019/080.

[9] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing oblivious access on cloud storage: the gap, the fallacy,
and the new way forward,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 837–849.

[10] E.-O. Blass, T. Mayberry, and G. Noubir, “Multi-client oblivious
ram secure against malicious servers,” in International Conference on
Applied Cryptography and Network Security. Springer, 2017, pp. 686–
707.

[11] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward robust
hidden volumes using write-only oblivious ram,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014, pp. 203–214.

[12] E. Boyle and M. Naor, “Is there an oblivious ram lower bound?” in
Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science. ACM, 2016, pp. 357–368.

[13] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of CRYPTOLOGY, vol. 13, no. 1, pp. 143–202,
2000.

[14] A. Chakraborti, A. J. Aviv, S. G. Choi, T. Mayberry, D. S. Roche, and
R. Sion, “roram: Efficient range oram with o (log2 n) locality.” in NDSS,
2019.

[15] A. Chakraborti and R. Sion, “Concuroram: High-throughput stateless
parallel multi-client oram,” in NDSS, 2019.

[16] T.-H. H. Chan, J. Katz, K. Nayak, A. Polychroniadou, and E. Shi,
“More is less: Perfectly secure oblivious algorithms in the multi-server
setting,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2018, pp. 158–188.

[17] B. Chen, H. Lin, and S. Tessaro, “Oblivious parallel ram: Improved
efficiency and generic constructions,” in Theory of Cryptography Con-
ference. Springer, 2016, pp. 205–234.

[18] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
1998.

[19] I. Damgård and M. Jurik, “A generalisation, a simpli. cation and
some applications of paillier’s probabilistic public-key system,” in
International Workshop on Public Key Cryptography. Springer, 2001,
pp. 119–136.

[20] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology–CRYPTO 2012. Springer, 2012, pp. 643–662.

[21] J. Dautrich and C. Ravishankar, “Combining oram with pir to minimize
bandwidth costs,” in Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy. ACM, 2015, pp. 289–296.

[22] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs,
“Onion oram: A constant bandwidth blowup oblivious ram,” in Theory
of Cryptography Conference. Springer, 2016, pp. 145–174.

[23] J. Doerner and A. Shelat, “Scaling oram for secure computation,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 523–535.

[24] S. Faber, S. Jarecki, S. Kentros, and B. Wei, “Three-party oram for
secure computation,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2015,
pp. 360–385.

[25] C. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov, “Bucket
oram: single online roundtrip, constant bandwidth oblivious ram,” IACR
Cryptology ePrint Archive, Report 2015, 1065, Tech. Rep., 2015.

[26] S. Garg, P. Mohassel, and C. Papamanthou, “Tworam: round-optimal
oblivious ram with applications to searchable encryption,” IACR Cryp-
tology ePrint Archive, 2015: 1010, Tech. Rep., 2015.

[27] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”
in Stoc, vol. 9, no. 2009, 2009, pp. 169–178.

[28] C. Gentry, K. A. Goldman, S. Halevi, C. Julta, M. Raykova, and
D. Wichs, “Optimizing oram and using it efficiently for secure compu-
tation,” in International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 2013, pp. 1–18.

[29] I. Goldberg, “Improving the robustness of private information retrieval,”
in 2007 IEEE Symposium on Security and Privacy (SP’07). IEEE,
2007, pp. 131–148.

[30] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proceedings of the nineteenth annual ACM
symposium on Theory of computing. ACM, 1987, pp. 182–194.

[31] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM (JACM), vol. 43, no. 3, pp.
431–473, 1996.

[32] S. D. Gordon, J. Katz, and X. Wang, “Simple and efficient two-server
oram,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2018, pp. 141–157.

[33] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and T. Nguyen,
“S3oram: A computation-efficient and constant client bandwidth blowup
oram with shamir secret sharing,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 491–505.

[34] T. Hoang and C. Ozkaptan D., “Implementation of s3oram,” Available
at https://github.com/thanghoang/S3ORAM, 2017.

[35] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing
general access structure,” Electronics and Communications in Japan
(Part III: Fundamental Electronic Science), vol. 72, no. 9, pp. 56–64,
1989.

