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Abstract

We study the isogenies of certain abelian varieties over finite fields with non-commutative
endomorphism algebras with a view to potential use in isogeny-based cryptography. In
particular, we show that any two such abelian varieties with endomorphism rings maximal
orders in the endomorphism algebra are linked by a cyclic isogeny of prime degree.

1 Introduction

In this article, we study the isogenies of a certain class of absolutely simple abelian varieties over
finite fields with p-rank zero and non-commutative endomorphism rings.

In recent years, abelian varieties with non-commutative endomorphism rings have seen a
growing interest for applications to isogeny-based cryptography. This is primarily due to the
quantum attack with sub-exponential complexity on isogeny-based cryptosystems of abelian
varies with commutative endomorphism rings ([CJS10]). The cryptosystems based on isogenies
of supersingular elliptic curves have gained a lot of attention in the last few years since they have
substantially smaller key sizes than other quantum-resistant schemes. However, such abelian
varieties are relatively unexplored for dimensions larger than two. To this end, one of the goals
in this article is to explore the behavior of the isogenies of abelian varieties of type IV(1, d)
(see Definition 2.1) over finite fields. This is a class of absolutely simple abelian varieties whose
endomorphism algebras have centers that are imaginary quadratic fields.

Such abelian varieties exist for every dimension ≥ 3. For dimensions larger than three, most
principally polarized abelian varieties are not Jacobians and hence, are much less promising for
cryptographic purposes. But we explore the isogenies of these abelian varieties for all dimensions
since they seem interesting in their own right.

1.1 Notations and background

For an abelian variety A over a field F , End(A) denotes its endomorphism ring and End0(A) the
endomorphism algebra of A over the algebraic closure of the field of definition. By Honda-Tate
theory, we have the well-known bijection

{Simple abelian varieties over Fq up to isogeny} ←→ {Weil q-integers up to GalQ-conjugacy}

induced by the map sending an abelian variety to its Frobenius. For a Weil number π, we write
Bπ for the corresponding simple abelian variety over Fq. The dimension of Bπ is given by

2 dimB = [Q(π) : Q][End0(Bπ) : Q(π)]1/2.
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Note that End0(Bπ) is a central division algebra over Q(π) and hence, [End0(Bπ) : Q(π)]1/2 is an
integer. The characteristic polynomial of Bπ on the Tate representation Vl(A) := Tl(A) ⊗Zl Ql

(for any prime l 6= p) is independent of l and is given by

PBπ(X) :=
∏

σ∈GalQ

(X − σ(π))mπ

where mπ = [End0(Bπ) : Q(π)]1/2. We denote by WBπ the set of Galois conjugates of π. Hence,
Q(WBπ) is the splitting field of PBπ(X). The Galois group Gal(Q(WBπ)/Q) is a subgroup of
the wreath product (Z/2Z)g o Sg, the Galois group of the generic CM field of degree 2g, where
g = [Q(π + π) : Q].

Definition 1.1. An abelian variety A over a field F is simple if it does not contain a strict
non-zero abelian subvariety. We say A is absolutely or geometrically simple if the base change
A×F F to the algebraic closure is simple.

Definition 1.2. An abelian variety A is iso-simple if it has a unique simple abelian subvariety
up to isogeny.

We state a few well-known facts about abelian varieties over finite fields. We refer the reader to
notes [Oo95] for proofs and further details.

Proposition 1.1. For any simple abelian variety B over a finite field Fq, the abelian variety
B ×Fq Fq is iso-simple.

With this setup, let π be a Weil number corresponding to B and let B̃ be the unique simple
component (up to isogeny) of the base change B ×Fq Fq to the algebraic closure. Let N be the

smallest integer such that B̃ has a model over the field FqN . Then B̃ corresponds to the Weil

number πN and we have an isogeny

B ×Fq Fq =isog B̃
(dimB)/N .

Proposition 1.2. Let π be a Weil q-integer and let Bπ be the corresponding simple abelian
variety over Fq. The following are equivalent:
1. Bπ ×Fq FqN is simple.

2. Q(πN ) = Q(π).

Thus, Bπ is absolutely simple if and only if Q(πN ) = Q(π) for every integer N .

Proposition 1.3. Let π be a Weil q-integer and write Dπ := End0
Fq(Bπ). Then Dπ is a central

division algebra over Q(π) and its Hasse invariants are given by

invv(Dπ) =


0 if v - q.
1
2 if v is real.

[Q(π)v : Qp]
v(π)
v(q) if v|q.

In particular, End0(Bπ) is commutative if and only if the local degrees [Q(π)v : Qp] annihilate

the Newton slopes v(π)
v(q) . For instance, if Bπ is ordinary, the slopes v(π)

v(q) are either 0 or 1 and

hence, End0(Bπ) is commutative.

Proposition 1.4. Let Bπ be a simple abelian variety over a finite field Fq corresponding to a
Weil number π and let l be a prime that does not divide q. The order

∣∣Bπ(Fq)
∣∣ of the group of

Fq-points is given by ∣∣Bπ(Fq)
∣∣ = PBπ(1) = Nm(1− π)mπ .
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2 Type IV(1, d)

For an absolutely simple abelian variety A over any field, the endomorphism algebra End0(A)
has one of the following structures according to Albert’s classification:

Type I: A totally real field.
Type II: A totally definite quaternion algebra central over a totally real field.
Type III: A totally indefinite quaternion algebra central over a totally real field.
Type IV: A division algebra central over a CM field equipped with an involution of the second
kind.

Definition 2.1. We say an absolutely simple abelian A variety is of type IV(e, d) if it fulfills the
following conditions:

- D := End0(A) is a central division algebra of dimension d2 over a CM field K of degree 2e
equipped with an involution of the second kind.
- The primes of K ramified in D lie over the same rational prime.

The symbol IV in the notation represents the nature of the endomorphism algebra according to
Albert’s classification. We impose the second condition in the definition because by Honda-Tate
theory, the endomorphism algebra of a simple abelian variety over a finite field of characteristic
p is unramified away from the set of primes lying over p. The (Rosati) involution of the second
kind is a result of the polarization carried by the abelian variety. Note that for any prime p of
K and its complex conjugate p, we have

invp(D) + invp(D) = 0 ∈ Q/Z.

By Honda-Tate theory, the dimension of the simple abelian variety is 1
2 [K : Q][D : K]1/2 = ed. In

this section, we study abelian varieties of type IV(1, d) over finite fields and explore their possible
use in isogeny-based cryptography. We will need the following lemma.

Lemma 2.1. Let B be an absolutely simple abelian variety over a finite field of characteristic p.
If there exists a prime p of K lying over p such that the decomposition group Dp is normal in
Gal(Q(WBπ)/Q), the prime p splits completely in Gal(Q(WBπ)/Q).

Proof. This is lemma 5.3 of [Th17]

Proposition 2.2. Let B1, B2 be abelian varieties of type IV(1, d) over a finite field Fq. Then
the following are equivalent:

- B1 is isogenous to B2.
- End0(B1) ∼= End0(B2).

Proof. Since isogenous abelian varieties have the same endomorphism algebra, it suffices to
prove the converse. Let π1 , π2 be the associated Weil numbers. Now, if End0(B1) ∼= End0(B2),
then in particular, the centers Q(π1) and Q(π2) coincide. Let p be the characteristic of Fq. Since
Q(π1)/Q is abelian, p splits (completely) in Q(π1)/Q. Let p, p be the primes of Q(π1) lying over
p and let π1OQ(π1 ) = pipj .

Since the Hasse invariants coincide, it follows that π1π
−1
2

is a unit at all non-archimedean
places and hence, is a root of unity. Hence, B1 and B2 are twists of each other.

Remark. Note that this is the only case other than that of elliptic curves where the endomorphism
algebra determines the isogeny class. For any other division algebra D of type IV(e, d) with e ≥ 2
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it is fairly easy to construct a pair of non-isogenous abelian varieties with endomorphism algebra
D.

Let B be an abelian variety of type IV(1, d) over a finite field Fq. Let OD be a fixed maximal
order in D := End0(B) and let Iso(B) denote the set of abelian varieties over Fq isogenous to B.
The map

Cl(OD)× Iso(B) −→ Iso(B), (I,B′) 7→ IB′

makes Iso(B) into a Cl(D)-torsor. Hence, Iso(B) has cardinality # Cl(OD). Unlike the ordinary
case, the class group Cl(OD) is not a commutative group. In fact, Cl(OD) has the structure of
a pointed set rather than a group. This makes the resulting cryptosystem more resistant to the
quantum attacks similar to those outlined in [CJS].

