
Cryptographic Shallots: A Formal Treatment of
Repliable Onion Encryption

Megumi Ando and Anna Lysyanskaya

Computer Science Department, Brown University,
Providence, RI 02912 USA

Abstract. Onion routing is a popular, efficient and scalable method for
enabling anonymous communications. To send a message m to Bob via
onion routing, Alice picks several intermediaries, wraps m in multiple
layers of encryption — one per intermediary — and sends the resulting
“onion” to the first intermediary. Each intermediary “peels” a layer of
encryption and learns the identity of the next entity on the path and what
to send along; finally Bob learns that he is the recipient, and recovers
the message m.

Despite its wide use in the real world (e.g., Tor, Mixminion), the
foundations of onion routing have not been thoroughly studied. In par-
ticular, although two-way communication is needed in most instances,
such as anonymous Web browsing, or anonymous access to a resource,
until now no definitions or provably secure constructions have been given
for two-way onion routing.

In this paper, we propose an ideal functionality for a repliable onion
encryption scheme and provide a construction that UC-realizes it.

1 Introduction

Suppose Alice wants to send a message to Bob, anonymously, over a point-to-
point network such as the Internet. What cryptographic techniques exist to make
this possible? One popular approach is onion routing: Alice sends her message
through intermediaries, who mix it with other traffic, and forward it on to Bob.
In order to make this approach secure from an adversary eavesdropping on the
network, she needs to wrap her message in several layers of encryption, one for
each intermediary, giving rise to the term onion routing.

Onion routing is at the heart of Tor [13,16], which is a tool used by millions
of people to obscure their communication and browsing patterns. Although the
security properties guaranteed by the Tor protocol are a subject of study and de-
bate, it appears clear that, because of its scalable nature — the more “onions” are
sent over the network, the better the protocol hides the origin of each onion, —
as well as its fault tolerance — if some of the intermediaries fail or are malicious,
an onion won’t get it its destination, but another one can be sent on instead,
and other onions are not affected, — onion routing is the favored method for
achieving anonymity over the Internet [1].

As originally proposed by Chaum [8], onion routing meant that Alice just uses
regular encryption to derive each subsequent layer of her onion before sending it
on to the first intermediary. I.e., if the intermediaries are Carol (public key pkC),
David (public key pkD) and Evelyn (public key pkE), then to send message m
to Bob (public key pkB), Alice forms her onion by first encrypting m under pkB ,
then encrypting the resulting destination-ciphertext pair (Bob, cB) under pkE ,
and so forth:

O = Enc(pkC , (David,Enc(pkD, (Evelyn,Enc(pkE , (Bob,Enc(pkB ,m)))))))

If we use this approach using regular public-key encryption, then the “peeled”
onion O′ that Carol will forward to David is going to be a shorter (in bit length)
ciphertext than O, because ciphertexts are longer than the messages they en-
crypt. So even if Carol serves as an intermediary for many onions, an eavesdrop-
ping adversary can link O and O′ by their lengths, unless Carol happens to be
the first intermediary for another onion.

To ensure that all onions are the same length, no matter which layer an in-
termediary is responsible for, Camenisch and Lysyanskaya [4] introduced onion
encryption, a tailor-made public-key encryption scheme where each onion layer
looks the same and have the same length and you can’t tell how far an inter-
mediary, e.g. Carol, is from an onion’s destination, even if you are Carol. They
gave an ideal functionality [5] for onion encryption and a cryptographic scheme
that, they argued, UC-realized it.

However, their work did not altogether solve the problem of anonymous com-
munication via onion routing. As Kuhn et al. [19] point out, there were significant
definitional issues. Also, as, for example, Ando et al. [1, 2] show, onion routing
by itself does not guarantee anonymity, as a sufficient number of onions need to
be present before any mixing occurs.

Those issues aside, however, Camenisch and Lysyanskaya (CL) left open the
problem of “repliable” onions. In other words, once Bob receives Alice’s message
and wants to respond, what does he do? This is not just an esoteric issue. If one
wants to, for example, browse the Web anonymously, or anonymously download
and fill out a feedback form, or carry out most Internet tasks anonymously, a
two-way channel between Alice and Bob needs to be established. Although CL
point out that their construction can be modified to potentially allow two-way
communication, this is nothing more than a suggestion, since they don’t provide
any definitions or proofs.

Babel [17], Mixminion [13], Minx [15] and Sphinx [14] all provide mechanisms
for the recipient to reply to the sender but don’t provide any formal definitions
or proofs either. In fact, Kuhn et al. [19] pointed out a fatal security flaw in the
state-of-the-art, Sphinx.

The challenge. Let us see why repliable onion encryption is not like other types
of encryption. Traditionally, to be able to prove that an encryption scheme sat-
isfies a definition of security along the lines of CCA2 security, we direct honest
parties (for example, an intermediary Iris) to check whether a ciphertext/onion

2

she has received is authentic or has been “mauled;” Iris can then refuse to de-
crypt/process a “mauled” ciphertext. Most constructions of CCA2 secure en-
cryption scheme work along these lines; that way, in the proof of security, the
decryption oracle does not need to worry about decrypting/processing onions
that do not pass such a validity check, making it possible to prove security. This
approach was made more explicit by Cramer and Shoup [11,12] who defined en-
cryption with tags, where tags defined the scope of a ciphertext, and a ciphertext
would never be decrypted unless it was accompanied by the correct tag.

The CL construction of onion encryption also works this way; it uses CCA2-
secure encryption with tags in order to make it possible for each intermediary to
check the integrity of an onion it received. So, when constructing an onion, the
sender had to construct each layer so that it would pass the integrity check, and
in doing so, the sender needed to know what each layer was going to look like.
This was not a problem for onion security in the forward direction, since the
sender knew all the puzzle pieces — the message m and the path (e.g., Carol,
David, Evelyn) to the recipient Bob, — so the sender could compute each layer
and derive the correct tag that would allow the integrity check to pass.

But in the reverse direction, the recipient Bob needs to form a reply onion
without knowing any of the puzzle pieces. He should not know what any subse-
quent onion layers will look like: if he did, then an adversarial Bob, together with
an adversarial intermediary and the network adversary, will be able to trace the
reply onion as it gets back to Alice. So he cannot derive the correct tag for every
layer. The sender Alice cannot do so either, since she does not know in advance
what Bob’s reply message is going to be. So it is not clear how a CCA2-style
definition can be satisfied at all.

Another difficult technical issue to address is how to make sure that reply
onions are indistinguishable (even to intermediaries who process them) from
forward onions. As pointed out in prior work [13], this is crucial because “replies
may be very rare relative to forward messages, and thus much easier to trace.”

Our contribution. In this paper, we define and realize repliable onion encryption.
We define security by describing an ideal functionality in the simplified UC

model [6]. We chose the simplified UC model so that our functionality and proof
did not have to explicitly worry about network issues and other subtleties of the
full-blown UC model.

As should be expected of secure onion routing, our functionality represents
onions originating at honest senders, or formed as replies to honest senders,
using bit strings that are computed independently on the contents of messages,
their destinations, whether the onion is traveling in the forward direction or is
a reply, and identities and number of intermediaries that follow or proceed an
honest intermediary.

To process an onion, an honest party P sends it to the functionality, which
then informs P what its role is — an intermediary, the recipient, or the original
sender of this onion. If P is an intermediary, the functionality sends it the next
bit representation of the same onion (again, formed independently of the input).
If P is the recipient, it learns the contents of the message m and whether the

3

onion can be replied to, and can direct the functionality to create a reply onion
containing a reply message r. Finally, if P is the sender of the original onion, then
he learns r, the reply. The details of this functionality are relatively involved; we
describe it in Section 3.

Our functionality is defined in such a way that it allows for a scheme in
which checking that an onion has been “mauled” is not entirely the job of each
intermediary. The part of the onion that potentially carries the message, or the
response to an original message, does not undergo an integrity check until it gets
to its destination. This is the way in which we overcome the challenge (described
above) of satisfying a CCA2-style definition and yet enabling replies.

Next, in Section 4, we give a scheme, which we call shallot encryption, for
repliable onion encryption. Our scheme is based on a CCA2-secure cryptosystem
with tags, a block cipher and a collision-resitant hash function. We then show
that it resolves, in the affirmative, the problem that CL left open fifteen years
ago of constructing provably secure repliable onion encryption.

To make CCA2-style security possible even while allowing replies, we split
up the onion into two pieces. The first piece is the header H that contains (in
layered encryption form) the routing information and symmetric keys that are
needed to process the second piece. The second piece is the content C that con-
tains the message and, in case this is a forward onion, instructions for forming
the reply onion; this part wrapped is in layers of symmetric encryption. This
way, the original sender Alice can form the headers for all the layers of the re-
ply onion even though she does not know the contents of the reply in advance;
Bob’s contribution to the reply onion is just the content C. Each intermediary
is responsible for peeling a layer off of H, learning its key k, and applying a
PRP keyed by k to the contents C. In a nutshell, the adaptive security prop-
erties guarantee that H cannot be “mauled”, but checking the integrity of C is
postponed until the onion gets to its destination — recipient Bob or original
sender Alice — who check it using a MAC key. This is also why our scheme is
called shallot encryption: the layered structure of the resulting onion resembles
a shallot! (Shallots are a sub-family of onions.)

As a byproduct of our proof, given in Section 5, we provide a cryptographic,
game-based definition of security for repliable onion encryption. This definition
is interesting because we show that a scheme satisfying it will SUC-realize our
ideal functionality. We also show that our scheme satisfies it.

Related work. Recently, Kuhn, Beck and Strufe [19] showed an attack on several
onion-routing systems [9, 10, 14, 20], and traced it to a flaw in the CL paper.
Namely, they found a mistake in the CL proof of security, and showed that CL’s
formulation of onion-security was insufficient to UC-realize their ideal function-
ality. The broken systems, although lacking a formal proof of security, relied
on the CL definition of onion-security to justify their architecture. Kuhn, Beck
and Strufe (KBS) showed how to strengthen onion-security in such a way that a
resulting onion encryption scheme UC-realizes the CL ideal functionality. How-
ever, they do not tackle repliable onions, nor does their paper contain any onion

4

encryption scheme of their own (other than proposed fixes, without security
proofs, that would eliminate their attacks on the broken systems).

2 Repliable onion encryption: syntax and correctness

In this paper, an onion O is a pair, consisting of the (encrypted) content C and
the header H, i.e., O = (H,C).

We assume that the upper bound N on the length of the forward or return
path is one of the public parameters pp.

Here, we give the formal input/output (I/O) specification for a repliable onion
encryption scheme. In contrast to the I/O specification for an (unrepliable) onion
encryption scheme given by Camenisch and Lysyanskaya [4], a repliable onion en-
cryption scheme contains an additional algorithm, FormReply, for forming return
onions. This algorithm allows the recipient of a message contained in a repliable
onion to respond to the anonymous sender of the message without needing to
know who the sender is.

The algorithm for forming onions, FormOnion, also takes as one of its param-
eters, the label `. This is so that when the sender receives a reply message m′
along with the label `, the sender can identify which message m′ is responding
to.

Definition 1 (Repliable onion encryption scheme I/O). The set Σ =
(G,FormOnion,ProcOnion,FormReply) of algorithms satisfies the I/O specifica-
tion of a repliable onion encryption scheme for the label space L(1λ), the message
spaceM(1λ) and a set P of router names if:
– G is a probabilistic polynomial-time (p.p.t.) key generation algorithm. On

input the security parameter 1λ (written in unary), the public parameters pp
and the party name P , the algorithm G returns a key pair, i.e.,

(pk(P), sk(P))← G(1λ, pp, P).

– FormOnion is a p.p.t. algorithm for forming onions. On input
i. a label ` ∈ L(1λ) from the label space,
ii. a message m ∈M(1λ) from the message space,
iii. a forward path P→ = (P1, . . . , Pd) (d stands for destination),
iv. the public keys pk(P→) associated with the parties in P→,
v. a return path P← = (Pd+1, . . . , Ps) (s stands for sender) and
vi. the public keys pk(P←) associated with the parties in P←,
the algorithm FormOnion returns a sequence O→ = (O1, . . . , Od) of onions
for the forward path, a sequence H← = (Hd+1, . . . ,Hs) of headers for the
return path and a key κ, i.e.,

(O→, H←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←))

– ProcOnion is a deterministic polynomial-time (d.p.t.) algorithm for process-
ing onions. On input an onion O, a router name P and the secret key sk(P)

5

belonging to P , the algorithm ProcOnion returns (role, output), i.e.,

(role, output)← ProcOnion(O,P, sk(P)).

