
Cryptographic Reverse Firewalls for

Interactive Proof Systems

Chaya Ganesh1, Bernardo Magri2, and Daniele Venturi3

1Indian Institute of Science, Bangalore, India
chaya@iisc.ac.in

2Aarhus University, Aarhus, Denmark
magri@cs.au.dk

3Sapienza University, Rome, Italy
venturi@di.uniroma1.it

Abstract

We study interactive proof systems (IPSes) in a strong adversarial setting where the machines
of honest parties might be corrupted and under control of the adversary. Our aim is to answer
the following, seemingly paradoxical, questions:

• Can Peggy convince Vic of the veracity of an NP statement, without leaking any infor-
mation about the witness even in case Vic is malicious and Peggy does not trust her
computer?

• Can we avoid that Peggy fools Vic into accepting false statements, even if Peggy is mali-
cious and Vic does not trust her computer?

At EUROCRYPT 2015, Mironov and Stephens-Davidowitz introduced cryptographic reverse
firewalls (RFs) as an attractive approach to tackling such questions. Intuitively, a RF for
Peggy/Vic is an external party that sits between Peggy/Vic and the outside world and whose
scope is to sanitize Peggy’s/Vic’s incoming and outgoing messages in the face of subversion of
her/his computer, e.g. in order to destroy subliminal channels.

In this paper, we put forward several natural security properties for RFs in the concrete
setting of IPSes. As our main contribution, we construct efficient RFs for different IPSes derived
from a large class of Sigma protocols that we call malleable.

A nice feature of our design is that it is completely transparent, in the sense that our RFs
can be directly applied to already deployed IPSes, without the need to re-implement them.

Keywords: subversion; algorithm substitution attacks; cryptographic reverse firewalls; inter-
active proofs; zero knowledge; witness indistinguishability.

Contents

1 Introduction 1
1.1 Our Question . 2
1.2 Our Contributions . 3
1.3 Comparison with Mironov and Stephens-Davidowitz 6
1.4 Related Works . 6

2 Preliminaries 7
2.1 Notation . 7
2.2 Interactive Proofs . 8
2.3 Commitment Schemes . 9

3 Reverse Firewalls for Interactive Proofs 10
3.1 Subversion of the Prover . 11
3.2 Subversion of the Verifier . 12
3.3 Possibilities and Impossibilities . 13

3.3.1 Relating Zero Knowledge Preservation and Exfiltration Resistance 13
3.3.2 Relating Zero Knowledge Preservation and WI Preservation 15
3.3.3 Impossibility of Strong Exfiltration Resistance and Strong WI Preservation . 15
3.3.4 Impossibility of Strong Zero Knowledge Preservation 16
3.3.5 Impossibility of Tampering with the Verifier 16

4 Firewall Constructions from Malleable Sigma Protocols 17
4.1 Malleable Sigma Protocols . 18
4.2 HVZK Preservation . 18
4.3 Zero Knowledge Preservation . 19

5 Firewalls for Proving Compound Statements 23
5.1 AND Composition . 23
5.2 OR Composition . 25

6 Concrete Instantiations 29
6.1 Maurer’s Unifying (Pre-image) Protocol . 29
6.2 Examples of Malleable Sigma Protocols . 30

6.2.1 Proving Knowledge of a Discrete Logarithm 31
6.2.2 Proving Knowledge of a DDH Tuple . 31
6.2.3 Proving Knowledge of a Representation . 31
6.2.4 Proving Plaintext Knowledge . 31

6.3 Instantiation of Key-Malleable Commitments . 32

7 Conclusion 33

1 Introduction

An interactive proof system (IPS) allows a prover to convince a verifier about the veracity of a public
statement x ∈ L, where L is an NP language. The prover is facilitated by possessing a witness w
to the fact that, indeed, x ∈ L, and the interaction with the verifier may consist of several rounds
of communication, at the end of which the verifier outputs a verdict on the membership of x in L.

In order to be useful, an IPS should satisfy the following properties:

• Completeness: If x ∈ L, the honest prover (almost) always convinces the honest verifier.

• Soundness: If x 6∈ L, no (computationally bounded) malicious prover can convince the honest
verifier that x ∈ L. An even stronger guarantee, known as knowledge soundness [BG93], is to
require that the only way a prover can convince the honest verifier that x ∈ L is to “know”
a valid witness w corresponding to x. Such proofs1 are called proofs of knowledge (PoKs).

• Zero Knowledge (ZK): A valid proof reveals nothing beyond the fact that x ∈ L, and thus in
particular it leaks no information about the witness w, even in case the proof is conducted in
the presence of a (computationally bounded) malicious verifier [GMR89]. A weaker guarantee,
known as witness indistinguishability (WI) [FS90], is that, whenever there are multiple wit-
nesses attesting that x ∈ L, no (computationally bounded) malicious verifier can distinguish
whether a proof is conducted using either of two witnesses.

One of the motivations for studying IPSes with the above properties is that they are ubiquitous
in cryptography, with applications ranging from identification protocols [FS90], blind digital sig-
natures [OO90], and electronic voting [CGS97], to general-purpose maliciously secure multi-party
computation [GM82].

Sigma protocols. While WI/ZK PoKs exist for all of NP, based on minimal cryptographic
assumptions [FLS90, GMW91, GK96], efficiency is a different story. Fortunately, it is possible to
design practical interactive proofs for specific languages, typically in the form of so-called Sigma
protocols. Briefly, a Sigma protocol is a special type of IPS consisting of just three rounds, where
the prover sends a first message α (the commitment), the verifier sends a random string β (the
challenge), and finally the prover forwards a last message γ (the response). Sigma protocols satisfy
two main properties: The first one, known as special soundness, is a strong form of knowledge
soundness; the second one, known as honest-verifier zero knowledge (HVZK), is a weak form of the
zero knowledge property that only holds against honest-but-curious verifiers.

The applications of Sigma protocols to cryptographic constructions are countless (see, e.g., [FS87,
DG03, SV12, FKMV12, ORV14]). These results are perhaps surprising, as Sigma protocols only
satisfy HVZK and thus guarantee no security in the presence of malicious verifiers. In some cases,
the solution to this apparent paradox is due to a beautiful technique put forward by Cramer,
Damg̊ard, and Schoenmakers [CDS94], which allows to add WI to any Sigma protocol. Moreover,
it is relatively easy to transform any Sigma protocol into an interactive ZK PoK at the cost of
adding a single round of interaction [GK96].

1Sometimes, the term “proof” is used to refer to statistically sound IPSes, while computationally sound IPSes are
typically called “arguments”.

1

1.1 Our Question

The standard definitions of security for IPSes (implicitly) rely on the assumption that honest
parties can fully trust their machines. In practice, however, such an assumption may just be too
optimistic, as witnessed by the revelations of Edward Snowden about subversion of cryptographic
standards [PLS13, BBG13], and in light of the numerous (seemingly accidental) bugs in widespread
pieces of cryptographic software [LHA+12, CVE14, Jun15].

Motivated by the above incidents, we ask the following question which constitutes the main
source of inspiration for this work:

Can we design practical interactive proofs that remain secure even if the machines of
the honest parties running them have been tampered with?

In order to see why the above question is well motivated and not trivial, let us analyze the dramatic
consequences of subverting the prover of ZK IPSes. Clearly, the problem of subversion-resistant
interactive zero knowledge is just impossible in its utmost generality, as a subverted prover could
just reveal the witness to the verifier. However, one may argue that these kind of attacks are easily
detectable, and thus can be avoided.

The problem becomes more interesting if we restrict the subversion to be undetectable, as
suggested by Bellare, Paterson, and Rogaway [BPR14] in their seminal work on subversion of
symmetric encryption, where the authors show how to subvert any sufficiently randomized cipher
in an undetectable manner, using rejection sampling. A moment of reflection shows that their
attack can be adapted to the case of IPSes.2 The solution proposed by [BPR14] is to rely on
deterministic symmetric encryption. Unfortunately, this approach is not viable for the case of
IPSes, as it is well-known that interactive proofs with deterministic provers can be zero knowledge
only for trivial languages [Gol01, §4.5].

Reverse firewalls. The above described undetectable attacks show that the problem of designing
IPSes that remain secure even when run on untrusted machines is simply impossible if we are not
willing to make any further assumption. In this paper, we study how to tackle subversion attacks
against interactive proofs in the framework of “cryptographic reverse firewalls (RFs)”, introduced
by Mironov and Stephens-Davidowitz [MS15]. In such a setting, both the prover and the verifier are
equipped with their own RF, whose scope is solely to sanitize the parties’ incoming and outgoing
messages in the face of subversion.

Importantly, neither the prover nor the verifier put any trust in the RF, meaning that they
are not allowed to share secrets with the firewall itself. The hope is that an uncorrupted3 RF can
provide meaningful security guarantees even in case the honest prover’s and/or verifier’s machines
have been tampered with. Note that a RF can never “create security”, as it does not even know
the inputs to the protocol, but at best can preserve the security guarantees satisfied by the initial
IPS. At the same time, the RF should not ruin the functionality of the underlying IPS, in the sense
that the sanitized IPS should still work in case no subversion takes place.

2In particular, a subverted prover with a hardwired secret key k for a pseudorandom function Fk(·), could sample
the random coins r(i) needed to generate the honest prover’s message m(i) (for round i ∈ N) multiple times, until
Fk(m(i)) leaks one bit of the witness. This attack works provided that at least one of the prover’s messages has
high-enough min-entropy.

3Clearly, if both the machine of the honest party and the firewall are corrupted, there is no hope for security. On
the other hand, in case the machine is honest and the firewall is corrupt, the underlying protocol is still secure, since
we can simply think of the RF as being part of the adversary [DMS16].

2

One of the results by Mironov and Stephens-Davidowitz is the construction of a general-purpose
RF that can be used in order to preserve both functionality and security of any two-party protocol.
It is important to note that since ZK/WI IPSes are a special case of secure two-party computation,
their RF construction already seems to solve our problem.4 However, the solution of [MS15]
increases the round complexity of the initial IPS, and, more importantly, it requires to carry out
the underlying IPS in the encrypted domain, thus requiring to completely change the original
protocol. In contrast, we seek constructions of RFs that can be applied directly to existing IPSes,
without adding any overhead, and without the need to re-implement them.

1.2 Our Contributions

As our first contribution, we put forward several natural properties that a RF for an IPS might
satisfy. In particular, in §3, we formalize the following notions.

• Completeness preservation: The sanitized IPS (i.e., the IPS obtained by sanitizing both the
honest prover’s and the honest verifier’s messages) still satisfies completeness.

• Strong soundness preservation: Whenever x 6∈ L, no malicious prover can convince the verifier
that x ∈ L, even if the verifier’s implementation has been arbitrarily subverted.

• Strong ZK preservation: A valid proof reveals nothing beyond the fact that x ∈ L, even in
case the proof is conducted in the presence of a malicious verifier talking to a prover whose
implementation has been arbitrarily subverted.

• Strong WI preservation: Whenever there are multiple witnesses attesting that x ∈ L, no
malicious verifier talking to a prover whose implementation has been arbitrarily subverted
can distinguish whether a proof is conducted using either of two witnesses.

• Strong exfiltration resistance for the prover (resp. verifier): Transcripts produced by running
the sanitized IPS in the presence of a malicious verifier (resp. prover) talking to a prover
(resp. verifier) whose implementation has been arbitrarily subverted are indistinguishable to
transcripts produced by running the sanitized IPS in the presence of a malicious verifier (resp.
prover) talking to the honest prover (resp. verifier).

For each of the above properties (except for completeness), we also consider a weak variant which
only holds w.r.t. functionality-maintaining provers/verifiers. Intuitively, a prover is functionality
maintaining if, upon input a valid statement/witness pair, it still convinces the honest verifier with
overwhelming probability. Similarly, a verifier is functionality maintaining if, upon input a valid
statement, it still accepts with overwhelming probability in a protocol run with the honest prover.

What is possible and what is impossible. A moment of reflection shows that soundness
preservation is impossible to achieve. In fact, an arbitrarily subverted verifier might always5 output
one, thus automatically accepting both true and false statements. Such a verifier is still functionality

4At least to some extent, since, strictly speaking, their results for IPSes are incomparable to ours. We refer the
reader to §1.3 for more details.

5If one insists on undetectability, the subverted verifier may output 1 upon some hard-wired, randomly chosen,
false statement x 6∈ L.

3

maintaining,6 and thus this simple attack even rules out weak soundness preservation. One way
to circumvent this impossibility would be to only consider partial subversion, i.e. split the verifier
into two components, one for computing the next messages in the protocol, and the other one for
determining the final verdict on the veracity of a statement; hence, assume the latter component to
be untamperable. However, with this restriction, the problem of designing a RF strongly preserving
soundness (or whatever property) for the verifier simply becomes trivial, i.e. let the RF implement
the verifier’s next-message function.7 The latter is, indeed, possible in the case of IPSes since the
verifier has no secret input.

Turning to subversion of the prover, it is almost immediate to prove that strong security preser-
vation is also impossible. In fact, an arbitrarily subverted prover might always return zero in case,
say, the first bit of the witness is zero. This immediately rules out strong exfiltration resistance,
as no RF can turn an invalid transcript into a valid one. For similar reasons, strong ZK/WI
preservation are also impossible to achieve.

Hence, in what follows we turn our attention to the task of building RFs protecting the honest
prover from functionality-maintaining subversion. In this setting, we establish that weak exfiltration
resistance and weak ZK preservation are equivalent, whereas weak WI preservation is strictly weaker
than weak ZK preservation (see Fig. 1 for a pictorial representation).