2.1 Newton Polygons

Let B be an abelian variety over an algebraically closed field k of characteristic p > 0. The
group scheme B[p∞] is a p-divisible group of rank ≤ dimB. Let D(B[p∞]) denote the Dieudonne
module. Then D(B[p∞])⊗kW (k)[1

p ] is a direct sum of pure isocrystals by the Dieudonne-Manin
classification theorem. Let λ1 < · · · < λr be the distinct slopes and let mi denote the multiplicity
of λi. The sequence m1 × λ1, · · · ,mr × λr is called the Newton polygon of B.

Definition 2.2. A Newton polygon is admissible if it fulfills the following conditions:

1. The breakpoints are integral, meaning that for any slope λ of multiplicity mλ, we have
mλλ ∈ Z.
2. The polygon is symmetric, meaning that each slope λ, the slopes λ and 1− λ have the same
multiplicity.

Let π be a Weil q-integer and let Bπ be the corresponding simple abelian variety over Fq.
Then the Newton slopes of Bπ are given by {v(π)/v(q)}v where v runs through the places of
Q(π) lying over p. In particular, the Newton polygon is symmetric and hence, all slopes lie in the
interval [0, 1]. A far more subtle fact is that the converse is also true. This was formerly known
as Manin’s conjecture until proven by Serre. We refer the reader to [Tat69] for the proof.

Theorem 2.3. (Serre) The Newton polygon of an abelian variety over a finite field is admissible.
Conversely, any admissible polygon occurs as the Newton polygon of some abelian variety over a
finite field of any prescribed characteristic.

Proposition 2.4. Let p be a rational prime and K an imaginary quadratic field in which p splits.
Let D be a central division algebra over K that is unramified away from the places lying over p.
Then there exists an abelian variety B over a finite extension Fq of Fp such that End0(B) ∼= D.

Furthermore, there exists an abelian variety B̃ over the field Fq with the endomorphism ring
End(B) a maximal order in End0(B).

Proof. Let p, p be the primes of K lying over Q. Since D is split at all primes other than p, p,
we have

invp(D) + invp(D) =
∑
v

invv(D) = 0 ∈ Q/Z.

Furthermore, the least common denominator of {invp(D), invp(D)} is d and hence, invp(D) = j
d

for some j < d prime to d. Choose an integer n such that pn is principal and write pn = (π).
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Now, π1 := πjπd−j is a Weil pdn-integer and the abelian variety Bπ1 corresponding to π1 has
Newton slopes

vp(π1)

vp(pdn)
=
j

d
,

vp(π1)

vp(pdn)
=
d− j
d

.

Hence, the endomorphism algebra of Bπ1 is isomorphic to D.

Let Λ be a maximal order of D that contains the order End(B). By ([Yu11], Theorem 1.3),
there exists an abelian variety B̃ over the same field of definition as B such that End(B̃) = Λ and
there is a universal isogeny φ : B̃ −→ B such that any isogeny B′ −→ B factors through φ.

Remark Note that an abelian variety of type IV(1, 1) is just an ordinary elliptic curve. There
does not exist an abelian variety of type IV(1, 2). Any such abelian variety would have Newton
polygon 4× 1/2 which only occurs for a second power of a supersingular elliptic curve.

Proposition 2.5. Let Bπ be a simple abelian variety over Fp of dimension d corresponding to a
Weil number π. The following are equivalent:

(1) Bπ is of type IV(1, d).
(2) Q(π)/Q is abelian and Bπ has Newton polygon

d× j

d
, d× d− j

d

for some integer j prime to d.

Proof. (1)⇒ (2): Q(π)/Q is imaginary quadratic and in particular, is an abelian extension. So
p splits in Q(π). The dimension of End0(Bπ) is the least common multiple of its Hasse invariants.
Furthermore, since the primes of Q(π) lying over p have local degree one over Q, the set of Newton
slopes of Bπ coincides with the set of the Hasse invariants of End0(Bπ). Hence, the least common
denominator of the Newton slopes is d, which implies (2).

(2) ⇒ (1): Since Q(π)/Q is abelian, p splits completely in Q(π). Hence, the dimension of
End0(Bπ) over Q(π) is d2. Now,

2d = [Q(π) : Q][End0(Bπ) : Q(π)]1/2 = d[Q(π) : Q]

and hence, [Q(π) : Q] = 2.

Corollary 2.6. Any abelian variety B of type IV(1, d) over a finite field of characteristic p has
p-rank zero.

Proof. The p-rank of an abelian variety over a field of characteristic p is the multiplicity of the
slopes 0 and 1. Since these slopes do not occur in the Newton polygon of B, it follows that
B[p] = {0B}.

Thus, the Frobenius and the Verschiebung are purely inseparable morphisms. It is well-known
that every abelian variety is isogenous to a principally polarized abelian variety over the algebraic
closure. But in this case, we do not need to pass to a larger extension to have a ppav in the
isogeny class.

Proposition 2.7. Any abelian variety B of type IV(1, d) over a finite field k is isogenous to a
principally polarized abelian variety over the same field k.

Proof. Let p be the characteristic k and let φ : B −→ B̂ be a polarization from B to its dual.
Since B has p-rank zero, we may assume the polarization is separable. By [Mil], Proposition ???,
the isogeny class of B over k contains a principally polarized abelian variety.

5



Proposition 2.8. Let the notations be as in the last proposition and let l be a prime of the
imaginary quadratic field K := Cent(End0(B)) that does not divide char(k). Then the degree
[k(B[l]) : k] is the smallest integer N such that πNB ≡ 1 (mod l) in OK .

2.2 The minimum field of definition

Definition 2.3. For an abelian variety A over a field F , we say A has a model over a subfield
F0 if there exists an abelian variety A0 over F0 such that the base change A0 ×F0 F =isog A.

We show that in our setting, the class number of the center gives an upper bound on the minimum
field of definition.

Proposition 2.9. Let B be an abelian variety of type IV(1, d) with endomorphism algebra D and
let K be the center of D. Let h be the class number of K. Then B has a model over Fq where
q := ph.

Proof. Let π be the Weil number corresponding to B and let p, p be the primes of K lying
over p. Write π0OK = ph. Then π0 is a Weil ph-integer and hence, corresponds to an abelian
variety Bπ0 of dimension d over Fq. Furthermore, Bπ0 has endomorphism algebra D and hence,
is isomorphic to B over some finite extension.

Let B be an abelian variety with endomorphism algebra D. Write Λ = End(B) and let I be
a left ideal of Λ. We associate to I an isogeny φI as follows. Consider the finite group scheme

CI :=
⋂
i∈I

ker(i : B −→ B).

This is a finite subgroup scheme of B and hence, yields an isogeny

φI : B −→ B(I) := B/CI .

We call this the ideal isogeny associated to I. In the case of supersingular elliptic curves, it is
well-known that every isogeny is an ideal isogeny arising from some left ideal of the endomorphism
ring. This is a consequence of the fact that the center of the endomorphism algebra of a
supersingular elliptic curve is Q. On the other hand, for any simple non-supersingular abelian
variety over a finite field, the center of the endomorphism algebra is a CM field. Consequently,
any isogeny of a degree that is not a norm of the CM field does not arise as an ideal isogeny.

Conversely, for any isogeny φ : B −→ B′, the annihilator

ann(ker(φ)) := {α ∈ End(B) : α(ker(φ)) = {0B}}

is a left ideal of End(B).

Proposition 2.10. Let D be a division algebra of type IV(1, d) for some odd integer d ≥ 3.
There exists an abelian variety A with complex multiplication over a number field F and a prime
v of good reduction such that Av is of type IV(1, d).

Proof. Let K be the center of D and let p be the characteristic of the primes of K ramified in
D. Choose a degree d cyclic extension L0 over Q such that the p is inert in L0. Then L := KL0

is cyclic of degree d over K and the primes of K lying over p are inert in L. Let X be the abelian
variety Cd/OL over C. By a theorem of Shimura, X has a model A over some number field F .
Since A has complex multiplication, it has potential good reduction everywhere. So, replacing F
by a finite extension if necessary, we may assume A has good reduction everywhere. Let v be a
prime of F lying over p. Then each component of Av[p

∞] is isoclinic of slope j/d for some integer
j prime to d. Thus, End0(Av) is a central division algebra of dimension d2 over K.
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Definition 2.4. An isogeny φ : B1 −→ B2 of abelian varieties over a finite field is said to be
cyclic if the degree is prime to the characteristic of the field and the kernel ker(φ) is a cyclic
subgroup scheme of ker(deg φ).

Note that when the abelian varieties Bi are elliptic curves, this is equivalent to the isogeny φ
not being of the form [n]◦φ′ for some isogeny φ′. Thus, it coincides with the notion of a primitive
isogeny studied in [Koh96].

