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Abstract. The Universal Composability (UC) framework (FOCS ’01)
is the current gold standard for proving security of interactive crypto-
graphic protocols. Proving security of a protocol in UC is an assurance
that the theoretical model of a protocol does not have any obvious bugs,
in particular when using it as part of a larger construction. UC allows
to reason about complex structures in a bottom-up fashion by talking
about the individual components and how they are composed. It thereby
simplifies the construction of complex secure protocols. Due to certain
design choices of the UC framework, realizing certain security notions
such as verifiability is cumbersome and “obviously secure” constructions
require rather strong and thus in practice expensive individual building
blocks. In this work we give the first formal study of Non-Interactive Pub-
lic Verifiability of UC protocols. As Non-Interactive Public Verifiability
is crucial when composing protocols with a distributed ledger, it can be
beneficial when designing these with formal security in mind. We give
a thorough discussion and formalization of what Non-interactive Public
Verifiability means in the Universal Composability Framework and con-
struct a general transformation that achieves this notion for a large class
of cryptographic protocols. Our framework furthermore allows to reason
about the composition of Non-Interactive Publicly Verifiable primitives.

1 Introduction

Universal Composability (UC) [9] is currently the most popular framework for
designing, formalizing and proving security of cryptographic constructions under
arbitrary composition. It allows one to capture the interaction between individ-
ual parties, their passing of messages and which impact an adversary could have
on any protocol in a complex environment consisting of multiple nested proto-
cols. UC, albeit being very general, has seen many extensions such as e.g. UC
with joint state [15] or Global UC [11]. On a very high level, UC formalizes
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cryptographic tasks as ideal functionalities F with which parties Pi can inter-
act. An implementation Π of such a functionality F is then considered secure if
any interaction of dishonest parties in the real protocol Π can be simulated by
a probabilistic polynomial time interactive Turing machine (PPT iTM), called
the simulator S, which itself may only interact with F for this purpose. Both
the functionality and the parties as well as the adversary A that controls the
dishonest parties, and the external distinguisher (called “the environment” Z)
which formalizes the actual security experiment are modeled as PPT iTMs which
interact via “interactive” tapes that are shared among these.

The benefit of UC is that, as a formal framework, it allows to discuss the
different aspects of an interactive protocol with mathematical precision. But in
practice, one often sees that security is argued on a very high level only. This
is partially due to the complexity of fully formalizing a protocol in UC, but
also stems from the fact that for some, seemingly simple and intuitive cases, the
standard UC framework must first be extended to be expressive and applicable.

As an example, consider the class of protocols which interact with a dis-
tributed ledger. Albeit Badetscher et al. [3] (based on previous work of Kiayas
et al. [21]) have described how to formalize certain distributed ledgers in UC,
many important components used in protocols that leverage distributed ledgers
still have not been satisfactorily captured in the UC framework, among them
functionalities with public verifiability. A popular task in this realm is for exam-
ple to couple a smart contract with a cryptographic protocol. In such a setting,
one must reason about how the distributed ledger can communicate with the
functionalities representing a protocol even though the distributed ledger may
not have been a part of the actual protocol session. Also the smart contract may
have to communicate with such a functionality after the protocol finishes (see
e.g. [4] as an example for how complicated this is to achieve). The problem in
the aforementioned motivational example seems to be that it is difficult to for-
malize Non-Interactivity in UC in a meaningful and composable way. A further
problem is allowing for third parties who do not participate in the execution to
verify its outputs, which gives rise to important issues that will now discuss.

1.1 The Problems of Achieving Verifiability in UC

We will now give an example for why achieving verification in UC is difficult or
requires heavy machinery that seems unnecessary from an intuitive point of view
and purely like an artifact of UC itself. The notion of verifiability considered in
this paper is the following: after the protocol execution, the participants can
decide to reveal some of their inputs or outputs to the world. It should be
possible for verifiers (even external ones) to check if the revealed values are the
ones corresponding to the protocol execution. This is an important notion for
applications based on distributed ledgers as discussed above. In particular, many
protocols based on distributed ledgers require parties to check the output of a
protocol execution on the ledger (i.e. such that at least some protocol messages
are registered on the ledger) after the execution is completed and/or when the
parties involved are offline [18,19,4,21,2]. These protocols essentially require our
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notion of non-interactive public verifiability but use hardcoded concrete specific
mechanisms that achieve this notion instead of generic building blocks. The
current lack of a UC treatment of public verifiability is a hurdle that prevents
such protocols from being designed and proven in a (even more) modular fashion.

In order to motivate the challenges we must overcome, we will discuss the
main issues of capturing public verifiability in the UC model. Let us assume a UC
functionality F which has one round of inputs by the parties P = {P1, . . . ,Pn},
computes some outputs based on the inputs and in the end sends these outputs
to each party. Assume that we want to add verifiability to F , meaning that it
shall also have interfaces to react to verification requests. Let us call this ex-
tended functionality FV. These requests will be able to confirm if certain inputs
or outputs were provided by a party Pi to the functionality or sent from FV to
Pi. To achieve this, we design a protocol ΠV based on the original UC-secure
protocol Π that would implement these interfaces. A straightforward solution is
to construct ΠV in such a fashion that each party would commit to inputs and
randomness that it will use in the protocol Π. The parties then run Π based on
these committed values. Intuitively, this approach should have a simple verifi-
cation procedure: each involved party can simply inspect the committed inputs
and randomness of other parties, re-run these parties in its head and compare
its messages to the available protocol transcript. A third party could then do the
same, based on the commitments and a transcript of Π. Unfortunately, using
this approach together with the actual inputs means that we run into adaptivity
problems when trying to prove ΠV secure. This is similar to [20]: In the security
proof of ΠV, without knowing what the inputs and randomness of any honest
party are (as these will only be released by FV after the computation has fin-
ished), we have to simulate an instance of Π with all its messages towards the
adversary A. After the simulation finishes, the verification interface of the ideal
functionality FV would now output the inputs of the honest parties to the simu-
lator. But in the simulation where we ran Π with the dishonest parties we had to
simulate all the protocol messages assuming dummy inputs for the honest par-
ties. This means that for verification of the instance of Π one has to “explain” all
those messages that the adversary A obtained as being possible given the actual
inputs of the honest parties from FV. Towards explaining this, the simulator can
essentially only change the randomness of every simulated honest party in the
end of the simulation. That essentially implies that Π has to be adaptively se-
cure to begin with if we want to prove that ΠV UC-securely implements FV. This
means that the implementations of FV in practice will be slow, since the set of
protocols Π which are adaptive is limited. This seems counterintuitive: beyond
the technical reason to allow UC simulation, there seems to be no explanation
why only adaptive protocols should be verifiable in the aforementioned way.

1.2 Our Approach

In this work, we give a framework that allows to describe non-interactive verifi-
ability in UC and shows how such protocols can be composed. Our framework
in its current form is applicable to any functionality that has one round of input
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as well as multiple rounds of computation and outputs, and captures therefore
such functionalities as Oblivious Transfer or Secure Function Evaluation.4 We
furthermore describe a standard wrapper for any such functionality to equip it
with the interfaces necessary for non-interactive verification, allowing external
verifiers to register (in a public or private manner) and to perform tasks related
to verification. This wrapper is particularly designed to amalgamate the reactive
nature of UC with non-interactivity.

Our overall approach towards compilation of protocols into verifiable coun-
terparts is a black-box one: we will let one or more parties sacrifice its input and
randomness towards establishing correctness of their outputs, as was sketched al-
ready in Section 1.1. Such black-box verification procedure also needs access to a
transcript. Thus, towards verifiability by third parties, we allow different degrees
of assurance about the transcript of the protocol: in addition to committing to
inputs and randomness, the compiler will ask parties to either sign their sent or
received messages or alternatively authenticate them using what we call “Au-
thentication Functionalities”. These Authentication Functionalities do not just
have unforgeability properties for those parts of the transcript that are related
to honest parties, but also commit dishonest parties to their transcript (without
revealing private messages ahead of time or implying consensus on its own). We
show how to practically implement these Authentication Functionalities.

As outlined above, the exact use of a certain compiler only fixes some parts
of the transcripts. We therefore also formalize the requirements that exchanging
the non-committed part of the transcript adaptively cannot break verification
as an additional property, which we call “Collusion Resistance”. Collusion Re-
sistance can be seen as being complimentary to how much additional apparatus
we introduce in the compilation: the more messages an adversary can exchange
in a transcript without breaking the verifiability invariant i.e. the stronger the
collusion resistance of Π, the weaker are the necessary tools which the compiler
has to use in order to achieve verifiability.

Even with the aforementioned framework in place we still have to address the
problem of adaptivity which stems from the way how verification is defined. We
therefore now sketch the high-level intuition behind our solution which avoids
adaptivity (even though the actual formalization differs substantially):

Solution #1: Black-box access to the next messages. Clearly, defining
verifiability by just extending F with some verification commands will not be
enough with the aforementioned compilation technique. A first idea is to let
the simulation of Π be done inside FV. This means that we give FV an extra
“next message function” interface nmf. The simulator of ΠV will be able to
use nmf in order to generate the protocol messages in the simulation. We can
then easily explain Π consistently after the fact. FV can provide nmf as it is
able to simulate an instance of Π internally using the actual inputs that FV

obtained from the honest parties. This “internal” simulator will do the input-
related work, while the “external” simulator of ΠV will handle all interactions

4 It would be interesting future work to extend our techniques to reactive computa-
tions.
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with the adversary and functionalities in the actual proof as well as simulation of
the compilation overhead. Based on the UC security of Π, making nmf available
should intuitively not break existing constructions. This is because before we
open any inputs or randomness, it should be indistinguishable if we use the
actual inputs running Π or use S due to the UC-security of Π. The “external”
simulator for ΠV in the security proof then extracts the protocol messages in Π
that the adversary sends (and those sent to the hybrid functionalities) and input
these accordingly into FV, thus generating a valid transcript of Π. This leads to
a new problem: we need to have “internal” simulators that can use real inputs
of honest parties while simultaneously being able to extract the inputs of the
dishonest parties and creating an indistinguishable transcript. This extraction
requirement stems from the fact that the “external” simulator for ΠV may not
know the semantics of the original security proof of Π and can therefore not
extract the inputs from A.

Solution #2: Extracting inputs. We solve this problem by requiring that
for our compiled protocols Π there exists a special “über” simulator which runs
something indistinguishable from the actual protocol based on the real inputs
(and randomness) of honest parties but is still able to extract inputs of the
dishonest parties. Then the “external” simulator of ΠV is freed from having to
extract the inputs. While requiring that there exists such an über simulator
might seem artificial and strong, it actually differs from requiring adaptivity of
Π. On one hand, many MPC protocols such as [24,17] simulate their online phase
anyway using “artificial” fixed inputs and otherwise run the protocol honestly
while still being able to extract. We can therefore directly make those protocols
verifiable. At the same time, requiring that the simulation done by the über sim-
ulator generates all messages in this consistent way means that we can compile
garbled circuits (GC)-based protocols such as the NISC protocol of [13] too. In
GC protocols, simulation of such a garbler is trivially possible by running the
actual protocol (not having to “simulate” fake GCs) while the simulator can
extract inputs of the evaluator from hybrid functionalities such as OT.

Why not using the original UC simulator? As we start out by assuming
a UC-secure protocol Π it might be tempting to ask why it is not sufficient to
adjust the simulator S of the original security proof of Π by simply requiring
that its inputs can be programmed. For example, in the case of MPC protocols
with information-theoretic online phases basically all known UC security proofs
actually run a protocol instance on random (or fixed) inputs and then equivocate
the protocol outputs to the values obtained from F . As mentioned above, this
strategy breaks down when Π is a protocol using Garbled Circuits. In such
cases, equivocation is usually achieved by programming the output of F into
the circuit. In such a case, revealing the randomness of the garbler immediately
shows that a simulation was done. We will nevertheless show that for a certain
class of simulators of UC-secure protocols it is possible to construct an über
simulators directly.

A High-level Overview of Our Approach: We start with an observation
similar to [20], namely that by fixing the inputs, randomness and messages in a
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protocol we can get a guarantee about the outputs. This is because the inputs
and randomness essentially fix both the messages and outputs of each party,
as nmes is deterministic given all other such values. Therefore our main idea is
to authenticate a set of messages as well as inputs and randomness, such that
an external party can verify such authenticated items after the fact. On the
other hand, fixing all messages that are exchanged in a protocol (in order to
leverage this guarantee) is costly, so we generalize this concept to the notion
of collusion resistance in Section 3.1. Here, we might not have all exchanged
messages fixed, but an adversary might be allowed to replace all those messages
exchanged between dishonest parties after the fact, or those that were exchanged
with the honest parties. Even in such settings, we do not want that the adversary
is able to replace the transcript with a new version that is still consistent but
lets the parties output a different value. While it might seem obvious that such
a protocol with all of its messages fixed would be publicly verifiable, it is still
not directly possible to prove this fact in the UC framework unless we assume
that Π is adaptively secure - which seems an overkill, given that this is even
necessary for verifiable protocols that are statically secure only. In Section 3.2
we therefore introduce input-aware simulators (or über simulators) whose tran-
scripts are generated with the actual inputs of the honest parties (and which
also extract the inputs of dishonest parties), but whose transcripts should still
be indistinguishable from the actual simulation of Π.

1.3 Related Work

Verifiability for several kinds of protocols has been approached from different per-
spectives, such as cheater identification [20], incoercible secure computation [1],
secure computation on public ledgers [2,5,21,22], and improved definitions for
widely used primitives [8,7].

1.4 Paper Outline

We start with some preliminaries in Section 2. In Section 3, we present our ap-
proach for how to make protocols non-interactively verifiable. In Section 4, we
define authentication functionalities that serve as building blocks for our com-
piler. Our functionalities allow for a set of parties to jointly authenticate messages
but do not deliver any message. Finally, we show how to compile protocols into
non-interactively verifiable counterparts in Section 5.

