
A Post-Quantum Non-Interactive Key-Exchange
Protocol from Coding Theory

Jean-François Biasse1, Giacomo Micheli1, Edoardo Persichetti2, and Paolo
Santini2,3

1 University of South Florida
2 Florida Atlantic University

3 Universitá Politecnica delle Marche
{biasse, gmicheli}@usf.edu, epersichetti@fau.edu, p.santini@pm.univpm.it

Abstract. This work introduces a new non-interactive key-exchange
protocol, based on the hardness of the Code Equivalence Problem, a
staple problem in coding theory. The protocol is modelled on the Diffie-
Hellman framework. The novelty of the construction resides in the use
of the code equivalence problem as the sole hardness assumption.
To the best of our knowledge, our construction represents the first code-
based non-interactive key-exchange protocol, and in fact, the first post-
quantum scheme of this kind which is not built upon supersingular iso-
genies. Our scheme provides significantly better performance than its
isogeny counterparts in terms of execution time (at the cost of larger
keys). This performance trade-off is favorable to users in most of the
cases where the bandwidth is not severely constrained.

1 Introduction

The Diffie-Hellman key-exchange protocol is one of the milestones of mod-
ern cryptography. In its current instantiations, this protocol is at the basis of
present-day communication mechanisms, such as, for instance, the (ephemeral)
Diffie-Hellman handshake performed in TLS, and many other applications. It
is therefore of great importance to have an efficient post-quantum version of
Diffie-Hellman readily available, to serve as “drop-in” replacement if (and when)
needed. In fact, due to Shor’s algorithm [25], the vast majority of cryptographic
primitives based on traditional problems, such as factoring or computing dis-
crete logarithms, will be insecure once a quantum computer with sufficient sta-
bility and computational power is available. Historically, this is something that
was missing in the post-quantum scenario, and devising a non-interactive key-
exchange protocol offering good performance was regarded by the community as
a challenging task. This is reflected in the recent Post-Quantum Standardization
initiative by the National Institute of Standards and Technology (NIST) [18],
which features no such schemes among its submissions.

An important development in this regard has been the recent appearance of
schemes based on isogenies between supersingular elliptic curves [14, 6], which
offer competitive performance, especially with respect to sizes. The isogeny-based
key exchange protocol is the first example of a Post-Quantum non-interactive key
exchange protocol. While the area of isogeny-based cryptography is considered
very promising, it is also fairly young, in cryptographic terms, and still far from
maturity, both concerning security and efficiency aspects. Until now, there has
been a considerable gap in lattice-based and code-based cryptography, the two
most prominent areas in the post-quantum setting, which do not offer non-
interactive key-exchange protocols. It is therefore extremely important to the
cryptography community to provide post-quantum alternatives to the isogeny-
based non-interactive key exchange protocols, especially if new proposals can
offer better performance.

Our contribution. In this work, we introduce an entirely new paradigm to
build a post-quantum non-interactive key-exchange protocol. Our paradigm is
based on an original use of a long-standing problem: that of determining the
equivalence between two linear codes. Often mentioned in cryptography for its
relation to the McEliece cryptosystem, the Code Equivalence Problem is con-
sidered, for the most part, simply as a (crucial) step to be able to invoke the
well-known hardness of the Syndrome Decoding Problem, following the tradi-
tional approach in code-based cryptography. To the best of our knowledge, it is
the first time a cryptosystem whose security relies solely on code equivalence is
proposed.

The idea of our scheme is simple and derives from the Diffie-Hellman protocol.
In this paper, we demonstrate its soundness, give a security proof and analyze
the scheme’s performances. We also provide a discussion on the computational
difficulty of the underlying hardness assumption. Below is a high level description
of our protocol:

Let C be a random (public) linear code.

· Alice chooses a monomial map µa at random and sends µa(C) to Bob

· Bob chooses a monomial map µb at random sends µb(C) to Alice

· Alice computes the subcode Ca := C ∩ µ−1
a (µb(C))

· Bob computes the subcode Cb := C ∩ µ−1
b (µa(C))

· Since one can prove that the two subcodes are equivalent, Alice and Bob can
take their weight enumerator WEF(Ca) = WEF(Cb) as the shared secret

Note that computing the weight enumerator of a code is, in general, a hard
task: for purely random codes, this essentially boils down to enumerating the
codewords, with a complexity that, therefore, scales like qk. This becomes fea-
sible, however, for the instances considered by our protocol, since, as we will
show, we are able to control the dimension of the resulting subcodes, by care-
fully choosing our parameters.

2

The paper is organized as follows. We begin by recalling some preliminary
notions about coding theory and key-exchange protocols in Section 2. We then
proceed to describe the code equivalence problem in Section 3, along with a
discussion on its hardness. Our protocol is presented in Section 4, followed by a
security assessment in Section 5. An extensive analysis of known attacks against
the scheme is provided in Sections 6 and 7, the former discussing the best existing
algorithms that can be used to solve the code equivalence problem, and the
latter taking into account the eventuality of an attacker with access to quantum
technology. In Section 8, we make some important considerations about the
efficiency of our scheme, and present some sample instances, along with the
results of a proof-of-concept implementation. Finally, we give some conclusions
in Section 9.

2 Preliminaries

2.1 Notation

We will use the following conventions throughout the rest of the paper:

a a constant

A a set

a a vector

A a matrix

a a function or relation

A an algorithm

In the n× n identity matrix

[a; b] the set of integers {a, a+ 1, . . . , b}
U(A) the uniform distribution over the set A

$←− A sampling uniformly at random from A

E[x] expected value of a random variable x

We denote with Fq the finite field of order q, as customary. We will write
GLk(q), with k ≤ n, to indicate the set of invertible k × k matrices with ele-
ments in Fq. Let Sn be the group of permutations over n elements. These can
equivalently be described as functions π : Fnq → Fnq or in matrix form as n × n
matrices with exactly one 1 per row and column. By analogy, we denote with
Mn(q) the set of monomial matrices with elements in Fq, i.e. all the matrices of
the form Q = PD where P is an n × n permutation matrix and D = {dij} is
an n × n diagonal matrix such that di := dii ∈ F∗q for all i ≤ n. Given a vector
x = (x1, · · · , xn) ∈ Fnq and a permutation π ∈ Sn, we write the action of π on x
as π(x) = (xπ−1(1), · · · , xπ−1(n)).

