
Public Verifiability For Composable Protocols
Without Adaptivity Or Zero-Knowledge

Carsten Baum1 ?, Bernardo David2 ??, and Rafael Dowsley3 ?

1 Aarhus University
cbaum@cs.au.dk

2 IT University Copenhagen
bernardo@bmdavid.com

3 Monash University rafael@dowsley.net

Abstract. The Universal Composability (UC) framework (FOCS ’01)
is the current gold standard for proving security of interactive crypto-
graphic protocols. Proving security of a protocol in UC is an assurance
that the theoretical model of the protocol does not have any obvious
bugs, in particular when using it as part of a larger construction. UC
allows to reason about complex structures in a bottom-up fashion by
talking about the individual components and how they are composed.
It thereby simplifies the construction of complex secure protocols. Due
to certain design choices of the UC framework, realizing certain secu-
rity notions such as verifiability is cumbersome and “obviously secure”
constructions cannot directly be proven secure. In this work we study
Non-Interactive Public Verifiability of UC protocols in a practical set-
ting, i.e. without requiring adaptively secure primitives or heavy compu-
tational tools such as NIZKs. As Non-Interactive Public Verifiability is
crucial when composing protocols with a public ledger, our approach can
be beneficial when designing these with formal security and practicality
in mind. We discuss and formalize what Non-interactive Public Verifia-
bility means in the Universal Composability Framework and construct
an efficient transformation that achieves this notion for a large class of
practical cryptographic protocols.

1 Introduction

Universal Composability (UC) [13] is currently the most popular framework for
designing and proving security of cryptographic protocols under arbitrary com-
position. It allows one to prove that a protocol remains secure even in complex
scenarios consisting of multiple nested protocol executions. The benefit of UC is
that, as a formal framework, it allows to discuss the different aspects of an inter-
active protocol with mathematical precision. But in practice, one often sees that

? Work partially done while Carsten Baum and Rafael Dowsley were at the Bar Ilan
University and supported by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

?? This work was partially supported by a grant from Concordium Foundation and by
DFF grants number 9040-00399B (TrA2C) and and number 9131-00075B (PUMA).

security is argued on a very high level only. This is partially due to the complex-
ity of fully expressing a protocol in UC, but also because achieving UC security
appears to be overly complicated for some, seemingly simple and intuitive cases.

One such case is that of public verifiability, a property that allows third party
verifiers to check that a protocol execution was successful and yielded a certain
output (or that it aborted). This property is particularly important in the setting
of decentralized systems and public ledgers (i.e. blockchains [33,9,27,29,26,22]),
where new parties can join an ongoing protocol execution on-the-fly after ver-
ifying that their view of the protocol is valid. Public verifiability also plays a
central role in a recent line of research [2,8,30,5] on secure multiparty compu-
tation 4 (MPC) protocols that rely on a public ledger to achieve fairness 5 by
penalizing cheating parties, circumventing fundamental impossibility results [23].
Furthermore, it is an intrinsic property of randomness beacons [20,21], a cen-
tral component of provably secure Proof-of-Stake blockchain protocols [30,5,22].
However, most of these works achieve public verifiability by relying on heavy
tools such as non-interactive zero knowledge proof systems and strong assump-
tions such as adaptive security of the underlying protocols (with the notable
exception of [5], which avoids these by painstakingly redefining and reproving
security of publicly verifiable versions of known protocols).

1.1 The Problems of Achieving Verifiability in UC

In order to motivate our work, we now discuss the main issues of capturing public
verifiability in the UC model. Let us assume a UC functionality F which has one
round of inputs by the parties P = {P1, . . . ,Pn}, computes some outputs based
on the inputs and in the end sends these outputs to each party. Assume that we
want to add verifiability to F , so that it also has interfaces to react to verification
requests. Let us call this extended functionality FV. These requests will be able
to confirm if certain inputs were provided by a party Pi to FV and that certain
outputs were sent from FV to Pi. To achieve this, we design a protocol ΠV based
on the original protocol Π that implements these interfaces.

The first step in any such solution is to construct ΠV in such a way that each
party commits to inputs and randomness that it will use in the protocol Π. The
parties then run Π based on these committed values and exchange messages in
an authenticated way. Let us assume that we are okay with revealing the inputs
after Π is completed (we will discuss this assumption later). Intuitively, this
should yield a simple verification procedure: each involved party can inspect the
committed inputs and randomness of all other parties, re-run these parties in its
head and compare its simulated messages to the signed protocol transcript. A
third party could then do the same, based on the commitments and a transcript
of Π. Unfortunately, even just using this simple approach means that we run

4 Protocols that allow mutually distrustful parties to compute joint functions on pri-
vate inputs without revealing them.

5 Ensuring either all parties obtain the protocol output or nobody does, including the
adversary.

2

into adaptivity problems when trying to prove ΠV secure. Similar problem have
been observed in e.g. [28] and we explain it more in detail using an example.

Consider a two-party secure computation protocol (2PC) with active security
based on Garbled Circuits (GCs) such as [32,17]. These protocols run between
a sender P1 and a receiver P2 (where only P2 obtains output) as follows:

1. First, P1 generates multiple garbled circuits together with input keys for
each such circuit. P1 commits to the circuits and their input keys. It inputs
the available input keys of P2 into Oblivious-Transfer (OT) functionalities.

2. P2 uses the OTs to obtain its input keys.
3. P1 decommits the circuits and its input keys towards P2.
4. P2 evaluates the circuits and both parties run a consistency check showing

that most circuits were correctly generated and the input keys are consistent.

The security proof usually consists of two simulators S1 for a corrupted sender
and S2 for a corrupted receiver. S1 sends random inputs to the OT functionalities
and otherwise only checks that the garbling information was generated correctly
by the malicious P1 (and extracts the inputs of P1). In case of the simulator S2
the standard strategy is to first extract the input x2 of the malicious P2 using
the OT functionality, then to obtain the output y from the ideal functionality F
of the protocol, to choose a random input x̃1 and finally to simulate the garbled
circuits in such a way that they output y for input keys derived from x̃1, x2.

In order to have a verifiable version of the aforementioned protocol, observe
that FV will release the actual input x1 of P1 after the computation has finished.
But in S2 we generated the circuit in such a way that for an assumed dummy
input x̃1 it must output y, and the garbling itself may not even be a correct
garbling of the function in question. That means that there might not exist
randomness to explain the output of S2 in a security proof of the verification.
More generally, for verification of an instance of Π one has to “explain” all those
messages that the adversary A obtained as being possible given the actual inputs
of the honest parties from FV given the randomness of the party. That implies
that Π has to be adaptively secure to begin with if we want to prove that ΠV

UC-securely implements FV and that the implementations of FV in practice will
be slow, since the number of protocols Π which are adaptive is limited. This
seems counter-intuitive: beyond the technical reason to allow UC simulation,
we see no explanation why only adaptive protocols should be verifiable in the
aforementioned way. It appears counter-intuitive why the aforementioned static
2PC protocol could not be proven to have such verifiability6.

1.2 Our Contributions

In this work, we show that we can compile a large class of statically secure
UC-secure protocols realizing a given UC functionality into protocols realizing
a publicly verifiable version of the functionality, which allows a party to non-
interactively prove that it obtained a certain output upon revealing its input.

6 Obviously one can achieve the result, even without revealing inputs, by using ex-
pensive generic NIZKs [28,30]. Our goal is to avoid these.

3

On one hand, we have the caveat of requiring the party who generates the proof
to open its input. On the other hand, this allows us to circumvent the need for
expensive generic zero knowledge proofs and adaptive security (as needed in the
compilers of [28,30]), introducing a technique that can compile protocols relying
only on cheap commitments and “joint authentication” functionalities which
can be realized using cheap public-key primitives. Moreover, the need to reveal
the prover’s real input can also be solved in some cases by executing protocols
with dummy parties (with dummy inputs). This e.g. works for MPC where each
real party would additionally simulate another party that would also join the
computation. This party would be without input but would obtain the output.
It can then later serve as a prover, avoiding sacrificing the input of the real party
at the cost of higher complexity.

Our approach in its current form is with protocols that UC-realize function-
alities that have one round of input as well as multiple rounds of computation
and outputs, and captures therefore such functionalities as Oblivious Transfer
or Secure Function Evaluation. We describe a standard wrapper for any such
functionality to equip it with the interfaces necessary for non-interactive verifi-
cation, allowing external verifiers to register (in a public or private manner) and
to perform tasks related to verification. This wrapper is particularly designed to
amalgamate the reactive nature of UC with non-interactivity and might be of in-
dependent interest. It would be interesting future work to extend our techniques
to reactive computations.

Our results can be concretely applied in the setting of decentralized sys-
tems (e.g. blockchains [33,9,27,29,26,22]) and protocols based on blockchain-style
public ledgers [2,8,30,5,20,21], serving both as foundational public verifiability
definitions and as a tool for neatly achieving this property. For example, using
our techniques, it would be possible to construct the publicly verifiable build-
ing blocks of Insured MPC [5] without individually redefining each functionality
and reproving each protocol’s security. In particular, our results have already
been used as an essential tool in follow-up work constructing UC randomness
beacons [21].

1.3 Our Approach

Our route to black-box verifiability. We construct a compilation method
to generically achieve public verifiability for protocols that follow the outline
described in Section 1.1 and formalized in Section 2. For this, we start with an
observation similar to [28], namely that by fixing the inputs, randomness and
messages in a protocol we can get guarantees about the outputs. This is because
fixing the inputs, randomness and received messages essentially fixes the view of
a party, as the messages generated and sent by a party are deterministic given
all of these other values. Therefore, our main idea is to fix parties’ input and
randomness pairs by having parties commit to these pairs and authenticate the
messages exchanged between parties in such a way that an external party can
verify such committed/authenticated items after the fact. On the other hand,
fixing all messages that are exchanged in a protocol (in order to leverage this
guarantee) is costly and might be overkill for some protocols. We formalize this

4

concept to the notion of transcript non-malleability that is defined in Section
3.1. The hope is that we might not have all exchanged messages fixed for some
protocols, but an adversary that e.g. is allowed to replace all those messages ex-
changed between dishonest parties after the fact, or those that were exchanged
with the honest parties, does not have enough leverage to forge a fully consistent
transcript for a different output.

Proving security in UC. While it might seem obvious that such a protocol
with all of its messages fixed would be publicly verifiable, it is still not directly
possible to prove this fact in the UC framework unless we assume that Π is
adaptively secure - which seems to be a too restrictive requirement. In Section
3.2 we address this problem using input-aware simulators (or über simulators),
which can be parameterized with specific inputs for the simulated honest parties,
generating simulated transcripts consistently with these inputs. By embedding
these über simulators into publicly verifiable functionalities as described in Sec-
tion 3.4, we are able to essentially delegate the simulation of the original proto-
col being compiled to the functionality’s internal über simulator while focusing
on the public verifiability machinery in our simulators for the compiled proto-
col/functionality. As these über simulators form the core technical contribution
of our work, we will now motivate their definition and use in more detail.

A first idea for proving security of the compiled protocol ΠV is to let the
simulation of Π be done inside FV, the compiled functionality that is verifiable,
using something similar to the simulator of Π that simulates an execution with
the adversary using the actual honest party inputs for the simulated honest par-
ties. We would give FV an extra “next message function”-style interface NMFSU

accessible to the ideal adversary. The simulator of the compiled protocol ΠV will
be able to use NMFSU in order to generate the protocol messages in the simula-
tion, allowing us to easily explain Π consistently after the fact. FV can provide
NMFSU as it is able to simulate an instance of Π internally using the actual
inputs that FV obtained from the honest parties. This “internal” simulator will
do the input-related work, while the “external” simulator of ΠV will handle all
interactions with the adversary and functionalities in the actual proof as well as
simulation of the compilation machinery. Based on the UC security of Π, making
NMFSU available will not break existing constructions. This is because before
we open any inputs or randomness, it is indistinguishable if we simulate an ex-
ecution with the actual inputs of honest parties running Π or random inputs
due to the UC-security of Π. The “external” simulator for ΠV in the security
proof then extracts the protocol messages of Π that the adversary sends (and
those sent to the hybrid functionalities) and inputs these accordingly into FV’s
NMFSU interface.

Considering our example, S1 uses a random input to the OTs and otherwise
just follows the protocol. As the OT functionalities by their security guarantee
hide the input of P2, a S1 simulation inside FV using the actual inputs of P2

would still be indistinguishable. For the other party, we can construct a simulator
S ′2 which would just run the actual protocol based on the input x1 that it now

5

has. By the security argument of the original protocol, the distribution of this
should be indistinguishable from the output of S2.

But just simulating based on real inputs of the honest parties is not sufficient:
we need to have “internal” simulators that can use real inputs of honest parties
while simultaneously being able to extract the inputs of the dishonest parties
and creating an indistinguishable transcript. This extraction requirement stems
from the fact that the “external” simulator for ΠV does not know the semantics
of the original security proof of Π and can therefore not extract the inputs
from A. In the example of 2PC, the outer simulator would have to know that it
needs to extract the inputs of the dishonest party from the OT functionality, but
such knowledge is specific for this class of protocols. Instead, we would like the
outer simulator to simply extract inputs committed by its copy of the adversary
and check that it matches the transcript in the adversary’s interaction with the
internal simulator (checking that verification succeeds or not).

To resolve this problem, we require that for our compiled protocols Π there
exists a special “über” simulator (defined fully in Section 3.2) which addresses
these problems of simulation and extraction accordingly. As can be seen from
our example, an efficient über simulator must not be artificial and strong, but
could possibly simply be constructed. Its requirement also differs from requiring
adaptivity of the protocol, as we at no point changed any security requirement
about the 2PC protocol. And the strategy is not just bound to GC-based pro-
tocols, as e.g. many MPC protocols such as [34,25] simulate their online phase
anyway in the security proof using “artificial” fixed inputs and otherwise run the
protocol honestly while they are still able to extract. We can therefore directly
make those protocols verifiable, as we will indeed show in Section 3.3.

How to realize transcript non-malleability. In order to construct compilers
from Π to ΠV we have to use cryptographic tools that help us achieve a certain
degree of transcript non-malleability. For this, we require parties to use what we
call “joint authentication”. Joint Authentication works for both public and pri-
vate messages. In the public case, performing joint authentication is achieved by
simply having all parties sign a message sent by one of them. In the private case,
we essentially allow parties to authenticate commitments to private messages
that are only opened to certain parties. Later on, any of the parties who did re-
ceive that private message (i.e. the opening of the commitment to the message)
can publicly prove that they indeed obtained a certain message that had been
jointly authenticated by all the other parties involved in the protocol execution.
More importantly, joint authentication does not perform any communication on
itself but provides authentication tokens that can be verified in a non-interactive
manner. These public and secret joint authentication functionalities allow us to
force dishonest parties to commit to their transcript without revealing private
messages ahead of time or implying consensus on its own (since parties are still
required to send their messages and authentication tokens through regular chan-
nels). Joint authentication, by requiring parties to acknowledge receipt, forces
the compiled protocol into synchronous form, which is why we only consider syn-

6

chronous protocols to begin with. We define joint authentication functionalities
in Section 4 and show how to realize them in Supplementary Material C.

For our example protocol, this would mean that both P1,P2 initially commit
to their inputs and randomness. Additionally, they will both sign each message
that they send and those messages that they receive and that have been signed
by the sender. This will make it possible for any third party to later verify cor-
rectness of these values.