[36] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making spdz great
again,” in Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer, 2018, pp. 158–189.

[37] M. Keller and P. Scholl, “Efficient, oblivious data structures for mpc,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2014, pp. 506–525.

[38] M. Keller and A. Yanai, “Efficient maliciously secure multiparty com-
putation for ram,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2018, pp.
91–124.

[39] E. Kushilevitz and T. Mour, “Sub-logarithmic distributed oblivious ram
with small block size,” in IACR International Workshop on Public Key
Cryptography. Springer, 2019, pp. 3–33.

[40] K. G. Larsen and J. B. Nielsen, “Yes, there is an oblivious ram lower
bound!” in Annual International Cryptology Conference. Springer,
2018, pp. 523–542.

[41] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schiffman,
“Shroud: Ensuring private access to large-scale data in the data center,”
in Presented as part of the 11th {USENIX} Conference on File and
Storage Technologies ({FAST} 13), 2013, pp. 199–213.

[42] S. Lu and R. Ostrovsky, “Distributed oblivious ram for secure two-
party computation,” in Theory of Cryptography. Springer, 2013, pp.
377–396.

[43] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Ku-
biatowicz, and D. Song, “Phantom: Practical oblivious computation in a
secure processor,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. ACM, 2013, pp. 311–324.

[44] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder, “Privacy
and access control for outsourced personal records,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 341–358.

[45] M. Maffei, G. Malavolta, M. Reinert, and D. Schroder, “Maliciously
secure multi-client oram,” in International Conference on Applied
Cryptography and Network Security. Springer, 2017, pp. 645–664.

[46] T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private file retrieval
by combining oram and pir.” in NDSS. Citeseer, 2014.

[47] T. Moataz, T. Mayberry, and E.-O. Blass, “Constant communication
oram with small blocksize,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 862–873.

[48] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 19–38.

[49] V. Narkhede, K. Joshi, A. J. Aviv, S. G. Choi, D. S. Roche, and T. Finin,

14

https://eprint.iacr.org/2019/080
https://github.com/thanghoang/S3ORAM

“Managing cloud storage obliviously,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, 2016, pp. 990–993.

[50] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999, pp. 223–
238.

[51] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Advances in
Cryptology–CRYPTO 2010. Springer, 2010, pp. 502–519.

[52] J. Plenz, “nocache - minimize filesystem caching effects,” Available at
https://github.com/Feh/nocache.

[53] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and
S. Devadas, “Ring oram: Closing the gap between small and large client
storage oblivious ram.” IACR Cryptology ePrint Archive, vol. 2014, p.
997, 2014.

[54] D. S. Roche, A. Aviv, and S. G. Choi, “A practical oblivious map data
structure with secure deletion and history independence,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 178–197.

[55] D. S. Roche, A. Aviv, S. G. Choi, and T. Mayberry, “Deterministic,
stash-free write-only oram,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 507–521.

[56] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro, “Taostore:
Overcoming asynchronicity in oblivious data storage,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 198–217.

[57] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[58] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck, “Network file system (nfs) version 4
protocol,” Tech. Rep., 2003.

[59] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with
o ((logn) 3) worst-case cost,” in Advances in Cryptology–ASIACRYPT
2011. Springer, 2011, pp. 197–214.

[60] V. Shoup, “Ntl: A library for doing number theory,” Available at https:
//www.shoup.net/ntl/.

[61] E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 247–258.

[62] ——, “Oblivistore: High performance oblivious cloud storage,” in 2013
IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 253–267.

[63] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious ram,”
arXiv preprint arXiv:1106.3652, 2011.

[64] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: an extremely simple oblivious ram protocol,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer and
Communications security. ACM, 2013, pp. 299–310.

[65] S. Tople, Y. Jia, and P. Saxena, “Pro-oram: Practical read-only oblivious
{RAM},” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2019), 2020.

[66] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of
the goldreich-ostrovsky lower bound,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 850–861.

[67] X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi, “Scoram:
oblivious ram for secure computation,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 191–202.

