
SodsBC: Stream of Distributed Secrets
forQuantum-safe Blockchain

(Preliminary Version)

Shlomi Dolev

Ben-Gurion University of the Negev

dolev@cs.bgu.ac.il

Ziyu Wang

Beihang University,

Ben-Gurion University of the Negev

wangziyu@buaa.edu.cn

ABSTRACT
SodsBC is an efficient, quantum-safe, and asynchronous blockchain

utilizing only quantum-safe cryptographic tools and against at most

f malicious (aka Byzantine) participants, where the number of all

participants n = 3f + 1. Our blockchain architecture follows the

asynchronous secure multi-party computation (ASMPC) paradigm

where honest participants agree on a consistent union of several

block parts. Every participant proposes a block part, encrypted

by a symmetric scheme, utilizing an efficient reliable broadcast

protocol. The encryption key is distributed in the form of secret

shares, and reconstructed after blockchain consensus. All broadcast

instances are finalized by independent binary Byzantine agreement

consuming continuously produced common random coins.

SodsBC continuously produces a stream of distributed secrets by

asynchronous weak secret sharing batches accompanied by Merkle

tree branches for future verification in the secret reconstruction.

The finished secret shares are ordered in the same ASMPC architec-

ture and combined to form common random coins. Interestingly,

SodsBC achieves the blockchain consensus, while the blockchain

simultaneously offers an agreement on available new coins. Fresh

distributed secrets also provide SodsBCwith forward secrecy. Secret

leakage does not affect future blocks. The SodsBC cloud prototype

outperforms centralized payment systems (e.g., VISA) and state of

the art asynchronous blockchains.

CCS CONCEPTS
• Security andprivacy→Cryptography;Distributed systems
security;

KEYWORDS
Efficient Blockchain Consensus, Secret sharing, Quantum-safe, Asyn-

chronous, Forward secrecy

1 INTRODUCTION
The blockchain performance is our priority.The first blockchain
system, Bitcoin [28], is quite slow. When being measured in terms

of transactions per second (TPS), Bitcoin achieves only 7 TPS [13].

The mainstream centralized transaction payment systems are much

faster, e.g., VISA can achieve more than 65, 000 TPS at the best

throughput rate.
1
Currently, deploying classical Byzantine Fault

1
https://usa.visa.com/dam/VCOM/download/corporate/media/visanet-

technology/aboutvisafactsheet.pdf

Tolerance (BFT) consensus yields much better performance. Proof-

of-Work (PoW) and Proof-of-Stake (PoS) are suggested to be used

to elect a consensus committee [1, 29, 30].

Timing assumption is one of the performance obstacles. The
high performance reported in the blockchain literature is typically

measured when there is no (faulty) leader change. Hotstuff [34] (de-

ployed by Facebook Libra), succeeds in reducing the view-change

overhead to a linear number of messages. The (maximal) continuous

period in which a particular leader is ruling (managing the consen-

sus) is called a view. Identification (and alternation) of a Byzantine

leader is typically based on an expensive synchronous mechanism,

a timeout-based view-change. Honest participants wait for a time-

out period to identify (with some level of certainty) a Byzantine

leader. Typically, in order to avoid undesired leader changes, the

timeout period length is of a different order of magnitude than

the regular latency when no faulty leading participant is present.

Both the timeout (possibly dramatically larger) period and its po-

tential attack (unsuccessful view-change [25]) impel the research

motivation for asynchronous blockchain.

Due to the FLP impossibility result [16], there is no deterministic

(none-randomized) algorithm achieving consensus in asynchro-

nous (even benign fail-stop) fault-prone systems. Currently, several

randomization-based asynchronous blockchains can be viewed as

having been inspired by the ASMPC paradigm [21] including Hon-

eyBadger [25] and BEAT [14]. Note that HoneyBadger [25] has

been adopted as one of the consensus algorithms in the industry

by Alibaba AntFin blockchain.
2

Quantum computing puts the computational cryptography
at risk. Discrete logarithm-based cryptography is effectively bro-

ken by quantum adversaries [26]. Some symmetric encryption and

hash schemes (e.g., AES-256, SHA-256 or longer than 256bits ver-
sions) are believed (but are not proven) to withstand quantum-

computing power. The risk of finding a way to break these non-

number-theory (artificial man-made) functions is relatively small

in the quantum era. Informally, the security of these schemes stays

safe under quantum computers if the security parameter is long

enough. Perfectly information-theoretic (I.T.) secure cryptography

(like Shamir secret sharing) is proven to be unbreakable even against

the strongest (quantum) computers. An adversary with unbound

computation power can not break perfectly I.T. secure schemes

such as a polynomial-based secret sharing scheme.

2
https://tech.antfin.com/docs/2/101801

1

https://tech.antfin.com/docs/2/101801

1.1 Related works
Classical partially synchronous BFT protocols may achieve quite

good performance when used in a relatively low quorum size, such

settings fit a permissioned blockchain. When the network is well

connected, Thunderella [30] participants run block validations at a

high speed due to the use of threshold signatures. When the net-

work loses synchrony, an eventual consensus like PoW protects

the Thunderella blockchain. Hotstuff [34] follows the threshold

signature design and adds another consensus phase to achieve a

linear view-change communication overhead. However, both Thun-

derella and Hoststuff require an expensive timeout mechanism for

view-change. Moreover, an unsuccessful view-change problem [25]

may render the system to be totally stuck. Algorand [20] deploys

a repeated randomized binary Byzantine agreement protocol to

address a temporary network non-synchrony.

In the scope of the ASMPC paradigm [21], Honeybadger [25]

and BEAT [14] achieve asynchronous blockchain consensus utiliz-

ing unbiased common randomness. Their designs do not assign a

single block creator anymore. Instead, every participant obtains

the consistent union of block parts proposed by several partici-

pants. The randomness in Honeybadger [25] relies on a trusted

setup and its random coins originate from threshold signatures.

Verifying a threshold signature share requires a bilinear map pair-

ing. For a large number of shares, the computation overhead for

verifying these shares is not negligible.
3
Besides decreasing this ver-

ifying latency by discrete-logarithm-based zero knowledge proofs,

BEAT [14] also exhibits that the coding overhead in Honeybadger

reliable broadcast [25] is a large latency. Aleph [18] achieves an

asynchronous blockchain having the directly acyclic graph (DAG)

structure. All previous asynchronous blockchains [14, 18, 25] rely

on quantum-sensitive (i.e., not quantum-safe) cryptography tools.

Possibly enlightened by the parallelization idea of asynchro-

nous blockchains, DBFT [12] and Mir-BFT [32] also propose their

leaderless/multi-leader schemes. Both of them scarify the asynchro-

nous property to gain quite good performance in the restricted

cases of (timeout based) partial synchronous systems.

For quantum-safety, Praxxis [33] follows the Thunderella opti-

mal responsiveness idea [30] to construct an efficient and quantum-

safe blockchain based on WOTS+ [22] signatures. 4 Even though

WOTS+ is the state of the art one-time signature scheme achiev-

ing quantum-safety, Praxxis [33] still requires the network to be

partial synchronous. Instead, SodsBC quantum-safety originates

from asynchronous and signature-free Byzantine broadcast and

agreement protocols.

1.2 SodsBC Benefits Overview
A quantum-safe and asynchronous blockchain with a high
throughput rate. SodsBC employs an asynchronous blockchain

consensus to decide on a consistent union of block parts. In this

leaderless environment, each participant uses a reliable broadcast

to broadcast a block part, which is finalized by a binary Byzantine

3
When n = 104, the HoneyBadger prototype spends six minutes for one block. The

HoneyBadger authors recognize that the reason is possibly the burden for verifying

threshold signature shares [25].

4
The Praxxis research team is led by David Chaum (https://praxxis.io/press-release/

praxxis-emerges-from-stealth).

agreement (BBA) consuming fresh common random coins. An asyn-

chronous common subset (ACS) protocol outputs n BBA decisions

resulting in a consistent block. The fresh common randomness

consumed by n BBAs is produced by a stream of distributed secrets.

All SodsBC building blocks are asynchronous and quantum-safe.

The SodsBC cloud prototype achieves around 175,000 TPS which is

more than a factor of two higher than the peak of VISA (65,000 TPS),

and outperforms the previous partial synchronous (Hotstuff [34])

or asynchronous (HoneyBadger [25] and BEAT [14]) blockchains

under similar settings.

Computationally efficient reliable broadcast (RBC). We pro-

pose a computationally efficient RBC protocol in SodsBC (named

s_RBC), which utilizes a pro-active claiming idea to decrease the

decoding overhead while keeping the constant communication

overhead as the previous state of the art RBC protocol suggested

by HoneyBadger [25]. We significantly improve the Honeybadger

RBC [25] computation overhead, eliminating the need for all honest

participants to decode all block parts. For n = 3f + 1, the s_RBC
decoding overhead in SodsBC is reduced from O(n |BRSpart |) in

Honeybadger [25], to at most O(
f 2
n |BRSpart |) ≈ O(

f
3
|BRSpart |) for

one participant when there are indeed f Byzantine participants.
5

Note that when all participants are honest, there should typically

be no decoding overhead.
6

Continuously produced common random coins based on or-
dered asynchronous weak secret sharing (AWSS) batches. To
resist quantum adversaries, SodsBC continuously produces fresh

common random coins for the n BBAs instead of a multiple-use

(but quantum-sensitive) coin-flipping protocol based on discrete-

logarithm cryptography [14, 18, 25]. Roughly speaking, these fresh

coins offer quantum-safety to SodsBC in a similar manner as the

use of one-time pads. The coins are produced by a stream of dis-

tributed secrets. f + 1 secrets from f + 1 distinct dealers compose

one coin. Both the secret sharing and reconstruction phases are

protected by Merkle trees to keep quantum-safe and asynchronous

simultaneously. The finished secret sharing batches distributed by

n dealers construct a global pool. SodsBC still relies on the ASMPC

architecture not only for finalizing these secret share batches but

also for an agreement of the global pool. After the agreement, the

shares are atomically assigned to n queues for future n BBA usages.

A quantum-safe transaction censorship resilience solution
for an asynchronous blockchain. The classical ASMPC archi-

tecture (based on ACS) does not ensure censorship-resilience. The

adversaries can decide which f + 1 instances of all 2f + 1 honest
instances are included in the final result. For a blockchain, it means

the adversaries can censor a transaction content and can decide

whether to include this transaction. The previous asynchronous

blockchains [14, 25] deploy discrete-logarithm threshold encryp-

tion schemes to encrypt a block part before it is reliable-broadcast.

We follow this idea but replace the quantum-sensitive public-key

encryption schemes with a symmetric and quantum-safe scheme,

e.g., AES. Once a participant encrypts its block part, the encrypted

5
A block part sizes |Bpart | =

1

n |B |. After Reed-Solomon encoding, the size is

|BRSpart | =
n
f +1 |Bpart |.

6
In an asynchronous network without timeout, we may not be able to distinguish a

slow broadcaster from a malicious one. Therefore, there may be decoding overhead if

an honest but slow broadcaster is believed to be malicious.

2

https://praxxis.io/press-release/praxxis-emerges-from-stealth
https://praxxis.io/press-release/praxxis-emerges-from-stealth

key is shared by asynchronous secret sharing. After determining

the block output, honest participants reconstruct the AES keys for

decryption.

Blockchain design philosophy and forward secrecy. SodsBC
utilizes the analogy between Byzantine replicated state machine

and the blockchain itself. Roughly speaking, a blockchain system

can be regarded as a Byzantine replicated state machine with a com-

mitted history. SodsBC employs Byzantine agreements allowing

the mutual assistance of the Byzantine agreement to the blockchain

and vice versa. The consistent view of the stream of finished dis-

tributed secrets (that are later used to produce global random coins)

is agreed upon utilizing the ASMPC architecture. While the ASMPC

architecture also achieves an asynchronous blockchain implemen-

tation when consuming fresh common random coins produced by

the stream of the distributed secrets. Besides, SodsBC enjoys for-

ward secrecy by continuing to produce fresh secrets. Although a

participant may be temporarily compromised and all secret shares

stored in its disk are leaked, it does not harm future blocks, which

will eventually be based on new randomization, and not exposed to

the adversary. Some permissionless blockchains support forward

secrecy, while Praxxis [33] and most permissioned blockchains

(including HoneyBadger [25], BEAT [14],and Hotstuff [34]) do not

benefit from this feature.