3

2.2 Coding Theory

An [n, k]-linear code C of length n and dimension k over Fq is a k-dimensional
vector subspace of Fnq ; we will sometimes refer to the dimension of a code C
as Dim (C). For convenience, we denote with Ln,k the set of all [n, k]-linear
codes over Fq. Every linear code can be represented by a matrix G ∈ Fk×nq ,
called generator matrix, whose rows form a basis for the vector space.Then, the
generator matrix defines the code as a mapping between vectors u ∈ Fkq and the
corresponding codewords uG. Obviously, there exist more than one generator
matrix for the same code, corresponding to different choices of basis. It follows
that all generator matrices are connected via a change-of-basis matrix, i.e. an
invertible matrix S ∈ GL such that G′ = SG. Alternatively, a linear code can

be represented as the kernel of a matrix H ∈ F(n−k)×n
q , known as parity-check

matrix, i.e. C = {x ∈ Fnq : HxT = 0}. Once again, the parity-check matrix of a

code is not unique. With a little abuse of notation, we sometimes write G ∩G′

when referring to the intersection of the two codes C and C′ generated by G
and G′, respectively. In particular, we use G∩G′ to indicate a generator matrix
of the code C ∩ C′. The weight enumerator function of a code is the bivariate
polynomial defined as W (x, y) =

∑n
w=0Awx

wyn−w, where Aw is the number
of weight-w codewords in C. Throughout the rest of the paper, we will denote
with WEF the function that, on input a code (represented through its generator
matrix), returns its weight enumerator function.

For every linear code C, we can define its dual code C⊥ as the set of words
that are orthogonal to C, i.e. C⊥ = {y ∈ Fnq : x · yT = 0,∀x ∈ C}. It is then
easy to see that a parity-check matrix of a linear code is a generator of its dual,
and vice versa. In fact, it must be that G ·HT = 0k×(n−k). Codes that are

contained in their dual, i.e. C ⊆ C⊥, are called weakly self-dual, and codes that
are equal to their dual, i.e. C = C⊥, are called simply self-dual.

2.3 Key Exchange Protocols

We recall here, in a succinct manner, some standard cryptographic notions about
key-exchange protocols, and the relevant security definitions. We begin with a
sketch of the classic Diffie-Hellman (DH) framework, which illustrates perfectly
the generic structure of non-interactive key-exchange protocols.

For the original Diffie-Hellman protocol, the shared secret is the group el-
ement gab which, thanks to the commutativity property, can be computed by
both parties in the most straightforward way. A shared key can then be derived
by standard means (e.g. through a key-derivation function). Note that commu-
tativity is not strictly necessary to achieve such a scheme, as long as the two
parties are able to agree on a common value: this is the case, for instance, of mod-
ern instantiations based on isogenies [14], where the parties obtain two different
curves with a common j-invariant.

4

Table 1. Diffie-Hellman Key Exchange.

Public Data Parameter r ∈ N, group G and element g ∈ G of order r.

Alice Bob

Choose a
$←− [1; r − 1]. Choose b

$←− [1; r − 1].

Set ga = ga. Set gb = gb.
ga−−→
gb←−−

K = gab . K = gba.

It is easy to show that the Diffie-Hellman protocol is secure against passive
attackers. This is done explicitly, for example, in [5], where this kind of security
is modeled formally as Session-Key Security (SK Security) in the Authenticated-
links Model (AM). An outline is given below.

Definition 1 (SK Security in the AM). We define an adversary for the
key-exchange protocol in the AM as a polynomial-time algorithm A which is
able to observe (but not modify or interfere with) an honest execution of the

protocol. After the execution, the adversary is given a value Kb, for b
$←− {0, 1},

which is the genuine shared key when b = 0, and a randomly generated object
(coming from the same distribution) when b = 1, and answers with a bit b∗. A
key-exchange protocol is said to be SK-secure in the AM if the probability of A
guessing correctly (i.e. b∗ = b) is sufficiently close to 1/2, that is, A’s advantage
is negligible in the security parameter.

Note that we have omitted the “correctness” requirement, which is formally
included in the security notion in [5, Definition 4], as we take this for granted
when designing a scheme in the first place. Also, we do not digress here on
more advanced security notions, such as the Unauthenticated-links Model (UM)
or Perfect Forward Secrecy (PFS), as these can normally be achieved from the
basic protocol via standard workarounds.

The security of the Diffie-Hellman protocol is based first and foremost on
the Discrete Logarithm Problem (DLP) in the group G, as an adversary able to
solve this problem can obviously recover the secret keys of Alice and Bob. As
for the actual SK security, this relies on the two very famous problems known
as CDH and DDH, which we summarize as follows.

Problem 1 (Computational Diffie-Hellman (CDH)) Consider a triple
(g, ga, gb) of elements of a group G. Compute the element gab.

Problem 2 (Decisional Diffie-Hellman (DDH)) Consider a quadruple
(g, ga, gb, gc) of elements of a group G. Determine whether or not gc = gab.

5

The problems are, obviously, closely related. There is an elementary chain of
reductions, in one direction:

DDH ≤ CDH ≤ DLP.

The situation is rather more complex regarding the other direction. Indeed,
it has been shown that equivalence holds in certain special cases [7, 17], but it is
still an open problem to determine whether this is true in general.

3 The Code Equivalence Problem

The security of our construction of a code-based analogue of the DH protocol
is connected to the hardness of the Code Equivalence Problem in a similar way
that the security of the DH protocol is related to the hardness of the DLP. In
this section, we introduce the Code Equivalence Problem and we present the
prior work on its resolution.

Definition 2 (Permutation Code Equivalence). We say that two codes C

and C′ are permutationally equivalent, and write C
PE∼ C′, if there is a permuta-

tion π ∈ Sn that maps C into C, i.e.

C′ = {π(x), x ∈ C} .

The previous notion of code equivalence can be extended using linear isometries.
Indeed, let µ = (v, π) ∈ F∗nq o Sn be an isometry µ, such that

µ(x) = (v1xπ−1(1), · · · , vnxπ−1(n)).

We can then generalize the previous definition as follows.

Definition 3 (Linear Code Equivalence). We say that two codes C and C′

are linearly equivalent, and write C
LE∼ C′, if there is a linear isometry µ =

(v;π) ∈ F∗nq o Sn such that C′ = µ(C), i.e. C′ = {µ(x), x ∈ C} .

The previous definitions can equivalently be stated in terms of generator (or
parity-check) matrices; furthermore, the application of a permutation (resp. lin-
ear isometry) corresponds to the right multiplication by a permutation matrix
P (resp. monomial matrix Q).

Let C and C′ be two codes with respective generator matrices G and G′: we
then have

C
PE∼ C′ ⇐⇒ ∃(S,P) ∈ GLk(q)× Sn s.t. G′ = SGP ,

C
LE∼ C′ ⇐⇒ ∃(S,Q) ∈ GLk(q)×Mn(q) s.t. G′ = SGQ.

6

Another notion of code equivalence (using semilinear isometries) is often
found in the literature; however, it is not needed for our protocol, and therefore
we do not present it here. We instead refer the interested reader to [22] for further
details, and move on to present some hard problems connected to the notions
we just described.

Problem 3 (Permutation Code Equivalence (PE)) Let C and C′ be two
linear codes of length n and dimension k, defined over Fq. Determine whether
the two codes are permutationally equivalent.

Problem 4 (Linear Code Equivalence (LE)) Let C and C′ be two linear
codes of length n and dimension k, defined over Fq. Determine whether the two
codes are linearly equivalent.

The two problems above are clearly two different flavors of the same problem,
namely, deciding whether two codes are equivalent, which differ according to
which notion of code equivalence is considered. However, as we will see, the
connection between the two is not as obvious as it seems.