Malleable Sigma protocols and HVZK preservation. As our second contribution, in §4,
we identify a class of Sigma protocols which admit simple, and very efficient, RFs for the prover.
The main idea is to use the RF to re-randomize the prover’s messages, in order to destroy any
potential subliminal channel signaling information about the witness. The difficulty, though, is
that such re-randomization must be carried out without knowing a witness, and while at the same
time preserving the completeness property of the underlying IPS. We call Sigma protocols for which
this is possible malleable.

As we show in §6.1, many natural Sigma protocols are already malleable. In particular, the
latter holds true for Maurer’s unifying protocol [Mau09], which includes the protocols by Fiat-
Shamir [FS87], Guillou-Quisquater [GQ88], Schnorr [Sch90], Okamoto [Oka93], and many others
as special cases. For the sake of concreteness, let us describe our firewall applied to the classical
Sigma protocol for proving knowledge of a discrete logarithm [Sch90]. Here, the statement consists
of a description of a cyclic group G with generator g and prime order q, together with a value
x ∈ G such that x = gw for some w ∈ Zq. The prover’s first message is a random group element
α = ga ∈ G. Finally, the prover’s last message is γ = a − w · β, where β ∈ Zq is the verifier’s
challenge; the verifier accepts (α, β, γ) if and only if gγ = α · x−β. Our RF sanitizes the messages
α and γ from a possibly subverted implementation of the prover as follows:

α̂ = α · (gσ1)σ2 γ̂ = γ + σ1 · σ2,

for random σ1, σ2 ∈ Zq. Note that gγ̂ = ga · (gσ1)σ2 · x−β = α̂ · x−β, and thus the RF preserves
completeness.

We now sketch the proof of weak HVZK preservation. Observe that for any α̃ = gã sent by
a functionality-maintaining subverted prover, the distribution of α̂ = gã+σ1·σ2 is uniform over G
and independent of α̃, ã, and in fact it is identical to the distribution of α in an honest run of the
original Sigma protocol (without the firewall). As for γ̂, note that if there would be two possible

6The latter is because completeness is a guarantee that only concerns true statements.
7In fact, such a RF is easily seen to be strongly exfiltration resistant for the verifier.

4

values γ, γ′ which make both τ = (α, β, γ) and τ ′ = (α, β, γ′) valid transcripts, the choice of which
response to pick could be used by a functionality-maintaining subverted prover as a subliminal
channel signaling information about the witness. Hence, we exploit the fact that for any prefix
α, β, there exists a unique8 response γ such that the verifier accepts upon input x and (α, β, γ).

It follows that the distribution of γ̂ is identical to that of γ in an honest run of the original Sigma
protocol (without the firewall). Putting it all together, we have shown that the distribution of a
sanitized transcript τ̂ = (α̂, β, γ̂) is identical to the distribution of an honest transcript τ = (α, β, γ).
Thus, weak HVZK preservation follows by the fact that Schnorr’s Sigma protocol is HVZK.

ZK preservation. As Sigma protocols are not in general zero knowledge, there is no hope to
prove that the above firewall weakly preserves ZK. However, a standard trick allows to transform
any Sigma protocol into a 5-round IPS satisfying ZK. The idea is to let the prover send the public
key pk of a commitment scheme during the first round. Then, during the second round, the verifier
forwards to the prover a commitment c to the challenge β. Finally, the Sigma protocol is executed
as before with the difference that the verifier also needs to open the commitment, with the prover
aborting if the opening is invalid.

In order to build a RF for this IPS, we need to sanitize the additional messages from the
(possibly subverted, but functionality-maintaining) prover.9 We do so by relying on a special type
of key-malleable commitment, which intuitively allows to maul any public key pk into a uniformly
random public key p̂k , in such a way that, given a commitment c with opening d w.r.t. p̂k , it is
possible to map (c, d) into a commitment ĉ with opening d̂ w.r.t. pk , without changing the message
inside the commitment. Moreover, the distribution of mauled public keys and commitments is
identical, respectively, to that of honestly computed public keys and commitments.

As we show, the above RF is weakly exfiltration resistant, and thus also weakly preserves ZK.
Moreover, in §6.3, we prove that the standard Pedersen’s commitment [Ped92] is easily seen to be
key malleable, thus yielding a concrete instantiation under the Discrete Logarithm assumption.

Compound statements and WI preservation. Finally, in §5, we build RFs for proving com-
pound statements using Sigma protocols. Given two Sigma protocols Σ0 and Σ1 for NP languages
L0 and L1, it is easy to obtain a Sigma protocol ΣAND for the NP language LAND = {(x0, x1) : x0 ∈
L0 ∧x1 ∈ L1} by simply running Σ0 and Σ1 in parallel, with the verifier sending a single challenge.

In a similar vein, the OR technique by Cramer, Damg̊ard, and Schoenmakers [CDS94] allows
to obtain a Sigma protocol ΣOR for the NP language LOR = {(x0, x1) : x0 ∈ L0∨x1 ∈ L1}. Impor-
tantly, if Σ0 and Σ1 are both perfect HVZK, ΣOR satisfies perfect WI. On the other hand, Garay
et al. [GMY06] showed that if Σ0 and Σ1 are computational HVZK, ΣOR satisfies computational
WI, although the latter holds only in case both statements x0, x1 in the definition of language LOR

are true (but the prover knows either a witness for x0 or for x1).
As long as Σ0 and Σ1 are malleable, it is easy to build RFs for ΣAND and ΣOR using our

techniques. The RF for ΣAND weakly preserves HVZK, whereas the RF for ΣOR weakly preserves
both HVZK and WI.

8This holds, in particular, for Schnorr’s protocol, and, as we argue in §6.2, such a mild additional requirement is
satisfied by many other Sigma protocols.

9The other messages are sanitized as before, i.e. we still exploit the fact that the underlying Sigma protocol is
malleable.

5

1.3 Comparison with Mironov and Stephens-Davidowitz

In their original paper, Mironov and Stephens-Davidowitz [MS15] build RFs for arbitrary two-party
protocols. While their results are related to ours, since IPSes are just a special case of two-party
computation, there are some crucial differences which we highlight below.

The first RF construction sanitizes a specific combination of re-randomizable garbled circuits
and oblivious transfer, for obtaining general-purpose private function evaluation. The second RF
construction sanitizes any two-party protocol, at the price of encrypting the full transcript un-
der public keys that are broadcast at the beginning of the protocol. Both constructions can be
instantiated based on (variants of) the DDH assumption. When cast to IPSes, their results yield:

(i) A RF for the prover that weakly preserves ZK. This is comparable to our RF achieving weak
ZK preservation using malleable Sigma protocols and key-malleable commitments. However,
our constructions have the advantage that we do not need to change the initial IPS, and thus
our RF can be applied directly to already existing implementations in a fully transparent
manner (and without introducing any overhead).

(ii) A RF for the prover satisfying a property called strong exfiltration resistance against an
eavesdropper, which means that exfiltration resistance holds w.r.t. an arbitrarily subverted
prover talking to the honest verifier. Note that the latter does not contradict our impossibility
result ruling out strong ZK preservation, as our attacks crucially rely on the fact that the
distinguisher can (passively) corrupt the verifier.

(iii) A RF for the verifier satisfying both strong exfiltration resistance and the following weak
guarantee: No malicious prover can find statements x0, x1 such that it can distinguish tran-
scripts obtained by talking to an arbitrarily subverted verifier holding either input x0 or
input x1. Note that the latter does not contradict our impossibility result that rules out weak
soundness preservation, since none of the above guarantees imply soundness preservation.

We observe that the above results have at least one of the following drawbacks: (i) The RF is
not transparent, i.e. it cannot be applied to the initial protocol as is; (ii) The resulting sanitized
protocol is not efficient, as we first need to encode the function being computed as a circuit.

Our techniques allow to overcome these limitations in the concrete case of IPSes, as our RFs
are both transparent (i.e. they can be applied directly to already deployed protocols) and efficient
(i.e. the sanitized IPSes have exactly the same efficiency as the original, both in terms of round
and communication complexity). We see this as the main novelty of our work.

1.4 Related Works

Besides the already mentioned constructions, RFs have also been realized in other settings including
digital signatures [AMV15], secure message transmission and key exchange [DMS16, CMY+16], and
oblivious transfer [MS15, CMY+16].

Moreover, a few other lines of research recently10 emerged to tackle the challenge of protecting
cryptographic algorithms against (different forms of) subversion. We review the main ones below.

10All these research directions have their roots in the seminal works of Young and Yung [YY97] and Sim-
mons [Sim83], in the settings of kleptography and subliminal channels.

6

Algorithm substitution attacks. Bellare, Patterson, and Rogaway [BPR14] studied subver-
sion of symmetric encryption schemes in the form of algorithm substitution attacks (ASAs). In
particular, they show that undetectable subversion of the encryption algorithm is possible, and
may lead to severe security breaches; moreover, they prove that deterministic, stateful, ciphers are
secure against the same type of ASAs. Follow-up works improved the original paper in several
aspects [DFP15, BJK15], and explored the power of ASAs in other contexts, e.g. digital signa-
tures [AMV15], secret sharing [GOR15], and message authentication codes [AP19].

Backdoors. Another form of subversion consists of all those attacks that surreptitiously gener-
ate public parameters (primes, curves, etc.) together with secret backdoors that allow to bypass
security. The study of this type of subversion is motivated by the DUAL EC DRBG PRG incident.

A formal study of parameters subversion has been considered for several primitives, includ-
ing pseudorandom generators [DGG+15, DPSW16], hash functions [FJM18], non-interactive zero
knowledge [BFS16], and public-key encryption [ABK18].

Cliptography. Russell et al. [RTYZ16] (see also [RTYZ17, AFMV19]) consider a different ap-
proach to the immunization of cryptosystems against complete subversion (i.e., when all algorithms
can be subverted by the attacker): offline/online black-box testing. This amounts to introducing
an external entity, called the watchdog, whose goal is to test, either in an online or in an offline
fashion, whether a given cryptographic implementation is compliant with its specification.

Hence, a cryptosystem is deemed secure against complete subversion if there exists a universal
watchdog such that, for every attacker subverting all algorithms, either the watchdog detects sub-
version with high probability, or the cryptoscheme remains secure even when using its subverted
implementation.

Self-guarding. Yet another approach towards thwarting subversion is that of self-guarding [FM18].
The idea here is to assume a trusted initialization phase in which the honest parties possess a gen-
uine implementation of the cryptosystem, before subversion takes place. This phase is used in order
to generate samples that will be exploited later, together with additional simple operations that
need to be implemented from scratch, to prevent leakage in the face of subversion attacks.

2 Preliminaries

2.1 Notation

We write [n] to represent the set of numbers {1, 2, . . . , n}. For a string x, we denote its length by
|x|; if X is a set, |X | represents the number of elements in X . When x is chosen randomly in X ,
we write x←$ X . When A is a randomized algorithm, we write y←$ A(x) to denote a run of A
on input x, implicit random coins r, and output y; the value y is a random variable, and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates in
a polynomial number of steps (in the size of the input).

We use λ ∈ N to denote the security parameter, and implicitly assume that the security pa-
rameter is given as input (in unary) to all algorithms. A function p is a polynomial, denoted
p(λ) ∈ poly(λ), if p(λ) ∈ O(λc) for some constant c > 0. A function ν : N → [0, 1] is negligible in

7

the security parameter (or simply negligible) if it vanishes faster than the inverse of any polynomial
in λ, i.e. ε(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We sometimes write ν(λ) ∈ negl(λ) to
denote that ν(λ) is negligible.

For a random variable X, we write P [X = x] for the probability that X takes on a partic-
ular value x ∈ X (with X being the set where X is defined). A probability ensemble X =
{X(λ, σ)}λ∈N,σ∈{0,1}∗ is an infinite sequence of random variables indexed by security parameter λ ∈
N and a string σ ∈ {0, 1}∗. In the context of zero-knowledge proofs, the string σ will represent the
parties’ inputs and the attacker’s auxiliary input. Given two ensembles X = {X(λ, σ)}λ∈N,σ∈{0,1}∗
and Y = {Y(λ, σ)}λ∈N,σ∈{0,1}∗ , we write X

c
≈ Y (resp. X

s
≈ Y) to denote that X and Y are compu-

tationally (resp. statistically) close, i.e. for all PPT (resp. unbounded) non-uniform distinguishers
D there exists a negligible function ν : N→ [0, 1] such that for all σ ∈ {0, 1}∗:

|P [D(X(λ, σ)) = 1]− P [D(Y(λ, σ)) = 1]| ≤ ν(λ).

If the above distance is zero, we say that X and Y are identically distributed, denoted X ≡ Y.

2.2 Interactive Proofs

LetR ⊂ {0, 1}∗×{0, 1}∗ be an NP relation, with associated language L, i.e. L = {x : ∃w s.t. (x,w)
∈ R}. We often call x the statement or theorem, and w the corresponding witness.

An interactive proof system (IPS) for R is a pair of algorithms Π = (P,V) modeled as inter-
active PPT Turing machines. The prover algorithm P takes as input a statement x ∈ L and a
corresponding witness w for x. The verifier algorithm V takes as input a statement x, and at the
end of the protocol outputs a decision bit indicating whether it is convinced that x ∈ L or not.
We write P(x,w) � V(x) for the random variable corresponding to the view of V in a run of Π on
common input x to P,V, and auxiliary input w to P; such view includes the protocol’s transcript
τ ∈ {0, 1}∗ (consisting of all messages exchanged during the protocol) and the internal coin tosses
of the verifier. We also write 〈P(x,w),V(x)〉 to denote the random variable corresponding to the
decision bit of the verifier in such an execution.