Example 2.11. Let E be the elliptic curve y2 := x3 + 2 over the finite field F13. For any integer
n prime to 7, the endomorphism

[n] : E −→ E, P 7→ nP

has kernel isomorphic to (Z/nZ)2 and hence, is not cyclic. On the other hand, the endomorphism
corresponding to the algebraic integer 2 +

√
−1 has kernel isomorphic to Z/5Z and hence, is a

cyclic isogeny.

In the case of supersingular elliptic curves, it is well-known that every isogeny arises from a
left ideal of the endomorphism ring. Although this behavior is not shared by abelian varieties
of type IV(1, d), they exhibit some similar properties. To this end, we will need the following
notion.

Definition 2.5. Let φ : A1 −→ A2 be an isogeny of abelian varieties of type IV(1, d) and let K
be the center of the endomorphism algebra End0(A1). We say the isogeny φ is a normed isogeny
if the set

I(ker(φ)) := {α ∈ OK : α(ker(φ)) = 0}

is stable under the involution on End0(A1).

(This non-standard terminology is a placeholder until we come across a better term in the existing
literature).

Proposition 2.12. The following are equivalent:

(1) l is a norm of an integral element of K.
(2) l splits completely in K and the primes of K lying over l are principal.
(3) l splits completely in the Hilbert class field H(L) of L.

Proof. Note that since K/Q is assumed to be a Galois extension, the primes of K lying over l
are Galois conjugates and hence, the corresponding ideal classes have the same orders as elements
of the ideal clas group.

(1)⇔ (2): Suppose l = NmK/Q(α) for some α ∈ OK . Then lZ = NmK/Q(αOK) and hence, αOK
is a prime of K lying over l. Conversely, if a prime l of K lying over l is principal with l = βOK ,
then NmK/Q(β) = l.

(2) ⇔ (3): Let l be a prime of K lying over Q. By the principal ideal theorem, l is a principal
ideal if and only if it splits completely in the Hilbert class field H(L). If l splits completely in
K/Q, this is equivalent to l splitting completely in H(L)/Q.

Proposition 2.13. Let B be an abelian variety of type IV(1, d) with the endomorphism ring
End(B) a maximal order in the endomorphism algebra End0(B). Let I be a left ideal of Λ and let
φI : B −→ B/CI be the ideal isogeny associated to I. Then φI is a normed isogeny. Furthermore,
the endomorphism ring of B′ := B/CI is a maximal order in D.

7



Proof. Since Ol(I) = Λ is assumed to be a maximal order, so is the right order Or(I) of I. The
degree of φI is given by NmK/Q(Nrd(I)) and hence, φI is a normed isogeny. Choose an integer
n such that nOr(I) ⊆ Λ and let β ∈ Or(I). Now nIβ ⊆ nI and hence, ker(nI) ⊆ ker(φI ◦ nβ).
So φI ◦ nβ factors through nφI and hence, β induces an endomorphism of the abelian variety
B(I) := φI(B). Thus, we have an injective homomorphism Or(I) ↪→ End(B(I)). Since Or(I) is a
maximal order in D, this inclusion is an equality, which completes the proof.

Later, we will prove the converse.

Proposition 2.14. The following are equivalent:

(1) ψ2 lies in the ring of integers of the field K(ψ1).
(2) ψ1 commutes with ψ2.

Proof. The field K(ψ) is of degree d over K and hence, is a maximal subfield of D. By the
double centralizer theorem, the field K(ψ) is its own centralizer in D. Hence, ψ2 ∈ K(ψ). Since
ψ2 is an isogeny, it is integral and hence, lies in the ring of integers of K(ψ1).

The following decomposition explains our motivation for studying Galois endomorphisms.

Proposition 2.15. Let ψ1, · · · , ψr be pairwise commutative endomorphisms of B of degree prime
to the characteristic of the field of definition. Then there exists a maximal subfield L of D such
that ψ1, · · · , ψr have embeddings in OL. Furthermore, if for each pair i, j, the elements ψi and
ψj generate relatively prime ideals of K(ψ1, ψ2), then

B[
r∏
i=1

ψi] =
r⊕
i=1

B[ψi].

Proof. We show this for the case where r = 2. The general case then follows by induction.

Since K(ψ1, ψ2) is a subfield of D, it is contained in some maximal subfield L of degree d over
K. Now, ψ1 and ψ2 generate relatively prime ideals in R := End(B)∩Z[ψ1, ψ2]. Hence, there exist
α1, α2 ∈ R such that α1ψ1 + α2ψ2 = 1 in R. Now, for any point P of B, if ψ1(P ) = ψ2(P ) = 0,
then

P = α1ψ1(P ) + α2ψ2(P ) = 0B.

Thus, B[ψ1] ∩B[ψ2] = {0B}.
It remains to show that B[ψ1ψ2] ⊆ B[ψ1] ⊕ B[ψ2]. Let P ∈ B[ψ1ψ2]. Then ψ1(P ) ∈ B[ψ2]

and ψ2(P ) ∈ B[ψ1]. In particular, α1ψ1(P ) ∈ B[ψ2], α2ψ2(P ) ∈ B[ψ1] and hence,

P = α2ψ2(P ) + α1ψ1(P ) ∈ B[ψ1]⊕B[ψ2],

which completes the proof.

Remark. Note that this does not necessarily hold when the endomorphisms ψ1 and ψ2 do not
commute. We will need the following notion.

Definition 2.6. Let A be an absolutely simple abelian variety and let F be the center of its
endomorphism algebra End0(A). We say an endomorphism φ : A −→ A is Galois if there exists
a maximal subfield L of the division algebra End0(A) such that L/F is a Galois extension and
F (φ) is a subfield of L.

This definition extends naturally to quasi-endomorphisms of the abelian variety. Note that in the
case where End0(A) is a quaternion algebra, this notion is clearly vacuous since every quadratic
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extension is Galois. On the other hand, a division algebra of dimension larger than 4 over a
number field will have infinitely many maximal subfields that are non-Galois over F .

(This nonstandard terminology is a placeholder until we come across a better term in the existing
literature).

Proposition 2.16. If φ1, φ2 are Galois endomorphisms of a simple abelian variety A that
commute with each other, then the endomorphisms φ1 + φ2 and φ1φ2 are Galois as well.

Proof. We omit the proof since it is straightforward.

Proposition 2.17. Let ψ be a Galois endomorphism of B with reduced norm Ψ. Suppose
the ideals in OF (ψ) generated by ψ and Ψψ−d/[F (ψ):F ] are relatively prime. Then we have a
decomposition

B[Ψ] =

r⊕
j=1

B[ψj ]

where the ψj are the Galois conjugates of ψ over F .

Proof. By assumption, there exists a maximal subfield L ofD such that L/F is a Galois extension
and F (ψ) ⊆ L. Hence, the Galois closure of F (ψ) over F has an embedding in L. Let ψ1, · · · , ψr
be the distinct conjugates of ψ over F , where r = [F (ψ) : F ]. Then

Ψ := Nrd(ψ) = NmL/Q(ψ) =
r∏
i=1

ψ
[L:F (ψ)]
i .

Now, by assumption, the ideals of OL generated by the elements ψ
[L:F (ψ)]
i are pairwise co-prime.

Since the ψi are elements of the same maximal subfield L, they are pairwise commutative. Hence,
by the preceding proposition, we have the decomposition

B[Ψ] =
r⊕
j=1

B[ψ
[L:F (ψ)]
j ],

which completes the proof.

Proposition 2.18. Let α : B −→ B be a Galois endomorphism of reduced norm a ∈ OK . Then
α is cyclic if and only if it satisfies all of the following conditions:

1. L := K(α) is a Galois extension degree of d over K.
2. For any σ ∈ Gal(L/K) other than the identity, the ideals αOL and σ(α)OL are relatively
prime.
3. The primes of L dividing αOL are of local degree one over K and for any prime p of K that
divides Nrd(α)OK , precisely one prime of L lying over p divides αOL.

Proof. Set a0 := NmL/K(α) and a := a0a
∗
0. Then B[a0] ∼= B[a∗0] ∼= (Z/aZ)d. Furthermore,

B[a] =
∑

σ∈Gal(L/K)

B[σ(α)]

and the group structure of B[σ(α)] is independent of σ. Hence, each torsion subgroup scheme
B[σ(α)] is cyclic if and only if

B[σ(α)] ∩B[aσ(α)−1] = {0B} ∀ σ ∈ Gal(L/K).

But this is equivalent to the ideals αOL and aσ(α)−1OL being relatively prime.
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2.3 The set of left ideal classes

Let K be an imaginary quadratic field and let p be a prime that splits in K. Let D be
a division algebra of dimension d2 ramified only at the primes lying over p. So D has Hasse
invariants {j/d,−j/d} at the places lying over p for some integer j prime to d. We fix a maximal
order Λ in the division algebra D.

Definition 2.7. Two left ideals I, J of Λ are equivalent if J = Ia for some a ∈ D×. The number
h(Λ) of equivalence classes of left Λ-ideals is called the class number of Λ.