Putting things together. We use the techniques described above to compile a
protocol Π that fits one of the levels of our transcript non-malleability definition
and realizes a functionality F in the F1, . . . ,Fn-hybrid model into a protocol ΠV

that realizes a publicly verifiable version of F called FV in the FV
1 , . . . ,FV

n-hybrid
model (i.e. assuming that the setup functionalities are also publicly verifiable).
Our compilation technique has two main components: 1. use a special instance
of secret joint authentication to commit to and authenticate each party’s input
and randomness pairs as defined in Π; 2. execute Π and use public/secret joint
authentication to jointly authenticate each message ofΠ exchanged among them.
The first step fixes the input and randomness pairs of each party in such a way
that the parties can publicly prove they used a certain input and randomness pair
at a later point with a non-interactive proof. The second step makes sure that
the whole protocol transcript of executing Π is fixed with a similar guarantee
that parties can later publicly prove that a given transcript was obtained (after
revealing the private messages they receive) with a non-interactive proof. Notice
that using these guarantees we have basically brought Π to a very strong level
of transcript non-malleability, since the adversary cannot lie about its input and
randomness pairs nor its view of the transcript. In order to realize the public
verifiability interface of FV, we have a party open its input and randomness pair
as well as its view of the transcript, which could not have been forged, allowing
the verifier to execute an honest party’s steps in Π in order to verify that a given
output is obtained.

As discussed before, when proving security of this compiler, we have to over-
come the hurdle of simulating verification when an honest party opens its input
and randomness pair. We do that by delegating the simulation of the original
steps of Π to an über simulator for Π embedded in FV. Essentially, our sim-
ulator S will simulate an execution with an internal copy of the adversary by
extracting all Π messages sent by this adversary through the simulated joint au-
thentication functionalities and forwarding these messages to the über simulator
SU for Π embedded into FV through interface NMFSU (and forwarding back
SU’s answers to the adversary). If an honest party activates public verification
and reveals its input, we are now guaranteed that the transcript of S’s simulated
execution is consistent with that honest party’s input, since it was generated by
SU embedded into FV and parameterized with honest party inputs.

To compile our example protocol, we now combine all of the aforemen-
tioned steps and additionally assume that the OT-functionality as well as the

7

commitment-functionality are verifiable on their own. By the compiler theorem,
this will mean that the resulting protocol is verifiable according to our definition.

1.4 Related Work

Despite being very general, UC has seen many extensions such as e.g. UC with
joint state [19] or Global UC [15], aiming at capturing protocols that use global
ideal setups. Verifiability for several kinds of protocols has been approached
from different perspectives, such as cheater identification [28,6], verifiability of
MPC [4,36], incoercible secure computation [1], secure computation on public
ledgers [2,8,30,31], and improved definitions for widely used primitives [12,11].
Another solution to solve the adaptivity requirement was recently presented
in [7], but their approach only works for functionalities without input. A dif-
ferent notion of verifiability was put forward in publicly verificable covert 2PC
protocols such as [3] and its follow-up works, where parties can show that the
other party has cheated. However, most of these works require adaptive security
of the underlying protocol or zero knowledge proof systems. A notable excep-
tion is the publicly verifiable MPC protocol of [5], which avoids these issues
by painstakingly redefining each functionality used as a building block and re-
proving security of publicly verifiable versions of known protocols realizing these
functionalities. To the best of our knowledge, no previous work has considered
a generic definition of non-interactive public verifiability in the UC framework
nor a black-box compiler for achieving such a notion without requiring adaptive
security of the underlying protocol or zero knowledge proof systems.

2 Preliminaries

We denote the security parameter by κ and the concatenation of two strings a

and b by a ‖ b. Let y
$← F (x) denote running the randomized algorithm F with

input x and random coins, and obtaining the output y. When the coins r are
specified we use y ← F (x; r). y ← F (x) is used for a deterministic algorithm.

For a set X , let x
$← X denote x chosen uniformly at random from X ; and

for a distribution Y, let y
$← Y denote y sampled according to the distribution

Y. We denote by negl(κ) the set of negligible functions of κ and abbreviate
probabilistic polynomial time as PPT. Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗
and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are said to be statistically
indistinguishable, denoted by X ≈s Y , if for all z it holds that | Pr[D(Xκ,z) =
1] − Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic distinguisher D.
In case this only holds for non-uniform PPT distinguishers we say that X and
Y are computationally indistinguishable, denoted by X ≈c Y .

2.1 Secure Protocols
A protocol Π consists of the algorithms nmes, out and additional parameters:
the number of parties n, the resources F1, . . . ,Fr, the number of output rounds
G, the number of rounds Hτ to obtain each output τ ∈ [G] as well as the
communication and output model. We assume that some external information s
is fixed for the protocol. In an MPC scheme, this information e.g. could consist
of the circuit. Each party Pi uses their respective input xi as well as randomness

8

ri for the actual protocol. Here they perform Hτ calls to a next-message function
with a subsequent message exchange with both the parties and the resources,
finalized by the computation of the τ -th output of the protocol. Formally, the
algorithms which comprise Π are as follows:

nmes is a deterministic polynomial-time (DPT) algorithm which on input the
party number i, protocol input xi, randomness ri, auxiliary input s, output
round τ ∈ [G], round number ρ ∈ [Hτ] and previous messages M·,i from

parties and N·,i from resources outputs {m(τ,ρ)i,j }j∈[n]\{i}, {mres
(τ,ρ)
i,q }q∈[r].

out is a DPT algorithm which on input the party number i, the protocol input
xi, randomness ri, auxiliary input s as well as output round τ ∈ [G], a set

of messages M·,i from parties and N·,i from resources outputs y
(τ)
i which

is either an output value or ⊥. The values xi, ri might not be necessary in
every protocol and we allow use of out without it as well.

nmes generates two different types of messages, namely m- and mres-messages.
As we shall see later, the m-messages are used for communication among par-
ties whereas mres-messages are exchanged between a party and a functionality.
Therefore, each mres-message consists of an interface (Inputi,Compute(τ),

Output
(τ)
i) with whom the party wants to communicate as well as the actual

payload. Each message that is an output of nmes may either be an actual string
or a symbol ⊥, meaning that no message is sent to a certain party/functionality
whatsoever in a certain round. For notational consistency, whenever we write
mi,j we mean that a message was sent from party Pi to Pj . Similarly, we write
mresi,q when the message was sent from Pi to Fq and mresq,i when sent from Fq
to Pi. We will denote messages received by party Pi from another party asM·,i
and those sent by Pi to another party as Mi,·. Similarly, we will write N·,i for
all messages that Pi received from resources while Ni,· denotes messages which
Pi sent to resources. In Figure 1 we describe the general pattern according to
which the above algorithms are used in the protocol Π.

Communication Model. Generally, we do not make any restriction on the mes-
sages that are exchanged (except that their length is polynomial in the security
parameter κ). If these will be sent through point-to-point secure channels, then
we call this setting private communication. If the parties instead send the same
message to all other parties, then we consider this as broadcast communication.
Parties may arbitrarily mix private and broadcast communication. We require
that all message-passing is synchronous.

Output Model. We do not restrict the output y
(τ)
i which each party obtains in the

end of the computation and which should be verifiable. This permits the general

setting where all the y
(τ)
i might be completely different. This is the standard for

many interesting functions that one can compute, e.g. Oblivious Transfer.

2.2 Universal Composition of Secure Protocols

In this work we use the (Global) Universal Composability or (G)UC model [13,15]
for analyzing security and refer interested readers to the original works for more

9

Protocol Π

Each Pi has input xi as well as common public input s.

Inputi: Party Pi samples ri uniformly at random. Let M·,i,N·,i ← ∅.
Compute(τ): Let τ ∈ [G]. Then each party Pi for ρ ∈ [Hτ] does the following:

1. Locally compute(
{m(τ,ρ)i,j }j∈[n]\{i}, {mres

(τ,ρ)
i,q }q∈[r]

)
← nmes(i, xi, ri, s, τ, ρ,M·,i,N·,i).

2. For each j ∈ [n] \ {i} send m
(τ,ρ)
i,j to Pj . For each q ∈ [r] send mres

(τ,ρ)
i,q to Fq.

3. For each j ∈ [n] \ {i} wait for m
(τ,ρ)
j,i from each Pj as well as mres

(τ,ρ)
q,i from each

Fq for q ∈ [r].

4. Set M·,i ←M·,i ∪ {m(τ,ρ)j,i }j∈[n]\{i} and N·,i ← N·,i ∪ {mres(τ,ρ)q,i }q∈[r].

Output
(τ)
i : Party Pi computes and outputs y

(τ)
i ← out(i, xi, ri, s, τ,M·,i,N·,i).

Fig. 1. The generic protocol Π.

details. Naturally, we only discuss the dishonest-majority setting in this work as
honest-majority protocols can simply output a vote of all parties if the result is
correct or not (if broadcast is available).

Protocols are run by interactive Turing Machines (iTMs) which we call par-
ties. A protocol Π will have n parties which we denote as P = {P1, . . . ,Pn}.
We assume that each party runs in probabilistic polynomial time (PPT) in some
implicit security parameter κ. The adversary A, which also is a PPT iTM, will
be able to corrupt parties, but we only allow him to corrupt up to a threshold
of k < n of them, though non-threshold adversary structures may also be sup-
ported. We opt for the static corruption model where the parties are corrupted
from the beginning, as this is what most efficient protocols currently are devel-
oped for. The set of corrupted parties is denoted as I ⊂ P. Parties can exchange
messages with each other and also with resources, which we call ideal function-
alities (which themselves are PPT iTMs). To simplify notation we assume that
the messages between parties are sent over secure channels.

We start out with protocols that are themselves already secure, but not
verifiable. For this, we assume that the ideal functionality F of a protocol Π
follows the pattern as described in Figure 2. In there, we consider protocols
where parties give input initially, but obtain possibly G rounds of output. Having
multiple rounds of outputs can be seen as a trade-off: on one hand, it allows us
to model e.g. commitment schemes which would not be possible having only one
round of output. At the same time, it is not general enough to permit reactive
computations which inherently make the notation a lot more complex.

It is not necessary that all of the interfaces which F provides are used for an
application. For example in the case of coin tossing, no party Pi ever has to call

Inputi. While Inputi,Output
(τ)
i are fixed in their semantics, the application

may freely vary how Compute(τ) may act upon the inputs or generate out-

10

Functionality F
Functionality F has common public input s and interacts with a set P of n parties
and an ideal adversary S. Upon initialization, S is allowed to corrupt a set I ⊂ P of
parties where |I| ≤ k and k < n. Each of F ’s interfaces falls into one of 3 different
categories for providing inputs as well as running the G evaluation and output steps.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties store xi
locally and send (Input, sid, i) to all parties. Every further message to this interface
is discarded and once set, xi may not be altered anymore.

Compute(τ): On input (Compute, sid, τ) by a set of parties Jτ ⊆ P as well as S
perform a computation based on s as well as the current state of the functionality.
The computation is to be specified in concrete implementations of this functionality.
The last two steps of this interface are fixed and as follows:
1. Set some values y

(τ)
1 , · · · , y(τ)n . Only this interface is allowed to alter these.

2. Send (Compute, sid, τ) to every party in Jτ .
Every further call to Compute(τ) is ignored. Every call to this interface before all
Inputi are finished is ignored, as well as when Compute(τ−1) has not finished yet.

Output
(τ)
i : On input (Output, sid, τ) by Pi where τ ∈ [G] and if y

(τ)
i was set send

(Output, sid, τ, y
(τ)
i) to Pi.

Fig. 2. The generic functionality F .

puts. The only constraint that we make is that for each of the τ ∈ [G] rounds,

Compute(τ) sets output values (y
(τ)
1 , . . . , y

(τ)
n).

As usual, we define security with respect to a PPT iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P.
Furthermore, the adversary A will corrupt parties I ⊂ P in the name of Z
and thus gain control over these parties, i.e. will see and be able to generate
the protocol messages. To define security, let Π ◦ A be the distribution of the
output of an arbitrary Z when interacting with A in a real protocol instance Π.
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of Π
and where S takes care of adversarial behavior.

Definition 1 (Secure Protocol). We say that F securely implements Π if for
every PPT iTM A there exists a PPT iTM S (with black-box access to A) such
that no PPT environment Z can distinguish Π ◦A from F ◦S with non-negligible
probability.

In our protocols we use the standard digital signature functionality FSig from
[14], the key registration functionality FReg from [16] and an authenticated bul-
letin board functionality FBB, which are described in Supplementary Material A.
We also use constructions of IND-CCA public key encryption schemes that UC-
realize the standard public key encryption functionality that are described in
Supplementary Material B.

11

Functionality Wrapper FV[F]

The functionality wrapper FV[F] adds the interfaces below to a generic functionality
F defined as in Figure 2, still allowing direct access to F . FV is parameterized by
an über simulator SU executed internally (as discussed in Section 3.4) and maintains
binary variables verification-active, verify-1, . . . , verify-n that are initially 0 and used
to keep track of the verifiable outputs. Apart from the set of parties P and ideal
adversary S defined in F , FV interacts with verifiers Vi ∈ V.

Register Verifier (private): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 send (Register, sid,Vi) to S. If S answers with

(Register, sid,Vi, ok), set V ← V ∪ Vi and return (Registered, sid) to Vi.
– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Register Verifier (public): Upon receiving (Register, sid) from Vi:
– If verification-active = 1 set V ← V ∪ Vi and return (Registered, sid) to Vi.
– If verification-active = 0 return (Verification-Inactive, sid) to Vi.

Activate Verification: Upon receiving (Activate-Verification, sid, open-i,
open-input-i) from each Pi and if Compute(1), . . . ,Compute(G) succeeded:
1. Let Y ← {j ∈ [n] | open-j = 1 ∧ verify-j = 0}. If Y = ∅ then return.

2. Set verification-active ← 1 (if it is not set already) and deactivate the interfaces
Compute(τ) for all τ ∈ [G].

3. If open-input-i = 1, then set zi = xi; otherwise zi = ⊥.

4. Send (Activating-Verification, sid, Y, {zj , y(τ)j }j∈Y,τ∈[G]) to S. If Pi is hon-

est, append its randomness Ri (obtained from SU) to this message.

5. Upon receiving (Activating-Verification, sid, ok) from S set verify-j ← 1 for

each j ∈ Y . Then return (Verification-Activated, sid, Y, {zj , y(τ)j }j∈Y,τ∈[G])
to all parties in P.

Verifyj: Upon receiving (Verify, sid, j, a, b(1), . . . , b(G)) from Vi where Vi ∈ V and
Pj ∈ P do the following:

– if verify-j = 1 then compute the set B ← {τ ∈ [G] | b(τ) 6= y
(τ)
j }. If a = zj , then

set f ← a; otherwise f ← ⊥. Return (Verify, sid, j, f, B) to Vi.
– If verify-j = 0 then send (Cannot-Verify, sid, j) to Vi.