The rest of the paper is organized as follows. We first introduce

the network settings and necessary definitions in Sect. 2. We repre-

sent the SodsBC overview in Sect. 3. Then, Sect. 4 proposes a novel

and efficient reliable broadcast. Asynchronous weak secret sharing

(AWSS) and asynchronous secret reconstruction (ASR) protocols

are described in Sect. 5. We explain how to design the common

randomness in Sect. 6, and describe how all asynchronous and

quantum-safe SodsBC building blocks are combined in a holistic

structure in Sect. 7. Our prototype performance and conclusion are

described in Sect. 8 and Sect. 9, respectively. An extension about a

quantum-safe transaction structure is sketched in Appendix E.

2 PRELIMINARY
2.1 System settings
SodsBC follows the asynchronous system settings as the previous

asynchronous blockchains [14, 25], and the quantum-safe channel

requirement as the previous quantum-safe blockchain [33], respec-

tively. We call a block validation node, a participant. A transaction

creator is named, a user or a client. Contrary to a permissionless

blockchain (e.g., Bitcoin) designed for several thousands of dynamic

nodes, SodsBC is a permissioned blockchain designed for about

one hundred participants [34]. Note that the number of users is still

unlimited in a permissioned blockchain. When there are n = 3f + 1
participants in total, at most f participants are assumed to be stati-

cally compromised by an adversary (having quantum computation

power). There is a direct, private, authenticated, stable and FIFO-

based communication channel between every two of n participants,

which offers us a fully connected network topology.

Channel privacy and authentication can be achieved by quantum-

safe cryptographic systems [33]. For example, participants first

employ a quantum-safe key distribution (QKD) channel to commu-

nicate symmetric keys, and encrypt and sign the followingmessages

by these keys. The first asymmetric key distribution can also be

accomplished by lattice-based cryptography. An adversary can not

duplicate, drop and re-order the messages exchanged by honest

participants. These honest messages are eventually delivered from

the (honest) sender to the other communication link sided (honest)

receiver, preserving their sending order in their receiving order.

Note that, the SodsBC network is asynchronous, thus, there is no
upper bound for the transmission time of a message [15]. We only

relax the timing assumption in the bootstrap stage, where we allow

timeouts implying a waiting bootstrap.

The order betweenmaliciousmessages and honestmessages.
In an asynchronous network, we do not have a timeout to distin-

guish if a participant is malicious. An adversary may determine the

most unfortunate delivery schedule of the messages from different

participants, and may omit or send undesired messages as well as

rush or delay the malicious messages to be faster or slower than

other messages. Thus, an asynchronous protocol can only wait for

n− f messages. SodsBC is designed in the multi-threaded approach.

One thread is related to one block. When a participant processes a

block, Bi , and receives a message related to a decided past block

Bi′ (i
′ < i), this message is disregarded. On the other hand, when

receiving a future block message for Bi′ (i
′ > i), the participant

stores it for future processing.

The order of honest messages. We require each participant to

withhold n−1 FIFO buffers when communicating with other partic-

ipants. The FIFO design implies that the message delivering order

corresponds to the order of the sending messages.
7
Note that this

FIFO requirement does not conflict with our asynchronous network

assumption. Obliviously, we can only ensure the message order

between honest participants.
8

This FIFO requirement is necessary for an asynchronous proto-

col against the adversarial reordering of messages among honest

participants even when the protocol is finalized by a randomized

binary Byzantine agreement (BBA). For example, Bracha’s broad-

cast [6] only ensures that all honest participants eventually deliver

a consistent message. For gaining rough intuition, we denote the

three sets of the n = 3f + 1 participants by P = Pmalicious ∪

Phonest, fast∪Phonest,slow, where |Phonest, fast | = f +1, |Pmalicious | =

f , and |Phonest,slow | = f . The broadcaster can belong to Pmalicious.

The malicious broadcaster may send nothing to Phonest,slow, and

Phonest,slow have to rely on themessage transmitting byPhonest, fast.

Even when this Bracha’s broadcast instance is finalized by a BBA,

the Phonest,slow may deliver messages after the BBA outputs 1. If

the broadcast message will be used again after the reliable broadcast,

this delivery time difference may create an undesired disagreement.

We further explain the need and usage for FIFO in subsection 6.1

and subsection 7.3 to avoid Byzantine reordering between non-

Byzantine participants.

7
TCP communication preserves the FIFO order. If msg

1
is send before msg

2
, even

msg
2
may be transmitted from a shorter path and arrive earlier than themsg

1
arrival,

the receiver still first deliversmsg
1
before deliveringmsg

2
.

8
An adversary may send its messages in any order, e.g, sending a message related to

B100 or B300 when honest participants are processing B200 . However, from the view

of an honest participant p′j , honest pj first sends a message for RBCi and then sends a

message BBAi . Malicious pk may send its message ahead or after the messages from

pj but cannot alternate the ordering of the messages from pj .

3

2.2 Asynchronous Blockchain Consensus: the
Union of Block Parts

Honeybadger [25] follows the classical ASMPC paradigm [21] to

achieve asynchronous blockchain consensus. Every Honeybadger

participant proposes a block part instead of relying on one block

proposal like many leader-based Byzantine fault-tolerance proto-

cols [30, 34]. We name the proposal for a block part as a computation
instance for one participant. Each computation instance is finalized

by a BBA (Algorithm 7). A predicate is defined to identify a finished
instance in the view of honest participants. Participants agree on a

common subset including at least n − f finished instances resulting

in a block, i.e., the consistent union of block parts. This is ensured

by ACS (Algorithm 6) in which at least n − f predicates are true.

Due to the limited space for description, we defer the ACS and BBA

details to Appendix A. A block includes some transactions issued

by the blockchain users. A blockchain consensus protocol satisfies:

• Agreement: If an honest participant delivers a block B, then

every honest participant delivers B.

• Total order: If an honest participant has delivered B1, · · · ,Bm
and another honest participant has delivered B′

1
, · · · ,B′m′ , then

Bi = B
′
i for 1 ≤ i ≤ min(m,m′).

• Liveness: If a transaction TX is submitted to n − f honest partic-

ipant, then all honest participants will eventually deliver a block

including TX.

Note that the ACS protocol [5] does not ensure Censorship
Resilience [25]. It is possible that the finished n− f instances elim-

inate some block parts (with selected transactions to be included

in the block). Hence, a proposed block part should be encrypted,

avoiding adversaries to vote 0 to the BBA of an honest instance

based on the transactions the block part contains.

2.3 Asynchronous Secret Sharing and Erasure
Coding: Protected by Merkle Trees

Asynchronous secret reconstruction and erasure decoding share a

similar locating requirement for a correct secret share or a codeword.

Whenn = 3f +1, SodsBC sets the secret sharing or erasure encoding

(Reed-Solomon) threshold to be t = f + 1. For secret sharing and
erasure encoding, each participant constructs a Merkle tree on all n
shares or codewords. The Merkle tree utilizes a collision-resilience

and quantum-safe hash function H such as SHA. A Merkle tree

branch proofBranchi (including a root Root) corresponds to a share
[s]i or a codewordDi , which includes log2 n+1 hash values. Before
secret reconstruction and erasure decoding, an honest participant

uses the shared Merkle tree (proof and root) to locate f + 1 correct
shares and codewords.

3 SODSBC IN A NUTSHELL
We sketch out the SodsBC consensus (Algorithm 1, Fig. 1) after the

bootstrap stage. A SodsBC user randomly chooses a specific par-

ticipant and sends the participant a transaction to be added to the

buffer of the chosen participant. Then, every participant pi pack-
ages a block part Bp_parti and AES-encrypts Bp_parti . pi inputs the
encrypted Bc_parti into our new (computation-efficiency) reliable

broadcast (s_RBC, Algorithm 2).
9
The n s_RBCs are finalized by

n randomized BBA (Algorithm 7) according to the ACS protocol

(Algorithm 6). Only after a participant collects n − f positive BBA

decisions for n − f finished block parts, this participant votes for

excluding the remained block parts, which ensures that a block

consists of at least n − f block parts.

// Block part generate and encryption
pi packages transactions into a block part Bp_parti , and

AES-encrypts it as Encrypt(AESkeyi , Bp_parti) → Bc_parti .
// Consensus core: decide on a consistent union of encrypted
block parts

pi broadcasts Bc_parti by s_RBC (Algorithm 2), shares secrets

by AWSS batches contributing to the secret stream for future

coins (Algorithm 3), shares AESkeyi by AWSS

(Algorithm 3).// (Three sub-instances)

Honest participants finalize n computation instances by n
BBAs following the ACS protocol (Algorithm 7 and 6). The n
BBAs utilize the common random coins from the secret

stream by ASR (Algorithm 4).

// Decryption and output
pi reconstructs the finished AES keys and AES-decrypts the

finished block parts:

If pi fails to reconstruct AESkeyj , or s_RBCj is aborted (BBAj
outputs 0), then pi sets Bpartj =⊥.

pi finishes the current block as B = {Bpart
1

, · · · ,Bpartn }.

Algorithm 1: SodsBC Consensus (for participant pi). s_RBC:
SodsBC reliable broadcast. AWSS&ASR: asynchronous weak

secret sharing and reconstruction. BBA: binary Byzantine agree-

ment. ACS: asynchronous common subset.

Our fresh BBA randomness originates from the history shared

secrets by asynchronous secret reconstruction (ASR, Algorithm 4).

SodsBC also requires each participant to share secrets for future

coins by asynchronous weak secret sharing (AWSS, Algorithm 3) as

another sub-instance. These secrets compose a stream supporting

the coin production and consumption. Coin construction details

appear in Sect. 6. Compared with the previous coin design [14, 25],

the continuously produced SodsBC secret stream implies the use of

fresh (and quantum-safe) coins. Compared with Praxxis [33], our

quantum-safety does not rely on a common random seed gener-

ated in a trusted setup and (long) hash-based signatures. Besides

quantum-safety, SodsBC also enjoys forward secrecy where a tem-

porary compromise does not affect the entire future of SodsBC.

The ACS protocol does not ensure censorship-resilience. There-

fore, every participant AES-encrypts its block part utilizing a ran-

dom AES key before s_RBC. AES is a symmetric encryption scheme

achieving quantum-safe transaction censorship-resilience instead

of the quantum-sensitive threshold encryption schemes used in

Honeybadger [25] and BEAT [14]. The AES random key is shared

by AWSS. Once the keys are reconstructed by ASR that follows the

current block consensus, participants decrypt the block parts and

forward the transactions to the upper application layer.
10

9
We denote sodsBC reliable broadcast by s_RBC to distinguish s_RBC from previous

RBC protocols.

10
This paper mainly focuses on the blockchain consensus layer rather than the trans-

action processing layer such as checking the balance and double-spending detection.

4

Clients

transactions

Each participant packages

several transactions into

a block part (in plain-text)

p1

p2

p3

p4

SodsBC consensus overview (after the bootstrap stage)

Encrypt(AESkey
1
,

Bp_part
1
) → Bc_part

1

·s_RBC
1
for Bc_part1

·AWSS batches for the secret stream

·AWSS for AESkey
1

BBA1

0/1

Encrypt(AESkey
2
,

Bp_part
2
) → Bc_part

2

·s_RBC
2
for Bc_part2

·AWSS batches for the secret stream

·AWSS for AESkey
2

BBA2

0/1

Encrypt(AESkey
3
,

Bp_part
3
) → Bc_part

3

·s_RBC
3
for Bc_part3

·AWSS batches for the secret stream

·AWSS for AESkey
3

BBA3

0/1

Encrypt(AESkey
4
,

Bp_part
4
) → Bc_part

4

·s_RBC
4
for Bc_part4

·AWSS batches for the secret stream

·AWSS for AESkey
4

BBA4

0/1

ASR for:

AESkey
1
, · · · , AESkey

4

Decryption:

Decrypt(AESkey
1
, Bc_part

1
)

→ Bp_part
1

· · ·

Decrypt(AESkey
4
, Bc_part

4
)

→ Bp_part
4

ASR from the secret stream
common random coins

Figure 1: SodsBC consensus overview (after the bootstrap stage). s_RBC: SodsBC reliable broadcast. AWSS&ASR: asynchronous
weak secret sharing and reconstruction. BBA: binary Byzantine agreement.Bp_parti&Bc_parti : the i-th block part in plain/cipher-
text.

In summary, SodsBC utilizes the ASMPC paradigm in many

facets. The computation instance of a participant pi includes three
sub-instances: proposing a block part Bc_parti in AES encryption

(by s_RBCi), sharing secrets for the secret stream (byAWSSi batches)
and sharing AESkeyi (by AWSS). The n instances are finalized by

the same n BBAs. These three sub-instances share a similar struc-

ture, which can be combined to form a holistic protocol. That is to

say, the AWSS (a batch for distributed secrets and an independent

AWSS for an AES key) instances from a dealer are piggybacked by

the s_RBC (for Bc_parti) of the same broadcaster. The details are

described in Sect. 7.