Unlike the commutative case, the left ideals do not form a group under multiplication. It is
simply a pointed set with the distinguished element corresponding to the class of principal left
ideals. This lack of a group structure makes it less susceptible to quantum attacks similar to
those outlined in [CJS].

If Λ is a maximal order in a division algebra of type IV(1, d), the class number is finite, by
the next proposition. Furthermore, it is well-known that any two maximal orders are conjugate
by some element of the idele group

D×A = {(av)v ∈
∏
v

D×v | av ∈ Λv for all but finitely many v}.

Hence, the class number is independent of the choice of the maximal order. Furthermore, we
have a natural norm map defined as follows:

D×A −→ C×, a 7→
∏
v

∣∣Nm(av)
∣∣
v
.

We denote the kernel of this norm map by D
(1)
A . By the product formula, the group D×K embeds

diagonally into D
(1)
A .

Proposition 2.19. Let Λ be a maximal order in D. The class number of Λ is finite.

Proof. If v is any place of K prime to p, then D splits at v. Choosing the isomorphism Dv
∼=

Matd(Kv) appropriately, we may assume that Λv = Matd(OKv). So every left ideal I of Λ is
principal at the places where D splits (which in this case is all places prime to p). For all but

finitely many places, we have Iv = Λv, meaning av ∈ Λ×v . Hence, there exists an element b ∈ D(1)
A

such that bv = av at all but finitely many places. Hence, D
(1)
A acts transitively (from the left) on

the set of left ideal classes.

The actions of D×K and Λ×A on the set of ideal classes are trivial and hence, the class number

equals the number of double cosets in Λ×A \D
(1)
A /D×K . Since D× is a connected reductive group,

it follows that that D
(1)
A /D×K is compact and Λ×A is open in D

(1)
A . Hence, the class number is

finite.

Definition 2.8. Let D be a division algebra central over a global field F . Let M be a full
OF -lattice in D. The left and right orders of M are defined as follows:

Ol(M) := {a ∈ OK : Ma ⊆M}, Or(M) := {a ∈ D : aM ⊆M}.

The following theorem is fundamental to the theory of orders in central simple algebras.

Theorem 2.20. For any full OF -lattice M , the order Ol(M) is a maximal order if and only if
Or(M) is.
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Proof. See ([Rei75], Chapter 3).

An immediate implication is the following.

Corollary 2.21. Let Λ be a maximal left order in D and let I be a left ideal of Λ. Then Or(I)
is a maximal order in D.

Proof. Since I is a left ideal, clearly Λ ⊆ Ol(I) and since Λ is a maximal order, we have
Λ = Ol(I). By the preceding theorem, Or(I) is a maximal order.

Proposition 2.22. Let Λ be a maximal order in D and let {I1, · · · , In} be a set of left Λ-ideals
that represent the distinct left ideal classes of Λ. Then each conjugacy class of maximal orders
in D is represented in the set of right orders {Or(I1), · · · , Or(In)}.
Proof. Let Λ′ be any maximal ideal of D. For any place v of K, the orders Λv and Λ′v are
maximal orders in OKv . Hence, there exists αv ∈ D×v such that α−1

v Λvαv = Λv. Now, there

exists α̃ ∈ D(1)
A such that α̃v = αv. Set I := Λα̃. Then I is a left ideal of Λ with right order Λ′.

Since the ideals {I1, · · · , In} represent all of the ideal classes of Λ, there exists a ∈ D× and an
index i such that J = Iia. Thus, Or(Ii) = aΛ′a−1.

Proposition 2.23. Let D be a division algebra of type IV(1, d) with center K, Λ a maximal
order in D and l a prime of K with characteristic l. There exists an element α ∈ Λ such that
any maximal left ideal of Λ containing l is of the form J = (Λl + Λα)u for some u ∈ D× with
reduced norm Nrd(u) = ±1.

Proof. We may choose a Galois extension L/K of degree d such that:

- L is inert at the primes of K that D is ramified at.
- l splits completely in L.
- L is linearly disjoint from the spinor class field of K.

The first condition ensures that L has an embedding in D and the last condition ensures that
the ring of integers OL has an embedding in every maximal order of D. We fix an embedding
OL ↪→ Λ. Now, let l̃ be a prime of L lying over l and choose an element α of l̃ such that
l̃ = lOL + αOL as an ideal in OL. Let m be a maximal left ideal of Λ containing the left Λ-ideal
Λ̃l := {

∑
x∈Λ,β∈̃l

xβ}. Then l := m ∩ OK is a prime in K and Nrd(m) = l (c.f. [Rei75]). On the

other hand, NmL/K (̃l) = l and hence, the inclusion Nrd(Λ̃l) ⊆ l = Nrd(l) is an equality. Thus, Λ̃l

is a maximal left ideal that contains l and hence, the inclusion Λ̃l ⊆ m is an equality.

Now let J be any maximal left ideal of Λ containing l. Then Nrd(J) = l = Nrd(m) (c.f.
[Rei75]) and since D fulfills Eichler’s condition, Eichler’s refinement of the Hass-Mass–Schilling
theorem implies that J = mu for some u ∈ D×. Thus, J = Λlu + Λαu. Furthermore, Nrd(u) is
a unit in OK and since K is an imaginary quadratic field, Nrd(u) = ±1.

Proposition 2.24. Let B be an abelian variety of type IV(1, d) with End(B) a maximal order
in D := End0(B). Let J be a maximal left ideal of End(B) with the prime l := J ∩K a prime of
local degree one over Q. Then the isogeny φJ is cyclic of prime degree.

Proof. We write Λ := End(B) for brevity. We choose a degree d extension L/K as in the
preceding proposition and fix an embedding OL ↪→ Λ. Now, let l̃ be a prime of L lying over l
and choose an element α1 of l̃ such that l̃ = lOL +αOL as an ideal in OL. Let α1, · · · , αd be the
distinct Galois conjugates of α1 in the fixed embedding of OL in Λ and write l̃i := lOL + αiOL,
i = 1, · · · , d. By the argument in the last proposition, the left ideals mi := Λ̃li are maximal left
ideals in Λ.
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Note that the elements α1, · · · , αd are pairwise commutative by construction and hence, for
each index i, the product

d∏
i 6=j

αi ∈
d⋂
i 6=j

mi, /∈ mj .

Thus, the left Λ-ideals mj and
⋂
i 6=j

mi are co-maximal and hence,

ker(l) =

d⊕
i=1

ker(mi),

which implies that ker(φmi)
∼= Z/lZ where l is the rational prime lying under l.

Now let m′ be any maximal left ideal of Λ with m′ ∩ K = l. Then Eichlers’s refinement of
the Hasse-Mass-Schilling theorem implies that m′ = m1u for some u ∈ D× with Nrd(u) = ±1.
Hence, ker(φm′) ∼= ker(φm1).

Proposition 2.25. Let D be a division algebra of type IV(1, d). For any maximal Λ order of D,
there exists an abelian variety B over Fp with End(B) = Λ.

Proof. As shown in Proposition 2.4, there exists an abelian variety B′ with its endomorphism
ring Λ′ a maximal order in D. By the preceding proposition, there exists a left ideal I ′ of Λ such
that Or(I

′) = Λ. The abelian variety

B := B′(I
′) = φI′(B

′)

is isogenous to B′ and has endomorphism ring Λ.

2.4 The image of the reduced norm

The reduced norm. Let D be a central division algebra of dimension d2 over a field F . Let
α be an element of D×. Now, α commutes with F and hence, F (α) is a field with the degree
[F (α) : F ] dividing d. Let L be a maximal subfield of D such that F (α) ⊆ L. The field norm
NmL/F (α) is called the reduced norm of α in D/F . We denote the reduced norm by NrdD(α) or
simply by Nrd(a) when there is no ambiguity.

Let A be a simple abelian variety and let F be the center of its endomorphism algebra
End0(A). For any endomorphism φ : A −→ A, the degree of φ is given by

deg φ = NmF/Q(Nrd(α)).

Theorem 2.26. (Hasse-Maas-Schilling) Let D be a division algebra central over a global field
F . For any element a ∈ F× that is positive at all real archimedean places that ramified in D,
there exists an element α ∈ D× such that Nrd(α) = a.

Since we are concerned with isogenies rather than quasi-isogenies, it is necessary to consider
the question of which elements of the field occur as norms as elements of D integral over OF .
The Hasse-Mass-Schilling theorem was refined by Eichler for the cases when the division algebra
satisfies the following reasonable conditions.

Definition 2.9. A central simple algebra A over a number field F is said to fulfill the Eichler
condition unless both of the following properties hold:

- F is totally real.
- A is a totally definite quaternion algebra over F .