When role = I (for “intermediary”), output is the pair (O′, P ′) consisting of
the peeled onion O′ and the next destination P ′ of O′. When role = R, output
is the message m for recipient P . When role = S, output is the pair (`,m)
consisting of the label ` and the reply message m for sender P .

– FormReply is a d.p.t. algorithm for forming return onions. On input a reply
message m ∈M(1λ), an onion O, a router name P and the secret key sk(P)
belonging to P , the algorithm FormReply returns the peeled onion O′ and the
next destination P ′ of O′, i.e.,

(O′, P ′)← FormReply(m,O,P, sk(P)).

FormReply outputs (⊥,⊥) if O is “not repliable”.

2.1 Onion evolutions, forward paths, return paths and layerings

Now that we have defined the I/O specification for a repliable onion encryption
scheme, we can define what it means for a repliable onion encryption scheme to
be correct. Before we do this, we first define what onion evolutions, paths and
layerings are; the analogous notions for the unrepliable onion encryption scheme
were introduced by Camenisch and Lysyanskaya [4].

Let Σ = (G,FormOnion,ProcOnion,FormReply) be a repliable onion encryp-
tion scheme for the label space L(1λ), the message spaceM(1λ) and the set P
of router names.

Let there be honest parties with honestly formed keys.
Let O1 = (H1, C1) be an onion received by party P1, not necessarily formed

using FormOnion.
We define a sequence of onion-location pairs recursively as follows: Let d be

the first onion layer of (H1, C1) that when peeled, produces either “R” or “S” (if
it exists, otherwise d =∞). For all i ∈ [d− 1], let

(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

Let s = d if peeling (Hd, Cd) produces “S”. Otherwise, let m ∈M(1λ) be a reply
message from the message space, and let

((Hd+1, Cd+1), Pi+1) = FormReply(m, (Hd, Cd), Pd, sk(Pd)).

Let s = d if (Hd, Cd) is “not repliable”, i.e., ((Hd+1, Cd+1), Pi+1) = (⊥,⊥). Oth-
erwise, let s be the first onion layer of (Hd+1, Cd+1) that when peeled, produces
either “R” or “S” (if it exists, otherwise s =∞). For all i ∈ {d+1, . . . , s− 1}, let

(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

6

We call the sequence E(H1, C1, P1,m) = ((H1, C1, P1), . . . , (Hs, Cs, Ps)) of
onion-location pairs the “evolution of the onion (H1, C1) starting at party P1

given m as the reply message”. The sequence P→(H1, C1, P1,m) = (P1, . . . , Pd)
is its forward path; the sequence P←(H1, C1, P1,m) = (Pd+1, . . . , Ps) is its return
path; and the sequence L(H1, C1, P1,m) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs) is
its layering.

We define correctness as follows:

Definition 2 (Correctness). Let G, FormOnion, ProcOnion and FormReply
form a repliable onion encryption scheme for the label space L(1λ), the mes-
sage spaceM(1λ) and the set P of router names.

Let N be the upper bound on the path length (in pp). Let P = (P1, . . . , Ps),
|P | = s ≤ 2N be any list (not containing ⊥) of router names in P. Let d ∈ [s]
be any index in [s] such that d ≤ N and s − d + 1 ≤ N . Let ` ∈ L(1λ) be any
label in L(1λ). Let m,m′ ∈M(1λ) be any two messages inM(1λ).

For every party Pi in P , let (pk(Pi), sk(Pi))← G(1λ, pp, Pi).
Let P→ = (P1, . . . , Pd), and let pk(P→) be a shorthand for the public keys

associated with the parties in P→. Let P← = (Pd+1, . . . , Ps), and let pk(P←) be
a shorthand for the public keys associated with the parties in P←.

Let ((H1, C1), . . . , (Hd, Cd), Hd+1, . . . ,Hs, κ) be the output of FormOnion on
input the label `, the message m, the forward path P→ = (P1, . . . , Pd), the
public keys pk(P→) associated with the parties in P→, the return path P← =
(Pd+1, . . . , Ps) and the public keys pk(P←) associated with the parties in P←.

The scheme Σ is correct if with overwhelming probability in the security
parameter λ,
i. Correct forward path.

– P→(H1, C1, P1,m
′) = (P1, . . . , Pd).

– For every i ∈ [d] and content C such that |C| = |Ci|, P→(Hi, C, Pi,m
′) =

(Pi, . . . , Pd).
ii. Correct return path.

– P←(H1, C1, P1,m
′) = (Pd+1, . . . , Ps).

– For every i ∈ {d+ 1, . . . , s}, reply message m′′ and content C such that
|C| = |Ci|, P→(Hi, C, Pi,m

′′) = (Pd+1, . . . , Ps).
iii. Correct layering. L(H1, C1, P1,m

′) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs),
iv. Correct message. ProcOnion((Hd, Cd), Pd, sk(Pd)) = (R,m),
v. Correct reply message. ProcOnion((Hs, Cs), Ps, sk(Ps)) = (S, (`,m′))

where (Hs, Cs) are the header and content of the last onion in the evolu-
tion E(H1, C1, P1,m

′).

Remark. We define onion evolution, (forward and return) paths and layering
so that we can articulate what it means for an onion encryption scheme to be
correct. We define correctness to mean that how an onion peels (the evolution,
paths and layerings) exactly reflects the reverse process of how the onion was
built up. Thus, for our definition to make sense, both ProcOnion and FormReply
must be deterministic processes given the secret keys.

7

3 Onion Routing in the SUC Framework

In this section, we provide a formal definition of security for repliable onion en-
cryption schemes. We chose to define security in the simplified universal compos-
ability (SUC) model [6] as opposed to the universal composability (UC) model [5]
as this choice greatly simplifies how communication is modeled, in turn, allowing
for a more easily digestible description of the ideal functionality. Additionally,
since SUC-realizability implies UC-realizability [6], we do not lose generality by
simplifying the model in this manner.

Communication model. In the SUC model, the environment Z can communicate
directly with each party P by writing inputs into P ’s input tape and by reading
P ’s output tape. The parties communicate with each other and also with the
ideal functionality through an additional party, the router R.

We first describe the ideal functionality FROES (ROES, for “repliable onion
encryption scheme”) for the repliable onion encryption scheme. See Figure 1 for
a summary of FROES.

IdealSetup

1: Get from ideal adversary A:
P, Bad, G, ProcOnion,
FormReply, SampleOnion,
CompleteOnion, RecoverReply

2: Initialize dictionaries
OnionDict and PathDict

IdealFormOnion(`,m, P→, P←)

1: Break routing path into
segments

2: Run SampleOnion on
segments to generate onion
layers

3: Store onion layers in
OnionDict

4: Store label and (rest of)
return path in PathDict

IdealProcOnion((H,C), P)

1: If (P,H) is “familiar”
- If (P,H,C) in OnionDict, return stored
- Else if exists (P,H, (X 6= C)) in OnionDict,
return output of CompleteOnion and stored
party, or “⊥”

- Else if (P,H, ?) in PathDict, return output
of IdealFormOnion on message recovered
using RecoverReply and label and path
stored in PathDict

2: Else if (P,H) is not familiar, return output of
ProcOnion

IdealFormReply(m, (H,C), P)

1: If (P,H,C) in PathDict, return output of
IdealFormOnion on m and label and path
stored in PathDict

2: Else, return output of FormReply

Fig. 1: Summary of ideal functionality FROES.

3.1 Ideal functionality FROES

Notation. In this section, honest parties are capitalized, e.g., P , Pi; and corrupt
parties are generally written in lowercase, e.g., p, pi. An onion formed by an
honest party is honestly formed and is capitalized, e.g., O, Oi; whereas, an onion

8

formed by a corrupt party is generally written in lowercase, e.g., o, oi. Recall
that an onion O is a pair, consisting of the (encrypted) content C and the header
H, i.e., O = (H,C).

The ideal functionality FROES handles requests from the environment (to
form an onion, process an onion or form a return onion) on behalf of the ideal
honest parties.

Setting up. Each static setting for a fixed set of participants and a fixed pub-
lic key infrastructure requires a separate setup. During setup, FROES gets the
following from the ideal adversary A. (For each algorithm in items (iv)-(vi), we
first describe the input of the algorithm in normal font and then, in italics, pro-
vide a brief preview of how the algorithm will be used. FROES only runs for a
polynomial number of steps which is specified in the public parameters pp and
can time out on running these algorithms from the ideal adversary.)
i. the set P of participants
ii. the set Bad of corrupt parties in P
iii. the repliable onion encryption scheme’s G, ProcOnion and FormReply algo-

rithms:
– G is used for generating the honest parties’ keys.
– ProcOnion is used for processing onions formed by corrupt parties.
– FormReply is used for replying to onions formed by corrupt parties.

iv. the p.p.t. algorithm SampleOnion(1λ, pp, p→, p←,m) that takes as input the
security parameter 1λ, the public parameters pp, the forward path p→, the
(possibly empty) return path p← and the (possibly empty) message m. The
routing path (p→, p←) = (p1, . . . , pi, Pi+1) is always a sequence (p1, . . . , pi)
of adversarial parties, possibly ending in an honest party Pi+1. F sid

ROES fails
if SampleOnion ever samples a repeating header or key.

SampleOnion is used to compute an onion to send to p1 which will be
“peelable” all the way to an onion for Pi+1. If the return path p← is non-
empty and ends in an honest party Pi+1, SampleOnion produces an onion o
for the first party p1 in p→ and a header H for the last party Pi+1 in p←.
Else if the return path p← is empty, and the forward path p→ ends in an
honest party Pi+1, SampleOnion produces an onion o for the first party p1 in
p→ and an onion O for the last party Pi+1 in p→. Else if the return path p←
is empty, and the forward path p→ ends in a corrupt party pi, SampleOnion
produces an onion o for the first party p1 in p→.

v. the p.p.t. algorithm CompleteOnion(1λ, pp, H ′, C) that takes as input the
security parameter 1λ, the public parameters pp, the identity of the party P ,
the header H ′ and the content C, and outputs an onion O = (H ′, C ′). F sid

ROES

fails if CompleteOnion ever produces a repeating onion.
CompleteOnion produces an onion (H ′, C ′) that resembles the result of

peeling an onion with content C.
vi. the d.p.t. algorithm RecoverReply(1λ, pp, O, P) that takes as input the secu-

rity parameter 1λ, the public parameters pp, the onion O and the party P ,
and outputs a label ` and a reply message m.

9

This algorithm is used for recovering the label ` and reply message m from
the return onion O that carries the response from a corrupt recipient to an
honest sender.
F creates a copy F sid

ROES of itself for handling instructions pertaining to
session-id sid and sends items (i)-(vi) to F sid

ROES; these items pertain to the same
static public key infrastructure setting.
F sid

ROES generates a public key pair (pk(P), sk(P)) for each honest party P ∈
P \Bad using the key generation algorithm G and sends the public keys to their
respective party. (If working within the global PKI framework, each party then
relays his/her key to the global bulletin board functionality [7].)
F sid

ROES also creates the following (initially empty) dictionaries:
– The onion dictionary OnionDict supports:
• a method put((P,H,C), (role, output)) that stores under the label
(P,H,C): the role “role” and the output “output”

• a method lookup(P,H,C) that looks up the entry (role, output) corre-
sponding to the label (P,H,C)

– The return path dictionary PathDict supports:
• a method put((P,H,C), (P←, `)) that stores under the label (P,H,C):

the return path P← and the label `
• a method lookup(P,H,C) that looks up the entry (P←, `) corresponding

to the label (P,H,C)
These data structures are stored internally at and are accessible only by F sid

ROES.

Forming an onion. After setup, the environment Z can instruct an honest
party P to form an onion using the session-id sid, the label `, the message m,
the forward path P→ and the return path P←. To form the onion, P forwards
the instruction from Z to F sid

ROES (via the router R).
The goal of the ideal functionality F sid

ROES is to create and maintain state in-
formation for handling an onion O (the response to the “form onion” request). O
should be “peelable” by the parties in the forward path P→, internally associated
with the return path P←, and for the purpose of realizing this functionality by
an onion encryption scheme, each layer of the onion should look “believable” as
onions produced from running FormOnion, ProcOnion or FormReply.

Importantly, O and its onion layers should reveal no information to A, by
which we mean the following:
– Each onion routed to an honest party Pi is formed initially with just (Pi) as

the routing path and, therefore, reveals only that it is for Pi. When forming
the onion, no message is part of the input; this ensures that the onion is
information-theoretically independent of any message m.

