
Thresholdizing HashEdDSA: MPC to the Rescue

Charlotte Bonte1[0000−0002−4365−1845], Nigel P. Smart1,2[0000−0003−3567−3304], and Titouan
Tanguy1[0000−0002−7965−620X]

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

charlotte.bonte@kuleuven.be, nigel.smart@kuleuven.be, titouan.tanguy@kuleuven.be

Abstract. Following recent comments in a NIST document related to threshold cryptographic stan-
dards, we examine the case of thresholdizing the HashEdDSA signature scheme. This is a deterministic
signature scheme based on Edwards elliptic curves. Unlike DSA, it has a Schnorr like signature equa-
tion, which is an advantage for threshold implementations, but it has the disadvantage of having the
ephemeral secret obtained by hashing the secret key and the message. We show that one can obtain
relatively efficient implementations of threshold HashEdDSA with no modifications to the behaviour of
the signing algorithm; we achieve this using a doubly-authenticated bit (daBit) generation protocol tai-
lored for Q2 access structures, that is more efficient than prior work. However, if one was to modify the
standard algorithm to use an MPC-friendly hash function, such as Rescue, the performance becomes
very fast indeed.

1 Introduction

Recent developments, like blockchain, have produced scenarios where creating valid signatures are
extremely valuable. Even a single valid signature on an incorrect message can result in catestrophic
consequences. This creates a problem that we can describe as fraudulent key usage. Threshold
signature schemes can be used to mitigate the risk that an adversary can produce such a valid
signature, by distributing signing power to a qualified set for a given access structure. Threshold
signature schemes replace the key generation and signing algorithms of a digital signature scheme
with an interactive protocol that requires participation of a certain number of parties to generate
the signatures. Hence an adversary would have to corrupt multiple parties in order to generate a
valid signature.

Threshold signatures schemes were previously studied in [Sho00,DK01,GJKR96,MR01]. With
the emergence of the scenarios where creating valid signatures can cause severe threats to the
system, interest in threshold signature schemes renewed and new methods to generate ECDSA
signatures were constructed [CDK+18, CCL+20, DKLs18, GGN16, GG18, Lin17, LN18, LNR18]. As
a consequence, the standardisation body NIST has initiated a Threshold Cryptography project
in which they aim to standardise threshold schemes. In one of the documents NIST published in
this effort [BDV19], threshold schemes for several cryptographic primitives are described. Amongst
others, the document mentions the Edwards-curve Digital Signature Algorithm (EdDSA). The
Edwards-curve digital signature algorithm consists of a deterministic variant of a Schnorr signature
based on Edwards curves. In deterministic Schnorr signatures, the ephemeral secret key is obtained
by hashing the secret key and the message. There are many (secure implementation) reasons for
using such a variant of Schnorr signatures, even though a verifier is unable to verify if the correct
deterministic procedure was indeed carried out. A more detailed description of EdDSA is provided
in NIST’s Digital Signature Standard document [Nat19]. There are two variants of EdDSA, the
first obtained the ephemeral secret key using

r = H(H(d) ‖ m)

where d is the signing key and both d, r ∈ Fq. The second variant, called HashEdDSA, hashes the
message first, thus we obtain

r = H(H(d) ‖ H(m))

To transform a signature scheme to a threshold signature scheme, we need to replace the key
generation and signing algorithms with interactive protocols between multiple parties. In this work
we consider Q2 access structure; this is an access structure in which no union of two unqualified
sets covers the whole set of parties. These quorum based access structures were introduced by Hirt
and Maurer [HM00] and are now commonly used in the MPC literature. For simplicity one can
consider threshold (t, n) access structures where the t < n/2 and no subset of fewer than t + 1
parties can recover the underlying secret or more specifically in this setting, a subset of fewer than
t + 1 parties can not forge a signature. Hence in a threshold protocol at least t + 1 parties have
to agree on signing a message before a valid signature of this message can be produced using a
protocol. The resulting signature is identical to a signature which is obtained in a non-threshold
manner, thus the verification algorithm of the signature remains unchanged.

The required security notion is that an active adversary, controlling an unqualified set of parties,
who can arbitrarily deviate from the protocol, is unable to learn any information about the secret
key or to produce a valid signature. In this work, we concentrate on active security-with-abort as
this often is more relevant in practical situations. Formally we require that the adversary cannot
determine when interacting with the protocol whether it is interacting with a real protocol, or with
a simulator which has access to an ideal signing functionality. In particular, this means that the
output signatures from the protocol need to be the same as those produced by the non-threshold
ideal signing functionality.

If we apply this to EdDSA, one sees that, since the ephemeral signing key r needs to be kept
secret, one needs to compute the hash via a form of multi-party computation (MPC) in order to
create a signature. This is the biggest challenge in transforming the EdDSA signature to a threshold
signature. As hashing in an MPC setting will be the most expensive part of our protocol, EdDSA
will be slow if it is used on long messages, and hence we focus on the HashEdDSA variant of the
protocol.

1.1 Our Contribution:

We examine the performance of HashEdDSA in the threshold setting as this was an explicit question
raised by the above mentioned NIST documents. Our technique for doing this in the case of the
currently standardised variants of HashEdDSA is to evaluate the required hash function using a
Garbled Circuit approach (GC) for n-parties, in particular a variant of the HSS protocol [HSS17].
This produces an additive authenticated bit-wise sharing of the hash function output between the
n-parties. We then convert this sharing into an Fq-sharing for the desired Q2 access structure using
a modification of the daBit procedure from [RW19, AOR+19]. A daBit is a doubly-authenticated
bit, namely a bit b which is secret shared in two different secret sharing schemes with respect to
potentially two different moduli, e.g. 〈b〉p1 and 〈b〉p2 .

The most efficient daBit generation procedure is given in [RST+19]. But this procedure is
focused on producing daBits which are shared with respect to two large primes p1 and p2, with
respect to a full threshold secret sharing scheme for both moduli. In our work, we require to generate
daBits in the ‘classic’ setting where p1 = 2 and p2 = q a large prime; but where the sharing modulus
p1 = 2 is full threshold and the sharing modulus p2 = q is with respect to a Q2 access structure.
Thus in Section 4, we provide a variant of the method in [RST+19] which works in our situation.

2

In Section 5 we present an actively secure threshold variant of the standard HashEdDSA. Unlike
threshold variants of standard (non-deterministic) DSA or Schnorr, we do not use zero-knowledge
proofs to ensure correctness of the values produced by the adversary. This is because we rely
on the underlying actively UC-secure MPC protocol to enable extraction of adversarial input for
our simulation. In particular, it is important that we use an underlying MPC protocol which is
UC-secure. Hence, we also provided specimen runtimes for our threshold protocol in Section 7.

The main problem, and the most expensive part of our threshold protocol, is the need to evaluate
a hash function which is designed to operate on binary data and then convert it into data which
is represented as elements in Fq. Thus we also investigate in Section 6 the effect of replacing the
standard hash functions SHA512 and SHAKE256 used in HashEdDSA with MPC-Friendly hash
functions. In particular, we examine the Rescue hash function given in [AAB+19] as this is a hash
function particularly suited to operating on Fq data. In Section 7 we also give experimental runtimes
for executing Rescue in this context.