4 SODSBC RELIABLE BROADCAST (S_RBC)
Asynchronous reliable broadcast (RBC) relaxes its liveness require-
ment compared with Byzantine agreement [6]. When a broadcaster

is honest, all participants deliver the same broadcast message. A

malicious participant cannot cause some of the honest participants

to deliver a message while other honest participants do not deliver

the message or deliver a different message. An RBC protocol used

in an asynchronous blockchain to propose a block part satisfies:

• Agreement: Two honest participants deliver the same block

part from a broadcaster.

• Totality (all or nothing): If an honest participant delivers Bpart,

then all honest participants eventually deliver Bpart.

If each participant proposes a block part (|Bpart | =
1

n |B|) as the

suggestion in Honeybadger [25] to agree on the union of block

parts, the one participant communication overhead is constant,

O(|B|). However, this Honeybadger RBC protocol [25] requires

Reed-Solomon (RS) decoding for all transmitted data implying a

large computational latency [14]. We denote the encoding result of

a block part Bpart by BRSpart.

In s_RBC (Algorithm 2), a broadcaster first sends the n encoding

codewords of a block part to everybody. Each participant echoes

the Merkle tree root of the n codewords. If the broadcaster is honest,

However, we do sketch the quantum-safe transaction structure and processing in

Appendix E.

Input: A broadcaster, pbroadcaster and the block part to be

broadcast in cipher-text, Bpart = Bc_part.

Broadcast : // (for the broadcaster, pbroadcaster)
pbroadcaster first (t = f + 1,n)-RS encodes a block part Bpart to

n codewords, BRSpart = {D1, · · · ,Dn }. The size of all n
codewords is |BRSpart | =

n
t |Bpart |. pbroadcaster sends〈

broadcast,BRSpart
〉
to every participant in P.

Echo : // (for each participant pi ∈ P)
Upon receiving a

〈
broadcast,BRSpart

〉
, pi constructs a

Merkle tree from these n codewords resulting in a root Root
and echoes ⟨echo,Root⟩ to others.

Upon receiving n − f echo messages with the same Root, pi
broadcasts ⟨ready,Root⟩ to others.

Ready : // (for each participant pi ∈ P)
Upon receiving f + 1 ⟨ready,Root⟩, pi broadcasts
⟨ready,Root⟩ if pi does not broadcast a ready.

Upon receiving n − f ⟨ready,Root⟩, pi delivers Bpart from the

concatenation of the first f + 1 codewords if pi receives the n
codewords satisfying Root in a broadcast message. pi also
sends Di with a corresponding Merkle branch proof

⟨claim,Di ,Branchi ⟩ to every participant pj , who (pj) does
not send ⟨echo,Root⟩ to pi .
Upon receiving n − f ⟨ready,Root⟩ messages without the n
codewords, pi waits for f + 1 claim messages having the

same Merkle tree root in their branch proofs, and delivers the

data after decoding from the f + 1 codewords.

Algorithm 2: SodsBC Reliable Broadcast (s_RBC).

participants deliver the data from the first f + 1 codewords after re-
ceiving the samen− f readyMerkle tree roots without decoding.

11

If the broadcaster is malicious and a condition (such as the same

2f + 1 echo messages) is not satisfied, then an s_RBC for a block

part will not be finished. That is why we need n BBAs to finalize n
s_RBCs in the ACS protocol. When at least n − f BBAs output 1,

11
The RS coding scheme is systematic: If (t = f + 1, n)-RS encoding a message to n

codewords {D1, · · · , Dn }, the first f + 1 codewords {D1, · · · , Df +1 } equals the

original data.

5

honest participants vote 0 to the remained BBAs to exclude/abort

the at most f delayed s_RBCs.
Our broadcast protocol is reliable so that even in an extreme

case, a malicious broadcaster cannot make only part of honest

participants deliver a block part. Fast and honest participants may

help slow but honest participants deliver the same data. Every

honest participant pi broadcasts a corresponding data fragment

pro-actively (without encoding again) to every participant pj who
does not send a correct echo to pi . An incorrect echo means pj
does not send an echo or sends another Merkle tree root in the

echo message.

s_RBC decreases the decoding computation overhead from nec-

essary to on-demand while keeping the constant communication

overhead for one participant. If all broadcasters are honest, there

should typically be no decoding overhead. There are at most f
decoding overheads from slow but honest participants when a

broadcaster is malicious. Therefore, one participant spends at most

O(
f 2
n |BRSpart |) computation overhead, when there are n s_RBCs

and at most f broadcasters are malicious. We compare the overhead

of s_RBC and the previous RBC protocol in Appendix B.

Theorem 1. The SodsBC reliable broadcast protocol satisfies the
agreement and totality properties.

Proof. We prove this theorem by considering the following

three cases, which covers all possible cases: (1) two honest partic-

ipants p and p′ directly deliver the broadcast data both without

waiting for claims; (2) p directly delivers while p′ indirectly de-

livers the data after enough claims; (3) p and p′ both indirectly

deliver the data.

Agreement. Case (1): Assume that p and p′ directly deliver two

different block parts, Bpart , B
′
part. The encoding data is also

different, BRSpart , B
′
RSpart. If p delivers Bpart, then p has received

2f + 1 ready messages having the Root corresponding to BRSpart.

At least f + 1 ready messages originate from honest participants.

It means that one of these at least f + 1 honest participants has

receivedn− f echomessages for the Root corresponding toBRSpart.
Similarly, p′ also has received f + 1 ready messages for Root′

from honest participants, one of whom has received n − f echo
messages for Root′. If BRSpart , B′RSpart and the hash function

used by the Merkle trees is collision-resilience, the only reason is

that at least one honest participant echoes both Root and Root′,
which is a contradiction. Case (2)&(3): No matter whether an honest

participant p delivers Bpart directly or indirectly, p′ also delivers

Root corresponding to Bpart from at least 2f + 1 ready messages,

which ensures that every honest participant delivers the sameBpart.

Totality. Case (1): If p directly delivers Bpart from the broadcast

data,p has receivedn− f readymessages for Root corresponding to
BRSpart. At least f +1 of them are sent by honest participants. These

f +1 messages will be eventually received by all honest participants

(including p′). Then, all honest participants will deliver the same

Bpart. Case (2): If p directly delivers Bpart and p
′
does not receive

broadcast from the broadcaster, then p′ without the codewords
still has enough ready messages for the corresponding Root for
BRSpart. These readymessages originates from at least f +1 honest
participant who will send a codeword (in claim) with a Merkle

branch proof satisfying Root, to the slow participants (including

p′) who do not receive the data from the malicious broadcaster and

do not broadcast a correct echo. Therefore, p′ will deliver Bpart
eventually after receiving f + 1 correct codewords and decoding

from them. Case (3): If p indirectly delivers Bpart and p
′
does not

receive broadcast from the broadcaster, then similarly, at least

f + 1 honest participants will broadcast codewords and all honest

participants (including p′) will deliver Bpart eventually. □

5 ASYNCHRONOUS SECRET SHARING
In this section, we describe the necessary secret sharing algorithms,

which are significant for a common random coin component or an

AES key. Secret sharing is not so easy in an asynchronousn = 3f +1
environment [4, 10, 23]. In a sharing stage, only 2f +1 confirmation

messages can be relied on, while at most f of 2f + 1 may be mali-

cious. At most f honest participants may not express their opinion

about the dealer. In a reconstruction stage, we only rely on 2f + 1
received shares and also at most f may be incorrect. Therefore,

we follow the “weak” secret sharing definition [10] that a sharing

secret may not be reconstructed but a successful reconstruction is

always consistent.

Compared with a classical verified secret sharing like BGW88 [3],

our asynchronous weak secret sharing (AWSS) protocol does not

guarantee a shared secret will be reconstructed in the future. Even

though we require participants to share secrets under the recon-

struction threshold t = f + 1, a malicious dealer may share a secret

utilizing a higher threshold t ′ > t , which will be reconstructed to in-
consistent values. Therefore, sharing a secret share is accompanied

by a Merkle tree branch proof to the Merkle tree root of all shares.

The root is shared as a reliable-broadcast style (all-or-nothing), so

that all honest participants eventually deliver the consistent root.

Before reconstructing the secret, an honest participant exploits the

Merkle root and proofs to locate at least f + 1 correct shares. After
reconstruction, participants check if the reconstructed n shares

construct the same root equal to the reliable-broadcast root.

Our asynchronous weak secret sharing (AWSS) and asynchro-

nous secret reconstruction (ASR) protocols are inspired by Cachin

and Tessaro’s RBC [9] that a malicious dealer can not make differ-

ent participants reconstruct different secrets. Honest participants

can detect malicious behavior and set a secret to zero, similar to

aborting an RBC in [9]. The AWSS and ASR protocols satisfy:

• AWSS agreement: Two honest participants deliver two shares

corresponding to the same Merkle tree root of all shares. AWSS
weak liveness: If an honest participant delivers a share and its

corresponding Merkle root, then at least f + 1 honest partici-

pant delivers the corresponding shares and all 2f + 1 honest

participants eventually deliver the same Merkle root.

• ASR weak agreement: If an AWSS dealer was honest, two hon-

est participants reconstruct the same secret s in ASR. Otherwise,

two honest participants both set s to zero. ASR liveness: If an
honest participant reconstructs s , then all honest participants

reconstruct s . Otherwise, if an honest participant sets s = 0, then

all honest participants set s = 0.

Note that the ASR properties rely on the previous AWSS termi-

nation. If an honest participant does not finish the previous AWSS

without withholding a corresponding Merkle root, this participant

can not join the future secret reconstruction. This is an undesired

6

disagreement where some participants deliver a root while the other

ones do not. To avoid the disagreement, the BBA finalization and

the FIFO message delivery over every link of honest participants as-

sist the AWSS termination, as described in subsection 6.1. For now,

we assume the AWSS is fully (not eventually) terminated and all

honest participants deliver the same Merkle root when introducing

the ASR protocol.

5.1 Asynchronous Weak Secret Sharing (AWSS)
The AWSS protocol (Algorithm 3) exhibits a similar structure like

s_RBC (Algorithm 2). If the dealer is honest, a participant delivers

a share and the same Merkle tree root of all n shares. If the dealer is

malicious and a condition (such as the same 2f +1 echomessages) is

not satisfied, then an AWSS for sharing a secret will not be finished.

Broadcast: // (For pdealer and its secret s)
pdealer generates an f -degree random polynomial F (x). The
free coefficient is a secret, F (0) = s . pdealer also construct a

Merkle tree from F (p1), · · · , F (pn). A share [s]i = F (pi)
corresponds to a Merkle branch proof Branchi including a
Merkle tree root Root. pdealer sends
⟨broadcast, [s]i ,Branchi ⟩ to pi , ∀pi ∈ P.

Echo: // (For each participant pi ∈ P)
Upon receiving a ⟨broadcast, [s]i ,Branchi ⟩ message, pi picks
up Root from Branchi and echoes ⟨echo,Root⟩ to others, if

Branchi is corresponding to [s]i .
Upon receiving n − f echo messages having the same Root, pi
broadcasts ⟨ready,Root⟩ to others.

Ready: // (For each participant pi ∈ P)
Upon receiving f + 1 ⟨ready,Root⟩ messages, pi broadcasts
⟨ready,Root⟩ if pi does not broadcast a ready.

Upon receiving n − f ⟨ready,Root⟩ messages, pi delivers
Root. pi also delivers [s]i and Branchi received in a

broadcast message, if [s]i and Branchi are corresponding to
the delivered Root.

Algorithm 3: Asynchronous Weak Secret Sharing (AWSS)

Theorem 2. SodsBC asynchronous weak secret sharing protocol
satisfies the agreement and weak liveness properties.