Hardness at a Glance

The hardness of the code equivalence problem has been studied extensively
in several works. In here, we provide an overview of the topic. A more detailed
analysis will be given in Section 6, where we discuss the run time of the various
existing algorithms aimed at solving the code equivalence problems, that pertain
to the cryptanalysis of our scheme.

The complexity of the problem was analyzed by Petrank and Roth, who
proved a very interesting result. In fact, in [20], the authors showed that, on
one hand, the permutation equivalence problem is unlikely to be NP-complete
(or else the polynomial hierarchy would collapse) while, on the other hand, the
problem is at least as hard as Graph Isomorphism (GI). The GI problem was
recently proved to be solvable in quasi-polynomial time by Babai [1] without
implying the weakness of permutation code equivalence. This comparison with
permutation code equivalence was later generalized by Grochow [10] to the q-ary
case. Following this line of work, Sendrier and Simos [23, 22] focused on analyzing
the practical hardness of the problem, concluding that there exist many instances
that are indeed intractable.

Leon’s algorithm [16], introduced in 1982, is probably the earliest method
that can be used to solve the code equivalence problem, and specifically the
permutation version. The algorithm reconstructs the secret permutation from
its action on the set of codewords with fixed weight. When this set is not too
large, the permutation can efficiently be recovered. The bottleneck is in the
codeword search, whose time complexity is nqO(k). Thus, as noted in [2], Leon’s
algorithm is impractical, unless considering codes of small dimension defined
over small finite fields.

7

A second approach, also aimed at solving the permutation version, is that of
the Support Splitting Algorithm (SSA), initially described by Sendrier [21]. The
algorithm, which represents a strong improvement over Leon’s for the task at
hand, is based on the concept of the hull, which is simply the intersection between
a code and its dual. Computing the hull is easy and requires only simple linear
algebra, and the time complexity of the whole algorithm essentially grows as qh,
where h is the hull’s dimension. For random codes, this dimension is, with high
probability, equal to a small constant [24], de facto making SSA a polynomial-
time solver for many instances of the permutation equivalence problem. The
algorithm was later generalized in [22] to attack the linear equivalence problem.
In fact, the problem of establishing the linear equivalence between two codes can
always be reduced to that of finding a permutation equivalence between their
closures. It follows that constructing the closures (as we explain in Section 6)
and applying SSA is enough to solve the linear equivalence.

It is important to mention that SSA fails when the codes considered only
have a trivial (i.e. empty) hull. However, an efficient treatment of this situation
has recently been provided [2] through a reduction, running in time O(nω) (with
2 ≤ ω ≤ 3), from permutation equivalence to an instance of the graph isomor-
phism problem between undirected weighted graphs. Another case which cannot
efficiently be solved through SSA is that of codes with a large hull. In fact, since
the time complexity is dominated by qh, SSA becomes quickly unfeasible as h
grows. This is, for instance, the case of self-dual (or weakly self-dual codes), for
which h = k: for such codes, SSA can be made arbitrarily hard by choosing
codes with a sufficiently large dimension. The hardness of such instances is cor-
roborated by the reduction to graph isomorphism in [2] which, for non-trivial
hulls, runs in time O(hnω+h+1) and, as expected, becomes quickly unfeasible for
large values of h.

4 Protocol Description

Our protocol is based on a procedure which, given a public code, allows two
parties to agree on subcodes that are linearly equivalent. In particular, this
means also that they have the same weight enumerator function. This common
weight enumerator function is taken as the shared secret. The operations which
are performed in our protocol, to obtain such an equivalence, are depicted in
Figure 1. In the figure, C denotes an arbitrary linear code defined over Fq, while
µa and µb are linear isometries. We have used µ−1

a (resp. µ−1
b) to denote the

inverse of µa (resp. µb), i.e., the isometry such that its composition with µa
(resp. µb) returns the identity.

There is an obvious isomorphism between linear isometries and monomial
matrices, such that each linear isometry can be mapped into a monomial matrix.
We have

µ 7→ Q ⇐⇒ µ−1 7→ Q−1,

µ 7→ Q, µ′ 7→ Q′ ⇐⇒ µ′ ◦ µ 7→ Q ·Q′.

8

Fig. 1. Diagram of our Scheme.

C

µa(C) µb(C)

µ−1
b ◦ µa(C) µ−1

a ◦ µb(C)

C ∩
(
µ−1
b ◦ µa(C)

)
C ∩

(
µ−1
a ◦ µb(C)

)

W (x, y)

µa µb

µ−1
b µ−1

a

∩ C ∩ C

WEF WEF

It is then easily seen that all code operations can be represented through
linear algebra, so that codes are described through their generator matrices, and
isometries through the corresponding monomial matrices. Because of this fact,
a possible practical realization of the flow described in Figure 1 is provided in
Table 2. We have denoted with Qa and Qb the monomial matrices associated
to the isometries µa and µb, while their inverses are associated to µ−1

a and µ−1
b ,

respectively. The matrices Sa and Sb are non-singular and they act through a
change of basis of the codes.

Table 2. Description of a Practical Instantiation.

Public Data Parameters q, n, k ∈ N, matrix G ∈ Fk×n
q and hash function H.

Alice Bob

Choose Sa
$←− GLk(q), Qa

$←− Mn(q). Choose Sb
$←− GLk(q), Qb

$←− Mn(q).

Set Ga = SaGQa. Set Gb = SbGQb.
Ga−−→
Gb←−−

Compute G̃a = GbQ
−1
a . Compute G̃b = GaQ

−1
b

Obtain G′a = G ∩ G̃a. Obtain G′b = G ∩ G̃b.

Compute K = WEF(G′a). Compute K = WEF(G′b).

9

4.1 Correctness

In this section, we show that the protocol is correct by proving that the op-
erations described in Figure 1 actually lead to codes having the same weight
enumerator function. The main property which we will use is expressed in the
following Lemma.

Lemma 1. Let C be a linear code of length n and dimension k, defined over
Fq, µ be a linear isometry and C′ = µ(C). Let G and H be a generator and a
parity-check matrix for C, respectively. Then, C′ admits a parity-check matrix
in the form H(V −1)>, where V is the monomial matrix associated to µ and >

denotes transposition.

Proof. Clearly, C′ is generated by G′ = GV . The matrix H ′ = H(V −1)> has
the same row rank of H (that is, n− k) and furthermore

G′H ′> = GV
(
(HV −1)>

)>
= GV V −1H>

= GH>

= 0k×(n−k),

since GH> = 0k×(n−k) by definition. Then, H ′ is a valid parity-check matrix
for C′. ut

Let us denote with V = QbQ
−1
a the monomial corresponding to µ−1

a ◦ µb, i.e.,
µ−1
a ◦ µb 7→ V . Since µ−1

b ◦ µa = (µ−1
a ◦ µb)−1, we additionally have

µ−1
b ◦ µa 7→ V −1.