Inputi: On input (Input, sid, xi) by Pi and (Input, sid) by all other parties, for-
ward (Input, sid, xi) to F and also forward responses from F to Pi. Finally, after
receiving (Input, sid, xi) from all Pi, i ∈ I (i.e. all honest parties), initialize SU pa-
rameterizing it with xi for all honest Pi.
NMFSU : Upon input (NextMsgP, sid, j, τ, ρ, {mi,j}i∈I) where j ∈ I or
(NextMsgF, sid, q, τ, ρ, mresi,q) where i ∈ I and q ∈ [r] by S, send the respec-
tive message to SU. Forward all messages between SU and F , so that SU mediates
interaction between F and S, also delivering extracted adversarial inputs. Finally,
after SU outputs a response (NextMsgP, sid, j, τ, ρ + 1, {mj,i}i∈I) or (NextMsgF,
sid, q, τ, ρ+ 1, mresq,i), forward it to S.

Fig. 3. The Functionality wrapper FV[F]. The modifications to interface Inputi and
the new interface NMFSU are discussed in Section 3.4.

12

2.3 Verifiable Functionalities

We extend the functionality F from Section 2.2 to provide a notion of non-
interactive verification using a functionality wrapper FV described in Figure 3.
For this, we assume that there are additional parties Vi which can partake in the
verification. These, as well as regular protocol parties, can register at runtime to
be verifiers of the computation using a special interface Register Verifier. Once
they are registered, these verifiers are allowed to check the validity of outputs
for parties that have initiated verification at any point. We keep track of this
using the set of verifiers V (which is initially empty) inside the functionality. For

values whose output has been provided using the interface Output
(τ)
i (that we

inherit from the definition of F of Section 2.2) we allow the parties P to use an
interface called Activate Verification to enable everyone in V to check their
outputs via the interface Verifyi. The modifications to Inputi and the new
interface NMFSU are related to the über simulators discussed in Section 3.4.

Notice that, in our constructions, a verifier Vi ∈ V can perform verification
with help from data obtained in mainly two different ways: 1. receiving verifica-
tion data from another verifier Vj ∈ V or a party Pi ∈ P; 2. retrieving verification
data directly from publicly available resource such as a Bulletin Board (repre-
sented as a setup functionality). In case Vi attempts to obtain verification data
from another party in V ∪ P, that party might be corrupted, allowing the ideal
adversary S to interfere (i.e. providing corrupted verification data or not an-
swering at all). On the other hand, when Vi obtains such verification data from
a resource available as setup (i.e. a resource guaranteed to be untamperable by
the adversary), S has no control over the verification process. In order to model
the situation where verification data is obtained reliably and that where it is
obtained unreliably, FV might implement only Register Verifier (public) or
only Register Verifier (private), respectively. We do not require FV to im-
plement both of these interfaces, and thus define the properties of FV according
to which of them is implemented, according to Definitions 2 and 3.

Definition 2 (Verifier Registration). Let F be a functionality which imple-
ments the interface Register Verifier (public), then F is said to have Pub-
lic Verifier Registration. If F instead implements Register Verifier (private)
then we say that it has Private Verifier Registration.

Definition 3 (NIV). Let F be a functionality which implements the above in-
terfaces Activate Verification and Verifyj and which has Verifier Registra-
tion according to Definition 2, then we call F NIV. If F has Public Verifier
Registration then F is Publicly Verifiable whereas we call it Privately Verifiable
if F has Private Verifier Registration.

3 Public Verifiability

We now present our approach for making protocols non-interactively verifiable.
For this, we will first introduce a classification for the robustness of a protocol
to attacks on its “inherent” verifiability. Then, we describe properties that are
necessary to achieve simulation-based security for our approach to verifiability.

13

3.1 Transcript Malleability of Protocols

Informally, our approach to verification (as outlined in Section 1.3) is to leverage
properties for verifiability that are potentially already built into the protocol.
This is because we only want to rely on the protocol itself in a black-box fashion.
As the verifier can then only rely on the protocol transcript, let us consider how
such a transcript comes into existence.

In practice, we would first run a protocol instance of Π with an adversary
A. Afterwards, the adversary may have the possibility to change parts of the
protocol transcript in order to trigger faulty behavior in the outputs of parties.
If the adversary cannot trigger erroneous behavior, then this means that we can
establish correctness of an output of such a protocol by using the messages of
its transcript, some opened inputs and randomness as well as some additional
properties of Π = (nmes, out).

If our verification therefore relies on the transcript of a protocol, then a first
sign of incorrectness is if messages that a party Pi claims to have sent were not
received by another party Pj , if messages to and from a NIV functionality FV

were not actually sent or received by Pi or if, in case a party Pi reveals both its
inputs xi and randomness ri, the messages Pi claims to have sent are inconsistent
with xi, ri when considering nmes and previously obtained messages.

Towards formalizing this, we denote the set of input-revealing parties as RIR.
For Mi,·,M·,i,Ni,·,N·,i we use the same syntax as in Section 2.1.

Definition 4 (Transcript Validity). Let n be the number of parties and RIR ⊆
[n]. For i ∈ RIR let xi be inputs and ri be a randomness string. Let furthermore s
be an auxiliary input, FV

1 , . . . ,FV
r be a set of NIV resources andM·,i,Mi,·,N·,i,Ni,·

be those sets of messages that were defined before.
We say that the transcript of Π is valid if and only if

1. For each i, j ∈ [n] the sets Mi,·,M·,j are consistent, meaning that each
message in Mi,· sent by Pi was received by Pj in M·,j and vice versa.

2. For each q ∈ [r], i ∈ [n] N·,i are consistent with the messages that Pi should
have obtained from FV

q via the verification interface. If FV
q allows the verifi-

cation of inputs from Pi, Ni,· is consistent with FV
q as well.

3. For each i ∈ RIR, τ ∈ [G] and ρ ∈ [Hτ] the sets Mi,·,Ni,· are consistent with
the output of nmes(i, xi, ri, s, τ, ρ,M·,i,N·,i).

In a formal sense, tampering of an adversary with the transcript would be ok

unless it leads to two self-consistent protocol transcripts with outputs ŷ
(τ)
i 6= y

(τ)
i

for some Pi such that both ŷ
(τ)
i , y

(τ)
i 6= ⊥. To achieve this, transcript validity is

a necessary, but not a sufficient condition. For example, if no messages or inputs
or randomness of any party are fixed, then A could easily generate two correctly
distributed transcripts for different outputs that fulfill this definition using the
standard UC simulator of Π.

We now define the security game that allows us to further constrain A beyond
transcript validity. In it, we rely on fixing certain parts while the transcript
is generated: an adversary A will first run the protocol with a challenger C

14

that simulates honest parties whose inputs and randomness A does not know
(initially). Upon completion of this protocol, the adversary will first obtain some
additional potentially secret information of the honest parties, upon which it
outputs two valid protocol transcripts. A will win if the transcripts coincide in
some parts with the interactive protocol that A ran with C, while the outputs
of some party are different and not ⊥.

We want to cover a diverse range of protocols which might come with different
levels of guarantees. We consider scenarios regarding: (1) whether the dishonest
parties can change their inputs and randomness after the execution (parameter
ν); (2) what is the set of parties RIR that will reveal their input and random-
ness later; and (3) which protocol messages the adversary can replace when he
attempts to break the verifiability by presenting a fake transcript (parameter µ).

The parameters ν,RIR have the following impact: if ν = ncir then the dis-
honest parties are not committed to the input and randomness in the beginning
of the execution. Anything that is revealed from parties in I ∩ RIR might be
altered by the adversary. If instead ν = cir then all parties are committed to the
input and randomness in the beginning of the execution. That means that the
adversary cannot alter inputs or randomness of honest or dishonest parties from
RIR, i.e. of those parties whose xi, ri are revealed for verification.

For µ we give the adversary the following choices:

µ = ncmes: A can replace all messages by all parties.
µ = chsmes: A can replace messages from corrupted senders.
µ = chmes: A can replace messages exchanged between corrupted parties.
µ = cmes: A cannot replace any message.

Based on this, we formalize transcript non-malleability as follows:

Definition 5. Let Π be a synchronous protocol that is secure against a static ad-
versary corrupting up to k < n parties using r NIV resources. For ν ∈ {cir, ncir},
µ ∈ {ncmes, chsmes, chmes, cmes} and RIR ⊆ [n], we define the following game
between a challenger C and an adversary A:

1. Both A, C obtain s. C sets up instances FV
1 , . . . ,FV

r .

2. A chooses I ⊂ [n], |I| ≤ k and sends I to C. Let I = [n] \ I.

3. C chooses {xi, ri}i∈I . If ν = cir, A sends {xj , rj}j∈I to C.

4. C runs an instance of the protocol Π with A. In each round of Π C first
computes the messages of all honest parties Pi ∈ I using nmes and sends these
to both A as well as FV

q . Then A interacts with all instances of FV
q and sends

messages of dishonest parties addressed to the honest parties to C. If µ = cmes
then A must also send messages exchanged between dishonest parties. Finally,
C stores all those messages sent to as well as messages received from A in
M·,i,Mi,· (if µ = cmes also those sent between dishonest parties). It stores
all messages that an honest Pi ∈ I received from FV

q in N·,i and those that it
sent to input-verifiable FV

q in Ni,·.

5. C sends {xi, ri,N·,i}i∈I∩RIR to A. For Pi ∈ I\RIR it sendsMi,·,M·,i,Ni,·,N·,i.

15

6. A sends two protocol transcripts Π0, Π1 including inputs xbi , r
b
i for i ∈ RIR

and messages Mb
i,·,Mb

·,i for all parties i ∈ [n] and b ∈ {0, 1}. C checks that

(a) Both transcripts Π0, Π1 are consistent according to Definition 4.

(b) If ν = cir then rbi = ri and xbi = xi for i ∈ RIR. If instead ν = ncir then
rbi = ri and xbi = xi for i ∈ I ∩ RIR.

(c) N b
·,i for i ∈ [n] is consistent with FV

q . Moreover, for each Pi where FV
q

reveals inputs of Pi check if N b
i,· is consistent with FV

q .

(d) If µ = cmes, Mb
i,j =Mi,j for all i, j ∈ [n].

(e) If µ = chmes, Mb
i,j =Mi,j for all i, j ∈ [n] where either i ∈ I or j ∈ I.

(f) If µ = chsmes, Mb
i,j =Mi,j for all j ∈ [n], i ∈ I.

If not, then C outputs 0.

7. C outputs 1 if either there exists i ∈ RIR, τ ∈ [G] such that

out(i, x0i , r
0
i , s, τ,M0

·,i,N 0
·,i) 6= out(i, x1i , r

1
i , s, τ,M1

·,i,N 1
·,i)

and both are not ⊥. Otherwise C outputs 0.

We call a protocol (ν,RIR, µ)-transcript non-malleable if any PPT algorithm
A can make C output 1 in the above game only with probability negligible in κ.

As mentioned in Section 2.1 we do not necessary require that out depends
on xi, ri. Thus in practice we use a slightly more general definition where also
outputs of parties that are not in RIR are considered.

3.2 Simulating Verifiable Protocols: Input-Aware Simulation

Most standard simulators S for UC secure protocols Π work by executing an
internal copy of the adversary A towards which they simulate interactions with
simulated honest parties and ideal functionalities in the hybrid model where Π is
defined. In general, such a simulator S receives no external advice and generates
random inputs for simulated honest parties and simulated ideal functionality re-
sponses with the aid of a random input tape, from which it samples all necessary
values. However, a crucial point for our approach is being able to parameterize
the operation of simulators for protocols being compiled, as well as giving them
external input on how queries to simulated functionalities should be answered.

We need simulators with such properties in order to obtain publicly verifiable
versions of existing protocols without requiring them to be adaptively secure as
explained in Section 1.1. Basically, in the publicly verifiable version of a protocol,
we wish to embed its original simulator S in the publicly verifiable functionality
that it realizes. This will allow us to “delegate” the simulation of the original
protocol to its own simulator, while the simulator for the publicly verifiable
version handles only the extra machinery needed to obtain public verifiability.
The advantage of this technique is twofold: (1) It allows us to construct pub-
licly verifiable versions of statically secure protocols; (2) It simplifies the security
analysis of publicly verifiable versions of existing UC-secure protocols, since only
the added machinery for public verifiability must be analysed.

16

Über Simulator SU: We will now start defining the notion of an über simulator
for a UC-secure protocol Π realizing a functionality F , which we formally estab-
lish in Definition 8. We denote über simulators as SU, while we denote by S the
original simulator used in the UC proof that Π realizes a (non-NIV) functionality
F . Basically, an über simulator SU takes the inputs to be used by simulated hon-
est parties in interactions with a copy of the adversary as an external parameter
and outputs (through a special tape) the randomness used by these simulated
parties. Instead of interacting with an internal copy of the adversary, an über
simulator interacts with an external copy of the adversary. Moreover, an über
simulator allows for responses to queries to simulated functionalities to be given
externally. Otherwise SU will perform similar actions as a regular simulator, such
as extracting inputs of dishonest parties to be sent to F . We remark that most
existing simulators for protocols realizing the vast majority of natural UC func-
tionalities can be trivially modified to achieve our notion of über simulator (as
we will explain in Section 3.3). Notice that most simulators basically execute the
protocol as an honest party would, except that they use random inputs and take
advantage of their power over setup functionalities to equivocate the output of
the simulated protocol to equal the actual output obtained by executing with
certain inputs (held by honest parties). Departing from such a simulator, an über
simulator can be constructed by allowing the simulated honest party inputs to
be obtained externally, rather than being generated internally.

Syntax of Über Simulator SU: Let SU be a PPT iTM with the same input
and output tapes as a regular simulator S plus additional ones as defined below:

– Input tapes: a tape for the input from the environment Z, a tape for
messages from an ideal functionality F , a tape for inputs for the simulated
honest parties, a tape for messages from an external adversary A and a tape
for messages from the global setup ideal functionalities in the hybrid model
where Π is defined.

– Output tapes: tapes for output to Z, tapes for messages to F ,A, tapes for
messages to the ideal functionalities in the hybrid model where Π is defined
as well as a special “control output tape” that outputs the randomness used
by simulated honest parties.

We furthermore define the following two properties of simulation- and execution-
consistency. Simulation consistency is straightforward and says that any regu-
larly simulated execution is indistinguishable from an execution with SU when
operating as S does (i.e. with direct access to a copy of the adversary A, func-
tionality F and a global setup), using uniform randomness as well as sampling
responses to queries to simulated setup functionalities and simulated party in-
puts as S would (without taking external advice).

Definition 6 (Simulation Consistency). We say that the PPT iTM SU is
Simulation-consistent if no PPT iTM Z can distinguish the views of

1. F ◦S: An ideal execution of F and S executing an internal copy of adversary
A with global setup ideal functionalities F1, . . . ,Fr; and

17

2. F ◦ SU: An ideal execution of F with SU directly accessing a copy of A and
global setup ideal functionalities F1, . . . ,Fr,

where SU operates as S does: it has direct access to global setup ideal functional-
ities functionalities F1, . . . ,Fr and to a copy of the same PTT A that S uses; it
takes as input a uniform randomness tape and a tape for simulated honest party
inputs sampled in such a way that these inputs are distributed as in S. Z only
has access to the same input/output tapes of SU that it can access for S.

We now also define what we mean by execution consistency. Intuitively, we
want the randomness for simulated honest parties output by an über simulator
SU parameterized with the same inputs as the real honest parties to be consistent
with the transcripts of a real protocol execution.