2 Preliminaries

We denote the security parameter by κ. We denote concatenation of two strings

a and b by a||b. Let y
$← F (x) denote running the randomized algorithm F

with input x and random coins, and obtaining the output y. When the coins
r are specified we use y ← F (x; r). Similarly, y ← F (x) is used for a de-

terministic algorithm. For a set X , let x
$← X denote x chosen uniformly at
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random from X ; and for a distribution Y, let y
$← Y denote y sampled ac-

cording to the distribution Y. We will denote by negl(κ) the set of negligible
functions of κ. We abbreviate probabilistic polynomial time as PPT. Two en-
sembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random
variables are said to be statistically indistinguishable, denoted by X ≈s Y , if for
all z it holds that | Pr[D(Xκ,z) = 1] − Pr[D(Yκ,z) = 1] | is negligible in κ for
every probabilistic distinguisher D. In case this only holds for non-uniform PPT
distinguishers we say that X and Y are computationally indistinguishable and
denote it by X ≈c Y .

2.1 Secure Protocols

A protocol Π consists of the algorithms nmes, out and additional parameters:
the number of parties n, the resources F1, . . . ,Fr, the number of output rounds
G, the number of rounds Hτ to obtain each output τ ∈ [G] as well as the
communication and output model. We assume that some external information s
is fixed for the protocol. In an MPC scheme, this information e.g. could consist
of the circuit. Each party Pi uses their respective input xi as well as randomness
ri for the actual protocol. Here they perform Hτ calls to a next-message function
with a subsequent message exchange with both the parties and the resources,
finalized by the computation of the τ -th output of the protocol. Formally, the
algorithms which comprise Π are as follows:

nmes is a deterministic polynomial-time (DPT) algorithm which on input the
party number i, the protocol input xi, randomness ri, auxiliary input s,
output round τ ∈ [G], current round number ρ ∈ [Hτ ] and sets of previous

messagesM·,i from parties and N·,i from resources outputs {m(τ,ρ)i,j }j∈[n]\{i},
{mres(τ,ρ)i,q }q∈[r].

out is a DPT algorithm which on input the party number i, the protocol input
xi, randomness ri, auxiliary input s as well as output round τ ∈ [G], a set

of messages M·,i from parties and N·,i from resources outputs y
(τ)
i which is

either an output value or ⊥.

nmes generates two different types of messages, namely m- and mres-messages.
As we shall see later, the m-messages are used for communication among par-
ties whereas mres-messages are exchanged between a party and a functionality.
Therefore, each mres-message consists of an interface (Inputi,Compute(τ),

Output
(τ)
i ) with whom the party wants to communicate as well as the actual

payload. Each message that is an output of nmes may either be an actual string
or a symbol ⊥, meaning that no message is sent to a certain party/functionality
whatsoever in a certain round. For notational consistency, whenever we write
mi,j we mean that a message was sent from party Pi to Pj . Similarly, we write
mresi,q when the message was sent from Pi to Fq and mresq,i when sent from Fq
to Pi. We will denote messages received by party Pi from another party asM·,i
and those sent by Pi to another party as Mi,·. Similarly, we will write N·,i for
all messages that Pi received from resources while Ni,· denotes messages which
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Pi sent to resources. In Figure 1 we describe the general pattern according to
which the above algorithms are used in the protocol Π.

Protocol Π

Each Pi has input xi as well as common public input s.

Inputi: Party Pi samples ri uniformly at random. Let M·,i,N·,i ← ∅.
Compute(τ): Let τ ∈ [G]. Then each party Pi for ρ ∈ [Hτ ] does the following:

1. Locally compute(
{m(τ,ρ)i,j }j∈[n]\{i}, {mres

(τ,ρ)
i,q }q∈[r]

)
← nmes(i, xi, ri, s, τ, ρ,M·,i,N·,i).

2. For each j ∈ [n] \ {i} send m
(τ,ρ)
i,j to Pj . Furthermore, for each q ∈ [r] send

m
(τ,ρ)
i,q to Fq.

3. For each j ∈ [n] \ {i} wait for m
(τ,ρ)
j,i from each Pj as well as mres

(τ,ρ)
q,i from

each Fq for q ∈ [r].

4. Set M·,i ←M·,i ∪ {m(τ,ρ)j,i }j∈[n]\{i} and N·,i ← N·,i ∪ {mres(τ,ρ)q,i }q∈[r].

Output
(τ)
i : Party Pi locally computes and outputs

y
(τ)
i ← out(i, xi, ri, s, τ,M·,i,N·,i).

given τ ∈ [G].

Fig. 1. The generic protocol Π.

Communication Model. Generally, we do not make any restriction on the mes-
sages that are exchanged (except that their length is polynomial in the security
parameter). These will be sent through point-to-point secure channels by them.
We call this setting private communication. If the parties instead send the same
message to all other parties, then we consider this as broadcast communication.
Parties may arbitrarily mix private and broadcast communication. We require
that all message-passing is synchronous.

Output Model. As with communication, the above definition does not restrict the

output y
(τ)
i which each party obtains in the end of the computation. This general

setting where all the y
(τ)
i might be completely different is what we consider as

asymmetric output. This is the standard for many interesting functions that one
can compute, such as e.g. Oblivious Transfer. If all parties compute the same
output then we call this symmetric output.
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2.2 Universal Composition of Secure Protocols

In this work we use the (Global) Universal Composability or (G)UC model [9,11]
for analyzing security and refer interested readers to the original works for more
details. Naturally, we only discuss the dishonest-majority setting in this work as
honest-majority protocols can simply output a vote of all parties if the result is
correct or not (if broadcast is available).

In this work we consider protocols that are run by interactive Turing Ma-
chines (iTMs) which we call parties. A protocol Π will have n parties which we
denote as P = {P1, . . . ,Pn}. We assume that each party runs in probabilistic
polynomial time (PPT) in some implicit security parameter κ. The adversary
A, which also is a PPT iTM, will be able to corrupt parties, but we only al-
low him to corrupt up to a threshold of k < n of them, though non-threshold
adversary structures may also be supported. We opt for the static corruption
model where the parties are corrupted from the beginning, as this is what most
efficient protocols currently are developed for. The set of corrupted parties is
denoted as I ⊂ P. The parties will be able to exchange messages with each
other and also with resources, which we call (as is standard in the literature)
ideal functionalities (which themselves are PPT iTMs). To simplify notation we
do assume that the messages between parties are sent over secure channels, as
well as their communication with the ideal functionalities.

We start out with protocols that are themselves already secure, but not
verifiable. For this, we assume that the ideal functionality F of a protocol Π
follows the pattern as described in Figure 2. In there, we consider protocols
where parties give input initially, but obtain possibly G rounds of output. Having
multiple rounds of outputs can be seen as a trade-off: on one hand, it allows us
to model e.g. commitment schemes which would not be possible having only one
round of output. At the same time, it is not general enough to permit reactive
computations which inherently make the notation a lot more complex.

It is not necessary that all of the interfaces which F provides are used for an
application. For example in the case of coin tossing, no party Pi ever has to call

Inputi. While Inputi,Output
(τ)
i are fixed in their semantics, the application

may freely vary how Compute(τ) may act upon the inputs or generate out-
puts. The only constraint that we make is that for each of the τ ∈ [G] rounds,

Compute(τ) sets output values (y
(τ)
1 , . . . , y

(τ)
n ).

As usual, we define security with respect to a PPT iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P.
Furthermore, the adversary A will corrupt parties I ⊂ P in the name of Z
and thus gain control over these parties, i.e. will see and be able to generate
the protocol messages. To define security, let Π ◦ A be the distribution of the
output of an arbitrary Z when interacting with A in a real protocol instance Π.
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of Π
and where S takes care of adversarial behavior.
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Functionality F

The functionality works for n parties and has common public input s. Upon initializa-
tion, S is allowed to corrupt a set I ⊂ [n] of parties where |I| ≤ k and k < n. Albeit
having many interfaces, they fall into 3 different categories for providing inputs as
well as running the G evaluation and output steps.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties store xi
locally and send (Input, sid, i) to all parties. Every further message to this interface
is discarded and once set, xi may not be altered anymore.

Compute(τ): On input (Compute, sid, τ) by a set of parties Jτ ⊆ [n] as well as S
perform a computation based on s as well as the current state of the functionality.
The computation is to be specified in concrete implementations of this functionality.
The last two steps of this interface are fixed and as follows:
1. Set some values y

(τ)
1 , · · · , y(τ)n . Only this interface is allowed to alter

y
(τ)
1 , · · · , y(τ)n .

2. Send (Compute, sid, τ) to every party in Jτ .
Every further call to Compute(τ) is ignored. Every call to this interface before all
Inputi are finished is ignored, as well as when Compute(τ−1) has not finished yet.

Output
(τ)
i : On input (Output, sid, τ) by Pi where τ ∈ [G] and if y

(τ)
i was set send

(Output, sid, τ, y
(τ)
i ) to Pi.

Fig. 2. The generic functionality F .

Definition 1 (Secure Protocol). We say that F securely implements Π if for
every PPT iTM A there exists a PPT iTM S (with black-box access to A) such
that no PPT environment Z can distinguish Π ◦A from F ◦S with non-negligible
probability.

In our protocols we use the standard digital signature functionality FSig from
[10], the key registration functionality FReg from [12] and an authenticated bul-
letin board functionality FBB, which are described in Appendix A. We also use
constructions of IND-CCA public key encryption schemes that UC-realize the
standard public key encryption functionality that are described in Appendix B.

2.3 Verifiable Functionalities

We extend the functionality F from Section 2.2 to provide a notion of non-
interactive verification using a functionality wrapper FV described in Figure 3.
For this, we assume that there are additional parties Vi which can partake in the
verification. These, as well as regular protocol parties, can register at runtime to
be verifiers of the computation using a special interface Register Verifier. Once
they are registered, these verifiers are allowed to check the validity of outputs
for parties that have initiated verification at any point. We keep track of this
using the set of verifiers V (which is initially empty) inside the functionality. For

values whose output has been provided using the interface Output
(τ)
i (that we
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Functionality Wrapper FV[F ]

The functionality wrapper FV[F ] adds the interfaces below to a generic functionality
F defined as in Figure 2, still allowing direct access to F . FV maintains binary
variables verification-active, verify-1, . . . , verify-n that are initially 0, which are used to
keep track of the verifiable outputs. Apart from the parties defined in F , FV interacts
with verifiers Vi ∈ V.

Register Verifier (private): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 send (Register, sid,Vi) to S. If S answers with

(Register, sid,Vi, ok), set V ← V ∪ Vi and return (Registered, sid) to Vi.
– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Register Verifier (public): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 set V ← V ∪ Vi and return (Registered, sid) to Vi.
– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Activate Verification: Upon receiving (Activate-Verification, sid, open-i,
open-input-i) from each Pi and if Compute(1), . . . ,Compute(G) succeeded:
1. Let Y ← {i ∈ [n] | open-i = 1 ∧ verify-i = 0}. If Y = ∅ then return.

2. Set verification-active ← 1 (if it is not set already) and deactivate the interfaces
Compute(τ) for all τ ∈ [G].

3. If open-input-i = 1, then set zi = xi; otherwise zi = ⊥.

4. Send (Activating-Verification, sid, Y, {zj , y(τ)j }j∈Y,τ∈[G]) to S.

5. Upon receiving (Activating-Verification, sid, ok) from S set verify-i ← 1 for

each i ∈ Y . Then return (Verification-Activated, sid, Y, {zj , y(τ)j }j∈Y,τ∈[G])
to all parties in P.

6. Upon outputting inputs of an honest party Pi to S append Pi’s randomness ri.

Verifyj: Upon receiving (Verify, sid, j, a, b(1), . . . , b(G)) from Vi where Vi ∈ V and
Pj ∈ P do the following:

– if verify-j = 1 then compute the set B ← {τ ∈ [G] | b(τ) 6= y
(τ)
j }. If a = zj , then

set f ← a; otherwise f ← ⊥. Return (Verify, sid, j, f, B) to Vi.
– If verify-j = 0 then send (Cannot-Verify, sid, j) to Vi.

Inputi: On input (Input, sid, ri, xi) by Pi and (Input, sid) by all other parties: if
i ∈ I then forward (Input, sid, xi) to F and also forward responses from F to the
original sender. If i ∈ I then ignore the message. Finally, initialize SU parameterizing
it with ri and xi for each simulated honest party Pi, i ∈ I.

Output
(τ)
i : On input (Output, sid, τ) by Pi and if i ∈ I then forward the message

to F and also forward responses from F to the original sender. If i ∈ I then ignore.

nmf: Upon input (NextMsgP, sid, j, τ, ρ, {mi,j}i∈I) where j ∈ I or (NextMsgF,
sid, q, τ, ρ, mresi,q) where i ∈ I and q ∈ [r] by S send the respective message to
SU and forward its response (NextMsgP, sid, j, τ, ρ + 1, {mj,i}i∈I) or (NextMsgF,
sid, q, τ, ρ+ 1, mresq,i) to S.

Fig. 3. The Functionality wrapper FV[F ]. Interfaces Inputi, Output
(τ)
i and nmf are

discussed in Section 3.2
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inherit from the definition of F of Section 2.2) we allow the parties P to use an
interface called Activate Verification to enable everyone in V to check their

outputs via the interface Verifyi. Interfaces Inputi, Output
(τ)
i and nmf are

related to the notion of über simulators discussed in Section 3.2.
Notice that, in our constructions, a verifier Vi ∈ V can perform verification

with help from data obtained in mainly two different ways: 1. receiving verifica-
tion data from another verifier Vj ∈ V or a party Pi ∈ P; 2. retrieving verification
data directly from publicly available resource such as a Bulletin Board (repre-
sented as a setup functionality). In case Vi attempts to obtain verification data
from another party in V ∪ P, that party might be corrupted, allowing the ideal
adversary S to interfere (i.e. providing corrupted verification data or not an-
swering at all). On the other hand, when Vi obtains such verification data from
a resource available as setup (i.e. a resource guaranteed to be untamperable by
the adversary), S has no control over the verification process. In order to model
the situation where verification data is obtained reliably and that where it is
obtained unreliably, FV might implement only Register Verifier (public) or
only Register Verifier (private), respectively. We do not require FV to im-
plement both of these interfaces, and thus define the properties of FV according
to which of them is implemented, according to Definitions 2 and 3.

Definition 2 (Verifier Registration). Let F be a functionality which imple-
ments the interface Register Verifier (public), then F is said to have Pub-
lic Verifier Registration. If F instead implements Register Verifier (private)
then we say that it has Private Verifier Registration.