Consider now the actual codes that are derived by Alice and Bob. Alice
obtains C̃a = µ−1

a ◦ µb(C), which is generated by G̃a = GQbQ
−1
a = GV . Alice

then intersects the public code C with C̃a: the resulting code will be formed by
codewords that simultaneously belong to both codes. Let H and H̃a be arbitrary
parity-check matrices for, respectively, C and C̃a; then

C′a = C ∩ C̃a =

{
c ∈ Fnq s.t.

{
Hc> = 0r,

H̃ac
> = 0r.

}
. (1)

Because of Lemma 1, we know that, for each H, we will have a parity-check
matrix for C̃a in the form H̃a = H(V −1)>. Then, (1) can be rewritten as

C′a = C ∩ C̃a =

{
c ∈ Fnq s.t.

{
Hc> = 0r,

H(V −1)>c> = 0r.

}
. (2)

On Bob’s side, we have
C̃b = µ−1

b µa(C).

10

We apply again Lemma 1, and thus know that C̃b admits a parity-check matrix
in the form HV >; then

C′b = C ∩ C̃b =

{
c ∈ Fnq s.t.

{
Hc> = 0r,

HV >c> = 0r.

}
. (3)

We now show that C′a and C′b are linearly equivalent. This straightforwardly
comes from the fact that replacing c with cV turns (2) into (3); then, for each
codeword c ∈ C′a, there is a codeword in C ′a in the form cV . Since µ−1

a ◦µb 7→ V ,
we have

C′b = µ−1
a ◦ µb(C′a).

Since the two codes are equivalent, they share the same weight distribution
function.

5 Underlying Problems and Complexity Assumptions

The security of our non-interactive key exchange can be examined in way analo-
gous to what done for the existing protocols of the same kind, such as the original
Diffie-Hellman, and its supersingular isogeny version. By this, we mean that, for
instance, the secret key of each user is hidden behind a well-known and well-
understood hard problem (such as DLP and, for isogenies, the SSI problem),
while the actual key being exchanged is protected by a dedicated complexity
assumption (respectively CDH/DDH and SSCDH/SSDDH).

In our case, the former is represented by the code equivalence problem. It
is in fact obvious that, if an adversary is able to solve Problem 4, he is able
to recover the secret keys of Alice and Bob. On the other hand, to address the
latter, we introduce the following problems.

Problem 5 (Code Equivalence CDH (CECDH)) Consider a triple
(C,Ca = µa(C),Cb = µb(C)) of linearly equivalent [n, k] linear codes over Fq.
Compute either µ−1

b (Ca) or µ−1
a (Cb).

Compared to the usual formulation of the CDH assumption, we have a few
differences. In fact, since the group action given by a linear isometry is not
commutative, it is not true that µ−1

b (Ca) = µ−1
a (Cb). Instead, the two codes are

merely equivalent and therefore an attacker, in principle, has two distinct targets,
either of which is sufficient for his purposes. This is in contrast with Diffie-
Hellman, where clearly (ga)b and (gb)a are one and the same, but not unlike
the situation for other variants of the paradigm, such as the isogeny version.
Note that, however, µ−1

b (Ca) and µ−1
a (Cb) are not two any linearly equivalent

codes, but they are tied together by the fact that they are both obtained by
the composition of the same two group actions (or, to be precise, one action
with the inverse of the other) and this is what makes it possible to perform the
reconciliation. In fact, it is obviously not true in general that C∩C′ is equivalent
to C∩C′′ if C,C′ and C′′ are generic linearly equivalent codes. Finally, note that,

11

in our scheme, we omitted the multiplication by the invertible matrices S−1
a and

S−1
b , since that is not meaningful in terms of security and not necessary for

reconciliation.

The decisional version of the problem is presented below.

Problem 6 (Code Equivalence DDH (CEDDH)) Consider a quadruple
(C,Ca = µa(C),Cb = µb(C),Cc) of [n, k] linear codes over Fq. Determine whether
Cc is equal to µ−1

b (Ca) or µ−1
a (Cb), or neither.

We conjecture that the above problems are computationally infeasible, and
that any polynomial solver for either of the problems only has a negligible advan-
tage in the security parameter n. With regards to this, the situation is as follows.
Clearly, if an attacker had access to an oracle capable of solving the code equiv-
alence problem, it could trivially solve CECDH, and in turn, an efficient solver
for CECDH is an obvious method to solve CEDDH. Thus we have

CEDDH ≤ CECDH ≤ LE.

No reduction is known in the other direction, and thus we can only plausibly
assume that the scenario is indeed similar to the one of Diffie-Hellman; in the
spirit of [14], we deem that the question of the equivalence between the above
problems is at least hard to fully resolve, and treat the problems as being indeed
equivalent for the remainder of this work.

We conclude this section by mentioning that it is indeed easy to show that
our protocol satisfies the notion of session-key security defined in Section 2.3,
based on the assumptions we just defined. The claim is summarized in the next
result.

Proposition 1. Under the CEDDH assumption, the key-exchange protocol of
Table 2 is SK secure in the authenticated-links adversarial model.

The above proposition can be proved straightforwardly following the proof
of [5, Theorem 8]. A detailed treatment of the known attacks against code equiv-
alence, explaining why and how we are able to generate hard instances for our
scheme, will be given in the next section.

6 Analysis of Known Attacks

In this section we discuss various existing algorithms and techniques that
can be used to attack our scheme. In particular, we focus on algorithms that
are designed to solve the linear equivalence problem, which is at the base of
our construction. By the end of the section, we will be able to derive precise
conditions under which a given instance of the linear equivalence problem can
be considered difficult.

12

6.1 Brute Force and Other Obvious Attacks

The most naive attack to the scheme would probably consist of trying to solve
the linear equivalence problem by simple enumeration of all of the possible linear
isometries of vectors over Fnq . This would result in searching through a space of
dimension |Sn| · |F∗nq | = n!(q− 1)n = O(nnqn), which is clearly beyond any hope
of being feasible.

Let C be a code such that

∃i, j, i 6= j s.t. ci = cj , ∀c ∈ C.

In such a case, all generator matrices G for C are such that the i-th and j-
th columns are identical. All such columns will remain identical even after left
multiplication by a non singular matrix. Let C′ = µ(C), where µ = (pi,v) is a
linear isometry; we denote with G′ a generator matrix for such a code. We denote
with gi and gj the i-th and j-th columns in G; through action of the isometry,
these columns are mapped in g′i′ and g′j , where i′ = π−1(i) and j′ = π−1(j).
Furthermore, the element-wise division between g′i′ and g′j′ will return a vector

in the form [a, a, · · · , a], with a = vi′/vj′ ∈ F∗q . To find such columns in G′, it

is enough to consider all
(
n
2

)
couples of columns (gu, g`); for each couple, we

compute the element-wise division and check whether it is a constant vector.

The original linear equivalence problem can then be solved by targeting the
code obtained by puncturing C and C′ in the positions (i, j). We remark the fact
that, despite this is just a method to reduce its complexity, designing a scheme
with clear and known ways to simplify known attacks is completely pointless.
Thus, in our protocol, we impose that G has all different columns.