[68] X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 215–226.

[69] P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage,”
in Proceedings of the 15th ACM conference on Computer and commu-
nications security. ACM, 2008, pp. 139–148.

[70] P. Williams, R. Sion, and A. Tomescu, “Privatefs: A parallel oblivious
file system,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 977–988.

APPENDIX

We first prove the security of matrix multiplication proto-
cols in §IV-B1. We define the security model for the matrix
multiplication with verifiability as follows.

Definition 3 (Matrix multiplication with verifiability). We first
define the ideal world and real world as follows.

Ideal world. Let Fmult be an ideal functionality, which
performs the matrix multiplication for each client request as
follows. In each time step, the environment Z specifies two
matrices X and Y as the client’s input. The client sends X
and Y to Fmult. Fmult notifies the simulator Smult (without
revealing X and Y to Smult). If Smult returns ok to Fmult,
Fmult computes and sends Z = X × Y to the client. The
client then returns Z to the environment Z . If Smult returns
abort to Fmult, Fmult returns ⊥ to the client.

Real world. In the real world, Z specifies an input (X,Y)
to the client. The client executes the matrix multiplication
protocol Π with servers (S0, . . . , S`−1). The environment Z
gets the view of the adversary A after every operation. The
client outputs to the environment Z the output of the protocol
Π or abort.

We say that a protocol ΠF securely realizes the ideal
functionality Fmult in the presence of a malicious adversary
corrupting t servers iff for any PPT real-world adversary that
corrupts up to t servers, there exists a simulator Smult, such that
for all non-uniform, polynomial-time environment Z , there
exists a negligible function negl such that
|Pr[REALΠF ,A,Z(λ) = 1]−Pr[IDEALFmult,Smult,Z(λ) = 1]| ≤ negl(λ).

Proof of Lemma 1: We prove by constructing a simulator
such that the environment Z cannot distinguish between the
real protocol and the ideal functionality. We define the simu-
lator Smult in the ideal world and a sequence of hybrid games
as follows.

The simulator Smult. The simulator follows the honest pro-
cedure on behalf of the client to multiply two dummy matrices
X ∈ Fn×mp and Y ∈ Fm×pp . During the multiplication, if the
client (executed by the simulator) aborts then the simulator
sends abort to Fmult and stops. Otherwise, the simulator
returns ok to Fmult (causing it to output the result to the client).

Sequence of Hybrid Games. We define a sequence of hybrid
games to show that the following real world and the simulation
in the ideal world are statistically indistinguishable:
|Pr[REALΠF ,A,Z(λ) = 1]−Pr[IDEALFmult,Smult,Z(λ) = 1]| ≤ negl(λ).

Game 0. This is the real game REALΠF ,A,Z(λ) with an
environment Z and three servers in the presence of an adver-
sary A presented in Definition 3. In this case, the real matrix
multiplication protocol ΠF is the one presented in Figure 2.
Without loss of generality, we assume server S0 is corrupted.

Game 1. In this game, the client locally computes Z = X×
Y. Whenever the client executes the protocol ΠF with three
servers, if abort does not occur, the client uses their locally
computed Z for further processing. The difference between
Game 0 and Game 1 happens if at some point, where the
client obtains an incorrect computation from the servers, but
unable to detect because the adversary generates a valid MAC
of the computation (thus the abort does not occur). We claim
that Game 0 and Game 1 are statistically indistinguishable. The

15

https://github.com/Feh/nocache
https://www.shoup.net/ntl/
https://www.shoup.net/ntl/

intuition is to show that if the adversarial server ever cheats by
modifying the protocol input during the computation, it will
be caught with high probability (thereby forcing the adversary
to follow the protocol faithfully).