12



When A satisfies both conditions, we say that A fails Eichler’s condition. In this article, we
are concerned with the cases where A is the endomorphism algebra of an abelian variety over a
finite field. The following is immediate from Honda-Tate theory.

Proposition 2.27. Let B be an absolutely simple abelian variety over a finite field. The following
are equivalent:

- End0(B) fails Eichler’s condition.
- B is a supersingular elliptic curve.

Proof. If B is a supersingular elliptic curve, then End0(B) is a quaternion algebra over the
totally real field Q and is ramified at the infinite place of Q. In all other cases, the center of
End0(B) is a CM field and hence, End0(B) fulfills Eichler’s condition.

The following is a refinement of the Hasse-Maas-Schilling theorem for the case where D is
Eichler over F .

Theorem 2.28. (Eichler) Let D be a division algebra central over a global field F that fulfills
Eichler’s condition and let Λ be a maximal order in D.

1. For any integral element a ∈ O×F that is positive at all real archimedean places ramified in D,
there exists an integral element α ∈ D× such that Nrd(α) = a.

2. For any two left ideals I, J of Λ such that Nrd(I) = aNrd(J) for some element a ∈ F× that
is positive at all real archimedean places that D is ramified at, there exists α ∈ D× such that
Iα = J .

Furthermore, it is well-known that for any division algebra D central over a number field
F , there exist infinitely many maximal subfields L such that L/F is a Galois extension. In
fact, by the Grunwald-Wang theorem, there exists a maximal subfield L ⊆ D such that L/F is
cyclic. Hence, one may ask whether the analog of the Hasse-Mass-Schilling theorem restricted to
elements contained in Galois extensions holds.

Question: For what elements a ∈ F× do there exist elements α ∈ D× such that the Galois
closure of F (α) over F has an embedding in D and Nrd(α) = a?

When the division algebra D is the endomorphism algebra of a simple abelian variety, the
corresponding endomorphisms of the abelian variety will be Galois isogenies, which is our primary
interest exploring this. For quaternion algebras that fulfill Eichler’s condition (i.e. not totally
definite), it is clear that this is the case since all quadratic extensions are Galois. On the other
hand, it is easy to see that this does not hold for all division algebras, as evidenced by the
following counter-example.

Example 2.29. Choose distinct primes p, l such that l 6≡ 1 (mod p). Let D be any central
division algebra of dimension p2 over Q with Hasse invariant 1/p at the prime l. Then D fulfills
Eichler’s condition and l is positive at the archimedean place of Q. We show that l does not
occur as the reduced norm of any element that lies in a Galois extension of Q embedded in D.

Note that since D has center Q, for any element α ∈ D×, we have Nrd(α) = NmQ(α)/Q(α).
Suppose there exists a Galois extension L/Q embedded in D such that l = Nrd(α) for some
α ∈ L×. Since the extension L/Q is Galois of prime degree, it is cyclic. Furthermore, L is a
maximal subfield of D and hence, l ∈ NmL/Q(O×L ). Since L/Q has local degree p at l, it follows
that l is totally ramified or inert in L/Q. In the latter case, lOL could not be a norm of an ideal
of L. So l is totally ramified in L/Q and the prime of L lying above l is principal. From the
Kronecker-Weber theorem, it follows that L ⊆ Q(ζN ) for some integer N . Let n be the smallest
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integer such that L ⊆ Q(ζn). Then each prime dividing n is either p or is ≡ 1 (mod p) and in
particular, l - n. Thus, l is unramified in Q(ζn) and hence, is unramified in L, a contradiction.

2.5 Decomposition of the torsion subgroup schemes

Let B be an abelian variety with endomorphism algebra D of type IV(1, d) over a finite field
Fq. For any integer N prime to q, the N -torsion subgroup scheme B[N ] is an etale GalFq -module

and B(Fp)[N ] ∼= (Z/NZ)2d. In this subsection, we explore the decomposition of this subgroup
scheme into those annihilated by certain isogenies. We will need the following lemma (generally
attributed to Iwasawa), a proof of which may be found in ([Was82], Chapter 10).

Lemma 2.30. Let p be a prime and let L/K be a Galois extension of number fields with [L : K]
a p-power. If L is ramified at precisely one finite prime, then p divides the class number h(L) if
and only if it divides h(K) .

For a division algebra D of dimension n2 over a number field F , an extension L/F of degree
n has an embedding in D if and only if it fulfills the following equivalent conditions:

- L splits D.
- For any place ṽ of L and the place v of F lying under ṽ, Lṽ splits the simple algebra Dv :=
D ⊗F Fv.

For any such field L, its ring of integers OL is a finitely generated OK-submodule of D and
by ([AG60], Proposition 1.1) has an embedding in some maximal order Λ of D. Consequently,
OL has an embedding in every maximal order of D conjugate to Λ. However, the question of
which maximal orders of D contain a copy of OL is substantially more subtle and as far as we
know, remains open in its full generality. A partial answer to this is provided by the following
elegant theorem of Arenas-Carmona.

Theorem 2.31. ([Car03]) Let D be a central division algebra of dimension n2 over a number
field F such that:

- n ≥ 3.
- At any place p of F where D is ramified, the central simple algebra Dv := D⊗F Fv is a division
algebra.

Then there exists an abelian extension ΣF of F with the following property: for any degree n
extension L of K that splits D, the ring of integers OL has an embedding in precisely [ΣF∩L : F ]−1

of the conjugacy classes of maximal orders of D.

The field ΣF is a spinor class field of F . For details, we refer the reader to [Car03]. In
particular, if L is a degree n extension with an embedding in D and the field extensions L,ΣF

are linearly disjoint over F , then the ring of integers OL has an embedding in every maximal
order of D. On the other hand, if L ⊆ ΣF , then L is contained in precisely 1

n -th of the conjugacy
classes of the maximal orders.

The second condition on D is equivalent to the Hasse invariant at each ramified place being
of the form j/n ∈ Q/Z for some integer j relatively prime to n. Equivalently, for any maximal
subfield L ⊆ D and a prime v of F such that D is ramified at v, there is a unique prime ṽ of L
lying over v. Clearly, any abelian variety B of type IV(1, d) has an endomorphism algebra that
fulfills both of the conditions. Hence, the last theorem is directly applicable to our setting. We
will need to impose the following conditions for some of the results in this section.

Definition 2.10. We say a division algebra D of type IV(1, d) fulfills the condition (∗ ∗ ∗) if:
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• d is a prime power.
• The center K does not lie in Q(ζd).
• The class number of the center K of D is prime to d.

Definition 2.11. We say an abelian variety of type IV(1, d) fulfills the condition (∗ ∗ ∗) if its
endomorphism algebra fulfills the condition (∗ ∗ ∗).

The condition that d is a prime power is, by far, the most restrictive of the three. Since Q(ζd) has
a unique quadratic subfield, the assumption that K * Q(ζd) is mild. We provide the following
two examples to demonstrate that the third condition is fairly generic as well.

Example 2.32. Consider the case where d is a 2-power larger than 2. It is well-known that the
class number of an imaginary quadratic field K = Q(

√
−a) is odd if and only if a is a prime ≡ −1

(mod 4). Choose any such imaginary quadratic field K and choose a rational prime p that splits
in K. Let p, p be the primes of K lying over Q and let h be the smallest integer such that p, p
are principal. Let D be the division algebra central over K with Hasse invariants

invp(D) =
1

d
, invp(D) =

d− 1

d
.

Then we may construct an abelian variety over the field Fph with endomorphism algebra D.

Example 2.33. For the case when d is a p-power for some odd prime p, it was shown by
Hartung ([Har74]) that there exist infinitely many imaginary quadratic fields with class number
not divisible by p. His proof makes use of the Kronecker relation:

h(4n− s2) = 2
∑

r|n, r>
√
n

r

where h(N) denotes the class number of quadratic forms of discriminant −N . Furthermore, by
([KO99], Theorem 1.1), the number of imaginary quadratic fields with discriminant ≤ X and
class number indivisible by p is bounded below as follows:

For any constant ε > 0, there exists a constant Xε such that

#{−Xε < D < 0 : p - h(D)} ≥
(

2(p− 2)√
3(p− 1)

− ε
) √

Xε

log(Xε)
,

which implies that division algebras fulfilling condition (∗ ∗ ∗) are ubiquitous. As seen in
Proposition 3.7, for any such division algebra D, we may construct an abelian variety whose
endomorphism algebra is isomorphic to D.

Theorem 2.34. Let B be an abelian variety of type IV(1, d) over a finite field Fq with the
endomorphism ring End(B) a maximal order in the endomorphism algebra D := End0(B). Let
n be an integer relatively prime to q that lies in the image of the norm map NmK/Q : K −→ Q.

(1). There exists a Galois quasi-isogeny ψ : B −→ B of degree n.