6.2 Leon’s Algorithm

Leon’s algorithm [16] is the first dedicated technique that can be used to solve
permutation equivalence. The attack, in fact, consists simply of analyzing the
action of the algorithm on the subset of codewords with fixed weight ω. Once
such a set is computed, it gets partitioned into smaller subsets, which are then
used to retrieve the permutation mapping one code to the other. The partitioning
phase has very low complexity, while finding all codewords of weight ω is the
actual bottleneck of the algorithm. Usually ω is set as the minimum distance
of the code; for random codes, this can be estimated with the the GV bound.
If this set does not have sufficient structure, then ω is slightly increased. We
now briefly describe how the codeword enumeration can be performed. Let G
be the generator matrix of a code C of length n and dimension k, and call GSF

its systematic form. For δ ≤ w, and i ≤ k − δ, we define

U(δ, i) =
{
u ∈ Fkq s.t. wt(u) = δ, ui = 1, uj = 0 ∀j < i

}
.

13

It can then be easily seen that, when ω ≤ k (which is the case we consider in
this paper) we have

{c ∈ C s.t. wt(c) = ω} ⊆

{
a(uGSF), a ∈ F∗q \ {1}, u ∈

ω⋃
δ=1

k−δ⋃
i=0

U(δ, i)

}
.

From a practical point of view, the codeword search can be performed by testing
all codewords of the form uGSF. Once a codeword of weight ω is found, then
all of its scalar multiples are computed. In particular, few scalar multiples will
be computed, with respect to the whole number of tested codewords, since we
expect the set of weight-ω codewords to be relatively small; thus, we can neglect
the computational cost of this step. For each candidate u, we need to compute
n − k codeword symbols; when u has weight δ, this can be done with δ − 1
multiplications (since the first non null entry of u is 1) and δ − 1 sums in Fq.
Since all sets U(δ, i) are disjoint, it can be straightforwardly shown that the
number of vectors u that are tested is

∑ω
δ=1

(
k
δ

)
(q − 1)δ−1. Then, by neglecting

the cost of the partitioning step, we have

CLEON = O

(
4(n− k)

ω∑
δ=1

(δ − 1)

(
k

δ

)
(q − 1)δ−1

)
. (4)

One final remark is about eventual future developments regarding Leon’s algo-
rithm. Indeed, the algorithm is inefficient for large codes, or for large finite fields,
since the codeword enumeration quickly becomes unfeasible. This step cannot be
avoided, as the algorithm requires to find all the codewords of weight ω. We do
not exclude the possibility of strong improvements in Leon’s algorithm, leading
to the possibility of operating with just a subset of all such codewords. In such a
case, codewords of some weight ω can be efficiently determined by means of ISD
algorithms which, at each call, randomly pick a codeword of the desired weight.
Thus, multiple ISD calls can be used to find the required number of codewords
of the desired weight. If this scenario ever became a concern, the issue could be
entirely avoided by choosing code parameters such that even a single ISD call is
computationally too expensive.

6.3 The Support Splitting Algorithm

The basis on which SSA is built is the concept of signature function, introduced
in [21], which is defined in the following way.

Definition 4. Let C be a linear code of length n; we say that a function S is a
signature function over a set F if it maps C and a position i ∈ [0;n − 1] to F
and is such that

S(C, i) = S
(
π(C), π(i)

)
, ∀π ∈ Sn.

We say a signature function is fully discriminant if S(C, i) 6= S(C, j), ∀i 6= j.

14

Signature functions can be used to recover information about the permutation
that is acting on the code; in particular, once in possession of a fully discriminant
signature, the permutation π can immediately be recovered, since

S(C, i) = S(C′, j) ⇐⇒ j = π(i). (5)

Assuming that such a fully discriminant function S is available, then SSA cor-
responds to the trivial algorithm that searches for collisions between the sets
of values S(C, i) and S(C′, j), for (i, j) ∈ [1;n] × [1;n]. We point out that the
existence of such a function (without, additionally, requiring unfeasible compu-
tations) is clearly not guaranteed for all pairs of codes. In such cases, SSA makes
use of signatures refining, that is, new computations and combinations of signa-
tures, that proceed until a fully discriminant function is obtained. In this paper,
with a conservative choice, we assume that the chosen signature function is fully
discriminant for the pair of codes considered, and that the refining of signatures
is never required. In this way, we are guaranteed to provide a lower bound on
the actual complexity of SSA.

Sendrier in [21] proposes to build signatures from the hull space that, for a
code C, is defined as

Hull (C) = C ∩ C⊥.

For each π ∈ Sn, we have Hull (π(C)) = π(Hull (C)). Let Ci be the code obtained
by puncturing C in position i: then, a valid signature can be obtained by let-
ting S(C, i) be the weight enumerator function of Hull (Ci). With this choice of
signature function, the complexity of SSA can be estimated with some simple
observations.

1. As mentioned in [21], the hull of a punctured code can be conveniently
obtained from the hull of the original code. Thus, as an initialization, the
Hulls of C and C′ are computed. A basis for the Hull can be computed with
a simple Gaussian elimination: thus, this step requires O(n3) operations.

2. For each position i ∈ [1;n], the Hull of Ci can be obtained with negli-
gible computation from Hull (C). Then, to evaluate the weight enumera-
tor function, all codewords of Hull (Ci) must be generated. This requires
O(nqdHull log n) operations in Fq, where dHull denotes the dimension of Hull (Ci).

3. In the conservative assumption that such a signature is fully discriminant,
it is sufficient to evaluate it for 2n times (for codes C and C′, and for each
i ∈ [1;n]).

Thus, the overall complexity of SSA is given by

CSSA = O
(
n3 + n2qh log n

)
, (6)

where h corresponds to the hull dimension.

15

6.4 Solving the Linear Equivalence Problem

Given a couple of permutation equivalent codes C and C′, both Leon’s algorithm
and SSA can be used to find a permutation mapping a code into the other.
Leon’s time complexity can be estimated through Equation (4), by setting ω
equal to the GV distance, while SSA time complexity is given by Equation (6).
We point out that, as explained in the previous sections, both choices lead to a
conservative estimate.

We now describe how such algorithms can be used to tackle the liner equiva-
lence problem. We first introduce the following additional notion, which is crucial
in solving linear equivalence.

Definition 5. Let Fq = {a0 = 0, a1, · · · , aq−1}, and a = (a1, · · · , aq−1). We
define the closure of a linear code C, defined over Fq, as

C̃ = {c⊗ a, c ∈ C}.

In other words, for a code C of length n and dimension k, the closure is a code
of the same dimension and length (q − 1)n, and is obtained by multiplying the
codewords of C by all non-null elements of Fq. The following result [22] states a
relation between the closures of equivalent codes.

Proposition 2. Let C,C ⊆ Fnq ; then, C
LE∼ C′ if and only if C̃

PE∼ C̃′.