Definition 3 (NIV). Let F be a functionality which implements the above in-
terfaces Activate Verification and Verifyj and which has Verifier Registra-
tion according to Definition 2, then we call F NIV. If F has Public Verifier
Registration then F is Publicly Verifiable whereas we call it Privately Verifiable
if F has Private Verifier Registration.

3 Verifiability

We now present our approach for making protocols non-interactively verifiable.

3.1 Collusion Resistance of Protocols

We will establish correctness of an output by using the messages of the protocol
transcript as well as some properties of Π = (nmes, out) which we will define
next. During verification, we want to ensure that Pi acted honestly during the
actual protocol. Unfortunately, if a party Pi is dishonest then messages which he
claims to have sent or received might have been altered by the adversary, in which

case we do not want that the verification passes for an output ŷ
(τ)
i 6∈ {y(τ)i ,⊥}

of Pi. As an honest party would have never activated verification if the result
was ⊥, this automatically leads to detection of cheating.
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We now define the security game necessary for our compiler. In this security
game, an adversary A will adaptively generate two protocol transcripts together
with honest parties whose inputs and randomness it does not know initially.
The adversary will output both transcripts which must coincide according to
the definition that now follows, and will win if they coincide while the outputs
of some party are different and not ⊥. We want to cover a diverse range of
protocols which might come with different levels of guarantees. Therefore, in our
definition of the property concerning transcripts which the game implies, called
collusion resistance, we consider diverse scenarios regarding: (1) whether the
parties are committed to their inputs and randomness in the beginning of the
execution (parameter ν); (2) what the set of parties CIR is that will reveal their
input and randomness later; and (3) which protocol messages the adversary can
replace when he attempts to break the verifiability by presenting a fake transcript
(parameter µ). While the choices for CIR are evident, we now discuss the different
values which ν and µ might have and what this means for the strength of A:

ν = ncir: The parties are not committed to the input and randomness in the
beginning of the execution.

ν = cir: The parties are committed to the input and randomness in the beginning
of the execution.

µ = ncmes: A can replace all messages by all parties.
µ = chsmes: A can replace messages from corrupted senders.
µ = chmes: A can replace messages exchanged between corrupted parties.
µ = cmes: A cannot replace any message.

Based on this, we define collusion resistance as follows:

Definition 4. Let Π be a synchronous protocol that is secure against a static
adversary corrupting up to k out of n parties using r resources which are Non-
Interactively Verifiable (NIV). For ν ∈ {cir, ncir}, µ ∈ {ncmes, chsmes, chmes, cmes}
and for CIR ⊆ [n], we define the following game between a challenger C and an
adversary A:

1. Both A, C obtain s as in Π. C sets up instances of the resources F1, . . . ,Fr.
2. A chooses I ⊂ [n], |I| ≤ k and sends I to C. Let I = [n] \ I.

3. C chooses inputs {xi}i∈I and samples ri for i ∈ I. If ν = cir, A sends
{xj , rj}j∈I to C.

4. For all i ∈ [n], C sets M·,i,Mi,·,Ni,·,N·,i ← ∅.
5. For each τ ∈ [G]:

(a) For each ρ ∈ [Hτ ]:
i. For i ∈ I, C computes(

{m(τ,ρ)i,j }j∈[n]\{i}, {mres
(τ,ρ)
i,q }q∈[r]

)
← nmes(i, xi, ri, s, τ, ρ,M·,i,N·,i)

and then sends {m(τ,ρ)i,j }i∈I,j∈I to A and mres
(τ,ρ)
i,q to Fq for q ∈ [r].
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ii. Allow A to interact with all Fq as defined in the functionalities.

iii. A sends {m(τ,ρ)j,i }i∈I,j∈I to C. If µ = cmes, A also sends {m(τ,ρ)j,i }i∈I,j∈I .

iv. Let mres
(τ,ρ)
q,i be the messages that each Fq sends to parties Pi, i ∈ I.

v. For i ∈ [n], C appends5 {m(τ,ρ)j,i }j∈[n]\{i} to M·,i, {mres(τ,ρ)q,i }q∈[r] to

N·,i, {m(τ,ρ)i,j }j∈[n]\{i} to Mi,· as well as {mres(τ,ρ)i,q }q∈[r] to Ni,·.

6. C for {xbi , rbi ,N b
i,·,N b

·,i}
b∈{0,1}
i∈I and {M0

i,j ,M1
i,j}i,j∈[n],i6=j does the following

(a) Set r0i , r
1
i ← ri and x0i , x

1
i ← xi for i ∈ I.

(b) Set N 0
i,·,N 1

i,· ← Ni,· and N 0
·,i,N 1

·,i ← N·,i for all i ∈ I.

(c) Initially set M0
i,j ,M1

i,j as follows:

– If µ = cmes, then set M0
i,j =M1

i,j ←Mi,j for all i, j ∈ [n].

– If µ = chmes, then set M0
i,j = M1

i,j ← Mi,j for all i, j ∈ [n] such

that either i ∈ I or j ∈ I.

– If µ = chsmes, then set M0
i,j =M1

i,j ←Mi,j for all j ∈ [n], i ∈ I.

(d) Send {xbi , rbi ,N b
i,·,N b

·,i}
b∈{0,1}
i∈I and all defined {M0

i,j ,M1
i,j}i,j∈[n],i6=j to A.

7. For {xbj , rbj ,N b
j,·,N b

·,j}
b∈{0,1}
j∈I and {M0

i,j ,M1
i,j}i,j∈[n],i6=j that are undefined,

do the following:
(a) If ν = ncir then A chooses {r0j , r1j}j∈I , {x0j , x1j}j∈I and sends them to C.

If instead ν = cir, C sets r0j , r
1
j ← rj and x0j , x

1
j ← xj for j ∈ I ∩ CIR.

(b) For all i, j ∈ [n] where M0
i,j ,M1

i,j were not set in Step 6, A chooses the

values of M0
i,j ,M1

i,j.

(c) For each j ∈ I let A provide the sets N 0
j,·,N 1

j,·,N 0
·,j ,N 1

·,j.

8. C checks the following conditions:
– For each q ∈ [r], j ∈ I check that N·,j are consistent with the messages

that Pj should have obtained from Fq via the verification interface. If
Fq is furthermore a NIV which allows the verification of inputs from
Pj , j ∈ CIR, test if Nj,· is consistent with the inputs which Pj provided to
Fq. Otherwise C outputs 0.

– For each b ∈ {0, 1}, i ∈ [n], τ ∈ [G] and ρ ∈ [Hτ ]: if Mb
i,·,N b

i,· are incon-

sistent with the output of nmes(i, xbi , r
b
i , s, τ, ρ,Mb

·,i,N b
·,i) C returns 0.

– C outputs 1 if there exists t ∈ [n], τ ∈ [G] such that

out(t, x0t , r
0
t , s, τ,M0

·,t,N 0
·,t) 6= out(t, x1t , r

1
t , s, τ,M1

·,t,N 1
·,t)

and both are not ⊥. Otherwise C outputs 0.

Then we call a protocol (ν,CIR, µ)-collusion-resistant if any PPT algorithm
A can make C output 1 in the above game only with negligible probability.

5 Those values which are defined by either being chosen by C or sent by A.
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As Definition 4 is rather complex6, we want to discuss its repercussions. C
runs the protocol together with A, who after the protocol adaptively can alter
messages both between parties and parties and functionalities. In particular, A
may first see the choices of the honest parties before announcing his own choices.
The parameter µ describes the degree to which A is allowed to alter messages.
As mentioned, ν decides to which extend the inputs and the randomness of each
party are fixed - those of the honest parties will always be fixed, but A may alter
them for the dishonest parties in the security experiment. Concerning messages
to and from functionalities, A may always alter them for the dishonest parties
but due to the NIV-property of each used functionality this can be detected and
consistency can be checked. Furthermore, we also test that all messages which
are sent are consistent with the nmes-function, which is possible as both inputs
and randomness of each party are always revealed.

3.2 Simulating Verifiable Protocols

Most standard simulators S for UC secure protocols Π work by executing an
internal copy of the adversary A towards which they simulate interactions with
simulated honest parties and ideal functionalities in the hybrid model where Π is
defined. In general, such a simulator S receives no external advice and generates
random inputs for simulated honest parties and simulated ideal functionality re-
sponses with the aid of a random input tape, from which it samples all necessary
values. However, a crucial point in our framework is being able to parameterize
the operation of certain simulators, as well as giving them external input to how
queries to simulated functionalities should be answered.

We need simulators with such properties in order to obtain publicly verifiable
versions of existing protocols without requiring them to be adaptively secure as
outlined before. Basically, in the publicly verifiable version of a protocol, we wish
to embed its original simulator S in the publicly verifiable functionality that it
realizes. This will allow us to “delegate” the simulation of the original protocol to
its own simulator, while the simulator for the publicly verifiable version handles
only the extra machinery needed to obtain public verifiability. The advantage
of this technique is twofold: (1) It allows us to construct publicly verifiable
versions of statically secure protocols; (2) It simplifies the security analysis of
publicly verifiable versions of existing UC-secure protocols, since only the added
machinery for public verifiability must be analysed.

We will now define the notion of an über simulator for a UC-secure proto-
col Π. To distinguish these from the simulator S which is used in the original
UC proof that Π realizes a functionality F we denote über simulators as SU.
Basically, an über simulator SU extends a standard simulator S in such a way
that it is possible to parameterize the simulator with the inputs and random-
ness to be used by the honest parties that are simulated in interactions with

6 The length of Definition 4 is mostly due to the fact that it has to handle two full pro-
tocol transcripts and shortening it by considering all combinations of ν, µ separately
would create 8 almost identical definitions.
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the internal copy of the adversary. Moreover, an über simulator allows for re-
sponses to queries to simulated functionalities to be given externally and will
also output the input and randomness of simulated honest parties. Otherwise SU
will perform similar actions as a regular simulator, such as extracting inputs of
dishonest parties to be sent to F . It is important to remark that most existing
simulators for protocols realizing the vast majority of natural UC functionalities
already achieve our notion of über simulator or can be easily modified to achieve
it. Notice that most simulators basically execute the protocol as an honest party
would, except that they use random inputs and later take advantage of their
power over setup functionalities to equivocate the result of the protocol such
that it yields the actual result obtained by executing with certain inputs (held
by honest parties). Departing from such a simulator, an über simulator can be
easily constructed by allowing the simulated honest party inputs/randomness to
be obtained externally, rather than being randomly generated internally.
Input-aware simulation. Let SU be a PPT iTM with the same input and
output tapes as the regular simulator S, plus a few additional ones:

Input tapes: Input tapes for the input from the environment Z, individual
tapes for randomness and inputs to be used by simulated honest parties, an
input tape for randomness r to be used internally, a tape for messages from
the adversary A, a tape for messages from the global setup ideal functional-
ities in the hybrid model where Π is defined and a tape to receive messages
from the functionality F .

Output tapes: SU furthermore has output tapes to communicate with F ,Z,A,
the ideal functionalities in the hybrid model where Π is defined as well as a
special “control output tape” that outputs the input and randomness used
by simulated honest parties.

This means that we define SU with respect to the ideal functionality F , similar
to the normal simulator S. We furthermore define the following two properties
of simulation- and execution-consistency. Simulation consistency is straightfor-
ward and says that any regularly simulated transcript is indistinguishable from a
transcript generated by SU when operating as S does, using uniform randomness
as well as sampling responses to queries to simulated setup functionalities and
simulated party inputs as S would (without taking external advice).

Definition 5 (Simulation Consistency). We say that the PPT iTM SU is
Simulation-consistent if no PPT iTM Z can distinguish the views of

1. F ◦S: An ideal execution of F and S executing an internal copy of adversary
A with global setup ideal functionalities F1, . . . ,Fr; and

2. F ◦ SU: An ideal execution of F with SU accessing a copy of A with global
setup ideal functionalities F1, . . . ,Fr,

where SU operates as S does: it has direct access to global setup ideal function-
alities functionalities F1, . . . ,Fr and to a copy of the same PTT A that S uses
internally; it takes as input a uniformly random randomness tape and a tape for
simulated honest party randomness and inputs sampled in such a way that these
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randomness and inputs pairs are distributed as in S. Z only has access to the
same input/output tapes of SU that it can access for S.

We now also define what we mean by execution consistency. Intuitively, we
want the randomness and inputs for simulated honest parties output by an über
simulator SU to be consistent with the transcripts of real protocol execution.

Definition 6 (Execution Consistency). We say that the PPT iTM SU is
Execution-consistent if no PPT iTM Z can distinguish the views of

1. F ◦SU, (xh1
, Rh1

), . . . , (xhk
, Rhk

)
$← SU: An ideal execution F with SU where

SU interacts with a copy of A and with global setup ideal functionalities
functionalities F1, . . . ,Fr, outputting (xh1

, Rh1
), . . . , (xhk

, Rhk
) on its special

“control output tape” (which is unavailable to Z);
2. Executing Π with adversary A and honest parties P1, . . . ,Pk running on

randomness and input pairs (xh1
, Rh1

), . . . , (xhk
, Rhk

) with global setup ideal
functionalities functionalities F1, . . . ,Fr,

where A is a PPT iTM.

For any PPT iTM SU with the input and output tapes defined above, we say
that SU is an über simulator if it is simulation- and execution-consistent.

Definition 7 (Über Simulator). We say that the PPT iTM SU is an über sim-
ulator if there exist input tapes for randomness, simulated honest party inputs
such that SU is both simulation- and execution-consistent according to Defini-
tions 5 and 6 for any PPT environment Z and adversary A.

In Appendix D we provide an example that gives rise to an über simulator.

3.3 Input-aware simulation for existing protocols.

As we outlined in the introduction it is not necessary for each UC-secure protocol
to additionally define an über simulator. We therefore now define a restricted
class of protocols for which SU can be obtained trivially. In order to do that, we
assume that, for a protocol Π that UC-realizes F in the F1, . . . ,Fr-hybrid model
where all F1, . . . ,Fr are global functionalities with a simulator S, there exists a
randomness tape generation function GenRand (that generates the randomness
input tape for S) as follows:

Function GenRand(1κ, Rh1
, . . . , Rhk

, xh1
, ..., xhk

): this PPT function has as in-
puts the security parameter κ, honest party randomnessRh1

, . . . , Rhk
, honest

party inputs xh1
, . . . , xhk

and outputs a randomness input tape T for S such
that the following properties hold for any PPT iTM Z:

1. F ◦ S (An ideal execution of F with S taking as input an uniformly
random randomness tape) is indistinguishable from F ◦ S(T ) (An ideal
execution of F with S taking as input tape T ); and
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2. An execution of Π with A and honest parties Ph1
, . . . ,Phk

taking in-
put/randomness (xh1

, Rh1
), . . . , (xhk

, Rhk
) is indistinguishable from F ◦

S(T ) (An ideal execution of F with S taking as input tape T ).

It turns out it is possible to easily adapt most existing simulators S in order
to obtain a function GenRand with the above property. Most simulators basically
run simulated honest parties that execute the protocol with random inputs and
randomness, making it easy to parameterize these simulators through their ran-
domness tapes in order to make them use specific randomness and inputs (fed
externally) for simulated honest parties. In the case of simulators that run with
hard-coded inputs for simulated honest parties, a similar idea can be achieved by
modifying them to obtain these inputs from their randomness tapes. Moreover,
notice that since an execution of S without honest party inputs is already known
to be indistinguishable from a real world simulation, it follows in most cases that
parameterizing S with simulated honest party inputs that are possibly identical
to those in the real world is indistinguishable from the usual execution with S.

Obtaining SU from a simulator S with GenRand: We now construct SU
for a protocol Π that UC-Realizes F with an original simulator S as follows:
Given the simulator S and corresponding function GenRand, SU takes the inputs
xh1 , . . . , xhk

and randomness Rh1 , . . . , Rhk
7 from the honest parties on its input

tapes and runs GenRand(1κ, Rh1
, . . . , Rhk

, xh1
, ..., xhk

) to obtain T . Then SU runs
a copy of S with randomness input T . SU then forwards all queries between F ,
Z, a copy of the adversary A, global setup ideal functionalities F1, . . . ,Fr and
S. In the end, SU outputs (xh1

, Rh1
), . . . , (xhk

, Rhk
) on the special output tape.

In order to do this, we also assume that instead of running an internal copy of
A it receives all queries from A (including messages to simulated honest parties
and setup ideal functionalities) externally, as well as sending answers to those
queries out through the same interface.

Proposition 1. Given a PPT simulator S for a protocol Π that UC-realizes F
in the F1, . . . ,Fr-hybrid model where all F1, . . . ,Fr are global functionalities for
which a poly-time computable function GenRand as defined above exists, then the
aforementioned SU is an über simulator for Π.

Proof. In order for this construction of SU to be a über simulator according
to Definition 7, it must both simulation and execution-consistent according to
Definitions 5 and 6.

First, we will show that SU is simulation-consistent according Definitions 5,
which amounts to showing that its internal copy of S has the same view of S
operating with an uniformly random randomness input tape, an environment
Z, an ideal functionality F and its own copy of A. Notice that all commu-
nication to/from Z (as well as F1, . . . ,Fr and A) and S is simply forwarded
by SU to/from S. Notice that, since all F1, . . . ,Fr are global functionalities,

7 If honest randomness Rh1 , . . . , Rhk is not given, sample all values uniformly at ran-
dom
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S does not internally simulate local version of these ideal functionalities, in-
stead forwarding requests to them and deciding what to forward back to A.
By the properties of GenRand, simulating honest parties with tape T produced
by GenRand(1κ, Rh1 , . . . , Rhk

, xh1 , ..., xhk
) is equivalent to using a uniformly ran-

dom randomness input tape. Hence, SU is simulation-consistent, since its internal
copy of S has the same view as in its normal operation, being able to simulate
an ideal execution with F that is indistinguishable from the real world execution
with Π and A (because S has this property).

In order to see why SU is also execution-consistent, notice that GenRand

by definition guarantees that an execution of S with randomness tape T ob-
tained form executing GenRand(1κ, Rh1 , . . . , Rhk

, xh1 , ..., xhk
) is indistinguish-

able from an execution of Π with A and honest parties Ph1
, . . . ,Phk

taking
input/randomness (xh1

, Rh1
), . . . , (xhk

, Rhk
). Hence, since we already know that

the SU’s internal copy of S has an identical view as in its original operation as
shown above, it follows that an execution of SU taking as input randomness
and input pairs (xh1 , Rh1), . . . , (xhk

, Rhk
) for simulated honest parties is indis-

tinguishable from an execution of Π with A and honest parties Ph1 , . . . ,Phk

taking the same randomness and input pairs (xh1
, Rh1

), . . . , (xhk
, Rhk

). Hence,
SU is execution-consistent, which completes the proof. ut

Ideal Functionalities with embedded Über Simulation Assume that Π is
a protocol which UC-securely implements the functionality F using a simulator
S. As it was already outlined in Section 1.1 we cannot hope that a black-box
approach which only focuses on inputs, randomness and messages of a protocolΠ
allows us to equip F with the interfaces from Section 2.3, unless Π is adaptively
secure. Instead, we will additionally assume that there exists an über simulator

SU for the protocol Π and consider that interfaces Inputi, Output
(τ)
i and nmf

of functionality wrapper FV will allow us access to a internal copy of SU run by
FV. FV allows SU to directly query global setup functionalities F1, . . . ,Fn.

4 Authentication Functionalities

In this section, we define authentication functionalities that will serve as building
blocks for our compiler. Our functionalities allow for a set of parties to jointly
authenticate messages but do not deliver these messages themselves. Later on, a
verifier can check that a given message has indeed been authenticated by a given
set of parties, meaning that they have received this message through a channel
and agree on it. More interestingly, we introduce a functionality that allows for
a set of parties to jointly authenticate private messages that they do not know
(except in encrypted form) as well as inputs and randomness (which they also
only know in encrypted form). Later on, if a message is revealed (e.g. by the
sender) or an input is opened, a verifier can check that it corresponds to a given
secret value previously authenticated by a given set of parties.

As opposed to classical point-to-point or broadcast authenticated channels,
our functionalities do not deliver messages to the set of receiving parties and
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consequently do not ensure consensus. These functionalities come into play in
our framework as they allow for verifiers to check that all parties who executed
a protocol agree on certain parts of the transcript (that might contain private
messages) regardless of how the messages in the transcript have been obtained.
Having the parties agree on which messages have been sent limits the adversary’s
power to generate an alternative transcript aiming at forging a proof that the
protocol reached a different outcome, which itself is highly related to Definition
4 from the previous section. Decoupling message authentication from delivery
allows for a cleaner model of non-interactive verification, where a verifier may
obtain a proof containing an authenticated protocol transcript at any point after
protocol execution itself (i.e. after messages are exchanged).

Functionality FPJAuth (with tokens)

FPJAuth interacts with a set of authenticating parties P = {P1, . . . ,Pn}, a set of
public verifiers V and an ideal adversary S, who is allowed to corrupt a set I ⊂ [n]
of parties where |I| ≤ k for a fixed k < n. FPJAuth maintains an initially empty list
L, proceeding as follows:

Message Input: Upon receiving a message (Input, sid, ssid,Pi,m) from
a party Pi ∈ P, send (Input, sid, ssid,Pi,m) to S. Upon receiving
(Auth-Token, sid, ssid,Pi,m, σi) from S, check that no such message was
received previously, otherwise output an error message and halt. Send
(Auth-Token, sid, ssid,Pi,m, σi) to Pi and ignore further Input messages with
the same ssid.

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Pi,m)
from a party Pj ∈ P, send (Auth, sid, ssid,Pi,m) to S. Upon receiv-
ing (Auth-Token, sid, ssid,Pi,m, σj) from S, check that no such message
was received previously, otherwise output an error message and halt. Send
(Auth-Token, sid, ssid,Pi,m, σj) to Pj . If a message (Input, sid, ssid,Pi,m) has
been received from Pi ∈ P and (Auth, sid, ssid,Pi,m) has been received from all
parties Pj ∈ P for j 6= i, add (sid, ssid,Pi,m, σ1, . . . , σn) to L.

Public Verification: Upon receiving (Verify, sid, ssid,Pi,m, σ1, . . . , σn) from a
party Vi ∈ V, if (sid, ssid,Pi,m, σ1, . . . , σn) ∈ L, set v = 1, else set v = 0. Send
(Verify, sid, ssid,Pi,m, v) to Vi.

Fig. 4. Public Joint Authentication Functionality FPJAuth (with tokens).

4.1 Public Joint Authentication

First, we focus on the simpler case of authenticating public messages, which can
be known by all parties participating in the joint authentication procedure. In
this case, the sender starts by providing a message and ssid pair to the function-
ality and joint authentication is achieved after each of the other parties sends the
same pair back to the functionality. This can be achieved by a simple protocol

20



where all parties sign each message received from each other party in each round,
sending the resulting signatures to all other parties. A message is considered au-
thenticated if it is signed by all parties. Notice that this protocol does not ensure
consensus and can easily fail if a single party does not provide a valid signature
on a single message, which an adversary corrupting any party (or the network)
can always cause. However, this failure is captured in the functionality and fol-
lows the idea of decoupling message delivery from authentication. Functionality
FPJAuth is described in Figure 4.

4.2 Secret Joint Authentication

Departing from functionality FPJAuth capturing the case of public communica-
tion, we will define a functionality FPSAuth (described in Figure 5), which will
capture the case of communication through private channels. This functional-
ity works similarly to FPJAuth, allowing parties to jointly authenticate messages
received through private channels to which they have access. However, it also
allows for bureaucrat parties who observe the encrypted communication (but do
not see plaintext messages) over the private channel to jointly authenticate a
committed version of such plaintext messages. If a private message is revealed
by its sender (or one of its receivers) at a later point, FPSAuth allows for third
parties (including the bureaucrats that did not see the plaintext message before)
to verify that this message is indeed the one that was jointly authenticated.
As in the case of FPJAuth, FPSAuth does not aid in communicating messages or
authentication information in any way, reflecting its nature as a pure joint au-
thentication functionality where all communication duties are left to the parties
(or another protocol using FPSAuth).

In order to capture the different actions of each party it interacts with,
FPSAuth is parameterized by the following (sets of) parties: a party Psender that is
allowed to input messages to be jointly authenticated; a set of parties P who can
read input messages given by Psender and jointly authenticate them; a set of bu-
reaucrats B who do not see the message but jointly authenticate that Psender has
sent a certain (still unknown) committed message to the parties P. Notice that
FPSAuth does not aid in delivering the message input by Psender either to parties
Pi ∈ P in plaintext message form nor to bureaucrats in committed form. More-
over, FPSAuth does not aid in sending notifications about sent messages nor joint
authentication information to any party. The responsibility for sending messages
(in plaintext or committed form) lies with Psender, while the responsibility for
notifying any other party that plaintext verification is possible lies with Psender
or parties Pi ∈ P, who are the only parties who can retrieve the message that
was jointly authenticated. The basic idea for realizing FPSAuth is using a signa-
ture scheme (captured by FSig) and a certified encryption scheme with plaintext
verification (captured by FCPKEPV), i.e. an encryption scheme with two crucial
properties: (1) An encrypting party is guaranteed to encrypt a message that
can only be opened by the intended receiver (i.e. it is possible to make sure the
public-key used belongs to the intended receiver of the encrypted messages); (2)
Both encrypting and decrypting parties can generate publicly verifiable proofs
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Functionality FPSAuth (with tokens)

FPSAuth interacts with a special party Psender, a set of authenticating parties P =
{P1, . . . ,Pn}, a set of bureaucrats B = {B1, . . . ,Bb}, a set of public verifiers V (s.t.
B ⊂ V) and an ideal adversary S, who is allowed to corrupt a set I ⊂ {P ∪B} where
|I| ≤ k for a fixed k < n+ b. FPSAuth maintains an initially empty list L, proceeding
as follows:

Message Input: Upon receiving a message (Input, sid, ssid,Psender,m) from
Psender ignore further Input messages with the same ssid. Addition-
ally, send (Auth-Token, sid, ssid,Psender,m, σsender) to Psender and forward
(Input, sid, ssid,Psender) to S.

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Psender,m)
from a party Pi ∈ P (resp. (Blind-Auth, sid, ssid,Psender) from a bureau-
crat Bj ∈ B), if a message (Input, sid, ssid,Psender,m) has been received
from Psender, forward the AUTH (resp. Blind− Auth) to S. Upon receiving
(Auth-Token, sid, ssid,Psender,m, σi) (resp. (Auth-Token, sid, ssid,Psender, σ̂j))
from S, check that no such message was received previously, otherwise out-
put an error message and halt. Send (Auth-Token, sid, ssid,Psender,m, σi)
to Pi (resp. (Auth-Token, sid, ssid,Psender, σ̂j) to Bj). Additionally, forward
(Auth, sid, ssid,Psender) (resp. (Blind-Auth, sid, ssid,Psender)) to S. If messages
(Auth, sid, ssid,Psender,m) has been received from all parties Pi ∈ P and messages
(Blind-Auth, sid, ssid,Psender) has been received from all bureaucrats Bj ∈ B, add
(sid, ssid,Psender,m, σsender, σ1, . . . , σn, σ̂1, . . . , σ̂b,⊥) to L.

Public Verification: Upon receiving (Verify, sid, ssid,Psender,m, σsender, σ1, . . . ,
σn, σ̂1, . . . , σ̂b) from a party Vi ∈ V, if (sid, ssid,Psender,m, σsender, σ1, . . . , σn, σ̂1, . . . ,
σ̂b, ) ∈ L, set v = 1, else set v = 0. Send (Verify, sid, ssid,Psenderm, v) to Vi.

Fig. 5. Secret Joint Authentication Functionality FPSAuth (with tokens).

that a certain message was contained in a given ciphertext. The private chan-
nel itself is realized by encrypting messages under the encryption scheme, while
joint authentication is achieved by having all parties in P (including the sender)
and bureaucrats in B sign the resulting ciphertext. In order to obtain efficiency,
a joint public/secret key pair is generated for each set of receivers, in such a
way that the same ciphertext can be decrypted by all the receivers holding the
corresponding joint secret key. Later on, if any party in P (including the sender)
wishes to start the verification procedure to prove that a certain message was
indeed contained in the ciphertext associated with a given ssid, it recovers the
plaintext message and a proof of plaintext validity from the ciphertext and sends
those to one or more verifiers. With these values, any party can first verify that
the ciphertext that was sent indeed corresponds to that message due to the
plaintext verification property of the encryption scheme and then verify that
it has been jointly authenticated by checking that there exist valid signatures
on that ciphertext by all parties in P and bureaucrats in B. The details of the
construction are described in Appendix C.
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Functionality FIRAuth

FIRAuth interacts with a set of n parties P, a set of public verifiers V and an ideal
adversary S who is allowed to corrupt a set I ⊂ P where |I| ≤ k for a fixed k < n.
FIRAuth maintains an initially empty list L, proceeding as follows:

Message Input: Upon receiving a message (Input, sid,Pi,m) from a party Pi ∈ P
ignore further Input messages from Pi.
Joint Authentication: Upon receiving a message (Blind-Auth, sid,Pi,Pj) from
a party Pj ∈ P, j 6= i, if a message (Input, sid,Pi,m) has been received from Pi and
a message (Blind-Auth, sid,Pi,Pj) has been received from all parties Pj ∈ P\{Pi},
add (sid,Pi,m,⊥) to L.

Start Verification: Upon receiving a message (Start-Verify, sid,Pi,m) from Pi,
if there exists an entry (sid,Pi,m,⊥) in L, update it to (sid,Pi,m,verify).

Public Verification: Upon receiving (Verify, sid,Pi,m) from a party Vi ∈ V, if (
sid,Pi,m,verify) ∈ L, set v = 1, else set v = 0. Send (Verify, sid,Pi,m) to S and,
if S answers with (Proceed, sid, ssid,m), send (Verify, sid,m, v) to Vi. Otherwise,
send (Verify, sid,m, 0) to Vi.

Fig. 6. Input and Randomness Authentication Functionality FIRAuth.

4.3 Authenticating Inputs and Randomness

To provide an authentication of inputs and randomness we adapt the functional-
ity FPSAuth, as the desired capabilities are like a message authentication without a
receiver. Alternatively, one could express it also in the context of non-interactive
multi-receiver commitments. In Figure 6 we present a functionality which im-
plements this. The functionality works in the sense of cir of Definition 4, as it
allows each party to commit to a unique string (for input and randomness of the
protocol) towards all parties. We refer readers who are interested in an imple-
mentation of FIRAuth to Section 4.2, as any realization of FPSAuth can easily be
adapted to FIRAuth. Notice that FIRAuth can be instantiated from n instances of
FPSAuth such that, for each Pi ∈ P interacting with FIRAuth, there is an instance
F iPSAuth where Pi acts as Psender, the set of bureaucrats Bi of F iPSAuth is equal
to the set P of FIRAuth and the set P of F iPSAuth only contains Pi.

5 Compilation for Input-Revealing Protocols

We now show how to compile the protocols from Section 2.1 into non-interactively
verifiable counterparts. To achieve this we will in some cases only have to rely
on a signature functionality, whereas a compiler for the weakest protocols ac-
cording to Definition 4 needs rather strong additional tools such as the au-
thentication functionalities from the previous section. In this work we focus on
protocols according to Definition 4 and as such there are 8 different combinations
of parameters (ν, µ) for (ν,CIR, µ)-collusion resistant protocols which we might
consider. Furthermore, according to Definition 2 we might either have public
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or private verifier registration, which in total yields 16 different definitions. To
avoid redundancy we now outline how to achieve the respective verifiability in
each setting and a thorough analysis of a general technique that works for any
publicly verifiable (ν,CIR, µ)-collusion resistant protocols. We simplify notation
by just assuming the existence of a single verifier V.

5.1 How to make Protocols Verifiable

We now describe how to combine all the introduced building blocks and notation
from the previous sections to make a protocol verifiable. More specifically, we
take a (ν,CIR, µ)-collusion resistant protocol Π that UC realizes an ideal func-
tionality F in the (global) F1, . . . ,Fr-hybrid model with über simulator SU and
do the following:

1. We describe how to construct a protocol ΠV by modifying Π with access
to a signature functionality FSig, a key registration functionality FReg and
authentication functionalities FPJAuth,FPSAuth,FIRAuth. We will furthermore
require that we can replace the hybrid functionalities F1, . . . ,Fr used in Π
with verifiable counterparts.

2. We then show that ΠV UC-realizes FV[F ] as described in Section 3.3 in the
(global) F1, . . . ,Fr-hybrid by constructing an explicit simulator SV.

For each of the different choices of ν and µ there is a different way how Π
must be compiled to ΠV and we will not describe all 8 different possibilities
(and prove them secure) for the sake of conciseness. We will instead now explain
on a high level which transformations are necessary, and will then explain the
proof technique for the general case of making a publicly verifiable version of
any (ν,CIR, µ)-collusion resistant protocol.

Protocol Compilation - The Big Picture. In order to verify we let the
verifier V simulate each such party whose output shall be checked and which
participated in an instance of Π. This check is done locally, based on the inputs,
randomness and messages related to such a party (and/or other parties) which
V obtains for this process. In case of public verifier registration we assume that
a bulletin board is available which holds the protocol transcript, whereas in case
of private registration the verifier contacts one of the protocol parties to obtain
a transcript which it can then verify non-interactively. We want to stress that
the Bulletin Board which may contain the protocol transcript do not have to be
used to exchange messages during the actual protocol run.

In Π we assume that messages can either be exchanged secretly between two
parties or via a broadcast channel. Furthermore, parties may send messages to
hybrid functionalities or receive them from these. An adversary may now be able
to replace certain parts of the protocol transcript. As long as we assume that
a protocol is (ν,CIR, µ)-collusion resistant and constrain his ability to maul the
protocol transcript to those parts permitted by the definition, the overall con-
struction achieves verifiability. We now explain, on a high level, the modifications
to Π for the different values of µ, ν:
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µ = ncmes: Here the adversary is allowed to replace all messages by any party
at his will, and messages are just exchanged as in Π.

µ = chsmes: Before the protocol begins, each Pi first generates a signing key
with FReg registers its signing key with FReg. Whenever a party Pi sends a

message m
(τ,ρ)
i,j to Pj it then uses FSig to authenticate m

(τ,ρ)
i,j with a signature

σ
(τ,ρ)
i,j . In such a case, V will later be able to correctly verify exactly those

messages of the transcript that were sent by honest parties, as A might fake
messages and signatures sent by dishonest parties after the fact.

µ = chmes: In this setting, each message that is either sent or received by an
honest party must remain unaltered. Each party will do the same as in the
case where µ = chsmes, but we additionally require that whenever a party

Pi receives a message m
(τ,ρ)
j,i from Pj then it then uses FSig to authenticate

m
(τ,ρ)
j,i with a signature σ(R)

(τ,ρ)
j,i . Now V can establish for each message of

the protocol if both sender and receiver signed the same message, which will
allow A to only alter those messages that were both sent and received by
dishonest parties.

µ = cmes: We now also require that the dishonest parties cannot replace their
messages before verification. To achieve this, we use FPSAuth,FPJAuth as de-
fined in Section 4 which the parties must now use in order to register their
private message exchange. These functionalities FPSAuth,FPJAuth can then be
used by V in order to validate an obtained transcript.

ν = ncir: Based on each Pi setting up a key with FSig and registering it with FReg

let each party sign both its input xi and its randomness ri using FSig before
sending it in Activate Verification, which means that V only accepts such
signed values which it can verify via FSig. A can later replace the pairs
(xj , rj) of dishonest parties Pj by generating different signatures.

ν = cir: The parties will use the available functionality FIRAuth to authenticate
their inputs and randomness initially. Later, V can use FIRAuth to check
validity of the revealed xi, ri which it obtained for verification.

Hybrid Functionalities: As mentioned above we replace the auxiliary func-
tionalities F1, . . . ,Fr with NIV counterparts, i.e. with functionalities FV

1 , . . . ,FV
r

that have the same interfaces as defined in Definition 3. If we intend to
achieve public verifiability then each such FV

q must also be publicly verifi-
able, whereas in the case of private verifiability either type of functionality
is fine. For any such FV

q we can then establish if a certain message mresq,i
was indeed sent to Pi or not. If FV

q does also reveal inputs, then we can
furthermore test if mresi,q as claimed to be sent by Pi was indeed received
by the respective party.

We now show how to formally embed the aforementioned transformations
into a protocol in order to achieve non-interactive UC verifiability.
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Protocol ΠV

The protocol ΠV is parameterized by a protocol Π with next message function
nmes and output function out as defined in Section 2.1. ΠV uses functionalities
FBB,FPSAuth,FPJAuth,FIRAuth as well as global hybrid functionalities FV

1 , . . . ,FV
r where

Π has used possibly non-verifiable versions thereof. All of these functionalities are
available to the verifiers V. We set up one copy F (i,j)

PSAuth for any private communication
where Pi is Psender, Pj acts as authenticating party and all other parties P\{Pi,Pj}
act as bureaucrats.
Initially, the parties will run any necessary Initialization of the functionalities in-
volved such as to e.g. register keys. They then do the following:

Inputi: On input xi party Pi runs Π.Inputi. Afterwards, Pi sends (Input,
sid,Pi, (xi, ri)) to FIRAuth, while each Pj ∈ P \ {Pi} sends (Blind-Auth,
sid,Pi,Pj).

Compute(τ): Each Pi does the following:
1. For every ρ ∈ [Hτ ], first run the 4 steps of Π.Compute(τ).
2. If a party Pi sent a broadcast message m in round ρ, then Pi sends

(Input, sid, ssid,Pi,m) to FPJAuth while each Pj ∈ P \ {Pi} sends
(Auth, sid, ssid,Pi,m).

3. If Pi sent private messages, then for the receiver Pj ∈ P \ {pi} of the

message m
(τ,ρ)
i,j Pi sends (Input, sid, ssid,Pi,m) to F (i,j)

PSAuth while Pj sends
(Auth, sid, ssid,Pi,m) and each remaining party from P \ {Pi,Pj} sends
(Blind-Auth, sid, ssid,Pi).

Output
(τ)
i : Pi does the same as in Π.Output

(τ)
i .

Register Verifier: V sends (Register, sid) to each FV
q for q ∈ [r].

Activate Verification: On input (Activate-Verification, sid, open-i,
open-input-i), Pi does the following:
1. Send (Activate-Verification, sid, 1) to each FV

q for q ∈ [r].

2. If open-input-i = 1, then post xi, ri,N·,i,M̂·,j on FBB.

Fig. 7. The protocol ΠV which makes the (ν,CIR, µ)-collusion resistant protocol Π
publicly verifiable.

5.2 Public Verification for any (ν,CIR, µ)-collusion resistant
protocol

The basic idea of this construction is to turn any (ν,CIR, µ)-collusion resistant
protocol into a (cir,CIR, cmes)-collusion resistant protocol by forcing the ad-
versary to commit to all the corrupted parties’ randomness, inputs and mes-
sages. While this might be overkill for some protocols (e.g. (ncir,CIR, cmes)-
collusion resistant protocols), we focus on the worst case scenario of compiling
(ncir,CIR, ncmes)-collusion resistant protocols, since it is the most challenging.
Note that, after making a protocol (cir,CIR, cmes)-collusion resistant, the pro-
tocol execution becomes deterministic and can be verified upon the revealing of
the randomness, input and transcript of any party that activates the verifica-
tion. All the verifier has to do is to execute the protocol’s next message function
on these randomness and input taking received messages from the transcript.
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If a corrupted party who activates verification attempts to cheat by revealing
fake values for randomness, input and transcript, it is caught because those
values were committed to. Apart from having all parties commit to jointly au-
thenticated versions of their randomness, inputs and transcripts, the protocol
we present requires an authenticated bulleting board where this information is
posted in the clear if a party activates verification revealing its input and ran-
domness. We remark that the bulletin board is not necessary for employing our
techniques, since the values revealed for verification can simply be (unreliably)
been sent among parties. We use a trusted bulletin board in order to focus on the
important aspects of applying our techniques to existing protocols without the
distraction of analyzing all corner cases that arise from operating on unreliable
verification data. We stress that in these cases no adversary would be able to
force verification to succeed for a cheating party or produce a fake proof show-
ing an honest party cheated. Moreover, the overhead of FPSAuth and FPJAuth can
be avoided if instead of a (ν,CIR, µ)-collusion resistant protocol we use as the
starting point a (ν,CIR, cmes)-collusion resistant protocol or at least reduced if
we depart from another protocol where some of the messages are naturally fixed
(e.g. a (ν,CIR, chmes)-collusion resistant protocol).

Given a (ν,CIR, µ)-collusion resistant protocol Π = (nmes, out) that UC re-
alizes an ideal functionality F in the (global) FV

1 , . . . ,FV
r -hybrid model with über

simulator SU, we construct a protocol ΠV that UC-realizes the publicly verifiable
ideal functionality FV[F ] in the FPSAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r -hybrid

model. Protocol ΠV is described in Figures 7 and 8.Theorem 1. Let Π be a (ν,CIR, µ)-collusion resistant protocol that UC realizes
an ideal functionality F in the (global) FV

1 , . . . ,FV
r -hybrid model with über sim-

ulator SU. Then ΠV UC-realizes the publicly verifiable ideal functionality FV[F ]
in the FPSAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r -hybrid model.