(2). Furthermore, if B fulfills condition (∗ ∗ ∗) and End(B) is a maximal order in D, then for
any sufficiently large integer e, there exist distinct, pairwise commutative Galois endomorphisms
ψi : B −→ B, i = 1, · · · , d of degree ne.

Proof. (1). Let l1, · · · , lr be the distinct primes dividing n. We show that there pairwise
commutative exist Galois quasi-isogenies φ1, · · · , φr with Nrd(φi) = l. Note that pairwise
commutativity is equivalent to the quasi-isogenies all lying in some maximal subfield of D.
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We choose a prime v of Q(ζd) satisfying all of the following conditions.

(i). v has local degree one over Q.
(ii). v splits completely in Q(ζd,

d
√
l1, · · · , d

√
lr).

(iii). v is inert in the degree d cyclic extensions Q(ζd2) and in Q(ζd, d
√
p).

(iv). v is prime to the discriminant of K.
(v). v is inert in the quadratic extension K(ζd).

Note that the existence of such a prime v is guaranteed by the Chebotarev density theorem.
In fact, the set of the primes of Q(ζd) fulfilling all of these conditions has Dirichlet density

φ(d)2

2dr+2
> 0.

Let L0 be the unique subfield of Q(ζp1 ) of degree d. Set L := L0K, so that L is a CM field of
degree 2d cyclic of degree d over K.

Let p1 be the rational prime lying under v. By condition (iii), the inertia degree of p in
Q(ζp1 )/Q divisible by d and gcd(d, p−1

d ) = 1. Hence, p is inert in the degree d subfield L0/Q of
Q(ζp1 ). Furthermore, since p splits (completely) in K/Q and is inert in L0/K, it follows that the
two primes of K lying over p are inert in L/K. So, in particular, L/K has local degree d at the
primes of K that D is ramified at and hence, L splits D. Thus, L has an embedding in D.

By condition (ii), the primes l1, · · · , lr split completely in L0. Since these primes split
completely in K, it follows that they split completely in the compositum L = L0K. It suffices to
show that each li occurs as the degree of a quasi-isogeny. Hence, we fix a prime divisor l of n for
the rest of this proof.

Furthermore, since there exist infinitely many primes v fulfilling the conditions in the last
paragraph, we may choose v such that p1 := char(v) is unramified in the spinor class field ΣK .
By Arenas-Carmona’s theorem, it follows that the ring of integers OL has an embedding in every
maximal order of D. In particular, OL has an embedding in End(B).

Now, if any element α ∈ L has norm NmL/K(α) = l, then α corresponds to a quasi-isogeny
ψα : B −→ B with degree l. We first show that l is a local norm at all places of K in the extension
L/K. Let v be any finite place of L and let w be the place of K lying under v. We will need to
show that l lies in the image of the norm map

NmLv/Kw : Lv −→ Kw

of local fields. We treat the following three cases separately.

Case 1 char(v) = l.

Since the primes of K lying over l split completely in L, we have Lv ∼= Kw and hence, l is
trivially in the image of the norm map.

Case 2 char(v) = p1.

Since L/K is cyclic and totally ramified at the primes of K lying over p1, it follows that
Lv/K

×
w is cyclic of degree d. By construction, l is a d-th power in F×p1 . Hence, by Hensel’s lemma,

there exists α ∈ K×w such that l = αd. Thus, l = αd = NmLv/Kw(α).

Case 3 char(v) /∈ {l, p1}.
Since Lv/Kw is unramified, the norm map is surjective on the group of units in K×w . Since l

is a unit in K×w , there exists some u ∈ L×v such that NmLv/Kw(u) = l.

Thus, l is locally a norm at all places of L/K and since L/K is cyclic, it follows from the Hasse
norm theorem that l lies in NmL/K(L×). Let α ∈ L× be an element such that NmL/K(α) = l.
Then any quasi-isogeny corresponding to α has degree l.
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(2). Now suppose, B fulfills the condition (∗ ∗ ∗). We construct the number field L in the same
manner as part (1). Now, L/K is cyclic of degree d which is assumed to be a prime power.
Furthermore, the rational prime p1 is inert in K/Q. So L/K is totally ramified at the prime
p1OK and is unramified everywhere else. Since the class number of K is relatively prime to d,
by Lemma 3.26, so is the class number of L. Let l̃ be a prime of L lying over l and let h be the
smallest integer such that l̃h is principal, with l̃h = αOL for some α ∈ OL. Now, h divides the
class number of L and hence, is relatively prime to d. Hence, for any integer N ≥ dh − d − h,
there exist non-negative integers a1, a2 such that a1h+ a2d = N . Thus, we have

lN = NmL/K(αa1 la2) = Nrd(αa1 la2),

which completes the proof.

Remark From the proof, it is clear that we may construct infinitely many such endomorphisms
of degree lN , no two of which commute. Any two such endomorphisms generate D as a Q-algebra.

Corollary 2.35. For any sufficiently large integer N , there exist cyclic endomorphisms ψ1, · · · , ψd :
B −→ B and an integer m < N such that:

- the ψi are pairwise commutative.
- the endomorphisms lmψj are of degree lN .

- B[lN ] =
d∑
i=1

B[ψi].

- B[ψj ] ∩B[ψ̂j ] = {0B} where ψ̂j =
∏
i 6=j

ψi.

Proof. As shown in the preceding theorem, there exist infinitely many cyclic endomorphisms φ :
B −→ B of degree lN such that K(ψ)/K is a Galois extension. Let ψ be one such endomorphism
and let ψ1, · · · , ψd be the Galois conjugates of ψ. Since K(ψ)/K is Galois, the ψj lie in the
embedding of K(ψ) in D . Hence, they are pairwise commutative.

Furthermore, the ideal (ψi, ψj) = (1) in OK(ψ). Hence, ker(ψi) ∩ ker(ψj) = {0}.

Proposition 2.36. Let B1, B2 be simple abelian varieties over a finite field Fq with the same
endomorphism algebra D of type IV(1, d) and Λi := End(Bi) maximal orders in D for i = 1, 2.
There exists a cyclic isogeny ψ : B1 −→ B2.

Proof. Since B1 and B2 are of type IV(1, d) and have the same endomorphism algebra, they
are isogenous by Proposition 2.2. Now, there exists a left ideal I of Λ1 such that φI(B1) = B2.
Choose a prime ideal p of K prime to N such that:

- p has local degree one over Q.
- p lies in the same ideal class as Nrd(I) in Cl(K).

Choose a maximal left ideal J of End(B1) containing p. By Eichler’s theorem, J is in the
same ideal class as I in the ideal class set Cl(Λ1). Hence, φJ = φI up to isomorphism.

Proposition 2.37. Let B1, B2 be abelian varieties with endomorphism algebra D of type IV(1, d)
with the endomorphism rings Λ1 := End(B1), Λ2 := End(B2) maximal orders in D. The following
are equivalent.

1. There exist a prime ideal I of OK such that φI(B), B2 are Galois conjugates.
2. Λ2 = α−1Λ1α for some α ∈ D.

Proof. (1) ⇐ (2): Suppose B2 = σ(B1) for some σ ∈ Gal(Fq/Fp). Clearly, σ ◦ I0 yields an
isomorphism Λ1

∼= Λ2 which, when tensored with K, yields a automorphism of the division
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algebra D. By the Skolem-Noether theorem, this is an inner automorphism by some element of
D. Hence, Λ1, Λ2 are conjugate maximal orders.

(2) ⇒ (1): Conversely, suppose Λ2 = α−1Λ2α for some α ∈ D×. Now, there exists a left ideal
I of Λ1 such that φI(B1) = B2 and Or(I) = Λ2. Hence, Or(Iα) = α−1Or(I)α, Ol(Iα) = Ol(I).
Replacing B2 by another abelian variety in its isomorphism class if necessary, we may assume I
is an integral two sided ideal of Λ1. Furthermore, φI is a composition

φsep ◦ φinsep : B1 −→ B3 −→ B2

of a separable and a purely inseparable morphism. By ([Yu11], theorem 1.3), there exists an
abelian variety B̃3 such that End(B̃3) is a maximal order, End(B) ⊆ End(B̃3) and every isogeny
to B3 factors through B̃3. Hence, there is a composition

φ̃sep ◦ φ̃insep : B1 −→ B̃3 −→ B2

where φ̃sep is purely inseparable and φ̃insep and φ̃sep is separable.

Since the abelian varieties B̃3, B2 have endomorphism rings that are maximal orders, the
isogeny φ̃sep linking them is an ideal isogeny, i.e. there exists a maximal left ideal J of End(B̃3)

such that φ̃sep = φJ up to isomorphism. Since φJ is separable, Nrd(J) is relatively prime to p.