To decide if two codes C and C′ are linearly equivalent, and to retrieve the
corresponding isometry, we can then solve the permutation equivalence problem
between their closures C̃ and C̃′. Indeed, finding a permutation mapping C̃ into
C̃′ trivially allows to retrieve the isometry between the initial codes C and C′.

To use Leon’s algorithm, all low weight codewords of the closures need to
be enumerated. In particular, it can be easily shown that, for each word c ∈ C
of weight ω, there is a word c′ ∈ C′ of weight ω′ = (q − 1)ω, obtained as
c′ = c⊗ a. Then, it is enough to enumerate low weight codewords in the initial
code. From an operational point of view, we can set ω as the GV distance
computed with parameters n, k and q of the given code C, apply the technique
described in Section 6.2, multiply through Kronecker product by a to build the
set of codewords of weight ω′ = (q − 1)ω and then apply Leon’s algorithm.
Then, the time complexity can be estimated through Equation (4) by setting
ω = dGV(n, k, q).

To use SSA, we just need to apply the algorithm on the closures. However,
as shown in [21], for q ≥ 5 the closure of a code is always weakly self-dual, i.e., is
always contained in its dual. It follows that its hull has then always (maximal)
dimension k. As a consequence, to solve the Linear Equivalence Problem over Fq,
when q ≥ 5, the algorithmic complexity of SSA is estimated through Equation (6)
with h = k.

16

6.5 Considerations on the Dual Code

It is well-known [19, Prop. 1.5.16] that, if two codes are linearly equivalent, then
so are their duals. The following proposition describes how a solution to the
Linear Equivalence Problem on a pair of codes C and C′ can be easily obtained
from a solution obtained for their duals C⊥ and C′⊥.

Proposition 3. Let G,G′ be the generator matrices of two linear equivalent
codes C and C′, i.e. G′ = SGQ for some unknown S ∈ GL and Q ∈ Mn(q).
Then, solving the Linear Equivalence Problem on C⊥ and C′⊥ is equivalent to
finding a solution to the original problem on C and C′.

The proof of Proposition 3 is fairly intuitive, and therefore omitted in the interest
of space. A consequence of this result is that we should amend the complexity
estimates given in (4) and (6) and consider a code dimension of n − k instead
of k. This turns in a simple criterion: when k > n/2, both Leon’s algorithm and
SSA are optimized by attacking the dual code (which can easily be computed
with linear algebra).

7 A Quantum Scenario

In this section, we discuss various techniques to devise possible quantum attacks
against the code equivalence problem.

7.1 Grover Search

To begin, it makes sense to consider the use of Grover’s search algorithm [11],
which plays a major role in quantum cryptanalysis. The algorithm allows us
to search an unsorted database X of N entries for an element x ∈ X, with
f(x) = 1, at a cost in O(

√
NCf), where f : X → {0, 1} and where Cf is the

cost of implementing f . By “cost” here we indicate either the number of gates or
the execution time (i.e. circuit depth). With regards to Leon’s algorithm, it can
indeed be expected that an application of Grover can improve the search part
of the algorithm, leading to the usual speedup which corresponds, in the worst
case, to roughly halving the complexity exponent (if one ignores the remaining
part). Interestingly, though, a Grover search over all possible secrets (i.e. P ∈ Sn)
would not outperform the classical SSA because of the size of Sn.

In principle, it is also possible to use Grover’s algorithm within SSA. Indeed,
for each i ∈ [1;n], the search for j ∈ [1;n] such that j = π(i) corresponds to
finding j ∈ [1;n] such that f(j) = 1, where f : [1;n]→ {0, 1} is defined as

f(j) =

1 if S(C′, j) = S(C, i)

0 otherwise

17

for a fully discriminant function S. Following the application of Bennett’s generic
method [3] (which converts any algorithm taking time T and space S into a re-
versible algorithm taking time T 1+ε and space O(S log T)), the cost of a quantum
circuit evaluating f is that of S, which is in Õ(nqdHull log n). Thus, the search
for j ∈ [1;n] such that j = π(i) costs

O(
√
|[1;n]|Cf) = Õ(n3/2qdHull log n).

This process needs to be repeated n/2 times. Every time a pair (i, π(i)) is found,
both elements can be removed from the search space. This means that, in the
previous formulas, we replace [1;n] with [1;n](k), where n−2k ≤ |[1;n](k)| ≤ n−k
(at each stage we remove either 1 or 2 elements depending on whether π(i) = i).
Our total cost is

O

 ∑
k≤n/2

√
|[1;n](k)|

Cf

 .

We can bound this using the fact that

n/2∑
k=1

√
2k︸ ︷︷ ︸

Ω(n3/2)

≤
∑
k≤n/2

√
|[1;n](k)| ≤

n∑
k=n/2

√
k

︸ ︷︷ ︸
Ω(n3/2)

.

In the end, the complexity of the overall procedure is Õ(n5/2qdHull log n), which
does not outperform the classical method consisting in 2n evaluations of S fol-
lowed by a matching of the values obtained.

7.2 Other Approaches

The other famous family of algorithms for quantum cryptanalysis is based on
quantum Fourier sampling. These algorithms can be seen as generalizations of
Shor’s algorithm for factoring and solving the Discrete Logarithm Problem [25].
The general approach is to rephrase a problem as the search for a secret subgroup
H within a known “control group” G. The Quantum Fourier Transform (QFT)
over G allows us to create a state whose measurement (hopefully) yields an
element in Ĥ. By repeating this operation and using ad-hoc methods depending
on H, one can recover H and solve the problem. In [8] and in the follow up
work [9], Dinh, Moore and Russell show that to use a similar approach for
solving the Permutation Equivalence Problem, one would have to choose G =
(GL× Sn)oZ2. A criterion is given in Corollaries 1 and 2 of [9] for linear codes
to be HSP-hard, meaning that it does not reveal any information about Ĥ. The
criterion asks that the code has very high rate, namely, that qk

2 ≤ n0.2n, and
that the automorphism group of the code has very small degree.

The authors give some concrete examples of families of codes that satisfy the
criterion. This is the case, for instance, of Alternant codes and Goppa codes. For

18

these families, it is possible to give explicit bounds on the size of the automor-
phism group. Moreover, since these codes are subfield subcodes of Generalized
Reed-solomon codes, the criterion can be satisfied by considering a generator
matrix over the extension field and referring to the dimension of the “parent”
code. This makes it so that the resulting code does not need to have the very
high rate mentioned above, thus generating practical cryptographic instances.

The results just presented naturally extend to the Linear Equivalence Prob-
lem via the use of the closure. We note that these conditions, as interesting
as they are from a theoretical point of view, are not necessary for our codes
to offer quantum resistance. Indeed, no attack relying on the quantum Fourier
sampling has been described so far in literature. Interestingly, the conditions
are also not sufficient to claim post-quantum resistance since other attacks not
based on quantum Fourier sampling might exist. This is for example the case
of certain Goppa codes which satisfy the conditions described in [8] showing
the impossibility of using the quantum Fourier sampling method, despite being
attacked by the classical SSA because their hull has a small dimension.