Why focus on Q2 and not full threshold? Our focus in this paper is on multiplicative Q2 access
structures and not full threshold access structures for the following reason. Full threshold access
structure poses additional complexity when utilized for MPC, in particular the full threshold access
structure cannot be associated with a multiplicative secret sharing scheme. This means that it is
not possible to compute an additive sharing of the product of two secrets by performing only local
computations. Therefore, the input independent preprocessing phase needs to rely on more complex
machinery such as Homomorphic Encryption [DPSZ12] or Oblivious Transfer [KOS16]. The most
efficient method is to use Homomorphic Encryption, but here we require special properties of the
underlying prime modulus q. On the other hand using Oblivious Transfer one can design an offline
phase for any prime modulus q but at a prohibitive cost. These conditions are not satisfied for the
two curve parameters in the NIST standards. Thus we focus on the case of Q2 access structures.

2 Preliminaries

As in [Nat19], we will consider two variants of HashEdDSA, based on the Edwards curves Ed25519
and Ed448. Both are variants of a Schnorr signature based on twisted Edwards curves. They
use, however, different curves, hash functions and bitsizes, which means they provide different
security levels. We will briefly describe Prehash EdDSA (HashEdDSA) for both Ed25519 and
Ed448 signatures here. This is the version of EdDSA where the ephemeral key is generated on
the hash of the message rather than on the message itself. For more details on EdDSA, we refer
the reader to the original paper [BDL+11]. An interested reader can find a generalised version of
EdDSA in [BJL+15].

First we will define the notation of the parameters needed in these signatures. Let λ be the
required security level. Set b the number of bits for the public HashEdDSA keys. Then the HashEd-
DSA signatures will consist of exactly 2b bits. This value b is always a multiple of 8 and will hence
be considered as a string of octets. We will let H denote the hash function used in HashEdDSA,
for Ed25519 this is SHA512 and for Ed448 this is SHAKE256. HashEdDSA also relies on the pa-
rameters of the Edwards curve. Let G be a base point of prime order on the curve with coordinates
(xG, yG). The order of the point G will be indicated with q. The private key of the signature scheme
is denoted by sk and the public key with pk. The Edwards curve is itself defined over the prime
field Fp.

3

2.1 The Signature Algorithms

Having defined the parameters and encoding/decoding techniques used in the EdDSA signature
schemes, we now clarify the prehashed version of the Ed25519 signature scheme in Figure 1 and
the prehashed version of the Ed448 signature scheme in Figure 2. The algorithms make use of octet
string encodings of elliptic curve points. This is done using a form of point compression tailored to
the case of Edwards curves, for details see [Nat19]. For our purposes we note that the encoding of
a point for Ed25519 requires 32 octets, whilst that for Ed448 requires 57 octets.

Hashed Ed25519 Signature Algorithm

KeyGen(b, λ):

1. Use a random bit generator to obtain a string of b = 256 bits of the required security level λ = 128. The
private key sk equals this string of 256 bits.

2. Compute the hash H of the private key sk with SHA512, which results in a bitstring of length 512, i.e.
H(sk) = SHA512(sk) = (h0, h1, h2, . . . , h2b−1).

3. Use HL(sk) the first half of H(sk) to generate the public key by setting the first three bits of the first
octet and the last bit of the last octet to zero and setting the second last bit of the last octet to one.
Hence we set h0 = h1 = h2 = hb−1 = 0 and hb−2 = 1. Determine from this new bitstring an integer
s ∈ Fq using little-endian convention.

4. Compute Q = [s]G, the corresponding public key pk is the encoding of Q.

Sign(m, sk, pk):

1. Taking the second half of the hash value computed above we set HR(sk) = hb||hb+1|| . . . ||h2b−1 and
compute with it r = SHA512(HR(sk)||SHA512(m)). This r will be 64-octets long, and we treat it as a
little-endian integer modulo q.

2. Compute the encoding R of the point [r]G.
3. Define S as the encoding of r + SHA512(R||pk||SHA512(m)) · s (mod q).
4. The signature is constructed as the concatenation of R and S.

Verify(R||S,m, pk):

1. Split the signature into two equal parts and decode the first half R as a point and the second half S as
an integer s. Verify that s lies in the half open interval [0, q). Decode the public key pk into a point.
Reject the signature if any of the decodings fail.

2. Create a bit string of the concatenation of the octet strings R, pk, m, and HashData = R||pk||SHA512(m).
3. Compute SHA512(HashData) and interpret this bit string as a little-endian integer t.
4. Verify the equation [23 · S]G = [23]R+ (23 · t)pk. Reject the signature if this verification fails, otherwise

accept the signature.

Figure 1. Hashed Ed25519 Signature Algorithm

Ed25519 and SHA512 We need to determine the number of SHA512 calls we will need to compute
using MPC in the Ed25519 signing algorithm. From the description of SHA512, we know the
blocksize is 1024 bits and that some preprocessing is performed on the input of the hash function.
In the preprocessing of the input data of SHA512, one bit and a 128-bit string encoding the length
of the message are appended to the message.

The description of Ed25519 includes 3 calls to the hash function. The first occurence computes
the hash of the secret key H(sk). Remember that we can precompute this value, so we should not
take this instance of the hash function into account. In the signing protocol, we first need to compute
the hash on the message H(m). The number of hash calls needed for this computation depends on

4

Hashed Ed448 Signature Algorithm

KeyGen(b, λ):

1. Use a random bit generator to obtain a string of b = 456 bits of the required security level λ = 224. The
private key sk equals this string of 456 bits.

2. Compute the hash H of the private key sk with SHAKE256, which results in a bitstring of length 912.
H(sk) = SHAKE256(sk) = (h0, h1, h2, . . . , h2b−1)

3. Use HL(sk) the first half of H(sk) to generate the public key by setting the first two bits of the first
octet and all eight bits of the last last octet to zero and setting the last bit of the second to last octet to
one. Hence we set h0 = h1 = hb−8 = . . . = hb−1 = 0 and hb−9 = 1. Determine from this new bitstring
an integer s using little-endian convention.

4. Compute Q = [s]G, the corresponding public key pk is the encoding of Q.

Sign(m, sk, pk, context): A string context with maximum length of 255 octets is set by the signer and verifier, by
default this string context is the empty string.
1. Taking the second half of the hash value of the private key sk computed above, we set HR(sk) =

hb||hb+1|| . . . ||h2b−1. This value can already be precomputed.
2. We define dom4(f, c) to be the value

(SigEd448||octet(f)||octet(octetlength(c))||c),

where string SigEd448 is 8 octets in ASCII, the value octet(f) is the octet with f a value in the range
0− 255 and octetlength(c) is the number of octets in string c. We compute r as the value

r = SHAKE256(dom4(0, context)||HR(sk)||SHAKE256(m, 912), 912).

This r will be 114-octets long, and treated as an integer modulo q.
3. Compute the encoding R of the point [r]G.
4. The value S is defined as the encoding of r+SHAKE256(dom4(0, context)||R||pk||SHAKE256(m, 912), 912)·

s (mod q).
5. The signature is constructed as the concatenation of R and S.