The completeness property says that whenever x ∈ L the honest prover successfully convinces
the honest verifier.

Definition 2.1 (Completeness). Let Π = (P,V) be an IPS for a relation R. We say that Π satisfies
completeness if for all (x,w) ∈ R the following holds: P [〈P(x,w),V(x)〉 = 1] = 1.

Soundness. The soundness property says that no malicious prover can convince the verifier to
accept a false statement, i.e. a statement x 6∈ L. The formal definition appears below.

Definition 2.2 (Soundness). Let Π = (P,V) be an IPS for a relation R. We say that Π satisfies
computational soundness if for all x 6∈ L and for all PPT malicious provers P∗ there exists a
negligible function ν : N→ [0, 1] such that

P [〈P∗(x),V(x)〉 = 1] ≤ ν(λ).

Zero knowledge. The zero knowledge property states that an interactive proof reveals nothing
on the witness w, even in case the verifier is malicious. The formal definition appears below.

8

Definition 2.3 (Zero knowledge). Let Π = (P,V) be an IPS for a relation R. We say that Π
satisfies computational (black-box, auxiliary-input) zero knowledge if there exists a PPT simulator
S such that for all (non-uniform) PPT malicious verifiers V∗ the following holds:{

P(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
SV
∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

,

where V∗(x, z, ·; ·) denotes the next-message function of the interactive Turing machine V∗ when
the common input x, and auxiliary input z are fixed.

Witness indistinguishability (WI). The WI property intuitively says that for any statement
x ∈ L admitting multiple witnesses w,w′, transcripts produced by having the honest prover use
w and w′ should be computationally indistinguishable, even in case the verifier is malicious. The
formal definition appears below.

Definition 2.4 (Witness indistinguishability). Let Π = (P,V) be an IPS for a relation R. We say
that Π satisfies computational (auxiliary-input) witness indistinguishability (WI) if for all (non-
uniform) PPT malicious verifiers V∗ the following holds:{

P(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
P(x,w′) � V∗(x, z)

}
(x,w′)∈R,z∈{0,1}∗

.

In case the above two ensembles are identically distributed, we say that Π satisfies perfect WI.

Sigma protocols. Sigma protocols are special IPSes Σ = (P,V) consisting of 3 rounds, where the
prover speaks first. Furthermore, the verifier’s message is a random string, i.e. Sigma protocols are
public coin. We write α for the prover’s first message, β for the verifier’s message (a.k.a. challenge),
and γ for the prover’s last message (a.k.a. response). The resulting transcript τ = (α, β, γ) is said
to be accepting w.r.t. statement x if V(x, τ) outputs one. The length of the challenge is denoted
by ` ∈ N.

Definition 2.5 (Sigma protocol). An IPS Σ = (P,V) for a relation R is called a Sigma protocol
if it is a 3-round public coin protocol satisfying completeness, and meeting the properties below.

• Special Soundness (SS): There exists a polynomial-time algorithm called the extractor
which when given x and two transcripts τ = (α, β, γ) and τ ′ = (α, β′, γ′) that are accepting
for x, with β 6= β′, outputs a value w such that (x,w) ∈ R.

• Computational (resp. Perfect) Special Honest-Verifier Zero Knowledge (SHVZK):
There exists a PPT simulator that takes as input x ∈ L and β ∈ {0, 1}`, and outputs an accept-
ing transcript for x where β is the challenge. Moreover, for all `-bit strings β, the distribution
of the output of the simulator on input (x, β) is computationally indistinguishable from (resp.
identically distributed to) the distribution of an honest transcript obtained when V sends β as
challenge and P runs on common input x and any private input w such that (x,w) ∈ R.

2.3 Commitment Schemes

A commitment scheme over message space M is a tuple of polynomial-time algorithms Γ =
(Gen,Com,Open) specified as follows. (i) The probabilistic algorithm Gen takes as input the secu-
rity parameter, and outputs a public key pk . (ii) The probabilistic algorithm Com takes as input

9

a public key pk and a message m ∈M, and outputs a commitment c along with opening informa-
tion d. (iii) The deterministic algorithm Open takes as input a public key, a commitment c, and
opening d, and outputs a message m or ⊥. We say that Γ satisfies correctness if for all λ ∈ N,
for all pk ∈ Gen(1λ), and for all messages m ∈ M, it holds that Open(pk ,Com(pk ,m)) = m, with
probability one over the randomness of Gen,Com.

A commitment scheme typically satisfies two properties, known as binding and hiding. The
first property intuitively says that it be hard to produce a commitment along with two openings
yielding different (valid) messages. The second property intuitively says that a commitment hides
the message. We define these properties (as needed for our purposes) below.

Definition 2.6 (Binding). We say that a commitment scheme Γ = (Gen,Com,Open) is computa-
tionally binding if for all PPT adversaries A there exists a negligible function ν : N → [0, 1] such
that the following holds:

P
[
⊥ 6= Open(pk , c, d) 6= Open(pk , c, d′) 6= ⊥ :

pk ←$ Gen(1λ);
(c, d, d′)←$ A(pk)

]
≤ ν(λ).

Definition 2.7 (Hiding). We say that a commitment scheme Γ = (Gen,Com,Open) is perfectly
hiding if for all m0,m1 ∈M the following holds:{

(pk , c) : pk ←$ Gen(1λ); c←$ Com(pk ,m0)
}
λ∈N

≡
{

(pk , c) : pk ←$ Gen(1λ); c←$ Com(pk ,m1)
}
λ∈N

.

3 Reverse Firewalls for Interactive Proofs

In this section, we give security definitions for RFs applied to IPSes. Our definitions can be seen as
special cases of the generic framework by Mironov and Stephens-Davidowitz [MS15], who defined
security of RFs for the more general case of arbitrary two-party protocols.

Let Π = (P,V) be an IPS for a relation R, as defined in §2.2. A cryptographic reverse firewall is
an external party W that can be attached either to the prover P or to the verifier V, whose scope is
to sanitize incoming and outgoing messages in the face of parties’ subversion. Importantly, the RF
is allowed to keep its own state but cannot share state with any of the parties. Similarly to [MS15],
we model an interactive Turing machine M as a triple of algorithms M := (Mnxt,Mrec,Mout) specified
as follows: (i) Algorithm Mnxt takes as input the current state and outputs the next message to be
sent; (ii) Algorithm Mrec takes as input an incoming message, and updates the state; (iii) Algorithm
Mout takes as input the final state at the completion of the protocol, and returns a bit.

Definition 3.1 (RF for IPSes). Let Π = (P,V) be an IPS for a relation R. A cryptographic
reverse firewall (RF) for Π is a stateful algorithm W that takes as input a message, its state, and
outputs a sanitized message, together with an updated state. For an interactive Turing machine
M = (Mnxt,Mrec,Mout) ∈ {P,V}, and RF W, the sanitized machine W◦M := M̂ = (M̂nxt, M̂rec, M̂out)
is specified as follows:

M̂nxt(σ) := W(Mnxt(σ))

M̂rec(σ,m) := Mrec(σ,W(m))

M̂out(σ) := Mout(σ).

10

3.1 Subversion of the Prover

Here, we focus on the scenario where a malicious verifier V∗ attacks either the zero knowledge or
the WI property of the underlying IPS while at the same time subverting the implementation of
the prover’s algorithm P. In this case, the RF is attached to the prover and sanitizes its incoming
and outgoing messages. Of course, the most basic requirement is that the RF should not ruin
the protocol’s functionality in case both parties are honest. This requirement is captured by the
definition below.

Definition 3.2 (Completeness-preserving RF w.r.t. prover). Let Π = (P,V) be an IPS for a relation
R, satisfying completeness. We say that a RF W preserves completeness for the prover if for any
polynomial k ∈ poly(λ) the sanitized IPS Π̂ := (Wk ◦ P,V) satisfies completeness, where Wk means
W ◦ · · · ◦W (for k times).

Looking ahead, the reverse firewalls we will describe in §4 §5 automatically satisfy the above
flavor of completeness preservation. In particular, all of our firewalls are “transparent”, in the sense
that the behavior of W◦P is identical to that of an honestly implemented P, thus allowing multiple
firewalls to be “stacked” as defined above.

As for security, we consider 3 different properties: zero-knowledge preservation, witness indis-
tinguishability preservation, and exfiltration resistance, as formally defined below. We refer the
reader to §3.3.1 for a complete picture of relationships among these definitions. Looking ahead,
since as we will show it is impossible to obtain any of these notions against an arbitrarily subverted
prover, we formalize a weaker form of subversion where a tampered prover still needs to preserve
the completeness property of the underlying IPS.

Definition 3.3 (Functionality-maintaining prover). Let Π = (P,V) be an IPS for a relation R.
We say that a subverted prover P̃ is functionality maintaining for Π, if for all (x,w) ∈ R there
exists a negligible function ν : N→ [0, 1] such that the following holds:

P
[
〈P̃(x,w),V(x)〉 = 0

]
≤ ν(λ).

Zero knowledge preservation. A first natural requirement is to ask that a RF should preserve
the zero-knowledge property of the underlying IPS, even when the prover’s implementation has
been tampered with. Depending on the subversion of the prover being functionality maintaining
or not, we obtain two flavors of zero knowledge preservation.

Definition 3.4 (Zero-knowledge preservation). Let Π = (P,V) be an IPS for a relation R, sat-
isfying zero knowledge. We say that a RF W strongly (resp. weakly) preserves zero knowledge for
the prover if for all PPT (resp. for all functionality-maintaining PPT) subverted provers P̃, the
sanitized IPS Π̂ := (W ◦ P̃,V) satisfies zero knowledge.

Witness indistinguishability preservation. Similarly to above, it is natural to consider RFs
preserving the WI property of the underlying IPS, even when the prover’s implementation has been
tampered with.

Definition 3.5 (WI preservation). Let Π = (P,V) be an IPS for a relation R, satisfying WI.
We say that a RF W strongly (resp. weakly) preserves WI for the prover if for all PPT (resp. all
functionality-maintaining PPT) subverted provers P̃, the sanitized IPS Π̂ := (W ◦ P̃,V) satisfies
WI.

11

Exfiltration resistance for the prover. A different type of concern is exfiltration, in which a
tampered prover’s implementation attempts to leak secret information (e.g., about the witness) to
the adversary. Following [MS15], we model exfiltration resistance of a RF by asking that it be hard
to distinguish transcripts obtained by running the honest prover composed with the firewall from
transcripts obtained by running a subverted prover composed with the firewall, even in case the
verifier is malicious.

Definition 3.6 (Exfiltration resistance w.r.t. prover). Let Π = (P,V) be an IPS for a relation R.
We say that a RF W is strongly exfiltration resistant for the prover if for all (non-uniform) PPT
malicious verifiers V∗, and for all PPT subverted provers P̃ the following holds:{

W ◦ P(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
W ◦ P̃(x,w) � V∗(x, z)

}
(x,w)∈R,z∈{0,1}∗

.

Whenever the above condition holds only w.r.t. all functionality-maintaining PPT subverted provers
P̃, we say that W is weakly exfiltration resistant for the prover.

3.2 Subversion of the Verifier

Here, we focus on the scenario where a malicious prover P∗ attacks the soundness property of the
underlying IPS while at the same time subverting the implementation of the verifier’s algorithm V.
In this case, the RF is attached to the verifier and sanitizes its incoming and outgoing messages.
As before, the most basic requirement is that the RF should not ruin the protocol’s functionality
in case both parties are honest. This requirement is captured by the definition below.

Definition 3.7 (Completeness-preserving RF w.r.t. verifier). Let Π = (P,V) be an IPS for a
relation R, satisfying completeness. We say that a RF W preserves completeness for the verifier if
the sanitized IPS Π̂ := (P,W ◦ V) satisfies completeness.

Soundness preservation. Assuming the underlying IPS satisfies soundness, we would like the
RF to preserve this property even in case the verifier’s implementation has been tampered with.
Also in this case, we consider two flavors of soundness preservation depending on the subverted
verifier being arbitrarily tampered or functionality maintaining.

Definition 3.8 (Functionality-maintaining verifier). Let Π = (P,V) be an IPS for a relation R.
We say that a subverted verifier Ṽ is functionality maintaining for Π, if for all (x,w) ∈ R there
exists a negligible function ν : N→ [0, 1] such that the following holds:

P
[
〈P(x,w), Ṽ(x)〉 = 0

]
≤ ν(λ).

Definition 3.9 (Soundness preservation). Let Π = (P,V) be an IPS for a relation R, satisfying
soundness. We say that a RF W strongly (resp. weakly) preserves soundness for the verifier if for
all PPT (resp. all functionality-maintaining PPT) subverted verifiers Ṽ, the sanitized IPS Π̂ :=
(P,W ◦ Ṽ) satisfies soundness.

12

Weak

ZK preservation
Weak

Exfiltration Resistance

Weak

WI preservation

Figure 1: Diagram of relations among the (possible) security definitions for the prover’s RF. We
use A→ B to denote an implication from notion A to notion B, and A9 B to denote a separation
from notion A to notion B.

Exfiltration resistance for the verifier. Note that the verifier of an IPS has no input, and
therefore there are no secrets to be leaked. Nevertheless, the notion of exfiltration resistance is still
meaningful for RFs sanitizing a subverted verifier.

Definition 3.10 (Exfiltration resistance w.r.t. verifier). Let Π = (P,V) be an IPS for a relation
R. We say that a RF W is strongly exfiltration resistant for the verifier if for all PPT malicious
provers P∗, and for all PPT subverted verifiers Ṽ the following holds:{

P∗(x,w) � W ◦ V(x)
}
(x,w)∈R

c
≈
{
P∗(x,w) � W ◦ Ṽ(x)

}
(x,w)∈R

.

Whenever the above condition holds only w.r.t. all functionality-maintaining PPT subverted verifiers
Ṽ, we say that W is weakly exfiltration resistant for the verifier.

3.3 Possibilities and Impossibilities

We conclude this section by showing that some of the above defined notions are just impossible to
achieve, and by establishing some useful relations among the notions which instead are possible.
See Fig. 1 for a pictorial representation of implications/separations.

3.3.1 Relating Zero Knowledge Preservation and Exfiltration Resistance

We now relate the notions of zero knowledge preservation and exfiltration resistance for the prover,
both in their weak and strong flavors. We prove the following result.

Theorem 3.11. Let Π = (P,V) be an IPS for a relation R satisfying the zero knowledge property,
and W be a RF for the prover. If W is strongly (resp. weakly) exfiltration resistant for the prover,
then W strongly (resp. weakly) preserves zero knowledge for the prover.

Proof. Assume first that W is strongly exfiltration resistant for the prover. This means that no
PPT distinguisher can tell apart sanitized transcripts generated by running the honest prover P
or any PPT functionality-maintaining prover P̃. More formally, for all PPT malicious verifiers V∗,
and for all PPT subverted provers P̃:{

W ◦ P(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
W ◦ P̃(x,w) � V∗(x, z)

}
(x,w)∈R,z∈{0,1}∗

. (1)

13

We now show that the fact that Π satisfies the zero knowledge property implies that the sanitized
IPS Π̂ = (W ◦ P,V) satisfies zero knowledge too, i.e. there exists a PPT simulator Ŝ such that no
PPT malicious verifier V̂∗ can distinguish transcripts obtained interacting with the real prover from
simulated transcripts (using Ŝ). More formally, there exists a PPT simulator Ŝ such that for all
PPT malicious verifiers V̂∗:{

W ◦ P(x,w) � V̂∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
ŜV̂
∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

. (2)

The latter can be seen as follows. By contradiction, assume that there exists a PPT distinguisher
D, a PPT malicious verifier V̂∗, and some polynomial p(λ), such that for all PPT simulators Ŝ and
an infinite sequence (x,w, z) with (x,w) ∈ R and z ∈ {0, 1}∗:∣∣∣P [D(W ◦ P(x,w) � V̂∗(x, z)) = 1

]
− P

[
D(ŜV̂

∗(x,z,·;·)(x)) = 1
]∣∣∣ ≥ 1/p(λ).

Consider the PPT malicious verifier V∗W for Π that simply runs V̂∗(x, z), and additionally sanitizes

every message from/to P(x,w) using the RF W. Since V∗W perfectly emulates the view of V̂∗(x, z)
in an interaction with W ◦ P(x,w), it follows that, for all PPT simulators S:∣∣∣P [D(P(x,w) � V∗W(x, z)) = 1]− P

[
D(SV

∗
W(x,z,·;·)(x)) = 1

]∣∣∣ ≥ 1/p(λ),

which contradicts the zero knowledge property of Π.
As the simulator Ŝ of Eq. (2) works for any malicious verifier, it works in particular for V̂∗ ≡ V∗.

Thus, we can write:{
W ◦ P(x,w) � V∗(x, z)

}
(x,w)∈R,z∈{0,1}∗

c
≈
{
ŜV
∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

. (3)

Combining Eq. (1) and Eq. (3), we have obtained that there exists a PPT simulator Ŝ such that
for all PPT malicious verifiers V∗, and for all PPT subverted provers P̃ the following holds:{

W ◦ P̃(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
ŜV
∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

,

and thus W strongly preserves zero knowledge for the prover.
To conclude the proof it suffices to note that if W is weakly exfiltration resistant for the prover,

Eq. (1) only holds w.r.t. all PPT functionality-maintaining provers P̃, and thus W only weakly
preserves zero knowledge for the prover.

The above theorem intuitively says that strong/weak exfiltration resistance for the prover im-
plies strong/weak zero knowledge preservation, as long as the underlying IPS Π satisfies the zero
knowledge property. Note that the latter assumption is necessary, as if Π does not satisfy the zero
knowledge property, there is no hope to prove that W strongly/weakly preserves zero knowledge
(since a RF can never create security).

Next, we show that strong zero knowledge preservation implies strong exfiltration resistance, and
moreover the same implication holds for the weak flavor of these properties (i.e., w.r.t. functionality-
maintaining subversion of the prover). We prove the following result.

Theorem 3.12. Let Π = (P,V) be an IPS for a relation R satisfying the zero knowledge property,
and W be a RF for the prover. If W strongly (resp. weakly) preserves zero knowledge for the prover,
then W is also strong (resp. weak) exfiltration resistant for the prover.

14

Proof. Since W strongly preserves zero knowledge for the prover, there exists a PPT simulator S
such that for all PPT malicious verifiers V∗ and for all PPT subverted provers P̃, the following
holds: {

W ◦ P̃(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
SV
∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

. (4)

As S works for an arbitrarily subverted P̃, it works in particular for P̃ ≡ P. Thus, for all PPT
malicious verifiers V∗, the following holds:{

W ◦ P(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈
{
SV
∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

. (5)

Combining Eq. (4) and Eq. (5), we have obtained that for all PPT malicious verifiers V∗, and for
all PPT subverted provers P̃, the following holds:

{
W ◦ P̃(x,w) � V∗(x, z)

}
(x,w)∈R,z∈{0,1}∗

c
≈
{
W ◦ P(x,w) � V∗(x, z)

}
(x,w)∈R,z∈{0,1}∗

,

and thus W is strongly exfiltration resistant for the prover.
Note that in case W weakly preserves zero knowledge for the prover, Eq. (4) only holds w.r.t.

all PPT functionality-maintaining subverted provers P̃. However, the honest prover P is of course
functionality maintaining, and thus Eq. (5) still holds. The theorem follows.

3.3.2 Relating Zero Knowledge Preservation and WI Preservation

The following statements relate zero knowledge preservation and WI preservation. Their proof
follows in a straightforward manner by the well-known fact that zero-knowledge implies WI, but
not viceversa.

Proposition 3.13. Let Π = (P,V) be an IPS for a relation R satisfying the zero knowledge
property, and W be a RF for the prover. If W strongly (resp. weakly) preserves zero knowledge for
the prover, then W strongly (resp. weakly) preserves WI for the prover.

Proposition 3.14. There exists an IPS Π = (P,V) for a relation R satisfying WI, for which any
completeness-preserving RF strongly (resp. weakly) preserving WI for the prover does not strongly
(resp. weakly) preserve zero knowledge for the prover.

3.3.3 Impossibility of Strong Exfiltration Resistance and Strong WI Preservation

The proposition below says that strong exfiltration resistance is impossible to achieve.

Proposition 3.15. No completeness-preserving RF for the prover P of an IPS Π = (P,V) for a
relation R, satisfying the soundness property, can be strongly exfiltration resistant for the prover
(unless L ∈ BPP).

Proof. We show that the statement holds even when taking V∗ ≡ V (and thus ignoring the auxiliary
input z). Let P̃ be the subverted prover that always sends the all-zero string (completely ignoring
the inputs x,w); note that P̃ is not functionality maintaining. Fix now any efficient RF W for the

15

prover, and any (x,w) ∈ R. We claim that an interaction between W ◦ P̃(x,w) and V(x) can never
result in an accepting transcript, except with negligible probability. To see this, first note that,
for all x 6∈ L, it must hold that W ◦ P̃ produces an accepting transcript at most with negligible
probability, as otherwise we can use W ◦ P̃ to break the soundness property of Π. Since L 6∈ BPP,
the latter indeed implies that an interaction between W◦P̃(x,w) and V(x) can result in an accepting
transcript at most with negligible probability, as otherwise we can efficiently decide the language
L using W ◦ P̃.

Consider now the following PPT distinguisher D attacking strong exfiltration resistance: Upon
input the verifier’s view, return the same11 as Vout(x, τ), where τ is the protocol’s transcript. In
case the transcript τ is generated using W◦P(x,w) � V(x), the fact that W preserves completeness
implies that distinguisher D outputs 1 with overwhelming probability. On the other hand, in case
the transcript τ is generated using W ◦ P̃(x,w) � V(x), as explained above the distinguisher D
outputs 1 with at most a negligible probability. Hence, there exists a negligible function ν : N →
[0, 1] such that∣∣∣P [D(W ◦ P(x,w) � V(x)) = 1]− P

[
D(W ◦ P̃(x,w) � V(x)) = 1

]∣∣∣ ≥ 1− ν(λ),

which violates the definition of strong exfiltration resistance.

By a similar argument,12 it is not hard to show that strong WI preservation is impossible to
achieve too.

Proposition 3.16. No completeness-preserving RF for the prover P of an IPS Π = (P,V) for a
relation R, satisfying the WI property, can strongly preserve WI for the prover (unless L ∈ BPP).

3.3.4 Impossibility of Strong Zero Knowledge Preservation

By Theorem 3.12, we know that strong zero knowledge preservation implies strong exfiltration
resistance. However, Proposition 3.15 says that strong exfiltration resistance is impossible which
means that strong zero knowledge preservation must be impossible too. Thus:

Corollary 3.17. No completeness-preserving RF for the prover P of an IPS Π = (P,V) for a
relation R, satisfying the zero knowledge property, can strongly preserve zero knowledge for the
prover (unless L ∈ BPP).

3.3.5 Impossibility of Tampering with the Verifier

Consider the subverted verifier Ṽ := (Vnxt,Vrec, Ṽout) such that Ṽout always outputs 1 independently
of the transcript that it takes as input. Clearly, such a subverted verifier accepts false statements
and no RF can avoid this from happening, since, by definition, a RF only acts on outgoing and
incoming messages, and thus it is not allowed to read or write on the internal state of the verifier.
Moreover, Ṽ is a functionality-maintaining verifier according to Definition 3.8, thus showing that
no RF can weakly preserve soundness for the verifier.

11Recall that the verifier’s view includes its random coins. Hence, the distinguisher can check the transcript even
in case the IPS is secret coin.

12Without loss of generality, assume that w and w′ differ in the first bit, and consider the subverted prover P̃ that
always outputs the all-zero string when the witness starts with zero.

16

One might hope that (weak) soundness preservation is still possible for more restricted forms
of subversion, e.g. in case the implementation of algorithm Vout is trusted. Unfortunately, it is not
hard to see that also a subversion of the form Ṽ := (Vnxt, Ṽrec,Vout) is problematic, as an arbitrarily
subverted algorithm Ṽrec could simply ignore all the messages received from the prover, and change
the final state to any value σ̃ such that Vout(σ̃) = 1 on any statement.13

Hence, the only hope we are left with would be to consider partial subversion of the form
Ṽ := (Ṽnxt,Vrec,Vout). Note that this type of subversion is still harmful, as it can be seen by
looking at the subverted Ṽnxt that generates its own randomness using a hard-wired seed for a PRG
(which is also known to the prover). The latter essentially makes the verifier deterministic, which
is already enough to break soundness of many IPSes of interest.14

Luckily, it is actually trivial to build a RF for the verifier in case only Vnxt can be subverted,
namely let W be an honest implementation of Vnxt: Upon input a message from the subverted Ṽnxt,
the RF simply ignores this message, runs Vnxt on its own internal state, and forwards the output
to the prover.15 It is not hard to see that such a RF strongly preserve whatever security property
the underlying IPS satisfies. On a similar vein, the RF that runs (Vnext,Vrec) can be easily proven
to achieve strong exfiltration resistance for the verifier. Summarizing the above discussion, we have
shown:

Theorem 3.18. Let Π = (P,V) be an IPS for a relation R, where V = (Vnxt,Vrec,Vout). No RF W
can weakly preserve soundness for the verifier, even in case only either Vrec or Vout can be subverted.
Moreover, in case only Vnxt can be subverted, the RF that implements Vnxt strongly preserves any
security property satisfied by the underlying IPS. Finally, the RF that implements (Vnxt,Vrec) is
strongly exfiltration resistant for the verifier.

Note that the above trivializes the problem of constructing security-preserving RFs for the
verifier of any IPS. Hence, in what follows, we will only focus on constructing RFs for sanitizing
the prover.

4 Firewall Constructions from Malleable Sigma Protocols

In this section, we construct RFs for a class of Sigma protocols enjoying a special malleability prop-
erty (which we define). As we argue below, many natural Sigma protocols are already malleable.

In what follows, given a Sigma protocol Σ = (P,V), we denote by P1 and P2 the algorithms
that compute, respectively, the first prover’s message α, and the last prover’s message (response) γ.
Recall that the challenge space is represented as {0, 1}`, so that there are 2` possible challenges, and
write V for the algorithm that the verifier runs upon statement x and transcript τ to make its final
decision. Let A be the space of all possible prover’s first messages; we assume that membership in
A can be tested efficiently, so that V always outputs ⊥ whenever α 6∈ A.

Unique responses. An additional requirement that we need, already considered in several previ-
ous works [Fis05, FKMV12], and sometimes known as strict soundness [Unr12], is that the prover’s
responses are unique, meaning that for all x ∈ L, and for any α ∈ A and β ∈ {0, 1}`, there exists

13For instance, we could let σ̃ be an honestly computed proof using any fixed pair (x̄, w̄) ∈ R.
14In fact, it is well known that for most Sigma protocols it is easy to violate soundness if the malicious prover can

predict the challenge from the verifier.
15The latter is indeed possible, since the verifier of an IPS has no secret input.

17

at most one value γ such that V(x, (α, β, γ)) = 1. In §6.1, we give concrete examples of Sigma
protocols meeting this property.

4.1 Malleable Sigma Protocols

Intuitively, a Sigma protocol is malleable if it is possible to randomize the prover’s first message α
into a value α̂ which is distributed identically to the first message of an honest prover. Moreover, for
any challenge β, given the coins used to randomize α and any response γ yielding a valid transcript
τ = (α, β, γ), it is possible to compute a balanced response γ̂ such that (α̂, β, γ̂) is also valid.

Definition 4.1 (Malleable Sigma protocol). Let Σ = (P1,P2,V) be a Sigma protocol for a relation
R. We say that Σ is malleable if there exists a pair of polynomial-time algorithms (Maul,Bal)
specified as follows:

(i) Maul is a probabilistic algorithm taking as input α ∈ A and outputting α̂ ∈ A and state
σ ∈ {0, 1}∗;

(ii) Bal is a deterministic algorithm taking as input γ and the state σ output by Maul, and re-
turning a balanced response γ̂.

Moreover, the following properties are met.

• Uniformity. For all (x,w) ∈ R, and for all α ∈ A, the distribution of α̂ in (α̂, σ)←$ Maul(α)
is identical to that of P1(x,w).

• Malleability. For all x ∈ L, and for all τ = (α, β, γ) such that V(x, (α, β, γ)) = 1, it holds
that

P [V(x, (α̂, β, γ̂)) = 1 : (α̂, σ)←$ Maul(α); γ̂ = Bal(γ, σ)] = 1,

where the probability is over the randomness of Maul.

4.2 HVZK Preservation

Here, we design a RF for preserving the (special) HVZK property of any malleable Sigma protocol.
Let us first define formally what it means for a RF to preserve HVZK.16

Definition 4.2 (HVZK preservation). Let Σ = (P = (P1,P2),V) be a Sigma protocol for a relation
R, satisfying special perfect (resp. computational) HVZK. We say that a RF W weakly preserves
HVZK for the prover if for all functionality-maintaining PPT subverted provers P̃, the sanitized
Sigma protocol Σ̂ := (W ◦ P̃,V) satisfies special perfect (resp. computational) HVZK.

Our RF construction is depicted in Fig. 2. Intuitively, the firewall uses the malleability property
of the underlying Sigma protocol in order to re-randomize the prover’s first and last messages, in
such a way that a functionality-maintaining subverted prover cannot signal information about the
witness through them.

Theorem 4.3. Let Σ = (P = (P1,P2),V) be a malleable Sigma protocol with unique responses, for
a relation R. The RF W of Fig. 2 preserves completeness, and is weakly HVZK preserving for the
prover.

Proof. We prove both properties of the firewall below.

16We only define weak HVZK preservation, as strong HVZK preservation is impossible along the lines of the
negative results proven in §3.3.1.

18

Prover(x,w) Reverse Firewall Verifier(x)

α = P1(x,w; a)
α−−−−−−−−−→ (α̂, σ)←$ Maul(α)

α̂−−−−−−−−−→
β←$ {0, 1}`

β←−−−−−−−−− β←−−−−−−−−−
γ = P2(x,w, β, a)

γ−−−−−−−−−→ γ̂ = Bal(γ, σ)
γ̂−−−−−−−−−→

V(x, (α̂, β, γ̂))
?
= 1

Figure 2: Cryptographic reverse firewall for a malleable Sigma protocol

Completeness preservation. We need to show that the sanitized Sigma protocol Σ̂ := (W◦P,V)
satisfies completeness, i.e. for all (x,w) ∈ R, the sanitized prover W ◦ P always makes the verifier
accept. By completeness of Σ, we have that V(x, (α, β, γ)) = 1 where τ = (α, β, γ) are the messages
output by the honest prover and the honest verifier. The RF sanitizes such transcripts to τ̂ :=
(α̂, β, γ̂), where

(α̂, σ)←$ Maul(α) γ̂ = Bal(γ, σ).

By the malleability property of the Sigma protocol, we have that V(x, τ̂) = 1 so that W preserves
completeness. The fact that our RF is transparent implies that it preserves completeness even
when arbitrarily many RFs are composed with each other.

HVZK preservation. It remains to prove weak HVZK preservation. Fix any pair (x,w) ∈ R,
and any functionality-maintaining PPT subverted prover P̃, and let us analyze the distribution of
a sanitized transcript τ̃ := (α̂, β, γ̂) computed using W ◦ P̃(x,w) and V(x). Since P̃ is functionality
maintaining, it outputs a valid message α ∈ A. Now, the uniformity property of malleable Sigma
protocols guarantees that, for any α ∈ A, the distribution of α̂ is identical to that of α←$ P1(x,w),
and thus it is in particular independent of α. The distribution of β is uniform, as the verifier is hon-
est. Finally, by unique responses, and by the fact that P̃ is functionality maintaining, the prover’s
last message γ is the unique value that would make (α, β, γ) a valid transcript; by malleability of
the Sigma protocol, the sanitized γ̂ is thus the unique value that makes (α̂, β, γ̂) a valid transcript.

Hence, we have shown that for all (x,w) ∈ R, and for all functionality-maintaining PPT
subverted provers P̃, the distribution of transcripts τ̂ produced by running W ◦ P̃(x,w) and V(x) is
identical to the distribution of transcripts τ produced by running P(x,w) and V(x), i.e.{

W ◦ P̃(x,w) � V(x)
}
(x,w)∈R

≡
{
P(x,w) � V(x)

}
(x,w)∈R

.

The theorem now follows directly by the perfect (resp. computational) special HVZK property of
the underlying Sigma protocol Σ.

4.3 Zero Knowledge Preservation

While it is well known that Sigma protocols are not in general zero knowledge, a standard tech-
nique [GK96] allows to compile any Sigma protocol into an IPS satisfying fully-fledged zero knowl-

19

edge. The main idea is to let the verifier commit to the challenge β using a commitment scheme
(Gen,Com,Open) with message space {0, 1}`. We depict such a modified protocol in Fig. 3.

Prover(x,w) Verifier(x)

pk ←$ Gen(1λ)
pk−−−−−−−−→

β←$ {0, 1}`
(c, d)←$ Com(pk , β)

c←−−−−−−−−−
α = P1(x,w; a)

α−−−−−−−−−→
d←−−−−−−−−−

β = Open(pk , c, d)
If β 6= ⊥, then γ = P2(x,w, α, β, a)
Else, γ = ⊥

γ−−−−−−−−−→
V(x, (α, β, γ))

?
= 1

Figure 3: Sigma protocol compiled with standard techniques to obtain full zero knowledge

We now build a RF (in Fig. 4) for the protocol of Fig. 3. The main idea is to use a special
type of malleable commitment that allows to re-randomize both public keys and commitments in
a controlled manner. Moreover, given a valid opening d for a commitment c computed using a
mauled key p̂k obtained by re-randomizing another (possibly malicious) public key pk , it should be
possible to balance (c, d) to a pair (ĉ, d̂) that is valid w.r.t. pk . A formal definition follows below.

Definition 4.4 (Key-malleable commitment scheme). A commitment scheme Γ = (Gen,Com,Open)
(see §2.3) is called key malleable if there exist polynomial-time algorithms MaulKey,MaulCom,
BalOpen specified as follows:

(i) MaulKey is a probabilistic algorithm taking as input a public key pk, and outputting a new

public key p̂k and state ρ ∈ {0, 1}∗;

(ii) MaulCom is a probabilistic algorithm taking as input a public key pk, a commitment c, and
state ρ, and outputting a new commitment ĉ.

(iii) BalOpen is a deterministic algorithm taking as input a public key pk, opening information d,
and state ρ, and outputting a new opening d̂.

Moreover, the following properties are met.

• Key Uniformity. For all (possibly malicious) strings pk, the distribution of p̂k in (p̂k , ρ)←$

MaulKey(pk) is identical to the distribution of Gen(1λ).

• Opening Malleability. For all (possibly malicious) strings pk, and for all messages m ∈M,

20

it holds that:

P

Open(pk , ĉ, d̂) = m :

(p̂k , ρ)←$ MaulKey(pk);

(c, d)←$ Com(p̂k ,m);
ĉ←$ MaulCom(pk , c, ρ);

d̂ = BalOpen(pk , d, ρ)

 = 1,

where the probability is over the randomness of MaulKey,Com,MaulCom.

• Commitment Uniformity. For all (possibly malicious) strings pk and for all commit-

ments c in the support of Com(p̂k , ·), where (p̂k , ρ)←$ MaulKey(pk), the distribution of ĉ in
ĉ←$ MaulCom(pk , c, ρ) is identical to the distribution of Com(pk , 0µ) where µ is the cardinality
of the message space M.

Prover(x,w) ZK Reverse Firewall Verifier(x)

pk ←$ Gen(1λ)
pk−−−−−−−−→ (p̂k , ρ)←$ MaulKey(pk)

p̂k−−−−−−−−→
β←$ {0, 1}`

(c, d)←$ Com(p̂k , β)
ĉ←−−−−− ĉ←$ MaulCom(pk , c, ρ)

c←−−−−−−−
α = P1(x,w; a)

α−−−−−→ (α̂, σ)←$ Maul(α)
α̂−−−−−−−→

d̂←−−−−− d̂ = BalOpen(d, ρ)
d←−−−−−−−

β = Open(pk , ĉ, d̂)
If β 6= ⊥, then
γ = P2(x,w, β, a)

γ−−−−−−→
β = Open(pk , ĉ, d̂)

If β = ⊥, then γ̂ = ⊥
Else, γ̂ = Bal(γ, σ)

γ̂−−−−−−−→
V(x, (α̂, β, γ̂))

?
= 1

Figure 4: Prover’s RF for the protocol in Fig. 3

Theorem 4.5. Let Σ = (P = (P1,P2),V) be a malleable Sigma protocol with unique responses, for
a relation R. Let Γ = (Gen,Com,Open) be a key-malleable commitment scheme with message space
{0, 1}`. The RF W of Fig. 4 preserves completeness, and moreover is weakly exfiltration resistant
and weakly zero-knowledge preserving for the prover.

Proof. We prove each property of the firewall below.

Completeness preservation. We need to show that the sanitized Sigma protocol Σ̂ := (W◦P,V)
satisfies completeness, i.e. for all (x,w) ∈ R, the sanitized prover W ◦ P always makes the verifier
accept. Note that whenever the verifier commits to β ∈ {0, 1}`, the decommitment information

21

d is such that Open(pk , c, d) = β (by correctness of Γ). Now, opening malleability implies that
the mauled commitment ĉ, and the corresponding balanced decommitment d̂, are also such that
Open(pk , ĉ, d̂) = β.

Finally, since by completeness of Σ it holds that the triple (α, β, γ) generated by the prover
is such that V(x, (α, β, γ)) = 1, the malleability property of the Sigma protocol implies that the
sanitized triple (α̂, β, γ̂) computed by running

(α̂, σ)←$ Maul(α) γ̂ = Bal(γ, σ),

is also such that V(x, (α̂, β, γ̂)) = 1. Thus, W preserves completeness. The fact that our RF is
transparent implies that it preserves completeness even when arbitrarily many RFs are composed
with each other.

Weak exfiltration resistance. We will show that no unbounded distinguisher can tell apart
sanitized transcripts generated by running the honest prover P with a malicious verifier V∗ from
sanitized transcript generated by running a functionality-maintaining prover P̃ with V∗. More
formally, for all PPT non-uniform malicious verifiers V∗, and for all PPT functionality-maintaining
subverted provers P̃:{

W ◦ P(x,w) � V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

≡
{
W ◦ P̃(x,w) � V∗(x, z)

}
(x,w)∈R,z∈{0,1}∗

.

Fix any pair (x,w) ∈ R, any PPT functionality-maintaining subverted prover P̃, any PPT malicious

verifier V∗, and any auxiliary input z ∈ {0, 1}∗ for the verifier. Let us denote by τ̂ = (p̂k , c∗, α̂, d∗, γ̂)

(resp. τ̃ = (p̃k , c̃∗, α̃, d̃∗, γ̃)) the sanitized transcript in a run of the protocol between V∗(x, z) and
W ◦ P(x,w) (resp. W ◦ P̃(x,w)). Our goal is to show that τ̂ ≡ τ̃ , where the probability space of
the random variables τ̂ , τ̃ is over the randomness of MaulKey,MaulCom,Maul, and over the coins of
Gen,P1,P2,V

∗ (in case of τ̂) and P̃,V∗ (in case of τ̃). In what follows, we omit writing the probability
space for simplicity. Note that a functionality-maintaining subverted prover P̃ is allowed to send
fixed values, known by the malicious verifier and by the distinguisher, in its outgoing messages.
Therefore, the above distributions need to be identical even given the messages sent by P̃.

First, by key uniformity of the key-malleable commitment scheme, the distribution of p̂k , p̃k is
identical to that of pk ←$ Gen(1λ), and in particular it is independent of the public key sent by the
subverted prover. Thus,

τ̂ ≡ (pk , c∗, α̂, d̂∗, γ̂)

τ̃ ≡ (pk , c∗, α̃, d̃∗, γ̃)

where c̃∗ ≡ c∗ has whatever distribution V∗ decides (given pk). Second, by uniformity of the
malleable Sigma protocol, the distribution of α̂, α̃ is identical to that of α←$ P1(x,w), and in
particular it is independent of the first message for Σ as sent by the subverted prover. Thus,

τ̂ ≡ (pk , c∗, α, d∗, γ̂)

τ̃ ≡ (pk , c∗, α, d∗, γ̃)

where again d̃∗ ≡ d∗ has whatever distribution V∗ decides (given pk , c∗, α). As for the prover’s last
message, we consider two cases:

22

• In case Open(pk , c∗, d∗) 6= ⊥, the distribution of γ̂ coincides with that of the unique value γ
which would make the honest verifier of the underlying Sigma protocol accept. Furthermore,
the commitment uniformity property of the key-malleable commitment scheme, together with
the fact that P̃ is functionality maintaining, imply that γ̃ is identically distributed to γ̂.

• In case Open(pk , c∗, d∗) = ⊥, the distribution of γ̂, γ̃ coincides with that of γ = ⊥ (as ensured
by the RF).

Putting it all together, we have shown

τ̂ ≡ (pk , c∗, α, d∗, γ) ≡ τ̃ .

Weak zero-knowledge preservation. Weak zero-knowledge preservation of W follows from
weak exfiltration-resistance of W (shown above) and Theorem 3.11.

Remark 4.6 (On knowledge soundness). The IPS of Fig. 3 satisfies soundness, but is not in general
a proof of knowledge. However, we would like to note that the prover’s firewall still works for the
standard transformation of a Sigma protocol into a zero-knowledge proof of knowledge. In such a
transformation, a trapdoor commitment scheme is used to commit to the verifier’s challenge. Then,
after the verifier decommits, the prover sends the trapdoor to the verifier. This allows an extractor
to learn the trapdoor, rewind the prover, and open the commitment to a different challenge, thus
learning the response for two different challenges, which allows it to obtain a witness using special
soundness.

The prover’s RF for this protocol stays the same, except that it additionally needs to provide
a trapdoor for the mauled public key p̂k given a trapdoor for the original public key pk . This is
possible, for instance, using Pedersen’s commitment, where given a public key pk = (g, h = gk)
with trapdoor k, it is possible to maul the key to (ĝ = gt1 , ĥ = ht2) for random t1, t2. Given the

trapdoor k for the key pk , the trapdoor for the mauled key p̂k can be computed as t2t
−1
1 k.

5 Firewalls for Proving Compound Statements

In this section, we show how to construct firewalls for Sigma protocols that prove compound
statements. Our RFs will preserve the HVZK (Definition 4.2) and the WI (Definition 3.5) properties
of the initial Sigma protocols. In what follows, letR0, R1 be relations with corresponding languages
L0, L1.

5.1 AND Composition

Given x0, x1, a prover wishes to prove to a verifier that x0 ∈ L0 and x1 ∈ L1. More precisely,
consider the derived relation:

RAND = {((x0, x1), (w0, w1)) : (x0, w0) ∈ R0 ∧ (x1, w1) ∈ R1}.

Let Σ0 = ((P0
1,P

0
2),V

0) (resp. Σ1 = ((P1
1,P

1
2),V

1)) be a Sigma protocol for language L0 (resp. L1).
A Sigma protocol ΣAND for the relation RAND can be obtained by running the two provers of Σ0

and Σ1 in parallel, with the verifier sending a single challenge for both statements. Fig. 5 shows
a RF for the prover of ΣAND, assuming that both Σ0 and Σ1 are malleable (Definition 4.1). We
prove the following result.

23

Prover((x0, x1), (w0, w1)) Reverse Firewall Verifier(x0, x1)

α0 = P0
1(x0, w0; a0)

α1 = P1
1(x1, w1; a1)

α0,α1−−−−−−→
(α̂0, σ0)←$ Maul0(α0)
(α̂1, σ1)←$ Maul1(α1)

α̂0,α̂1−−−−−−→
β ← {0, 1}`

β←−−− β←−−−−−
γ0 = P0

2(x0, w0, β, a0)
γ1 = P1

2(x1, w1, β, a1)
γ0,γ1−−−−−→

γ̂0 = Bal0(γ0, σ0)
γ̂1 = Bal1(γ1, σ1)

γ̂0,γ̂1−−−−−→
V0(x0, (α̂0, β, γ̂0))

?
= 1

V1(x1, (α̂1, β, γ̂1))
?
= 1

Figure 5: Reverse firewall for the AND composition of Sigma protocols

Theorem 5.1. Let Σ0 = (P0 = (P0
1,P

0
2),V

0) and Σ1 = (P1 = (P1
1,P

1
2),V

1) be malleable Sigma pro-
tocols with unique responses, for relations R0 and R1. The RF W of Fig. 5 preserves completeness,
and is weakly HVZK preserving for the prover of the Sigma protocol ΣAND for relation RAND.

Proof. The proof is almost identical to that of Theorem 4.3, hence we only give a brief sketch.
The fact that W preserves completeness follows immediately by the malleability and completeness
properties of Σ0,Σ1.

It remains to prove weak HVZK preservation. Fix any pair ((x0, x1), (w0, w1)) ∈ RAND, and any
functionality-maintaining PPT subverted prover P̃, and let us analyze the distribution of a sanitized
transcript τ̃ := ((α̂0, α̂1), β, (γ̂0, γ̂1)) computed using W ◦ P̃((x0, x1), (w0, w1)) and V(x0, x1). Since
P̃ is functionality maintaining, it outputs α0, α1 ∈ A. Now, the uniformity property of malleable
Sigma protocols guarantees that, for any (α0, α1) ∈ A2, the distribution of (α̂0, α̂1) is identical to
that of (α0, α1) in α0←$ P0

1(x0, w0) and α1←$ P1
1(x1, w1). Finally, by unique responses, and by the

fact that P̃ is functionality maintaining, the prover’s last message (γ0, γ1) consists of the unique
values that would make (α0, β, γ0) and (α1, β, γ1) valid transcripts; by malleability of the Sigma
protocols, the sanitized (γ̂0, γ̂1) is thus the unique pair that makes (α̂0, β, γ̂0) and (α̂1, β, γ̂1) valid
transcripts.

Hence, we have shown that for all ((x0, x1), (w0, w1)) ∈ RAND, and for all functionality-maintaining
PPT subverted provers P̃, the distribution of transcripts τ̂ produced by running W◦P̃((x0, x1), (w0, w1))
and V(x0, x1) is identical to the distribution of transcripts τ produced by running P((x0, x1), (w0, w1))
and V(x0, x1), i.e.{

W ◦ P̃((x0, x1), (w0, w1)) � V(x0, x1)
}
((x0,x1),(w0,w1))∈RAND

≡
{
P((x0, x1), (w0, w1)) � V(x0, x1)

}
((x0,x1),(w0,w1))∈RAND

.

24

The theorem now follows directly by the perfect (resp. computational) special HVZK property of
the Sigma protocol ΣAND.

5.2 OR Composition

Given x0, x1, a prover wishes to prove to a verifier that either x0 ∈ L0 or x1 ∈ L1 (without revealing
which one is the case). More precisely, consider the derived relation

ROR = {((x0, x1), w) : (x0, w) ∈ R0 ∨ (x1, w) ∈ R1}.

Let Σ0 = ((P0
1,P

0
2),V

0) (resp. Σ1 = ((P1
1,P

1
2),V

1)) be a Sigma protocol for language L0 (resp. L1);
we denote by S0 (resp. S1) the HVZK simulator for Σ0 (resp. Σ1). A Sigma protocol ΣOR for the
relation ROR has been constructed for the first time in [CDS94], where the authors shows that ΣOR

satisfies both (perfect) special HVZK and (perfect) WI. We describe the protocol ΣOR in Fig. 6.

Prover((x0, x1), w) Verifier(x0, x1)

αb = Pb1(xb, w; a)
(α1−b, β1−b, γ1−b)←$ S1−b(x1−b)

α0,α1−−−−−−−−−−−−→
β←$ {0, 1}`

β←−−−−−−−−−−−−
βb = β ⊕ β1−b
γb = Pb2(xb, w, βb, a)

β0,β1,γ0,γ1−−−−−−−−−−−−−→
β

?
= β0 ⊕ β1

V0(x0, (α0, β0, γ0))
?
= 1

V1(x1, (α1, β1, γ1))
?
= 1

Figure 6: OR composition of Sigma protocols, where b ∈ {0, 1} is s.t. (xb, w) ∈ Rb.

Our RF for the protocol ΣOR appears in Fig. 7. As in the case of AND composition, we still
rely on the fact that the input Sigma protocols Σ0,Σ1 are malleable. An additional difficulty,
however, stems from the fact that a functionality maintaining prover could now try to change the
distribution of the challenges β0, β1 in such a way that, even if β0 ⊕ β1 = β, the pair (β0, β1)
signals some information about the witness w or about the hidden bit b. Intuitively, the RF in
Fig. 7 tackles this attack by randomizing the challenges β, β0, β1. The latter requires a different
form of malleability from the underlying Sigma protocols, where it should be possible to maul the
prover’s first message in such a way that we can later balance the prover’s last message as well as
the verifier’s challenge. We define this flavor of malleability below.

Definition 5.2 (Instance-dependent malleable Sigma protocol). Let Σ = (P1,P2,V) be a Sigma
protocol for a relation R. We say that Σ is instance-dependent malleable if there exists a pair of
polynomial-time algorithms (Maul,Bal) specified as follows:

(i) Maul is a probabilistic algorithm taking as input x, α, and a randomizer ρ ∈ {0, 1}`, and
returning α̂ along with state σ ∈ {0, 1}∗;

25

Prover((x0, x1), w) Reverse Firewall(x0, x1) Verifier(x0, x1)

αb = P1−b
1 (xb, w; a)

(α1−b, β1−b, γ1−b)←$ S1−b(x1−b)
α0,α1−−−−−−→

ρ0, ρ1←$ {0, 1}`
(α̂0, σ0)←$ Maul0(x0, α0, ρ0)
(α̂1, σ1)←$ Maul1(x1, α1, ρ1)

α̂0,α̂1−−−−−−→
β←$ {0, 1}`

β←−−−−−
ρ = ρ0 ⊕ ρ1
β̂ = β ⊕ ρ

β̂←−−−−−−−
βb = β̂ ⊕ β1−b
γb = Pb2(xb, w, βb, a)

γ0,γ1,β0,β1−−−−−−−−−→
β̂0 = β0 ⊕ ρ0
β̂1 = β1 ⊕ ρ1

γ̂0 = Bal0(γ0, σ0)
γ̂1 = Bal1(γ1, σ1)

γ̂0,γ̂1,β̂0,β̂1−−−−−−−−−→
β

?
= β̂0 ⊕ β̂1

V0(x0, (α̂0, β̂0, γ̂0))
?
= 1

V1(x1, (α̂1, β̂1, γ̂1))
?
= 1

Figure 7: Reverse Firewall for the basic OR composition of Sigma protocols, where b ∈ {0, 1} is
s.t. (xb, w) ∈ Rb.

(ii) Bal is a deterministic algorithm taking as input γ and the state σ output by Maul, and re-
turning a balanced response γ̂.

Moreover, the following properties are met.

• Uniformity. For all (x,w) ∈ R, for all α ∈ A, and for all ρ ∈ {0, 1}`, the distribution of α̂
in (α̂, σ)←$ Maul(x, α, ρ) is identical to that of P1(x,w).

• Instance-dependent malleability. For all x ∈ L, and for all τ = (α, β, γ) such that
V(x, (α, β, γ)) = 1, the following holds for all ρ ∈ {0, 1}`:

P
[
V(x, (α̂, β̂, γ̂)) = 1 : (α̂, σ)←$ Maul(x, α, ρ); β̂ = β ⊕ ρ; γ̂ = Bal(γ, σ)

]
= 1,

where the probability is over the randomness of Maul.

As we show in §6, a large class of Sigma protocols meets the above property. Observe that
algorithm Maul now takes as input the statement x corresponding to the transcript τ = (α, β, γ).
As a consequence, the RF of Fig. 7 needs to be initialized with (x0, x1) ∈ LOR. While our def-
initions from §3 do not directly allow the RF to take the statement being proven as input, it is
straightforward to adapt them to cover this slightly more general setting as well.

Theorem 5.3. Let Σ0 = (P0 = (P0
1,P

0
2),V

0) and Σ1 = (P1 = (P1
1,P

1
2),V

1) be instance-dependent
malleable Sigma protocols with unique responses, for relations R0 and R1. The RF W of Fig. 7

26

preserves completeness, and is weakly HVZK/WI preserving for the prover of the Sigma protocol
ΣOR for relation ROR.

Proof. We prove each property of the firewall below.

Completeness preservation. We need to show that the sanitized Sigma protocol Σ̂ := (W◦P,V)
satisfies completeness, i.e. for all b ∈ {0, 1}, and for all ((x0, x1), w) ∈ ROR, the sanitized prover
W◦P always makes the verifier accept. Fix b ∈ {0, 1} such that (xb, w) ∈ Rb. Note that the verifier
accepts if and only if all of the constraints below are satisfied:

β̂0 ⊕ β̂1
?
= β (6)

V1−b(x1−b, α̂1−b, β̂1−b, γ̂1−b)
?
= 1 (7)

Vb(xb, α̂b, β̂b, γ̂b)
?
= 1 (8)

Eq. (6) holds, since the prover sets βb = β̂ ⊕ β1−b where β̂ = β ⊕ ρ and thus:

β̂0 ⊕ β̂1 = (β0 ⊕ ρ0)⊕ (β1 ⊕ ρ1) = β̂ ⊕ ρ = β.

Further, note that the HVZK property of Σ1−b implies that the simulated transcript (α1−b, β1−b,
γ1−b) computed by the prover is such that V1−b(x1−b, (α1−b, β1−b, γ1−b)) = 1. The RF sanitizes
such transcripts to (α̂1−b, β̂1−b, γ̂1−b), where β̂1−b = β1−b ⊕ ρ1−b and

(α̂1−b, σ1−b)←$ Maul1−b(x1−b, α1−b, ρ1−b) γ̂1−b = Bal1−b(γ1−b, σ1−b).

Hence, since the instance-dependent malleability property of Σ1−b holds for any choice of ρ1−b, we
have that V1−b(x1−b, (α̂1−b, β̂1−b, γ̂1−b)) = 1 too, and thus Eq. (7) holds.

Finally, the completeness property of Σb implies that the transcript (αb, βb, γb) computed by
the prover is such that Vb(xb, (αb, βb, γb)) = 1. The RF sanitizes such transcripts to (α̂b, β̂b, γ̂b),
where β̂b = βb ⊕ ρb and

(α̂b, σb)←$ Maulb(xb, αb, ρb) γ̂b = Balb(γb, σb).

Hence, since the instance-dependent malleability property of Σb holds for any choice of ρ̂b, we have
that Vb(xb, (α̂b, β̂b, γ̂b)) = 1 too, and thus Eq. (8) holds. The fact that our RF is transparent implies
that it preserves completeness even when arbitrarily many RFs are composed with each other.

Weak HVZK preservation. Next, we show that for all functionality maintaining PPT sub-
verted provers P̃, the sanitized Sigma protocol Σ̂ := (W ◦ P̃,V) satisfies perfect special HVZK.
The simulator S works as follows: Upon input β′ ∈ {0, 1}`, choose β′0, β

′
1 ∈ {0, 1}` at random

subject to β′0 ⊕ β′1 = β′. Then, run the simulator S0 for the protocol Σ0 to obtain (α′0, β
′
0, γ
′
0), and

the simulator S1 for protocol Σ1 to obtain (α′1, β
′
1, γ
′
1). Finally, set the simulated transcript to be

τ ′ := ((α′0, α
′
1), β

′, (β′0, β
′
1, γ
′
0, γ
′
1)). We now show that:{

W ◦ P̃((x0, x1), w) � V(x0, x1)
}
((x0,x1),w)∈ROR

≡
{
S(x0, x1)

}
(x0,x1)∈LOR

.

Fix any pair ((x0, x1), w) ∈ ROR and any PPT functionality-maintaining subverted prover P̃. Let
τ̃ = ((α̃0, α̃1), β, (β̃0, β̃1, γ̃0, γ̃1)) be the sanitized transcript in a run of the protocol between V(x0, x1)

27

and W ◦ P̃((x0, x1), w). We need to prove that τ̃ ≡ τ ′, where the probability space of the random
variables τ̃ , τ ′ is over the randomness of Maul, and over the coins tosses of P̃,V (in case of τ̃) and
of S (in case of τ ′). In what follows, we omit writing the probability space for simplicity.

By uniformity of the malleable Sigma protocol, and by perfect HVZK of Σ0,Σ1, the distribution
of (α̃0, α̃1) and (α′0, α

′
1) is identical to that of (α0, α1) in αb←$ Pb1(xb, w) and α1−b←$ S1−b(x1−b),

and in particular it is independent of the first message sent by the subverted prover. Thus,

τ̃ ≡ ((α0, α1), β, (β̃0, β̃1, γ̃0, γ̃1))

τ ′ ≡ ((α0, α1), β, (β
′
0, β
′
1, γ
′
0, γ
′
1)).

As for the prover’s last message, we claim that (β̃0, β̃1) ≡ (β0, β1) ≡ (β′0, β
′
1) where (β0, β1) are

random subject to β0 ⊕ β1 = β. In particular, the latter follows by the fact that P̃ is functionality
maintaining, and that additionally ρ0, ρ1 are uniformly random, in the case of (β̃0, β̃1), and by
definition of the simulator S in the case of (β′0, β

′
1). Second, since P̃ is functionality maintaining,

and by unique responses of Σ0,Σ1, the distribution of (γ̃0, γ̃1) coincides with that of the unique
values (γ0, γ1) which would make the honest verifiers V0(x0, (α0, β0, γ0)) and V1(x1, (α1, β1, γ1)) of
the underlying Sigma protocols output one, and the same holds by construction of S for (γ′0, γ

′
1).

Putting it all together, we have shown

τ̃ ≡ ((α0, α1), β, (β0, β1, γ0, γ1)) ≡ τ ′.

Weak WI preservation. We note that, as long as Σ0 and Σ1 are perfect HVZK, the immunized
protocol Σ̂ := (W ◦ P̃,V) is also perfectly HVZK. Since perfect HVZK implies perfect WI [CDS94],
it follows that W weakly preserves WI. The latter, however, is not true in case one of Σ0 and Σ1 is
only computational HVZK. Thus, we prove below that W weakly preserves17 (computational) WI,
as long as Σ0 and Σ1 satisfy computational HVZK.

We need to show that the sanitized Sigma protocol Σ̂ = (W ◦ P̃,V) satisfies computational WI,
i.e. for all (non-uniform) PPT malicious verifiers V∗, and for all functionality-maintaining PPT
subverted provers P̃, the following holds:{

W ◦ P̃((x0, x1), w0) � V∗((x0, x1), z)
}
((x0,x1),w0)∈ROR,z∈{0,1}∗

c
≈
{
W ◦ P̃((x0, x1), w1) � V∗((x0, x1), z)

}
((x0,x1),w1)∈ROR,z∈{0,1}∗

.

Fix any ((x0, x1), w) ∈ ROR, any PPT functionality-maintaining subverted prover P̃, any PPT
malicious verifier V∗, and any auxiliary input z ∈ {0, 1}∗ for the verifier. Let b ∈ {0, 1} be such
that (xb, w) ∈ Rb, and denote by τ̃ b = ((α̃b0, α̃

b
1), β

b, (β̃b0, β̃
b
1, γ̃

b
0, γ̃

b
1)) the sanitized transcript in a

run of the protocol between V∗((x0, x1), z) and W ◦ P̃((x0, x1), w). We need to prove that τ̃0
c
≈ τ̃1,

where the probability space of the random variables τ̃0, τ̃1 is over the randomness of Maul, and over
the coins tosses of P̃,V∗. In what follows, we omit writing the probability space for simplicity.

By uniformity of the malleable Sigma protocol, and by computational HVZK of Σ1−b, the
distribution of (α̃b0, α̃

b
1) is identical to that of (α0, α1) in αb←$ Pb1(xb, w) and α1−b←$ S1−b(x1−b),

17As shown in [GMY06], computational WI of ΣOR only holds w.r.t. the slightly weaker relation R′OR =
{((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ L1) ∨ (x0 ∈ L0 ∧ (x1, w) ∈ R1)}.

28

and in particular it is independent of the first message sent by the subverted prover. Thus,

τ̃0
c
≈ ((α0, α1), β, (β̃

0
0 , β̃

0
1 , γ̃

0
0 , γ̃

0
1))

τ̃1
c
≈ ((α0, α1), β, (β̃

1
0 , β̃

1
1 , γ̃

1
0 , γ̃

1
1)),

where β has whatever distribution the verifier decides (given (x0, x1) and (α0, α1)). As for the
prover’s last message, an argument similar to that used in the proof of HVZK preservation shows
that its distribution is identical in τ0 and τ1. This finishes the proof.

6 Concrete Instantiations

In this section we present Maurer’s pre-image protocol [Mau09] that abstracts a large class of Sigma
protocols e.g. [GQ90, Sch90, CD98]. Then, we give a few concrete instantiations of malleable Sigma
protocols to prove different relations, such as knowledge of a DDH tuple and proving knowledge of
a plaintext hidden in a give ciphertext. Finally, we show that the standard commitment scheme
by Pedersen [Ped92] is key malleable.

6.1 Maurer’s Unifying (Pre-image) Protocol

Consider two groups (G, ?) and (H,⊗), and a function f : G → H that is a homomorphism,
i.e. f(x ? y) = f(x) ⊗ f(y). We denote f(x) by [x]. The pre-image protocol for the relation
R = {(x,w) : x = f(w)} is given in Fig. 8.

It is well known that the pre-image protocol is a Sigma protocol when the following conditions
are satisfied for (x,w) ∈ R, and for integers v, u ∈ G: (i) gcd(β1, β2, v) = 1 for all challenges
β1 6= β2; (ii) [u] = xv.

Prover(x,w) Verifier(x = [w])

a←$ G, α := [a]
α−−−−−−−−−→

β←$ G
β←−−−−−−−−−

γ := a ? wβ

γ−−−−−−−−−→
[γ]

?
= α⊗ xβ

Figure 8: Pre-image protocol for proving knowledge of w such that x = [w]

Next, we show that Maurer’s pre-image protocol is a malleable Sigma protocol as per Defini-
tion 4.1. In fact, we also show that the same protocol is instance-dependent malleable18 as per
Definition 5.2.

Theorem 6.1. The pre-image protocol depicted in Fig. 8 is malleable.
18Note that instance-dependent malleability does not directly imply malleability, as in the former algorithm Maul

takes as input the statement being proven. The converse is also not true in general, as malleability does not allow to
balance the challenge.

29

Proof. The definition of the algorithms Maul and Bal is given below:

Maul(α) := (α⊗ [σσ10], (σ0, σ1)) Bal(γ, (σ0, σ1)) := γ ? σσ10 ,

where σ0, σ1←$ G. We note that:

• For all pairs19 (x,w) such that x = [w], and for all a ∈ G and α = [a] ∈ H, the distribution
of α̂ := α⊗ [σσ10] = [a ? σσ10] over the choice of σ0, σ1←$ G is identical to that of α = [a] over
the choice of a←$ G. This shows uniformity.

• For all x ∈ H, and for all τ = (α, β, γ) such that [γ] = α⊗ xβ, it holds that

[γ̂] = [γ ? σσ10] = [γ]⊗ [σσ10] = α⊗ xβ ⊗ [σσ10] = α̂⊗ xβ,

with probability one over the choice of σ0, σ1←$ G. This shows malleability.

Theorem 6.2. The pre-image protocol depicted in Fig. 8 is instance-dependent malleable.

Proof. The definition of the algorithms Maul and Bal is given below:

Maul(x, α, ρ) := (α⊗ [σσ10]⊗ x−ρ, (σ0, σ1)) Bal(γ, (σ0, σ1)) := γ ? σσ10 ,

where σ0, σ1←$ G. We note that:

• For all pairs (x,w) such that x = [w], for all a ∈ G and α = [a] ∈ H, and for all ρ ∈ G, the
distribution of α̂ := α⊗ [σσ10]⊗ x−ρ = [a ? σσ10 ? wρ] over the choice of σ0, σ1←$ G is identical
to that of α = [a] over the choice of a←$ G. This shows uniformity.

• For all x ∈ H, and for all τ = (α, β, γ) such that [γ] = α ⊗ xβ, for all ρ ∈ G it holds that

[γ̂] = α̂⊗ xβ̂ where β̂ = β ? ρ. Indeed:

[γ̂] = [γ ? σσ10] = [γ]⊗ [σσ10] = α⊗ xβ ⊗ [σσ10] = α̂⊗ xρ ⊗ xβ = α̂⊗ xβ̂,

with probability one over the choice of σ0, σ1, ρ←$ G. This shows instance-dependent mal-
leability.

Since Maurer’s pre-image protocol already captures a large class of Sigma protocols, e.g. [GQ90,
Sch90, CD98], as a corollary we get that all these protocols are malleable.

6.2 Examples of Malleable Sigma Protocols

In this section we present a few concrete instantiations of Maurer’s pre-image Sigma protocol (and
therefore malleable Sigma protocols) to prove different relations, such as knowledge of a DDH tuple
and proofs of plaintext knowledge.

19Note that uniformity holds trivially for all (x,w) ∈ R, as the prover’s first message is independent of x,w.

30

6.2.1 Proving Knowledge of a Discrete Logarithm

We describe the protocol by Schnorr [Sch90] that allows for a prover to convince a verifier about
the knowledge of a discrete logarithm.

Let G be a group of order q, let g←$ G\{1G}, w ∈ Zq. The statement is (g, x = gw). The prover
first samples a←$ Zq, computes α = ga and sends α to the verifier. The verifier will then sample
a random challenge β←$ Zq and send β to the prover. Finally, the prover computes γ = a− w · β
and sends it to the verifier that will accept only if gγ = α · x−β.

We observe that once α = ga and β are fixed, the prover needs to produce a response γ that
will be accepting for gγ = α · x−β. Looking at the first equality, we note that all the variables
on the right side are fixed, namely, x = gw, β and ga are fixed; therefore, there is a unique value
γ = a− wβ such that gγ = αx−β holds.

6.2.2 Proving Knowledge of a DDH Tuple

We describe a protocol by Chaum and Pedersen [CP93] where a prover tries to convince a verifier
that he knows a value w ∈ Zq such that the tuple (g, h, x, y) is a DDH-tuple.