Proof. In order to prove Theorem 1 we construct a simulator S that interacts
with environment Z, functionality FV[F ], global functionalities FV

1 , . . . ,FV
r and

a internal copy of an adversary A who may corrupt a subset I ⊂ P of size
at most k while S will simulate the remaining parties I = P \ I as well as
the resources used in ΠV. S forwards all communication between A and Z. S
simulates setup functionalities FPSAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r exactly

as they are described, except for when alternative behavior is described
The rationale in our construction of S is straightforward: it takes care of

simulating the extra interfaces added to F by FV[F ] (along with the extra setup
functionalities FPSAuth,FPJAuth,FIRAuth,FBB), while delegating simulation of the
original Π to its über simulator SU incorporated into FV[F ]. In the Input phase
of ΠV, S extracts the randomness and input pair of corrupted parties controlled
by A from the simulated FIRAuth and forwards them to the Inputi interface of
FV[F ]. For the Compute and Output phases of ΠV, S forwards all requests from
A to the über simulator SU for the original protocol Π through the nmf interface
of FV[F ]. Upon receiving a response from SU, it forwards it back toA. Apart from
forwarding direct communication between A and simulated honest parties to SU,
it also simulates FPSAuth,FPJAuth,FIRAuth,FBB, verifying messages to simulated
honest parties that should also be forwarded to SU are properly authenticated
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Protocol ΠV (Continuation)

Verifyk: V on input k, a, b(1), . . . , b(G) does the following:
1. For party Pj check that xj , rj ,N·,j ,M·,j are on FBB. Otherwise output

(Cannot-Verify, sid, j).
For each functionality FV

q verify that N·,i is valid by doing the following:

– If FV
q is Input-Private then send (Verify, sid, j, b

(1)
j,q , . . . , b

(G)
j,q ) for each

j ∈ [n], where b
(1)
j,q , . . . , b

(G)
j,q are taken from N·,j . If either FV

q returns
(Verify, sid, j, B) with B 6= ∅ or (Cannot-Verify, sid, j) then output
(Cannot-Verify, sid, j).

– If FV
q is Input-Revealing then instead send (Verify,

sid, j, xj,q, b
(1)
j,q , . . . , b

(G)
j,q ) where xj,q is derived from the protocol

execution. If either FV
q returns (Verify, sid, j, f, B) with B 6= ∅, f = 0

or if it returns (Cannot-Verify, sid, j) then output (Cannot-Verify,
sid, j).

2. Run the protocol Π by simulating Pj using the next message function
nmes using N·,j ,M·,j with input xj and randomness rj until an output
a can be obtained by the output function out. Check for each broadcast
message generated for Pj by nmes (resp. contained in M·,j) that this
message was sent (resp. received) via FPJAuth and similarly verify private
messages generated for Pj by nmes (resp. contained in M·,j) from (resp.

to) Pj to (resp. from) Pi via F (i,j)
PSAuth. In case of any inconsistency, output

(Cannot-Verify, sid, k).

Then define f = 1 if a = xj and f = 0 otherwise as well as B = {τ ∈
[G] | y(τ) 6= out(k, xk, rk, s, ρ,M·,k,N·,k)} and return (Verify, sid, k, f, B).

Fig. 8. The protocol ΠV which makes the (cir, cmes)-collusion resistant protocol Π
publicly verifiable (continuation).

and later simulating SU’s response being authenticated by the right functionality
as coming from the right simulated honest party. If verification is initiated by A,
S checks that A has provided correct authentication data according to ΠV, in
which case it activates verification through the Activate Verification interface
of FV[F ] (otherwise it does not). If verification is initiated by an honest party, S
obtains from FV[F ] the randomness and input (ri, xi) used by the honest party Pi
who initiated verification and simulates that honest party initiating verification
with (ri, xi,N·,i,M·,i) towardsA by simulating these values being posted to FBB,
where N·,i,M·,i are generated according to the simulated execution towards A.
Finally, S simulates verification by acting exactly as inΠV and forwarding queries
to the Verifyj interface of FV[F ]. Also, if A produced incorrect verification
data for some of the corrupted parties, S instructs FV[F ] to make verification
activation queries for the corresponding parties to fail.

In order to see why the simulation with S is indistinguishable from a real
execution of ΠV, we will first analyze the simulation of the Input, Compute and
Output phases. First, S extracts A’s randomness and inputs from FIRAuth and
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sends them to the Inputi interface of FV[F ]]. In the remainder of these phases,
S follows the exact steps of ΠV and delegates the simulation of the underlying
protocol Π to its über simulator SU incorporated into FV[F ]. Notice that SU is
parameterized with the randomness and input from honest parties by definition
of FV[F ]. Since S also forwards all communication between SU, this part of the
simulation is indistinguishable from a real execution by SU’s properties according
to Definition 7.

It remains to be shown that a simulation of the Activate Verification and
Verifyk phases with S is also indistinguishable from a real execution of these
phases with A. First, notice again that, since SU is an über simulator parameter-
ized as discussed before, according to Definition 7 all the transcriptN·,i,M·,i for-
warded between SU and A is consistent with the inputs and randomness (ri, xi)
obtained from FV[F ]. Next, notice that, since the randomness and inputs of all
parties are committed to using FIRAuth and all messages between corrupted par-
ties controlled by A and honest parties simulated by S (with the help of SU)
are authenticated using FPJAuth,FPSAuth, the execution of Π during the Input,
Compute and Output phases is equivalent the execution of a (cir,CIR, cmes)-
collusion resistant protocol in the game of Definition 4 (where the parties are
not allowed to alter their randomness, input and transcript after the protocol is
executed). Notice also that executing the verification procedure of ΠV is equiva-
lent to performing the procedures of the challenger in the game of Definition 4.
Hence, when S executes the verification phase by following the steps of ΠV, it is
guaranteed by Definition 4 to arrive at the correct result about the presence of
cheating parties (or lack thereof). Since S either allows verification to succeed
or makes it fail according to the checks it performs following the instructions of
ΠV and those checks detect cheating correctly with all but negligible probability
(by Definition 4), that proves the remaining case and concludes our proof.
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Supplementary Material

A Auxiliary Functionalities

Digital Signatures Ideal Functionality FSig. The standard digital signature func-
tionality FSig from [10] is presented in Figure 9. It is also shown in [10] that any
EUF-CMA signature scheme UC realizes this functionality.

Key Registration Ideal Functionality FReg. The key registration functionality
FReg from [12] is presented in Figure 10. This ideal functionality allows par-
ties to register public-keys in such a way that other parties can retrieve such
keys with the guarantee that they belong to the party who originally registered
them. This functionality will be used as setup for the constructions of certified
public-key encryption with plaintext verification and secret joint authentication
of Section 4.2.

Bulletin Board Ideal Functionality FBB. In Figure 11 we describe an authenti-
cated bulletin board functionality which is used throughout this work. Authen-
ticated Bulletin Boards can be constructed from regular bulletin boards using
FSig,FReg and standard techniques.

B UC Secure Public-Key Encryption and Constructions

It is well-known that the standard public-key encryption functionality FPKE from
[9,12] can be UC-realized by any IND-CCA secure public-key encryption scheme.
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Functionality FSig

Given an ideal adversary S, verifiers V and a signer Ps, FSig performs:

Key Generation: Upon receiving a message (keygen, sid) from Ps, verify that
sid = (Ps, sid′) for some sid′. If not, ignore the request. Else, hand (keygen, sid)
to the adversary S. Upon receiving (verification key, sid, SIG.vk) from S, output
(verification key, sid, SIG.vk) to Ps, and record the pair (Ps, SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid′) for some sid′ . If not, then ignore the request. Else, send (sign,
sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify that no entry
(m,σ, SIG.vk, 0) is recorded. If it is, then output an error message to Ps and halt.
Else, output (signature, sid,m, σ) to Ps, and record the entry (m,σ,SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ,SIG.vk′)
from some party Vi ∈ V, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiving
(verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f =
1. (This condition guarantees completeness: If the verification key SIG.vk′ is
the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the entry
(m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is the reg-
istered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m,σ, SIG.vk′, f ′) recorded, then let f = f ′. (This con-
dition guarantees consistency: All verification requests with identical parameters
will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ,SIG.vk′, φ).

Output (verified, sid,m, f) to Vi.

Fig. 9. Functionality FSig for Digital Signatures.

One of the main building blocks of our framework is a UC-secure public-key en-
cryption with a plaintext verification property formalized as functionality FPKEPV

that is presented in Section 4.2. In order to realize FPKEPV, we will show that
it is possible to generate proofs that a given plaintext message was contained
in a given ciphertext for the random oracle-based IND-CCA secure public-key
encryption schemes of [25,16].

Semantics of a public-key encryption scheme. We consider public-key encryption
schemes PKE that have public-key PK, secret key SK, messageM, randomness
R and ciphertext C spaces that are functions of the security parameter κ, and
consist of a PPT key generation algorithm KG, a PPT encryption algorithm

Enc and a deterministic decryption algorithm Dec. For (pk, sk)
$← KG(1κ), any
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Functionality FReg

FReg interacts with a set of parties P and an ideal adversary S, proceeding as follows:

Key Registration: Upon receiving a message (register, sid, pk) from a party Pi ∈
P, send (Registering, sid, pk) to S. Upon receiving (sid, ok) from S, and if this is
the first message from Pi, then record the pair (Pi, pk).

Key Retrieval: Upon receiving a message (Retrieve, sid,Pj) from a party Pi ∈ P,
send message (Retrieve, sid,Pj) to S and wait for it to return a message (Retrieve,
sid, ok). Then, if there is a recorded pair (Pj , pk) output (Retrieve, sid,Pj , pk) to
Pi. Otherwise, if there is no recorded tuple, return (Retrieve, sid,Pj ,⊥).

Fig. 10. Functionality FReg for Key Registration.

Functionality FBB

FBB interacts with a set of parties P and an ideal adversary S, proceeding as follows:

Register: Upon receiving (Init, sid,P) by all parties in a set P = {P1, . . . ,Pn}
where sid was not used before, store P locally.

Write: Upon receiving (Write, sid, ssid,P,m) from a party Pi ∈ P, where ssid
was not used before for this sid, store the message m as (sid, ssid, i,m).

Read: Upon receiving (Read, sid) from any party (possibly outside P), the func-
tionality returns all (sid, ssid, i,m) that were stored.

Fig. 11. Functionality FBB for an authenticated Bulletin Board.

m ∈ M, and ct
$← Enc(pk,m), it should hold that Dec(sk, ct) = m with over-

whelming probability over the used randomness. Moreover, we consider public-
key encryption schemes that are IND-CCA secure according to the definition
considered in [9,12].

The Pointcheval [25] IND-CCA secure Cryptosystem. This cryptosystem can
be constructed from any Partially Trapdoor One-Way Injective Function in the
random oracle model. First we recall the definition of Partially Trapdoor One-
Way Functions. As observed in [25], the classical El Gamal cryptosystem is a
partially trapdoor one-way injective function under the Computational Diffie
Hellman (CDH) assumption, implying an instantiation of this cryptosystem un-
der CDH.

Definition 8 (Partially Trapdoor One-Way Function [25]). The function
f : X × Y → Z is said to be partially trapdoor one-way if:

– For any given z = f(x, y), it is computationally impossible to get back a
compatible x. Such an x is called a partial preimage of z. More formally, for
any polynomial time adversary A, its success, defined by SuccA = Prx,y[∃y′,
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f(x′, y′) = f(x, y)|x′ = A(f(x, y))], is negligible. It is one-way even for just
finding partial-preimage, thus partial one-wayness.

– Using some extra information (the trapdoor), for any given z ∈ f(X ×Y), it
is easily possible to get back an x, such that there exists a y which satisfies
f(x, y) = z. The trapdoor does not allow a total inversion, but just a partial
one and it is thus called a partial trapdoor.

Let’s now recall the construction of [25], which is presented in Definition 9.

Definition 9 (Pointcheval [25] IND-CCA secure Cryptosystem). Let
T D be a family of partially trapdoor one-way injective functions and let H :
{0, 1}|m|+κ → Y and G : X → {0, 1}|m|+κ be random oracles, where |m| is
message length. This cryptosystem consists of a triple of algorithms PKE =
(KG,Enc,Dec) that work as follows:

– KG(1κ): Sample a random partially trapdoor one-way injective function f :
X ×Y → Z from T D and denote its inverse parameterized by the trapdoor by
f−1 : Z → X . The public-key is pk = f and the secret key is sk = (f, f−1).

– Enc(pk,m): Sample r
$← X and s

$← {0, 1}κ. Compute a ← f(r,H(m||s))
and b = (m||s)⊕G(r), outputting ct = (a, b) as the ciphertext.

– Dec (sk, ct): Given a ciphertext ct = (a, b) and secret key sk = f−1, compute
r ← f−1(a) and M ← b ⊕ G(r). If a = f(r,H(M)), parse M = (m||s) and
output m. Otherwise, output ⊥.

Properties of the Pointcheval [25] IND-CCA secure Cryptosystem. First, no-
tice that this construction can be instantiated in the restricted observable and
programmable global random oracle model of [6]. Next, we observe that this
construction is witness recovering, meaning that it allows for the decrypting
party to recover all of the randomness used in generating a ciphertext (i.e. r
and s). Moreover, this construction is committing, meaning that it is infeasible
for an adversary to obtain two pairs of messages and randomness that result
in the same ciphertext. We now recall the definitions of witness recovering and
committing encryption schemes.

Definition 10 (Witness-Recovering Public-Key Encryption). A public-
key encryption scheme is witness-recovering if its decryption algorithm Dec takes
as input a secret key sk ∈ SK and a ciphertext ct ∈ C and outputs either a pair

(m, r) for m ∈ M and r ∈ R or an error symbol ⊥. For any (pk, sk)
$← KG(1κ),

any m ∈ M, any r
$← R and c← Enc(pk,m; r), it holds that Dec(sk, ct) = (m, r)

with overwhelming probability over the randomness used by the algorithms.

Definition 11 (Committing Encryption). Let PKE be a public-key encryp-
tion scheme and κ a security parameter. For every PPT adversary A, it holds
that:
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Pr

Enc(pk,m0; r0) = Enc(pk,m1; r1)

∣∣∣∣∣∣∣∣
pk

$← PK,
(r0, r1,m0,m1)

$← A(pk),
r0, r1 ∈ R,m0,m1 ∈M,

m0 6= m1

 ∈ negl(κ)

The Pointcheval [25] IND-CCA secure Cryptosystem is trivially witness-
recovering since a decrypting party always recovers the randomness (r, s) used
for generating a ciphertext. In order to see why it is also committing, notice that
an adversary can only make a polynomial number of queries to H(·), so it can
only find a pair (m′, s′) such that (m′, s′) 6= (m, s) and H(m||s) = H(m′||s′)
with negligible probability. Analogously, the adversary can only find an r′ such
that r′ 6= r and G(r) = G(r′) with negligible probability. Hence, since f is injec-
tive, the adversary can only find (m′, s′, r′) such that (m′, s′, r′) 6= (m, s, r) and
f(r′, H(m′||s′)) = f(r,H(m||s)) with negligible probability.