8 Efficiency Considerations

In the previous section we have derived some conditions that the system param-
eters must satisfy, in order to guarantee a sufficiently large time complexity for
the state-of-the-art algorithms that aim to solve the linear equivalence problem.
In this section, moved by a different motive, we derive conditions which guaran-
tee a low algorithmic complexity for our proposed protocol. Our analysis is based
on the next assumption, which essentially follows from the assumed hardness of
the Liner Equivalence Problem.

Assumption 1 Indistinguishability under Linear Isometry

Let G ∈ Fk×nq with full row rank k and all different columns, S
$←− GLk(q) and

Q
$←− Mn(q). Then, G′ = SGQ is indistinguishable from a random k × n, full

row rank matrix over Fq.

The assumption can equivalently be re-written in terms of codes; however, the
formulation we chose additionally captures the entity of the hardness of the
linear equivalence problem, since the left multiplication by a full rank matrix S
is fundamental in “hiding the structure” of G into that of G′. However, G and
SG are two generators of the same subspace of Fnq , since left multiplication by
S just corresponds to a change of basis. All the properties we consider in this
section are invariant with respect to the basis which is used as a representation;
thus, for the sake of simplicity, we will omit the matrix S and simply denote
G′ = GQ.

19

8.1 Dimension of the Secret Equivalent Subcodes

As stated in the previous section, for a given code C and a random isometry
µ, hardness of linear equivalence implies that C′ = µ(C) can be treated as a
random code. Then, for the properties we derive in this section, we will always

consider C′
$←− Ln,k(q), where Ln,k(q) denotes the set of linear codes of length n

and dimension k, defined over some finite field Fq.

For two arbitrary codes C ∈ Ln,k(q) and C′ ∈ Ln,k′(q), we have Dim (C ∩ C′) ≤
min{k, k′}. When k+k′ > n, the codes necessarily intersect in a non-trivial (i.e.,
null) space. This is easily seen by first considering that, since linear codes are
subspaces of Fnq , we have

Dim (C ∪ C′) ≤ Dim
(
Fnq
)

= n, ∀C ∈ Ln,k(q), C′ ∈ Ln,k′(q). (7)

Let C ∈ Ln,k(q) and C′ ∈ Ln,k′(q) with respective dimensions k and k′ such that
k + k′ > n; if we assume that C ∩ C′ = ∅, we end up with

Dim (C ∪ C′) = Dim (C) + Dim (C′) = k + k′ > n,

which contradicts (7). Then, it must be C∩ C′ 6= ∅. With analogous arguments,
it can be shown that Dim (C ∩ C′) ≥ max{0 , k + k′ − n}.

When C′ is sampled from Ln,k(q) according to the uniform distribution, we
can study the dimension of the intersection code as a discrete random variable,
whose probability distribution is derived next [12, Proposition 3.2].

Proposition 4. Let C ∈ Ln,k(q) and C′
$←− Ln,k′(q); let k∗ = Dim (C ∩ C′).

Then, k∗ is a discrete random variable over [max{0 , k + k′ − n} ; min{k , k′}],
with probability distribution given by

Pr [Dim (C ∩ C′) = k∗] =

[
k
k∗

]
q

[
n−k
k′−k∗

]
q
q(k−k∗)(k′−k∗)[

n
k′

]
q

,

where
[
a
b

]
q

denotes the Gaussian binomial coefficient, defined as

[a
b

]
q

=

{∏b−1
i=0

1−qa−i

1−qb−i if a ≤ b,
0 if b > a.

We now study the dimension of the secret subcodes which are obtained by
Alice and Bob which, is fundamental in determining the algorithmic complexity
of our proposed key exchange protocol. First of all, as shown in Section 4.1,
Alice and Bob are in possession of two equivalent codes. For simplicity, then, we
will only consider Alice’s side, and denote with C the public code (i.e., the one
generated by the public matrix G) and with C′ the code generated by G̃a, of
dimension k′; since G̃a has full row-rank, we have k′ = k. For obvious reasons,

20

we want C ∩ C′ to have trivial intersection with low probability. If we choose
k ≤ n/2, then this probability is not null, but it rapidly decreases as k gets
lower than n/2. To completely avoid the issue, we impose k > n/2.

Despite the intersection being non-trivial, it is also crucially important that
the dimension of the subcode not be too large. Indeed, the complexity of com-
puting the weight enumerator of a code grows with the code dimension. With
a naive approach, all codewords can be enumerated by computing all possible
linear combinations of the rows of a generator matrix. If we denote the code di-
mension with k∗, then, using the schoolbook multiplication algorithm, will lead
to a cost of O

(
nk∗ · qk∗

)
, as there are a total of qk

∗
linear combinations and the

cost of computing each one of them is O(kn). It is clear that this cost can be
reduced; for example, computation of codewords that are scalar multiples can
be avoided. Furthermore, improved multiplication algorithms and paralleliza-
tion can be used, as well as ad hoc strategies (for instance, sums of previously
found codewords). In any case, it is very likely that, regardless of the particular
technique employed, the cost of computing the weight enumerator function will
be proportional to the number of codewords, which is exactly equal to qk

∗
. It

follows that, to guarantee a low complexity, k∗ needs to be sufficiently low. We
can calculate the expected value of k∗ as

E[Dim (C ∩ C′)] =

k∑
k∗=2k−n

k∗ · Pr [Dim (C ∩ C′) = k∗] . (8)

We now must ensure that the probability of ending up with subcodes of large
dimension is an extremely rare event. To do this, we first define a threshold
dimension k̄, such that the complexity of enumerating a code of dimension k̄ is
not too high. Then, we use again Proposition 4 and design the code parameters
to keep Pr

[
Dim (C ∩ C′) > k̄

]
reasonably low. As a conservative choice, we will

propose parameters n, k, q and k̄ such that qk̄ is sufficiently low and, at the
same time,

Pr
[
Dim (C ∩ C′) > k̄

]
=

k∑
k̄∗=k̄

Pr [Dim (C ∩ C′) = k∗] < 2−λ, (9)

where λ is the security parameter.

Remark The previous criteria naturally allow for the possibility of producing a
constant-time implementation. Indeed, the computation of the weight enumera-
tor function may be designed to always run in constant time, corresponding to
that of enumerating a code of dimension k̄. Another option would be to introduce
an abort criterion, such that the protocol returns a failure if Dim (C ∩ C′) > k̄.
This would introduce a probability of failure which, however, can be controlled
by properly tuning the system parameters. For instance, a reasonable trade-
off between performances and failure rate may be reached by satisfying (9). A
more comprehensive discussion of this topic is deferred to future work, where
implementation aspects are addressed in full detail.

21

8.2 A Practical Instance

To showcase the performance of the scheme, we have designed practical instances
of the scheme with a security parameter of λ = 128, i.e., reaching 128 bits of
security. To do this, we have carefully chosen the parameters n, k and q such that
all the attack procedures described in Section 6 require more than 2128 (classical)
operations. Among the wide range of secure instances, we have selected the
following one

(n, k, q) = (68, 32, 23),

leading to a public key of 12, 240 bits, that is, just over 1.5 kB. This quantity
also corresponds to the size of the messages exchanged by Alice and Bob.