Proof. The agreement and weak liveness for Root are satisfied
by the arguments similar to Bracha’s broadcast [6]. Root agree-
ment: Assume that two honest participants (p and p′) deliver two
roots after receiving n− f readys. At least f + 1 readys for p come

from honest participants who already receive n − f echos, at least
f + 1 of which are honest. Similarly, the ready messages for p′

originate from at least f + 1 honest participants. This is a contradic-
tion that at least one honest participant sends different roots. Root
liveness: When an honest participant (p) delivers Root, p receives

n − f ready messages from at least f + 1 honest participants who
receive n − f echomessages from at least f + 1 honest participants.
These honest participants will make all honest participants deliver

Root eventually.
Share agreement: Assume that two honest participants deliver

two shares corresponding to two different roots. This is a contra-

diction to the root agreement. Share weak liveness: If an honest

participant pi delivers Root with a share [s]i , then pi has received
2f + 1 ready messages for Root. At least f + 1 ready messages

originate from honest participants. These honest participants have

received n − f echo messages for Root. At least f + 1 echo mes-

sages also originate from honest participants. Each of them has a

share with a corresponding Merkle tree branch proof to Root. At
most f honest participants may not have corresponding shares due

to a malicious dealer. However, these f honest participants still

eventually deliver the corresponding Merkle root due to the totality

of the reliable-broadcast Root. □

5.2 Asynchronous Secret Reconstruction (ASR)
The SodsBCASR protocol (Algorithm 4) has twoMerkle-tree-related

checks for a consistent reconstruction. Before secret reconstruc-

tion, each participant locates at least f + 1 correct shares of the

received shares by checking the f + 1 correct Merkle branch proofs

to the same root. It is possible that a dealer maliciously distributes

the shares having a reconstructed threshold t > f + 1. Then, hon-
est participants may reconstruct different secrets from different

f + 1 shares. Therefore, the Merkle tree root check after the recon-

struction is also significant, which ensures that each shared secret

is consistent from the views of honest participants. If the second

check fails, honest participants set a shared secret to zero. The ASR

protocol is proven to satisfy the required properties in Theorem 3.

Reconstruction-send: // (For each participant pi ∈ P)
pi broadcasts ⟨reconstruct, [s]i ,Branchi ⟩ to others (Branchi
includes Root). If pi delivers a Merkle tree root without a

correct share in Algorithm 3, pi broadcasts
⟨reconstruct,Null,Root⟩.

Reconstruction-receive: // (For each participant pi ∈ P)
Upon receiving a message

〈
reconstruct, [s]j ,Branchj

〉
, pi

disregards the message if the Merkle root in Branchj does
not satisfy the one pi has delivered in a previous AWSS

(Algorithm 3), or Branchj does not correspond to [s]j .
Upon receiving f + 1 reconstruct messages having the same

delivered Merkle root and correct shares (with corresponding

Merkle tree branch proofs), pi interpolates these f + 1 shares
to reconstruct the secret s ′ and all shares F ′(p1), · · · , F

′(pn).
If the Merkle tree root Root′ reconstructed from

F ′(p1), · · · , F
′(pn) equals the previously delivered Root, pi

sets s = s ′. Otherwise, pi sets s = 0.

Algorithm 4: Asynchronous Secret Reconstruction and Coin

Construction

Theorem 3. SodsBC asynchronous secret reconstruction protocol
satisfies the weak agreement and liveness properties when the previous
asynchronous weak secret sharing protocol is fully terminated.

Proof. (Weak agreement) We first prove that two honest par-

ticipantspi1 andpi2 reconstruct the same secrets, i.e., si1 = si2. Ifpi1
reconstructs si1, pi1 must deliver Rooti1 in the previous AWSS and

Rooti1 corresponds to all shares of si1. Similarly, pi2 must deliver

Rooti2 corresponding to all si2 shares. The agreement of a reliable-

broadcast Merkle root guarantees Rooti1 = Rooti2 leading to the

equality between all si1 shares with all si2 shares, i.e., si1 = si2.

7

Next, we prove a reconstruction failure is also consistent. Assume

that pi1 reconstructs si1 while pi2 sets si2 = 0. It means that the

reconstructed Merkle tree root of pi1 equals to the delivered root in
the previous AWSS, i.e., Rooti1 = Root. The fact thatpi2 sets si2 = 0

means the reconstructed Merkle tree root of pi2 is different from the

delivered root, i.e., Rooti2 , Root. Then, Rooti1 , Rooti2, which is

a contradiction to the reliable-broadcast root in the previous AWSS.

(Liveness) All the f + 1 honest participants will broadcast their
shares with the Merkle tree branches (with a root) in an ASR. If the

reconstructed Merkle tree Root′ equals the delivered Root in the

previous AWSS, all honest participants deliver the reconstructed

secret s . Otherwise, all honest participants set s = 0. □

6 COMMON RANDOM COIN
Distributed random secrets are used to construct common random

coins supplied in a later stage to a randomized BBA. In this section,

we first describe the coin structure. In subsection 6.1, we will discuss

how BBA finalization in FIFO-based channels assists the AWSS

termination, i.e., ensuring the Merkle root delivery (rather than

eventual delivery) before using this root in the following ASR. In

subsection 6.2, we extend one coin to the continuously fresh coin

production by AWSS batches, and talk about how to assign finished

secret shares to future coins.

Producing a common random coin by f + 1 shared secrets from

f + 1 distinct dealers, i.e., coin = secret1 + · · · + secretf +1 mod 2,

ensures that the coin is common (every participant has the same

coin value after secret reconstruction) without adversary bias (be-

fore reconstruction, at most f adversaries learn nothing about the

coin value if at least one coin component is shared under the f + 1
secret reconstructed threshold). Honest participants are assumed

to choose a value uniformly thus this addition becomes uniform.

The coin structure can also be further relaxed to at most f failed

secret reconstructions. Honest participants set at most f coin com-

ponents to zero, while one successful reconstruction still keeps a

well-defined common random coin without adversarial bias. The

coin correctness satisfies:

• Coin Randomness: At most f malicious participants learn no

information on a coin before constructing the coin.

• Coin Correctness: All honest participants construct the same

coin and consume the same coin in the same BBA.

6.1 Finalizing an AWSS by a BBA in FIFO-based
Channels

The AWSS weak liveness only ensures a Root is eventually deliv-

ered. The eventual delivery may yield an undesired disagreement

as an honest participant may receive some shares for reconstruc-

tion ahead of the root delivery. This participant can not verify a

coming share and locate f + 1 correct shares before reconstruction.
Fortunately, each participant can finalize n secret sharing protocols

still utilizing n BBAs in our SodsBC blockchain. One BBA instance

BBAi finalizes AWSSi distributed by the dealer pi as depicted in

Fig. 2. The randomness in a BBA protocol tackles the asynchronous

termination problem. The ACS protocol ensures at least n− f AWSS

protocols are finished. Similar to the BBA finalization for n s_RBCs,
only after a participant collectsn− f positive BBA decisions forn− f

finished AWSSs, this participant votes for excluding the remained

AWSSs, which ensures that at least n − f AWSSs are finished.

Besides, we require that each honest participant pj2 to accept

a BBAi 1-input from pj1, only after pj2 has received the ready
message of AWSSi from pj1. If every participant connects each

other via FIFO-based channels, this extra requirement ensures the

AWSS liveness, which is proven in Theorem. 4.

Theorem 4. SodsBC asynchronous weak secret sharing protocol
satisfies the liveness property if it is finalized by a binary Byzantine
agreement in FIFO-based channels.

Proof. We denote three independent sets of alln = 3f +1 partic-
ipants by |Pmalicious | = f , |Phonest, fast | = f +1 and |Phonest,slow | =
f , and assume a malicious dealer pi ∈ Pmalicious, two honest par-

ticipants pj1 ∈ Phonest, fast,pj2 ∈ Phonest,slow. If pj1 delivers Root
from pi in AWSSi , then Root is included by at least 2f + 1 ready
messages. At least f +1 of them are from Phonest, fast, which will be

received by Phonest,slow. Then, pj2 eventually delivers Root. Note
that a BBA has three output states, 0, 1 and nothing. (Liveness)
Assume that BBAi outputs 1 from the view of pj1, and BBAi out-
puts nothing from the view of pj2, i.e., pj2 does not deliver Root.
If BBAi outputs 1 from the view of pj1, pj1 must receive at least

(2f + 1) 1-inputs. At least (f + 1) 1-inputs are from Phonest, fast.

These 1-inputs will be received by pj2, and also assist pj2 to deliver

Root, which is a contradiction. (Agreement) Assume that BBAi
outputs 1 and 0 from the view of pj1 and pj2, respectively. This is a
contradiction to the BBA agreement (Appendix A). □

As the message delivery order among two honest participants

respects the FIFO order, honest participants safely reconstruct a

secret after a BBA finalizes an AWSS. Therefore, honest participants

can reconstruct common random coins inBi from the shared secrets

in Bi−1. The FIFO-based channels guarantee the sub-instance for

coins. The important FIFO delivery will be also emphasized for the

other two sub-instances for block parts and AES keys in Sect. 7.

6.2 A global pool to order finished secret shares
The need to continuously produce fresh coins in SodsBC proposes

a new problem, i.e., the ordering problem about how to make a

global decision on the exact set of f + 1 secret shares used to

construct a particular coin in an asynchronous environment. In

SodsBC, finished secret shares construct a pool. Each secret (share)

has a unique serial index. For one specific dealer pi , it is easy to tell

the order of all shares distributed by pi , i.e, si1, si2, · · · However,
it is impossible to agree on the secret-sharing results from all n
dealers by a deterministic algorithm in an asynchronous network.

Namely, the demand for a global finished secret share pool is

reduced to the asynchronous consensus problem. Thus, we also

follow the ASMPC architecture [21] to agree on the global pool

(except for the bootstrap stage described in subsection 7.1). As

depicted in Fig. 3, each dealer runs AWSS protocol (Algorithm 3)

in a batch. n AWSS batches are finalized by n BBAs. The fact that

Merkle tree roots are consistently distributed in AWSS batches

means the receivers deliver the number of the roots consistently,

i.e., the batch size. Then, the consensus for how many AWSSs are

finished is agreed on. Fig. 3 shows an example in which honest

participants agree on the different sizes of different AWSS batches.

8

p1

p2

p3

p4

The AWSS protocol (finalized by a BBA protocol)
broadcast

(share&branch)
echo (root) ready (root) BBA (vote)

vote ∗

vote 1

vote 1

vote 1

p1

p2

p3

p4

The ACS protocol
AWSS

AWSS

AWSS

AWSS

BBA
1

BBA
2

BBA
3

BBA
4

0/1

0/1

0/1

0/1

common random coins

Figure 2: The asynchronous weak secret sharing (AWSS) protocol finalized by a binary Byzantine agreement (BBA). When
there is an FIFO communication channel between every two participants, a BBA 1-output (from 1-inputs, green lines) ensures
the delivery of a Merkle tree root in a ready message (blue lines), even though a dealer (p1) is malicious and sends nothing to
a victim (p4, red dashed lines). If p4 has the 1-output from BBA1, p4 must receive at least n − f 1-inputs (three, including itself).
One of themmust be from the fast and honest f + 1 honest participants (p2, p3). Their 1-inputs push the readymessage to help
p4 to deliver the root in the AWSS.

p1

p2

p3

p4

The ACS protocol

an AWSS batch, size: 4

an AWSS batch, size: 5

an AWSS batch, size: 5

an AWSS batch, size: 3

BBA
1

BBA
2

BBA
3

BBA
4

0/1

0/1

0/1

0/1

common random coins

The global AWSS pool

p1 p2 p3 p4

s
11

s
12

s
13

s
14

s
21

s
22

s
23

s
24

s
25

s
31

s
32

s
33

s
34

s
35

s
41

s
42

s
43

The atomic coin assignment

queue
1

queue
2

queue
3

queue
4

coin
1
: s
11

, s
21

coin
5
: s
13

, s
23

coin
2
: s
31

, s
41

coin
6
: s
33

, s
43

coin
3
: s
12

, s
22

coin
7
: s
14

, s
24

coin
4
: s
32

, s
42

coin
8
: s
34

, s
25

BBA
1

BBA
2

BBA
3

BBA
4

Figure 3: n asynchronous weak secret sharing (AWSS) batches are finalized by n binary Byzantine agreement (BBA) instances.
The finished AWSS batches construct a global AWSS pool, and are atomically assigned to coins in n queues in a round-robin
fashion for the future BBA usages.

In Appendix C, we calculate the expected number of coins required

for one block to exhibit the actual AWSS batch size.

Share and coin assignment. If the finished secret sharing pool

is globally decided, honest participants assign f + 1 secrets from
f + 1 distinct dealers to one coin, and assign each coin to one BBA.

We follow a round-robin fashion to arrange coin assignments (as

depicted in Fig. 3). The assignment is for each secret from a global

view. While every honest participant locally assigns its shares from

the view of itself. Participants iterate each row from the button of

the global AWSS pool and pick each f + 1 secrets to be queued for

constructing a coin for future usage by a specific BBA. All secrets

shared in this time are assigned to n certain queues corresponding

to n certain BBAs.
12

Theorem 5. The SodsBC coin design satisfies the randomness and
correctness properties against at most f Byzantine participants when
there are n = 3f + 1 participants in total.