Let G be a group of order q, let g←$ G \ {1G}, h←$ G \ {1G}, w ∈ Zq. The protocol in [CP93]
is a Σ-protocol for the relation RDDH = {(x, y, w) : x = gw and y = hw}. The prover first samples
a←$ Zq, computes α = (ga, ha) = (α1, α2) and sends α to the verifier. The verifier will then sample
a random challenge β←$ Zq and send β to the prover. Finally, the prover computes γ = w · β + a
and sends it to the verifier, that will accept only if gγ = xβ · α1 and hγ = yβ · α2.

To argue unique responses, we observe that once α = (ga, ha) and β are fixed, the prover needs
to produce a response γ that will be accepting for gγ = xβ · ga and hγ = yβ · ha. Looking at the
first equality, we note that all the variables on the right side are fixed, namely, x = gw, β and ga

are fixed; therefore, there is a unique value γ = w · β + a such that gγ = xβ · ga holds. The same
argument holds for the second equality checked by the verifier.

6.2.3 Proving Knowledge of a Representation

We describe a protocol by Okamoto [Oka93] that allows a prover to convince a verifier that he
knows values w1 and w2 such that x is represented as x = gw1 · hw2 .

More formally, let G be a group of order q, let g←$ G\{1G}, h←$ G\{1G}, w1 ∈ Zq, and w2 ∈ Zq.
The protocol in [Oka93] is a Σ-protocol for the relation ROKA = {(x,w1, w2) : x = gw1 · hw2}.
The prover first samples a1←$ Z∗q and a2←$ Z∗q , computes α = (ga1 , ha2) = (α1, α2) and sends α
to the verifier. The verifier will then sample a random challenge β←$ Zq and send β to the prover.
Finally, the prover computes γ = (γ1, γ2) = (a1 + β · w1, a2 + β · w2) and sends it to the verifier,
that will accept only if gγ1 · hγ2 = α1 · α2 · xβ.

To argue unique responses, we observe that once α = (ga1 , ha2) and β are fixed, the prover
needs to produce an accepting response to the verifier. We note that all the variables on the right
side are fixed, namely, α = (ga1 , ha2), β and x = (gw1 , hw2) are fixed; therefore, there is a unique
value γ = (a1 + β · w1, a2 + β · w2) such that gγ1 · hγ2 = ga1 · ha2 · xβ holds.

6.2.4 Proving Plaintext Knowledge

A proof of plaintext knowledge (PPK) allows a prover to convince a verifier that he knows the
message m corresponding to a ciphertext c = Enc(pk ,m) without revealing any information about

31

the plaintext. We describe the protocol by Katz [Kat03] (inspired by [GQ88]) that is a PPK for
the (extended) RSA encryption scheme [RSA78].

The RSA encryption scheme extended to encrypt `-bit messages consists of a public RSA
modulus N = p · q and encryption exponent e. Let hc(·) be the hardcore bit [GL89] for the RSA

permutation, and define hc∗(·) = hc(re
`−1

)|| . . . ||hc(re)||hc(r). The encryption of an `-bit message m

is computed by first sampling a random r←$ Z∗N , and then returning c = (re
`

mod N, hc∗(r)⊕m)
as the encryption of m under public key (e,N). To prove knowledge of r, the prover samples a

random element a←$ Z∗N and sends α = ae
`

to the verifier that replies with a random challenge

β←$ Ze. The prover then sends γ = rβ · a, and the verifier only accepts if γe
`

= α · re`β. Note that
when the verifier sends his challenge β, all the variables on the right side of the acceptance equality
are fixed, namely α, β and c (part of the statement). Therefore, there is a unique response γ that
makes the verifier accept.

6.3 Instantiation of Key-Malleable Commitments

We instantiate key-malleable commitments (Definition 4.4) using Pedersen’s commitment [Ped92].
First, we recall how the commitment scheme works. Let G be a group of prime order q, and consider
the commitment scheme (Gen,Com,Open) defined below:

• Gen(1λ): Sample g←$ G \ {1G} and h←$ G \ {1G}, and return pk = (g, h).

• Com(pk ,m): Sample a random r←$ Zq, and return c = gm · hr and d = (m, r).

• Open(c, d): If c = gm · hr output m, otherwise output ⊥.

The algorithms MaulKey,MaulCom,BalOpen are described below.

• MaulKey(pk): Sample t1←$ Zq and t2←$ Zq, set p̂k = (gt1 , ht2) and ρ = (t1, t2), and return

(p̂k , ρ).

• MaulCom(p̂k , c, ρ): Return ĉ = ct
−1
1 .

• BalOpen(p̂k , d, ρ): Return d̂ = (m, r̂ = r · t2 · t−11).

We argue that for any pk = (g, h) the distribution of p̂k ←$ MaulKey(pk) is identical to the
distribution of Gen(1λ), as even for an unbounded distinguisher, the values gt1 and ht2 for random
t1, t2 are random group elements. The correctness of opening malleability is shown next. For a
message m and for any pk = (g, h), we have that

ĉ = gm · ĥr·t
−1
1 = gmhr·t2·t

−1
1 = gmhr̂,

which shows key uniformity.
To show commitment uniformity, fix any string pk = (g, h) and let p̂k = (gt1 , ht2) = (ĝ, ĥ)

and ρ = (t1, t2) be as defined above. Let c = ĝm · ĥr, for some r ∈ Zq, be any commitment in

the support of Com(p̂k , ·), and denote by ĉ = ct
−1
1 the corresponding sanitized commitment. Since

t1 is uniform, the distribution of ĉ is that of a uniformly random group element, and thus the
commitment uniformity property holds.

32

7 Conclusion

We showed how to design cryptographic reverse firewalls allowing to preserve security of interactive
proof systems in the face of subversion. Our firewalls apply to a large class of Sigma protocols
meeting a natural malleability property, and can be extended to cover classical applications of
Sigma protocols for designing zero-knowledge proofs and for proving compound statements.

We leave it as an intriguing open problem to design a reverse firewall for the OR composition
of Sigma protocols that are delayed input, as considered in [CPS+16a, CPS+16b].

Acknowledgments

We thank Yashvanth Kondi for pointing out an error in our RF construction for the OR composition
in an early version of this manuscript.

References

[ABK18] Benedikt Auerbach, Mihir Bellare, and Eike Kiltz. Public-key encryption resistant to
parameter subversion and its realization from efficiently-embeddable groups. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages
348–377. Springer, Heidelberg, March 2018.

[AFMV19] Giuseppe Ateniese, Danilo Francati, Bernardo Magri, and Daniele Venturi. Public
immunization against complete subversion without random oracles. In Robert H. Deng,
Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS 19, volume
11464 of LNCS, pages 465–485. Springer, Heidelberg, June 2019.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient signature
schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS
2015, pages 364–375. ACM Press, October 2015.

[AP19] Marcel Armour and Bertram Poettering. Substitution attacks against message authen-
tication. IACR Trans. Symmetric Cryptol., 2019(3):152–168, 2019.

[BBG13] James Ball, Julian Borger, and Glenn Greenwald. Revealed: How US and UK spy
agencies defeat internet privacy and security. Guardian Weekly, September 2013.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted
CRS: Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804.
Springer, Heidelberg, December 2016.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidel-
berg, August 1993.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In Indrajit Ray, Ninghui Li, and

33

Christopher Kruegel, editors, ACM CCS 2015, pages 1431–1440. ACM Press, October
2015.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric en-
cryption against mass surveillance. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19. Springer, Heidelberg, Au-
gust 2014.

[CD98] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field arithmetic;
or: Can zero-knowledge be for free? In Hugo Krawczyk, editor, CRYPTO’98, volume
1462 of LNCS, pages 424–441. Springer, Heidelberg, August 1998.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94,
volume 839 of LNCS, pages 174–187. Springer, Heidelberg, August 1994.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Walter Fumy, editor, EUROCRYPT’97,
volume 1233 of LNCS, pages 103–118. Springer, Heidelberg, May 1997.

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo, and Mingwu Zhang.
Cryptographic reverse firewall via malleable smooth projective hash functions. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 844–876. Springer, Heidelberg, December 2016.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F.
Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg,
August 1993.

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved OR-composition of sigma-protocols. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 112–141. Springer,
Heidelberg, January 2016.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline OR composition of sigma protocols. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 63–92. Springer, Heidelberg, May 2016.

[CVE14] Vulnerability summary for cve-2014-6271 (shellshock), September 2014.

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious ap-
proach to security against mass surveillance. In Gregor Leander, editor, FSE 2015,
volume 9054 of LNCS, pages 579–598. Springer, Heidelberg, March 2015.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In 35th ACM STOC, pages 426–437. ACM Press, June 2003.

34

[DGG+15] Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Risten-
part. A formal treatment of backdoored pseudorandom generators. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
101–126. Springer, Heidelberg, April 2015.

[DMS16] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Message transmission
with reverse firewalls—secure communication on corrupted machines. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
341–372. Springer, Heidelberg, August 2016.

[DPSW16] Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt, and Joanne Woodage.
Backdoors in pseudorandom number generators: Possibility and impossibility results.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814
of LNCS, pages 403–432. Springer, Heidelberg, August 2016.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–
168. Springer, Heidelberg, August 2005.

[FJM18] Marc Fischlin, Christian Janson, and Sogol Mazaheri. Backdoored hash functions:
Immunizing HMAC and HKDF. In 31st IEEE Computer Security Foundations Sym-
posium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pages 105–118, 2018.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On
the non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith and Mridul
Nandi, editors, INDOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer,
Heidelberg, December 2012.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st FOCS, pages
308–317. IEEE Computer Society Press, October 1990.

[FM18] Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic protocols against algo-
rithm substitution attacks. In 31st IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pages 76–90, 2018.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In 22nd ACM STOC, pages 416–426. ACM Press, May 1990.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–190, June 1996.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In 21st ACM STOC, pages 25–32. ACM Press, May 1989.

35

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th ACM STOC, pages 365–377. ACM
Press, May 1982.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(3):691–729, 1991.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169–209, April 2006.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

[GOR15] Irene Giacomelli, Ruxandra F. Olimid, and Samuel Ranellucci. Security of linear secret-
sharing schemes against mass surveillance. In Michael Reiter and David Naccache,
editors, CANS 15, LNCS, pages 43–58. Springer, Heidelberg, December 2015.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both trasmission and memory. In C. G.
Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 123–128. Springer,
Heidelberg, May 1988.

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signa-
ture scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, CRYPTO’88,
volume 403 of LNCS, pages 216–231. Springer, Heidelberg, August 1990.

[Jun15] Juniper vulnerability, 2015.

[Kat03] Jonathan Katz. Efficient and non-malleable proofs of plaintext knowledge and applica-
tions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 211–228.
Springer, Heidelberg, May 2003.

[LHA+12] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Klein-
jung, and Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 626–642. Springer, Heidelberg,
August 2012.

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart Preneel, editor,
AFRICACRYPT 09, volume 5580 of LNCS, pages 272–286. Springer, Heidelberg, June
2009.

[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In Elis-
abeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 657–686. Springer, Heidelberg, April 2015.

36

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of
LNCS, pages 31–53. Springer, Heidelberg, August 1993.

[OO90] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interactive proofs and
commutative random self-reducibility. In Jean-Jacques Quisquater and Joos Vande-
walle, editors, EUROCRYPT’89, volume 434 of LNCS, pages 134–148. Springer, Hei-
delberg, April 1990.

[ORV14] Rafail Ostrovsky, Vanishree Rao, and Ivan Visconti. On selective-opening attacks
against encryption schemes. In Michel Abdalla and Roberto De Prisco, editors, SCN
14, volume 8642 of LNCS, pages 578–597. Springer, Heidelberg, September 2014.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–
140. Springer, Heidelberg, August 1992.

[PLS13] Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic safeguards of
privacy on web. The New York Times, September 2013.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 34–64. Springer,
Heidelberg, December 2016.

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic
security against a kleptographic adversary. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 907–922. ACM Press,
October / November 2017.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidel-
berg, August 1990.

[Sim83] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In David
Chaum, editor, CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983.

[SV12] Alessandra Scafuro and Ivan Visconti. On round-optimal zero knowledge in the bare
public-key model. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 153–171. Springer, Heidelberg, April 2012.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 135–152.
Springer, Heidelberg, April 2012.

37

[YY97] Adam Young and Moti Yung. Kleptography: Using cryptography against cryptogra-
phy. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74.
Springer, Heidelberg, May 1997.

38

	Introduction
	Our Question
	Our Contributions
	Comparison with Mironov and Stephens-Davidowitz
	Related Works

	Preliminaries
	Notation
	Interactive Proofs
	Commitment Schemes

	Reverse Firewalls for Interactive Proofs
	Subversion of the Prover
	Subversion of the Verifier
	Possibilities and Impossibilities
	Relating Zero Knowledge Preservation and Exfiltration Resistance
	Relating Zero Knowledge Preservation and WI Preservation
	Impossibility of Strong Exfiltration Resistance and Strong WI Preservation
	Impossibility of Strong Zero Knowledge Preservation
	Impossibility of Tampering with the Verifier

	Firewall Constructions from Malleable Sigma Protocols
	Malleable Sigma Protocols
	HVZK Preservation
	Zero Knowledge Preservation

	Firewalls for Proving Compound Statements
	AND Composition
	OR Composition

	Concrete Instantiations
	Maurer's Unifying (Pre-image) Protocol
	Examples of Malleable Sigma Protocols
	Proving Knowledge of a Discrete Logarithm
	Proving Knowledge of a DDH Tuple
	Proving Knowledge of a Representation
	Proving Plaintext Knowledge

	Instantiation of Key-Malleable Commitments

	Conclusion