With the above choices, we have 2k − n = 4, and the expected dimension
of the secret subcode (computed through Equation (8)) is roughly equal to 4.
The distribution of the subcode dimension, which can be estimated through
Proposition 4, is strongly centered around 4, and the probability of having a
subcode of dimension 7 is already negligible (i.e., smaller than 2−128).

The bottleneck in the time complexity is represented by the computation
of the weight enumerator function computation, which dominates the other ele-
mentary linear algebra operations. This allows us to obtain a rough upper bound
on the required algorithmic cost, by taking into account the naive approach we
have explained in the previous section, yielding 68 · 36 · 234 ≈ 229 operations in
Fq. We point out that, with ad hoc techniques such as those described in the
previous section, the complexity of this step may be significantly reduced.

To provide a concrete example on the practicality of our proposed scheme, we
have considered a proof-of-concept implementation using the Magma Computa-
tional Algebra system, running on a 3.2 GHz Quad-Core Intel Core i5 processor,
with 16 GB of RAM. Our timing measurements have been obtained through
10, 000 runs of the protocol. The subcode dimension has always resulted to be
equal to 4, while the average execution time for a complete run of the proto-
col, i.e., considering both Alice’s and Bob’s operations, is 5.8 milliseconds. This
is to be compared with the implementation of the CSIDH non-interactive key-
exchange protocol, at a security level comparable to NIST Category 1, which
runs in 100 milliseconds and has a key of 64 bytes [13, Table 1].

9 Conclusion

In this work, we have introduced a post-quantum non-interactive key-exchange
protocol based on problems coming from coding theory. The protocol follows the
Diffie-Hellman framework, but uses an entirely new paradigm for post-quantum
schemes, relying solely on the hardness of the Code Equivalence problem. This is
in contrast, for example, with the traditional method used in code-based cryptog-
raphy, which revolves around the hardness of syndrome decoding. Since security

22

does not depend on error-correction capability and other decoding-related no-
tions, we are able to use entirely random codes, and choose parameters resulting
in very small lengths. This is again a substantial difference: where traditional
code-based schemes have codes of lengths in the order of thousands, our sug-
gested instance has only n = 68. As a consequence, we obtain small key sizes
and very fast timings.

To the best of our knowledge, our protocol is the first instantiation of a
post-quantum Diffie-Hellman key-exchange, that is not based on supersingular
isogenies. Compared to isogeny-based schemes, we benefit from a very efficient
arithmetic (essentially just linear algebra) which results in a noticeable com-
putational advantage. On the other hand, our keys are obviously quite far from
the extremely small sizes typical of isogeny schemes, thus presenting a significant
trade-off. Note that, unless the bandwidth allocated for the protocol is extremely
limited, this trade-off works in our favor, and the sizes of all the objects involved
in the protocol are of the same order of magnitude (if not smaller) as the existing
post-quantum, and especially code-based, alternatives (e.g. [4, 15]).

In the end, we see great potential in this work, not only for the protocol
here described, but also as an avenue for building other types of schemes, based
on our original construction. Future work naturally includes the study and de-
velopment of our paradigm, as well as many optimizations, and especially a
high-performance implementation, that can further highlight the strengths of
our approach.

References

1. L. Babai. Graph Isomorphism in Quasipolynomial Time [extended abstract]. In
D. Wichs and Y. Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 684–697. ACM, 2016.

2. M. Bardet, A. Otmani, and M. Saeed-Taha. Permutation Code Equivalence is
Not Harder Than Graph Isomorphism When Hulls Are Trivial. In 2019 IEEE
International Symposium on Information Theory (ISIT), pages 2464–2468, July
2019.

3. C. H. Bennett. Time/Space Trade-offs for Reversible Computation. SIAM Journal
on Computing, 18(4):766–776, 1989.

4. https://bikesuite.org/.
5. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use

for Building Secure Channels. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 453–474. Springer, 2001.

6. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. Csidh: An Efficient
Post-Quantum Commutative Group Action. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 395–427.
Springer, 2018.

7. B. Den Boer. Diffie-Hellman is as Strong as Discrete Log for Certain Primes.
In Conference on the Theory and Application of Cryptography, pages 530–539.
Springer, 1988.

23

8. H. Dinh, C. Moore, and A. Russell. McEliece and Niederreiter Cryptosystems
That Resist Quantum Fourier Sampling Attacks. In P. Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, pages 761–779, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

9. H. Dinh, C. Moore, and A. Russell. Limitations of Single Coset States and Quan-
tum Algorithms for Code Equivalence. Quantum Info. Comput., 15(3-4):260–294,
Mar. 2015.

10. J. A. Grochow. Matrix Lie Algebra Isomorphism. In IEEE Conference on Com-
putational Complexity (CCC12), pages 203–213, 2011.

11. L. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

12. A. Hauteville. Décodage en Métrique Rang et Attaques sur un Système de Chiffre-
ment à Base de Codes LRPC. Master’s thesis, Université de Limoges, France, Sept.
2014.

13. A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao. Towards Optimized
and Constant-Time CSIDH on Embedded Devices. In I. Polian and M. Stöttinger,
editors, Constructive Side-Channel Analysis and Secure Design - 10th International
Workshop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019, Proceedings,
volume 11421 of Lecture Notes in Computer Science, pages 215–231. Springer,
2019.

14. D. Jao and L. De Feo. Towards Quantum-Resistant Cryptosystems from Super-
singular Elliptic Curve Isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19–34. Springer, 2011.

15. https://www.ledacrypt.org/.
16. J. Leon. Computing Automorphism Groups of Error-Correcting Codes. IEEE

Transactions on Information Theory, 28(3):496–511, May 1982.
17. U. M. Maurer. Towards the Equivalence of Breaking the Diffie-Hellman Protocol

and Computing Discrete Logarithms. In Annual international cryptology confer-
ence, pages 271–281. Springer, 1994.

18. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization.

19. R. Pellikaan, X.-W. Wu, and S. Bulygin. Codes, cryptology and curves with com-
puter algebra. Cambridge University Press, 2017.

20. E. Petrank and R. M. Roth. Is Code Equivalence Easy to Decide? IEEE Transac-
tions on Information Theory, 43(5):1602–1604, Sep. 1997.

21. N. Sendrier. The Support Splitting Algorithm. Information Theory, IEEE Trans-
actions on, pages 1193 – 1203, 08 2000.

22. N. Sendrier and D. E. Simos. The Hardness of Code Equivalence over Fq and Its
Application to Code-Based Cryptography. In P. Gaborit, editor, Post-Quantum
Cryptography, pages 203–216, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

23. N. Sendrier and D. E. Simos. How Easy Is Code Equivalence over Fq? 2013.
24. N. Sendrier and P. Symbolique. On the Dimension of the Hull. SIAM Journal on

Discrete Mathematics, 10, 11 1995.
25. P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-

rithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509,
1997.

24