Definition 7 (Execution Consistency). We say that the PPT iTM SU is
Execution-consistent if no PPT iTM Z for any PPT iTM A can distinguish:

1. F ◦ SU, (Rh1 , . . . , Rhk
)

$← SU: An ideal execution F with SU where SU is
parameterized with simulated honest party inputs (xh1 , . . . , xhk

), interacts
with A and with global setup ideal functionalities F1, . . . ,Fr, outputting
(Rh1

, . . . , Rhk
) on its special “control output tape” (unavailable to Z);

2. Executing Π with adversary A and honest parties P1, . . . ,Pk running on
randomness and input pairs (xh1 , Rh1), . . . , (xhk

, Rhk
) (i.e. identical to those

of SU) with global setup ideal functionalities F1, . . . ,Fr.

For any PPT iTM SU with the input and output tapes defined above, we say
that SU is an über simulator if it is simulation- and execution-consistent.

Definition 8 (Über Simulator). We say that the PPT iTM SU is an über sim-
ulator if there exist input tapes for randomness, simulated honest party inputs
such that SU is both simulation- and execution-consistent according to Defini-
tions 6 and 7 for any PPT environment Z and adversary A.

3.3 Input-aware simulation for existing protocols.

As outlined in Section 1.3 it is not necessary for each UC-secure protocol to ad-
ditionally define an über simulator. We now define a restricted class of protocols
for which SU can be obtained trivially. In order to do that, we assume that, for
a protocol Π that UC-realizes F in the F1, . . . ,Fr-hybrid model (all are global
functionalities) with a simulator S, there exists a randomness tape generation
function GenRand (that generates the randomness input tape for S) as follows:

Function GenRand(1κ, Rh1 , . . . , Rhk
, xh1 , ..., xhk

): this PPT function has as in-
puts the security parameter κ, honest party randomnessRh1 , . . . , Rhk

, honest
party inputs xh1

, . . . , xhk
and outputs a randomness input tape T for S such

that the following properties hold for any PPT iTM Z:
1. F ◦ S (An ideal execution of F with S taking as input an uniformly

random randomness tape) is indistinguishable from F ◦ S(T) (An ideal
execution of F with S taking as input tape T); and

18

2. An execution of Π with A and honest parties Ph1 , . . . ,Phk
taking in-

put/randomness (xh1
, Rh1

), . . . , (xhk
, Rhk

) is indistinguishable from F ◦
S(T) (An ideal execution of F with S taking as input tape T).

It turns out it is possible to easily adapt most existing simulators S in order
to obtain a function GenRand with the above property. Most simulators basically
run simulated honest parties that execute the protocol with random inputs and
randomness, making it easy to parameterize these simulators through their ran-
domness tapes in order to make them use specific randomness and inputs (fed
externally) for simulated honest parties. In the case of simulators that run with
hard-coded inputs for simulated honest parties, a similar idea can be achieved by
modifying them to obtain these inputs from their randomness tapes. Moreover,
notice that since an execution of S without honest party inputs is already known
to be indistinguishable from a real world simulation, it follows in most cases that
parameterizing S with simulated honest party inputs that are possibly identi-
cal to those in the real world is indistinguishable from the usual execution with S.

Obtaining SU from a simulator S with GenRand: We now construct SU
for a protocol Π that UC-realizes F with an original simulator S as follows:
Given the simulator S and corresponding function GenRand, SU takes the inputs
xh1

, . . . , xhk
for simulated the honest parties on its input tapes, samples uni-

form randomness Rh1
, . . . , Rhk

and runs GenRand(1κ, Rh1
, . . . , Rhk

, xh1
, ..., xhk

)
to obtain T . Then SU runs a copy of S with randomness input T . SU then for-
wards all queries between F , Z, a copy of the adversary A, global setup ideal
functionalities F1, . . . ,Fr and S. In the end, SU outputs Rh1 , . . . , Rhk

on the
special output tape. In order to do this, we also assume that instead of running
an internal copy of A it receives all queries from A (including messages to simu-
lated honest parties and setup ideal functionalities) externally, as well as sending
answers to those queries out through the same interface.

Proposition 1. Given a PPT simulator S for a protocol Π that UC-realizes F
in the F1, . . . ,Fr-hybrid model where all F1, . . . ,Fr are global functionalities for
which a poly-time computable function GenRand as defined above exists, then the
aforementioned SU is an über simulator for Π.

Proof. In order for this construction of SU to be a über simulator according to
Definition 8, it must both simulation and execution-consistent.

First, we will show that SU is simulation-consistent according Definition 6,
which amounts to showing that its internal copy of S has the same view of S
operating with an uniformly random randomness input tape, an environment
Z, an ideal functionality F and its own copy of A. Notice that all commu-
nication to/from Z (as well as F1, . . . ,Fr and A) and S is simply forwarded
by SU to/from S. Notice that, since all F1, . . . ,Fr are global functionalities,
S does not internally simulate local version of these ideal functionalities, in-
stead forwarding requests to them and deciding what to forward back to A.
By the properties of GenRand, simulating honest parties with tape T produced

19

by GenRand(1κ, Rh1 , . . . , Rhk
, xh1 , ..., xhk

) is equivalent to using a uniformly ran-
dom randomness input tape. Hence, SU is simulation-consistent, since its internal
copy of S has the same view as in its normal operation, being able to simulate
an ideal execution with F that is indistinguishable from the real world execution
with Π and A (because S has this property).

In order to see why SU is also execution-consistent, notice that GenRand

by definition guarantees that an execution of S with randomness tape T ob-
tained from executing GenRand(1κ, Rh1

, . . . , Rhk
, xh1

, ..., xhk
) is indistinguish-

able from an execution of Π with A and honest parties Ph1
, . . . ,Phk

taking
input/randomness (xh1

, Rh1
), . . . , (xhk

, Rhk
). Hence, since we already know that

the SU’s internal copy of S has an identical view as in its original operation as
shown above, it follows that an execution of SU taking as input randomness
and input pairs (xh1

, Rh1
), . . . , (xhk

, Rhk
) for simulated honest parties is indis-

tinguishable from an execution of Π with A and honest parties Ph1
, . . . ,Phk

taking the same randomness and input pairs (xh1
, Rh1

), . . . , (xhk
, Rhk

). Hence,
SU is execution-consistent, which completes the proof. ut

3.4 Functionalities FV with embedded Über Simulator SU

Assume that Π is a protocol which UC-securely implements the functionality F
using a simulator S. As it was already outlined in Section 1.1 we cannot hope that
a black-box approach which only focuses on inputs, randomness and messages
of a protocol Π allows us to equip F with the interfaces from Section 2.3, unless
Π is adaptively secure. Instead, we will additionally assume that there exists an
über simulator SU for the protocol Π as defined in Definition 8 that is internally
executed by the functionality wrapper FV presented in Figure 3, which can be
accessed by an ideal adversary (i.e. FV’s Simulator) interacting with FV through
interfaces Inputi and NMFSU . Moreover, FV allows SU to query global setup
functionalities F1, . . . ,Fn on behalf of honest parties.

The basic idea is that the internal copy of SU executed by FV will take care of
simulating the original protocol Π that realizes F being compiled into a publicly
verifiable protocol ΠV that realizes FV[F], while the external S interacting with
FV will take care of simulating the additional protocol steps and building blocks
used in obtaining public verifiability in ΠV. In order to do so, FV will param-
eterize SU with the inputs of all honest parties Pi, which are received through
interface Inputi. As the execution progresses, S executes the compiled protocol
ΠV (presented in Figures 6 and 7) with an internal copy A of the adversary and
extracts the messages of the original protocol Π being compiled from this execu-
tion, forwarding these messages to SU through the interface NMFSU . Moreover,
S will provide answers to queries to setup functionalities from A as instructed
by SU also through interface NMFSU . All the while, queries from honest parties
simulated by SU to setup functionalities are directly forwarded back and forth
by FV. If verification is ever activated by an honest party Pi (and Pi ∈ RIR), FV

not only leaks that party’s input to S but also leaks that party’s randomness Rhi

in the simulated execution with SU (provided by SU). As we discuss in Section 5,
this will allow S to simulate verification, since it now has both a valid transcript

20

of an execution of ΠV with A and a matching input and randomness pair that
matches that transcript (provided by FV with the help of SU).

We remark that this strategy does not give the simulator S any extra power
in simulating an execution of the compiled protocol ΠV towards A other than
the power the simulator for the original protocol Π already has. Notice that the
access to SU given by FV to S does not allow it to obtain any information about
the inputs of honest parties, since an execution with SU parameterized by these
inputs is indistinguishable from an execution with SU parameterized by random
inputs (as is the case with the original simulator) according to Definition 8.

Functionality FPJAuth (with tokens)

FPJAuth interacts with a set of authenticating parties P = {P1, . . . ,Pn}, a set of
public verifiers V and an ideal adversary S, who is allowed to corrupt a set I ⊂ [n]
of parties where |I| ≤ k for a fixed k < n. FPJAuth has an initially empty list L.

Message Input: Upon receiving a message (Input, sid, ssid,Pi,m) from a party
Pi ∈ P, send (Input, sid, ssid,Pi,m) to S. Upon receiving (Auth-Token, sid, ssid,
Pi,m, σi) from S, check that no such message was received previously, otherwise
output an error message and halt. Send (Auth-Token, sid, ssid,Pi,m, σi) to Pi
and ignore further Input messages with the same ssid.

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Pi,m)
from a party Pj ∈ P, send (Auth, sid, ssid,Pi,m) to S. Upon receiv-
ing (Auth-Token, sid, ssid,Pi,m, σj) from S, check that no such message
was received previously, otherwise output an error message and halt. Send
(Auth-Token, sid, ssid,Pi,m, σj) to Pj . If a message (Input, sid, ssid,Pi,m) has
been received from Pi ∈ P and (Auth, sid, ssid,Pi,m) has been received from all
parties Pj ∈ P for j 6= i, add (sid, ssid,Pi,m, σ1, . . . , σn) to L.

Public Verification: Upon receiving (Verify, sid, ssid,Pi,m, σ1, . . . , σn) from a
party Vi ∈ V, if (sid, ssid,Pi,m, σ1, . . . , σn) ∈ L, set v = 1, else set v = 0. Send
(Verify, sid, ssid,Pi,m, v) to Vi.

Fig. 4. Public Joint Authentication Functionality FPJAuth (with tokens).

4 Joint Authentication Functionalities
In this section, we define authentication functionalities that will serve as building
blocks for our compiler. Our functionalities allow for a set of parties to jointly
authenticate messages but do not deliver these messages themselves. Later on, a
verifier can check that a given message has indeed been authenticated by a given
set of parties, meaning that they have received this message through a channel
and agree on it. More interestingly, we introduce a functionality that allows for
a set of parties to jointly authenticate private messages that they do not know
(except in encrypted form) as well as inputs and randomness (which they also
only know in encrypted form). Later on, if a message is revealed (e.g. by the
sender) or an input is opened, a verifier can check that it corresponds to a given
secret value previously authenticated by a given set of parties.

As opposed to classical point-to-point or broadcast authenticated channels,
our functionalities do not deliver messages to the set of receiving parties and

21

consequently do not ensure consensus. These functionalities come into play in
our compiler later as they allow for verifiers to check that all parties who executed
a protocol agree on certain parts of the transcript (that might contain private
messages) regardless of how the messages in the transcript have been obtained.
Having the parties agree on which messages have been sent limits the adversary’s
power to generate an alternative transcript aiming at forging a proof that the
protocol reached a different outcome, which itself is highly related to Definition
5 from the previous section. Decoupling message authentication from delivery
allows for a cleaner model of non-interactive verification, where a verifier may
obtain a proof containing an authenticated protocol transcript at any point after
protocol execution itself (i.e. after messages are exchanged).

Public Joint Authentication. First, we focus on the simpler case of authen-
ticating public messages, which can be known by all parties participating in the
joint authentication procedure. In this case, the sender starts by providing a
message and ssid pair to the functionality and joint authentication is achieved
after each of the other parties sends the same pair back to the functionality.
This can be achieved by a simple protocol where all parties sign each message
received from each other party in each round, sending the resulting signatures
to all other parties. A message is considered authenticated if it is signed by all
parties. Notice that this protocol does not ensure consensus and can easily fail if
a single party does not provide a valid signature on a single message, which an
adversary corrupting any party (or the network) can always cause. However, this
failure is captured in the functionality and follows the idea of decoupling message
delivery from authentication. Functionality FPJAuth is described in Figure 4.

Secret Joint Authentication Departing from functionality FPJAuth captur-
ing the case of public communication, we will define a functionality FPSAuth

(described in Figure 5), which will capture the case of communication through
private channels. This functionality works similarly to FPJAuth, allowing parties
to jointly authenticate messages received through private channels to which they
have access. However, it also allows for bureaucrat parties who observe the en-
crypted communication (but do not see plaintext messages) over the private
channel to jointly authenticate a committed version of such plaintext messages.
If a private message is revealed by its sender (or one of its receivers) at a later
point, FPSAuth allows for third parties (including the bureaucrats that did not
see the plaintext message before) to verify that this message is indeed the one
that was jointly authenticated. As in the case of FPJAuth, FPSAuth does not aid
in communicating messages or authentication information in any way, reflecting
its nature as a pure joint authentication functionality where all communication
duties are left to the parties (or another protocol using FPSAuth).

In order to capture the different actions of each party it interacts with,
FPSAuth is parameterized by the following (sets of) parties: a party Psnd that
is allowed to input messages to be jointly authenticated; a set of parties P who
can read input messages given by Psnd and jointly authenticate them; a set of
bureaucrats B who do not see the message but jointly authenticate that Psnd has
sent a certain (still unknown) committed message to the parties P. Notice that

22

Functionality FPSAuth (with tokens)

FPSAuth interacts with a special party Psnd, a set of authenticating parties P =
{P1, . . . ,Pn}, a set of bureaucrats B = {B1, . . . ,Bb}, a set of public verifiers V (s.t.
B ⊂ V) and an ideal adversary S, who is allowed to corrupt a set I ⊂ {P ∪B} where
|I| ≤ k for a fixed k < n+ b. FPSAuth maintains an initially empty list L.

Message Input: Upon receiving a message (Input, sid, ssid,Psnd,m) from Psnd

ignore further Input messages with the same ssid. Send (Auth-Token, sid, ssid,
Psnd,m, σsnd) to Psnd and forward (Input, sid, ssid,Psnd) to S.

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Psnd,m)
from a party Pi ∈ P (resp. (Blind-Auth, sid, ssid,Psnd) from a bu-
reaucrat Bj ∈ B), if a message (Input, sid, ssid,Psnd,m) has been re-
ceived from Psnd, forward the AUTH (resp. Blind− Auth) to S. Upon receiv-
ing (Auth-Token, sid, ssid,Psnd,m, σi) (resp. (Auth-Token, sid, ssid,Psnd, σ̂j))
from S, check that no such message was received previously, otherwise
output an error message and halt. Send (Auth-Token, sid, ssid,Psnd,m, σi)
to Pi (resp. (Auth-Token, sid, ssid,Psnd, σ̂j) to Bj). Additionally, forward
(Auth, sid, ssid,Psnd) (resp. (Blind-Auth, sid, ssid,Psnd)) to S. If messages
(Auth, sid, ssid,Psnd,m) has been received from all parties Pi ∈ P and messages
(Blind-Auth, sid, ssid,Psnd) has been received from all bureaucrats Bj ∈ B, add
(sid, ssid,Psnd,m, σsnd, σ1, . . . , σn, σ̂1, . . . , σ̂b,⊥) to L.