Proof. (Randomness) Each coin is composed by f + 1 secrets
from f + 1 distinct participants. At most f secrets may not be

reconstructed and will be set to zero. At least one secret is uni-

formly selected by an honest participant. Before the coin call, f
Byzantine participants learn nothing on the coin value, and also

can not consume a coin because f Byzantine participants are not

enough to reconstruct a coin component, i.e., a secret. The secret

reconstructed threshold is t = f + 1. (Correctness) The SodsBC
coin pool design and the coin assignment mechanism guarantee

the coin order when calling a coin in a BBA. The AWSS and ASR

12
The number of all shared secrets assigned in one time is divided by f + 1. The

remained finished but unassigned secrets will be assigned in the next time with new

secrets.

agreement and liveness (improved by the BBA finalization in FIFO-

based channels, subsection 5.1) ensure that all honest participants

construct the same coin. □

When SodsBC keeps producing coins from the stream of dis-

tributed secrets, participants efficiently process the blockchain in

an asynchronous environment. After the bootstrap, participants

utilize the history shares (until Bi−1) for common random coins to

process Bi in round i , and simultaneously produce coins for the

future (from Bi+1).

7 THE HOLISTIC SODSBC STRUCTURE
In this section, we first describe how to bootstrap SodsBC in sub-

section 7.1. In subsection 7.2 we combine the three sub-instances

including the reliable broadcast for block parts (transactions), the

AWSS batches for coins and the AWSS for AES keys into one proto-

col, s_RBC∗. In subsection 7.3, the ACS protocol with FIFO-based

channels is proven to achieve the necessary properties of the asyn-

chronous blockchain consensus.

7.1 The Partial Synchronous Bootstrap
The SodsBC common random coin design offers randomness for

the asynchronous blockchain. However, since the currently shared

secrets are used to construct future coins, there are not coins to be

used in the very beginning. Therefore, we relax the timing limita-

tion in the bootstrap, i.e., allowing timeouts. All participants keep

running AWSS in batches. These participants also join n PBFT [11]

instances to agree on the n AWSS batches, rather than n BBA in-

stances after the bootstrap. These concurrent PBFTs allow honest

dealers to contribute to the global finished secret share pool, later

9

used as coins, without significant influences from malicious dealers

on secret production.

7.2 s_RBC∗

s_RBC (Algorithm 2) and AWSS (Algorithm 3) share the same archi-

tecture. Therefore, it is natural to combine the three sub-instances

of one participant into an integrated protocol, i.e., the AWSS batches

for coins and AWSS for AES keys are piggybacked by s_RBC for

block parts in s_RBC∗ (Algorithm 5). We denote the Merkle tree

branch proofs and roots by bBranch, bRoot, ssBranch, ssRoot, and
aesBranch, aesRoot for the three sub-instances, respectively.

Broadcast : // (for a broadcaster, pbroadcaster)
pbroadcaster first AES-encrypts a block part Bp_part to Bc_part,

and (t = f + 1,n)-RS encodes Bc_part to BRSpart. pbroadcaster
also generates the k secrets, s1, · · · , sk . Then, pbroadcaster
sends a message to every participant pi ∈ P as

⟨broadcast,BRSpart, {[s1]i , · · · , [sk]i }, {ssBranch1,i , · · · ,
ssBranchk,i }, [AESkey]i , aesBranchi ⟩
Echo : // (for each participant pi ∈ P)
Upon receiving a broadcast message from pbroadcaster, pi
constructs a block part Merkle root bRoot on BRSpart, and
picks up the k roots from the AWSS branches

{ssRoot1, · · · , ssRootk } and the AES key share root aesRoot.
pi broadcasts
⟨echo, bRoot, {ssRoot1, · · · , ssRootk }, aesRoot⟩.

Upon receiving n − f echo messages with the same bRoot,
ssRoots and aesRoot, pi broadcasts
⟨ready, bRoot, {ssRoot1, · · · , ssRootk }, aesRoot⟩.

Ready : // (for each participant pi ∈ P)
Upon receiving f + 1 ready messages, pi broadcasts ready if

pi does not broadcast ready.
Upon receiving n − f ready messages, pi delivers Bc_part
from the concatenation of the first f + 1 BRSpart codewords,
if pi has received the n codewords satisfying bRoot in a

broadcast message. pi additionally sends

⟨claim,Di , bBranchi ⟩ to every participant pj , who (pj) does
not send an echo for bRoot to pi . pi also delivers the roots

{ssRoot1, · · · , ssRootk }, aesRoot, and the secret share batch

{[s1]i , · · · , [sk]i } and [AESkey]i , if these shares correspond
to {ssRoot1, · · · , ssRootk } and aesRoot.
Upon receiving n − f ready messages, pi (without BRSpart)
waits for f + 1 claim messages. These claim messages have

the same bRoot in their branch proofs to help pi to deliver

the data after decoding from the f + 1 codewords.

Algorithm 5: Integrated SodsBC Reliable Broadcast (s_RBC∗)

7.3 From Asynchronous Common Subset to
Asynchronous Blockchain

Finalizing an s_RBC∗ by a BBA in FIFO-based Channels. In
subsection 6.1, we explain why we need FIFO-based channels for

the AWSS batch termination. The motivation is that participants

should guarantee the deliveries of secret share Merkle roots before

secret reconstruction. Similarly, this termination is also important

for the other two sub-instances. For the block data, i.e., transactions,

the high-level application for current block processes a transaction

based on the transactions in the last finalized block. If an honest

participant does not deliver a block part, it can not decide whether

a new transaction input (from a history transaction) is valid or not.

For the shared AES keys by AWSS, honest participants need to

reconstruct the keys and decrypt the encrypted block parts after

consensus. Therefore, we require that each participant pj2 accepts
a BBA 1-input from pj1 for BBAi , only if pj2 has received the nec-

essary s_RBC∗i messages from pj1, including a ready (for the block

data root, the AWSS batch roots, and the AES key share root) and

a claim message (for block data, if pj2 does not receive broadcast
data from pi).
The SodsBC quantum-safe censorship resilience solution. If
all participants first encrypt their block parts before reliable broad-

cast the parts, the malicious participants cannot censor a specific

transaction by voting zero to the BBA corresponding to the block

part [14, 25]. We follow this encryption before reliable broadcast
and decryption after consensus idea suggested in [14, 25], and re-

place the quantum-sensitive encryption scheme by a symmetric

and quantum-safe encryption scheme such as AES.

Therefore, the SodsBC consensus includes broadcasting block

part cipher-texts by reliable broadcast, and secret sharing the AES

keys for future decryption. After consensus, the n BBAs ensure

at least n − f cipher-texts and the share roots of n − f AES keys

are consistently delivered. Then, honest participants broadcast the

shares to reconstruct the AES keys by ASR. Recall that our ASR

protocol (Algorithm 4) has a Merkle root check after reconstruction.

An AES key may be not reconstructed, but whether a successful

reconstruction or setting this key to nothing is consistent. At most f
AES key dealers maymisbehave but at least f +1 keys are successful
reconstructed.

Similarly, at least n − f finished s_RBCs (Algorithm 2) ensures

the existence of at least n − f delivered cipher-texts. Still, we can

only ensure at least f + 1 well-formatted cipher-texts. Since an en-

crypting participant is also the key share dealer and the cipher-text

broadcaster, at least f +1 cipher-texts will be successfully decrypted.
An extra method to bind an AES key with a cipher-text may be

useless. A malicious participant may modify the content it should

broadcast (or distribute). Whether a block part after decryption is

meaningful should be checked in an upper-level application.

The duplicate transaction attack. Stathakopoulou et al. [32] dis-

cuss a duplicate transaction attack from a malicious client/user

who requests the same transaction to all participants to slow down

the whole throughput by a factor of O(n). Note that if a real-time

application requires a transaction to be included in the blockchain

ASAP, a (possibly honest) user also sends the same transaction to

all participants. It is hard to distinguish a malicious duplicate or an

honest re-submission. We will follow the transaction fee design to

discourage rational users and follow the dynamic hash assignment

trick from Mir-BFT [32] to tackle this problem.

The predicates. Recall that the ACS protocol ensures a consistent
output including at leastn− f finished instances, i.e.,n− f true pred-
icates. SodsBC has a more strict predicate than the original ACS pro-

tocol [5]. A predicate is not limited to whether an s_RBC is finished

(Preds_RBC). Besides, participants also agree on the termination of

10

n AWSS batches distributed by a specific dealer for future coins

(PredAWSS_coin), and n AWSSs for AES keys (PredAWSS_AESKey). A

predicate is Pred = Preds_RBC ∧PredAWSS_coin ∧PredAWSS_AESKey.

From another aspect, a predicate is also Pred = Preds_RBC∗ , when
combining the three sub-instances into an integrate protocol s_RBC∗.

Theorem 6. SodsBC satisfies the liveness, agreement, and the total
order blockchain properties.

Proof. (Liveness) We first prove that if a user submits its trans-

action TX to at least 2f + 1 participants, then TX will be included in

the SodsBC blockchain. From the validity of the ACS protocol [5],

every honest participant outputs the result of n predicates, at least

n − f = 2f + 1 of which are true. If there are at most f Byzantine

participants in the 2f + 1 connections of TX, these Byzantine partic-
ipants may not include TX in their reliable broadcast. Although at

least 2f +1−f = f +1 participants include TX, at most f of themmay

be delayed due to the rushing Byzantine participants. Therefore,

at least one honest participant will successfully include TX in the

ACS output, which ensures the blockchain liveness. (Agreement
and Total Order) The ACS protocol [5] makes sure that all honest

participants consistently output at least n − f consistent finished

s_RBC∗ instances. These outputs construct the union of at least

n− f block parts leading to a decided block. Each ACS round can be

regarded as a blockchain round finalizing a block, which guarantees

the order of blocks in the SodsBC blockchain. □

8 SODSBC PERFORMANCE
We implement SodsBC on Google Cloud utilizing four (n = 4) VM

instances.
13

We take 256B-size dummy and non-duplicate transac-

tions as the benchmark, and set the block part size ranging from

nothing to 20,000 transactions. A typical one-input-two-output Bit-

coin transaction sizes 250B, which is quantum-sensitive. We sketch

the quantum-safe transaction design in Appendix E, which keeps a

quantum-safe payment sizing around 256B. The SodsBC through-

put rate in different block part sizes is summarized in Fig. 4. When

the four VMs are arranged in the same region, i.e. the LAN setting,

SodsBC achieves around 175,000 TPS when every participant pro-

poses a block part having 15,000 256B-transactions. In this case, a

block size is 4×15,000×256 ≈ 15MB. Besides, when the four VMs

are arranged in four continents
14

to form a global network, i.e. the

WAN setting, SodsBC achieves more than 23, 000 TPS. Besides, we

test the Honeybadger RBC (hbRBC, Algorithm 8) in the SodsBC

architecture. The SodsBC RBC (s_RBC, Algorithm 2) performs bet-

ter when the bandwidth is abundant, e.g., the LAN setting. In the

WAN setting, s_RBC will offer better throughput if we invest more

in the network infrastructure. We also further analyze the SodsBC

overhead in Appendix D.

Our performance is faster than the peak Visa (65,000 TPS). Com-

pared with previous blockchains, SodsBC is also very competitive.

Due to the different benchmark and settings, we calculate the equiv-

alent throughput rate of other blockchains under the 256B bench-

mark and four honest nodes in Tab. 1. Note that the performance

of Honeybadger [25], BEAT [14], and Hotstuff [34] is tested by

dividing a specific size of block with dummy transactions by the

13n1-standard-2 type: two virtual CPUs, 8GB memory.

14
Japan, Australia, the USA, and the UK

Figure 4: The performance of SodsBC prototype in Google
Cloud (four nodes).

latency. Hence, the throughput for the 256B benchmark from 250B

or 128B benchmark would roughly obey a linear rule. We are faster

than the previous partial synchronous (Hotstuff [34]
15
) and asyn-

chronous blockchains (Honeybadger [25] and BEAT [14]
16
). The

quantum-safe blockchain, Praxxis [33], achieves around 5000 TPS

in a global network by five nodes.
17

Note that the performance of

Hotstuff [34] and Praxxis [33] is measured in the case where there

is not a fault leader introducing timeout delays.

We also run SodsBC prototype in Google Cloud for more partic-

ipants including n = 7 to n = 100 in the same region (LAN), and

n = 10 to n = 100 in four continents (WAN). The results are sum-

marized in Fig. 5. Our tests also exhibit both s_RBC (Algorithm 2)

and hbRBC (Algorithm 8) under the same SodsBC fresh coin and

AES encryption architecture. We choose a better scheme when the

prototype reflects a higher throughput rate. Note that s_RBC could

be better than hbRBC if we invest more in bandwidth.