Let 〈X〉i = (JXKi, JαXKi) and 〈X〉i = (JYKi, JαYKi)
be the authenticated shares of X and Y for every server
Si, 0 ≤ i ≤ 2. Due to additive secret sharing, we have
that X =

∑
i JXKi, Y =

∑
i JYKi, αX =

∑
i JαXKi and

αY =
∑
i JαYKi. By replicated secret sharing, Z = X ×Y

can be expressed as
Z =(JXK0 + JXK1 + JXK2)× (JYK0 + JYK1 + JYK2)

=
(
JXK0 × JYK0 + JXK0 × JYK1 + JXK1 × JYK0

)
S0

+(
JXK1 × JYK1 + JXK1 × JYK2 + JXK2 × JYK1

)
S1

+ (1)(
JXK2 × JYK2 + JXK0 × JYK2 + JXK2 × JYK0

)
S2

=(R
(0)
0 + R

(0)
1 + R

(0)
2)S0 + (R

(1)
0 + R

(1)
1 + R

(1)
2)S1+

(R
(2)
0 + R

(2)
1 + R

(2)
2)S2 (2)

=

(
R

(0)
0 + R

(1)
0 + R

(2)
0

)
S0

+
(
R

(0)
1 + R

(1)
1 + R

(2)
1

)
S1

+(
R

(0)
2 + R

(1)
2 + R

(2)
2

)
S2(

R
(0)
1 + R

(1)
1 + R

(2)
1

)
S0

+
(
R

(0)
2 + R

(1)
2 + R

(2)
2

)
S1

+(
R

(0)
0 + R

(1)
0 + R

(2)
0

)
S2

(3)
S0 can cheat at three stages: (i) before the re-sharing phase
where S0 modifies their own shares (JXK0, JYK0, JXK1, JYK1)
(Equation 1); (ii) during the re-sharing phase where S0 sends
inconsistent shares to other servers (Equation 2); (iii) after
the re-sharing phase where S0 deviates the linear combination
(Equation 3). It can be seen that (ii) and (iii) may result
in the servers storing inconsistent copies with each other,
which can be detected at the output phase of the protocol.
Specifically, every server Si performs the random linear com-
bination of all components JzjKi in the resulting matrix JZKi as
JxKi ←

∑
j rjJzjKi. Due to RSS, JxKi will be computed by two

servers on their own shares. This means if JZKi is inconsistent
from two servers, the client will receive two different xi and,
therefore, can tell whether one of the servers has cheated.

Finally, we show that if the adversary adds any error to his
local computation before the re-sharing phase (i.e., stage (i)),
they will also get caught. Let T be an error introduced by S0

during its local computation. By Equation 1, the computation
will now become (X×Y+T). Hence, to make the client not
abort, S0 should modify its shares of the MACs in such a way
that all servers will compute the valid share of the MAC of the
form α(X×Y +T) at the end. Remark that the MAC of the
multiplication X ×Y is α(X ×Y), which can be computed
by multiplying αX with Y via replicated secret sharing as
αX×Y =(JαXK0 + JαXK1 + JαXK2)× (JYK0 + JYK1 + JYK2)

=
(
JαXK0 × JYK0 + JαXK0 × JYK1 + JαXK1 × JYK0

)
S0

+(
JαXK1 × JYK1 + JαXK1 × JYK2 + JαXK2 × JYK1

)
S1

+

(4)(
JαXK2 × JYK2 + JαXK2 × JYK0 + JαXK0 × JYK2

)
S2
.

Let T′ be an error introduced by S0 during the local
computation in Equation 4. As shown above, the resulting
MAC computation will be of the form (αX×Y +T′). Thus,
α(X×Y) + T′ = α(X×Y + T) ⇐⇒ T′ = αT. (5)

Since α is the global MAC key known only be the client, the
probability that S0 can generate a valid (T,T′) pair is 1

|Fp| .
That means the adversary cannot deviate from the protocol,
otherwise, they will cause the client to abort the protocol with

high probability.

Game 1’. In this game, the client executes ΠF with three
servers using dummy matrices, instead of the one chosen
by the environment Z . We introduce the ideal functionality
Fmult, which the client queries to answer the environment
requests. During executing ΠF , if the client does not abort,
the output of F is forwarded to Z . We claim that Game 1
and Game 2 are statistically indistinguishable, in which the
view of the adversary can be simulated given the view of
the honest servers. At the beginning of the ΠF protocol, the
client distributes the authenticated share of the multiplication
matrices to each server. Due to the perfect secrecy of additive
secret sharing, all these shares are uniformly distributed. After
the local computation, each server re-shares the computed
result with additive secret sharing and distributes the shares
to other servers (i.e., step 1 in Figure 2). Such shares are
also uniformly distributed due to the security of additive secret
sharing. All these properties permit to simulate the view of the
adversary given the view of the honest servers.