Public Verification: Upon receiving (Verify, sid, ssid,Psnd,m, σsnd, σ1, . . . ,
σn, σ̂1, . . . , σ̂b) from a party Vi ∈ V, if (sid, ssid,Psnd,m, σsnd, σ1, . . . , σn, σ̂1, . . . ,
σ̂b,) ∈ L, set v = 1, else set v = 0. Send (Verify, sid, ssid,Psnd,m, v) to Vi.

Fig. 5. Secret Joint Authentication Functionality FPSAuth (with tokens).

FPSAuth does not aid in delivering the message input by Psnd either to parties
Pi ∈ P in plaintext message form nor to bureaucrats in committed form. More-
over, FPSAuth does not aid in sending notifications about sent messages nor joint
authentication information to any party. The responsibility for sending messages
(in plaintext or committed form) lies with Psnd, while the responsibility for no-
tifying any other party that plaintext verification is possible lies with Psnd or
parties Pi ∈ P, who are the only parties who can retrieve the message that
was jointly authenticated. The basic idea for realizing FPSAuth is using a signa-
ture scheme (captured by FSig) and a certified encryption scheme with plaintext
verification (captured by FCPKEPV), i.e. an encryption scheme with two crucial
properties: (1) An encrypting party is guaranteed to encrypt a message that
can only be opened by the intended receiver (i.e. it is possible to make sure the
public-key used belongs to the intended receiver of the encrypted messages); (2)
Both encrypting and decrypting parties can generate publicly verifiable proofs
that a certain message was contained in a given ciphertext. The private chan-
nel itself is realized by encrypting messages under the encryption scheme, while
joint authentication is achieved by having all parties in P (including the sender)
and bureaucrats in B sign the resulting ciphertext. In order to obtain efficiency,
a joint public/secret key pair is generated for each set of receivers, in such a
way that the same ciphertext can be decrypted by all the receivers holding the
corresponding joint secret key. Later on, if any party in P (including the sender)

23

wishes to start the verification procedure to prove that a certain message was
indeed contained in the ciphertext associated with a given ssid, it recovers the
plaintext message and a proof of plaintext validity from the ciphertext and sends
those to one or more verifiers. With these values, any party can first verify that
the ciphertext that was sent indeed corresponds to that message due to the
plaintext verification property of the encryption scheme and then verify that
it has been jointly authenticated by checking that there exist valid signatures
on that ciphertext by all parties in P and bureaucrats in B. The details of the
construction are described in Supplementary Material C.

Authenticating Inputs and Randomness To provide an authentication of
inputs and randomness we adapt the functionality FPSAuth, as the desired ca-
pabilities are like a message authentication without a receiver. Alternatively,
one could express it also in the context of non-interactive multi-receiver com-
mitments. In Supplementary Material D we present functionality FIRAuth that
implements this. The functionality works in the sense of cir of Definition 5, as
it allows each party to commit to a unique string (for input and randomness of
the protocol) towards all parties. We refer readers who are interested in an im-
plementation of FIRAuth to Section 4, as any realization of FPSAuth can easily be
adapted to FIRAuth. Notice that FIRAuth can be instantiated from n instances of
FPSAuth such that, for each Pi ∈ P interacting with FIRAuth, there is an instance
F iPSAuth where Pi acts as Psnd, the set of bureaucrats Bi of F iPSAuth is equal to
the set P of FIRAuth and the set P of F iPSAuth only contains Pi.
5 Compilation for Input-Revealing Protocols
We now show how to compile the protocols from Section 2.1 into non-interactively
verifiable counterparts. To achieve this we will in some cases only have to rely on
a signature functionality, whereas a compiler for the weakest protocols according
to Definition 5 needs rather strong additional tools such as the authentication
functionalities from the previous section. In this work we focus on protocols
according to Definition 5 and as such there are 8 different combinations of pa-
rameters (ν, µ) for (ν,RIR, µ)-transcript non-malleable protocols which we might
consider. Furthermore, according to Definition 2 we might either have public or
private verifier registration, which in total yields 16 different definitions. To
avoid redundancy we now outline how to achieve the respective verifiability in
each setting and a thorough analysis of a general technique that works for any
(ν,RIR, µ)-transcript non-malleable protocols. We simplify notation by just as-
suming the existence of a single verifier V.

5.1 How to make Protocols Verifiable

We now describe how to combine all the introduced building blocks and notation
from the previous sections to make a protocol verifiable. More specifically, we
take a (ν,RIR, µ)-transcript non-malleable protocol Π that UC realizes an ideal
functionality F in the (global) F1, . . . ,Fr-hybrid model with über simulator SU
and do the following:

1. We describe how to construct a protocol ΠV by modifying Π with access
to a signature functionality FSig, a key registration functionality FReg and

24

authentication functionalities FPJAuth,FPSAuth,FIRAuth. We will furthermore
require that we can replace the hybrid functionalities F1, . . . ,Fr used in Π
with verifiable counterparts.

2. We then show that ΠV UC-realizes FV[F] as described in Section 3.4 in the
(global) FV

1 , . . . ,FV
r -hybrid by constructing an explicit simulator SV.

For each of the different choices of ν and µ there is a different way how Π
must be compiled to ΠV and we will not formalize all 8 different possibilities
(and prove them secure) for the sake of conciseness. We will instead now explain
on a high level which transformations are necessary, and will then explain the
proof technique for the general case of making a (cir,RIR, cmes)-transcript non-
malleable version of any protocol that is (ν,RIR, µ)-transcript non-malleable.
This is the main step in obtaining a publicly verifiable version of an originally
(ν,RIR, µ)-transcript non-malleable protocol.

Protocol Compilation - The Big Picture. In order to verify we let the
verifier V simulate each such party whose output shall be checked and which
participated in an instance of Π. This check is done locally, based on the inputs,
randomness and messages related to such a party (and/or other parties) which
V obtains for this process. In case of public verifier registration we assume that
a bulletin board is available which holds the protocol transcript, whereas in case
of private registration the verifier contacts one of the protocol parties to obtain
a transcript which it can then verify non-interactively. We want to stress that
the Bulletin Board which may contain the protocol transcript does not have to
be used to exchange messages during the actual protocol run.

In Π we assume that messages can either be exchanged secretly between
two parties or via a broadcast channel. Furthermore, parties may send messages
to hybrid functionalities or receive them from these. An adversary may now be
able to replace certain parts of the protocol transcript. As long as we assume
that a protocol is (ν,RIR, µ)-transcript non-malleable and constrain his ability
to maul the protocol transcript to those parts permitted by the definition, the
overall construction achieves verifiability. We now explain, on a high level, the
modifications to Π for the different values of µ, ν:

µ = ncmes: Here the adversary is allowed to replace all messages by any party
at his will, and messages are just exchanged as in Π.

µ = chsmes: Before the protocol begins, each Pi first generates a signing key
with FSig and registers its signing key with FReg. Whenever a party Pi sends

a message m
(τ,ρ)
i,j to Pj it then uses FSig to authenticate m

(τ,ρ)
i,j with a signature

σ
(τ,ρ)
i,j . In such a case, V will later be able to correctly verify exactly those

messages of the transcript that were sent by honest parties, as A might fake
messages and signatures sent by dishonest parties after the fact.

µ = chmes: In this setting, each message that is either sent or received by an
honest party must remain unaltered. Each party will do the same as in the
case where µ = chsmes, but we additionally require that whenever a party

Pi receives a message m
(τ,ρ)
j,i from Pj then it then uses FSig to authenticate

m
(τ,ρ)
j,i with a signature σ

(τ,ρ)
j,i . Now V can establish for each message of the

25

protocol if both sender and receiver signed the same message, which will
allow A to only alter those messages that were both sent and received by
dishonest parties.

µ = cmes: We now also require that the dishonest parties cannot replace their
messages before verification. To achieve this, we use FPSAuth,FPJAuth as de-
fined in Section 4 which the parties must now use in order to register their
private message exchange. These functionalities FPSAuth,FPJAuth can then be
used by V in order to validate an obtained transcript.

ν = ncir: Based on each Pi setting up a key with FSig and registering it with FReg

let each party sign both its input xi and its randomness ri using FSig before
sending it in Activate Verification, which means that V only accepts such
signed values which it can verify via FSig. A can later replace the pairs
(xj , rj) of dishonest parties Pj by generating different signatures.

ν = cir: The parties will use the available functionality FIRAuth to authenticate
their inputs and randomness initially. Later, V can use FIRAuth to check
validity of the revealed xi, ri which it obtained for verification.

Hybrid Functionalities: As mentioned above we replace the auxiliary func-
tionalities F1, . . . ,Fr with NIV counterparts, i.e. with functionalities FV

1 , . . . ,FV
r

that have the same interfaces as defined in Definition 3. If we intend to
achieve public verifiability then each such FV

q must also be publicly verifi-
able, whereas in the case of private verifiability either type of functionality
is fine. For any such FV

q we can then establish if a certain message mresq,i
was indeed sent to Pi or not. If FV

q does also reveal inputs, then we can
furthermore test if mresi,q as claimed to be sent by Pi was indeed received
by the respective party.

5.2 Public Verifiability Compiler

We now show how to formally embed the aforementioned transformations into
a protocol in order to achieve non-interactive UC verifiability. The basic idea
of this construction is to turn any (cir,RIR, µ)-transcript non-malleable protocol
into a (cir,RIR, cmes)-transcript non-malleable protocol by forcing the adversary
to commit to all the corrupted parties’ randomness, inputs and messages. While
this might be overkill for some protocols, we focus on the worst case scenario
of compiling (cir,RIR, ncmes)-transcript non-malleable protocols, since it is the
most challenging. Note that, after making a protocol (cir,RIR, cmes)-transcript
non-malleable, the protocol execution becomes deterministic and can be verified
upon the revealing of the randomness, input and transcript of any party that
activates the verification. All the verifier has to do is to execute the protocol’s
next message function on these randomness and input taking received messages
from the transcript. If a corrupted party who activates verification attempts to
cheat by revealing fake values for randomness, input and transcript, it is caught
because those values were committed to. Apart from having all parties commit
to jointly authenticated versions of their randomness, inputs and transcripts,
the protocol we present requires an authenticated bulletin board where this
information is posted in the clear if a party activates verification revealing its
input and randomness. We remark that the bulletin board is not necessary for

26

employing our techniques, since the values revealed for verification can simply be
(unreliably) been sent among parties. We use a trusted bulletin board in order to
focus on the important aspects of applying our techniques to existing protocols
without the distraction of analyzing all corner cases that arise from operating on
unreliable verification data. We stress that in these cases no adversary would be
able to force verification to succeed for a cheating party or produce a fake proof
showing an honest party cheated. Moreover, the overhead of FPSAuth and FPJAuth

can be avoided if instead of a (cir,RIR, µ)-transcript non-malleable protocol we
use as the starting point a (cir,RIR, cmes)-transcript non-malleable protocol or
at least reduced if we depart from another protocol where some of the messages
are naturally fixed (e.g. a (cir,RIR, chmes)-transcript non-malleable protocol).

Given a (ν,RIR, µ)-transcript non-malleable protocol Π = (nmes, out) that
UC realizes an ideal functionality F in the (global) F1, . . . ,Fr-hybrid model with
über simulator SU, we construct a protocol ΠV that UC-realizes the publicly ver-
ifiable ideal functionality FV[F] in the FPSAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r -

hybrid model. Protocol ΠV is described in Figures 6 and 7.

Protocol ΠV

ΠV is parameterized by a protocol Π with next message function nmes and out-
put function out as defined in Section 2.1. ΠV uses functionalities FBB,FPSAuth,
FPJAuth,FIRAuth as well as global hybrid functionalities FV

1 , . . . ,FV
r where Π has used

possibly non-verifiable versions thereof. All of these functionalities are available to the
verifiers V. Set up one copy F (i,j)

PSAuth for any private communication where Pi is Psnd,
Pj acts as authenticating party and all other parties P \ {Pi,Pj} are bureaucrats.
Initially, the parties will run any necessary Initialization of the functionalities in-
volved such as to e.g. register keys. They then do the following:

Inputi: On input xi party Pi sends (Input, sid,Pi, (xi, ri)) to FIRAuth, while each
Pj ∈ P \ {Pi} sends (Blind-Auth, sid,Pi,Pj). Afterwards, Pi runs Π.Inputi.

Compute(τ): Each Pi does the following:
1. For every ρ ∈ [Hτ], first run the 4 steps of Π.Compute(τ).

2. If Pi sent a broadcast message m in round ρ, then Pi sends (Input, sid, ssid,
Pi,m) to FPJAuth while each Pj ∈ P \ {Pi} sends (Auth, sid, ssid,Pi,m).

3. If Pi sent private messages, then for the receiver Pj of message m
(τ,ρ)
i,j Pi sends

(Input, sid, ssid,Pi,m) to F (i,j)
PSAuth while Pj sends (Auth, sid, ssid,Pi,m) and

each bureaucrat sends (Blind-Auth, sid, ssid,Pi).

Output
(τ)
i : Pi does the same as in Π.Output

(τ)
i .

Register Verifier: V sends (Register, sid) to each FV
q for q ∈ [r].

Activate Verification: On input (Activate-Verification, sid, open-i,
open-input-i), Pi does the following:
1. Send (Activate-Verification, sid, 1) to each FV

q for q ∈ [r].

2. If open-input-i = 1, then post xi, ri,N·,i,M·,j on FBB.

Fig. 6. The protocol ΠV which makes the (cir,RIR, µ)-transcript non-malleable proto-
col Π publicly verifiable.

27

Protocol ΠV (Continuation)

Verifyk: V on input k, a, b(1), . . . , b(G) does the following:
1. For party Pj check that xj , rj ,N·,j ,M·,j are on FBB. Otherwise output

(Cannot-Verify, sid, j).
For each functionality FV

q verify that N·,i is valid by doing the following:

– If FV
q is Input-Private then send (Verify, sid, j, b

(1)
j,q , . . . , b

(G)
j,q) for each

j ∈ [n], where b
(1)
j,q , . . . , b

(G)
j,q are taken from N·,j . If either FV

q returns
(Verify, sid, j, B) with B 6= ∅ or (Cannot-Verify, sid, j) then output
(Cannot-Verify, sid, j).

– If FV
q is Input-Revealing then instead send (Verify, sid, j, xj,q, b

(1)
j,q , . . . , b

(G)
j,q)

where xj,q is derived from the protocol execution. If either FV
q returns

(Verify, sid, j, f, B) with B 6= ∅, f = 0 or if it returns (Cannot-Verify,
sid, j) then output (Cannot-Verify, sid, j).

2. Run the protocol Π by simulating Pj using the next message function nmes

using N·,j ,M·,j with input xj and randomness rj until an output a can
be obtained by the output function out. Check for each broadcast message
generated for Pj by nmes (resp. contained in M·,j) that this message was sent
(resp. received) via FPJAuth and similarly verify private messages generated for
Pj by nmes (resp. contained in M·,j) from (resp. to) Pj to (resp. from) Pi via

F (i,j)
PSAuth. In case of any inconsistency, output (Cannot-Verify, sid, k).