Plaintext Verification for the Pointcheval [25] IND-CCA secure Cryptosystem.
We first extend the semantics of public-key encryption by adding a plaintext
verification algorithm {0, 1} ← V(ct,m, π) that outputs 1 if m is the plain-
text message contained in ciphertext ct given a valid proof π that also con-
tains the public-key pk used to generate the ciphertext. Furthermore, we modify

the encryption and decryption algorithms as follows: (ct, π)
$← Enc(pk,m) and

(m, π) ← Dec(sk, ct) now output a valid proof π that m is contained in ct. The
security guarantees provided by the verification algorithm are laid out in Def-
inition 12. Notice that this definition only considers cryptosystems where the
proof π consists of the randomness used by the encryption algorithm, which is
enough for our version of the Pointcheval [25] IND-CCA secure cryptosystem
with plaintext verification. A generalization of this definition follows by defining
the space of plaintext validity proofs and requiring that π, π′ are in that space,
as well as that the adversary provides ct, since it might not be computable from
(m,π).

Definition 12 (Plaintext Verification). Let PKE = (KG,Enc,Dec,V) be a
public-key encryption scheme and κ be a security parameter. For every PPT
adversary A, it holds that:

Pr

V(ct,m′, π′) = 1

∣∣∣∣∣∣∣∣
pk

$← PK,
(m, π,m′, π′)

$← A(pk),
π = (pk, r), π′ = (pk, r′) ∈ PK ∪R,

m,m′ ∈M, (ct, π)← Enc(pk,m; r),m′ 6= m

 ∈ negl(κ)

We can extended the Pointcheval [25] IND-CCA secure cryptosystem to add
plaintext verification as follows:

Definition 13 (Pointcheval [25] IND-CCA Secure Cryptosystem with
Plaintext Verification). Let T D be a family of partially trapdoor one-way

35



injective functions and let H : {0, 1}|m|+κ → Y and G : X → {0, 1}|m|+κ be
random oracles, where |m| is message length. This cryptosystem consists of the
algorithms PKE = (KG,Enc,DecV) that work as follows:

– KG(1κ): Same as in Definition 9.
– Enc(pk,m): Same as in Definition 9 but also output a proof π = (pk, r, s)

(i.e. the encryption randomness) besides the ciphertext ct = (a, b).
– Dec(sk, ct): Same as in Definition 9 but also output a proof π = (pk, r, s)

(i.e. the retrieved encryption randomness) besides the plaintext message m.
– V(ct,m, π): Parse π = (pk, r, s), compute ct′ ← Enc(pk,m, (r, s)) and output

1 if and only if ct = ct′.

Using the facts that this cryptosystem is witness-recovering and committing,
both the encrypting and decrypting parties can generate a proof π = (pk, r, s)
that a message m was encrypted under public-key pk with randomness (r, s) re-
sulting in ciphertext ct. Notice that the witness-recovering property ensures that
a decrypting party is able to recover the randomness (r, s) too. Any third party
verifier with input (ct,m, π) can execute the verification algorithm V(ct,m, π)
and obtain 1 if and only if π is a valid proof that m is contained in ct. Notice
that an adversary cannot present two different triples (m, s, r) and (m′, s′, r′)
that pass this test with the same public-key pk except with negligible proba-
bility, since the cryptosystem is committing as discussed above. Assuming by
contradiction that such an adversary A exists, we can construct an adversary A′
that wins the game of Definition 11 with non-negligible probability. Adversary
A′ receives pk from the challenger in the game of Definition 11 and then acts
as the challenger in the game of Definition 12, relaying pk to A. Upon receiving
(m, π,m′, π′) from A, it relays (m, π,m′, π′) to the the challenger in the game
of Definition 11 as (r0, r1,m0,m1). Notice that, for the extended cryptosystem
above, 1← V(ct,m, π) occurs if and only if ct = ct′, where ct′ ← Enc(pk,m; (r, s))
and π = (pk, r, s). This implies that, if adversary A wins the game of Defini-
tion 12 with non-negligible probability, it is able to produce two messages m,m′

and corresponding proofs π = (pk, r, s), π′ = (pk′, r′, s′) for which m 6= m′ and
Enc(pk,m;π = (r, s)) = Enc(pk,m′;π′ = (r′, s′)) with non-negligible probability.
Hence, adversary A′ wins the game of Definition 11 with non-negligible proba-
bility.

C Realizing the Secret Joint Authentication Functionality

C.1 Realizing FPSAuth

The basic idea for realizing FPSAuth is using a signature scheme (captured by
FSig) and a certified encryption scheme with plaintext verification (captured by
FCPKEPV), i.e. an encryption scheme with two crucial properties: 1. An encrypt-
ing party is guaranteed to encrypt a message that can only be opened by the
intended receiver (i.e. it is possible to make sure the public-key used belongs to
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the intended receiver of the encrypted messages); 2. Both encrypting and de-
crypting parties can generate publicly verifiable proofs that a certain message
was contained in a given ciphertext. The private channel itself is realized by
encrypting messages under the encryption scheme, while joint authentication is
achieved by having all parties in P (including the sender) and bureaucrats in B
sign the resulting ciphertext. In order to obtain efficiency, a joint public/secret
key pair is generated for each set of receivers, in such a way that the same ci-
phertext can be decrypted by all the receivers holding the corresponding joint
secret key. Later on, if any party in P (including the sender) wishes to start the
verification procedure to prove that a certain message was indeed contained in
the ciphertext associated with a given ssid, it recovers the plaintext message
and a proof of plaintext validity from the ciphertext and sends those to one or
more verifiers. With these values, any party can first verify that the ciphertext
that was sent indeed corresponds to that message due to the plaintext verifica-
tion property of the encryption scheme and then verify that it has been jointly
authenticated by checking that there exist valid signatures on that ciphertext
by all parties in P and bureaucrats in B.

In order to obtain FCPKEPV, we first define and realize an ideal functionality
for public-key encryption with plaintext verification FPKEPV. This functionality
and the protocol that realizes it are extensions of the results of [9,14], which show
that IND-CCA secure encryption schemes UC realize the standard public-key
encryption functionality. In our definition and construction, we show that IND-
CCA encryption scheme with an additional plaintext verification property (e.g.
as the scheme discussed in Section B) UC realize FPKEPV. Building on FPKEPV

and a key registration functionality FReg, we define and realize FCPKEPV. We
again extend a functionality and protocol from [12], which shows that certified
public-key encryption can be realized from the standard public-key encryption
functionality and FReg. Following a similar approach, we show a protocol based
on FPKEPV and FReg that UC realizes FCPKEPV.

Public-Key Encryption with Plaintext Verification FPKEPV We will use
a public-key encryption scheme that allows for both the party generating a ci-
phertext and the party decrypting it to obtain a publicly verifiable proof that
a given message was contained in such ciphertext. Notice that this is not a
zero-knowledge proof, but a proof whose verification requires the message to be
revealed. We model such an encryption scheme by functionality FPKEPV, which
is an extension of the standard public-key encryption functionality FPKE from
[9,14] with a new plaintext verification interface for verifying that a given plain-
text was contained in a given ciphertext. This plaintext verification interface is
incorporated into the functionality following the same approach as in [9,14]: the
functionality first looks up the corresponding ciphertext and message pair on
an internal list (i.e. where it should be in case the ciphertext was generated by
the functionality), returning 1 is such a pair exists; otherwise, if the ciphertext
is not contained in this internal list (i.e. it has been generated by an adversary
in a potentially incorrect way), the functionality performs the verification pro-
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cedure internally, by attempting to decrypt the ciphertext and then executing
the verification algorithm taking as input the ciphertext along with the result-
ing plaintext message and proof, returning the output of this algorithm to the
verifier. It is well-known that IND-CCA secure public-key encryption schemes
can be used to realize FPKE as defined in [9,14], but we will show that there
exist IND-CCA secure public-key encryption schemes [25,16] that also realize
our extended functionality FPKEPV.

Realizing FPKEPV It is known [9,14] that an IND-CCA secure public encryp-
tion scheme realizes the key generation, encryption and decryption interfaces of
FPKEPV (without generating proofs), which correspond to the standard public-
key encryption functionality FPKE from [9,14]. The missing pieces in realizing
our formulation of FPKEPV are algorithms for generating and verifying proofs
that a given plaintext is contained in a given ciphertext produced by a IND-
CCA secure public encryption scheme. Notice that these proofs need not to be
zero-knowledge, as they can be verified given the plaintext message and the
corresponding ciphertext. We use the version of Pointcheval’s IND-CCA secure
cryptosystem [25] with plaintext verification from Section B to realize FPKEPV

following the same approach as in [9,14]. This generic construction works in the
restricted programmable and observable random oracle model [6] and can be
instantiated from the CDH assumption.

We realize FPKEPV by extending the encryption protocol πPKE of [9,14], which
is constructed from any IND-CCA secure cryptosystem PKE = (KG,Enc,Dec).
We obtain a protocol πPKEPV that realizes FPKEPV based on an IND-CCA public-
key encryption scheme with plaintext verification PKE = (KG,Enc,Dec,V) as de-
fined in Section B. Protocol πPKEPV works as follows: Upon receiving (KeyGen,

sid,Powner), Powner executes (sk, pk)
$← KG(1κ), records sk and returns pk.

Upon receiving a message (Encrypt, sid,Powner, e′,m), any party Pi ∈ P out-

puts ct where (ct, π)
$← Enc(e′,m) if m ∈ M (otherwise it outputs an error

message). Upon receiving (Decrypt, sid,Powner, c), Powner outputs m where
(m,π) ← Dec(sk, c). Upon receiving a message (Verify, sid,Powner, c,m, π), a
verifier Vi ∈ V outputs b where b← V(c,m, π).

We will prove that the public-key encryption scheme with plaintext verifica-
tion of Definition 13 can be used to instantiate ΠPKEPV in such a way that it
realizes FPKEPV. We leave a more general proof as a future work.

Theorem 2. Let PKE = {KG,Enc,Dec,V} be the public-key encryption scheme
with plaintext verification of Definition 13. Protocol ΠPKEPV instantiated with
PKE UC realizes FPKEPV in the restricted programmable and observable random
oracle model [6].

Proof. In order to prove this construction securely realizes FPKEPV, we con-
struct a simulator such that no environment can distinguish an ideal execution
with this simulator and FPKEPV from a real execution of ΠPKEPV with any ad-
versary A and dummy parties. Notice that the steps of ΠPKEPV dealing with
messages (KeyGen, sid,Powner), (Encrypt, sid,Powner, e′,m) and (Decrypt,
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Functionality FPKEPV

FPKEPV interacts with a special decrypting party Powner, a set of parties P, a set of
public verifiers V and an ideal adversary S. FPKEPV is parameterized by a message
domain ensemble M = {Mk}k∈N , a family of formal encryption algorithms {Ee}e,
a family of formal decryption algorithms {Dd}d for unregistered ciphertexts and a
family of formal plaintext verification algorithms {Vv}v. FPKEPV proceeds as follows:

Key Generation: Upon receiving a message (KeyGen, sid,Powner) from a party
Powner ∈ P (or S), proceed as follows:

1. Send (KeyGen, sid,Powner) to S.
2. Receive a value e from S.
3. Record e and output e to Powner.

Encryption: Upon receiving a message (Encrypt, sid,Powner, e′,m) from a party
Pi ∈ P, proceed as follows:

1. If m /∈M , then return an error message to Pi.
2. If m ∈M , then:

– If Powner is corrupted, or e′ 6= e, then compute (c, π)← Ek(m).
– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Powner, c) from Powner, pro-

ceed as follows (if the input is from another party then ignore):

1. If there is a recorded tuple (c,m, π), then hand (m,π) to Powner. (If there
is more than one value m that corresponds to c then unique decryption is
not possible. In that case, output an error message to Powner).

2. Otherwise, compute (m,π)← D(c) and hand (m,π) to Powner.
Plaintext Verification: Upon receiving a message (Verify, sid,Powner, c,m, π)

from a verifier Vi ∈ V, proceed as follows:

1. If there is a recorded tuple (c,m, π), then output 1 to Vi.
2. Otherwise, compute b← V (c,m, π), outputting b to Vi.

Fig. 12. Public-Key Encryption Functionality with Plaintext Verification FPKEPV.

sid,Powner, c) correspond exactly to the protocol of [9,14] realizing the standard
public-key encryption, and our simulator can function exactly as the simula-
tor of [9,14]. In fact, all the simulator does is executing KG(1κ) and setting pk.
It is proven in [9,14] that such a simulator results in an execution indeed in-
distinguishable from the real protocol execution with an adversary A and the
same argument can be used in our case. As for the remaining message (Verify,
sid,Powner, c,m, π), any party in the simulation will output exactly the same
as in the real protocol, since the output will either come from the simulator
if it indeed simulated a ciphertext generation for m that resulted in (c,m, π)
(meaning the ciphertext was correctly/honestly generated) or whatever the out-
put of V(c,m, π) is (in case the ciphertext was not generated by the simulated
functionality). Special care needs to be taken when simulating the verification
of a ciphertext simulated for an honest party, which is computed as Enc(pk, 1; r)
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(for a random r) instead of using the actual message given by the honest party.
In this case, when π is revealed, it is incompatible with the message 1 in the
ciphertext. However, upon receiving the actual message m the simulator shows
the adversary answers to queries H(m‖s) and G(r) that match m and ct.

Functionality FCPKEPV

FCPKEPV interacts with a special decrypting party Powner, a set of parties P, a set of
public verifiers V and an ideal adversary S. FPKEPV is parameterized by a message
domain ensemble M = {Mk}k∈N , a family of formal encryption algorithms {Ee}e, a
family of formal decryption algorithms {Dd}d for unregistered ciphertexts a family
of formal plaintext verification algorithms {Vv}v. FCPKEPV proceeds as follows:

Encryption: Upon receiving a message (Encrypt, sid,Powner,m) from a party
Pi ∈ P, proceed as follows:

1. if this is the first encryption request made by Pi then notify S that π made an
encryption request.

2. If m /∈M , then return an error message to P1.

3. If m ∈M , then:

– If Powner is corrupted, then compute (c, π)← Ek(m).

– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Powner, c) from Powner, pro-
ceed as follows (if the input is from another party then ignore):

1. If this is the first decryption request made by Powner then notify S that a
decryption request was made.

2. If there is a recorded tuple (c,m, π), then hand m,π to Powner. (If there is more
than one value m that corresponds to c then unique decryption is not possible.
In that case, output an error message to Powner).

3. Otherwise, compute (m,π)← D(c) and hand (m,π) to Powner.
Plaintext Verification: Upon receiving a message (Verify, sid,Powner, c,m, π)
from a verifier Vi ∈ V output 1 to Vi if there is a recorded tuple (c,m, π). Otherwise,
output 0.

Fig. 13. Certified Public-Key Encryption Functionality with Plaintext Verification
FCPKEPV.

Certified Encryption With Plaintext Verification FCPKEPV We are now
ready to define and construct a version of certified public-key encryption with
plaintext verification following the approach of [12]. Essentially, certified public-
key encryption captures a notion where public-keys are not explicitly available
but are linked to specific parties, guaranteeing that an encrypted message will
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Protocol πCPKEPV

πCPKEPV is parameterized by the families {Ee}e, {Dd}d and {Vv}v of algorithms of
the functionality it is to realize. A special decrypting party Powner, a set of parties
P, a set of public verifiers V execute πCPKEPV as follows:

Initialization: At the first activation an instance of FPKEPV is instantiated with
the families {Ee}e, {Dd}d and {Vv}v. Party Powner sends message (KeyGen,
sid,Powner) to FPKEPV, receiving pk. Next, Powner sends (register, sid, pk) to FReg.

Encryption: Upon receiving a message (Encrypt, sid,Powner, e′,m), party Pi ∈ P
proceed as follows:

1. Check whether it has a recorded public-key e. If not, send (Retrieve,
sid,Powner) to FReg, receiving (Retrieve, sid,Powner, pk) as response. If pk 6=⊥,
record e = pk. Otherwise, return ⊥.

2. If e 6=⊥, send (Encrypt, sid,Powner, e′,m) to FPKEPV, receiving (c, π) as re-
sponse. Output c and record the tuple (m, c, π).

Decryption: Upon receiving a message (Decrypt, sid,Powner, c), Powner sends a
message (Decrypt, sid,Powner, c) to FPKEPV, receiving and outputting (m,π).

Plaintext Verification: Upon receiving a message (Verify, sid,Powner, c,m, π),
a verifier Vi ∈ V proceeds as follows:

1. Check whether it has a recorded public-key e. If not, send (Retrieve,
sid,Powner) to FReg, receiving (Retrieve, sid,Powner, pk) as response. If pk 6=⊥,
record e = pk. Otherwise, return 0.

2. Obtain pk from π. If pk = e, compute b← V (c,m, π) and outputs b. Otherwise,
output 0.

Fig. 14. Protocol πCPKEPV realizing FCPKEPV.

be received by an specific party. In order to realize such a functionality, a key
registration ideal functionality FReg that allows parties to register their public-
keys is required. It was shown in [12] that certified public-key encryption can
be realized from a standard public encryption functionality and FReg. We will
extend both the original functionality and protocol from [12] to incorporate
plaintext verification, showing that FCPKEPV can be realized from FPKEPV and
FReg. The notion of certified public-key encryption with plaintext verification
is captured by functionality FCPKEPV introduced in Figure 13. Notice that the
Plaintext Verification interface of FCPKEPV only outputs 1 if it receives a query
with a tuple (c,m, π) that is registered in the functionality’s internal list. This
captures the fact that only ciphertexts generated by the functionality with a
party’s legitimate public-key (as encoded in the encryption algorithm Ek(·) are
considered valid, while arbitrary ciphertexts or ciphertexts generated from other
public-keys are automatically considered invalid.

Realizing FCPKEPV We follow the approach of [12] to realize FCPKEPV from
a public-key encryption scheme with plaintext verification FPKEPV and a key
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registration functionality FReg. Our protocol implements Initialization, Encryp-
tion and Decryption interfaces exactly as in [12] and follows the same approach
for implementing the Plaintext Verification interface. Protocol πCPKEPV realizing
FCPKEPV is presented in Figure 14.

Theorem 3. Protocol πCPKEPV UC realizes FPKEPV in the (FPKEPV,FReg)-hybrid
model.

Proof. In order to see why Protocol πCPKEPV is secure, notice that a simulator
S can be constructed exactly as in [12]: S runs with an internal copy of the
adversary A towards which it simulates FPKEPV and FReg exactly as described,
simulating the process of registration by Powner when FCPKEPV informs S that
either encryption or decryption requests happened, as well as simulating the
process of key retrieval when notified by the functionality. Notice that the ideal
execution with the simulator and FCPKEPV is exactly the same as the real exe-
cution of Protocol πCPKEPV with an adversary A, as in the case of the protocol
proposed in [12]. Hence, no environment can distinguish the ideal world simula-
tion from the real world execution.

Secret Joint Authentication Protocol We can now construct a protocol
πPSAuth that realizes FPSAuth from FCPKEPV, FSig and FReg. This protocols starts
by initializing an instance of FCPKEPV that is jointly used by all parties Pi ∈
P (i.e. all parties in P act as Powner) and initializing an instance of FSig for
Psender, each party Pi ∈ P and each bureaucrat Bi ∈ B. Next, Psender, parties
in P and bureaucrats generate a signature verification key from their instances
of FSig and register it with FReg. When Psender wants to send a message, it
encrypts it using FCPKEPV, signs the resulting ciphertext using FSig and sends the
resulting signature along with the ciphertext to all other parties and bureaucrats.
All parties in P and all bureaucrats retrieve Psender’s key from FReg and issue
a verification query to FSig to check that the signature on the ciphertext is
valid. If this is the case, each bureaucrat uses its instance of FSig to compute
a signature on the ciphertext, which it sends to all other parties. Additionally,
each party Pi ∈ P decrypts the ciphertext using FCPKEPV, obtaining a plaintext
message and proof of plaintext validity (which it verifies using FCPKEPV). In
case both decryption and signature checks succeed, each party Pi computes a
signature on the ciphertext using FSig and sends it to all other parties and
bureaucrats. In case either Psender or a party Pi ∈ P want to prove a certain
message was sent by Psender and jointly authenticated, it reveals the ciphertext,
the message and proof of plaintext validity obtained by decrypting the ciphertext
along with all signatures on that ciphertext (by Psender, all parties Pi ∈ P and
all bureaucrats) to a verifier, who can retrieve all signature verification keys from
FReg, verify all signatures using FSig and finally use the ciphertext, message and
proof of plaintext validity to verify the plaintext with FCPKEPV. Protocol πPSAuth
is described in Figures 15, 16.

Theorem 4. Protocol πPSAuth UC realizes FPSAuth in the (FCPKEPV,FSig,FReg)-
hybrid model.
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Protocol πPSAuth

πPSAuth is parameterized by a special party Psender, a set of authenticating parties
P = {P1, . . . ,Pn}, a set of bureaucrats B = {B1, . . . ,Bb} and a set of public verifiers
V (s.t. B ⊂ V). πPSAuth proceeds as follows:

Initialization: At the first activation, an instance of FCPKEPV is instantiated with
the families {Ee}e, {Dd}d and {Vv}v and all parties Pi ∈ π acting as Powner (e.g.
Powner = Pa. For each party in P, bureaucrat in B and party Psender, an instance
of FSig is initialized with that party acting as Ps. All parties in P, bureaucrats in B
and party Psender, send message (KeyGen, sid) to their corresponding instance of
FSig, receiving pk. Next, all parties in P, bureaucrats in B and party Psender register
their signing keys by sending (register, sid, pk) to FReg.

Message Input: Upon receiving a message (Input, sid, ssid,Psender,m), Psender
sends (Encrypt, sid,P,m) to FCPKEPV, receiving (c, π) as response. Next, Psender
sends (sign, sid, c) to its instance of FSig, receiving (signature, sid,m, σsender) as
response. Finally, Psender outputs σsender = (m, c, π, σsender).

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Psender,m), a
party Pi ∈ P checks if it has received (sid, ssid, c, σsender) such that c is a ciphertext
that can be correctly decrypted by FCPKEPV yielding a valid proof of plaintext knowl-
edge and that σsender is a valid signature on c under Psender’s public-key (retrieved)
from FReg according to Psender’s instance of FSig. Formally, Pi proceeds as follows:
1. Send (Decrypt, sid,P, c) to FCPKEPV, wait for (m,π) as response, send (Verify,

sid,Powner, c,m, π) to FCPKEPV and check that 1 is received as response.

2. Send (Retrieve, sid,Psender) to FReg, wait for (Retrieve, sid,Psender, pk),
send (verify, sid,m, σsender, pk) to FSig and check that (verified, sid,m, 1) is
received as response.

If all checks succeed, Pi sends (sign, sid, c) to its instance of FSig, receiving
(signature, sid,m, σi) as response. Pi outputs σi = (m, c, π, σi). Analogously, upon
receiving (Blind-Auth, sid, ssid,Psender), bureaucrat Bj ∈ B proceeds the same
way as Pi except for not checking that c is a valid ciphertext with respect to FCPKEPV

(i.e. skipping Step 1 of Pi’s checks). If all checks succeed, Bj outputs σ̂j = (c, σj).

a We abuse notation and let Powner denote a set of parties instead of single party
in FCPKEPV

Fig. 15. Protocol πPSAuth realizing FPSAuth.

Proof. We construct a simulator S following the approach of the simulator for
πCPKEPV. Basically, S runs with an internal copy of the adversary A and forwards
all communication between the environment Z and A. Additionally, S simulates
functionalities FReg, FCPKEPV and FSig towards its internal adversary, acting
exactly as in the descriptions of these functionalities, except for when explicitly
mentioned. Basically, S simulates honest parties towards A by acting exactly as
those honest parties would in πPSAuth. When it is notified by FPSAuth that an input
message query or a joint authentication query has been received, it simulates the
registering and retrieval of signature keys towards A, respectively. If A corrupts
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Protocol πPSAuth (Public Verification)

Public Verification: Upon receiving (Verify, sid, ssid,Psender,m, σsender, σ1, . . . ,
σn, σ̂1, . . . , σ̂b), a party Vi ∈ V first parses all tokens σsender, σ1, . . . , σn as (m, c, π, σi)
and check that (m, c, π) is the same in all tokens. It then parses all tokens σ̂1, . . . , σ̂b
as (c, σj) and checks that all c also have the same value. Vi then sends (Verify,
sid,P, c,m, π) to FCPKEPV and checks that the response is 1. It then retrieves the
public-keys for Psender, all parties in P and all bureaucrats in B from FReg. For all
signatures σ retrieved in Step 1, Vi queries the FSig instance corresponding to the
party who generated the token with (verify, sid,m, σ, pk) where pk is the public-key
retrieved for that part and checks that (verified, sid,m, 1) is received as response.
If all of these checks succeed, Vi sets v = 1 (otherwise, it sets v = 0) and afterwards
outputs (Verify, sid, ssid,Psender,m, v).

Fig. 16. Protocol πPSAuth realizing FPSAuth (continued).

at least one party Pi ∈ P and/or Psender, acting this way allows S to perfectly
simulate an execution of πPSAuth towards corrupted bureaucrats. Notice that
since S learns the messages that should be sent to corrupted bureaucrats from
A’s interactions with simulated FCPKEPV, it can simulate πCPKEPV in this case
in such a way that later revealing the proofs of plaintext validity π will result
in a view consistent with these messages. However, an important corner case
is that when A corrupts all bureaucrats but not Psender or one party Pi ∈ π,
since in this case S must simulate interactions between corrupted bureaucrats
and FCPKEPV without knowing the committed message. In order to deal with
this case, S deviates from the perfect simulation of FCPKEPV honest execution of
protocol πPSAuth and simulates interactions between corrupted bureaucrats and
FCPKEPV using dummy ciphertexts (e.g. with random messages). Later on, after
it learns the actual messages, S simulates the verification interface of FCPKEPV in
such a way that verification queries sent to verify the dummy ciphertexts with
respect to the actual messages and accompanying proofs of plaintext validity are
answered positively (i,e simulated FCPKEPV answers with 1 when queried with
(Verify, sid,P, c′,m, π) where c′ is the dummy ciphertext and (m,π) are the
actual jointly authenticated message along with its proof of plaintext validity).

D Example an for Existing Protocol with an Über
Simulator

An example, which we will not discuss in detail, are two-party secure computa-
tion protocols with security against malicious parties based on Garbled Circuits
such as [23,13]. These protocols run between a sender P1 and a receiver P2

(where only P2 obtains output) as follows:

1. First, P1 generates multiple garbled circuits together with input keys for
each such circuit. P1 commits to the circuit and its input keys. It then
inputs the possible choices of input keys of P2 into Oblivious-Transfer (OT)
functionalities.
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2. P2 uses the OTs to obtain its input keys.
3. P1 sends the circuit and its input keys by opening the commitments.
4. P2 evaluates the circuits and both parties run a consistency check protocol

showing that the circuits were correctly generated and the input keys are
consistent.

Secure two-party computation protocols that follow the above pattern natu-
rally have an über simulator as defined in Definition 7 as we will explain now.

The security proof usually consists of two simulators S1 for a corrupted sender
and S2 for a corrupted receiver. S1 sends random inputs to the OT function-
alities and otherwise only checks that the garbling information was generated
correctly by the malicious P1 (and extracts the inputs of P1). Usually, S1 uses
a random input to the OTs and otherwise just follows the protocol. As the OT
functionalities by their security guarantee hide the input of P2, a S1 instance
using the actual inputs of P2 will have Simulation and Execution consistency of
the transcripts.

In case of the simulator S2 the standard strategy is to first extract the input
x2 of the malicious P2 using the OT functionalities, then to obtain the output
y from the ideal functionality F , to choose a random input x̃1 and finally to
simulate the garbled circuits in such a way that they outpus y for input keys
derived from x̃1, x2. This clearly is not consistent as required by the definition,
but we can instead define a simulator S ′2 which would just run the actual protocol
based on the input x1 that it now has. By the security argument of the original
protocol, this is both Simulation consistent and by running the actual protocol,
also Execution consistent.
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