Game 0’. We define Game 0’ similar to Game 0 except that
the client uses dummy matrices to interact with the servers,
instead of the ones provided by the environment Z . The client
queries the ideal functionality Fpir on the actual input provided
by Z and forwards the output to Z . We claim that Game 1’
and Game 0’ are indistinguishable using the same argument
as between Game 1 and Game 0. We can see that Game 0’ is
the ideal game IDEALFmult,Smult,Z with simulator Smult and the
environment Z .

Putting all the games together, we have that Game 0 ≡
Game 1 ≡ Game 1’ = Game 0’ and this completes the proof.

Proof of Corollary 1: This proof can be derived from
the proof of Lemma 1 and the one in [20] so that we will
not present it in detail due to repetition. Intuitively, the proof
works by defining the simulator and the hybrid games similar
to the ones in the proof of Lemma 1 with a slight tweak
as follows. It was proven in [20] that the probability that
the adversary can cheat during the SPDZ multiplication over
two shared values is 1/|Fp|. Thus, we can follow the proof
in [20] and present it for the vectorized values (i.e., matrix)
to construct Game 1. Similarly, it has been also proven in
[20] that the view of the ideal process and the real process is
statistically indistinguishable by the SPDZ multiplication over
single values. We can follow [20] to construct Game 1’ for
vectorized values.

We now prove the security of multi-server PIR protocols
in §IV-B2. We first present the security model of multi-server
PIR based on simulation as follows.

Definition 4 (Multi-server PIR with verifiability). We first
define the ideal world and real world as follows.

Ideal world. Let Fpir be an ideal functionality, which main-
tains a version of the database on behalf of the client and
answers the client’s requests as follows.

• Setup: An environment Z provides a database B to the client.
The client sends B to the ideal functionality Fpir. Fpir stores
B and notifies the simulator Spir the completion of the setup,
but not the content of B. The simulator Spir returns ok or abort
to Fpir. Fpir then returns ok or ⊥ to the client accordingly.
• Retrieve: In each time step, the environment Z specifies an

16

index idx as the client’s input. The client sends idx to Fpir.
Fpir notifies the simulator Spir (without revealing idx to Spir).
If Spir returns ok to Fpir, Fpir sends b← B[idx] to the client.
The client then returns b to the environment Z . If Spir returns
abort to Fpir, Fpir returns ⊥ to the client.

Real world. In the real world, Z gives the client a database B.
The client executes the Setup with ` servers (S0, . . . , S`−1).
At each time step, Z specifies an input idx to the client. The
client executes the PIR protocol Π with (S0, . . . , S`−1). The
environment Z gets the view of the adversary A after every
operation. The client outputs to the environment Z the output
of Π or abort.

We say that a protocol ΠF securely realizes the ideal
functionality Fpir in the presence of a malicious adversary
corrupting t servers iff for any PPT real-world adversary that
corrupts up to t servers, there exists a simulator Spir such that
for all non-uniform, polynomial-time environment Z , there
exists a negligible function negl such that
|Pr[REALΠF ,A,Z(λ) = 1]−Pr[IDEALFpir,Spir,Z(λ) = 1]| ≤ negl(λ).

Proof of Lemma 2: We prove this by constructing a
simulator such that the environment Z cannot distinguish
between the real protocol and the ideal functionality. We define
the simulator Spir in the ideal world and a sequence of hybrid
games as follows.

The simulator Spir. To simulate the setup protocol, the
simulator follows the honest setup procedure with a dummy
database B′ containing N dummy data items, on behalf of
the client. For the retrieval simulation, the simulator follows
the honest retrieval procedure, on behalf of the client, to read
a block with dummy ID. During the access operation, if the
client (executed by Spir) aborts then the simulator sends abort
to Fpir and stops. Otherwise, the simulator returns ok to Fpir.