– For every party pi or Pi in the forward path, let next(i) denote the index of
the next honest party Pnext(i) following pi. For example, if the forward path
is (P1, p2, p3, P4, P5, p6, p7), then next(2) = 4.

Conceptually, each onion routed to an adversarial party pi is formed by
“wrapping” an onion layer for each corrupt party in (pi, . . . , pnext(i)−1) (or
(pi+1, . . . , p|P→|) if no honest party after pi exists) around an onion formed

10

for an honest party Pnext(i) (or a message if no honest party after pi exists).
This reveals at most the sequence (pi, . . . , pnext(i)−1, Pnext(i)) (or the sequence
(pi, . . . , p|P→|) and the message m if no honest party after pi exists). How
this wrapping occurs depends on the internals of the SampleOnion algorithm
provided by the ideal adversary.
To ensure these properties, the ideal functionality partitions the forward

path P→ into segments, where each segment starts with a sequence of corrupt
parties and ends with a single honest party:

Let Pf (f , for first) be the first honest party in the forward path. The first
couple of segments are (p1, . . . , pf−1, Pf), (pf+1, . . . , pnext(f)−1, Pnext(f)), etc.

For each segment (pi, . . . , pj−1, Pj), the ideal functionality F sid
ROES sam-

ples onions (hi, ci) and (Hj , Cj) using the algorithm SampleOnion, i.e.,
((hi, ci), (Hj , Cj))← SampleOnion(1λ, pp, (pi, . . . , pj−1, Pj), (),⊥).

Let Pe (e, for end) be the last honest party in the forward
path P→, and let Pnext(d) denote the first honest party in the re-
turn path P←. If the recipient pd is corrupt, then F sid

ROES also runs
SampleOnion(1λ, pp, (pe+1, . . . , pd), (pd+1, . . . , pnext(d)−1, Pnext(d)),m); this pro-
duces an onion oe+1 and a header Hnext(d).

For every honest intermediary party Pi in the forward path, F sid
ROES stores

under the label (Pi, Hi, Ci) in the onion dictionary OnionDict the role “ I”, the
(i + 1)-st onion layer (Hi+1, Ci+1) and destination Pi+1. The (d + 1)-st onion
layer doesn’t exist for the innermost layer (Hd, Cd) for an honest recipient Pd.
In this case, F sid

ROES stores just the role “R” and the message m.
If the recipient Pd is honest, F sid

ROES stores the entry ((Pd, Hd, Cd), (P
←, `)) in

the dictionary PathDict. Otherwise if the recipient pd is corrupt, F sid
ROES stores the

entry ((Pnext(d), Hnext(d), ∗), (p←, `)) in PathDict where p← = (pnext(d)+1, . . . , Ps).
(“∗” is the unique symbol that means “any content”.)

See Appendix A.1 for the pseudocode for F sid
ROES ’s “onion forming” algorithm.

Example 1. The recipient P7 is honest. The forward path is P→ =

(P1, p2, p3, P4, P5, p6, P7), and the return path is P← = (p8, p9, P10, p11, P12).
In this case, the first segment is (P1), and the second segment is (p2, p3, P4) and
so on; and

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)
((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)
((h6, c6), (H7, C7))←SampleOnion(1λ, pp, (p6, P7), (),⊥).

F sid
ROES stores in OnionDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6)))

OnionDict.put((P7, H7, C7), (R,m)),

11

and stores in PathDict:

PathDict.put((P7, H7, C7), ((p8, p9, P10, p11, P12), `)).

Example 2. The recipient p7 is corrupt. The forward path is P→ =
(P1, p2, p3, P4, P5, p6, p7), and the return path is P← = (p8, p9, P10, p11, P12).
In this case,

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)
((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)
(o6, H10)←SampleOnion(1λ, pp, (p5, p6, p7), (p8, p9, P10),m).

F sid
ROES stores in OnionDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6))),

and stores in PathDict:

PathDict.put((P10, H10, ∗), ((p11, P12), `)).

After updating OnionDict and PathDict, F sid
ROES returns the first onion O1 =

(H1, C1) to party P (via the router R). Upon receiving O1 from F , P outputs
the session id sid and O1.

Processing an onion. After setup, the environment Z can instruct an honest
party P to process an onion O = (H,C) for the session-id sid. To process the
onion, party P forwards the instruction to the ideal functionality F sid

ROES (via the
router R).

The ideal functionality first checks if there is an entry under (P,H,C) in the
dictionary OnionDict.

Case 1. There is an entry (role, output) under the label (P,H,C) in OnionDict.
In this case, F sid

ROES responds to P (via the router R) with (role, output).

Case 2. There is no entry under the label (P,H,C) in OnionDict, but there
exists X 6= C such that there is an entry (I, ((H ′, X ′), P ′), k) under the la-
bel (P,H,X) in OnionDict. In this case, F sid

ROES samples an onion (H ′, C ′) ←
CompleteOnion(1λ, pp, H ′, C), stores the new entry (I, ((H ′, C ′), P ′)) under the
label (P,H,C) in OnionDict and responds to P with (I, ((H ′, X ′), P ′)).

Case 3. There is no entry under the label (P,H,C) in OnionDict, but there
exists X 6= C such that there is an entry (R,m) under the label (P,H,X) in
OnionDict. In this case, F sid

ROES responds to P with (R,⊥).

12

Case 4. There is no entry under the label (P,H,C) in OnionDict, but there
exists X 6= C such that there is an entry (S, (`,m)) under the label (P,H,X) in
OnionDict. In this case, F sid

ROES responds to P with (S,⊥).

Case 5. There is no entry starting with (P,H) in OnionDict, but there is an entry
(P←, `) under the label (P,H, ∗) in PathDict. Let m′ be the message obtained
from running RecoverReply(1λ, pp, O, P).

If P← is not empty, F sid
ROES runs its “form onion” code (IdealFormOnion in

Figure 7, Appendix A.1) with (`,m′) as the “message”, P← as the forward path
and the empty list “()” as the return path. (The “form onion” code is run with
auxiliary information for correctly labeling the last party in P← as the sender.)
In this case, F sid

ROES responds to P with (I, ((H ′, C ′), P ′)), where (H ′, C ′) is the
returned onion, and P ′ is the first party in P←.

Otherwise if P← is empty, then P is the recipient of the return onion, so
F sid

ROES responds to P with (S, (`,m′)).

Case 6. F sid
ROES doesn’t know how to peel O (i.e., there is no entry starting

with (P,H) in OnionDict and no entry under (P,H, ∗) in PathDict). In this case,
O does not have an honestly formed header; so, F sid

ROES responds to P with
(role, output) = ProcOnion(1λ, pp, O, P, sk(P)).

Upon receiving the response (role, output) from F sid
ROES, P outputs the session

id sid and (role, output).

Forming a reply. After setup, the environment Z can instruct an honest
party P to form a reply using the session-id sid, the reply message m and an
onion O = (H,C). To form the return onion, P forwards the instruction to the
ideal functionality F sid

ROES (via the router R).
Upon receiving the forwarded request, F sid

ROES looks up (P,H,C) in PathDict.

Case 1. There is an entry (P←, `) under the label (P,H,C) in PathDict. Then
F sid

ROES runs its “form onion” code (IdealFormOnion in Figure 7, Appendix A.1)
with (`,m) as the “message”, P← as the forward path and the empty list “()” as
the return path. (The “form onion” code is run with auxiliary information for
correctly labeling the last party in P← as the sender.) F sid

ROES responds to P (via
the router R) with the returned onion O′ and the first party P ′ in P←.

Case 2. No entry exists for (P,H,C) in PathDict. Then P is replying to an
onion formed by an adversarial party, so F sid

ROES replies to P with (O′, P ′) =
FormReply(1λ, pp,m,O, P, sk(P)). Upon receiving the response (O′, P ′) from
F sid

ROES, P outputs the session id sid and (O′, P ′).

3.2 SUC-realizability of FROES

Ideal protocol. In the ideal onion routing protocol, the environment Z interacts
with the participants by writing instructions into the participants’ input tapes

13

and reading the participants’ output tapes. Each input is an instruction to form
an onion, process an onion or form a return onion. When an honest party P
receives an instruction from Z, it forwards the instruction to the ideal function-
ality FROES via the router R. Upon receiving a response from FROES (via R),
P outputs the response. Corrupt parties are controlled by the adversary A and
behave according to A. F sid

ROES does not interact with A after the setup phase.
At the end of the protocol execution, Z outputs a bit b. Let

IDEALFROES,A,Z(1
λ, pp) denote Z’s output after executing the ideal protocol for

security parameter 1λ and public parameters pp.

Real protocol. Let Σ be a repliable onion encryption scheme. The real onion
routing protocol forΣ is the same as the ideal routing protocol (described above),
except that the honest parties simply run Σ’s algorithms to form and process
onions.

Let REALΣ,A,Z(1λ, pp) denote Z’s output after executing the real protocol.

Definition 3 (SUC-realizability of FROES). The repliable onion encryption
scheme Σ SUC-realizes the ideal functionality FROES if for every p.p.t. real-
model adversary A, there exists a p.p.t. ideal-model adversary S such that for
every polynomial-time balanced environment Z, there exists a negligible function
ν(λ) such that∣∣Pr[IDEALFROES,A,Z(1

λ, pp) = 1
]
−Pr

[
REALΣ,A,Z(1

λ, pp) = 1
]∣∣ ≤ ν(λ).

3.3 Remarks

On the assumption that keys are consistent with PKI. In describing the ideal
functionality, we made an implicit assumption that for every instruction to form
an onion, the keys match the parties on the routing path. However, generally
speaking, the environment Z can instruct an honest party to form an onion
using the wrong keys for some of the parties on the routing path. Using the
dictionary OnionDict, it is easy to extend our ideal functionality to cover this
case: the ideal functionality would store in OnionDict, every onion layer for an
honest party, starting from the outermost layer, until it reaches a layer with a
mismatched key. To keep the exposition clean, we will continue to assume that
inputs are well-behaved, i.e., router names are valid, and keys are as published.

On replayed onions. As originally noted by Camenisch and Lysyanskaya [4],
the environment is allowed to repeat the same input (e.g., a “process onion”
request) in the UC framework (likewise, in the SUC framework). Thus, replay
attacks are not only allowed in our model but inherent in the SUC framework.
The reason that replay attacks are a concern is that they allow the adversary
to observe what happens in the network as a result of repeatedly sending an
onion over and over again — which intermediaries are involved, etc — and that
potentially allows the adversary to trace this onion. Our functionality does not
protect from this attack (and neither did the CL functionality), but a higher-level

14

protocol can address this by directing parties to ignore repeat “process onion”
and “form reply” requests. Other avenues to address this (which can be added
to our functionality, but we chose not to so as not to complicate it further) may
include letting onions time out, so the time frame for repeating them could be
limited.

4 Our repliable onion encryption scheme

In this section, we provide our construction of a repliable onion encryption
scheme dubbed “Shallot Encryption Scheme”. Like in Camenisch and Lysyan-
skaya’s construction [4], each onion layer for a party P is encrypted under a
key k which, in turn, is encrypted under the public key of P and a tag t. Our
construction differs from the original construction in that the tag t is not a
function of the layer’s content. Instead, authentication of the message happens
separately, using a message authentication code (MAC). The resulting object is
more like a shallot than an onion; it consists of two layered encryption objects:
the header and the content (which may contain a “bud”, i.e., another layered
encryption object, namely the header for the return onion). We still call these
objects “onions” to be consistent with prior work, but the scheme overall merits
the name “shallot encryption”.

Notation. Let λ denote the security parameter. Let {Fseed(·,·)}seed∈{0,1}∗ be
a pseudo-random function (PRF) of two inputs. Let {fk(·)}k∈{0,1}∗ and
{gk(·)}k∈{0,1}∗ be block ciphers, i.e., pseudorandom permutations (PRPs). We
use the same key to key both block ciphers: one ({fk(·)}k∈{0,1}∗) with a “short”
blocklength L1(λ) is used for forming headers, the other ({gk(·)}k∈{0,1}∗) with
a “long” blocklength L2(λ) is used for forming contents. This is standard and
can be constructed from regular block ciphers. Following the notational conven-
tion introduced by Camenisch and Lysyanskaya [4], let {X}k denote fk(X) (or
gk(X)) , and let }X{k denote f−1k (X) (or g−1k (X)).

Let E = (GenE ,Enc,Dec) be a CCA2-secure encryption scheme with tags [11],
let MAC = (GenMAC,Tag,Ver) be a MAC, and let h be a collision-resistant hash
function.

4.1 Setting up

Each party Pi forms a public key pair (pk(Pi), sk(Pi)) using the public key
encryption scheme’s key generation algorithm GenE , i.e., (pk(Pi), sk(Pi)) ←
GenE(1

λ, pp, Pi).