For the LAN setting, since one participant consumes O(|B|)
bandwidth, increasing the number of participants should contribute

to the whole network bandwidth rendering good scalability as

Honeybadger [25] and BEAT [14]. However, Google Cloud has a

total bandwidth limitation for the same LAN network. Increasing

the number of participants (e.g, from n = 4 to n = 7) does not

15
The Hotstuff full version reports their performance in one cloud instance with four

virtual nodes, which means that there is not practical network traffic between every

two nodes. (https://arxiv.org/abs/1803.05069).

16
BEAT [14] has five different protocols for different optimization. BEAT0 is an inte-

grate blockchain which replaces the heavy bilinear map pairing operation of Honey-

badger [25] by the zero-knowledge proof. BEAT1 and BEAT2 are for better latency but

less throughput rate. BEAT3 and BEAT4 do not storage full blockchain data in every

node.

17
https://praxxis.io/xx-network. Their transaction size may be larger than 256B due to

the usage of a long hash-based signature. But they do not report the actual transaction

size.

11

Table 1: The comparison with the state of art blockchains (four honest nodes and 256B transaction)

Scheme

Asyn- Quantum Original Equivalent performance

chrony Safety Setting TX size Performance LAN WAN

Honey-

Yes No

8 WAN nodes: 6 honest

nodes total performance
250B 12,500 TPS N.A.

12,500/6 × 4 × 250

256

Badger[25] ≈8,200 TPS

BEAT [14]

Yes No

4 LAN/WAN nodes:

one node performance
250B

LAN: 10,000 TPS 10,000×4 × 250

256
2, 000 × 4 × 250

256

(BEAT0) WAN: 2,000 TPS ≈39,100 TPS ≈7,900 TPS

Hotstuff [34] No No

4 nodes total performance

in the same server
128B 230,000 TPS

230, 000 × 128

256
N.A.

≈115,000 TPS

Praxxis [33] No Yes

5 WAN nodes

total performance
Unknown 5,000 TPS N.A. N.A.

SodsBC

(this work)
Yes Yes

4 LAN/WAN nodes

total performance
256B

s_RBC: 175,830 TPS

hbRBC: 133,722 TPS

s_RBC:23,296 TPS

hbRBC: 37,929 TPS

Figure 5: The performance of SodsBC prototype in Google
Cloud formore nodes. (results averaged over several blocks)

continue to contribute extra bandwidth. The prototype throughput

rate will decrease for more participants. When n = 40 and n = 100

LAN participants, the best SodsBC throughput rate is around 39,500

and 16,600 TPS, respectively.

For theWAN setting, s_RBC clearly exposes the more bandwidth

requirement compared with hbRBC. But this situation is expand-

able by deploying more bandwidth. When deploying hbRBC in the

SodsBC architecture, SodsBC prototype still achieves competitive

performance. For n = 40 and n = 100 participants, SodsBC pro-

totype achieves 36,000 and 13,200 TPS respectively. In the similar

setting, Honeybadger prototype [25] achieves 28,646 and 1,563 TPS

for n = 40 and n = 100 participants, respectively.
18

We consider

a decreasing rate for measuring the scalability. From n = 40 to

18
The Honeybadger metric considers the throughput rate ofn−f participants (n = 4f)

for 250B transaction, while we consider the throughput rate of the all n participants

for 256B transaction. Therefore, we change the original performance from [25] as

22,000× 40

30
× 250

256
=28,646 and 1,200× 100

75
× 250

256
=1,563.

n = 100, SodsBC performance decreases around a factor of three

(36,000/13,200), while Honeybadger decreases around a factor of

eighteen (28,646/1,563). Besides, the best performance of Honey-

badger is obtained when a participant proposes a block part having

32,768 transactions. However, a block part from a SodsBC partici-

pant has only 20,000 transactions, which offers us better potential

to further improvement by increasing the size of a block part.

Note that we believe BEAT [14] (BEAT0) will reflect better scala-

bility than Honeybadger [25] as BEAT0 replaces the bilinear map

pairing. However, no report on BEAT0 performance in the network

with more than four participants is given in [14]. The only reported

performance for n > 4 is for BEAT3, in which one participant

only saves a part of blockchain in its storage, rater than one par-

ticipant saves the whole blockchain as designed in SodsBC and

Honeybadger [25].

9 CONCLUSION
We have presented SodsBC, an efficient asynchronous blockchain

with quantum-safety and forward secrecy using a stream of dis-

tributed secrets. A secret stream is produced by asynchronous weak

secret sharing batches. The blockchain, the secret share batch for

future coins, and the AES key share are all finalized by n binary

Byzantine agreement as to the asynchronous secret multi-party

computation architecture. All quantum-safe and asynchronous

building blocks construct a holistic architecture. SodsBC offers the

blockchain service while utilizing itself for an agreement of the coin

production by a secret stream. Our prototype exhibits the SodsBC

competitive performance (high throughput) being better than the

current state of the art asynchronous blockchains (Honeybadger,

and BEAT) and even VISA.

REFERENCES
[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegel-

man. 2017. Solida: A Blockchain Protocol Based on Reconfigurable Byzantine

Consensus. In OPODIS 2017.
[2] Maxim Amelchenko and Shlomi Dolev. 2017. Blockchain abbreviation: Imple-

mented by message passing and shared memory (Extended abstract). In NCA
2017. 385–391.

[3] Gilad Asharov and Yehuda Lindell. 2017. A Full Proof of the BGW Protocol for

Perfectly Secure Multiparty Computation. J. Cryptology 30, 1 (2017), 58–151.

[4] Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K. Reiter,

and Emin Gün Sirer. 2019. Efficient Verifiable Secret Sharing with Share Recovery

in BFT Protocols. In CCS 2019. 2387–2402.
[5] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. 1994. Asynchronous Secure Com-

putations with Optimal Resilience. In PODC 1994. 183–192.
[6] Gabriel Bracha. 1987. Asynchronous Byzantine Agreement Protocols. Inf. Com-

put. 75, 2 (1987), 130–143.

12

[7] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure

and Efficient Asynchronous Broadcast Protocols. In CRYPTO 2001. 524–541.
[8] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptog-

raphy. J. Cryptology 18, 3 (2005), 219–246.

[9] Christian Cachin and Stefano Tessaro. 2005. Asynchronous Veriable Information

Dispersal. In SRDS 2005. 191–202.
[10] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. In SOTC 1993. 42–51.
[11] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance. In

OSDI 1999. 173–186.
[12] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. 2018. DBFT:

Efficient Leaderless Byzantine Consensus and its Application to Blockchains. In

NCA 2018. 1–8.
[13] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,

and RogerWattenhofer. 2016. On Scaling Decentralized Blockchains - (A Position

Paper). In FC 2016. 106–125.
[14] Sisi Duan, Michael K. Reiter, and Haibin Zhang. 2018. BEAT: Asynchronous BFT

Made Practical. In CCS 2018. 2028–2041.
[15] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus in

the presence of partial synchrony. J. ACM 35, 2 (1988), 288–323.

[16] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1985. Impossibility of

Distributed Consensus with One Faulty Process. J. ACM 32, 2 (1985), 374–382.

[17] Matthias Fitzi and Martin Hirt. 2006. Optimally efficient multi-valued byzantine

agreement. In PODC 2006. 163–168.
[18] AdamGagol, Damian Lesniak, Damian Straszak, andMichal Swietek. 2019. Aleph:

Efficient Atomic Broadcast in Asynchronous Networks with Byzantine Nodes.

In AFT 2019. 214–228.
[19] Vlad Gheorghiu, Sergey Gorbunov, Michele Mosca, and Bill Munson. 2017. Quan-

tum Proofing the Blockchain. Technical Report.
[20] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In SOSP
2017. 51–68.

[21] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. 2005. Cryptographic

Asynchronous Multi-party Computation with Optimal Resilience (Extended

Abstract). In EUROCRYPT 2005. 322–340.
[22] Andreas Hülsing. 2017. WOTS+ - Shorter Signatures for Hash-Based Signature

Schemes. IACR Cryptology ePrint Archive 2017 (2017), 965.
[23] Eleftherios Kokoris-Kogias, Alexander Spiegelman, Dahlia Malkhi, and Ittai

Abraham. 2019. Bootstrapping Consensus Without Trusted Setup: Fully Asyn-

chronous Distributed Key Generation. IACR Cryptology ePrint Archive 2019
(2019), 1015.

[24] Leslie Lamport. 1979. Constructing digital signatures from a one-way function.
Technical Report. Technical Report CSL-98, SRI International.

[25] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

Honey Badger of BFT Protocols. In CCS 2016. 31–42.
[26] Michele Mosca. 2018. Cybersecurity in an Era with Quantum Computers: Will

We Be Ready? IEEE Security & Privacy 16, 5 (2018), 38–41.

[27] Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. 2014. Signature-

free asynchronous byzantine consensus with t 2<n/3 and o(n
2
) messages. In

PODC 2014. 2–9.
[28] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Technical

Report. https://bitcoin.org/bitcoin.pdf.

[29] Rafael Pass and Elaine Shi. 2017. Hybrid Consensus: Efficient Consensus in the

Permissionless Model. In DISC 2017. 39:1–39:16.
[30] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with Optimistic

Instant Confirmation. In EUROCRYPT 2018. 3–33.
[31] James S. Plank, Jianqiang Luo, Catherine D. Schuman, Lihao Xu, and Zooko

Wilcox-O’Hearn. 2009. A Performance Evaluation and Examination of Open-

Source Erasure Coding Libraries for Storage. In FAST 2009. 253–265.
[32] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. 2019. Mir-BFT:

High-Throughput BFT for Blockchains. CoRR abs/1906.05552 (2019).

[33] The Praxxis Team. 2019. Praxxis Techical Report. Technical Report. https:

//praxxis.io/technical-paper.

[34] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In

PODC 2019. 347–356.

A ASYNCHRONOUS COMMON SUBSET (ACS)
AND BINARY BYZANTINE AGREEMENT
(BBA)

The asynchronous blockchain consensus, first introduced in Honey-

badger [25], originates from the asynchronous secure multi-party

computation (ASMPC) paradigm, the king-slave paradigm [21]. The

computation task is to consistently decide on a union of n block

parts leading to an asynchronous blockchain. The ASMPC protocol

decides the input subset by an asynchronous common subset (ACS)

protocol [5]. Among n computation instances in parallel, every par-

ticipant acts as a king (also called, a master) for one time to evaluate

its own computation instance, and simultaneously acts as a slave for
other n−1 instances. In an asynchronous environment, it is possible

that one king has finished its computation, while another king has

not started. Therefore, n binary Byzantine agreements (BBAs) fi-

nalize n asynchronous computation instances one by one. With the

help of n parallel randomized BBAs, the ACS protocol [5] uniquely

decides the ASMPC inputs [21]. The ACS protocol (Algorithm 6)

satisfies the following properties [5].

• Validity: If an honest participant outputs the result of n predi-

cates, then at least n − f of n predicates are true.

• Agreement: If two honest participants output the result of n
predicates, then the results are identical.

• Termination: All honest output the result of n predicates.

pi participates in the j-th computation instance, and inputs 1

to BBAj (Algorithm 7) if the j-th instance is finished.

Upon obtaining 1 from at least n − f BBAs, pi inputs 0 to
BBAj if the j-th instance is unfinished.

Upon finishing n BBAs, if BBAj outputs 1, pi includes the j-th
instance in the final set.

Algorithm 6: Asynchronous Common Subset [5]

Mostéfaoui et al. [27] propose an efficient binary Byzantine

agreement (BBA) protocol (Algorithm 7), which will be finished in

four rounds in expectation. The auxValueround is a guest value for

{estValueround}. The checking that all items in {auxValueround}
equal the same value means all values equal 0 or all values equal

1. If not, i.e., {auxValueround} includes 0 and 1, honest participants

will follow the random coin value as the estimated value in the next

round. If the only one value in {auxValue} does not equal the coin
value, honest participants also follow the coin value for the next

round estimation. The BBA correctness is specified as follows.

• Validity: An output was inputted by an honest participant.

• Agreement: No two honest participants output different values.
• One-shot: An honest participant will output its result at most

once.

• Termination: All honest participants output the results.