Since φinsep is some power of the Frobenius, it suffices to show that the separable morphism
φsep is an isomorphism. Thus, we may assume φI is separable, meaning Nm(I) is prime to p.
Since D is split at every prime of K dividing I ∩ OK , it follows that I = I0Λ1 for some ideal I0

in OK . Hence, φsep is an isomorphism and B2 = φinsep(B1).

In the case of supersingular elliptic curves, it is well-known that the endomorphism ring is a
maximal order in the quaternion algebra Qp,∞ ramified only at p and the archimedean place of
Q. In our setting of an abelian variety of type IV(1, d), we do not quite have the analogous result
since the center

Cent(End(B)) = End(B) ∩ Cent(D)

of End(B) might not be the maximal order OK . However, we show that the failure of End(B)∩K
to be the maximal order in K is a good measure of the failure of End(B) to be a maximal order
in D. Note that in general, the set of orders of D is rather complicated and this does not easily
generalize to arbitrary abelian varieties over finite fields.

Proposition 2.38. Let B be an abelian variety of type IV(1, d) over a finite field of characteristic
p. Let K be the center of D := End0(B) and let O be the center of End(B).

1. The center of End(B) is isomorphic to an order O in the field K.

2. The order Λ := End(B)⊗OOK is a maximal order in D. In particular, End(B) is a maximal
order in D if and only if End(B) ∩K = OK .

Proof. 1. We have Cent(End(B))⊗ZQ ∼= D and since the centralizer Cent(End(B)) is a finitely
generated Z-module, it follows that it is an order in K.

2. By ([AG60], Proposition 1.2), it suffices to show that the localization of Λ at any prime v of
K is a maximal order in D ⊗K Kv. Let l be a prime of K that does not divide p. By Tate’s
isogeny theorem, we have an isomorphism

End(B)⊗OK OKl
∼= Matd(OKl

)

which is a maximal order in Matd(Kl).
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Let v be a prime of K lying over p and let j
d be the Hasse invariant of D at v, for some

integer j prime to d. Since p splits completely in K, we have Kv
∼= Qp. The Newton polygon of

B is d× j
d , d×

d−j
d for some integer j prime to d. Now, Dv := D ⊗K Kv is a division algebra of

degree d2 over Qp with Hasse invariant j/d. Furthermore, by Tate’s isogeny theorem, the subring
Λ⊗OK OKv of Dv is the endomorphism ring of the pure isocrystal of slope j/d. By a theorem of
Dieudonne-Lubin ([Fro68], Page 72), this is the (unique) maximal order in the division algebra
over Qp with Hasse invariant j/d ∈ Q/Z.

Thus, we have verified that the localization of Λ at any prime is a maximal order. Hence, Λ
is a maximal order in D.

Corollary 2.39. Let B be an abelian variety of type IV(1, d) over a finite field and let π be the
Weil number associated to it. Let Λ be a maximal order of D := End0(B) that contains End(B).
Then the index [Λ : End(B)] divides the index [OK : Z[π, π]] where K is the center of D.

Proof. Let O be the center of End(B). As shown in the preceding proposition, the index
[Λ : End(B)] coincides with the index [OK : O]. Now O contains the order Z[π, π] and hence,
[OK : O] divides [OK : Z[π, π]].

Corollary 2.40. Let B1, B2 be abelian varieties over a finite field with endomorphism algebra
D of type IV(1, d). Let Λ1, Λ2 be maximal orders of D containing the orders End(B1), End(B2)
respectively. Then there exists an ideal isogeny linking B1 and B2 if and only if

[Λ1 : End(B1)] = [Λ2 : End(B2)].

Proposition 2.41. Let D be a division algebra of type IV(1, d) with center K and let B,B′ be
abelian varieties over a finite field Fpk with endomorphism algebra D. Let φ : B −→ B′ be a
separable isogeny of a prime degree l. Let Λ := End(B), Λ′ := End(B′) be the endomorphism
rings with centers O, O′ respectively. Then the following are equivalent:

1. O = O′.
2. The left ideal I(ker(φ)) := {ψ ∈ O : ψ(ker(φ)) = 0} is a locally free module of O of norm
equal to deg(φ).

3. There exists an isogeny B −→ B′ of degree prime to deg(φ).

Proof. (1⇔ 2): Let ∗ denote the involution of the second kind that D is equipped with. Then

Z + l2O ⊆ Z + φO′φ∗ ⊆ O.

By Tate’s isogeny theorem, we have

Hom(B,B′)⊗Z Zl ∼= HomZ[Frk](Tl(B), Tl(B
′)).

Hence, the Tate modules Tl(B), Tl(B
′) are isomorphic as Zl[Frk]-modules if and only if the orders

Λl, Λ′l are isomorphic, which in turn is equivalent to the centers Ol, O′l being isomorphic. Since

I(ker(φ))⊗O Op = Op

for any prime p of O lying over p, this is equivalent to I(ker(φ)) being locally free as a left
O-module.

(2⇒ 3): If I(ker(φ)) is a locally free O-module, we may choose an ideal J of O prime to I(ker(φ))
and in the same ideal class as I(ker(φ)). The ideal isogeny φJ : B −→ B′ is of degree prime to
deg φ.

(3⇒ 1): Since one of O and O′ is contained in the other, we may assume without loss of generality
that O′ ⊆ O′. So [O : O′] divides l. Let φ1 be an isogeny of degree prime to l. Then [O : O′]
divides (deg φ1)d and since [O : O′] also divides l, it follows that O = O′.
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The following corollary is immediate.

Corollary 2.42. Let D be a division algebra of type IV(1, d) with center K and let B,B′ be abelian
varieties over a finite field Fpk with endomorphism algebra D. Let φ : B −→ B′ be a separable
isogeny of degree a prime l . Let Λ,Λ′ be maximal orders of D containing the endomorphism
rings End(B), End(B′). Then the following are equivalent:

1. [Λ : End(B)] = [Λ′ : End(B′)].

3. There exists an isogeny B −→ B′ of degree prime to deg(φ).

Earlier, we showed that an isogeny B −→ B′ of abelian varieties of type IV(1, d) arising from a
left ideal of End(B) is a normed isogeny. We now show that the converse is also true.

Proposition 2.43. Let B be an abelian variety of type IV(1, d) with End(B) a maximal order
in D := End0(B). Any ideal isogeny from B to another abelian variety is given by φI for some
left ideal I of End(B).

Proof. Write Λ := End(B). As seen in the last proposition, Λ is a maximal order in D. It suffices
to show that for any ideal n of K, the number of subgroup schemes of B order n coincides with
the number of left integral ideals of reduced norm n. Furthermore, it suffices to show this for the
case when n is a prime power.

Case 1. n = pm for some integer m.

Since B has p-rank zero, every isogeny φ : B −→ B′ of order pm is purely inseparable and
factors through B(pm) := Frp

m

B (B). Since the degrees coincide, we have B′ ∼= B(pm) and there is
a unique subgroup-scheme of order pm in B[pm]. On the other hand, Λp is the unique maximal
order in a d2-dimensional central division algebra over Qp and hence, has a unique ideal of reduced
norm pm.

Case 2. n = lm for some integer m and prime l 6= p.

Let l be a prime of l lying over l. We have Λl
∼= Matd(OKl

) and hence, the left ideals of
Λl := Λ⊗OKOKl

are principal. Now, the set of elements of Matd(OKl
)/GLd(OKl

) of determinant
lm is in bijection with the set of submodules of OdKl

of index lm. For any such submodule

M ⊆ OdKl
, the image of M under the homomorphism:

0 −→ lmOKl
−→ OmKl

−→ (Z/lmZ)d

is a subgroup of order lm. Conversely, let H be a subgroup of order lm in (OK/lmOK)d. The
preimage of H in OdKl

is a OKl
-submodule of OdKl

with a cokernel of order lm.

Proposition 2.44. Let B be an abelian variety of type IV(1, d) with End(B) a maximal order
in End0(B). Any normed isogeny from B to another abelian variety is given by φJ for some
maximal left ideal J of End(B) with the degree deg φI a prime.

Proof. As shown in the last proposition, the isogeny is of the form φI for some left ideal I of
End(B). Let Nrd(I) ⊆ OK be the reduced norm ideal of I. Let H(K) denote the Hilbert class
field of K. Applying the Chebotarev density theorem to the abelian extension H(K)/K, we see
that in every ideal class of K, there exist infinitely many primes of K with local degree one over
Q. Choose any such prime q in the same ideal class as Nrd(I) and let J be a maximal left ideal
of End(B) containing q. By Eichler’s theorem, J lies in the same ideal class as I. Thus, φI = φJ
up to isomorphism.
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Lemma 2.45. Let D be a central division algebra over a global field F , Λ a maximal order and I
a left ideal in Λ. If J ⊆ I is another left Λ-ideal and Nrd(J) = Nrd(I), then J = I. In particular,
if there exists an element α ∈ I such that Nrd(α) = Nrd(I), then I = Λα.