Sequence of Hybrid Games. We define a sequence of hybrid
games to show that the following real world and the simulation
in the ideal world are statistically indistinguishable:
|Pr[REALΠF ,A,Z(λ) = 1]−Pr[IDEALFpir,Spir,Z(λ) = 1]| ≤ negl(λ).

Game 0. This is the real game REALΠF ,A,Z(λ) with an en-
vironment Z and three servers in the presence of an adversary
A. presented in Definition 3. In this case, the real PIR protocol
ΠF is the one presented in Figure 4. Without loss of generality,
we assume server S0 is corrupted.

Game 1. In this game, the client maintains a copy of the
database locally. Whenever the client privately retrieves a data
item block from the servers, if abort does not occur, the
client uses its version stored locally for further processing. The
difference between Game 0 and Game 1 happens if at some
point, the client retrieves an incorrect item from the servers,
but unable to detect since the adversarial server generates a
valid MAC for it (thus the abort does not occur). We claim
that Game 0 and Game 1 are statistically indistinguishable.
Similar to other proofs, the intuition is to show that if the
adversarial server ever cheats during the PIR computation, it
will be caught with high probability as follows.

Every server Si ∈ {S0, S1, S2} stores two authenticated
shares of the database B as 〈B〉i = (JBKi, JαBKi) =(
(JbjKi), (JαbjKi)

)
and 〈B〉i+1 = (JBKi+1, JαBKi+1) =(

(JbjKi+1), (JαbjKi+1)
)
. According to the XOR-PIR protocol,

every Si aggregates (i.e., XOR) all authenticated shares of the

blocks that correspond with the value ‘1’ in the client queries.
Let e0 and e1 be the queries that the client sends to S0, which
are the binary strings of length `, where ` is the number of
database blocks. Let ê0 (resp. ê1) be the error introduced by
S0 during the bitwise operations between JBK0 (resp. JBK1)
and e0 (resp. e1). So, the reply that the client obtains from S0

is of the form
JbK(0)

0 ⊕ e0 =
⊕

∀j : e0[j]=1

JbjK0

JbK(0)
1 ⊕ e1 =

⊕
∀j : e1[j]=1

JbjK1

(6)

Since S1, S2 are honest, the client obtains honest answers
JbK(1)

0 , JbK(1)
1 , JbK(0)

2 , JbK(1)
2 from them. Due to XOR-PIR,

the client reconstructs the following shares from the server:

JbK0 ⊕ e0 = JbK(0)
0 ⊕ JbK(1)

0 = JbK0 + t0
JbK1 ⊕ e1 = JbK(0)

1 ⊕ JbK(1)
1 = JbK1 + t1

JbK2 = JbK(0)
2 ⊕ JbK(1)

2 = JbK2

(7)

By additive secret sharing, the client recovers a block of
the form b′ = JbK0 + JbK1 + JbK2 + t0 + t1 = b + t where
t = t0 + t1 ∈ Fp. Equation 7 implies that if the adversary
introduces any bit of error during the XOR computation, the
client will recover incorrect shares of the original block b
thereby, obtaining an arbitrary block b′ different from b. In
order to make the client not abort, the adversary must inject
the errors during the bitwise computation between 〈αB〉0 with
e0 and 〈αB〉1 with e1, in such a way that allows the client to
reconstruct a valid MAC for b′, i.e., αb′ = αb+αt. Since α is
unknown, the probability that the adversary can cheat to make
the client reconstruct a valid MAC for b′ is 1

|Fp| . That means
the adversary must follow the protocol faithfully, otherwise
they will cause the client to abort with high probability.

Game 1’. The client executes the Setup with a dummy
database B′ (as similar to Spir) instead of the one provided
by Z . For each request, the client executes a dummy retrieval
with three servers instead of the one chosen by Z . In this game,
we use the ideal functionality Fpir, which store the database
provided by Z in the setup phase, to answer the environment
requests. For each retrieval, if the client does not abort, it
forwards the output of Fpir to Z .

We say that Game 1 and Game 1’ are indistinguishable.
Notice that if the client does not abort in these games, then
the data item is retrieved correctly and the corrupted server
follows the protocol faithfully as the honest servers. In our PIR
protocol, the database is stored in the form of authenticated
shares at the server, which are uniformly distributed due to
the perfect privacy of additive secret sharing. The PIR queries
are shared by XOR secret sharing, which are also uniformly
distributed due to the perfect secrecy of XOR. Due to PIR,
the computation is performed over the entire database at each
server. All these security properties indicate that the view of
the adversary can be simulated given the view of the honest
servers that execute the XOR-PIR protocol with the client.

Game 0’. We define Game 0’ similar to Game 0 except that
the client uses a dummy database and a dummy retrieval index
to interact with the servers, instead of the ones provided by the
environment Z . The client queries the ideal functionality Fpir

on the actual input provided by Z and forwards the output to
Z . We claim that Game 1’ and Game 0’ are indistinguishable

17

using the same argument as between Game 1 and Game 0.
Game 0’ is the ideal game IDEALFpir,Spir,Z with simulator Spir
and the environment Z . Putting all the games together, we
have that Game 0 ≡ Game 1 ≡ Game 1’ ≡ Game 0’ and this
completes the proof.

Proof of Corollary 2:

This can be derived from the proof of Lemma 2 so we
will not repeat due to repetition. Intuitively, we construct the
Simulator Spir and the hybrid games similar to the ones in
the proof of Lemma 2, with a small change as follows. This
protocol interprets the PIR database as a matrix to execute the
matrix multiplication protocol via replicated secret sharing. We
have shown in the proof of Lemma 1 that the probability that
the adversary can inject a malicious input to the stage (i) of
the matrix multiplication without being caught is 1

|Fp| . We can
use this argument to construct Game 1. In Game 1’, we can
argue that the view of the ideal process and the real process
is statistically indistinguishable because the retrieval queries
in this PIR are in the form of additive secret sharing, and
therefore, are uniformly distributed.

Proof of Corollary 3: Similar to the proof of Corollary 2,
this proof can be derived from the proof of Lemma 2 by
replacing the XOR operations with the matrix multiplication
protocol by SPDZ secret sharing.

Proof of Theorem 1: We define a simulator in the ideal
world and a sequence of hybrid games as follows.

The simulator Soram. To simulate the setup protocol, the
simulator follows the honest setup procedure with a database
DB′ containing N blocks bi for each bi

$← {0, 1}|b|, on behalf
of the client. For the access simulation, the simulator follows
the honest access protocol, on behalf of the client, to read a
dummy block with dummy ID. During the access operation,
if the client protocol (executed by the simulator) aborts then
the simulator sends abort to Foram and stops. Otherwise, the
simulator returns ok to Foram.

Sequence of Hybrid Games. We define a sequence of hybrid
games to show that the following real world and the simulation
in the ideal world are statistically indistinguishable:
|Pr[REALΠF ,A,Z(λ) = 1]−Pr[IDEALForam,Soram,Z(λ) = 1]| ≤ negl(λ).

Game 0. This is the real game REALΠF ,A,Z(λ) with an
environment Z and ` servers in the presence of an adversary
A as presented in Definition 1. In this game, the real ORAM
access protocol ΠF is the one presented in Figure 8, where the
retrieval and evictions subroutines are presented in Figure 9,
Figure 10, Figure 11, Figure 12.

Game 1. In this game, the client maintains a copy of the data
blocks bi in plaintext locally. Whenever the client accesses a
block bi from the servers, If abort does not occur, the client
uses its plaintext stored locally for further processing. The
difference between Game 0 and Game 1 happens if, at some
point, the client retrieves a modified block from the servers,
but unable to detect since the adversarial server generates a
valid MAC for it (thus the abort does not occur).