4.2 Forming a repliable onion

Each onion consists of (1) the header (i.e., the encrypted routing path and as-
sociated keys) and (2) the content (i.e., the encrypted message).

15

Forming the header. In our example, let Alice (denoted Ps) be the sender, and
let Bob (denoted Pd, d for destination) be the recipient. To form a repliable
onion, Alice receives as input a label `, a message m, a forward path to Bob:

P→ = P1, . . . , Pd−1, Pd, |P→| = d ≤ N,

and a return path to herself:

P← = Pd+1, . . . , Ps−1, Ps, |P←| = s− d+ 1 ≤ N.

In other words, Bob is Pd, and Alice is Ps. All other participants Pi are inter-
mediaries.

Let “seed” be a seed stored in sk(Ps). Alice computes (i) an encryption key
ki = Fseed(`, i) for every party Pi on the routing path (P→, P←), (ii) an authenti-
cation keyKd for Bob using GenMAC(1

λ) with Fseed(d, `) sourcing the randomness
for running the key generation algorithm and (iii) an authentication key Ks for
herself using GenMAC(1

λ) with Fseed(s, `) sourcing the randomness for running
the key generation algorithm.

Remark: We can avoid using a PRF in exchange for requiring state; an alter-
native to using a PRF is to store keys computed from true randomness locally,
e.g., in a dictionary.

The goal of FormOnion is to produce an onion O1 for the first party P1 on
the routing path such that P1 processing O1 produces the onion O2 for the next
destination P2 on the routing path, and so on.

Suppose for the time being that d = s− d+ 1 = N .
Let O be an onion peelable by party P . The header of O is a sequence

H = (E,B1, . . . , BN−1). E is an encryption under the tag t = h(B1, . . . , BN−1)
of (i) P ’s role, (ii) P ’s encryption key k (or label `) and (iii) authentication
key K (if it exists). The decryption }B1{k reveals the destination P ′ and the
ciphertext E′ of the peeled onion. For each 1 < j < N , the decryption }Bj{k is
block (B′)j−1 of the peeled onion, so the header of the peeled onion will begin
with (E′, (B′)1, . . . , (B′)N−2). The final block (B′)N−1 of the header is formed
by “decrypting” the all-zero string of length L1(λ), i.e., (B′)N−1 =}0 . . . 0{k.

Alice first forms the header Hd = (Ed, B
1
d, . . . , B

N−1
d) for the last onion Od

on the forward path (the one to be processed by Bob): Let B1
d =}⊥,⊥{kd . For

every i ∈ {2, . . . , N − 1}, let

Bid = } . . . }0 . . . 0{ki . . . {kd−1
.

The tag td for integrity protection is the hash of these blocks concatenated
together, i.e., td = h(B1

d, . . . , B
N−1
d)

The ciphertext Ed is the encryption of (R, kd,Kd) under the public key pk(Pd)
and the tag td, i.e., Ed ← Enc(pk(Pd), td, (R, kd,Kd))

16

The headers of the remaining onions in the evolution are formed recursively. Let

B1
d−1 = {Pd, Ed}kd−1

,

Bid−1 = {Bi−1d }kd−1
, ∀i ∈ {2, . . . , N − 1},

td−1 = h(B1
d−1, . . . , B

N−1
d−1),

Ed−1 ← Enc(pk(Pd−1), td−1, (I, kd−1));

and so on. (WLOG, we assume that (Pd, Ed) “fits” into a block; i.e., |Pd, Ed| ≤
L1(λ). A block cipher with the correct blocklength can be built from a standard
one [3, 18].) See FormHeader in Figure 2.

Forming the encrypted content. Alice then forms the encrypted content for Bob.
First, if the return path P← is non-empty, Alice forms the header Hd+1 for

the return onion using the same procedure that she used to form the header H1

for the forward onion, but using the return path P← instead of the forward
path P→ and encrypting (S, `) instead of (R, ks,Ks). That is, the ciphertext Es
of the “innermost” header Hs is the encryption Enc(pk(Ps), ts, (S, `)) rather than
Enc(pk(Ps), ts, (R, ks,Ks)). If the return path is empty, then Hd+1, ks and Ks

are the empty string.
When Bob processes the onion, Alice wants him to receive (i) the message m,

(ii) the header Hd+1 for the return onion, (iii) the keys ks and Ks for forming
a reply to the anonymous sender (Alice) and (iv) the first party Pd+1 on the
return path. So, Alice sets the “meta-message” M to be the concatenation of m,
Hd+1, ks, Ks and Pd+1: M = (m,Hd+1, ks,Ks, Pd+1).

Alice wants Bob to be able to verify that M is the meta-message, so she also
computes the tag σd = Tag(Kd,M). (WLOG, (M,σd) “fits” exactly into a block;
i.e., |M | ≤ L2(λ).)

The encrypted content Ci for each onion Oi on the forward path is given by:

Ci = {. . . {M,σd}kd . . . }ki ;

see FormContent in Figure 2.
We now explain what happens when d 6= N , or s− d+ 1 6= N :
If either d or s − d + 1 exceed the upper bound N , then FormOnion returns

an error. If d is strictly less than N , the header is still “padded” to N − 1 blocks
by sampling N encryption keys as before. Likewise if s− d+ 1 < N , the header
is padded to N − 1 blocks in similar fashion.

4.3 Processing a repliable onion (in the forward direction)

Let Carol be an intermediary node on the forward path from Alice to Bob.
When Carol receives the onion Oi = (Hi, Ci) consisting of the header Hi =
(Ei, B

1
i , . . . B

N−1
i) and the content Ci, she processes it as follows:

Carol first computes the tag ti = h(B1
i , . . . B

N−1
i) for integrity protection

and then attempts to decrypt the ciphertext Ei of the header using her secret

17

key sk(Pi) and the tag ti to obtain her role and key(s), i.e.,

(I, ki) = Dec(sk(Pi), ti, Ei).

Carol succeeds in decrypting Ei only if the header has not been tampered with.
In this case, she gets her role “ I” and the key ki and proceeds with processing
the header and content:

Carol first decrypts the first block B1
i of the current header to retrieve the

next destination Pi+1 and ciphertext Ei+1 of the processed header (header of
the next onion), i.e.,

(Pi+1, Ei+1) = }B1
i {ki .

To obtain the first N − 2 blocks of the processed header, Carol decrypts the last
N − 2 blocks of H:

Bji+1 = }Bj+1
i {ki ∀j ∈ [N − 2].

To obtain the last block of the processed header, Carol “decrypts” the all-zero
string “(0 . . . 0)”:

BN−1i+1 = }0 . . . 0{ki .

To process the content, Carol simply decrypts the current content Ci:

Ci+1 = }Ci{ki .

See ProcOnion in Figure 3.

4.4 Replying to the anonymous sender

When Bob receives the onion Od = (Hd, Cd), he processes it in the same way
that the intermediary party Carol does, by running ProcOnion:

Bob first decrypts the ciphertext Ed of the header to retrieve his role “R”
and the keys kd and Kd. If Od hasn’t been tampered with, Bob retrieves the
meta-message M = (m,Hd+1, ks,Ks, Pd+1) and the tag σd that Alice embedded
into the onion by decrypting the content Cd using the key kd:

((m,Hd+1, ks,Ks, Pd+1), σd) = }Cd{kd .

Bob can verify that the message is untampered by running the MAC’s verification
algorithm Ver(Kd,M, σd).

To respond to the anonymous sender (Alice) with the messagem′, Bob creates
a new encrypted content using the keys ks and Ks:

Cd+1 = {m′,Tag(Ks,m
′)}ks .

Bob sends the reply onion Od+1 = (Hd+1, Cd+1) to the next destination Pd+1.
See ProcOnion and FormReply in Figures 3 and 4.

18

SES.FormOnion(`,m, (P1, . . . , Pd), P
←)

1 : (H1, . . . , Hd, k1, . . . , kd,Kd)← FormHeader(→, `, (P1, . . . , Pd))

2 : (C1, . . . , Cd), H
←, k←)← FormContent(`,m, P←, k1, . . . , kd,Kd)

3 : return (((H1, C1), . . . , (Hd, Cd)), H
←, ((k1, . . . , kd,Kd), k

←))

SES.FormHeader(direction, `, (P1, . . . , PN))

1 : kj = Fseed(`, j) , ∀j ∈ [N]

2 : KN = GenMAC(1
λ, Fseed(N, `))

3 : B1
N = {⊥,⊥}kN

4 : BiN = } . . . }0 . . . 0{ki . . . {kN−1 , ∀i ∈ {2, . . . , N − 1}
5 : if direction =→

6 : EN ← Enc(pk(PN), h(B1
N , . . . , B

N−1
N), (R, kN ,KN))

7 : else (if direction =←)

8 : EN ← Enc(pk(PN), h(B1
N , . . . , B

N−1
N), (S, `))

9 : HN = (EN , B
1
N , . . . , B

N−1
N)

10 : for all j from N − 1 to 1

11 : B1
j = {PN , EN}kj

12 : Bij = {Bi−1
j+1}kj , ∀i ∈ {2, . . . , N − 1}

13 : Ej ← Enc(pk(Pj), h(B
1
j , . . . , B

N−1
j), (I, kj))

14 : Hj = (Ej , B
1
j , . . . , B

N−1
j)

15 : return (H1, . . . , HN , k1, . . . , kN ,KN)

SES.FormContent(`,m, (Pd+1, . . . , Ps), k1, . . . , kd,Kd)

1 : (Hd+1, . . . , Hs, kd+1, . . . , ks,Ks)← FormHeader(←, `, (Pd+1, . . . , Ps))

2 : M = (Hd+1,m, ks,Ks, Pd+1)

3 : σd = Tag(Kd,M)

4 : Cd = {M,σd}kd
5 : for all j from d− 1 to 1

6 : Cj = {Cj+1}kj
7 : return ((C1, . . . , Cd), (Hd+1, . . . , Hs), (k1, . . . , kd,Kd))

Fig. 2: Pseudocode for FormOnion. FormOnion takes as input the label `, the
message m, the forward path P→ and the return path P← (and the public keys
associated with the routing path), and outputs onions O→, headers H← and
associated keys κ.

19

SES.ProcOnion(((E,B1, . . . , BN−1), C), P)

1 : (role, key, H ′, P ′)← ProcHeader((E,B1, . . . , BN−1), P)

2 : C′ = ProcContent(role, key, C)

3 : if role = I, return (I, ((H ′, C′), P ′))

4 : else, return (role, C′)

SES.ProcHeader((E,B1, . . . , BN−1), P)

1 : t = h(B1, . . . , BN−1)

2 : (role, key) = Dec(sk(P), t, E)

3 : if role = I

4 : (P ′, E′) = }B1{key
5 : (B′)j = }Bj+1{key , ∀j ∈ [N − 2]

6 : (B′)N−1 = }0 . . . 0{key
7 : return (I, key, (E′, (B′)1, . . . , (B′)N−1), P ′)

8 : else
9 : return (role, key,⊥,⊥)

SES.ProcContent(role, key, C)

1 : if role = I

2 : return }C{key
3 : if role = R

4 : parse key = (kd,Kd)

5 : ((Hd+1,m, ks,Ks, Pd+1), σd) = }C{kd
6 : if Ver(Kd, (Hd+1,m, ks,Ks, Pd+1), σd) = 1, return m

7 : else, return ⊥
8 : else
9 : reconstruct keys kd+1, . . . , ks,Ks from key

10 : (m,σs) = }{. . . {C}ks−1 . . . }kd+1{ks
11 : if Ver(Ks,m, σs) = 1, return (`,m)

12 : else, return ⊥

Fig. 3: Pseudocode for ProcOnion. ProcOnion takes as input the onion
((E,B1, . . . , BN−1), C) and the party P (and the secret key of P), and returns
a role (either I, R or S) and an output (either an onion and next destination
((H ′, C ′), P ′) or a decrypted content C ′).

4.5 Processing a repliable onion (in the return direction)

Let David be an intermediary party on the return path. When David receives
the onion Oj , he processes it exactly in the same way that Carol processed the
onion Oi in the forward direction; he also runs ProcOnion in Figure 3.