B THE RELIABLE BROADCAST
COMPARISON

Bracha’s broadcast protocol [6] is reliable which guarantees that

all honest participants receive a consistent result or nothing. The

efficient reliable broadcast version starts from Cachin and Tes-

saro [9] reducing the one participant bandwidth consumption to

linear,O(n |B|). The echo-only-hash idea combined with a claiming

sub-protocol is first proposed by Cachin et al. [7]. When every par-

ticipant broadcasts a block part |Bpart | =
1

n |B| like Honeybadger

RBC [25] (hbRBC, Algorithm 8) and s_RBC (Algorithm 2), the com-

munication overhead for one participant is constant, O(|B|). Fitzi

13

https://bitcoin.org/bitcoin.pdf
https://praxxis.io/technical-paper
https://praxxis.io/technical-paper

(A variable round counting the number of operated rounds,

round← 0.)

pi first sets an estimated RBC result

estValueround = estValue0 = resRBC (0: unfinished, 1:

finished).

Repeat forever until return
pi broadcasts estValueround, and sets {estValueround} ← [].
Upon receiving estValueround from f + 1 participants, pi
broadcasts estValueround if estValueround is not broadcast.

Upon receiving estValueround from 2f + 1 participants, pi sets
{estValueround} ← {estValueround} ∪ estValueround.

Wait until {estValueround} , �, then
pi broadcasts auxValueround where

auxValueround ∈ {estValueround}.
pi collects at least n − f received auxValueround from n − f
distinct participants constructing a set {auxValueround}
which satisfies {auxValueround} ⊆ {estValueround}.

pi calls a common random coin, rc = CommonRandomCoin().
if all items in {auxValue} equal the same value then

if auxValueround = rc then
return rc.

else
estValueround+1 ← auxValueround.

else
estround+1 ← rc.

round← round + 1.
Algorithm 7: Binary Byzantine Agreement (BBA) [27]

and Hirt [17] improve the claiming sub-protocol by RS encoding.

However, from the experience of implementing the SodsBC proto-

types, the passive claiming requires each honest participant to keep

running a process (or thread) to respond to a claiming request. The

passive claiming design creates many complicated requirements

and also raises the encoding overhead by a factor of n. This is why
we adopt the pro-active claiming instead of the passive one.

In Table 2, we compare the communication and computation

overhead of s_RBC with the previous reliable broadcast scheme

used in Honeybadger [25] and BEAT [14]. We analyze the over-

head of a participant for n RBC instances and each participant is

the broadcaster of an RBC instance. This setting meets the case in

which all participants launch an RBC instance for a block part in

the asynchronous blockchain architecture to compute the block

part union. Compared with the previous reliable broadcast protocol

used in Honeybadger, hbRBC, our s_RBC trades off a little increas-

ing communication overhead to significantly reduce the decoding

computation overhead.

For computation, according to the work of Duan et al. [14],

the Reed-Solomon encoding and decoding overhead becomes a

large burden when the block size increases. Table 2 exhibits that n
hbRBC [25] instances consume |BRSpart | encoding and n |BRSpart |
decoding computation overhead for one Honeybadger participant.

While in SodsBC, at least n − f honest broadcasters result in at

least n − f non-decoding s_RBC instances. Even for at most f ma-

licious broadcasters, only f slow and honest participants require

decoding. This overhead is amortized to at most
f 2
n |BRSpart | for one

participant. When n = 3f + 1, our overhead (n s_RBCs) is only at

Input: A broadcaster, pbroadcaster and the block part to be

broadcast, Bpart.

Broadcast : // (for the broadcaster, pbroadcaster)
pbroadcaster first (t = f + 1,n)-RS encodes a block part Bpart to

n codewords, BRSpart = {D1, · · · ,Dn }. The size of all n
codewords is |BRSpart | =

n
t |Bpart |. pbroadcaster constructs a

Merkle tree from these n codewords resulting in a root Root.
Branchi is the corresponding Merkle tree branch proof for

Di including the root Root. pbroadcaster sends
⟨broadcast,Di ,Branchi ⟩ to every participant pi in P.

Echo : // (for each participant pi ∈ P)
Upon receiving a ⟨broadcast,Di ,Branchi ⟩, pi broadcasts
⟨echo,Di ,Branchi ⟩ if Branchi corresponds to Di .

Upon receiving a ⟨echo,Di ,Branchi ⟩, pi disregards this echo
message if Branchi does not correspond to Di .

Upon receiving n − f echo messages with the same Root, pi
decodes the block part from any f + 1 echo messages and

gets the all n codewords. pi re-constructs a Merkle tree root

based on the n codewords, Root′. If Root′ = Root, pi
broadcasts ⟨ready,Root⟩ to others. Otherwise, pi aborts this
broadcast instance.

Ready : // (for each participant pi ∈ P)
Upon receiving f + 1 ⟨ready,Root⟩, pi broadcasts
⟨ready,Root⟩ if pi does not broadcast a ready message.

Upon receiving n − f ⟨ready,Root⟩, pi delivers Bpart if pi has
decoded and obtained the block part. Otherwise, pi will use
the Root in n − f ready messages to wait for f + 1 correct
echo messages to decode from them.

Algorithm 8: Honeybadger Reliable Broadcast (hbRBC) [25]

most
f 2

n2
≈ 11.1% of the overhead of n hbRBCs. If every participant

is honest, there should typically be no decoding overhead as our

implementation demonstrated.

For communication, we consider a large block part for a global

payment system, i.e., |Bpart | ≫ n |H |. 19 When accumulating all

communication overhead exhibited in Table 2, the communication

overhead ofn hbRBC [25] instances consume aroundO(3|B|)when
n = 3f + 1, t = f + 1. In the same n = 3f + 1 security setting, n
s_RBCs approximately consume O(4|B|). The trade-off is around

a factor of 33% the larger communication overhead. However, the

communication overhead keeps constant for one participant related

to the block size.

C THE EXPECTED AMOUNT OF COIN
CONSUMPTION

Although one BBA instance is expected to be finalized in four BBA

rounds [27], n independent BBAs may end at different times. For

these four expected BBA rounds, one BBA instance expectedly

spends two BBA rounds for honest participants with the same

inputs, and expectedly costs another two BBA rounds to make the

inputs equal a random coin [27]. While from a global view, only half

of BBAs (
n
2
) will be finalized in the first four BBA rounds. Another

half of the remained BBAs (
n
4
) only achieve the same inputs in the

first four BBA rounds, and will spend another two BBA rounds to

19
Obviously |Bpart | ≫ n |H | > |Branch | = (log

2
n + 1) |H |.

14

Table 2: RBC Communication and Computation Comparison (n = 3f + 1, t = f + 1, for n RBC Instances, for one participant)
Stage broadcast echo claim

HoneyBadger
(used in [14, 25])

n(
|BRSpart |

n + |Branch |) n2(
|BRSpart |

n + |Branch |)

Encoding: |Bpart | Decoding:n |BRSpart |

s_RBC
(this work)

n |BRSpart | n2 |H | nf (
|BRSpart |

n + |Branch |)

Encoding: |Bpart | Decoding (max): f
2

n |BRSpart |

We omit the communication overhead of negligible size messages. A block is composed by n parts, i.e., |Bpart | =
1

n |B |. n Reed-Solomon codeword sizes

|BRSpart | =
n
t |Bpart |, and one of the codewords sizes

1

t |Bpart |. H denotes a hash function sizing |H | = 32Bytes for SHA-256. Branch denotes the Merkle

tree branch proof which sizing |Branch | = (log
2
n + 1) |H |. “Decoding max” means the decoding overhead is maximum when there are indeed f malicious

participants. If every participant is honest, there is typically no decoding overhead.

reach an agreement. Next, the
n
8
BBAs have the same inputs in

the first six BBA rounds while it takes another two BBA rounds to

reach an agreement. The last BBA expectedly costs 4 + 2log
2
n BBA

rounds to an agreement. In total, we need

cNum =
log

2
n+1∑

i=1

(
n

2
i ×

(
4 + 2(i − 1)

))
=

n

2

× 4 +
n

4

× (4 + 2) +
n

8

× (4 + 4) + · · · + 1 × (4 + 2log
2
n)

coins in expectation to provide the requirement of n BBAs in one

block. Note that at least n − f BBAs finalize at least n − f finished

computation instances, while the remained BBAs also finalize the

remained unfinished computation instances. All n BBAs consume

random coins.

The sizes of the AWSS batches. Due to the fact that f + 1 secrets
composite one coin, the expected amount of secret production is

(f + 1) ×
∑log

2
n+1

i=1 (n
2
i−2 +

n(i−1)
2
i−1). Recall that the ACS protocol only

ensures that at least f + 1 honest AWSS batches (of at least 2f + 1
finished AWSS batches) contribute secret shares to coin production.

Therefore, one honest participant should produce an AWSS batch

sizing

∑log
2
n+1

i=1 (n
2
i−2 +

n(i−1)
2
i−1) in one block round. However, the

expected coin consumption amount is not the exact value due to

randomness. Some coin queues may be longer than others, which

is analogous to classical producer-consumer scenarios. We suggest

a closed-loop deterministic control to tune the AWSS batch size

dynamically instead of a fixed amount.

D SODSBC COMMUNICATION AND
COMPUTATION OVERHEAD ANALYSIS

We count the non-negligible communication and computation over-

head in our analysis. The hash function and AES scheme deploy

SHA-256 and AES-256. For communication, one participant broad-

casts a block part, echoes and pro-actively sends claims for all n
block parts in the n s_RBC instances, leading to the overhead

n(|BRSpart |) + n
2(|H |) + nf (|BRSpart |/n + |Branch|).

One participant also launches an AWSS batch for future coins,

and an AWSS for its AES key. Recall that Appendix C has calcu-

lated the expected AWSS batch size, we denote the number of the

expected consumed coin number in one block by cNum. We denote

the field representing a secret share by F. When considering a set-

ting in which the number of participants is around one hundred,

we could set |F| = 1Byte to ensure the secret shares are not con-

flicted in different participants. The total AWSS overhead of one

participant is

n×(cNum(|F|+ |Branch|)+ (|H |+ |Branch|))+n2((cNum+1)|H |).

When calling a coin for BBA randomness, one participant broad-

casts a message consuming

n(f + 1) × cNum(|F| + |Branch|).

. When reconstructing the n AES keys, a participant broadcasts its

shares with corresponding Merkle branches consuming

n2(|H | + |Branch|).

For computation, a SodsBC participant is required to Reed-Solomon

encode its block part. However, only f participants may decode a

block part if the broadcaster is malicious. Therefore, the decoding

overhead of an honest participant is at most
f 2
n |BRSpart | when there

are indeed f malicious broadcasters.

We also compare the HoneyBadger [25] and BEAT [14] overhead

in the same way. Instead of the AES key reconstruction, HoneyBad-

ger [25] and BEAT [14] require participants to broadcast threshold

decryption shares having a similar size. One common random coin

in Honeybadger [25] requires one threshold signature from at least

f + 1 signature share. Verifying a signature share consumes a bilin-

ear map paring operation taking a non-negligible time. BEAT [14]

improves this burden and verifies a threshold signature share uti-

lizing the zero-knowledge proof technique [8], whose computa-

tional latency is negligible. However, their improvement is still

not quantum-safe. In total, the communication and computation

overhead for one participant is concluded in Table 3.

Estimated result. As the above calculation, we depict the commu-

nication overhead of SodsBC, HoneyBadger [25], and BEAT [14]

when the participant number varies from n = 4 to n = 100, and the

block size from none to a large number of transactions (256B) in
Fig. 6. Compared with HoneyBadger [25] and BEAT [14], SodsBC

communicates more secret shares for quantum-safety. Our novel

reliable broadcast s_RBC also trades off communication overhead

for computation overhead. However, we keep the constant com-

munication overhead for one participant. When the block size in-

creases, Fig. 6 shows SodsBC will saturate the bandwidth and close

15

Table 3: The Communication and Computation Overhead for One Participant
Schemes Communication Overhead Computation Overhead

SodsBC

n(|BRSpart | + cNum(|F | + |Branch |) + (|H | + |Branch |))

+n2(2 |H | + cNum |H |)

+nf (
|BRSpart |

n + |Branch |)

+n(f + 1) × cNum(|F | + |Branch |) + n2 × (|H | + |Branch |)

Encoding: |Bpart |;

Decoding (max): (f 2/n) |BRSpart |

Honey-

Badger [25]

n(
|BRSpart |

n + |Branch |) + n2(
|BRSpart |

n + |Branch |)

+n × cNum × |H | + n2 × |H |

Encoding: |Bpart |;

Decoding: n |BRSpart |;
Bilinear-Paring: cNum × (f + 1)

BEAT0 [14]

n(
|BRSpart |

n + |Branch |) + n2(
|BRSpart |

n + |Branch |)

+n × cNum × |H | + n2 × |H |

Encoding: |Bpart |;

Decoding: n |BRSpart |

We focus on the non-negligible communication overhead including broadcast, echo and claim for block parts and AWSS batches sharing and recon-

struction. A block is composed by n parts, i.e., |Bpart | =
1

n |B |. n Reed-Solomon codeword sizes |BRSpart | =
n
t |Bpart |, and one of them sizes |Bpart |/t .