Verify(R||S,m, pk, context): A string context with maximum length of 255 octets is set by the signer and verifier,
by default this string context is the empty string.
1. Split the signature into two equal parts and decode the first half R as a point and the second half S as

an integer s. Verify that s lies in the half open interval [0, q). Decode the public key pk into a point.
Reject the signature if any of the decodings fail.

2. Create a bit string of the concatenation of the octet strings R, pk, m, and HashData =
R||pk||SHAKE256(m, 912).

3. Compute SHAKE256(dom4(0, context)||HashData, 912) and interpret this bit string as a little-endian
integer t.

4. Verify the equation [22 · S]G = [22]R+ [22 · t]pk. Reject the signature if this verification fails, otherwise
accept the signature.

Figure 2. Hashed Ed448 Signature Algorithm

5

the size of the message. If l is the length of the message we want to hash, the number of hash calls
we need to do considering the preprocessing of the message before hashing, is d(l+ 1 + 128)/1024e.
This can be computed in the clear since all parties know the message.

Afterwards, we need to compute another hash with input the second half of the resulting
bitstring ofH(sk), the hash of the secret key, concatenated with the hash of the messageH(m). Since
SHA512 outputs a bitstring of 512 bits, the input size of this last hash call is 256+512+1+128 = 897
bits, taking into account the length padding needed in a standard call to SHA512. This is smaller
than the blocklength, hence this will only require one call to the underlying compression function.

Ed448 and SHAKE256 We can carry out a similar analysis for the case of the usage of SHAKE256
in the Ed448 signing algorithm. In SHAKE256, the suffix 1111 is appended to the message before
padding, then the padding needs to assure the message can be divided into blocks of bitsize 1088.
Hence zeros are attached to the message in order to make the message size a multiple of 1088.
However, the final bit added is a 1 and not a 0. Therefore, we have to at least add 5 ones to the
message. If we consider a message of length l, we will have to process d(l+ 5)/1088e blocks, which
equals the number of calls to the permutation function of SHAKE256.

Just as for the case of Ed25519 above, Ed448 uses three calls to this hash function. The first is
to compute the hash of the secret key, which can again be done in preprocessing. The second is to
compute the hash of the message, depending on the length l of the message we need d(l+ 5)/1088e
calls to SHAKE256 to compute this.

The final, crucial for us, hash function call is applied to the concatenation of dom4(0, context),
half of the bitstring encoding the hash of the secret key and the hash of the message. For the
default setting where context is the empty string the length of the message we want to sign here is
80 + 456 + 912 + 5 = 1453 bits, which corresponds to the need for 2 blocks. For the maximal size of
context, which corresponds to 255 octets, we need 2120+456+912+5 = 3493 bits, which corresponds
to needing 4 blocks. Thus we need to apply the SHAKE256 permutation function between two and
four times.

3 MPC Functionalities

Our key MPC functionality needs to process shared values in Fq as well as evaluate binary gar-
bled circuits using the HSS protocol, [HSS17]. We therefore adopt the Zaphod framework from
[AOR+19].

Let P = {P1, . . . , Pn} be a set of parties, Γ,∆ ∈ 2P be respectively the monotonically increasing
set of qualified sets and the monotonically decreasing set of unqualified sets. Then if Γ ∩ ∆ = ∅,
(Γ,∆) defines a monotone access structure. For our matter we only consider complete monotone
access structures, that is those for which ∆ = 2P \ Γ holds. Eventually the access structure is said
to be Q2 if no union of two sets in ∆ is the whole set of parties P.

We let 〈·〉q denote a linear secret sharing scheme (LSSS) over the finite field Fq which realizes
a Q2-access structure. We restrict the set of supported LSSS to one which is multiplicative, which
means that given 〈x〉q and 〈y〉q then the value x ·y can be expressed as a linear combination of local
products of shares. Since the access structure is Q2, the shares are in some-sense automatically
authenticated through redundancy among the honest players, thus one can easily define actively
secure MPC (with abort) protocols for such a secret sharing scheme, see e.g. [CGH+18,SW19].

The sharing 〈·〉q is defined via monotone span programs (MSPs), which were first introduced by
Karchmer and Widgerson [KW93]. Let M ∈ Fm×kq be a matrix, choose a non-zero “target” vector

6

t ∈ Fkq and a surjective index function ι : {1, . . . ,m} −→ {1, . . . , n}. If we consider for example
Shamir based Q2 access structure, the number of shares m are equal to the number of parties n and
if we consider the (3, 1)-threshold replicated secret sharing, the number of shares m equals 6. To
share a secret s using this matrix, “target” vector and index function, the dealer samples a vector
vk← Fkq such that t · vkT = s ∈ Fq, sets s = (s1, . . . , sm) = M · vk, and for each j ∈ [m] computes
i = ι(j) and sends sj to party Pi over a secure channel3. The matrix is chosen in such a way that
for any qualified set of parties Q ∈ Γ , there is a (public) recombination vector rQ that given the
share vector s (i.e. the concatenation of shares held by the qualified set of parties) can recover the
secret by computing s = rQ · sT (mod q). To authenticate a set of shares there is a public parity
check matrix H, which for a valid set of shares s will satisfy H · sT = 0. Unfamiliar readers are
referred to [KRSW18] for a more detailed introduction to MSPs.

For the HSS GC-based protocol [HSS17] we use a full threshold authenticated sharing of bits
〈·〉2, according to the pairwise BDOZ-style MAC introduced by Bendlin et al. [BDOZ11]. We extend
the sharing of bits 〈x〉2 to sharings of vectors of bits 〈x〉2 in the obvious manner.

The two types of functionalities are combined by applying the Zaphod framework [AOR+19]
using the functionality in Figure 3. Note that unlike the paper [AOR+19] we are only interested in
converting from sharings 〈·〉2 in the GC-world to an equivalent shared bit in the 〈·〉q-world. We also
allow the circuits Cf to produce multiple outputs. Each value in FMPC is uniquely identified by an
identifier varid ∈ I, where I is a set of valid identifiers, and a domain set domain ∈ {Fq,F2}. Note
the functionality is modelled in such a way that it is independent of the details of the authentication
technique used. In addition, the functionality captures all the MPC computations we will require
from a system such as SCALE-MAMBA. Also note that the output type type = −1 is needed to model
reactive functionalities.

In expressing algorithms based on this functionality we shall use the shorthand 〈x〉q to denote
an item stored in a varid for domain Fq and 〈x〉2 to denote an item stored in a varid for domain F2.
The functionalities and protocols expressed in this work require all parties to participate in order
to produce an output. However, a qualified set of parties should suffice to request and generate an
output, the formalization of this setup would be an extension of our paper which is left for future
work.

3 Standard TLS satisfies the properties we need for our secure channels.

7

Functionality FMPC

The functionality runs with parties P1, . . . , Pn and an ideal adversary Adv. Let A be the set of corrupt parties.
Given a set I of valid identifiers, all values are stored in the form (varid , domain, x), where varid ∈ I, domain ∈
{F2,Fq} and x ∈ domain.

Initialize: On input (Init) from all parties, the functionality activates.
If (Init) was received before, do nothing.

Input: On input (Input , Pi, varid , domain, x) from Pi and (input , Pi, varid , domain) from all other parties, with
varid a fresh identifier, store (varid , domain, x).

Random: On input (Random, varid , domain) from all parties, with varid a fresh identifier, generate a uniformly
random value x ∈ Fq or x ∈ F2 depending on the value of domain and store (varid , domain, x).

Evaluate: Upon receiving ((varid j)j∈[nI], (varid i)i∈[nO], domain, Cf̄), from all parties, where f̄ : {domain}nI →
{domain}nO and the varid i are all fresh identifiers, if {varid j}j∈[nI] were previously stored, proceed as
follows:
1. Retrieve (varid j , domain, xj), for each j ∈ [nI]
2. For each i ∈ [nO] store (varid i, domain, yi) where (y1, . . . , ynO)← f̄(x1, . . . , xnI)

Output: On input (Output , varid , domain, type), from all parties (if varid is present in memory):
1. If type = 0 (Public Output): Retrieve (varid , y) and send it to Adv. If the adversary sends Deliver,

send y to all parties.
2. If type = −1 (No Output): Retrieve (varid , y) and send it to Adv. If the adversary sends Deliver, store

(varid , y) and continue.
3. Otherwise type = i (Private Output): Send (varid) to Adv. Upon receiving Deliver from Adv, send y

to Pi
Abort: The adversary can at any time send abort, upon which send abort to all honest parties and halt.
Convert: On input (Convert , varid1, F2, varid2, Fq):

1. Retrieve (varid1,F2, x) and convert x ∈ {0, 1} to an element y ∈ Fq by setting y = x
2. Store (varid2,Fq, y).

Figure 3. The ideal functionality for MPC with Abort over Fq and F2 - Evaluation

8

4 Improved daBit Technique Q2-LSSS to GC Conversion

In the following we want to adapt the daBit scheme to generate daBits to switch between any
multiplicative LSSS with a Q2 access structure and Garbled Circuit protocols following the method
by Rotaru and Wood [RW19]. This base protocol was improved in [AOR+19], and then again
in [RST+19]. However, the latter improvement was only in the case of producing daBits between
two full threshold LSSS systems both over large prime moduli. Since our interest lies in Q2 access
structures and the case where the source conversion is a modulo 2 BDOZ-style secret sharing, we
need to modify the technique in [RST+19] for the case where q1 is the prime modulus of a Q2 LSSS
and q2 = 2.

We note that to realize the GC protocol implemented in the SCALE-MAMBA [AKO+18] framework,
and described in [HSS17], the sharing in F2 is a full threshold sharing irrespective of the access
structure of the LSSS in Fq. This is mainly due to the fact that threshold GC protocols, while
being asymptotically better, do not provide any performance gain for practical number of parties.
In particular this allows us to use a Q2 sharing for our LSSS over Fq even though such a sharing
would not be defined for more than 2 parties over F2.

We recall that we denote by 〈.〉q a sharing in the multiplicative LSSS and by 〈.〉2 a full threshold
sharing in F2 (both authenticated). The protocol follows closely the one described in [RST+19,
Figure 6] as we want to achieve the same goal. In our case qmin = 2, therefore we have γ = sec + 1
where sec is the security parameter of our protocol as specified in [RST+19] (typically sec = 128).
Informally, the protocol asks the parties to generate a random bit in the LSSS through a call
to the GenBit protocol, which extends the FMPC functionality and for which we give the ideal
functionality in Figure 4 and its secure realisation in Figure 5. The protocol also makes a call to the
ideal functionality F2sec

Rand which is described in Figure 6. The ideal functionalities and the protocol
are taken from [RST+19] and are given here for completeness.

Functionality FMPC.GenBit()

1. For each corrupt party Pi, the functionality waits for inputs bi ∈ Fq.
2. The functionality waits for a message abort or ok from the adversary. If the message is ok then it continues.
3. The functionality then samples a bit b ∈ {0, 1} and then completes the sharing to b =

∑
i bi by selecting

shares for the honest parties.
4. The (authenticated) shares are passed to the honest parties.
5. The bit b is stored in the functionality FMPC.

Figure 4. The ideal functionality for single random bits

Then one party is given enough information to compute, with probability at least 1 − 1
q , how

many ‘wrap arounds’ modulo q the sharing of these random bits induced. Therefore, this party
knows what its input should be modulo 2 to correct for the shares held by the other parties. We
therefore end up with a sharing of the same bit modulo q and modulo 2. Eventually, to check that
the protocol was correctly executed, the parties open γ = sec + 1 linear combinations of the same
random bits in both modulo q and modulo 2 and make sure that the linear combinations are equal
modulo 2.

We note that the only differences between our variant of the protocol presented in Figure 7 and
the one from [RST+19] lie in step 2. In fact, because in our protocol we consider any multiplicative
LSSS with a Q2 access structure we do not require all parties to take part in the computation of

9

Entering a Random Bit Πq
MPC.GenBit()

1. For i = 1, . . . , n execute FMPC.Input such that Pi inputs xi and all parties obtain the share of 〈xi〉q, where
xi is a random element in Fq.

2. 〈x〉q ←
∑n
i=1〈xi〉q.

3. 〈y〉q ← 〈x〉q · 〈x〉q.
4. Execute FMPC.Output to publicly reveal y from its sharing 〈y〉q.
5. If y = 0 then restart the process.
6. z ← √y, picking the value z ∈ [0, . . . , q/2).
7. 〈a〉q ← 〈x〉q/z.
8. 〈b〉q ← (〈a〉q + 1)/2.
9. Return 〈b〉q.

Figure 5. ‘Standard’ method to produce a shared random bit in Πq
MPC

Functionality FBRand(M)

1. On input (Rand, cnt) from all parties, if the counter value is the same for all parties and has not been used
before, the functionality samples ri ← [0, . . . , B) for i = 1, . . . ,M .

2. The values ri are sent to the adversary, and the functionality waits for an input.
3. If the input is Deliver then the values ri are sent to all parties, otherwise the functionality aborts.

Figure 6. The ideal FBRand(M) functionality

the correction terms ki. All we need is that enough of them, that is any set of parties in Γ , help P1

in doing so. That is we select a set Q1 which is the smallest qualified set which contains party P1.
Moreover, the definition of the bits bi,j slightly changes from the original protocol as we need to
take into account the reconstruction vector for the set Q1, and not only the raw shares. We stress
here that for the full threshold case the full set of parties is the only subset that can reconstruct a
sharing. Therefore if one considers Q1 = P and rQ1 = 1, then our definition of bi,j is identical to
the one given in [RST+19]. This alteration means that the proof of security from [RST+19], which
relies on assuming a variant of the subset sum problem, also applies to our modification.

10

Protocol ΠdaBit

1. Set ∆ = dq/|Q1|e.
2. For i = 1, . . . ,m+ γ · sec do

(a) 〈bi〉q ← FMPC.GenBit().
(b) Let Q1 be the smallest set in Γ that contains P1.

For j ∈ Q1 let bi,j = 〈r{Pj}
Q1

, 〈bi〉
{Pj}
q 〉 denote party j’s value such that

∑
j∈Q1

bi,j = bi (mod q).
Such a bi,j always exists by definition of our LSSS.

(c) For j ∈ Q1, party Pj writes bi,j = li,j +∆ · hi,j with 0 ≤ li,j < ∆.
(d) For j ∈ Q1, party Pj sends hi,j to party P1.
(e) Party P1 sets

ki =
⌈∆ ·∑j∈Q1

hi,j

q

⌉
.

(f) Parties re-randomize sharing in Fq
- All parties execute FMPC.Input, for j ∈ Q1, such that Pj inputs bi,j (mod q) and all parties obtain

the sharing 〈b(j)i 〉q.
- The parties compute 〈bi〉q =

∑
j∈Q1

〈b(j)i 〉q.
(g) Parties re-share the same bit in F2

- All parties execute FMPC.Input such that P1 inputs bi,1 − ki · q (mod 2) and all parties obtain the

sharing 〈b(1)
i 〉2.

- All parties execute FMPC.Input, for j ∈ Q1 \ {P1}, such that Pj inputs bi,j (mod 2) and all parties

obtain the sharing 〈b(j)i 〉2.

- The parties compute 〈bi〉2 =
∑
j∈Q1

〈b(j)i 〉2.

3. The parties initialize an instance of the functionality F2sec

Rand. [Implementation note this needs to be done after
the previous step so the parties have no prior knowledge of the output].

4. For j = 1, . . . , γ do
(a) For i = 1, . . . ,m+ γ · sec generate ri,j ← F2sec

Rand(m+ γ · sec).
(b) Compute the sharing 〈Sj,2〉2 =

∑
i ri,j · 〈bi〉2.

(c) Compute 〈Sj〉q =
∑
i ri,j · 〈bi〉q.

(d) Execute FMPC.Output to publicly reveal Sj,2 from its sharing 〈Sj,2〉2.
(e) Execute FMPC.Output to publicly reveal Sj from its sharing 〈Sj〉q.
(f) Abort if Sj (mod 2) 6= Sj,2.

5. Output 〈bi〉q and 〈bi〉2 for i = 1, . . . ,m.

Figure 7. Method to produce m shared daBits

11

5 Threshold Variant of Standard HashEdDSA

We now present our threshold variant of HashEdDSA and show that it is secure when instantiated
with a UC-secure instantiation of the MPC functionality from Figure 3. We concentrate on the
HashEdDSA signature based on the Ed22519 curve given in Figure 1, with the case of Ed448 being
virtually identical (bar using a different hash function and a different elliptic curve). We also focus
on the KeyGen and Sign algorithms, as Verify is fixed irrespective of whether one signs with a
threshold variant or not. Our goal is to realise the functionality given in Figure 8.

Distributed Signature Functionality: FSign

We let A denote the set of parties controlled by the adversary.

KeyGen: This proceeds as follows:
1. The functionality generates a public/private key pair; s ∈ Fq and pk = [s]G and waits for an input from

the adversary.
2. The adversary returns with either abort or deliver and if deliver then the value pk is output to the

adversary.
3. The functionality again waits for an input from the adversary.
4. The adversary returns with either abort or deliver. If deliver the functionality returns pk to the honest

parties, otherwise it aborts.
Sign: On input of the same message m from all parties the functionality proceeds as follows:

1. The functionality adversary waits from an input from the adversary.
2. If the input is not abort then the functionality generates a signature σ on the message m.
3. The signature is returned to the adversary, and the functionality again waits for input. If the input is

again not abort then the functionality returns σ to the honest parties.

Figure 8. Distributed Signature Functionality: FSign

The two relevant threshold-ized algorithms are given in Figure 9. They are presented in the
FMPC-hybrid model. At two points in the algorithm we need to take a sharing 〈s〉q and output in
public the value Q = [〈s〉q]G. This is done using the following process:

- For each element sj in the share vector held by party Pi the party publishes Qj = [sj]G.

- The parties compute Q = r · (Q1, . . . , Qm)T for the reconstruction vector r of the underlying
MSP.

- The parties also verify the output is correct by checking that

H · (Q1, . . . , Qm)T = 0.

This algorithm hides the underlying secret s assuming the discrete logarithm problem on the elliptic
curve is hard as s and the shares of s come from a high entropy distribution.

Theorem 5.1. The protocol in Figure 9 securely realises the distributed signing functionality given
in Figure 8 in the FMPC-hybrid model, assuming the discrete logarithm problem is hard.

Proof. The simulator has access to the functionality FMPC and thus when simulating the KeyGen
procedure it executes steps 1–3 of the threshold KeyGen procedure using the functionality FMPC.
The simulator waits for an input from the adversary. The simulator on receiving either deliver or

12

Threshold Variant of the Hashed Ed25519 Signature Algorithm

KeyGen(b, λ): This algorithm proceeds as follows
1. Call FMPC.Random a total of 256 times to generate shared random bits 〈sk〉2 = {〈di〉2}255

i=0.
2. For the circuit Cf = SHA512 compute the hash value SHA512(〈sk〉2) = (〈h0〉2, 〈h1〉2, . . . , 〈h511〉2) by

calling FMPC.Evaluate
3. Apply FMPC.Convert to convert 〈hi〉2 for i = 3, . . . , 253 to 〈hi〉q, and then set 〈s〉q = 2254 +

∑253
i=3 2i ·〈hi〉q.

4. Compute the point [〈s〉q]G using the method described in the text. The corresponding Ed25519 public
key pk is the encoding of this point.

Sign(m, sk, pk): Signing proceeds as follows
1. We compute the hash of the message m in the clear to obtain SHA512(m) = (h′0, h

′
1, . . . , h

′
511).

2. We then apply the SHA512 circuit using FMPC.Evaluate to the bit string,
(〈h256〉2, 〈h257〉2, . . . , 〈h511〉2, h′0, h′1, . . . , h′511) consisting of 256 unknown bits and 512 known
bits. Note, this requires only one iteration of the SHA512 compression function. Let the output be
(〈r0〉2, 〈r1〉2, . . . , 〈r511〉2)

3. We apply FMPC.Convert to convert 〈ri〉2 for i = 0, . . . , 511 to 〈ri〉q and set 〈r〉q =
∑511
i=0 2i · 〈ri〉q.

4. Compute the point [〈r〉q]G using the method above, and the result opened to all parties. The resulting
point is converted to a public octet string R.

5. The parties compute 〈S〉q = 〈r〉q + e · 〈s〉q where e = SHA512(R||pk||SHA512(m)) can be computed
publicly.

6. Finally 〈S〉q is opened to all parties.

Figure 9. Threshold Variant of the Hashed Ed25519 Signature Algorithm

abort calls Output with type = −1 and a dummy variable y, passing the received input from the
adversary to the functionality.

The simulator, from the simulation of the MPC functionality, obtains the adversarial shares sj
for i = ι(j) ∈ A and computes Qj = [sj]G. The simulator calls the KeyGen functionality on FSign

and obtains a public key pk = [s]G for some hidden value of s ∈ Fq. With overwhelming probability
there is a choice of random bits di which produce the secret key corresponding to s, and thus there
is a way for this value to have arisen in the protocol. The simulator now needs to generate Qj for
i = ι(j) 6∈ A which is consistent with the Qj computed above. The unknown Qj define a series of
linear equations in elliptic curve points (one equation defined by the reconstruction vector r and a
set of equations defined by the parity check matrix H). This set of equations will have a solution
since there is an assignment which produces this hidden value s. Thus the values Qj for i = ι(j) 6∈ A
can be perfectly simulated, and by the hardness of the discrete logarithm problem, the combined
set hide the unknown hidden value s. The values Qj for i = ι(j) 6∈ A are sent to the adversary,
who returns his own set Q∗j for i = ι(j) ∈ A. If the Q∗j 6= Qj then the simulator passes abort to
FSign and exits. Note, that this abort will be caught in the real protocol as well by using the error
detecting properties of the Q2 secret sharing scheme; see [SW19, Lemma 2].

For the signing algorithm, the simulator obtains a signature (R,S) from the signing oracle.
The steps 1–4 of the threshold signing algorithm are simulated in the same way as the steps to
generate pk in the KeyGen algorithm. All that remains, is to simulate the opening of 〈S〉q. As before,
from the simulation of FMPC, we know the adversarial shares of 〈r〉q and 〈s〉q, thus we know what
the adversary should output as their shares of 〈S〉q. Thus we are able, this time by solving linear
equations over Fq, to find a set of consistent shares for the honest parties which open to the correct
value of S. If the adversary sends incorrect values for his opening of 〈R〉q or 〈S〉q which would cause
the real protocol to abort, then the simulator passes abort to FSign.

13

It is clear that the above simulation perfectly simulates the algorithms KeyGen and Sign. Thus
the security of the protocol follows. ut

6 Using MPC-Friendly Hash Functions

Up to now, we have concentrated on following the precise definition in the NISTs Digital Signature
Standard [Nat19]. Thus we used SHA-512 and SHAKE-256 as the underlying hash functions; which
gave a potential performance penalty in the deterministic signature environment. However, as part
of the NIST Threshold Cryptography initiative, there is some interest in examining variants which
are more amendable to a threshold implementation. The obvious ‘tweak’ which could be applied to
the standard HashEdDSA and EdDSA algorithms is to replace the use of SHA-512 and SHAKE-256
with so-called ‘MPC-Friendly’ hash functions.

In recent years, there has been considerable interest in MPC-Friendly variants of symmet-
ric cryptographic primitives; for example block ciphers [AGR+16, ARS+15, GRR+16] modes-of-
operation [RSS17], and more recently hash functions [AAB+19,GKK+19]. The hash function con-
structions are sponge-based, and designs have been given which are suitable for MPC over charac-
teristic two fields (StarkAD and Vision), as well as over large prime fields (Poseidon and Rescue).
In this paper, we concentrate on the Rescue design from [AAB+19], which seems more suited to
our application.

Rescue has a state of t = r+c finite field elements Fq. The initial state of the sponge is defined to
be the vector of t zero elements. A message is divided into n = d·r elements in Fq, m0,m1, . . . ,mn−1.
The elements are absorbed into the sponge in d absorption phases, where r elements are absorbed
in each phase. At each phase a permutation f : Ftq −→ Ftq is applied; see Figure 10. This results
in a state s0, . . . , st−1. At the end of the absorption, the r values sc, . . . , st−1 are output from the
state. This process can then be repeated, with more data absorbed and then squeezed out. Thus
we are defining a map H : Fnq −→ Frq. To obtain security of the sponge itself, we require that
min(r, c) · log2 q ≥ 2 ·κ, where κ is the desired security parameter. We will always take c = 2 in our
application4.

st−1-+ -

. . .

sc+1 -+-

sc -

. . .

s0 -

m0

?

. . . mr−1

?

f

-

-

-

-

. . .

. . .

. . .

. . .

. . .

-

-

-

-

f

-+ -

-+-

-

-

mn−r

?

. . . mn−1

?

f

-

-

Fig. 10. The Rescue Sponge Function

4 We note this is a conservative choice since taking c = 1 is possible due to us having q ≈ 22·κ.

14

Each primitive call f in the Rescue sponge is performed by executing a round function rnds times.
The round function is parametrized by a (small prime) value α, an MDS matrix M ∈ Ft×tq and 2
step constants vki ∈ Ftq. The value α is chosen to be the smallest prime such that gcd(q− 1, α) = 1.

The round function is given in Figure 11, where S1 is the S-Box which maps x ∈ Fq to x1/α and
S2 is the S-Box which maps x ∈ Fq to xα. To obtain security of the permutation f we require that
the round function is repeated

rnds = max(2 · dκ/4 · te , 10)

times.
Notice, that the product t · rnds is (to a first approximation) fixed by the security parameter.

The ‘cost’ of evaluating f in terms of number of multiplications will be proportional to t · rnds, but
the online evaluation time will depend (in an MPC system) on only rnds (again to a first order
approximation). Thus having a larger t value will improve performance compared to a smaller t
value. To show the dependence of f on t, we will write ft for this function in what follows.

si−1
-

S1

. . .

S1

- M - + -

S2

. . .

S2

- M - + - si

vk2·i−1

?

vk2·i

?

Fig. 11. The Rescue Round Function

We will require different variants of the Rescue hash function for different values of the rate r,
respectively t = r+ 2. Thus we define the function Rr which takes input divided into blocks of size
r Fq-elements and produces a final outputs block of size r Fq-elements.

Rr : (Frq)∗ −→ Frq.

When one applies Rr to messages always of the same number of blocks there is no need for a
padding scheme, however when Rr is applied to messages of variable length we need to pad the
result. Thus for arbitrary length messages m we first pad by adding a single Fq element consisting
of the one element, and then we pad by enough zero elements so as to obtain a message which is a
multiple of r field elements long.

If we apply Rr as a hash function where the initial state is not the zero state, but another set
of t values s0, . . . , st−1, then we write Rr(m; s0, . . . , st−1). Thus we have Rr(m) = Rr(m; 0, . . . , 0).

To examine the cost of an MPC implementation, we consider only the online round complexity,
assuming a ‘standard’ SDPZ-like offline procedure (which produces multiplication triples, square
pairs and random shared values only). We note that in a constant number of rounds we can produce
from the standard pre-processing as many pairs of the form (〈r〉q, 〈r−α〉q) as we like. In fact, using
existing pre-processed squares, this will require one round for α = 3 and two rounds for α = 5.

Given this pre-processing, we can produce 〈xα〉q given 〈x〉q in two rounds, irrespectly of α. This
is done by computing 〈y〉q = 〈x〉q · 〈r〉q, for one of our pre-computed pairs (〈r〉q, 〈r−α〉q), which

15

requires one round of communication. We then open 〈y〉q to obtain y, requiring another round of
communication. The value 〈xα〉q can then be locally computed as yα ·〈r−α〉q. This will only produce
an incorrect result when r = 0, which happens with negligible probability.

To compute 〈x1/α〉q given 〈x〉q we again take a pre-computed pair (〈r〉q, 〈r−α〉q) and this time
compute and open 〈y〉q = 〈x〉q · 〈r−α〉q; requiring two rounds. Opening the result we obtain 〈x1/α〉q
locally as y1/α · 〈r〉q.

Summing up, the total MPC-round complexity of evaluating Rescue is given by 4 · rnds irrespec-
tive of the value of α.

6.1 Ed25519 with Rescue

The curve Ed25519 aims to obtain roughly 128 bits of security and uses q with log2 q ≈ 252.
We concentrate still on HashEdDSA, although now with the use of Rescue it is easy to apply the
thresholdizing technique to normal EdDSA, as we shall describe below. We have q (mod 3) =
1 and q (mod 5) = 4, thus we select α = 5 in the Rescue construction. We use r = 4 in our
construction of Rescue and so will use the functions R4 and f6 defined above, thus the number of
rounds is rnds = 12. The permutation f6 will be used to perform the internal hashes within the
HashEd25519 algorithm, with R4 used in the case of producing a thresholdized EdDSA (as opposed
to HashEdDSA) algorithm.

We modify the threshold variant of the algorithm in Figure 9 as follows to obtain a Rescue-
enabled variant of both HashEd25519 and Ed25519. Deriving non-threshold variants of these Rescue-
enabled variants can be done in an obvious manner.

1. In line 1 of KeyGen we select 〈sk〉q ∈ Fq by calling FMPC.Random once.

2. In line 2 of KeyGen we apply the Rescue permutation f6 once to the input state (〈sk〉q, 0,
0, 0, 0, 0) ∈ F6

q . This produces a value (〈h0〉q, 〈h1〉q, 〈h2〉q, 〈h3〉q, 〈h4〉q, 〈h5〉q) ∈ F6
q , which is

stored for use later.

3. In line 3 of KeyGen we set 〈s〉q = 〈h0〉q. There is no need to expand by applying another hash
function, as in the standard HashEdDSA algorithm, since the Rescue function works natively
with Fq elements.

4. In line 1 of Sign we apply SHA512 to the message m to obtain a 512 bit output. This is split
into two 248 bit chunks and a 16 bit chunk, and then each chunk is treated as en element of Fq.
This results in three finite field elements (c0, c1, c2).

5. Line 2 of Sign then involves applying the Rescue permutation f6 once to the input state (〈h0〉q+
c0, 〈h1〉q + c1, 〈h2〉q + c2, 〈h3〉q, 〈h4〉q, 〈h5〉q). This will produce an output (〈r0〉q, . . . , 〈r5〉q).

6. Finally, the output in Line 2 of Sign is replaced by setting 〈r〉q = 〈r0〉q.

With these changes the rest of our threshold implementation of HashEdDSA follows immediately.
To obtain a threshold variant of EdDSA, we replace lines 4 and 5 above, by the following operations:

- We split m into 248-bit blocks m0, . . . ,ml′ , and treat each block as an element in Fq.
- We pad with a one block, and then enough zero blocks to make the entire block length a multiple

of t = 4. Thus we obtain the message as m0, . . . ,ml ∈ Fl+1
q

- We compute

(〈r0〉q, . . . , 〈r3〉q) = H4(m0, . . . ,ml; (〈h0〉q, . . . , 〈h5〉q))

and take 〈r〉q = 〈r0〉q as before.

16

Note, we apply Rescue as hash function here as this is easier to implement via MPC, and we apply
SHA512 to compute the hash of the message for HashEd25519 as this is easier to implement in the
clear compared to Rescue.

6.2 Ed448 with Rescue

The curve Ed448 aims to obtain roughly 224 bits of security and we have log2 q ≈ 446. We again
have q (mod 3) = 1 and q (mod 5) = 4, thus we select α = 5 in the Rescue construction. Again we
utilize the Rescue functions, but this time we select t = 10 and r = 8, i.e. f10 and R8, and with
rnds = 12. The modifications to the KeyGen and Sign algorithms follow as above.

7 Experimental Results

We now present some experimental results. To put these into context we first recap on what the
state-of-the-art is for standard ECDSA threshold signing algorithms. Prior experimental work has
focused on standard ECDSA, which has the complexity of needing to divide by the ephemeral
secret within the signing equation, and has been focused on curves at the 128-bit security level; e.g.
curves such as secp256k1 or secp256r1.

The paper [LNR18] looks at the case of full threshold ECDSA signing. The complexity growth of
their implementation is roughly linear. For two parties they obtain a signing time of 304 milliseconds,
and for three parties they obtain a signing time of 575 milliseconds. In [DKLs18] the full threshold
case is also considered, but this time restricted only to two parties; where they obtain a signing time
of 81 milliseconds. They also present timings for a protocol which is in the 2-out-of-n threshold
situation where they obtain a signing time of also 81 milliseconds. In [Lin17] the two party full
threshold case is considered, and a time of 37 milliseconds for signing is reported on. In [GG18],
the authors present again a full threshold protocol for ECDSA. The complexity scales with the
number of parties t which engage in the signing protocol, resulting in a runtime of approximately
29 + 24 · t milliseconds for ECDSA threshold signing, for a curve over a field of 256-bits. Recent,
work [CCL+20], improves on the above work, and extends the experiments to larger field sizes.
They give the functions depending on the number of signing parties t as run times (in milliseconds)
for distributed signing operations, which we show in Table 1.

Curve [LN18] [GG18] [CCL+20]

NIST P-256 310 · t 88 · t 237 + 730 · t
NIST P-384 3000 · t 857 · t 903 + 2780 · t
NIST P-521 16741 · t 4783 · t 2608 + 8011 · t

Table 1. Function of runtime (in milliseconds) as a function of t for various threshold ECDSA algorithms for various
curves. Data taken from [CCL+20]

In our situation, using the standard HashECDSA algorithm with standard hash functions, our
signing equation is easier (there is no costly conversion), but we need to evaluate the hash function
in MPC and convert the output to a shared value modulo q. But we work in the Q2 access structure
setting. In the case of Ed25519 HashECDSA signing the key time critical operations are lines 2–3 in
Figure 9 for Ed25519, with the equivalent lines for Ed448 being also the most costly operations. The

17

rest of the computation is relatively marginal (and equivalent to a standard ECDSA non-threshold
signing cost) thus we timed only these parts of our algorithm, for different Shamir based Q2 access
structures.

Our implementation was done using a modification of the SCALE-MAMBA system and tested in
a LAN setting, with each party running on an Intel i7-7700K CPU (4 cores at 4.20GHz with 2
threads per core) with 32GB of RAM over a 10Gb/s network switch. The results are presented in
Table 2; note that in the case of Ed448 signing the cost depends on the size of the context field
which controls the number of times v the underlying SHAKE256 permutation needs to be called; as
discussed earlier we are gauranteed that 2 ≤ v ≤ 4.

Ed25519 Ed448
Access Structure v = 2 v = 3 v = 4

Shamir (3,1) 1406 ms 1887 ms 2944 ms 4064 ms

Shamir (4,1) 1792 ms 2515 ms 3439 ms 4917 ms

Shamir (5,1) 2190 ms 2925 ms 4502 ms 6118 ms

Shamir (5,2) 2195 ms 2959 ms 4315 ms 6044 ms

Table 2. Running times for computing the SHA512/SHAKE256 hash function and converting the 〈·〉2 to 〈·〉q. These
timings are averaged over 100 experiments.

We notice that the times are not huge, but still one or two orders of magnitude over what are
obtained from standard distributed ECDSA at a curve size of 256-bits. All of this increase in time
is due to the need to perform a secure hash within the signing operation itself.

We also examined applying Rescue in the same context. For ease of comparison we examined
simply the cost of apply the Rescue hash function in the situation, and for the primes, needed in
our application. The cost of the full signing algorithm on top of these runtimes is equivalent to the
cost of a non-threshold ECDSA operation, and can thus be discounted. Again we present times
for different access structures; also note that with Rescue and the Ed448 signing algorithm we can
avoid the complication with the use of various values of v, by passing the context into the hash of
the message. For the run times see Table 3.

Access structure Ed25519 Ed448

Shamir (3,1) 7 ms 14 ms

Shamir (4,1) 9 ms 14 ms

Shamir (5,1) 11 ms 15 ms

Shamir (5,2) 15 ms 17 ms
Table 3. Running times for computing the Rescue hash function. This works on elements of Fq directly so we do not
have to convert the results. These timings are averaged over 100 000 hash function calls.

Here we see that using Rescue enables us to obtain execution times which are now well within
an order of magnitude of standard ECDSA signing. Thus one can conclude that NIST, if it wishes
to support threshold variants of its standard algorithms, should consider also standardizing MPC
friendly hash and block cipher components such as Rescue.

18

Acknowledgments

The authors would like to thank Tomer Asher, Siemen Dhooghe and Dragos Rotaru for various
conversations whilst the work was carried out. This work has been supported in part by ERC
Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. FA8750-19-C-0502, by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA) via Contract No. 2019-1902070006, by the FWO
under an Odysseus project GOH9718N, and by CyberSecurity Research Flanders with reference
number VR20192203. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the ERC, ODNI,
United States Air Force, IARPA, DARPA, the US Government or FWO. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation therein.

References

AAB+19. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint Archive, Report
2019/426, 2019. https://eprint.iacr.org/2019/426.

AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 191–219, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany.

AKO+18. Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Nigel P. Smart, and
Tim Wood. SCALE and MAMBA documentation, 2018.

AOR+19. Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim Wood. Zaphod: Effi-
ciently combining LSSS and garbled circuits in SCALE. In Michael Brenner, Tancrède Lepoint, and Kurt
Rohloff, editors, Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, WAHC@CCS 2019, London, UK, November 11-15, 2019, pages 33–44. ACM, 2019.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages 430–454, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

BDL+11. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 124–142, Nara, Japan,
September 28 – October 1, 2011. Springer, Heidelberg, Germany.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 169–188, Tallinn, Estonia, May 15–19, 2011.
Springer, Heidelberg, Germany.

BDV19. Luis T. A. N. Brandao, Michael Davidson, and Apostol Vassilev. NIST 8214A (Draft): Towards NIST
standards for threshold schemes for cryptographic primitives: A preliminary roadmap, 2019.

BJL+15. Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for more
curves. Cryptology ePrint Archive, Report 2015/677, 2015. http://eprint.iacr.org/2015/677.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker. Bandwidth-
efficient threshold ec-dsa. Cryptology ePrint Archive, Report 2020/084, 2020. http://eprint.iacr.org/
2020/084.

CDK+18. Benôıt Cogliati, Yevgeniy Dodis, Jonathan Katz, Jooyoung Lee, John P. Steinberger, Aishwarya Thiruven-
gadam, and Zhe Zhang. Provable security of (tweakable) block ciphers based on substitution-permutation

19

https://eprint.iacr.org/2019/426
http://eprint.iacr.org/2015/677
http://eprint.iacr.org/2020/084
http://eprint.iacr.org/2020/084

networks. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 722–753, Santa Barbara, CA, USA,
August 19–23, 2018. Springer, Heidelberg, Germany.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast
large-scale honest-majority MPC for malicious adversaries. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer
Science, pages 34–64, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without a trusted dealer. In
Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in
Computer Science, pages 152–165, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

DKLs18. Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997, San Francisco,
CA, USA, May 21–23, 2018. IEEE Computer Society Press.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
– CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th
Conference on Computer and Communications Security, pages 1179–1194, Toronto, ON, Canada, Octo-
ber 15–19, 2018. ACM Press.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16: 14th International Conference on Applied Cryptography and Network Security, volume
9696 of Lecture Notes in Computer Science, pages 156–174, Guildford, UK, June 19–22, 2016. Springer,
Heidelberg, Germany.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS signatures.
In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science, pages 354–371, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.

GKK+19. Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian Rechberger, and Markus
Schofnegger. Starkad and Poseidon: New hash functions for zero knowledge proof systems. Cryptology
ePrint Archive, Report 2019/458, 2019. https://eprint.iacr.org/2019/458.

GRR+16. Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P. Smart. MPC-friendly
symmetric key primitives. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communications
Security, pages 430–443, Vienna, Austria, October 24–28, 2016. ACM Press.

HM00. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect multiparty
computation. Journal of Cryptology, 13(1):31–60, January 2000.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining
BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science, pages 598–628, Hong
Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure compu-
tation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communications Se-
curity, pages 830–842, Vienna, Austria, October 24–28, 2016. ACM Press.

KRSW18. Marcel Keller, Dragos Rotaru, Nigel P. Smart, and Tim Wood. Reducing communication channels in MPC.
In Dario Catalano and Roberto De Prisco, editors, SCN 18: 11th International Conference on Security in
Communication Networks, volume 11035 of Lecture Notes in Computer Science, pages 181–199, Amalfi,
Italy, September 5–7, 2018. Springer, Heidelberg, Germany.

KW93. Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of Structures in Complexity
Theory, pages 102–111, 1993.

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 613–644, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation
and applications to cryptocurrency custody. In David Lie, Mohammad Mannan, Michael Backes, and

20

https://eprint.iacr.org/2019/458

XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications Security,
pages 1837–1854, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

LNR18. Yehuda Lindell, Ariel Nof, and Samuel Ranellucci. Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive,
2018:987, 2018.

MR01. Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA signatures. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 137–154, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

Nat19. National Institute of Standards and Technology. FIPS PUB 186-5 (Draft): Digital Signature Standard
(DSS), 2019.

RSS17. Dragos Rotaru, Nigel P. Smart, and Martijn Stam. Modes of operation suitable for computing on encrypted
data. IACR Transactions on Symmetric Cryptology, 2017(3):294–324, 2017.

RST+19. Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim Wood. Actively secure
setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019. https://eprint.iacr.org/2019/

1300.
RW19. Dragos Rotaru and Tim Wood. MArBled circuits: Mixing arithmetic and Boolean circuits with active

security. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, Progress in Cryptology - IN-
DOCRYPT 2019: 20th International Conference in Cryptology in India, volume 11898 of Lecture Notes
in Computer Science, pages 227–249, Hyderabad, India, December 15–18, 2019. Springer, Heidelberg,
Germany.

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in Cryptology – EU-
ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 207–220, Bruges, Belgium,
May 14–18, 2000. Springer, Heidelberg, Germany.

SW19. Nigel P. Smart and Tim Wood. Error detection in monotone span programs with application to
communication-efficient multi-party computation. In Mitsuru Matsui, editor, Topics in Cryptology –
CT-RSA 2019, volume 11405 of Lecture Notes in Computer Science, pages 210–229, San Francisco, CA,
USA, March 4–8, 2019. Springer, Heidelberg, Germany.

21

https://eprint.iacr.org/2019/1300
https://eprint.iacr.org/2019/1300

	Thresholdizing HashEdDSA: MPC to the Rescue