Proof. See ([Rei75], Chapter 5).

Proposition 2.46. Let B be an abelian variety of type IV(1, d) fulfilling the condition (∗ ∗ ∗).
Write D := End0(B) and let K be its center. Let l be a rational prime that splits completely
in the Hilbert class field H(K). For any sufficiently large integer N , there exist endomorphisms
ψ, τ ∈ End(B) and an integer m such that:

1. ψ is a cyclic isogeny of degree lN−dm.
2. The isogenies ψj := τ−jψτ j (j = 0, · · · , d − 1) are pairwise commutative and yield the
decompositions

B[lN−dm] =
d−1⊕
j=0

B[ψj ], B[lN ] =
d−1∑
j=0

B[lmψj ]

of the torsion subgroup schemes.
3. K(ψ, τ) = D, i.e. ψ, τ generate D as a K-algebra..

Proof. Since OL is a finitely generated OK-module, Proposition 1.1 of [AG60] implies that it is
contained in some maximal order Λ of D. Let σ be a generator of the Galois group Gal(L/K). By
the Skolem-Noether theorem, σ extends to an inner automorphism of D by an element α ∈ D×.
Replacing α by an integer multiple if necessary, we may assume without loss of generality that
α ∈ Λ×.

Furthermore, τd commutes with ψ and hence, τd lies in L. On the other hand, τ j /∈ L for
j = 1, · · · , d − 1 and hence, the field K(τ) is of degree d over K and is disjoint from L over K.
Hence, the inclusion K(ψ, τ) ↪→ D is an equality.

Proposition 2.47. Let D be a division algebra of type IV(1, d) and let OD be a fixed maximal
order in D. There exists bijections:

{Isomorphism classes of abelian varieties over Fp with endomorphism ring a maximal order in D}

{Left ideal classes of OD }

{Maximal left ideal classes of OD of prime degree}.

Proof. By Corollary 3.21, there exists an abelian variety with endomorphism ring OD. As seen
above, the abelian varieties with endomorphism algebra D define an isogeny class. Fix an abelian
variety B in this isogeny class and let Λ be its endomorphism ring, a maximal order in D. Any
isogeny B −→ B1 is given by φI for some left ideal I. Furthermore, any two left ideals I, J
satisfy φI = φJ up to isomorphism if and only if they lie in the same ideal class. Since there is a
bijection between the left ideal class sets of Λ and OD, this yields the first bijection.

For the second bijection, let I be any left ideal OD. Choose a prime q of K in the same ideal
class as Nrd(I) in Cl(K). Let J be a maximal left ideal of OD containing q. Then Nrd(J) = q
and hence, the ideals Nrd(I) and Nrd(J) lie in the same ideal class of K. From Eichler’s theorem,
it follows that I and J lie in the same left ideal class of OD.
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2.6 The group of two-sided ideals

As observed a long time ago (see [Rei75]), the theory of two-sided ideals in orders of division
algebras is vastly different from that of the one-sided ideals. In fact, while the one-sided ideals
do not have a multiplicative group structure, it is easily verified that two-sided ideals of Λ form
an abelian group under multiplication. We say two-sided ideals I and J are equivalent if J = αI
for some α ∈ Λ×. We denote the group of two sided ideals up to this equivalence by Idl(Λ). It is
a well-known fact that is a finite abelian group.

Note that a pair I, J of two-sided ideals may be equivalent in the set of left ideal classes
despite lying in different classes as two-sided ideals. However, the class group Idl(Λ) is not far
from the class group of K, as shown in the next proposition.

Proposition 2.48. Let Λ be a maximal order in D. There exists a bijection

{Two-sided prime ideals of Λ} −→ {Prime ideals of OK}, J 7→ J ∩ OK .

Furthermore, we have the exact sequence

0 −→ Cl(OK) −→ Idl(Λ) −→ (Z/dZ)2 −→ 0.

Proof. Note that for any prime ideal q of K, ΛqΛ ∩K = q and hence, the map is surjective.

For the injectivity, let p be a prime ideal in K and P a two-sided prime ideal of Λ. Then the
completion Pp is a maximal ideal of Λp. If p is one of the two primes dividing p, then Λp is the
maximal order in the a d2-dimensional division algebra over Kp. In this case, Λp has a unique
two-sided maximal ideal Pp with P dp = pΛp. On the other hand, if p - p, we have Λp

∼= Matd(OKp).
In this case, the only maximal two-sided ideal of Λp is pΛp.

We have a natural homomorphism

Idl(OK) −→ Idl(Λ), I 7→ ΛIΛ.

To see that it is injective, suppose ΛIΛ = Λ for some ideal I of OK . Then Id = Nrd(I) = OK
and hence, I = OK . The co-kernel is described by the last paragraph.

2.7 A few examples of Jacobians of type IV(1, d)

We know that any principally polarized abelian variety of dimension three occurs as the Jacobian
of a smooth projective curve. Furthermore, this curve is either hyperelliptic or planar quartic.
Unfortunately, for higher dimensions, we do not have a concrete characterization of such abelian
varieties that arise as Jacobians of curves. In this subsection, we give a few examples of abelian
varieties of type IV(1, d) that arise as Jacobians of curves.

Theorem 2.49. (Oort) For any prime p and integer g ≥ 3, there exists a hyperelliptic curve
over Fp whose Jacobian has p-rank zero.

In particular, for any prime p, Oort’s theeorem guarantees the existence of an abelian variety
over Fp of type IV(1, 3) that is the Jacobian of a hyperelliptic curve.

Example 2.50. Let C be the hyperelliptic curve C : y2 = 1− x7 over Q and let A := Jac(C) be
its Jacobian. Then A is a principally polarized abelian variety of dimension three over Q with
endomorphism algebra End(A) = Z(ζ7). Furthermore, A has good reduction at all primes outside
the set {2, 7} and since it has complex multiplication, it has potential good reduction everywhere.
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Let p be a prime ≡ 2 (mod 7). Then p has inertia degree 3 in Q(ζ7). By the theory of complex
multiplication, the Newton polygon of the reduction Av is 3× 1/3, 3× 2/3. Hence, End0(Av) is
a central division algebra D of dimension 9 over the imaginary quadratic field Q(

√
−7) such that

Q(ζ7) splits D. Furthermore, we have

Z(ζ7) ∼= End(A) ↪→ End(Av)

and hence, End(Av) is a maximal order in D.

Example 2.51. Let D be a division algebra of type IV(1, 3) with center Q(
√
−1). Let B be

a principally polarized abelian variety over a finite field Fq with End0(B) = D. Then B is
the Jacobian of some curve C over Fq. Furthermore, since B has a polarization-equivariant
automorphism of order 4, it follows from [Mil86] that the curve C is hyperelliptic.

Example 2.52. This construction using metacyclic Galois covers of the projective line draws
from the results of [Ell01] and [CLS11]. Choose a rational prime q ≡ 7 (mod 12). Set d := q−1

6
and fix an integer k of order 3 modulo q. Consider the group

Gq,3 := 〈a, b : aq = b3 = 1, b−1ab = ak〉.

Let Y be a Galois covering of the projective line P1 by the group Gq,3 over C with three branched
points P1, P2, P3 each of ramification index 3. Then the quotient curve X := Y/〈b〉 is a smooth
projective curve and by Theorem 1 of [CLS11], its Jacobian Jac(X) is a simple abelian variety

that admits complex multiplication by the unique index 3 subfield Q(ζ
(3)
q ) of Q(ζq). In particular,

Jac(X) is simple of dimension q−1
6 . Since Jac(X) has complex multiplication, it follows from a

theorem of Shimura that it has a model A over some number field F . Enlarging F if necessary,

we may assume F = F conn
A and in particular, Q(ζ

(3)
q ) ⊆ F . Choose a prime of Q(ζ

(3)
q ) of local

degree d over Q. Then the reduction Av is an abelian variety over a finite field with Newton
polygon

d× j

d
, d× d− j

d

for some integer j prime to d. Thus, Av is an abelian variety of type IV(1, d). The center of
End0(Av) is the imaginary quadratic field Q(

√
−q) and End0(Av) is ramified only at the two

places of Q(
√
−q) lying over char(v).

2.8 Arithmetic computations on Jacobians

By [Sut18], the cost of addition/doubling of points on a genus three hyperelliptic curve with
a Weiertrass point is I + 79M/2I + 82M where I denotes the number of inversions and M the
number of multiplications of elements in the finite field of definition. This is the best optimization
for point addition/doubling as far as we know. For planar quartic genus three Jacobians, the cost
of addition is 163M + 2I while that of doubling is 185M + 2I ([FOR04]).
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