20

SES.FormReply(m′, (H,C), P)

1 : (role, key, H ′, P ′)← ProcHeader(H,P)

2 : if role = R

3 : parse key = (kd,Kd)

4 : ((Hd+1,m, ks,Ks, Pd+1), σd) = }C{kd
5 : if Ver(Kd, (Hd+1,m, ks,Ks, Pd+1), σd) = 1

6 : σs = Tag(Ks,m
′)

7 : return ((Hd+1, {m′, σs}ks), Pd+1)

8 : else, return (⊥,⊥)
9 : else, return (⊥,⊥)

Fig. 4: Pseudocode for FormReply. FormReply takes as input the reply mes-
sage m′, the onion (H,C) and the party P (and the secret key of P), and returns
a return onion (Hd+1, {m′, σs}ks) and next destination Pd+1.

4.6 Reading the reply

When Alice receives the onion Os, she retrieves the reply from Bob by first
processing the onion, by running ProcOnion:

Alice first decrypts the ciphertext Es of the header to retrieve her role “S”
and the label `. She reconstructs the each encryption key ki = Fseed(`, i) and the
authentication key Ks using the pseudo-randomness Fseed(s, `). (Alternatively, if
she stored the keys locally, she looks up the keys associated with label ` in a local
data structure). If Os hasn’t been tampered with, Alice retrieves the reply m′
that Bob embedded into the onion by decrypting the content Cs using the keys
(kd+1, . . . , ks):

(m′, σs) =}{. . . {Cs}ks−1 . . . }kd+1
{ks .

Alice can verify that the message is untampered by running Ver(Ks,m
′, σs). See

ProcOnion in Figure 3.

5 Shallot Encryption Scheme SUC-realizes FROES

In this section, we prove that our construction (in Section 4) SUC-realizes the
ideal functionality FROES.

To do this, we must show that for any static setting (fixed adversary A,
set Bad of corrupted parties and public key infrastructure), there exists a sim-
ulator S such that for all Z, there exists a negligible function ν : N 7→ R such
that∣∣Pr[IDEALFROES,A,Z(1

λ, pp) = 1
]
−Pr

[
REALSES,A,Z(1

λ, pp) = 1
]∣∣ ≤ ν(λ).

We first provide a description of the simulator S.
Recall that during setup, the ideal adversary (i.e., S) sends to the ideal func-

tionality, (i) the set P of participants, (ii) the set Bad ⊆ P of corrupted parties,

21

(iii) the onion encryption scheme’s algorithms: G, ProcOnion and FormReply,
(iv) the algorithm SampleOnion, (v) the algorithm CompleteOnion and (vi) the
algorithm RecoverReply. (See Section 3.1 for the syntax of these algorithms.)

In order for our construction to be secure, the simulator S must provide
items (i)-(vi) to FROES such that when the ideal honest parties respond to the
environment, one input at a time, the running history of outputs looks like one
produced from running the real protocol using the onion encryption scheme.

To complete the description of S, we must provide internal descrip-
tions of how the last three items above—SampleOnion, CompleteOnion and
RecoverReply—work. Since we are in the static setting, we will assume, WLOG,
that these algorithms “know” who is honest, who is corrupt and all relevant keys.
See Figure 5 for a summary of the simulator.

Send to FROES:

P, Bad, G, ProcOnion, FormReply,
SampleOnion, CompleteOnion,
RecoverReply

CompleteOnion(H ′, C)

Return the header H ′ along
with a randomly chosen string
C′

SampleOnion(p→, p←,m)

SampleOnion just runs FormOnion on the segments
p→ and p← using the all-zero label and, depending
on whether the first segment contains the corrupt
recipient, either the correct message m (if it does)
or a random one (if it doesn’t).

RecoverReply(O,P)

Return output of ProcOnion

Fig. 5: Summary of simulator S

5.1 Description of simulator S

Sampling an onion. Let F sid
ROES denote the ideal functionality corresponding to

the static setting. When the ideal functionality F sid
ROES receives a request from the

honest party P to form an onion using the label `, the message m, the forward
path P→ and the return path P←, F sid

ROES partitions the routing path (P→, P←)
into “segments” where each segment is a sequence of adversarial parties that may
end in a single honest party. (See Section 3.1 for a more formal description of
these segments.) F sid

ROES runs the algorithm SampleOnion independently on each
segment of the routing path. Additionally, if the forward path ends in a corrupt
party, F sid

ROES runs SampleOnion on the last segment of the forward path and the
first segment of the return path. Using SampleOnion in this way produces onions
with the property that onions belonging to different segments are information-
theoretically unrelated to each other.

The algorithm SampleOnion takes as input the security parameter 1λ, the
public parameters pp, the forward path p→ and the return path p←.

22

Case 0. The routing path (p→, p←) is not a sequence of adversarial parties, possi-
bly ending in an honest party. In this case, the input is invalid, and SampleOnion
returns an error.

Case 1. The return path p← is non-empty and ends in an honest party Pj . In
this case, SampleOnion first samples a random label x←$L(1λ) and then runs
FormOnion on the label x, the message m (from the “form onion” request), the
forward path p→ = (p1, . . . , pi), the public keys pk(p→) associated with the par-
ties in p→, the return path p← = (pi+1, . . . , Pj) and the public keys pk(p←)
associated with the parties in p←. Finally, SampleOnion outputs the first
onion o1 and the last header Hj in the output ((o1, . . . , oi), (hi+1, . . . ,Hj), κ)←
FormOnion(1λ, pp, x,m, p→, pk(p→), p←, pk(p←)).

Case 2. The return path p← is empty, and the forward path p→ ends in an honest
party Pi. In this case, SampleOnion first samples a random label x←$L(1λ) and
a random message y←$M(1λ) and then runs FormOnion on the label x, the
message y, the forward path p→ = (p1, . . . , Pi), the public keys pk(p→) associated
with the parties in p→, the empty return path “()” and the empty sequence “()” of
public keys. Finally, SampleOnion outputs the first onion o1 and the last onion Oi
in the output ((o1, . . . , Oi), (), κ)← FormOnion(1λ, pp, x, y, p→, pk(p→), (), ()).

Case 3. The return path p← is empty, and the forward path p→ ends in a corrupt
party pi. In this case, SampleOnion first samples a random label x←$L(1λ) and
then runs FormOnion on the label x, the message m (from the “form onion”
request), the forward path p→ = (p1, . . . , pi), the public keys pk(p→) associated
with the parties in p→, the empty return path “()” and the empty sequence “()”
of public keys. Finally, SampleOnion outputs the first onion o1 in the output
((o1, . . . , oi), h

←, κ)← FormOnion(1λ, pp, x,m, p→, pk(p→), (), ()).

Completing an onion. The environment Z can modify just the content of
an honestly formed onion O = (H,X), leaving the header H intact. When
Z instructs an honest party P to process this kind of onion O = (H,C),
the ideal functionality F sid

ROES runs the algorithm CompleteOnion to produce an
onion (H ′, C ′) that (i) looks like the output of ProcOnion on (H,C) and (ii) has
the same header H ′ that F sid

ROES assigned to the peeled onion (H ′, X ′) of (H,X).
To do this, the algorithm CompleteOnion(1λ, pp, H ′, C) samples a random

string C ′←$ {0, 1}L2(λ), where {0, 1}L2(λ) corresponds to the blocklength for the
PRP (in the construction), and outputs (H ′, C ′).

Recovering a reply message. The environment Z can instruct an honest
party P to process a return onion O formed by a corrupt recipient pd in response
to an onion from an honest sender; P can be an intermediary party on the return
path or the original sender. In such a situation, the ideal functionality F sid

ROES runs
the algorithm RecoverReply to recover the reply message from O.

The algorithm RecoverReply(1λ, pp, O, P) simply runs ProcOnion(O,P, sk(P))
and returns the message in the output.

23

5.2 A cryptographic definition of security

To prove that our onion encryption scheme SUC-realizes the ideal functionality
FROES, it will be useful to first show that the scheme satisfies repliable-onion
security. Informally, an onion encryption scheme is repliable-onion secure if the
adversary cannot tell (i) whether an honest receiver of an honestly formed onion
is an intermediary for the onion or the recipient, (ii) whether an honest trans-
mitter of an honestly formed onion is an intermediary for the onion or the sender
and (iii) how far an honestly formed onion is from its origin and destination.

Formally, we define repliable-onion security using the game, ROSecurityGame.
See Figure 6 for a summary of the game.

1: A picks honest parties’ router names Q1 and Q2

2: C sets keys for honest parties
3: A gets oracle access to oracles—O.PO1, O.FR1, O.PO2 and O.FR2— for

processing onions and replying to them on behalf of Q1 and Q2

4: A provides input for challenge onion
5: C flips a coin b←$ {0, 1}
6: If b = 0, C forms onion specified by A
7: If b = 1, C forms onion with “switch” at Q1 and modifies oracles accordingly.

(a) If Q1 is on the forward path, to peel the onion on behalf of Q1, O.PO1 forms
a new onion using the remainder of the routing path

(b) If Q1 is the recipient, to form a reply on behalf of Q1, O.FR1 forms a new
onion using the return path as the forward path (and the empty return path)

(c) If Q1 is on the return path, to peel the onion of behalf of Q1, O.PO1 forms a
new onion using the remainder of the return path as the forward path (and
the empty return path)

8: A gets oracle access to O.PO1, O.FR1, O.PO2 and O.FR2

9: A guesses b′ and wins if b′ = b

Fig. 6: Summary of ROSecurityGame

ROSecurityGame(1λ, Σ,CompleteOnion,A) is parametrized by the se-
curity parameter 1λ, the repliable onion encryption scheme Σ =
(G,FormOnion,ProcOnion,FormReply), the p.p.t. algorithm CompleteOnion and
the adversary A.
1. The adversary A picks two router names Q1, Q2 ∈ P and sends them to the

challenger C.
2. The challenger C generates key pairs (pk(Q1), sk(Q1)) and (pk(Q2), sk(Q2))

for Q1 and Q2 using the key generation algorithm G and sends the public
keys (pk(Q1), pk(Q2)) to A.

3. A is given oracle access to (i) O.PO1(·), (ii) O.FR1(·, ·), (iii) O.PO2(·) and
(iv) O.FR2(·, ·) where
i-ii. O.PO1(·) and O.FR1(·, ·) are, respectively, the oracle for answering “pro-

cess onion” requests made to honest party Q1 and the oracle for answer-
ing “form reply” requests made to Q1.

24

iii-iv. O.PO2(·) and O.FR2(·, ·) are, respectively, the oracle for answering “pro-
cess onion” requests made to honest party Q2 and the oracle for answer-
ing “form reply” requests made to Q2, i.e.,

O.PO1(O) = ProcOnion(O,Q1, sk(Q1))

O.FR1(m
′, O) = FormReply(m′, O,Q1, sk(Q1))

O.PO2(O) = ProcOnion(O,Q2, sk(Q2))

O.FR2(m
′, O) = FormReply(m′, O,Q2, sk(Q2))

Since ProcOnion and FormReply are deterministic algorithms, WLOG, the
oracles don’t respond to repeating queries.

4. A chooses a label ` ∈ L(1λ) and a message m ∈ M(1λ). A also chooses a
forward path P→ = (P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps)
such that exactly one party Pj in the routing path (P→, P←) is equal to Q1,
and only the last party Ps is equal to Q2. A sends to C the parameters for
the challenge onion: `, m, P→, the public keys pk(P→) of the parties in P→,
P← and the public keys pk(P←) of the parties in P←.

5. C samples a bit b←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).

The oracles—O.PO1(·), O.FR1(·, ·), O.PO2(·) and O.FR2(·, ·)—remain un-
modified.
Otherwise, if b = 1,
(a) If j < d, C performs the “switch” at honest party Pj = Q1 on the forward

path P→. C runs FormOnion twice. First, C runs it on input a random la-
bel x←$L(1λ), a random message y←$M(1λ), the “truncated” forward
path p→ = (P1, . . . , Pj) and the empty return path “()”, i.e.,

((O1
1, . . . , O

1
j), (), κ)← FormOnion(x, y, p→, pk(p→), (), ()).

C then runs FormOnion on a random label x′←$L(1λ), the mes-
sage m (that had been chosen by A in step 4), the remainder q→ =
(Pj+1, . . . , Pd) of the forward path and the return path P←, i.e.,

((O1
j+1, . . . , O

1
d), H

←, κ′)← FormOnion(x′,m, q→, pk(q→), P←, pk(P←)),

We modify the oracles as follows. Let O1
j = (H1

j , C
1
j) and O1

j+1 =

(H1
j+1, C

1
j+1), and let H1

s be the last header in H←. O.PO1 does the
following to “process” an onion O = (H,C):
i. If O = O1

j and ProcOnion(O,Pj , sk(Pj)) = (R, y), then return
(I, (O1

j+1, Pj+1)).
ii. If O = O1

j and ProcOnion(O,Pj , sk(Pj)) 6= (R, y), then fail.
iii. If O 6= O1

j but H = H1
j and ProcOnion(O,Pj , sk(Pj)) = (R,⊥), then

return (I, ((H1
j+1,CompleteOnion(H1

j+1, C)), Pj+1)).