Then define f = 1 if a = xj and f = 0 otherwise as well as B = {τ ∈ [G] | y(τ) 6=
out(k, xk, rk, s, ρ,M·,k,N·,k)} and return (Verify, sid, k, f, B).

Fig. 7. A protocol ΠV that makes the (cir,RIR, cmes)-transcript non-malleable protocol
Π publicly verifiable (continuation).

Theorem 1. Let Π be a (cir,RIR, µ)-transcript non-malleable protocol that UC
realizes an ideal functionality F in the (global) FV

1 , . . . ,FV
r -hybrid model with

über simulator SU. Then ΠV UC-realizes the publicly verifiable ideal functionality
FV[F] in the FPSAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r -hybrid model.

Proof. In order to prove Theorem 1 we construct a simulator S that interacts
with environment Z, functionality FV[F], global functionalities FV

1 , . . . ,FV
r and

a internal copy of an adversary A who may corrupt a subset I ⊂ P of size
at most k while S will simulate the remaining parties I = P \ I as well as
the resources used in ΠV. S forwards all communication between A and Z. S
simulates setup functionalities FPSAuth,FPJAuth,FIRAuth,FBB,FV

1 , . . . ,FV
r exactly

as they are described, except for when alternative behavior is described
The rationale in our construction of S is straightforward: it takes care of

simulating the extra interfaces added to F by FV[F] (along with the extra setup
functionalities FPSAuth,FPJAuth,FIRAuth,FBB), while delegating simulation of the
original Π to its über simulator SU incorporated into FV[F]. In the Input phase
of ΠV, S sends a message the NMFSU interface of FV[F] with any messages re-
ceived from A. S forwards to A any messages returned by SU through NMFSU

(i.e. the messages of simulated honest parties) by simulating messages being
sent from honest parties directly to A and, if necessary, simulating messages

28

sent through FPSAuth,FPJAuth,FBB. This allows SU to extract A’s inputs and
forward them to F inside the wrapper FV[F]. For the Compute and Output
phases of ΠV, S forwards all requests from A to the über simulator SU for the
original protocol Π through the NMFSU interface of FV[F]. Upon receiving
a response from SU, it forwards it back to A. Apart from forwarding direct
communication between A and simulated honest parties to SU, it also simulates
FPSAuth,FPJAuth,FIRAuth,FBB, verifying messages to simulated honest parties that
should also be forwarded to SU are properly authenticated and later simulating
SU’s response being authenticated by the right functionality as coming from the
right simulated honest party. If verification is initiated by A, S checks that A has
provided correct authentication data according to ΠV, in which case it activates
verification through the Activate Verification interface of FV[F] (otherwise it
does not). If verification is initiated by an honest party, S obtains from FV[F] the
randomness and input (ri, xi) used by the honest party Pi who initiated verifica-
tion and simulates that honest party initiating verification with (ri, xi,N·,i,M·,i)
towards A by simulating these values being posted to FBB and simulating FIRAuth

authenticating the opening to (ri, xi), where N·,i,M·,i are generated according
to the simulated execution towards A. Finally, S simulates verification by act-
ing exactly as in ΠV and forwarding queries to the Verifyj interface of FV[F].
Also, if A produced incorrect verification data for some of the corrupted parties,
S instructs FV[F] to make verification activation queries for the corresponding
parties to fail.

In order to see why the simulation with S is indistinguishable from a real
execution of ΠV, we will first analyze the simulation of the Input, Compute and
Output phases. S follows the exact steps of ΠV and delegates the simulation
of the underlying protocol Π to its über simulator SU incorporated into FV[F].
Notice that SU is parameterized with the randomness and input from honest
parties by definition of FV[F]. Since S also forwards all communication between
SU, this part of the simulation is indistinguishable from a real execution by SU’s
properties according to Definition 8. It remains to be shown that a simulation of
the Activate Verification and Verifyk phases with S is also indistinguishable
from a real execution of these phases with A. First, notice again that, since SU is
an über simulator parameterized as discussed before, according to Definition 8
all the transcript N·,i,M·,i forwarded between SU and A is consistent with the
inputs and randomness (ri, xi) obtained from FV[F]. Next, notice that, since
the randomness and inputs of all parties are committed to using FIRAuth and all
messages between corrupted parties controlled by A and honest parties simu-
lated by S (with the help of SU) are authenticated using FPJAuth,FPSAuth, the
execution of Π during the Input, Compute and Output phases is equivalent the
execution of a (cir,RIR, cmes)-transcript non-malleable protocol in the game of
Definition 5 (where the parties are not allowed to alter their randomness, input
and transcript after the protocol is executed). Notice also that executing the
verification procedure of ΠV is equivalent to performing the procedures of the
challenger in the game of Definition 5. Hence, when S executes the verification
phase by following the steps of ΠV, it is guaranteed by Definition 5 to arrive at

29

the correct result about the presence of cheating parties (or lack thereof). Since
S either allows verification to succeed or makes it fail according to the checks
it performs following the instructions of ΠV and those checks detect cheating
correctly with all but negligible probability (by Definition 5), that proves the
remaining case and concludes our proof.

References

1. Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. Incoercible
multi-party computation and universally composable receipt-free voting. In
Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 763–780. Springer, Heidelberg, August 2015.

2. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, pages 443–458. IEEE Computer Society Press, May 2014.

3. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with
public verifiability. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012,
volume 7658 of LNCS, pages 681–698. Springer, Heidelberg, December 2012.

4. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure
multi-party computation. In Michel Abdalla and Roberto De Prisco, editors, SCN
14, volume 8642 of LNCS, pages 175–196. Springer, Heidelberg, September 2014.

5. Carsten Baum, Bernardo David, and Rafael Dowsley. Insured mpc: Efficient secure
computation with financial penalties. Financial Cryptography and Data Security
(FC) 2020. Full version available at https://eprint.iacr.org/2018/942.

6. Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty
computation with identifiable abort. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 461–490. Springer, Heidelberg,
October / November 2016.

7. Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Ef-
ficient constant-round MPC with identifiable abort and public verifiability, 2020.

8. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 421–439. Springer, Heidelberg, August 2014.

9. Vitalik Buterin et al. A next-generation smart contract and decentralized applica-
tion platform. white paper, 2014.

10. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

11. Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. UC commitments for
modular protocol design and applications to revocation and attribute tokens. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 208–239. Springer, Heidelberg, August 2016.

12. Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Uc-secure non-
interactive public-key encryption. In 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017, pages 217–
233. IEEE Computer Society, 2017.

13. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

30

https://eprint.iacr.org/2018/942

14. Ran Canetti. Universally composable signature, certification, and authentication.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

15. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

16. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 380–403. Springer, Heidelberg,
March 2006.

17. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with
a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 2014, pages 597–608. ACM Press, November 2014.

18. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 565–582. Springer, Heidelberg, August 2003.

19. Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

20. Ignacio Cascudo and Bernardo David. SCRAPE: Scalable randomness attested by
public entities. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors,
ACNS 17, volume 10355 of LNCS, pages 537–556. Springer, Heidelberg, July 2017.

21. Ignacio Cascudo and Bernardo David. ALBATROSS: publicly attestable batched
randomness based on secret sharing. In Shiho Moriai and Huaxiong Wang, edi-
tors, Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference
on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part III, volume 12493 of Lecture
Notes in Computer Science, pages 311–341. Springer, 2020.

22. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theor. Comput. Sci., 777:155–183, 2019.

23. Richard Cleve. Limits on the security of coin flips when half the processors are
faulty (extended abstract). In 18th ACM STOC, pages 364–369. ACM Press, May
1986.

24. Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer, Heidelberg, August
1998.

25. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662.
Springer, Heidelberg, August 2012.

26. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

27. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, edi-
tors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer,
Heidelberg, April 2015.

31

28. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computa-
tion with identifiable abort. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 369–386. Springer, Heidel-
berg, August 2014.

29. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

30. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

31. Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-
ties. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 418–429. ACM Press,
October 2016.

32. Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of Cryptology, 25(4):680–722, October 2012.

33. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

34. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 681–700. Springer, Heidelberg, August 2012.

35. David Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages
129–146. Springer, Heidelberg, January 2000.

36. Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty com-
putation from threshold homomorphic cryptosystems. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, ACNS 15,
volume 9092 of LNCS, pages 3–22. Springer, Heidelberg, June 2015.

Supplementary Material

A Auxiliary Functionalities

Digital Signatures Ideal Functionality FSig. The standard digital signature func-
tionality FSig from [14] is presented in Figure 8. It is also shown in [14] that any
EUF-CMA signature scheme UC realizes this functionality.

Key Registration Ideal Functionality FReg. The key registration functionality
FReg from [16] is presented in Figure 9. This ideal functionality allows parties to
register public-keys in such a way that other parties can retrieve such keys with
the guarantee that they belong to the party who originally registered them. This
functionality will be used as setup for the constructions of certified public-key
encryption with plaintext verification and secret joint authentication of Section 4.

32

Functionality FSig

Given an ideal adversary S, verifiers V and a signer Ps, FSig performs:

Key Generation: Upon receiving a message (keygen, sid) from Ps, verify that
sid = (Ps, sid′) for some sid′. If not, ignore the request. Else, hand (keygen, sid)
to the adversary S. Upon receiving (verification key, sid, SIG.vk) from S, output
(verification key, sid, SIG.vk) to Ps, and record the pair (Ps, SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid′) for some sid′ . If not, then ignore the request. Else, send (sign,
sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify that no entry
(m,σ, SIG.vk, 0) is recorded. If it is, then output an error message to Ps and halt.
Else, output (signature, sid,m, σ) to Ps, and record the entry (m,σ,SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ,SIG.vk′)
from some party Vi ∈ V, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiving
(verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f =
1. (This condition guarantees completeness: If the verification key SIG.vk′ is
the registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the entry
(m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is the reg-
istered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m,σ, SIG.vk′, f ′) recorded, then let f = f ′. (This con-
dition guarantees consistency: All verification requests with identical parameters
will result in the same answer.)

4. Else, let f = φ and record the entry (m,σ,SIG.vk′, φ).

Output (verified, sid,m, f) to Vi.

Fig. 8. Functionality FSig for Digital Signatures.

Functionality FReg

FReg interacts with a set of parties P and an ideal adversary S, proceeding as follows:

Key Registration: Upon receiving a message (register, sid, pk) from a party Pi ∈
P, send (Registering, sid, pk) to S. Upon receiving (sid, ok) from S, and if this is
the first message from Pi, then record the pair (Pi, pk).

Key Retrieval: Upon receiving a message (Retrieve, sid,Pj) from a party Pi ∈ P,
send message (Retrieve, sid,Pj) to S and wait for it to return a message (Retrieve,
sid, ok). Then, if there is a recorded pair (Pj , pk) output (Retrieve, sid,Pj , pk) to
Pi. Otherwise, if there is no recorded tuple, return (Retrieve, sid,Pj ,⊥).

Fig. 9. Functionality FReg for Key Registration.

33

Bulletin Board Ideal Functionality FBB. In Figure 10 we describe an authenti-
cated bulletin board functionality which is used throughout this work. Authen-
ticated Bulletin Boards can be constructed from regular bulletin boards using
FSig,FReg and standard techniques.

Functionality FBB

FBB interacts with a set of parties P and an ideal adversary S, proceeding as follows:

Register: Upon receiving (Init, sid,P) by all parties in a set P = {P1, . . . ,Pn}
where sid was not used before, store P locally.

Write: Upon receiving (Write, sid, ssid,P,m) from a party Pi ∈ P, where ssid
was not used before for this sid, store the message m as (sid, ssid, i,m).

Read: Upon receiving (Read, sid) from any party (possibly outside P), the func-
tionality returns all (sid, ssid, i,m) that were stored.

Fig. 10. Functionality FBB for an authenticated Bulletin Board.

B UC Secure Public-Key Encryption and Constructions

It is well-known that the standard public-key encryption functionality FPKE

from [13,16] can be UC-realized by any IND-CCA secure public-key encryp-
tion scheme. One of the main building blocks we use is a UC-secure public-
key encryption with a plaintext verification property formalized as functionality
FPKEPV that is presented in Section 4. In order to realize FPKEPV, we will show
that it is possible to generate proofs that a given plaintext message was contained
in a given ciphertext for the random oracle-based IND-CCA secure public-key
encryption schemes of [35,24].

Semantics of a public-key encryption scheme. We consider public-key encryption
schemes PKE that have public-key PK, secret key SK, messageM, randomness
R and ciphertext C spaces that are functions of the security parameter κ, and
consist of a PPT key generation algorithm KG, a PPT encryption algorithm

Enc and a deterministic decryption algorithm Dec. For (pk, sk)
$← KG(1κ), any

m ∈ M, and ct
$← Enc(pk,m), it should hold that Dec(sk, ct) = m with over-

whelming probability over the used randomness. Moreover, we consider public-
key encryption schemes that are IND-CCA secure according to the definition
considered in [13,16].

The Pointcheval [35] IND-CCA secure Cryptosystem. This cryptosystem can
be constructed from any Partially Trapdoor One-Way Injective Function in the
random oracle model. First we recall the definition of Partially Trapdoor One-
Way Functions. As observed in [35], the classical El Gamal cryptosystem is a
partially trapdoor one-way injective function under the Computational Diffie

34

Hellman (CDH) assumption, implying an instantiation of this cryptosystem un-
der CDH.

Definition 9 (Partially Trapdoor One-Way Function [35]). The function
f : X × Y → Z is said to be partially trapdoor one-way if:

– For any given z = f(x, y), it is computationally impossible to get back a
compatible x. Such an x is called a partial preimage of z. More formally, for
any polynomial time adversary A, its success, defined by SuccA = Prx,y[∃y′,
f(x′, y′) = f(x, y)|x′ = A(f(x, y))], is negligible. It is one-way even for just
finding partial-preimage, thus partial one-wayness.

– Using some extra information (the trapdoor), for any given z ∈ f(X ×Y), it
is easily possible to get back an x, such that there exists a y which satisfies
f(x, y) = z. The trapdoor does not allow a total inversion, but just a partial
one and it is thus called a partial trapdoor.

Let’s now recall the construction of [35], which is presented in Definition 10.

Definition 10 (Pointcheval [35] IND-CCA secure Cryptosystem). Let
T D be a family of partially trapdoor one-way injective functions and let H :
{0, 1}|m|+κ → Y and G : X → {0, 1}|m|+κ be random oracles, where |m| is
message length. This cryptosystem consists of a triple of algorithms PKE =
(KG,Enc,Dec) that work as follows:

– KG(1κ): Sample a random partially trapdoor one-way injective function f :
X ×Y → Z from T D and denote its inverse parameterized by the trapdoor by
f−1 : Z → X . The public-key is pk = f and the secret key is sk = (f, f−1).

– Enc(pk,m): Sample r
$← X and s

$← {0, 1}κ. Compute a ← f(r,H(m ‖ s))
and b = (m ‖ s)⊕G(r), outputting ct = (a, b) as the ciphertext.

– Dec (sk, ct): Given a ciphertext ct = (a, b) and secret key sk = f−1, compute
r ← f−1(a) and M ← b⊕G(r). If a = f(r,H(M)), parse M = (m ‖ s) and
output m. Otherwise, output ⊥.

Properties of the Pointcheval [35] IND-CCA secure Cryptosystem. First, no-
tice that this construction can be instantiated in the restricted observable and
programmable global random oracle model of [10]. Next, we observe that this
construction is witness recovering, meaning that it allows for the decrypting
party to recover all of the randomness used in generating a ciphertext (i.e. r
and s). Moreover, this construction is committing, meaning that it is infeasible
for an adversary to obtain two pairs of messages and randomness that result
in the same ciphertext. We now recall the definitions of witness recovering and
committing encryption schemes.

Definition 11 (Witness-Recovering Public-Key Encryption). A public-
key encryption scheme is witness-recovering if its decryption algorithm Dec takes
as input a secret key sk ∈ SK and a ciphertext ct ∈ C and outputs either a pair

(m, r) for m ∈ M and r ∈ R or an error symbol ⊥. For any (pk, sk)
$← KG(1κ),

any m ∈ M, any r
$← R and c← Enc(pk,m; r), it holds that Dec(sk, ct) = (m, r)

with overwhelming probability over the randomness used by the algorithms.

35

Definition 12 (Committing Encryption). Let PKE be a public-key encryp-
tion scheme and κ a security parameter. For every PPT adversary A, it holds
that:

Pr

Enc(pk,m0; r0) = Enc(pk,m1; r1)

∣∣∣∣∣∣∣∣
pk

$← PK,
(r0, r1,m0,m1)

$← A(pk),
r0, r1 ∈ R,m0,m1 ∈M,

m0 6= m1

 ∈ negl(κ)

The Pointcheval [35] IND-CCA secure Cryptosystem is trivially witness-
recovering since a decrypting party always recovers the randomness (r, s) used
for generating a ciphertext. In order to see why it is also committing, notice that
an adversary can only make a polynomial number of queries to H(·), so it can
only find a pair (m′, s′) such that (m′, s′) 6= (m, s) and H(m ‖ s) = H(m′ ‖ s′)
with negligible probability. Analogously, the adversary can only find an r′ such
that r′ 6= r and G(r) = G(r′) with negligible probability. Hence, since f is injec-
tive, the adversary can only find (m′, s′, r′) such that (m′, s′, r′) 6= (m, s, r) and
f(r′, H(m′ ‖ s′)) = f(r,H(m ‖ s)) with negligible probability.

Plaintext Verification for the Pointcheval [35] IND-CCA secure Cryptosystem.
We first extend the semantics of public-key encryption by adding a plaintext
verification algorithm {0, 1} ← V(ct,m, π) that outputs 1 if m is the plain-
text message contained in ciphertext ct given a valid proof π that also con-
tains the public-key pk used to generate the ciphertext. Furthermore, we modify

the encryption and decryption algorithms as follows: (ct, π)
$← Enc(pk,m) and

(m, π) ← Dec(sk, ct) now output a valid proof π that m is contained in ct. The
security guarantees provided by the verification algorithm are laid out in Def-
inition 13. Notice that this definition only considers cryptosystems where the
proof π consists of the randomness used by the encryption algorithm, which is
enough for our version of the Pointcheval [35] IND-CCA secure cryptosystem
with plaintext verification. A generalization of this definition follows by defining
the space of plaintext validity proofs and requiring that π, π′ are in that space,
as well as that the adversary provides ct, since it might not be computable from
(m,π).

Definition 13 (Plaintext Verification). Let PKE = (KG,Enc,Dec,V) be a
public-key encryption scheme and κ be a security parameter. For every PPT
adversary A, it holds that:

Pr

V(ct,m′, π′) = 1

∣∣∣∣∣∣∣∣
pk

$← PK,
(m, π,m′, π′)

$← A(pk),
π = (pk, r), π′ = (pk, r′) ∈ PK ∪R,

m,m′ ∈M, (ct, π)← Enc(pk,m; r),m′ 6= m

 ∈ negl(κ)

We can extended the Pointcheval [35] IND-CCA secure cryptosystem to add
plaintext verification as follows:

36

Definition 14 (Pointcheval [35] IND-CCA Secure Cryptosystem with
Plaintext Verification). Let T D be a family of partially trapdoor one-way
injective functions and let H : {0, 1}|m|+κ → Y and G : X → {0, 1}|m|+κ be
random oracles, where |m| is message length. This cryptosystem consists of the
algorithms PKE = (KG,Enc,DecV) that work as follows:

– KG(1κ): Same as in Definition 10.
– Enc(pk,m): Same as in Definition 10 but also output a proof π = (pk, r, s)

(i.e. the encryption randomness) besides the ciphertext ct = (a, b).
– Dec(sk, ct): Same as in Definition 10 but also output a proof π = (pk, r, s)

(i.e. the retrieved encryption randomness) besides the plaintext message m.
– V(ct,m, π): Parse π = (pk, r, s), compute ct′ ← Enc(pk,m, (r, s)) and output

1 if and only if ct = ct′.

Using the facts that this cryptosystem is witness-recovering and committing,
both the encrypting and decrypting parties can generate a proof π = (pk, r, s)
that a message m was encrypted under public-key pk with randomness (r, s) re-
sulting in ciphertext ct. Notice that the witness-recovering property ensures that
a decrypting party is able to recover the randomness (r, s) too. Any third party
verifier with input (ct,m, π) can execute the verification algorithm V(ct,m, π)
and obtain 1 if and only if π is a valid proof that m is contained in ct. Notice
that an adversary cannot present two different triples (m, s, r) and (m′, s′, r′)
that pass this test with the same public-key pk except with negligible proba-
bility, since the cryptosystem is committing as discussed above. Assuming by
contradiction that such an adversary A exists, we can construct an adversary A′
that wins the game of Definition 12 with non-negligible probability. Adversary
A′ receives pk from the challenger in the game of Definition 12 and then acts
as the challenger in the game of Definition 13, relaying pk to A. Upon receiving
(m, π,m′, π′) from A, it relays (m, π,m′, π′) to the the challenger in the game
of Definition 12 as (r0, r1,m0,m1). Notice that, for the extended cryptosystem
above, 1← V(ct,m, π) occurs if and only if ct = ct′, where ct′ ← Enc(pk,m; (r, s))
and π = (pk, r, s). This implies that, if adversary A wins the game of Defini-
tion 13 with non-negligible probability, it is able to produce two messages m,m′

and corresponding proofs π = (pk, r, s), π′ = (pk′, r′, s′) for which m 6= m′ and
Enc(pk,m;π = (r, s)) = Enc(pk,m′;π′ = (r′, s′)) with non-negligible probability.
Hence, adversary A′ wins the game of Definition 12 with non-negligible proba-
bility.

C Realizing the Secret Joint Authentication Functionality

C.1 Realizing FPSAuth

The basic idea for realizing FPSAuth is using a signature scheme (captured by
FSig) and a certified encryption scheme with plaintext verification (captured by
FCPKEPV), i.e. an encryption scheme with two crucial properties: 1. An encrypt-
ing party is guaranteed to encrypt a message that can only be opened by the

37

intended receiver (i.e. it is possible to make sure the public-key used belongs to
the intended receiver of the encrypted messages); 2. Both encrypting and de-
crypting parties can generate publicly verifiable proofs that a certain message
was contained in a given ciphertext. The private channel itself is realized by
encrypting messages under the encryption scheme, while joint authentication is
achieved by having all parties in P (including the sender) and bureaucrats in B
sign the resulting ciphertext. In order to obtain efficiency, a joint public/secret
key pair is generated for each set of receivers, in such a way that the same ci-
phertext can be decrypted by all the receivers holding the corresponding joint
secret key. Later on, if any party in P (including the sender) wishes to start the
verification procedure to prove that a certain message was indeed contained in
the ciphertext associated with a given ssid, it recovers the plaintext message
and a proof of plaintext validity from the ciphertext and sends those to one or
more verifiers. With these values, any party can first verify that the ciphertext
that was sent indeed corresponds to that message due to the plaintext verifica-
tion property of the encryption scheme and then verify that it has been jointly
authenticated by checking that there exist valid signatures on that ciphertext
by all parties in P and bureaucrats in B.

In order to obtain FCPKEPV, we first define and realize an ideal functionality
for public-key encryption with plaintext verification FPKEPV. This functionality
and the protocol that realizes it are extensions of the results of [13,18], which
show that IND-CCA secure encryption schemes UC realize the standard public-
key encryption functionality. In our definition and construction, we show that
IND-CCA encryption scheme with an additional plaintext verification property
(e.g. as the scheme discussed in Section B) UC realize FPKEPV. Building on
FPKEPV and a key registration functionality FReg, we define and realize FCPKEPV.
We again extend a functionality and protocol from [16], which shows that certi-
fied public-key encryption can be realized from the standard public-key encryp-
tion functionality and FReg. Following a similar approach, we show a protocol
based on FPKEPV and FReg that UC realizes FCPKEPV.

Public-Key Encryption with Plaintext Verification FPKEPV We will use
a public-key encryption scheme that allows for both the party generating a ci-
phertext and the party decrypting it to obtain a publicly verifiable proof that
a given message was contained in such ciphertext. Notice that this is not a
zero-knowledge proof, but a proof whose verification requires the message to be
revealed. We model such an encryption scheme by functionality FPKEPV, which
is an extension of the standard public-key encryption functionality FPKE from
[13,18] with a new plaintext verification interface for verifying that a given plain-
text was contained in a given ciphertext. This plaintext verification interface is
incorporated into the functionality following the same approach as in [13,18]: the
functionality first looks up the corresponding ciphertext and message pair on an
internal list (i.e. where it should be in case the ciphertext was generated by the
functionality), returning 1 is such a pair exists; otherwise, if the ciphertext is
not contained in this internal list (i.e. it has been generated by an adversary

38

in a potentially incorrect way), the functionality performs the verification pro-
cedure internally, by attempting to decrypt the ciphertext and then executing
the verification algorithm taking as input the ciphertext along with the result-
ing plaintext message and proof, returning the output of this algorithm to the
verifier. It is well-known that IND-CCA secure public-key encryption schemes
can be used to realize FPKE as defined in [13,18], but we will show that there
exist IND-CCA secure public-key encryption schemes [35,24] that also realize
our extended functionality FPKEPV.

Realizing FPKEPV It is known [13,18] that an IND-CCA secure public encryp-
tion scheme realizes the key generation, encryption and decryption interfaces of
FPKEPV (without generating proofs), which correspond to the standard public-
key encryption functionality FPKE from [13,18]. The missing pieces in realizing
our formulation of FPKEPV are algorithms for generating and verifying proofs
that a given plaintext is contained in a given ciphertext produced by a IND-
CCA secure public encryption scheme. Notice that these proofs need not to be
zero-knowledge, as they can be verified given the plaintext message and the
corresponding ciphertext. We use the version of Pointcheval’s IND-CCA secure
cryptosystem [35] with plaintext verification from Section B to realize FPKEPV

following the same approach as in [13,18]. This generic construction works in the
restricted programmable and observable random oracle model [10] and can be
instantiated from the CDH assumption.

We realize FPKEPV by extending the encryption protocol πPKE of [13,18],
which is constructed from any IND-CCA secure cryptosystem PKE = (KG,Enc,Dec).
We obtain a protocol πPKEPV that realizes FPKEPV based on an IND-CCA public-
key encryption scheme with plaintext verification PKE = (KG,Enc,Dec,V) as de-
fined in Section B. Protocol πPKEPV works as follows: Upon receiving (KeyGen,

sid,Pown), Pown executes (sk, pk)
$← KG(1κ), records sk and returns pk. Upon re-

ceiving a message (Encrypt, sid,Pown, e′,m), any party Pi ∈ P outputs ct where

(ct, π)
$← Enc(e′,m) if m ∈ M (otherwise it outputs an error message). Upon

receiving (Decrypt, sid,Pown, c), Pown outputs m where (m,π) ← Dec(sk, c).
Upon receiving a message (Verify, sid,Pown, c,m, π), a verifier Vi ∈ V outputs
b where b← V(c,m, π).

We will prove that the public-key encryption scheme with plaintext verifica-
tion of Definition 14 can be used to instantiate ΠPKEPV in such a way that it
realizes FPKEPV. We leave a more general proof as a future work.

Theorem 2. Let PKE = {KG,Enc,Dec,V} be the public-key encryption scheme
with plaintext verification of Definition 14. Protocol ΠPKEPV instantiated with
PKE UC realizes FPKEPV in the restricted programmable and observable random
oracle model [10].

Proof. In order to prove this construction securely realizes FPKEPV, we con-
struct a simulator such that no environment can distinguish an ideal execu-
tion with this simulator and FPKEPV from a real execution of ΠPKEPV with
any adversary A and dummy parties. Notice that the steps of ΠPKEPV dealing

39

Functionality FPKEPV

FPKEPV interacts with a special decrypting party Pown, a set of parties P, a set of
public verifiers V and an ideal adversary S. FPKEPV is parameterized by a message
domain ensemble M = {Mk}k∈N , a family of formal encryption algorithms {Ee}e,
a family of formal decryption algorithms {Dd}d for unregistered ciphertexts and a
family of formal plaintext verification algorithms {Vv}v. FPKEPV proceeds as follows:

Key Generation: Upon receiving a message (KeyGen, sid,Pown) from a party
Pown ∈ P (or S), proceed as follows:

1. Send (KeyGen, sid,Pown) to S.
2. Receive a value e from S.
3. Record e and output e to Pown.

Encryption: Upon receiving a message (Encrypt, sid,Pown, e
′,m) from a party

Pi ∈ P, proceed as follows:

1. If m /∈M , then return an error message to Pi.
2. If m ∈M , then:

– If Pown is corrupted, or e′ 6= e, then compute (c, π)← Ek(m).
– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Pown, c) from Pown, proceed

as follows (if the input is from another party then ignore):

1. If there is a recorded tuple (c,m, π), then hand (m,π) to Pown. (If there is
more than one value m that corresponds to c then unique decryption is not
possible. In that case, output an error message to Pown).

2. Otherwise, compute (m,π)← D(c) and hand (m,π) to Pown.

Plaintext Verification: Upon receiving a message (Verify, sid,Pown, c,m, π) from
a verifier Vi ∈ V, proceed as follows:

1. If there is a recorded tuple (c,m, π), then output 1 to Vi.
2. Otherwise, compute b← V (c,m, π), outputting b to Vi.

Fig. 11. Public-Key Encryption Functionality with Plaintext Verification FPKEPV.

with messages (KeyGen, sid,Pown), (Encrypt, sid,Pown, e′,m) and (Decrypt,
sid,Pown, c) correspond exactly to the protocol of [13,18] realizing the standard
public-key encryption, and our simulator can function exactly as the simulator
of [13,18]. In fact, all the simulator does is executing KG(1κ) and setting pk.
It is proven in [13,18] that such a simulator results in an execution indeed in-
distinguishable from the real protocol execution with an adversary A and the
same argument can be used in our case. As for the remaining message (Verify,
sid,Pown, c,m, π), any party in the simulation will output exactly the same as
in the real protocol, since the output will either come from the simulator if it
indeed simulated a ciphertext generation for m that resulted in (c,m, π) (mean-
ing the ciphertext was correctly/honestly generated) or whatever the output of
V(c,m, π) is (in case the ciphertext was not generated by the simulated func-
tionality). Special care needs to be taken when simulating the verification of
a ciphertext simulated for an honest party, which is computed as Enc(pk, 1; r)

40

(for a random r) instead of using the actual message given by the honest party.
In this case, when π is revealed, it is incompatible with the message 1 in the
ciphertext. However, upon receiving the actual message m the simulator shows
the adversary answers to queries H(m‖s) and G(r) that match m and ct.

Functionality FCPKEPV

FCPKEPV interacts with a special decrypting party Pown, a set of parties P, a set of
public verifiers V and an ideal adversary S. FPKEPV is parameterized by a message
domain ensemble M = {Mk}k∈N , a family of formal encryption algorithms {Ee}e, a
family of formal decryption algorithms {Dd}d for unregistered ciphertexts a family
of formal plaintext verification algorithms {Vv}v. FCPKEPV proceeds as follows:

Encryption: Upon receiving a message (Encrypt, sid,Pown,m) from a party Pi ∈
P, proceed as follows:

1. if this is the first encryption request made by Pi then notify S that π made an
encryption request.

2. If m /∈M , then return an error message to P1.

3. If m ∈M , then:

– If Pown is corrupted, then compute (c, π)← Ek(m).

– Otherwise, let (c, π)← Ek(1|m|).

Record the pair (m, c, π) and return (c, π) to Pi.
Decryption: Upon receiving a message (Decrypt, sid,Pown, c) from Pown, proceed
as follows (if the input is from another party then ignore):

1. If this is the first decryption request made by Pown then notify S that a decryption
request was made.

2. If there is a recorded tuple (c,m, π), then hand m,π to Pown. (If there is more
than one value m that corresponds to c then unique decryption is not possible.
In that case, output an error message to Pown).

3. Otherwise, compute (m,π)← D(c) and hand (m,π) to Pown.

Plaintext Verification: Upon receiving a message (Verify, sid,Pown, c,m, π) from
a verifier Vi ∈ V output 1 to Vi if there is a recorded tuple (c,m, π). Otherwise, output
0.

Fig. 12. Certified Public-Key Encryption Functionality with Plaintext Verification
FCPKEPV.

Certified Encryption With Plaintext Verification FCPKEPV We are now
ready to define and construct a version of certified public-key encryption with
plaintext verification following the approach of [16]. Essentially, certified public-
key encryption captures a notion where public-keys are not explicitly available
but are linked to specific parties, guaranteeing that an encrypted message will
be received by an specific party. In order to realize such a functionality, a key

41

Protocol πCPKEPV

πCPKEPV is parameterized by the families {Ee}e, {Dd}d and {Vv}v of algorithms of
the functionality it is to realize. A special decrypting party Pown, a set of parties P,
a set of public verifiers V execute πCPKEPV as follows:

Initialization: At the first activation an instance of FPKEPV is instantiated with the
families {Ee}e, {Dd}d and {Vv}v. Party Pown sends message (KeyGen, sid,Pown) to
FPKEPV, receiving pk. Next, Pown sends (register, sid, pk) to FReg.

Encryption: Upon receiving a message (Encrypt, sid,Pown, e
′,m), party Pi ∈ P

proceed as follows:

1. Check whether it has a recorded public-key e. If not, send (Retrieve, sid,Pown)
to FReg, receiving (Retrieve, sid,Pown, pk) as response. If pk 6=⊥, record e = pk.
Otherwise, return ⊥.

2. If e 6=⊥, send (Encrypt, sid,Pown, e
′,m) to FPKEPV, receiving (c, π) as response.

Output c and record the tuple (m, c, π).

Decryption: Upon receiving a message (Decrypt, sid,Pown, c), Pown sends a mes-
sage (Decrypt, sid,Pown, c) to FPKEPV, receiving and outputting (m,π).

Plaintext Verification: Upon receiving a message (Verify, sid,Pown, c,m, π), a
verifier Vi ∈ V proceeds as follows:

1. Check whether it has a recorded public-key e. If not, send (Retrieve, sid,Pown)
to FReg, receiving (Retrieve, sid,Pown, pk) as response. If pk 6=⊥, record e = pk.
Otherwise, return 0.

2. Obtain pk from π. If pk = e, compute b← V (c,m, π) and outputs b. Otherwise,
output 0.

Fig. 13. Protocol πCPKEPV realizing FCPKEPV.

registration ideal functionality FReg that allows parties to register their public-
keys is required. It was shown in [16] that certified public-key encryption can
be realized from a standard public encryption functionality and FReg. We will
extend both the original functionality and protocol from [16] to incorporate
plaintext verification, showing that FCPKEPV can be realized from FPKEPV and
FReg. The notion of certified public-key encryption with plaintext verification
is captured by functionality FCPKEPV introduced in Figure 12. Notice that the
Plaintext Verification interface of FCPKEPV only outputs 1 if it receives a query
with a tuple (c,m, π) that is registered in the functionality’s internal list. This
captures the fact that only ciphertexts generated by the functionality with a
party’s legitimate public-key (as encoded in the encryption algorithm Ek(·) are
considered valid, while arbitrary ciphertexts or ciphertexts generated from other
public-keys are automatically considered invalid.

Realizing FCPKEPV We follow the approach of [16] to realize FCPKEPV from
a public-key encryption scheme with plaintext verification FPKEPV and a key
registration functionality FReg. Our protocol implements Initialization, Encryp-
tion and Decryption interfaces exactly as in [16] and follows the same approach

42

for implementing the Plaintext Verification interface. Protocol πCPKEPV realizing
FCPKEPV is presented in Figure 13.

Theorem 3. Protocol πCPKEPV UC realizes FPKEPV in the (FPKEPV,FReg)-hybrid
model.

Proof. In order to see why Protocol πCPKEPV is secure, notice that a simulator
S can be constructed exactly as in [16]: S runs with an internal copy of the
adversary A towards which it simulates FPKEPV and FReg exactly as described,
simulating the process of registration by Pown when FCPKEPV informs S that either
encryption or decryption requests happened, as well as simulating the process of
key retrieval when notified by the functionality. Notice that the ideal execution
with the simulator and FCPKEPV is exactly the same as the real execution of
Protocol πCPKEPV with an adversary A, as in the case of the protocol proposed
in [16]. Hence, no environment can distinguish the ideal world simulation from
the real world execution.

Secret Joint Authentication Protocol We can now construct a protocol
πPSAuth that realizes FPSAuth from FCPKEPV, FSig and FReg. This protocols starts
by initializing an instance of FCPKEPV that is jointly used by all parties Pi ∈ P
(i.e. all parties in P act as Pown) and initializing an instance of FSig for Psnd,
each party Pi ∈ P and each bureaucrat Bi ∈ B. Next, Psnd, parties in P and
bureaucrats generate a signature verification key from their instances of FSig and
register it with FReg. When Psnd wants to send a message, it encrypts it using
FCPKEPV, signs the resulting ciphertext using FSig and sends the resulting signa-
ture along with the ciphertext to all other parties and bureaucrats. All parties
in P and all bureaucrats retrieve Psnd’s key from FReg and issue a verification
query to FSig to check that the signature on the ciphertext is valid. If this is the
case, each bureaucrat uses its instance of FSig to compute a signature on the
ciphertext, which it sends to all other parties. Additionally, each party Pi ∈ P
decrypts the ciphertext using FCPKEPV, obtaining a plaintext message and proof
of plaintext validity (which it verifies using FCPKEPV). In case both decryption
and signature checks succeed, each party Pi computes a signature on the cipher-
text using FSig and sends it to all other parties and bureaucrats. In case either
Psnd or a party Pi ∈ P want to prove a certain message was sent by Psnd and
jointly authenticated, it reveals the ciphertext, the message and proof of plain-
text validity obtained by decrypting the ciphertext along with all signatures on
that ciphertext (by Psnd, all parties Pi ∈ P and all bureaucrats) to a verifier,
who can retrieve all signature verification keys from FReg, verify all signatures
using FSig and finally use the ciphertext, message and proof of plaintext validity
to verify the plaintext with FCPKEPV. Protocol πPSAuth is described in Figures 14,
15.

Theorem 4. Protocol πPSAuth UC realizes FPSAuth in the (FCPKEPV,FSig,FReg)-
hybrid model.

43

Protocol πPSAuth

πPSAuth is parameterized by a special party Psnd, a set of authenticating parties P =
{P1, . . . ,Pn}, a set of bureaucrats B = {B1, . . . ,Bb} and a set of public verifiers V
(s.t. B ⊂ V). πPSAuth proceeds as follows:

Initialization: At the first activation, an instance of FCPKEPV is instantiated with
the families {Ee}e, {Dd}d and {Vv}v and all parties Pi ∈ π acting as Pown (e.g.
Pown = Pa. For each party in P, bureaucrat in B and party Psnd, an instance of
FSig is initialized with that party acting as Ps. All parties in P, bureaucrats in B
and party Psnd, send message (KeyGen, sid) to their corresponding instance of FSig,
receiving pk. Next, all parties in P, bureaucrats in B and party Psnd register their
signing keys by sending (register, sid, pk) to FReg.

Message Input: Upon receiving a message (Input, sid, ssid,Psnd,m), Psnd sends
(Encrypt, sid,P,m) to FCPKEPV, receiving (c, π) as response. Next, Psnd sends (sign,
sid, c) to its instance of FSig, receiving (signature, sid,m, σsnd) as response. Finally,
Psnd outputs σsnd = (m, c, π, σsnd).

Joint Authentication: Upon receiving a message (Auth, sid, ssid,Psnd,m), a
party Pi ∈ P checks if it has received (sid, ssid, c, σsnd) such that c is a cipher-
text that can be correctly decrypted by FCPKEPV yielding a valid proof of plaintext
knowledge and that σsnd is a valid signature on c under Psnd’s public-key (retrieved)
from FReg according to Psnd’s instance of FSig. Formally, Pi proceeds as follows:
1. Send (Decrypt, sid,P, c) to FCPKEPV, wait for (m,π) as response, send (Verify,

sid,Pown, c,m, π) to FCPKEPV and check that 1 is received as response.

2. Send (Retrieve, sid,Psnd) to FReg, wait for (Retrieve, sid,Psnd, pk), send
(verify, sid,m, σsnd, pk) to FSig and check that (verified, sid,m, 1) is received
as response.

If all checks succeed, Pi sends (sign, sid, c) to its instance of FSig, receiving
(signature, sid,m, σi) as response. Pi outputs σi = (m, c, π, σi). Analogously, upon
receiving (Blind-Auth, sid, ssid,Psnd), bureaucrat Bj ∈ B proceeds the same way
as Pi except for not checking that c is a valid ciphertext with respect to FCPKEPV

(i.e. skipping Step 1 of Pi’s checks). If all checks succeed, Bj outputs σ̂j = (c, σj).

a We abuse notation and let Pown denote a set of parties instead of single party in
FCPKEPV

Fig. 14. Protocol πPSAuth realizing FPSAuth.

Proof. We construct a simulator S following the approach of the simulator for
πCPKEPV. Basically, S runs with an internal copy of the adversary A and forwards
all communication between the environment Z and A. Additionally, S simulates
functionalities FReg, FCPKEPV and FSig towards its internal adversary, acting
exactly as in the descriptions of these functionalities, except for when explicitly
mentioned. Basically, S simulates honest parties towards A by acting exactly
as those honest parties would in πPSAuth. When it is notified by FPSAuth that
an input message query or a joint authentication query has been received, it
simulates the registering and retrieval of signature keys towards A, respectively.
If A corrupts at least one party Pi ∈ P and/or Psnd, acting this way allows S to
perfectly simulate an execution of πPSAuth towards corrupted bureaucrats. Notice

44

Protocol πPSAuth (Public Verification)

Public Verification: Upon receiving (Verify, sid, ssid,Psnd,m, σsnd, σ1, . . . ,
σn, σ̂1, . . . , σ̂b), a party Vi ∈ V first parses all tokens σsnd, σ1, . . . , σn as (m, c, π, σi)
and check that (m, c, π) is the same in all tokens. It then parses all tokens σ̂1, . . . , σ̂b
as (c, σj) and checks that all c also have the same value. Vi then sends (Verify,
sid,P, c,m, π) to FCPKEPV and checks that the response is 1. It then retrieves the
public-keys for Psnd, all parties in P and all bureaucrats in B from FReg. For all
signatures σ retrieved in Step 1, Vi queries the FSig instance corresponding to the
party who generated the token with (verify, sid,m, σ, pk) where pk is the public-key
retrieved for that part and checks that (verified, sid,m, 1) is received as response.
If all of these checks succeed, Vi sets v = 1 (otherwise, it sets v = 0) and afterwards
outputs (Verify, sid, ssid,Psnd,m, v).

Fig. 15. Protocol πPSAuth realizing FPSAuth (continued).

that since S learns the messages that should be sent to corrupted bureaucrats
from A’s interactions with simulated FCPKEPV, it can simulate πCPKEPV in this
case in such a way that later revealing the proofs of plaintext validity π will
result in a view consistent with these messages. However, an important corner
case is that when A corrupts all bureaucrats but not Psnd or one party Pi ∈ π,
since in this case S must simulate interactions between corrupted bureaucrats
and FCPKEPV without knowing the committed message. In order to deal with
this case, S deviates from the perfect simulation of FCPKEPV honest execution of
protocol πPSAuth and simulates interactions between corrupted bureaucrats and
FCPKEPV using dummy ciphertexts (e.g. with random messages). Later on, after
it learns the actual messages, S simulates the verification interface of FCPKEPV in
such a way that verification queries sent to verify the dummy ciphertexts with
respect to the actual messages and accompanying proofs of plaintext validity are
answered positively (i,e simulated FCPKEPV answers with 1 when queried with
(Verify, sid,P, c′,m, π) where c′ is the dummy ciphertext and (m,π) are the
actual jointly authenticated message along with its proof of plaintext validity).

D Functionality FIRAuth

Functionality FIRAuth is described in Figure 16

45

Functionality FIRAuth

FIRAuth interacts with a set of n parties P, a set of public verifiers V and an ideal
adversary S who is allowed to corrupt a set I ⊂ P where |I| ≤ k for a fixed k < n.
FIRAuth maintains an initially empty list L, proceeding as follows:

Message Input: Upon receiving a message (Input, sid,Pi,m) from a party Pi ∈ P
ignore further Input messages from Pi.
Joint Authentication: Upon receiving a message (Blind-Auth, sid,Pi,Pj) from
a party Pj ∈ P, j 6= i, if a message (Input, sid,Pi,m) has been received from Pi and
a message (Blind-Auth, sid,Pi,Pj) has been received from all parties Pj ∈ P\{Pi},
add (sid,Pi,m,⊥) to L.

Start Verification: Upon receiving a message (Start-Verify, sid,Pi,m) from Pi,
if there exists an entry (sid,Pi,m,⊥) in L, update it to (sid,Pi,m,verify).

Public Verification: Upon receiving (Verify, sid,Pi,m) from a party Vi ∈ V, if (
sid,Pi,m,verify) ∈ L, set v = 1, else set v = 0. Send (Verify, sid,Pi,m) to S and,
if S answers with (Proceed, sid, ssid,m), send (Verify, sid,m, v) to Vi. Otherwise,
send (Verify, sid,m, 0) to Vi.

Fig. 16. Input and Randomness Authentication Functionality FIRAuth.

46

	Public Verifiability For Composable Protocols Without Adaptivity Or Zero-Knowledge