H denotes a hash function sizing |H | = 32Bytes for SHA-256. Branch denotes the Merkle tree branch proof which sizing |Branch | = (log
2
n + 1) |H |.

“Decoding max” means there are at most f malicious participants. cNum represents the number of expected coins for one block. F is the field representing

a secret share sizing |F | = 1Byte.

Figure 6: SodsBC Communication Overhead

Figure 7: SodsBC Computation Overhead.

to the ideal constant communication overhead for one participant,

O(4|B|), as HoneyBadger [25] and BEAT [14], O(3|B|).

For computation, we take 200MBytes/s for both the Reed-Solomon

encoding and decoding from [31], and take 10ms for verifying a

threshold signature share by bilinear map pairing.
20

Fig. 7 ex-

hibits the computation latency for SodsBC (maximum decoding),

HoneyBadger [25] and BEAT [14] in the same settings. BEAT [14]

removes the bilinear map pairing overhead for verifying thresh-

old signature shares in HoneyBadger [25], which decreases the

transaction-independent latency. There are around cNum ≈ 600

coins and cNum × (f + 1) ≈ 20, 000 shares leading to around 200s
when n = 100. On the other aspect, SodsBC further decreases

the computation latency by decreasing the RS decoding overhead,

which is transaction-dependent. Even when there are indeed f par-

ticipants, our computation overhead is significantly smaller than

HoneyBadger [25] and BEAT [14].

E AN EFFICIENT QUANTUM-SAFE
TRANSACTION STRUCTURE

Since a blockchain can be viewed as implementing a replicated

state machine, participants abbreviate the blockchain history trans-

actions and agree on the account balance of users [2]. When a user

wants to spend its money, it should prove its balance ownership.

In Bitcoin [28], a user offers its signature related to the public key

input of a transaction to prove ownership. If we directly replace

the ECDSA signature scheme to a hash-based and quantum-safe

signature scheme [19], the size of a transaction will be very large.

The basic reason why a signature is necessary for a transaction

is to prove the ownership. If this proof is only one-time-use, the

user can expose some secrets in the followed spent transaction

related to the previous public information in the previous deposit

transaction to achieve ownership proof. For unforgeability, the user

should not directly transfer its secret to a participant who may be

malicious. Therefore, we follow the first-commit-then-unlock idea

to divide an original transaction into two successive transactions.
A committed transaction will commit a payment to a payee with

an encrypted pad. An unlock transaction will open a committed

transaction (decrypt the pad) and prove the ownership of a user

20
https://crypto.stanford.edu/pbc/times.html

16

by revealing the secret of the money source. We use an example to

describe our design.

TX0 : ∗
$100

→ H2(secretAlice)

TXcomm :H(TX0)
$100

→ H2(secretBob),

AESEncrypt(secretAlice)Key=H(secretAlice)
TXunlock :H(TXcomm),H(secretAlice)

We assume that there is a coin-base transaction to mint $100

money for Alice in TX0. TX0 includes the twice hash of the secret

of Alice,H2(secretAlice). This transaction has been agreed upon by

all participants in a previous block consensus. When Alice is going

to transfer the money to Bob, Alice first constructs a committed

transaction TXcomm including the point to TX0, i.e.,H(TX0), to refer
the money resource. TXcomm also includes the twice hash of the

secret of Bob, H2(secretBob). secretAlice is AES-encrypted under

the AES keyH(secretAlice). This key will be revealed in the future

and unlock TXcomm. Alice sends TXcomm to a random participant

pi . If pi is honest and the block part of pi is included in a block,

then TXcomm is agreed on and Alice’s money is committed to be

transferred to Bob.

After Alice confirms the TXcomm inclusion, Alice generates the

unlock transaction TXunlock and sends TXunlock to a random par-

ticipant pj . TXunlock points to TXcomm, and decrypts the encrypted

secret secretAlice in TXcomm by the AES key H(secretAlice). The
secret, secretAlice, corresponds to the secret twice hash in TX0. If
pj is honest and the block part of pj is included in a block, then

TXunlock is enabled and Alice’s money is indeed transferred to Bob.

There is no specific requirement about whether pi and pj should
be different. For the next payment, TXcomm acts as the next TX0
(money source) for Bob to transfer Bob money to another payee.

If pi or pj denies to include TXcomm or TXunlock, Alice can can

re-sent TXcomm or TXunlock to another participant. If pi is malicious,

pi cannot modify TXcomm because pi does not know secretAlice. If
pj is malicious and steals the secret of Alice, secretAlice, pj cannot
steal Alice’s money. If pj re-constructs a new committed and unlock

transaction TX′comm and TX′unlock, and modifies the payee, these

new transactions will not be regarded as honest transactions be-

cause the real TXcomm is previously agreed on in the blockchain.

Honest participants will scan all pending committed transactions

when enabling an unlock transaction. The only thing a malicious

participantpj can do is revealingH(secretAlice) or not. Both choices
will not affect Alice’s money.

In total, the two successive transactions spend five 32Bytes num-

bers includingH(TX0),H2(secretBob),
AESEncrypt(secretAlice) in TXcomm,H(TXcomm),H(secretAlice) in
TXunlock when using AES-256 and SHA-256. When considering

other relevant information and two payees, we still can make the

total size of the two successive transactions around 256Bytes as
similar as the size of a typical “one-to-two” Bitcoin transaction

used as our benchmark (Sect. 8). Compared with an 8kBytes size
of a Lamport signature [24] (based on two SHA-256 functions) or a

1kBytes size of aWOTS+ [22] signature used in Praxxis [33], our

quantum-safe transaction structure is very efficient.

F DISCUSSION
Question: What is the most significant innovation of SodsBC?

Does SodsBC only replace the random common coin design of

Honeybadger [25] and BEAT [14] from quantum-sensitive discrete

logarithm cryptography by quantum-safe cryptography?

Answer: We believe the most significant innovation of SodsBC

lies in the achievement of asynchronization and quantum-safety in

blockchain consensus while accomplishing the high performance.

We are the first project which realizes the preprocessing and online
idea in blockchain consensus. This idea has been very popular

in secure multi-party computation (MPC) for high performance.

After this realization, we can design a blockchain service while

the blockchain itself is utilizing this service for the agreement of

preprocessed common random coins.

Besides from this design philosophy, our claimed reliable broad-

cast (RBC) protocol and quantum-safe asynchronous weak secret

sharing (AWSS) protocol are fully novel protocols which may be

of independent interest. From the experience of the SodsBC proto-

type, the same protocol architecture of RBC and AWSS simplifies

the implementation. The agreement of the preprocessed common

random coin also reduces to the asynchronous consensus problem.

Also, these quantum-safe components, including hash function,

AES, and secret sharing, allow a faster and more efficient imple-

mentation.

Question: The randomness property of the coin only requires that

malicious parties learn no information before constructing the coin.

Are there no requirements on the distribution of the coin? Does it

have to be uniform or statistically/computationally indistinguish-

able form uniform?

Answer: A common random number/coin uniformly distributes if

this number is the addition from the numbers of f + 1 participants.
Honest (none-malicious/none-Byzantine) participants follow the

algorithm and uniformly select a random value. Although in the

worst case at most f coin components come from an adversary,

at least one component originates a uniformly distributed random

selection. This randomness extraction method for f + 1 additions
is very popular in the MPC area.

Question: Whether an adversary can exhaust the source of com-

mon random coins?

Answer: No, it cannot. The coin production and consumption are

both robust, so that adversaries cannot produce one coin or cannot

consume one coin. The coin assignment in subsection 6.2 describes

the process inwhich participants assign corresponding secret shares

to the queue of the future BBA usage. At most t malicious partic-

ipants cannot reconstruct even one coin when a BBA requires a

coin. Also, from the implementation experience, we should ensure

that the coin supply does not produce too many coins beyond the

actual requirement. This is a classical producer-consumer problem

deserving a careful parametrization.

Question: What is the key difference between SodsBC and other

parallel/leaderless BFT blockchains?

Answer: SodsBC, Honeybadger [25], and BEAT [14] are asyn-

chronous blockchains, in which we do not assume the message

17

transmitted time upper bound, i.e., not time-out. While the partial-

synchronous blockchain includes DBFT [12] and Mir-BFT [32]

also try to solve a union of n block parts. However, this partial-

synchronous still may require time-out to identify at most f slow

block part proposals. The high performance of DBFT [12] and Mir-

BFT [32] both tested in a case the time-out does not get into effect.

Question: How to handle the malicious user/client problem in

a parallel/leaderless BFT design? What is the connection with the

duplicate transaction attack and the censorship resilience?

Answer: A parallel/leaderless BFT design like SodsBC, Honey-

badger [25], and BEAT [14] in the asynchronous setting, or the

partial-synchronous works DBFT [12] and Mir-BFT [32], shares

the same motivation for how to maximumly utilize the bandwidth

for non-overlap parts. If a user only proposes a transaction to one

participant and this participant is honest, SodsBC (and other par-

allelized architecture blockchains) can make the full use of the

bandwidth for the max throughput. On one hand, if this user is

malicious and proposes duplicated transactions to all participants,

this attack will decrease the total throughput. On the other hand, an

honest participant may also do this due to the afraid of a malicious

participant who does not include the user’s transaction in a block

part. For a real-time application, the user has to duplicate at least

f +1 to make sure the transaction inclusive. It is hard to distinguish

a malicious duplication and an honest-but-intentional one. A simple

method to handle this problem relies on a transaction fee, so that a

rational user would not like to pay the fees. For a Byzantine user,

SodsBC also supports the dynamic hash assignment introduced

in Mir-BFT [32], in which participants will dynamically pack up

block parts from different parts of all available transactions to be

processed.

In addition, even a participantp is honest, ap’s proposal may also

be refused by adversaries who vote zero to the binary Byzantine

agreement corresponding to the reliable broadcast of p. SodsBC,
Honeybadger [25], and BEAT [14] handle this problem by encryption
before reliable broadcast and decryption after consensus. Malicious

participants still could vote zero to the proposals of honest par-

ticipants, but this behavior would not be affected by the content

of the honest proposals. Note that SodsBC’s encryption scheme is

quantum-safe by a symmetric encryption like AES. Excerpt from the

quantum-sensitive encryption schemes in Honeybadger [25] and

BEAT [14], the key distribution in Honeybadger [25] and BEAT [14]

is operated in a trust setup. On the contrary, SodsBC shares the

fresh AES key in each block, which obtains the forward secrecy.

Question: What if SodsBC runs for permissionless participants?

Answer: Pass and Shi propose a general paradigm for the combina-

tion of a permissionless consensus and a permissioned one in [29].

This hybrid consensus design enjoys the decentralized advantage by

Proof-of-Work (PoW) or Proof-of-Stake (PoS), and the high efficient

superiority of a BFT protocol simultaneously, if the honest partici-

pant proportion satisfies the analysis in [29]. For SodsBC, we only

extra concern the bootstrap requirement (and channel buildings)

when a hybrid blockchain (PoS/Pow + SodsBC) launch a committee

reconfiguration. Even though there is a waiting requirement for

a new committee, the old committee still keeps working until the

new bootstrapping finishes, which ensures the blockchain service

would pause during a reconfiguration.

18

	Abstract
	1 Introduction
	1.1 Related works
	1.2 SodsBC Benefits Overview

	2 Preliminary
	2.1 System settings
	2.2 Asynchronous Blockchain Consensus: the Union of Block Parts
	2.3 Asynchronous Secret Sharing and Erasure Coding: Protected by Merkle Trees

	3 SodsBC in a Nutshell
	4 SodsBC Reliable Broadcast (s_RBC)
	5 Asynchronous Secret Sharing
	5.1 Asynchronous Weak Secret Sharing (AWSS)
	5.2 Asynchronous Secret Reconstruction (ASR)

	6 Common Random Coin
	6.1 Finalizing an AWSS by a BBA in FIFO-based Channels
	6.2 A global pool to order finished secret shares

	7 The Holistic SodsBC Structure
	7.1 The Partial Synchronous Bootstrap
	7.2 s_RBC*
	7.3 From Asynchronous Common Subset to Asynchronous Blockchain

	8 SodsBC Performance
	9 Conclusion
	References
	A Asynchronous Common Subset (ACS) and Binary Byzantine Agreement (BBA)
	B The Reliable Broadcast Comparison
	C The Expected Amount of Coin Consumption
	D SodsBC Communication and Computation Overhead Analysis
	E An Efficient Quantum-safe Transaction Structure
	F Discussion