25

iv. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) 6= (R,⊥), then
fail.

O.PO2 does the following to “process” an onion O:
v. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) = (R,m′) for
some message m′ 6= ⊥, then return (S, (`,m′)).

vi. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then

return (S,⊥).
vii. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) 6= (R,m′) for
any message m′, then fail.

All other queries are processed as before.
(b) If j = d, C performs the “switch” at honest recipient Pj . C runs FormOnion

on input a random label x←$L(1λ), a random message y←$M(1λ), the
forward path P→ and the empty return path “()”, i.e.,

((O1
1, . . . , O

1
j), (), κ)← FormOnion(x, y, P→, pk(P→), (), ()).

We modify the oracles as follows. O.FR1 does the following to “form a
reply” using message m′ and onion O = O1

j : O.FR1 runs FormOnion on
a random label x′, the reply message m′, the return path P← as the
forward path and the empty return path “()”, i.e.,

((Om
′

j+1, . . . , O
m′

s), (), κm
′
)← FormOnion(x′,m′, P←, pk(P←), (), ()),

stores the pair (Om
′

s ,m′) (such that the pair is accessible by O.PO2) and
returns (Om

′

j+1, Pj+1).
O.PO2 does the following to “process” an onion O:
i. If O = O′ for some stored pair (O′,m′) and

ProcOnion(O,Ps, sk(Ps)) = (R,m′), then return (S, (`,m′)).
ii. If O = O′ for some stored pair (O′,m′) and

ProcOnion(O,Ps, sk(Ps)) 6= (R,m′), then fail.
iii. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some

stored pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥),
then return (S,⊥).

iv. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some
stored pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥),
then fail.

All other queries are processed as before.
(c) If j > d, C performs the “switch” at honest party Pj on the return

path P←. C runs FormOnion on input a random label x←$L(1λ), the
message m (that had been chosen by A in step 4), the forward path P→
and the “truncated” return path p← = (Pd+1, . . . , Pj), i.e.,

(O→, (H1
d+1, . . . ,H

1
j), κ)← FormOnion(x,m, P→, pk(P→), p←, pk(p←)).

We modify the oracles as follows. O.PO1 does the following to “process”
an onion O:

26

i. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) =

(R,m′) for some message m′ (possibly equal to “⊥”), then runs
FormOnion on a random label x′, the reply message m′, the remain-
der the return path q← = (Pj+1, . . . , Ps) as the forward path and
the empty return path “()”, i.e.,

((Om
′

j+1, . . . , O
m′

s), (), κm
′
)← FormOnion(x′,m′, q←, pk(q←), (), ()),

stores the pair (Om
′

s ,m′) (such that the pair is accessible by O.PO2)
and returns (Om

′

j+1, Pj+1).
ii. If O = (H1

j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) 6=
(R,m′) for some message m′, then fails.

O.PO2 does the following to “process” an onion O:
iii. If O = O′ for some stored pair (O′,m′) and

ProcOnion(O,Ps, sk(Ps)) = (R,m′), then return (S, (`,m′)).
iv. If O = O′ for some stored pair (O′,m′) and

ProcOnion(O,Ps, sk(Ps)) 6= (R,m′), then fail.
v. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some

stored pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥),
then return (S,⊥).

vi. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some
stored pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥),
then fail.

All other queries are processed as before.
C sends to A, the first onion Ob1 in the output of FormOnion.

6. A submits a polynomially-bounded number of (adaptively chosen) queries
to oracles O.PO1(·), O.FR1(·, ·), O.PO2(·) and O.FR2(·, ·).

7. Finally, A guesses a bit b′ and wins if b′ = b.

We define repliable-onion security as follows.

Definition 4 (Repliable-onion security). A repliable onion encryption
scheme Σ is repliable-onion secure if there exist a p.p.t. algorithm
CompleteOnion and a negligible function ν such that every p.p.t. adversary A
wins the security game ROSecurityGame(1λ, Σ,CompleteOnion,A) with negligi-
ble advantage, i.e.,∣∣∣∣Pr[A wins ROSecurityGame(1λ, Σ,CompleteOnion,A)

]
− 1

2

∣∣∣∣ ≤ ν(λ).
Remarks on Defintion 4. An onion formed by running a secure onion encryp-
tion scheme and received (resp. transmitted) by an honest party P does not
reveal how many layers are remaining (resp. came before) since the adversary
cannot distinguish between the onion and another onion formed using the same
parameters except with the path truncating at recipient (resp. sender) P .

In the security game, the adversary chooses a routing path with only one
honest party (besides the necessarily honest sender). Restricting the adversary’s

27

choice for a routing path in this way simplifies the definition of security without
restricting the usefulness of the definition since each segment of an onion formed
using a secure scheme (the way we defined it) must be computationally unrelated
to any other segment.

5.3 Security results

We first argue that our construction satisfies repliable-onion security.

Lemma 5. Shallot Encryption Scheme (in Section 4) is correct (Defini-
tion 2) and repliable-onion secure (Definition 4) under the assumption that
(i) {fk}k∈{0,1}∗ is a PRP, (ii) E is a CCA2-secure encryption scheme with tags,
(iii) MAC is a message authentication code, and (iv) h is a collision-resistant
hash function.

Proof (Sketch). The onion encryption scheme is correct by inspection.
We sketch the proof of security for cases (a) when Pj = Q1 is an intermediary

on the forward path and (c) when Pj is an intermediary on the return path. The
proof for case (b) (when Pj is the recipient) is similar.

In cases (a) and (c), we can prove that A’s view when b = 0 is indistin-
guishable from A’s view when b = 1 using a hybrid argument. The gist of the
argument is as follows: First, Pj ’s encryption key kj is protected by CCA-secure
encryption, so it can be swapped out for the all-zero key “0 . . . 0”. Next, blocks
(N − j − 1) to (N − 1) of the onion for Pj+1 look random as they are all “de-
cryptions” under kj , so they can be swapped out for truly random blocks. Next,
blocks 1 to (N − j − 1) and the content of the onion for Pj look random as
they are encryptions under kj , so they can be swapped out for truly random
blocks. At this point, the keys for forming Oj+1 can be independent of the keys
for forming Oj , and these onions may be formed via separate FormOnion calls.
For case (b), we can use a simpler hybrid argument since only the content of a
forward onion can be computationally related to the keys for the return path.
Thus, we can swap out just the content for a truly random string.

For the full proof, see Appendix A.2. ut

We now show that the history of outputs that S produces is indistinguishable
from one produced by running the real protocol to any environment Z.

Theorem 6. Shallot Encryption Scheme (in Section 4) SUC-realizes the ideal
functionality FROES (Definition 3).

Proof. From Lemma 5, it suffices to prove that if a repliable-onion encryption
scheme Σ is repliable-onion secure, then it also SUC-realizes the ideal function-
ality FROES.

Our proof is via a hybrid argument.
Let Experiment1 be the ideal onion routing protocol in which the ideal honest

parties query FROES to form onions, process onions and form return onions.

28

Let Experiment0 be the real onion routing protocol in which the honest par-
ticipants run Σ’s algorithms to form onions, process onions and form return
onions.

Let Hybrid0 be the experiment with the same set up at Experiment0 except
that the challenger controls all honest parties and the ideal functionality FROES,
and the environment is the adversary.

We define the remaining hybrid experiments as follows:

Let numFO be the upper bound on the number of honest “form onion” queries
from the environment.

For all i ∈ [numFO], let Hybridi be the experiment in which the first i “form
onion” queries are “simulated”, and all remaining queries are “real”. The chal-
lenger runs FROES for the first i “form onion” queries and runs FormOnion for
the remaining ones. The challenger always runs FROES to process an onion or
to form a reply. This works because FROES just runs ProcOnion or FormReply in
cases where FROES doesn’t recognize the query onion’s header.

Recall that N is the upper bound on the length of the forward (or return)
path which is also an upper bound on the number of segments per “form onion”
query.

Next, we describe the hybrids between Hybridi−1 and Hybridi. For all j ∈ [N],
let Hybridi,j be the experiment in which the first i−1 “form onion” queries and the
first j segments of the i-th “form onion” query are “simulated”, and all remaining
segments are “real”. (i) The first i − 1 “form onion” queries are processed via
FROES. (ii) All queries after the i-th query are processed by running ProcOnion.
(iii) The i-th query is processed specially as follows.

Let (P→, P←) denote the routing path of the i-th query. First, the challenger
partitions (P→, P←) into (at most) j +1 subpaths (p→1 , . . . , p→j , q→), consisting
of the first j segments (p→1 , . . . , p→j) of (P→, P←) (or as many as they are) and
the remaining subpath q→ of (P→, P←) not covered by the segments (if it exists).

To process the i-th “form onion” request, the challenger essentially runs the
same code as FROES except with the subpaths as the “segments” of (P→, P←).
(Onion layers and return paths are stored in the same dictionaries, OnionDict
and PathDict, used by the unmodified FROES code.) As before, the challenger
always runs FROES to process an onion or to form a reply.

By construction, (i) Experiment0 and Hybrid0 produce identical results,
(ii) for all i ∈ [numFO], Hybridi−1,N and Hybridi produce identical results,
and (iii) HybridnumFO,N and Experiment1 produce identical results. For any
i ∈ [numFO] and j ∈ [N−1], the repliable-onion security of Σ guarantees that the
environment cannot distinguish between running Hybridi,j and Hybridi,j+1. Since
the total number of segments is polynomially bounded in the security parameter,
it follows the environment cannot distinguish between running Experiment0 and
running Experiment1. In other words, Σ SUC-realizes FROES.

ut

29

References

1. Megumi Ando, Anna Lysyanskaya, and Eli Upfal. Practical and provably secure
onion routing. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and
Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 144:1–144:14.
Schloss Dagstuhl, July 2018.

2. Megumi Ando, Anna Lysyanskaya, and Eli Upfal. On the complexity of anonymous
communication through public networks. arXiv preprint arXiv:1902.06306, 2019.

3. Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft
0.2, 2015.

4. Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion routing.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 169–187.
Springer, Heidelberg, August 2005.

5. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

6. Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally
composable security for standard multiparty computation. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 3–22. Springer, Heidelberg, August 2015.

7. Ran Canetti, Daniel Shahaf, and Margarita Vald. Universally composable authen-
tication and key-exchange with global PKI. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 265–296. Springer, Heidelberg, March 2016.

8. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

9. Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George Danezis, and
Carmela Troncoso. Taranet: Traffic-analysis resistant anonymity at the network
layer. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 137–152. IEEE, 2018.

10. Chen Chen, Daniele Enrico Asoni, David Barrera, George Danezis, and Adrian
Perrig. HORNET: High-speed onion routing at the network layer. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15, pages 1441–1454.
ACM Press, October 2015.

11. Ronald Cramer and Victor Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 13–25. Springer, Heidelberg, August
1998.

12. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg,
April / May 2002.

13. George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
type III anonymous remailer protocol. In 2003 IEEE Symposium on Security and
Privacy, pages 2–15. IEEE Computer Society Press, May 2003.

14. George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix
format. In 2009 IEEE Symposium on Security and Privacy, pages 269–282. IEEE
Computer Society Press, May 2009.

15. George Danezis and Ben Laurie. Minx: A simple and efficient anonymous packet
format. In Proceedings of the 2004 ACM workshop on Privacy in the electronic
society, pages 59–65, 2004.

30

16. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: the second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
August 9-13, 2004, San Diego, CA, USA, pages 303–320, 2004.

17. Ceki Gulcu and Gene Tsudik. Mixing e-mail with babel. In Proceedings of Inter-
net Society Symposium on Network and Distributed Systems Security, pages 2–16.
IEEE, 1996.

18. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chap-
man and Hall/CRC, 2014.

19. Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking and (partially)
fixing provably secure onion routing. arXiv preprint arXiv:1910.13772, 2019.

20. Erik Shimshock, Matt Staats, and Nick Hopper. Breaking and provably fixing
minx. In International Symposium on Privacy Enhancing Technologies Symposium,
pages 99–114. Springer, 2008.