We claim that Game 0 and Game 1 are statistically indis-
tinguishable as follows. First, MACAO schemes harness multi-
server PIR protocols based on XOR/RSS/SPDZ scheme to
perform the retrieval phase. We have shown that all these pro-
tocols are secure against the malicious adversary by Lemma 2,

Corollary 2 and Corollary 3, where the probability that the
adversary can tamper with the block and forge a valid MAC
is 1
|Fp| . Second, MACAO schemes use the authenticated matrix

multiplication protocols by RSS or SPDZ to perform the
eviction. By Lemma 1 and Corollary 1, all these protocols are
secure against the malicious adversary, where the probability
that the adversary can deviate from the protocol without being
caught is 1

|Fp| .

Game 1’. In this game, the client executes the Setup with a
dummy database DB′ similar to the simulation, instead of the
one provided by the environment Z . For each access operation,
the client executes a dummy access with ` servers instead of
the one chosen by Z . We also introduce the ideal functionality
Foram storing the database provided by the environment Z
in the setup phase, which the client queries to answer the
environment requests. At each time of access, if the client
does not abort, it forwards the output of Foram to Z .

We claim that Game 1 and Game 1’ are statistically
indistinguishable as follows. In both games, if the client does
not abort then the data block is retrieved correctly. That means
the corrupted server follows the protocol faithfully as the
honest servers. We show that the view of the adversary in
these games can be simulated given the view of the honest
servers that execute Access protocol of MACAO with the client
as follows. In MACAO, the client database is stored in the
ORAM tree at the server in the form of authenticated shares,
which achieves a perfect security due to the perfect privacy
of additive secret sharing. MACAO schemes harness the tree-
ORAM paradigm, where the client privately assigns each block
to a path selected uniformly at random. Once a block is
retrieved, the client locally assigns it to a new random path,
and therefore, it is unknown to the server. Thus, given any data
request sequence, the server observes a sequence of random
retrieval paths. The eviction path in MACAO is deterministic
following the reverse lexicographical order and therefore, it
is publicly known by anyone. MACAO schemes employ the
push-down strategy in [66], which achieves a negligible failure
probability with fixed system parameters (e.g., bucket size,
stash size) by Lemma 3. Therefore, given any two data request
sequences of the same length, the servers observe two access
patterns that are statistically indistinguishable from each other
(the statistical bit comes from the negligible failure probability
of push-down strategy). Moreover, any computation performed
by the servers is secure due to the security multi-server PIR
protocols by Corollary 2, Lemma 2, Corollary 3 and multi-
plicative homomorphic properties of SPDZ and RSS schemes.
These security properties show that the view of the adversarial
server can be simulated given the view of the honest servers
in MACAO.

Game 0’. We define Game 0’ similar to Game 0 except
that the client uses a dummy database and dummy access
operations to interact with the servers, instead of the ones
provided by the environment Z . The client queries the ideal
functionality F on the input of Z and forwards its output to
the environment Z . We claim that Game 1’ and Game 0’ are
indistinguishable using the same argument as between Game
1 and Game 0. It is easy to see that Game 0’ is the ideal game
IDEALF,S,Z with simulator S and the environment Z .

Putting all the games together, we have that Game 0 ≡
Game 1 ≡ Game 1’ ≡ Game 0’ and this completes the proof.

18

	Introduction
	ORAM Challenges and Desired Properties
	Our Contributions

	Preliminaries
	Secret Sharing
	Multi-server Private Information Retrieval
	Tree-ORAM

	System and Security Models
	The Proposed Framework
	ORAM in the Malicious Setting
	Our Sub-Protocols
	Authenticated Matrix Multiplication in the Shared Setting
	Authenticated PIR in the Shared Setting
	Oblivious Eviction via Permutation Matrix

	MACAO Schemes
	rss Scheme
	spdz Scheme
	MACAO Security

	Cost Analysis
	Extensions
	Reducing Bandwidth Overhead
	Reducing Client Storage Overhead

	Implementation and Performance Evaluation
	Implementation
	Performance Evaluation
	Configuration and Methodology
	Setup Delay
	Overall Result
	Cost Breakdown
	 MACAO Performance with Varying Privacy Levels

	Related Works
	Discussion and Conclusion
	References