31

A Supplementary material

A.1 Pseudocode for ideal functionality FROES’s onion forming
algorithm

IdealFormOnion(`,m, (P1, . . . , Pd), (Pd+1, . . . , Ps))

1 : cur = 1

2 : next = next(cur)

3 : while next ≤ d
4 : p→ = (pcur+1, . . . , pnext−1, Pnext)

5 : (ocur+1, Onext, κnext)← SampleOnion(1λ, pp, p→, (),⊥)
6 : cur = next

7 : next = next(cur)

8 : if the recipient pd is corrupt
9 : p→ = (pcur+1, . . . , pd)

10 : p← = (pd+1, . . . , pnext(d)−1, Pnext(d))

11 : (ocur+1, Hnext(d), κnext(d))← SampleOnion(1λ, pp, p→, p←,m)

12 : cur = next(1)

13 : while cur < d

14 : OnionDict.put((Pcur, Hcur, Ccur), (I, ((Hcur+1, Ccur+1), Pcur+1), κcur+1)

15 : if the recipient Pd is honest
16 : OnionDict.put((Pd, Hd, Cd), (R,m),⊥)
17 : PathDict.put((Pd, Hd, Cd), (P

←, `))

18 : else if next(d) ≤ s
19 : ((Pnext(d), Hnext(d), ∗), ((pnext(d)+1, . . . , Ps, `))

20 : return (H1, C1)

Fig. 7: Pseudocode for the ideal functionality’s “onion forming” algorithm
IdealFormOnion. IdealFormOnion takes as input label `, message m, forward path
(P1, . . . , Pd) and return path (Pd+1, . . . , Ps), and outputs an onion (H1, C1).
When IdealFormOnion forms onions for the return path, it outputs string “S” in
place of “R” (in line 19).

A.2 Proof of Lemma 5

Proof. The onion encryption scheme is correct by inspection.
We present the proof of security for case (a) when the switch occurs at

intermediary Pj = Q1 on the forward path. The proofs for cases (b) and (c) are
similar.

32

For the analysis of the scheme’s repliable-onion security, we will make the
simplifying assumption that labels are truly random as opposed to generated
using a PRF. We can make this assumption “without loss in rigor” since a proof
that relies on this assumption implies one without making the assumption.

To prove the lemma, we need to prove that A cannot distinguish between
running Experiment0 (game with b = 0) and Experiment1 (game with b = 1).
To do this, we define hybrids Hybrid1 through Hybrid9 and prove that (i) run-
ning Hybrid1 produces the same result that running Experiment0 produces, (ii) A
cannot distinguish between running any two consecutive hybrids, and (iii) run-
ning Hybrid9 produces the same result that running Experiment1 produces. See
Figure 8 for the road map of the proof.

Experiment0—game with b = 0, same as Hybrid1

Hybrid1—make Hd+1, then Oj+1, then O1

Hybrid2—same as Hybrid1 except swap ` for random label
Hybrid3—same as Hybrid2 except swap kj for fake key “0 . . . 0”
Hybrid4—same as Hybrid3 except swap (BN−j−1

j+1 , . . . , BN−1
j+1) for truly random blocks

Hybrid5—same as Hybrid4 except swap (B1
j , . . . , B

N−j−1
j) and content Cj for truly

random strings
Hybrid6—same as Hybrid5 except swap onion for intermediary Pj for onion for

recipient Pj
Hybrid7—same as Hybrid6 except swap truly random blocks and content in Oj for

pseudo-random blocks (B1
j , . . . , B

N−j−1
j , Cj)

Hybrid8—same as Hybrid7 except swap truly random blocks in Hj+1 for
pseudo-random blocks (BN−j−1

j+1 , . . . , BN−1
j+1)

Hybrid9—same as Hybrid8 except swap key “0 . . . 0” for for real key kj
Experiment1—game with b = 1, same as Hybrid9

Fig. 8: Road map of proof of Lemma 5

Security game with b = 1. Let Experiment1 be the challenger’s algorithm in the
security game when b = 1. In Experiment1, the challenger does the following:
1: get from A router names Q1 and Q2 and sends (Q1, Q2)
2: generate keys for Q1 and Q2 and sends public keys (pk(Q1), pk(Q2)) to A
3: give A oracle access to O.PO1, O.FR1, O.PO2 and O.FR2

4: get from A parameters for challenge onion: label `, message m, forward path
P→ = (P1, . . . , Pd) and return path P← = (Pj+1, . . . , Ps) such that Pj = Q1

and Ps = Q2, and the public keys of the adversarial parties in the routing
path

5: pick a random message y←$M(1λ);
let p→ = (P1, . . . , Pj) and q→ = (Pj+1, . . . , Pd);
run FormOnion((0 . . . 0), y, p←, pk(p←), (), ())→ ((O1, . . . , Oj), (), κ);
run FormOnion((0 . . . 0),m, q←, pk(q←), P←, pk(P←)) →
((Oj+1, . . . , Od), H

←, κ′)

33

6: modify O.PO1: to “process” an onion O = (Hj , C) with the same header Hj

as Oj , O.PO1 returns (I, (CompleteOnion(1λ, pp, Hj+1, C), Pj+1);
modify O.PO2: to “process” an onion O with the header Hs (i.e., last header
in H←), O.PO2 extracts the message m′ = RecoverReply(λ, pp, O, Pj , sk(Pj))
and returns (S, (`,m′))

7: send to A the first onion O1

8: give A oracle access to O.PO1, O.FR1, O.PO2 and O.FR2

Security game with b = 0. Let Experiment0 be the challenger’s algorithm in the
security game when b = 0. In Experiment0, the challenger does the following:
1: get from A router names Q1 and Q2 and sends (Q1, Q2)
2: generate keys for Q1 and Q2 and sends public keys (pk(Q1), pk(Q2)) to A
3: give A oracle access to O.PO1, O.FR1, O.PO2 and O.FR2

4: get from A parameters for challenge onion: label `, message m, forward path
P→ = (P1, . . . , Pd) and return path P← = (Pj+1, . . . , Ps) such that Pj = Q1

and Ps = Q2, and the public keys of the adversarial parties in the routing
path

5: run FormOnion(`,m, P→, pk(P→), P←, pk(P←))→ ((O1, . . . , Od), H
←, κ)

6: keep the oracles unmodified
7: send to A the first onion O1

8: give A oracle access to O.PO1, O.FR1, O.PO2 and O.FR2

Hybrid1—make Hd+1, then Oj+1, then O1. Let Hybrid1 be the same procedure
as Experiment0 except for step 5.

In step 5, rather than using FormOnion as a black box to obtain O1, the
challenger forms onion Oj+1 by running FormHeader(→, `, (Pj+1, . . . , Pd)) (to
get the header Hj+1) and FormContent(`,m, P←, kj+1, . . . , kd,Kd) (to get the
content Cj+1); and finally produces onion O1 by wrapping onion layers around
Oj+1 = (Hj+1, Cj+1):
5: form onion Oj+1:

(Hj+1, . . . ,Hd, κ)← FormHeader(→, `, (Pj+1, . . . , Pd))

((Cj+1, . . . , Cd), H
←, κ′)← FormContent(`,m, P←, κ);

form onion O1 by wrapping layers around Oj+1 =
((Ej+1, B

1
j+1, . . . , B

N−1
j+1), Cj+1) using the keys in κ; for all u from j

to one, recursively obtain Ou from Ou+1 as follows:

B1
u = {Pu+1, Eu+1}ku

∀i ∈ {2, . . . , N − 1}, Biu = {Bi−1u+1}ku
Eu ← Enc(pk(Pu), h(B

1
u, . . . , B

N−1
u), ku)

Cu = {Cu+1}ku

6: keep the oracles unmodified
Hybrid1 is the same procedure as Experiment0 “under the hood”.

34

Hybrid2—swap ` for random label. Let Hybrid2 be the same procedure as Hybrid1

except in steps 5-6, the challenger swaps out the label ` (from A) for a random
label x and modifies oracle O.PO2 accordingly:
5: form onion Oj+1:

x← L(1λ)
(Hj+1, . . . ,Hd, κ)← FormHeader(→, x, (Pj+1, . . . , Pd))

((Cj+1, . . . , Cd), H
←, κ′)← FormContent(x,m, P←, κ);

form onion O1 by wrapping layers around Oj+1 (using keys produced from
forming Oj+1)

6: modify O.PO2: to “process” an onion O with the header Hs (i.e., last header
in H←), O.PO2 extracts the message m′ = RecoverReply(λ, pp, O, Pj , sk(Pj))
and returns (S, (`,m′))
Here, we prove that A cannot distinguish between running Hybrid1 and run-

ning Hybrid2. For the sake of reaching a contradiction, suppose that A can dis-
tinguish between running Hybrid1 (i.e., b = 0) and running Hybrid2 (i.e., b = 1),
then we can construct a reduction B that can break the CCA2-security of the
underlying encryption scheme as follows:
1: B receives the router names Q1, Q2 from A.
2: B generates keys (pk(Q1), sk(Q1)) for Q1 using the key generation algo-

rithm G but gets the public key pk(Q2) of Q2 from its challenger. B sends
the public keys (pk(Q1), pk(Q2)) to A.

3: B gives oracle access to A; whenever B needs to process an onion O =
((E,B1, . . . , BN−1), C) forQ2, B uses the decryption oracleO.Dec to decrypt
the ciphertext portion E of O. For all other “process onion” requests, B
simply runs ProcOnion.

4: B gets from A the challenge onion parameters: label `, message m, forward
path P→ and return path P← and the public keys of the adversarial parties
in the routing path. B sends the challenge messagesm0 = ` andm1←$L(1λ)
to the challenger, and the challenger responds with the encryption Ebs of one
of the messages.

5: Let |k|(λ) be the length of the encryption keys. B uses Ebs to form header
H ′s:

k1, . . . , kN ←$ {0, 1}|k|(λ)

B1
s = {⊥,⊥}kN

∀i{2, . . . , N − 1}, Bis = } . . . }0 . . . 0{ki . . . {kN−1

H ′s = (Ebs, B
1
s , . . . , B

N−1
s)

and forms header H ′d+1 by “wrapping” H ′s (using the return path P← and
the keys k1, . . . , kN−1). B then forms onion Oj+1 by running FormHeader(→
, x, (Pj+1, . . . , Pd)) and FormContent(x,m, P←, kj+1, . . . , kd,Kd) but replac-
ing the internally created Hd+1 with H ′d+1. Finally, B forms onion O1 by
wrapping onion layers around Oj+1.

35

6: B (possibly) modifies O.PO2 so that if running ProcOnion on an onion with
header Hs outputs (S, (x,m′)) for some label x and message m, O.PO2 out-
puts (S, (`,m′)) instead (all other “process onion” requests are handled by
running ProcOnion).

7: B sends O1 to A.
8: B gives oracle access to A (again using O.Dec to decrypt ciphertexts for Q2).
Finally, B guesses the bit b′ that A outputs.

The reduction works since B wins if A wins; otherwise, A would be able to
break the collision-resistance of the hash function. Clearly, the reduction runs in
polynomial-time.

Hybrid3—swap kj for fake key “0 . . . 0”. Let Hybrid3 be the same procedure as
Hybrid2 except in step 5, the challenger obtains ciphertext Ej by encrypting the
all-zero key “0 . . . 0” instead of key kj :
5: form onion Oj+1 (like in Hybrid2);

form onion Oj by wrapping a layer around Oj+1 (using key kj produced
from forming Oj+1 but don’t encrypt the key under sk(Pj)):

B1
j = {Pj+1, Ej+1}kj

∀i ∈ {2, . . . , N − 1}, Bij = {Bi−1j+1}kj
Ej ← Enc(pk(Pj), h(B

1
j , . . . , B

N−1
j), (0 . . . 0))

Cj = {Cj+1}kj ;

form onion O1 by wrapping layers around Oj (using keys produced from
forming Oj+1)
Here, we prove that A cannot distinguish between running Hybrid2 and run-

ning Hybrid3. For the sake of reaching a contradiction, suppose that A can dis-
tinguish between running Hybrid2 (i.e., b = 0) and running Hybrid3 (i.e., b = 1),
then we can construct a reduction B that can break the CCA2-security of the
underlying encryption scheme as follows:
1: B receives the router names Q1, Q2 from A.
2: B generates keys (pk(Q2), sk(Q2)) for Q2 using the key generation algo-

rithm G but gets the public key pk(Q1) of Q1 from its challenger. B sends
the public keys (pk(Q1), pk(Q2)) to A.

3: B gives oracle access to A; whenever B needs to process an onion O =
((E,B1, . . . , BN−1), C) forQ1, B uses the decryption oracleO.Dec to decrypt
the ciphertext portion E of O. For all other “process onion” requests, B
simply runs ProcOnion.

4: B gets from A the challenge onion parameters: label `, message m, forward
path P→ and return path P← and the public keys of the adversarial parties in
the routing path. B sends the challenge messages m0 = kj and m1 = (0 . . . 0)
to the challenger, and the challenger responds with the encryption Ebj of one
of the messages.

36

5: B forms onion Oj+1 (like in Hybrid1) and sets onion Oj to be
((Ebj , B

1
j , . . . , B

N−1
j), Cj) where

B1
j = {Pj+1, Ej+1}kj

∀i ∈ {2, . . . , N − 1}, Bij = {Bi−1j+1}kj
Cj = {Cj+1}kj .

Finally, B forms onion O1 by wrapping onion layers around Oj .
6: B modifies oracle O.PO2 so that if running ProcOnion on an onion with

header Hs outputs (S, (x,m′)) for some label x and message m, O.PO2 out-
puts (S, (`,m′)) instead (all other “process onion” requests are handled by
running ProcOnion).

7: B sends O1 to A.
8: B gives oracle access to A (again using O.Dec to decrypt ciphertexts for Q1).
Finally, B guesses the bit b′ that A outputs.

The reduction works since B wins if A wins; otherwise, A would be able to
break the collision-resistance of the hash function. Clearly, the reduction runs in
polynomial-time.

Hybrid4—swap (BN−j−1j+1 , . . . , BN−1j+1) for truly random blocks. Let Hybrid4 be the
same procedure as Hybrid3 except in step 5, blocks (N − j − 1) to (N − 1) in
Oj+1 are formed using a truly random permutation function F rather than the
PRP keyed with kj :
5: form Ôj = (Ĥj , Ĉj):

x← L(1λ)
(Ĥj , . . . , Ĥd, kj , . . . , kd,Kd)← FormHeader(→, x, (Pj , . . . , Pd))

((Ĉj , . . . , Ĉd), kj , . . . , kd)← FormContent(x,m, P←, kj , . . . , kd,Kd);

form Oj+1 = ((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , RN−j−1j+1 , . . . , RN−1j+1), Cj+1) from

Ôj = ((Êj , B̂
1
j , . . . , B̂

N−1
j), Ĉj):

(Pj+1, Ej+1) = }B̂1
j {kj

∀i ∈ {1, . . . , N − j − 2}, Bij+1 = }B̂i+1
j {kj

∀i ∈ {N − j − 1, . . . , N − 2}, Rij+1 = F (B̂i+1
j)

Cj+1 = }Ĉj{kj ;

form O1 by wrapping layers around Oj+1

Here, we prove that A cannot distinguish between running Hybrid3 and run-
ning Hybrid4. For the sake of reaching a contradiction, suppose that A can dis-
tinguish between running Hybrid3 (i.e., b = 0) and running Hybrid4 (i.e., b = 1),
then we can construct a reduction B that can break the underlying PRP-CCA
security of the PRP as follows:

37

1: B receives the router names Q1, Q2 from A.
2: B generates keys (pk(Q1), sk(Q1)) forQ1 and keys (pk(Q2), sk(Q2)) forQ2 us-

ing the key generation algorithmG and sends the public keys (pk(Q1, pk(Q2))
to A.

3: B gives oracle access to A.
4: B gets from A the challenge onion parameters: label `, message m, forward

path P→ and return path P← and the public keys of the adversarial parties
in the routing path.

5: B forms onion Oj = ((Ej , B
1
j , . . . , B

N−1
j), Cj) by running FormHeader(→

, x, (Pj , . . . , Pd)) and FormContent(x,m, kj , . . . , kd,Kd). B queries the chal-
lenger for the pseudo-random permutations of (B2

j , . . . , B
N−j−1
j , and

the challenger responds with (B1
j+1, . . . , B

N−j−2
j+1). B sets O′j+1 to be

((Ej+1, B
1
j+1, . . . , B

N−j−2
j+1 , Bb,N−j−1j+1 , . . . , Bb,N−1j+1), Cj+1), where Bij+1 =

}Bi+1
j {kj for all i ∈ [N − j − 2], and Cj+1 = }Cj{kj . B forms onion O1

by wrapping onion layers around Oj+1.
6: B modifies oracle O.PO2 so that if running ProcOnion on an onion with

header Hs outputs (S, (x,m′)) for some label x and message m, O.PO2 out-
puts (S, (`,m′)) instead (all other “process onion” requests are handled by
running ProcOnion).

7: B sends O1 to A.
8: B gives oracle access to A.
Finally, B guesses the bit b′ that A outputs.

The reduction works since the distribution of the input to A in steps 5-6 is
exactly what is expected “in the wild”. Clearly, the reduction runs in polynomial-
time.

Hybrid5—swap (B1
j , . . . , B

N−j−1
j) and content Cj for truly random strings. Let

Hybrid5 be the same procedure as Hybrid4 except in step 5, the first N − j blocks
and the content of onion Oj are outputs of a truly random permutation function
F rather than outputs of the PRP keyed with kj :
5: form onion Oj+1 (with some truly random blocks);

form onion Oj = ((Ej , R
1
j , . . . , R

N−j−1
j , BN−jj , . . . , BN−1j), Rj) by wrapping

a layer around Oj+1 (using key kj produced from forming Oj+1):

R1
j = F (Pj+1, Ej+1)

∀i ∈ {2, . . . , N − j − 1}, Rij = F (Bi−1j+1)

∀i ∈ {N − j, . . . , N − 1}, Bij = {Bi−1j+1}kj
Ej ← Enc(pk(Pj), h(B

1
j , . . . , B

N−1
j), (0 . . . 0))

Rj = F (Cj+1);

form onion O1 by wrapping layers around Oj (using keys produced from
forming Oj+1)
Here, we prove that A cannot distinguish between running Hybrid4 and run-

ning Hybrid5. For the sake of reaching a contradiction, suppose that A can dis-

38

tinguish between running Hybrid4 (i.e., b = 0) and running Hybrid5 (i.e., b = 1),
then we can construct a reduction B that can break the underlying pseudo-
randomness of the PRP as follows:

1: B receives the router names Q1, Q2 from A.
2: B generates keys (pk(Q1), sk(Q1)) forQ1 and keys (pk(Q2), sk(Q2)) forQ2 us-

ing the key generation algorithmG and sends the public keys (pk(Q1, pk(Q2))
to A.

3: B gives oracle access to A.
4: B gets from A the challenge onion parameters: label `, message m, forward

path P→ and return path P← and the public keys of the adversarial parties
in the routing path.

5: B forms onion Oj+1 like in Hybrid4 (with some truly random blocks). B sends
to the challenger the sequence ((Pj+1, Ej+1), B

1
j+1, . . . , B

N−j−2
j+1 , Cj+1). The

challenger responds with (Ebj , B
b,1
j , . . . , Bb,N−j−1j , Cbj) which are either

pseudo-random permutations (if b = 0) or truly random permutations (if
b = 1). B sets Oj to be ((Ej , B

b,1
j , . . . , Bb,N−j−1j , BN−jj , . . . , BN−1j), Cbj)

where

∀i ∈ {N − j, . . . , N − 1}, Bij = {Bi−1j+1}kj
Ej ← Enc(pk(Pj), tj , (0 . . . 0)),

and where tj = h(Bb,1j , . . . , Bb,N−j−1j , BN−jj , . . . , BN−1j). Finally, B forms
onion O1 by wrapping onion layers around Oj .

6: B modifies oracle O.PO2 so that if running ProcOnion on an onion with
header Hs outputs (S, (x,m′)) for some label x and message m, O.PO2 out-
puts (S, (`,m′)) instead (all other “process onion” requests are handled by
running ProcOnion).

7: B sends O1 to A.
8: B gives oracle access to A.

Finally, B guesses the bit b′ that A outputs.

The reduction works since the distribution of the input to A in steps 5-6 is
exactly what is expected “in the wild”. Clearly, the reduction runs in polynomial-
time.

Hybrid6—swap onion for intermediary Pj for onion for recipient Pj. Let Hybrid6

be the same procedure as Hybrid5 except in steps 5-6, the challenger wraps layers
around a bogus onion Oj for recipient Pj to obtain the output O1 and modifies
oracle O.PO1 accordingly:

5: form onion Oj+1 (with some truly random blocks);

39

form bogus onion Oj = ((Ej , R
1
j , . . . , R

N−j−1
j , BN−jj , . . . , BN−1j), Rj) for re-

cipient Pj :

∀i ∈ [N − j − 1], Rij ←$ {0, 1}L1(λ)

k1, . . . , kN ←$ {0, 1}|k|(λ)

∀i ∈ {N − j, . . . , N − 1}, Bij = } . . . }0 . . . 0{kN−i−1
{kN−j

Ej ← Enc(pk(Pj), h(B
1
j , . . . , B

N−1
j), (0 . . . 0))

Rj ←$ {0, 1}L1(λ);

form onion O1 by wrapping layers around O′j (using keys k1, . . . , kN−1)
6: modify O.PO1: to “process” an onion O = (Hj , C) with the same header Hj

as Oj , O.PO1 returns (I, (CompleteOnion(1λ, pp, Hj+1, C), Pj+1);
modify O.PO2: to “process” an onion O with the header Hs (i.e., last header
in H←), O.PO2 extracts the message m′ = RecoverReply(λ, pp, O, Pj , sk(Pj))
and returns (S, (`,m′))
The adversary can query the oracle O.PO1 to process an onion with the

correct challenge header but with “mangled” content. In this case, the peeled
onion in Hybrid5 looks like the peeled onion in Hybrid6 because the former has a
truly random header and content whereas the latter has a truly random header
and pseudo-random content. For all other queries, the responses in the hybrids
are statistically the same. Thus, using a straightforward hybrid argument, we
can show that the adversary cannot distinguish between running Hybrid5 and
running Hybrid6.

Hybrid7—swap truly random blocks and content in Oj for pseudo-random blocks
(B1

j , . . . , B
N−j−1
j , Cj). Let Hybrid7 be the same procedure as Hybrid6 except in

step 5, the challenger wraps layers around the onion Oj with real blocks and real
content to obtain the output O1:
5: form onion Oj+1 (with some truly random blocks);

form onion Oj for recipient Pj :

y←$M(λ)

((((Êj , B
1
j , . . . , B

N−1
j), Cj)), (), κ)← FormOnion((0 . . . 0), y, (Pj), pk(Pj), (), ())

Ej ← Enc(pk(Pj), h(B
1
j , . . . , B

N−1
j), (0 . . . 0));

form onion O1 by wrapping layers around Oj (using keys from FormOnion)
A cannot distinguish between running Hybrid6 and running Hybrid7. Other-

wise, we could construct a reduction (very similar to the reduction used for prov-
ing that Hybrid4 ≈ Hybrid5) that can break the underlying pseudo-randomness
of the PRP.

Hybrid8—swap truly random blocks in Hj+1 for pseudo-random blocks
(BN−j−1j+1 , . . . , BN−1j+1). Let Hybrid8 be the same procedure as Hybrid7 except in
step 5, the challenger wraps layers around a real onion Oj to obtain the out-
put O1:

40

5: form onion Oj+1 (with all pseudo-random blocks);
form onion Oj for recipient Pj ;

y←$M(λ)

((((Êj , B
1
j , . . . , B

N−1
j), Cj)), (), κ)← FormOnion((0 . . . 0), y, (Pj), pk(Pj), (), ())

Ej ← Enc(pk(Pj), h(B
1
j , . . . , B

N−1
j), (0 . . . 0));

form onion O1 by wrapping layers around Oj
A cannot distinguish between running Hybrid7 and running Hybrid8. Oth-

erwise, we could construct a reduction (very similar to the reduction used for
proving that Hybrid3 ≈ Hybrid4) that can break the underlying PRP-CCA2 se-
curity of the PRP.

Hybrid9—swap key “0 . . . 0” for for real key kj. Let Hybrid9 be the same procedure
as Hybrid8 except in step 5, the challenger wraps layers around a real onion Oj
to obtain the output O1:
5: form onion Oj+1;

form onion Oj for recipient Pj ;
form onion O1 by wrapping layers around Oj

Hybrid8 ≈ Hybrid9. A cannot distinguish between running Hybrid8 and running
Hybrid9. Otherwise, we could construct a reduction (very similar to the reduction
used for proving that Hybrid2 ≈ Hybrid3) that can break the underlying CCA2-
security of the encryption scheme.

Finally, Hybrid9 and Experiment1 produce the same result. In both procedures,
onion O1 is formed using the all-zero label “0 . . . 0”, a random message y, the
truncated path (P1, . . . , Pj) as the forward path and the empty return path “()”,
and the oracle O.PO1 ensures that Oj “peels” to the separately formed Oj+1.

This concludes our proof for case (a). The proofs for cases (b) and (c) are
similar. ut

41

	Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption

