
Black-Box Constructions of Bounded-Concurrent Secure
Computation

Sanjam Garg1?, Xiao Liang2, Omkant Pandey2, Ivan Visconti3

1 University of California, Berkeley, USA
sanjamg@berkeley.edu

2 Stony Brook University, Stony Brook, USA
{liang1,omkant}@cs.stonybrook.edu

3 University of Salerno, Italy
visconti@unisa.it

Abstract. We construct a general purpose secure multiparty computation protocol which remains se-
cure under (a-priori) bounded-concurrent composition and makes only black-box use of cryptographic
primitives. Prior to our work, constructions of such protocols required non-black-box usage of crypto-
graphic primitives; alternatively, black-box constructions could only be achieved for super-polynomial
simulation based notions of security which offer incomparable security guarantees.
Our protocol has a constant number of rounds and relies on standard polynomial-hardness assump-
tions, namely, the existence of semi-honest oblivious transfers and collision-resistant hash functions.
Previously, such protocols were not known even under sub-exponential assumptions.

Keywords: Multi-Party Computation, Bounded Concurrent Composition, Black-Box Construction,
Straight-Line Extraction

1 Introduction

Secure multiparty computation (MPC) allows n players jointly compute a functionality, while no group of
(malicious parties) learn anything beyond their inputs and prescribed outputs. Introduced in the seminal
works of [Yao86, GMW87], this model has since been studied extensively. General constructions for computing
any functionality even when a majority of players are adversarial have been long known. The focus of this
work are MPC protocols that only make a black-box use of cryptographic primitives and maintain security
in the concurrent setting where several instances of the protocol may execute simultaneously.

Black-Box Constructions. General purpose MPC protocols are often non-black-box in nature, i.e., they use
the code of the underlying cryptographic primitives at some stage of the computation. For example, a common
step in such protocols is to use general-purpose zero-knowledge proofs which perform NP reductions. Non-
black use of primitives is usually undesirable since not only it is computationally expensive, it also renders
the protocol useless in situations where such code is not available (e.g., primitives based on hardware-tokens).
One therefore seeks black-box constructions of such protocols which use the underlying primitives only in
black-box way (i.e., only through their input/output interfaces).

Black-box constructions of general MPC protocols have received considerable attention recently. In the
standalone setting, Ishai et al. [IKLP06] (together with Haitner [Hai08]) presented the first black-box con-
struction of general purpose MPC under the minimal assumption of semi-honest oblivious Transfer (OT).
Subsequently, Wee [Wee10] reduced the round complexity of these constructions to O(log∗ n), and Goyal
[Goy11] to only constant rounds. Very recently, Applebaum et al. [ABG+20] showed that 2-round MPC is

? Supported in part from AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation,
Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the
author and do not reflect the official policy or position of the funding agencies.

unachievable by making only black-box use of 2-round OT. In the two-party setting, black-box construction
were obtained by Pass and Wee [PW09] in constant-rounds and Ostrovsky et al. [ORS15] in 5 rounds, which
is optimal w.r.t. black-box proof techniques [KO04]. We discuss the concurrent setting next.

Concurrent Security. The standard notion of security for MPC, also called stand-alone security considers
only a single execution of this protocol. While this is sufficient for many applications, other situations (such
as protocol executions over the Internet) require stronger notions of security. This setting, where there may
be many protocols executions at the same time, is called the concurrent setting. Unfortunately, it is known
that stand-alone security does not necessarily imply security in the concurrent setting [FS90].

To address the above issue, Canetti [Can01] proposed the notion of universally composable (UC) security
where protocols maintain their strong simulation based security guarantees even in the presence of other
arbitrary protocols. Achieving such strong notion of UC-security turned out to be impossible in the plain
model [Can01, CKL03]. Moreover, Lindell [Lin03, Lin04] proved that even in the special case where only
instantiations of the same protocol are allowed, standard notion of polynomial-time simulation is impossible
to achieve. (This is called “self composition” and also corresponds to the setting in this work.)

These strong negative results motivated the study of alternative notions of security. Our focus is the plain
model where no trusted setup is available. Two directions that are relevant to us in this model are:

– Bounded-Concurrent Composition: in this model, a bound m is fixed a-priori, and the protocol design
may depend on m. The adversary is allowed to participate in at most m simultaneous executions of the
protocol. We consider security against dishonest majority with interchangeable roles, i.e., the adversary
can choose an arbitrary subset of (all but one) parties to corrupt in each session. As in the original
(unbounded) setting, the ideal-world simulator is required to run in (expected) polynomial time. Due to
the a-priori bound, it is feasible to bypass the aforementioned negative results. Lindell presented a m-
bounded concurrent two-party protocol in O(m)-rounds using black-box simulation [Lin03]. Subsequently
Pass and Rosen [PR03] presented a constant round two-party protocol and Pass [Pas04] a constant round
MPC protocol (under improved assumptions), using non-black-box simulation. All general-purpose secure-
computation protocols in this setting make non-black-box use of the underlying cryptographic primitives.

– Super-Polynomial Simulation: while it is not directly relevant to this work, we build upon techniques
developed in the context of super-polynomial simulation where the simulator is allowed to run in super-
polynomial time. This relaxation provides somewhat weaker security guarantees (which are, nonetheless,
meaningful for many functionalities), and allows (unbounded) concurrent composition. Three different
ways to formulate this notion are super-polynomial simulation (SPS) [Pas03], angel-based security [PS04,
CLP10], and security with shielded oracles [BDH+17]. Prabhakaran and Sahai [PS04] provided the initial
positive result for SPS security. Although, these early results [PS04, BS05, MMY06, LPV09] relied on
non-standard/sub-exponential assumptions, Canetti, Lin and Pass achieved this notion under standard
polynomial-time assumptions [CLP10] in polynomially many rounds, and soon after, Garg et al. [GGJS12]
in constant rounds. The works in [PS04, MMY06, CLP10] actually achieve angel-based security, though
only [CLP10] relies on standard polynomial hardness. Subsequently, Goyal et al. [GLP+15] presented a

Õ(log n) round construction under the same assumptions.
Black-box constructions of angel-based secure computation were first presented by Lin and Pass [LP12]
assuming the existence of semi-honest OT, in O(max(nε, ROT)) rounds, where ε > 0 is an arbitrary constant
and ROT is the round complexity of the underlying OT protocol. (Hence, if the underlying OT protocol
has only constant round, the round complexity is O(nε).) Subsequently, Kiyoshima [Kiy14] provided
a Õ(log2 n)-round construction under the same assumption. To achieve constant round constructions,
Broadnax et al. [BDH+17] proposed security with shielded oracles, a notion that lies strictly between SPS
and angel-based security, along with a constant-round black-box construction under polynomial hardness
assumptions. Recently, Garg, Kiyoshima, and Pandey [GKP18] presented a constant-round black-box
MPC protocol which achieves SPS security under polynomial hardness assumptions (which are weaker
than those in [BDH+17] at the cost of (weaker) SPS security).

State of the Art. The notion of bounded-concurrent composition requires standard polynomial-time sim-
ulation. It does not follow from security notions that rely on super-polynomial simulation (which are known

2

to have black-box constructions). Consequently, all known constructions of bounded-concurrent secure MPC
rely on non-black-box usage of underlying cryptographic primitives.

1.1 Our Contribution

In this work, we seek to construct general-purpose MPC protocols that make only black-box use of cryp-
tographic primitives and remain secure under bounded-concurrent self composition. Furthermore, we seek
constructions whose security can be proven under standard polynomial hardness assumptions (although, to
the best of our knowledge, such protocols are not known even under, say, sub-exponential assumptions since
the simulator must still run in polynomial time).

Towards this goal, we first aim to construct a black-box bounded-concurrent oblivious transfer (OT)
protocol. At a high level, this construction relies on non-black-box simulation to handle simulation in the
bounded-concurrent setting (along the lines of [Bar01, Pas04]); to ensure that this does not result in non-
black-box use of cryptographic primitives, we implement this idea using the “black-box non-black-box”
protocol of Goyal et al. [GOSV14]. Once we have control over bounded-concurrent simulation, we rely on
the OT protocol of Garg et al. [GKP18] to achieve the full oblivious transfer functionality. Unfortunately,
implementing this idea is somewhat complex, perhaps in part because abstractions such as “straight-line
simulation/extraction” are not straightforward to formalize despite their intuitive appeal. We mitigate this
situation by defining a new abstraction which we call (bounded) robust zero-knowledge; this notion asks for
simulators to work even in the presence of (bounded) external communication which cannot be “rewound”
(and therefore, looks very close to UC zero-knowledge [Can01]). Similar notion has been defined by [LP09] in
the context of non-malleability commitment w.r.t. an external party (see Definition 2 for more details). Zero-
knowledge (ZK) with this robust property allows us to combine the non-black-box simulation techniques
with the SPS based proof techniques of [GKP18] to achieve black-box bounded-concurrent OT. An additional
feature of our protocol is that it has constant rounds.

Along the way, we also present the first “straight-line”4 extractable commitment scheme that only makes
black-box use of semi-honest OTs. This primitive may be useful for other applications, especially for black-
box constructions of MPC protocols from minimal assumption.

Having obtained bounded-concurrent security for OT, we proceed to construct bounded-concurrent MPC
protocols for all functionalities. This step is executed almost identically to a similar step in [GKP18] and
does not require any additional assumptions. It also maintains the black-box and constant round properties
of the original OT protocol. Consequently, we obtain the first general-purpose bounded-concurrent secure
MPC protocol that makes only black-box use of cryptographic primitives; furthermore, the protocol has
constant rounds and relies only on standard polynomial hardness assumptions.

Theorem 1 (Informal). Assume the existence of constant-round semi-honest oblivious transfer protocols
and collision-resistant hash functions. Then, there exists a constant-round black-box construction of general-
purpose MPC that achieves bounded-concurrent security.

The formal statement is given as Theorem 6 in Section 7. This result is essentially a black-box version of
Pass’s result [Pas04].

1.2 Other Related Works

In addition to the works mentioned in the introduction, there are several works that study security in
the concurrent setting. For SPS-security, Pass et al. [PLV12] present a constant-round non-black-box con-
struction of MPC from constant-round semi-honest OT. Dachman-Soled et al. and Venkitasubramaniam
[DMRV13, Ven14] present a non-black-box construction that satisfies adaptive security. And very recently,
Badrinarayanan et al. [BGJ+17] present a non-black-box 3-round construction assuming sub-exponential

4 It means the extraction strategy does not involve rewinding techniques.

3

hardness assumptions. For angel-based security, Kiyoshima et al. [KMO14] present a constant-round black-
box construction albeit under a sub-exponential hardness assumption, and Hazay and Venkitasubramaniam
[HV16] present a black-box construction that achieves adaptive security.

We have not discussed works that focus on other security notions, e.g., input-indistinguishable computa-
tion and multiple ideal-query model [Pas04, MPR06, GJ13].

Black-box constructions have been extensively explored for several other primitives such as non-malleable
or CCA-secure encryption, non-malleable commitments, zero-knowledge proofs and so on (e.g., [CHH+07,
PW11, CDSMW17, GLOV12, GOSV14, OSV15]). For concurrent OT, Garay and MacKenzie [GM00] pre-
sented a protocol for independent inputs under the DDH assumption, and Garg et al. [GKOV12] proved the
impossibility of this task for general input distributions.

2 Overview of Our Techniques

Before describing our approach, we first make some observations. We start by noting that in the context
of concurrent secure computation, it is not possible to use rewinding-based simulation techniques since the
simulator will have to provide additional outputs during rewinding but the ideal functionality does not deliver
more than one output. This is in sharp contrast to concurrent zero-knowledge where the output is simply
“yes” since the statement is in the language. While this can be salvaged for certain functionalities as shown
by Goyal [Goy12], it is essential to move to straight-line simulators for general functionalities. In particular,
in the bounded-concurrent setting we must move to non-black-box simulation techniques [Bar02].

Let us also note that in some situations, particularly in the setting of resettable zero-knowledge, a
long line of work shows that it is possible to perform non-black-box simulation under one-way functions
[BP12, BP13, CPS13]. Furthermore, a black-box version of these simulation techniques under one-way func-
tions was obtained by Ostrovsky, Scafuro, and Venkitasubramaniam [OSV15]. It therefore seems possible to
construct bounded-concurrent MPC under the minimal assumption of semi-honest OT in a black-box man-
ner.5 Unfortunately, this is approach is flawed since all known non-black-box simulation techniques are based
on rewinding and therefore cannot be applied to the concurrent MPC setting. It is also not at all clear if
“straight-line” simulatable zero-knowledge based only on one-way functions can be constructed from known
approaches. Therefore, even without the requirement of black-box usage of primitives, constructing
bounded-concurrent MPC under semi-honest OT only remains as a fascinating open problem.

We therefore attempt to obtain a construction that exploits collision-resistant hash functions, in addition
to the minimal assumption of semi-honest OTs. Toward this goal, we build upon techniques developed in
the following two works:

1. Garg, Kiyoshima, and Pandey [GKP18] construct a constant-round black-box MPC protocol with SPS-
security under polynomial hardness assumptions. The simulator works by extracting crucial information
from adversary’s messages via brute-force. The simulator is straight-line and such extraction steps are
the only non-polynomial work in its execution.

2. Goyal et al. [GOSV14] present a black-box implementation of the non-black-box simulation techniques
that rely on adversary’s code [Bar01]. Such techniques often (and certainly those of [Bar01, GOSV14])
extend to situations where the adversary may receive arbitrary but a-priori bounded amount of external
communication.

At a high level, our main idea is to use the simulation technique of [GOSV14] to replace the brute-force
extraction steps in [GKP18] with polynomial-time extraction using adversary’s code. The corresponding
commitment scheme will be interactive. Since this simulator is polynomial time, we can hope to get bounded-
concurrent MPC (in contrast to SPS MPC). Implementing this idea turns out to be rather involved. The
fact that the commitment protocol is interactive brings its own issues of non-malleability and also interferes
with some key proof steps in [GKP18] which rely on rewinding. It is also not enough that the underlying

5 In some works, when the construction is black-box but the proof of security uses non-black-box techniques (as in
this paper), this is referred to as a semi-black-box protocol.

4

commitment protocol be extractable in a “bounded-concurrent” setting; instead we need a more flexible
notion (that, roughly speaking, mirrors straight-line simulation).

Although we have non-black-box simulation techniques at our disposal, we do not rely on the multiple
slots approach of Pass [Pas04] to build simulation soundness directly into our protocols. Instead, by relying on
the techniques in the aforementioned two works, we obtain a more modular approach where non-malleability
and simulation soundness are obtained with the help of an underlying non-malleable commitment. In this
sense, the structure of our bounded-concurrent protocol is fundamentally different from that of [Pas04] to
achieve bounded-concurrent MPC. We now provide more details.

The high-level structure of our protocol is similar to that of [GKP18] where the MPC protocol is ob-
tained in two steps. First, we obtain a (constant-round) black-box construction of a bounded-concurrent
OT protocol. Next, we compose this OT protocol with an existing constant-round OT-hybrid UC-secure
MPC protocol. We elaborate on each step below. We remark that we consider concurrent security in the
interchangeable-roles setting. So, in the case of OT, the adversary can participate a session as the sender
while concurrently participating in another session as the receiver.

2.1 Black-Box (Constant-Round) Bounded-Concurrent OT

Our OT protocol is very similar to the OT protocol of [GKP18] (which in turn is based on the high-level cut-
and-choose structure of [LP12] inspired from [HIK+11, CDMW09, Wee10]) except that we will implement
the basic commitment scheme using a “straight-line extractable” commitment (with some other properties
that we will discussion soon). At a high level, the OT protocol of [GKP18] proceeds as follows:

1. The protocol is based on cut-and-choose techniques. Therefore, as the first step of the protocol, the
sender S and the receiver R commit to their challenges for future stages in advance. This step uses a
two-round statistically binding commitment scheme Com. This step avoids selective opening attacks. The
ideal-world simulator can extract these challenges by brute-force to perform the simulation. This is the
only non-polynomial time step of this simulator (and the one we wish to replace).

2. Next, S and R execute many instances of a semi-honest OT protocol in parallel, where in each instance
S and R use the inputs and the randomness that are generated by a coin-tossing protocol.

3. Next, S and R use a non-malleable commitment scheme NMCom to set up a “trapdoor statement” which,
roughly speaking, commits a witness to the fact that the trapdoor statement is false. This step, following
[GGJS12], makes it possible to commit to a false witness in the security proof while ensuring (due to
non-malleability of NMCom) that the adversary still continues to commit to a correct witness (so that
his statement is still false). The step is performed by modifying different stages of one session at a
time. This ensures that changes in one interactive part of the protocol are not affected by what happens
in later stages of that same session.

4. Finally, S and R use OT combiner which allows them to execute an OT with their real inputs securely
when most of the OT instances in the previous steps are correctly executed. To check that most of the
OT instances in the previous steps were indeed correctly executed, S and R do use cut-and-choose where
S (resp., R) chooses a constant fraction of the OT instances randomly and R (resp., S) reveals the input
and randomness that it used in those instances so that S (resp., R) can verify whether R executed those
instances correctly.

2.1.1 Replacing Com with straight-line extractable commitment

Our goal is to eliminate brute-force extraction using code of the adversary. In doing so, we have to ensure
that (1) the interactive nature of the commitment protocol so obtained does not result into new malleability
issues in the proof; and (2) the extraction step can be done in a modular fashion (especially in straight-line)
so that we can keep the overall proof structure of [GKP18] where one session is modified at a time.

5

As a starting point, let us consider the Barak-Lindell extractable commitment scheme [BL02]. In their
construction, the committer C first sends an enhanced trapdoor permutation f .6. Then the two parties
involve in the following 3-step coin tossing: (1) R sends a commitment Com(r1) to a random string r1; (2) C
replies with a random string r2; (3) R then sends r1 with a ZK argument on the fact that this r1 is indeed
the random string he committed in step (1). Both parties learn the value r = r1 ⊕ r2 as the output of the
coin tossing. To commit to a (single-bit) message σ, C sends σ masked by the hard-core bit of f−1(r). An
extractor can use the ZK simulator to bias the coin-tossing result to some value r′, for which it knows the
preimage of f−1(r′). Thus, it can extract the committed value.

To adapt the above scheme for our purpose, we need to ensure that the construction is black-box and
that the committed value can be extracted in a straight-line fashion. Toward this goal, we replace R’s
commitment and ZK argument with the protocol of Goyal et al. [GOSV14]. More specifically, [GOSV14]
provides a “commit-and-prove” primitive ΠZK where:

– They provide a (non-interactive perfectly binding) commitment scheme called VSSCom using which one
can send a commitment y to a string x.

– And later, prove to a verifier, that “y is a commitment to string x such that φ(x) = 1” where φ is an
arbitrary function.

In particular, φ is chosen to be theNP-relation for anNP-complete language in [GOSV14] to get a black-box
version of Barak’s result [Bar01].

In our case, we will choose φ to be the identity function Ix(·).7 Therefore, the Barak-Lindell commitment
protocol mentioned above can be implemented in a black-box manner by ensuring that: (1) R uses VSSCom to
prepare the commitment to r1, and (2) protocol ΠZK is the aforementioned proof protocol with φ := Ir1(·).

Moreover, since we aim to have a construction assuming only semi-honest OTs (and CRHFs), we also
want to remove the reliance on the (enhanced) TDPs. As the first attempt, we ask C to secret-share the
message σ to n random shares using exclusive-or. Then let the receiver learn through a special OT (e.g. an
n/2-out-of-n OT) half of these shares. Next, we invoke the above (black-box) version of coin-tossing in Barak-
Lindell protocol to determine another n/2 shares that C will decommit to. Due to the pseudo-randomness
of the coin-tossing result, R will learn the the shares that “complement” what he learned through OT with
only negligible probability. Thus, we can hope to achieve (computational) hiding. Meanwhile, an extractor
could always bias the coin-tossing result to the complement shares, thus allowing it to extract the value σ.

However, there are several issues with this approach. First, the sender’s (committer’s) input to the OT
must be the decommitment information to the secret shares. Otherwise, a malicious sender can use arbitrary
values in the OT execution, which will disable our extraction strategy.8 Also, this construction suffers from
selective opening attacks (SOAs) as the values in the commitments are correlated. It is not clear how we can
use standard techniques (e.g. asking R to commit to his challenges in advance, or using another coin-tossing
to determine his challenges) to get rid of SOAs. This is because we need to keep R’s challenges in this stage
hidden from C (to ensure extractability).

To solve this problem, we let C commit to 2n secret shares of σ, denoted as {Com(si,b)}i∈[n],b∈{0,1}. Then
n 1-out-of-2 OT instances are executed in parallel, where R learns (the decommitment to) one share out
of (si,0, si,1) in the i-th OT. Next, we can use the Barak-Lindell coin tossing to determine an n-bit string
r = r1‖ . . . ‖rn. Finally, C decommits to {Com(si,ri)}i∈[n]. In this construction, R’s input to (a single) OT
can be guessed correctly with probability 1/2. By a careful design of hybrids, we show this is sufficient to
get rid of SOAs, thus allowing us to prove hiding property (See Section 5). Moreover, the extractor can still
learn all the shares by biasing ri to the complement to its input in the i-th OT instance (for all i ∈ [n]).

Finally, to ensure that the interactive nature does not create non-malleability issues, we will ask each
party to commit to a long-enough random string, using the above extractable commitment. This step is done

6 In their original construction, C sends a trapdoor permutation (TDP) f and then proves in zero-knowledge that
f is indeed a valid TDP. To make this step black-box, C can send an enhanced TDP instead (without the need of
ZK proof).

7 Note Ix(y) = 1 if and only if y = x is well defined and the “code” of Ix requires only the knowledge of x.
8 Note that we cannot ask the committer to prove in zero-knowledge that he uses the committed shares as sender’s

input in the OT execution, because such proof will make non-black-box use of both the commitment and OT.

6

as the foremost step in our OT protocol (called “Step 0”). Then each party will use the long random string
as one-time pad to “mask” the values that they want to commit to during the execution of our OT protocol.
Now, we can rely on the structure of the hybrid proof of [GKP18], which first deals with all stages of a given
session and then moves on to the next session in a specific order (determined by the transcript). The key
observation here is that since Step 0 is performed ahead of all other steps for a fixed session s, changes in
later stages of s cannot affect what happens in Step 0 (for example, issues of malleability and simulation-
soundness do not arise). Furthermore, since any rewinding-based proofs of [GKP18] are only relevant to later
stages, they do not rewind Step 0 of sessions s.

Remark 1. Ostrovsky et al. [OSV15] showed how to achieve the same as [GOSV14] while relaxing the as-
sumption from CRHFs to one-way functions (OWFs). But we cannot use their approach (or any of the prior
approaches that perform non-black-box simulation under OWFs) since simulators in these approaches are
not straight-line. It uses both the adversary’s code and rewinding to get a OWF-based construction.

2.1.2 Robust-ZK for dealing with bounded concurrency

The final issue that we need to address is how the non-black-box simulation will actually be performed
corresponding to protocol ΠZK (in Step 0) mentioned above. The main issue is that there are concurrently
many sessions of ΠZK executing simultaneously. In particular, if there are m sessions of OT protocol, then
there will be ` = 2m sessions of ΠZK . Simply replacing the prover with the non-black-box simulator may
not result in polynomial-time simulation.

An immediate idea is that if ΠZK is bounded-concurrent ZK for up to ` sessions, then we can use the
concurrent non-black-box simulator to simulate Step 0 of all m sessions of the OT protocol at once. This
allows us to bias coin-tossing for all m sessions and then we can design hybrids exactly as in [GKP18].

Unfortunately, bounded-concurrent ZK only guarantees self composition; i.e., it can only deal with mes-
sages of protocol ΠZK . In our case, ΠZK is part of a larger protocol execution and the adversary receives
messages from different stages of all sessions. We thus need a more robust notion of non-black-box simulation
which, roughly speaking, (a) is straight-line, and (b) enables bounded-concurrent composition of ZK proto-
cols even in the presence of external messages as long as the total communication outside the ZK protocol
is a-priori bounded.

We formulate this notion explicitly in Section 4 and call it robust zero-knowledge. The notion requires that
the view of a (standalone) verifier V ∗ who interacts with an external party B can be simulated by a simulator
S only on input the code of V ∗. The simulator is not allowed to rewind V ∗ or B. However, both B and S are
allowed to see each others messages (which is essential to make sure that many concurrent instances of the
simulators compose seamlessly). This yields a notion that is similar in spirit to UC zero-knowledge [Can01]
and implies bounded-concurrent ZK.

We remark that most ZK protocols based on non-black-box simulation, with suitable adjustment of
parameters, can actually handle arbitrary external messages (and not just the messages of the same proto-
col) without any modification. This observation was first used in Barak’s original work [Bar01], and finds
applications in other places [BL02, PR03, Pas04]. In particular, it also holds for the protocol of Goyal et
al. [GOSV14] and is implicit in their security proof. Thus, these protocols already achieve the (bounded)
robust-ZK notion. Robust-ZK is just a convenient tool to help in the hybrid proofs.

By setting the parameters of ΠZK so that it is `-robust-ZK allows us to replace the provers of ΠZK with
simulator instances in Step 0 of any given session s while maintaining the overall structure and sequence
of hybrids in [GKP18] where stages of one session are handled at any given time. This gives us m-bounded
concurrent OT.

2.2 Composition of OT with OT-hybrid MPC

The final step of our construction is the same as in [GKP18]. Namely, we compose our bounded-concurrent
OT protocol with a OT-hybrid UC-secure MPC protocol (i.e., replace each invocation of the ideal OT
functionality in the latter with an execution of the former), thereby obtaining a MPC protocol in the plain

7

model. While selecting the parameters, we have to ensure we adjust the parameters of ΠZK to allow long
enough messages so that simulation can be performed for the MPC protocol instead of the OT protocol.
Since we only proved bounded-concurrent self composition for OT (not full UC-security), we do not get a
proof for the MPC protocol right away. Hence, we prove the security by analyzing the MPC protocol directly.
In essence, what we do is to observe that the security proof for our OT protocol (which consists of a hybrid
argument from the real world to the ideal world) still works even after the OT protocol is composed with a
OT-hybrid MPC protocol.

3 Preliminaries

We denote the security parameter by n. We use
c
≈ to denote computational indistinguishability between

two distributions. For a set S, we use x
$←− S to mean that x is sampled uniformly at random from S. ppt

denotes probabilistic polynomial time and negl(·) denotes negligible functions. Some basic terminologies and
definitions (e.g. secret sharing schemes, commitment schemes, and extractable commitment schemes) are
given in Section A. In the following, we present the formal definition for Non-malleable Commitments and
Bounded-Concurrent MPC (with interchangeable roles).

3.1 Non-Malleable Commitment Schemes.

We recall the definition of non-malleable commitment schemes from [LP09]. Let 〈C,R〉 be a tag-based
commitment scheme (i.e., a commitment scheme that takes a n-bit string (a tag) as an additional input).
For any man-in-the-middle adversary M, consider the following experiment. On input security parameter
1n and auxiliary input z ∈ {0, 1}∗, M participates in one left and one right interactions simultaneously. In
the left interaction, M interacts with the committer of 〈C,R〉 and receives a commitment to value v using
identity id ∈ {0, 1}n of its choice. In the right interaction, M interacts with the receiver of 〈C,R〉 and gives

a commitment using identity ĩd of its choice. Let ṽ be the value thatM commits to on the right. If the right
commitment is invalid or undefined, ṽ is defined to be ⊥. If id = ĩd, value ṽ is also defined to be ⊥. Let
mim(〈C,R〉,M, v, z) be a random variable representing ṽ and the view of M in the above experiment.

Definition 1. A commitment scheme 〈C,R〉 is non-malleable if for any ppt adversary M, the following
are computationally indistinguishable.

– {mim(〈C,R〉,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗
– {mim(〈C,R〉,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

The above definition can be generalized naturally so that the adversary gives multiple commitments
in parallel in the right interaction. The non-malleability in this generalized setting is called parallel non-
malleability. (It is known that this “one-many” definition implies the “many-many” one, where the adversary
receives multiple commitments in the left session [LPV08].)

Robust non-malleability. We next recall the definition of k-robust non-malleability (a.k.a. non-malleability
w.r.t. k-round protocols) [LP09]. Consider a man-in-the-middle adversary M that participates in one left
interaction—communicating with a machine B—and one right interaction—communicating with a receiver
a commitment scheme 〈C,R〉. As in the standard definition of non-malleability, M can choose the identity

in the right interaction. We denote by mimB,M
〈C,R〉(y, z) the random variable consisting of the view of M(z)

in a man-in-the-middle execution when communicating with B(y) on the left and an honest receiver on the
right, combined with the value M(z) commits to on the right. Intuitively, 〈C,R〉 is non-malleable w.r.t. B

if mimB,M
〈C,R〉(y1, z) and mimB,M

〈C,R〉(y2, z) are indistinguishable whenever interactions with B(y1) and B(y2) are

indistinguishable.

Definition 2. Let 〈C,R〉 be a commitment scheme and B be a ppt ITM. We say that a commitment scheme
〈C,R〉 is non-malleable w.r.t. B if the following holds: For every two sequences {y1

n}n∈N and {y2
n}n∈N

8

such that y1
n, y

2
n ∈ {0, 1}n, if it holds that for any ppt ITM A,{

〈B(y1
n),A(z)〉(1n)

}
n∈N,z∈{0,1}∗

c
≈
{
〈B(y2

n),A(z)〉(1n)
}
n∈N,z∈{0,1}∗ ,

it also holds that for any ppt man-in-the-middle adversary M,{
mimB,M

〈C,R〉(y1, z)
}
n∈N,z∈{0,1}∗

c
≈
{

mimB,M
〈C,R〉(y2, z)

}
n∈N,z∈{0,1}∗

.

〈C,R〉 is k-robust if 〈C,R〉 is non-malleable w.r.t. any machine that interacts with the adversary in k rounds.
We define parallel k-robustness naturally.

Black-box instantiation. There exists a constant-round black-box construction of a parallel (actually,
concurrent) non-malleable commitment scheme based on one-way functions [GLOV12]. Furthermore, Garg,
Kiyoshima, and Pandey [GKP18] show that any parallel non-malleable commitment can be transformed
into a parallel k-robust non-malleable one in the black-box way by using collision-resistant hash functions
(more precisely, by using statistically hiding commitment schemes, which can be constructed from collision-
resistant hash functions). If k is constant, the round complexity of their transformation increases only by
a constant factor in this transformation. Thus, there exists a O(1)-round parallel O(1)-robust nonmalleable
commitment scheme assuming the existence of CRHFs [GLOV12, GKP18].

3.2 Bounded-Concurrent MPC with Interchangeable Roles

We recall the definition of m-bounded concurrent secure computation. Parts of this section are taken verbatim
from [Pas04] with minor modification, following [GGS15], to allow for interchangeable roles; these in turn are
a slight generalization of “security with abort and no fairness” of [GL02] and concurrent secure two-party
computation with adaptive inputs of [Lin04]. The basic formulation and setup of secure computation follows
[GL91, MR92, Bea91, Can00].

We consider the case of self composition where m simultaneous executions of the same MPC protocol Π
take place. We will consider security against interchangeable roles where a party controlled by the adversary
can play different roles in different sessions (see description below). We will only consider the malicious and
static setting where the set of corrupted parties is fixed at the beginning of the protocol and the corrupted
parties execute the instructions provided by the adversary. The scheduling of message delivery is decided by
the adversary. Since security against interchangeable roles is impossible without identities, we assume each
party has a unique identity id ∈ {0, 1}n. Since we do not consider fairness, the adversary will always receive
its own output and can then decide when (if at all) the honest parties will receive their output.

Multi-party computation. A multi-party protocol problem for k parties P1, . . ., Pk is cast by specifying
a random process that maps vectors of inputs to vectors of outputs (one input and one output for each
party). We refer to such a process as a k-ary functionality and denote it f : ({0, 1}∗)k → ({0, 1}∗)k, where
f = (f1, ..., fk). That is, for every vector of inputs x = (x1, ..., xk), the output-vector is a random variable(
f1(x), ..., fk(x)

)
ranging over vectors of strings. The output of the i’th party (with input xi) is defined to be

fi(x). In the context of concurrent composition, each party actually uses many inputs (one for each execution)
and these may be chosen adaptively based on previous outputs. The fact that m-bounded concurrency is
considered relates to the allowed scheduling of messages by the adversary in the protocol executions; see the
description of the real model below.

Concurrent execution in the ideal model. Next, we describe the concurrent execution of the protocol
in the ideal world. Unlike the stand-alone setting, here the trusted party computes the functionality many
times, each time upon different inputs.

Let Π := (P1, . . . , Pk) be an MPC protocol for computing a k-ary functionality f and n be the security
parameter. For simplicity we assume that the length of the inputs of each party is n. In total, let there be
N parties: Q1, . . . , QN and let P ji denote the party playing the role of Pi in session j (for i ∈ [k], j ∈ [m]).
The adversary can corrupt an arbitrary subset of these parties.

Let I ⊂ [N] denote the subset of corrupted parties. An ideal execution with an adversary who controls
the parties I proceeds as follows:

9

Inputs: The inputs of the parties Q1, ..., QN in each session j are determined using ppt machines M1, ...,Mk

which take as input the session number j, some inputs x1, ..., xN , and the outputs that were obtained
from executions that have already concluded. Note that the number of previous outputs range from zero
(when no previous outputs have been obtained) to some polynomial in n that depends on the number
of sessions initiated by the adversary.

Session initiation: When the adversary initiates a the session number j ∈ [m] by sending a (start-session,
j) to the trusted party, the trusted party sends (start-session, j) to parties P ji where i ∈ [k].

Honest parties send inputs to trusted party: Upon receiving (start-session, j) from the trusted party,
each honest party P ji applies its input-selecting machine Mi to its initial input xi, the session number j
and its previous outputs, and obtains a new input xi,j . In the first session xi,1 = Mi(x, 1). In later sessions

j, xi,j = Mi(x, j, αi,1...αi,ω) where ω sessions have concluded and the outputs of P ji were αi,1, ..., αi,ω.

Each honest party P ji then sends (j, xi,j) to the trusted party.

Corrupted parties send inputs to trusted party: Whenever the adversary wishes it may ask a cor-
rupted party P ji to send a message (j, x′i,j) to the trusted third party, for any x′i,j ∈ {0, 1}n of its choice.

A corrupted party P ji can send the pairs (j, x′i,j) in any order it wishes and can also send them adaptively
(i.e., choosing inputs based on previous outputs). The only limitation is that for any j, at most one pair
indexed by j can be sent to the trusted party.

Trusted party answers corrupted parties: When the trusted third party has received messages (j, x′i,j)
from all parties (both honest and corrupted) it sets xj = (x′1,j , ..., x

′
k,j). It then computes f(xj) and sends

(j, fi(x
′
j)) to every corrupted P ji .

Adversary instructs the trusted party to answer honest parties: When the adversary sends a mes-
sage of the type (send-output, j, i) to the trusted party, the trusted party directly sends (j, fi(x

′
j)) to

party P ji . If all inputs for session j have not yet been received by the trusted party the message is ignored.

If the output has already been delivered to the honest party, or i is the index so that P ji is a corrupted
party, the message is ignored as well.

Outputs: Each honest party always outputs the vector of outputs that it received from the trusted party.
The corrupted parties may output an arbitrary (probabilistic polynomial-time computable) function of
its initial input and the messages obtained from the trusted party.

Let f : ({0, 1}∗)k → ({0, 1}∗)k be a k-ary functionality, where f = (f1, ..., fk). Let S be a non-uniform
ppt machine (representing the ideal-model adversary) and let I ⊂ [N] (the set of corrupted parties) be such
that for every i ∈ I, the adversary S controls Qi. Then the ideal execution of f with security parameter n,
input-selecting machines M = M1, ...,Mk, initial inputs x = (x1, ..., xN) and auxiliary input z to S, denoted
IDEALf,I,S,M (n, x, z), is defined as the output vector of the parties and S resulting from the ideal process
described above.

We remark that the definition of the ideal model includes the bound m on the concurrency although it
is possible to define it without it.

Execution in the real model. We next consider the execution of Π in the real world. We assume that
the parties communicate through an asynchronous fully connected and authentic point-to-point channel but
without guaranteed delivery of messages.

Let f , I be as above and let Π be a multi-party protocol for computing f . Furthermore, let A be a
non-uniform ppt machine such that for every i ∈ I, the adversary A controls Qi. Then, the real m-bounded
concurrent execution of Π with security parameter n, input-selecting machines M = M1, ...,Mk, initial inputs
x = (x1, ..., xN) and auxiliary input z to A, denoted REALmΠ,I,A,M (n, x, z), is defined as the output vector
of the honest parties and the adversary A resulting from the following process. The parties run concurrent
executions of the protocol, where every party initiates a new session whenever it receives a start-session from
the adversary. The honest parties then apply their input-selecting machines to their initial input, the session
number and their previously received outputs, and obtain the input for this new session. The scheduling of
all messages throughout the executions is controlled by the adversary.

10

Security as emulation of a real execution in the ideal model. The security of Π under bounded
composition is defined by saying that for every real-model adversary there exists an ideal model adversary
that can simulate an execution of the secure real-model protocol. Formally:

Definition 3 (m-Bounded Concurrent Security in the Malicious Model). Let m = m(n) be a
polynomial and let f, k,N and Π be as above. Protocol Π is said to securely compute f under m-bounded
concurrent composition if for every real-model non-uniform ppt adversary A, there exists an ideal-model
non-uniform probabilistic expected polynomial-time adversary S, such that for all input-selecting machines
M = M1, ...,Mk, every z ∈ {0, 1}∗, every x = (x1, ..., xN), where x1, ..., xN ∈ {0, 1}n and every I ⊂ [N],{

IDEALf,I,S,M (n, x, z)
}
n∈N

c
≈
{

REALmΠ,I,A,M (n, x, z)
}
n∈N

That is, concurrent executions of Π with A cannot be distinguished from concurrent invocations of f with S
in the ideal model.

4 Robust Zero-Knowledge and Commit-and-Prove

Goyal et al. [GOSV14] present a new non-black-box zero-knowledge argument for NP. Their protocol (with
slight modification for the “commit-and-prove” form) is presented in Protocol 1. We recall briefly how their
protocol works.

They first construct a black-box size-hiding commit-and-prove protocol (BBCom,BBProve). In Protocol
1, the committer commits to the secret shares of the witness via BBCom. The Proof Phase combines PCP
of Proximity (PCPP) and Barak’s non-black-box ZK protocol [Bar01]. The committer C ′ (the prover)
first sends z which is supposed to be a commitment to a Turing machine M . An honest prover will just
commit to 0n. Once R′ replies with a string r, the trapdoor theorem is set to a of the pair language
LP = {(a := (z, r, t), Y) : ∃M ∈ {0, 1}∗ s.t. Y ← ECC(M), and M(z) = r within t steps.} (where ECC(·) is
a binary error correcting code tolerating a constant fraction δ > 0 errors). Then C ′ uses BBProve to prove
either the trapdoor theorem is true or φ(w) = 1.

Note that the proof for the trapdoor theorem is conducted via PCPP. Specifically, commitment to PCPP
proof π is sent to R′ (honest prover commits to 0n, as shown in 2-(a) of Proof Phase). R′ generates PCPP
queries on Y (the private theorem) and π by running algorithm Qpcpx. C

′ then proves that the PCPP decision
algorithm Dpcpx verifies to 1. Details of component protocols such as BBCom,BBProve, etc. are not necessary
and omitted; see [GOSV14] for their details.

This protocol makes only black-box use of CRHF; it is also public-coin, constant-rounds, and has negligible
soundness error. In fact,

– The protocol is actually a “commit-and-prove” protocol for arbitrary ppt circuits φ. That is, it consists
of two phases: in the “commit” phase, the committer commits an arbitrary string w ∈ {0, 1}n using
a special commitment scheme called VSSCom, and later, in the “proof” phase, it can prove in zero-
knowledge that the committed string satisfies φ; i.e., φ(w) = 1 where w is uniquely determined from the
transcript of the commit phase. For concreteness, the “commit-and-prove” form of GOSV is depicted
in Protocol 1.9

– To prove zero-knowledge, the simulator relies on Barak’s technique of committing the verifier’s code
[Bar01]. Consequently, the protocol inherits several properties of Barak’s original protocol (e.g., public-
coin and constant rounds). In particular, the protocol has a “preamble” phase where the verifier sends a
random string r; the simulator is “straight-line” even in the presence of arbitrary (external) communi-
cation of a-priori bounded length `(n) provided that |r| is sufficiently bigger than `(n).

9 The protocol for proving x ∈ L for L ∈ NP is obtained by setting w to be a witness for x (under an appropriate
relation R for L) and committing to it as the first step of the proof using “commit” phase, followed by the “proof”
phase for φ(·) := R(x, ·).

11

Protocol 1 `-Robust Commit-and-Prove for φ [GOSV14]

Common Input: Security parameter 1n, robustness parameter `, property φ
Auxiliary Input to C′: String w ∈ {0, 1}n to be committed.
Commit Phase:

1. C′ generate VSS representation of w: VSSw = (wVSS
1 , ..., wVSS

n).

2. C′ creates commitments to each share with independent randomness ρi ∈ {0, 1}n, to get ci = Com(wVSS
i ; ρi)

for i = 1, ..., n.

3. C′ sends VSSCom(w) := (c1, ..., cn).

Comment: Note that `, φ are not required in this phase. In [GOSV14], the commit-phase is actually a part
of the “proof phase” since the goal is to describe a system for NP. We choose this form to emphasize the
commit-and-prove nature of their protocol.

Proof Phase:

1. Trapdoor-generation:

(a) C′ runs BBCom(0n) with R′. Let z be the commitment so obtained.

(b) R′ sends a random string r of length n + `(n). The public theorem a is defined as: a = (z, r, t). This
message is referred to as the long message.

2. Actual proof for φ:

(a) Commitment of PCPP: C′ runs BBCom(0n) and sends the commitments.

(b) PCPP Queries: R′ sends random tapes r1, ..., r`d from which C′ and R′ compute (qji , p
j
i) = Qpcpx(a, rj , i)

with i ∈ [k], where k is the security parameter for the PCPP. Let IMj = {qj1, ..., q
j
k} and Iπj = {pj1, ..., p

j
k}.

(c) Proof. C′ runs BBProve(ψ, IM , Iπ), where the predicate ψ is true iff:

– Dpcpx outputs 1 on selected positions of M and π; or

– There exist {(wVSS
i , ρi)}ni=1 such that ci = Com(wVSS

i ; ρi) for all i and φ
(
Recon(wVSS

1 , ..., wVSS
n)

)
= 1.

R′ accepts the proof if and only if the verifier of BBProve accepts.

To capture the second property (i.e., “straight-line simulation in the presence of bounded external communi-
cation”), we define the notion of robust zero-knowledge. It roughly captures the fact that the simulator does
not rewind the external party to perform the simulation. This property is implicit in the relations defined
for bounded-concurrent simulation in [Bar01, PR03]; a related but very different notion of robustness ap-
pears explicitly in the context of non-malleability in [LPV09, GLP+15]. This notion is useful in constructing
security proofs even though it follows from [Bar01] (and similar protocols).

4.1 Robust Zero-Knowledge

Let L ∈ NP with witness relation RL, and let RL(x) := {w : RL(x,w) = 1}. Let Π := 〈P, V 〉 be an (efficient)
interactive argument system for L and B be an arbitrary ppt itm.

For n ∈ N, L ∈ NP, x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗ and y ∈ {0, 1}∗, we define the following two experi-
ments:

Real Experiment: The experiment starts the execution of V ∗ on input (1n, x, z) where z denotes the
auxiliary input of V ∗. During its execution, V ∗ can simultaneously participate in two interactions (1) an
execution of Π with the honest prover machine P (1n, x, w) and (2) arbitrary (unspecified) interaction
with the machine B(1n, y).
The interaction occurs over a network where each message is processed as follows:

– If V ∗ sends a message of Π (resp., for B), it is delivered to P (resp., to B).

– If P receives a message from V ∗, it prepares the next message of Π, denoted a; a is then sent to
both V ∗ as well as B.

– If B receives a message from V ∗, it prepares the next message (according to the unspecified interaction
protocol between B and V ∗), say b; message b is then sent to V ∗.

12

The output of this experiment is the (joint) view of V ∗, and denoted as:

Rview
B(y)
Π,n,x〈P (w), V ∗(z)〉.

Simulated Experiment: This experiment is identical to the real experiment except that: (1) the honest
prover algorithm P (1n, x, w) is replaced with a “simulator” algorithm S which receives the code of V ∗

as input, and (2) any message V ∗ receives from B is also provided to S.
Formally, the experiment starts an execution of V ∗(1n, x, z); V ∗ can simultaneously participate in two
interactions (1) an execution of Π with the simulator machine S(1n, x, code[V ∗], z) and (2) arbitrary
(unspecified) interaction with the machine B(1n, y).
The interaction occurs over a network where each message is processed as follows:

– If V ∗ sends a message of Π (resp., for B), it is delivered to S (resp., to B).

– If S receives a message from V ∗, it prepares the next message, denoted a; a is sent to both V ∗ as
well as B.

– If B receives a message from V ∗, it prepares the next message (according to the unspecified interaction
protocol between B and V ∗), say b; message b is then sent to both V ∗ and S.

The output of this experiment is the (joint) view of V ∗, and denoted by:

Sview
B(y)
Π,n,x〈S(code[V ∗], z), V ∗(z)〉.

Remark 2. Two important remarks are in order. First, the simulated experiment does not allow rewinding
by definition. Instead, it requires S to “act like the prover” of protocol Π; the only help S has is the code
of V ∗ as well as immediate access to all messages that V ∗ receives. In particular, rewinding V ∗ may involve
rewinding B and this is not allowed by the experiment.

Second, both B and S have access to all messages V ∗ receives from the network. S must have access to
all such messages to simulate in “straight line” (since it does not have the code of B). B is given access to
these messages to facilitate (bounded concurrent) composition. In particular, B has access to all message S
(or P) sends to V ∗ and S has access to all messages B sends to V ∗.

Protocol Π is robust zero-knowledge if V ∗ cannot tell whether it is in the real experiment or the simulated
one. If it is robust w.r.t. only machines B that send at most ` bits, it is called `-robust zero-knowledge.
Formally:

Definition 4 (Robust Zero-Knowledge). An interactive argument system Π for a language L ∈ NP is
robust ZK w.r.t. a ppt itm B if for all ppt itm V ∗ there exists a ppt itm S (called the robust simulator),
such that: {

Rview
B(y)
Π,n,x〈P (w), V ∗(z)〉

}
n,x,w,z,y

c
≈

{
Sview

B(y)
Π,n,x〈S(code[V ∗], z), V ∗(z)〉

}
n,x,z,y

.

where n ∈ N, x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗, y ∈ {0, 1}∗.
For a polynomial ` : N → N, Π is `-robust zero-knowledge if it is robust w.r.t. every ppt itm B that

sends at most `(n) bits. Π is robust zero-knowledge if it is `-robust zero-knowledge for every polynomial `.

Remark 3. We remark that robust (i.e., unbounded) ZK is actually impossible (for non-trivial languages) in
the plain model since, if unbounded external communication was allowed with B, V ∗ can just be a “dummy”
adversary so that access to its code provides no advantage to the simulator to complete the proof. This is
akin to the use of dummy adversary in UC setting and impossibility of UC-ZK for languages outside of bpp
[Can01, GK90].

4.1.1 (Bounded) robust ZK implies bounded cZK
We now demonstrate the flexibility of using robust ZK in concurrent settings. More specifically, we show
that any `-robust ZK protocol Π remains ZK under bounded composition of `′ instances for sufficiently
large `.

13

Recall that in the `′-bounded cZK composition of protocol Π, an adversarial verifier V ∗ participates in `′

simultaneous executions of Π while controlling the scheduling of messages of various sessions. For simplicity
(only) we assume that all provers prove the same statement x using same witness w and let viewΠ,n,x,w,z

denote the view of V ∗(n, x, z) in this concurrent execution. We say that Π is `′-bounded-cZK for language
L if for every such V ∗ there exists a simulator SV ∗ such that for all x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗:{

viewΠ,n,x,w,z

}
n,x,w,z

c
≈

{
SV ∗(n, x, z)

}
n,x,z

.

Claim 1. If a protocol Π is `-robust zero-knowledge, then it is `′-bounded cZK, for any `′ such that `′ ·m ≤ `
where m is the length of all messages sent by the prover of protocol Π.

Proof. We show that a simple composition of individual robust-ZK simulators for each session yields a
simulator for bounded-concurrent composition of Π.

Let V ∗ be a concurrent verifier participating in `′ concurrent sessions of Π. Let S be the robust-ZK
simulator for Π. The bounded-concurrent simulator SV ∗ , on input the code of V ∗, x, and z, proceeds as
follows:

– For each session i, SV ∗ prepares the “fake” prover algorithm Si which behaves identically to the algorithm
S(n, x, code[V ∗], z) with fresh randomness and interacts with V ∗ in session i.

– SV ∗ initiates an execution of V ∗ with fresh randomness, relaying messages between V ∗ and fake provers
(S1, . . . , S`′) as in the bounded-concurrent execution.

– When V ∗ halts, SV ∗ outputs its view.

It is straightforward to see that SV ∗ runs in polynomial time since each Si and V ∗ are polynomial time. To
prove indistinguishability, consider hybrids H0, . . . ,H`′ :

Hybrid H0. The real experiment where V ∗ concurrently interacts with (P1, .., P`′), where Pi (i ∈ [`′])
denotes the i-th prover instance of Π on input (1n, x, w).

Hybrid Hk (for (k ∈ [`′]). This hybrid is same as Hk−1 except that prover instance Pk is replaced by the

simulator instance of Sk (defined above). Therefore, V ∗ interacts with algorithms (S1, ..., Sk, Pk+1, ...P`′), as
the “provers.”

Note that H`′ is the simulator SV ∗ . It is easy to see that each Hk is polynomial time. We prove that
Hk−1 ≈c Hk using the robust-ZK property of Π, where k ∈ [`′].

Let Bk be the following machine: Bk incorporates (S1, ..., Sk−1, Pk+1, ..., P`′), and interacts with V ∗ in
the robust-ZK experiment as follows: Bk proceeds identically to Hk−1 so that messages of all sessions i 6= k,
are received from or sent to Bk (which internally simulates Hk−1). All prover messages of the k-th session
are expected to come from an external machine, say M . If M is the prover instance Pk, the view of V ∗ is
distributed identically to Hk−1. Note that a copy of each message of Pk in this case is also sent to Bk at the
same time as V ∗; consequently, the internal execution of Bk (which includes S1, . . . , Sk−1) continues without
any problems. Likewise if M is the simulator instance Sk, V ∗’s view is distributed identically to Hk; note
that a copy of each message of Sk (resp., Bk) in this case is also sent to Bk (resp., Sk) at the same time as
V ∗. Consequently executions of both Sk and Bk continues without any problems.

Finally, if m is the total communication from a single prover instance, the external communication to
V ∗ from Bk is bounded by m`′ ≤ `; furthermore, this condition also holds from the point of view of each Si
instance internal to Bk (as desired). It follows that if Π is `-robust-ZK, it is also `′-bounded concurrent. ut

4.2 Constructions of `-Robust ZK

As noted earlier, Barak’s bounded cZK protocol is also `-robust ZK although it requires non-black-box use
of hash functions [Bar01]. The variant of Barak’s technique by Goyal et al. [GOSV14] makes only black-box

14

use of such functions and achieves the same result.10 To summarize, we have the following theorem from
[GOSV14] (restated in our language).

Theorem 2 (Black-Box `-Robust Zero-Knowledge for NP). If there exists a family H of collision-
resistant hash functions, then for every polynomial `, there exists a constant round public coin `-robust
zero-knowledge interactive argument for NP which requires only oracle access to functions in H.

As noted earlier, the preceding theorem is actually a corollary of the more general theorem that proof-phase
of the commit-and-prove protocol depicted in Protocol 1 is `-robust. We refer the reader to [GOSV14] for a
formal definition of “commit-and-prove” protocols. We only recall the following properties for Protocol 1:

– The proof-phase is performed only for the statement defined by the transcript of the commit-phase.

– For each transcript, the receiver gets only one (interactive) proof from the committer during the proof-
phase. The zero-knowledge property (as well as the implicit `-robust zero-knowledge) is then required
only for this single execution of the proof-phase. This suffices for Theorem 2 (by simply repeating the
commit-phase before every proof-phase, see footnote 9).

– To get the `-robust ZK property, the length of the challenge from the verifier is modified to be sufficiently
larger than ` (as in bounded cZK in Barak [Bar01]). Note that this requires modifying the pair language
for the universal argument (and PCPP) to allow strings of length at most `. In particular, this language
is the following:
“LP = {(a = (z, r, t), (Y)) : ∃M ∈ {0, 1}∗ and ∃y ∈ {0, 1}∗ such that Y ← ECC(M),M(z, y) = r within
t steps, and |y| ≤ |r| − n.}”

where ECC(·) is a binary error correcting code tolerating a constant fraction δ > 0 of errors, M is the
description of a Turing machine and n is the security parameter. We use RLP to denote the relation
defined on LP .

To summarize, we have the following theorem (from [GOSV14]):

Theorem 3 (Black-Box `-Robust Commit-and-Prove). If there exists a family H of collision-resistant
hash functions, then for every polynomial ` and every polynomial-size circuit φ, there exists a commit-and-
prove protocol such that the commit-phase is statistically binding (with at most two rounds), the proof-phase
is a constant-round public-coin `-robust zero-knowledge interactive argument for φ, and both phases require
only oracle access to functions in H.

We note that GOSV also provide a size-hiding commitment scheme (which cannot be statistically-binding)
along with a `-robust ZK proof-phase for every φ. However, we will not need this version of their protocol.

5 Straight-Line Extractable Commitments

In this section, we construct an extractable commitment scheme, assuming black-box access to any semi-
honest oblivious transfer. The construction (shown in Protocol 2) makes black-box use of a statistically-
binding commitment Com and a maliciously-secure oblivious transfer OT. For the OT, we require (computa-
tional) indistinguishability-based security against malicious senders, and simulation-based security (ideal/real
paradigm) against malicious receivers. Such OTs can be constructed in a black-box manner from any semi-
honest OT [Hai08]. To ease the presentation, we show in Protocol 2 a single-bit commitment, and talk about
how to extend it to commit to strings toward the end of the security proof (Remark 5).

Theorem 4. Protocol 2 is a straight-line extractable statistically-binding commitment scheme, which only
accesses the underlying primitives in a black-box manner.

10 Although only standalone case is discussed in [GOSV14], their security proof (just like Barak’s) also works for
bounded-concurrent case by increasing the length of verifier’s challenge and slightly modifying the relation for the
uarg appropriately.

15

Protocol 2 `-Robust Extractable statistically-Binding Commitment

Common Input: Security parameter 1n, robustness parameter `
Auxiliary Input to C: A bit σ ∈ {0, 1} to be committed
Commit Phase:

1. C samples 2n random bits {si,b}i∈[n],b∈{0,1}, whose exclusive-or equals σ.

2. C and R involves in 2n independent executions of Com in parallel, where C commits to each values in
{si,b}i∈[n],b∈{0,1} separately. Let ci,b denote the commitment to si,b. Let di,b denote the decommitment in-
formation w.r.t. ci,b.

3. R samples independently n − 1 random bits τ1, . . . , τn−1
$←− {0, 1}n−1. C and R involves in n independent

executions of OT in parallel. For the i-th OT execution (i ∈ [n− 1]), C acts as the sender with the two private

input set to Inp
(i)
0 = di,0 and Inp

(i)
0 = di,1. R acts as the receiver with input τi. Note that at the end of this

stage R learns {di,τi}i∈[n−1]. R rejects if any of these decommitments are invalid.

4. R samples uniformly at random a bit τn
$←− {0, 1}. C and R involves in an execution of OT where C acts as the

sender with the two private input set to Inp
(n)
0 = dn,0 and Inp

(n)
0 = dn,1. R acts as the receiver with input τn.

Note that at the end of this stage R learns dn,τn . R rejects if dn,τn is not a valid decommitment w.r.t. cn,τn .11

5. C and R run a coin-tossing protocol:

(a) R samples a random string r1
$←− {0, 1}n and runs the VSS Commit Phase of Protocol 1 to generate

cr1 = VSSCom(r1). R sends cr1 .

(b) C chooses a random string r2
$←− {0, 1}n and sends r2.

(c) R sends r1 (without decommitment information)

(d) R and C run the Proof Phase of Protocol 1 with robustness parameter `(n) to prove that the string r1
sent by R in Step 5-(c) is indeed the value it committed to in Step 5-(a).

The output of the coin-tossing phase is ch = r1 ⊕ r2. For i ∈ [n], let chi denote the i-th bit of ch.

6. C sends to R the values {di,chi}i∈[n]. Note that these are the decommitments to {ci,chi}i∈[n] in Step 2. R rejects
if any of these decommitments are invalid.

Reveal Phase:

1. C sends to R the values {di,b}i∈[n],b∈{0,1} (aka all the decommitments).

2. R rejects if any of the decommitments is invalid; otherwise, R computes the decommitted value as σ = ⊕i,bsi,b.
(Note that si,b is contained in di,b.)

5.1 Proof of Theorem 4

The construction is black-box as we use the black-box commit-and-prove protocol from [GOSV14] (presented
in Protocol 1 in Section 4) in the coin-tossing step. Statistically-binding property follows directly from that of
the Step-2 commitment scheme Com. Next, we focus on computationally-hiding property and extractability.

5.1.1 Computationally-Hiding

For any ppt receiver R∗, we denote by VR∗(n, σ) the distribution over R∗’s view from an execution 〈C(σ), R∗〉
of Protocol 2, where the honest C commits to the value σ to R∗. To prove the hiding property, we need to
show that for any ppt machine D,

AdvDn :=
∣∣∣Pr[D

(
VR
∗
(n, 1)

)
= 1]− Pr[D

(
VR
∗
(n, 0)

)
= 1]

∣∣∣ ≤ negl(n). (1)

In the following, we prove Inequality (1) by a sequence of hybrids.

11 We remark that this step can actually happen in parallel with the OT instances in Step 3. It is put here (only)
to ease the presentation of the security proof. In Remark 4, we talk about how the proof can be modified to
accommodate the case where the Step-4 OT happens in parallel with Step 3.

16

Hybrid H0(n, σ): In this hybrid, we change the way the values {si,b} are chosen. Specifically, the hybrid
does the following:

(a) It samples independently at random a bit η
$←− {0, 1} and a bit g

$←− {0, 1}.
(b) For i ∈ [n− 1] and b ∈ {0, 1}, it samples independently si,b

$←− {0, 1}.
(c) It defines sn,1−g := η ⊕ σ and

sn,g := (s1,0 ⊕ s1,1)⊕ . . .⊕ (sn−1,0 ⊕ sn−1,1)⊕ η

(d) It then uses the honest commiter’s strategy and {si,b} defined above to finish Step 2 to 6 in Protocol 2.

(e) Once R∗ terminates, H0 gets the view VR∗0 (n, σ) of R∗ in this execution. It invokes D on input VR∗0 (n, σ),
and outputs whatever D outputs. Let H0(n, σ) also denote the output of this hybrid.

It is straightforward to see the values {si,b} defined above are identically distributed as in the real execution
〈C(σ), R∗〉, i.e. they constitute random secret shares whose exclusive-or equals σ. Also, we note that the
value of g does not affect this hybrid at all, as it only introduces syntax changes. Therefore, we have

VR∗0 (n, σ)
id
= VR∗(n, σ), which implies that ∀σ ∈ {0, 1}:

Pr[D
(
VR
∗
(n, σ)

)
= 1] = Pr[D

(
VR
∗

0 (n, σ)
)

= 1] = Pr[H0(n, σ) = 1] (2)

Hybrid H1(n, σ): H1(n, σ) is identical to H0(n, σ) except that the n-th OT in Step 4 are replaced with the
ideal OT functionality FOT. Concretely, in Step 4, the hybrid emulates FOT internally in the following way:

– On the committer side, it sets Inp
(n)
0 = dn,0 and Inp

(n)
1 = dn,1 (same as the honest committer).

– On the receiver side, it invokes the ppt ideal-world simulator SR̂
∗

with oracle access to R̂∗, which is the
residual strategy of R∗ with the view fixed up to the beginning of Step 4. Note that the existence of S
is guaranteed by the security of OT against corrupted receiver.

– During the execution, SR̂
∗

may send a bit b which is meant to the ideal-world receiver’s input to FOT

(the actually input of R∗ “extracted” by S). In this case, the hybrid responds with Inp
(n)
b = dn,b.

– Once SR̂
∗

stops and outputs the simulated view for R̂∗, the hybrid continues to finish the execution of
Step 5-6 in the same way as in H0(n, σ). (Note that simulated view for R̂∗ contains necessary information
to recover the status of R∗ up to the end of Step 4. The hybrid can then use it to finish the execution
remaining steps.)

Similar as in H0, we use VR∗1 (n, σ) to denote the view of R∗ in this execution, and use H1(n, σ) to denote the
output of this hybrid. By the security of OT against malicious R∗, the VR∗1 (n, σ) should be computationally
indistinguishable from VR∗0 (n, σ). This implies that ∀σ ∈ {0, 1}:

Pr[H1(n, σ) = 1] = Pr[H0(n, σ) = 1]± negl(n) (3)

Hybrid H2(n, σ): H2(n, σ) is identical to H1(n, σ) except that it aborts and outputs a special symbol ⊥ if

b = 1 − g. Recall that b is the query of SR̂
∗

in Step 4 of H1 (and also H2). Recall that the bit g is picked
uniformly at random, independent of the view of R∗. Therefore, H2 aborts with probability exactly 1/2.
This implies ∀σ ∈ {0, 1},

Pr[H2(n, σ)
)

= 1] =
1

2
· Pr[H1(n, σ)

)
= 1] (4)

Hybrid H3(n, σ): H3(n, σ) is identical to H2(n, σ) except that it aborts and outputs a special symbol ⊥ if
chn = 1−g. recall that chn is the last bit of the result of the Step-5 coin-tossing in H2 (and also H3). Again,
note that the bit g is picked independent of the view of R∗. Also, the output of Step-5 coin-tossing should
be pseudo-random, we have ∀σ ∈ {0, 1},

Pr[H3(n, σ)
)

= 1] =
1

2
· Pr[H2(n, σ)

)
= 1]± negl(n) (5)

where the negl(n) term is due to the negligible possibility that R∗ breaks the security of Step-5 coin-tossing.
We now finish the proof for computationally-hiding property by showing the following claim.

17

Claim 2. ∣∣Pr[H3(n, 1)
)

= 1]− Pr[H3(n, 0) = 1]
∣∣ ≤ negl(n) (6)

Before presenting the proof for Claim 2, let us show why it closes the proof for computationally-hiding
property of Protocol 2. First, note that Equation (2), (3), (4) and (5) imply that:∣∣Pr[D

(
VR
∗
(n, 1)

)
= 1]− Pr[D

(
VR
∗
(n, 0)

)
= 1]

∣∣
=

∣∣Pr[H0(n, 1) = 1]− Pr[H0(n, 0) = 1]
∣∣

=
∣∣Pr[H1(n, 1) = 1]− Pr[H1(n, 0) = 1]± negl(n)

∣∣
= 2 ·

∣∣Pr[H2(n, 1) = 1]− Pr[H2(n, 0) = 1]± negl(n)
∣∣

= 4 ·
∣∣Pr[H3(n, 1) = 1]− Pr[H3(n, 0) = 1]± negl(n)

∣∣
≤ 4 ·

∣∣Pr[H3(n, 1) = 1]− Pr[H3(n, 0) = 1]
∣∣± negl(n) (7)

Combining Inequality (7) with (6) proves Inequality (1), which finishes the proof for hiding property of
Protocol 2.

In the following, we finish this part by presenting the proof for Claim 2.

Proof for Claim 2. First note that ∀σ ∈ {0, 1}, H3(n, σ) does not need to know dn,1−g, the decommitment

information for cn,1−g = Com(η⊕ σ). That is because once the query b of SR̂
∗

or the value chn equals 1− g,
the hybrid H3 will simply abort. Therefore, if Inequality (6) does not hold, we can build a ppt machine Dcom

that breaks the computationally-hiding property of Com. The distinguisher Dcom runs H3 but define cn,1−g
in the following way:

– It forwards two values m0 := η ⊕ 0 and m1 := η ⊕ 1 to the outsider challenger for the hiding game of
Com.

– Once it receives the commitment c∗ from the challenger, it sets cn,1−g = c∗.

Upon the halt of H3, Dcom outputs whatever H3 outputs. From the above description, it is easy to see that if
the outside challenger commits to m0, the view of R∗ is identical to that in H3(n, 0); if the outside challenger
commits to m0, the view of R∗ is identical to that in H3(n, 1). Therefore, if Equation (6) does not hold,
Dcom breaks the computationally-hiding property of Com. This finishes the proof for Claim 2. ut

Remark 4 (The position of the Step-4 OT.). If the Step-4 OT happens in parallel with Step 3, the hiding
property can be proved using essentially the same hybrids as the above. The only place that requires extra

attention is the ideal-world simulator SR̂
∗
, which is used in H1, H2 and H3. Recall that the ideal-world

simulator only interacts with R̂∗ and does not take any other external message except for a single reply from

FOT to its query. However, when Step-3 OT happens in parallel with Step 3, SR̂
∗

needs to feed R̂∗ other
messages of the other n − 1 OT instances (the original Step-3 OTs) to finish the simulation. So we need to
modify S such that it forwards those messages between R̂∗ and the running hybrid if R̂∗ expects messages of
the other OT instances. S may also need to rewind R̂∗. In this case, S can simply reuse the same messages

for the other OT instances in each rewinding. It can be easily verified that with this modification to SR̂
∗
, all

the claims regarding the above hybrids still hold.

5.1.2 Straight-Line Extractability

Intuitively, the extractor E works by biasing the outcome ch = r1 ⊕ r2 of the Step-5 coin-tossing, such that
chi⊕ τi = 1 for all i ∈ [n]. In this case, E learns the decommitments to all the values {si,b}i∈[n],b∈{0,1} at the
end of Commit Phase, thus being able to extract σ.

Extractor E works as follows:

1. E invokes C∗ and interacts with it using the honest receiver strategy up to the beginning of Step 5.

2. In Step 5, E acts as follows:

(a) E runs the VSS Commit Phase of Protocol 1 to generate cr1 = VSSCom(0n). R sends cr1 .

18

(b) E receives from C∗ the value r2.

(c) E sends to C∗ the value r1 := r2 ⊕ (τ1‖ . . . ‖τn), where τ i = 1⊕ τi for i ∈ [n].

(d) E invokes the (straight-line) simulator of Protocol 1, with the residual C∗ as the verifier, for the
(false) statement that cr1 is a VSSCom commitment to the value r1.

Note that the output of this (biased) coin-tossing is ch = r1 ⊕ r2, which equals τ1‖ . . . ‖τn.

3. E receives from C∗ the values {di,chi}. It aborts if any of these decommitments are invalid; otherwise,
it outputs σ = ⊕i,bsi,b. Note that if it does not abort, E learns all the {si,b} values. Because it learns
{si,τi}i∈[n] from the OT executions in Step 3 and 4; it also learns {si,τ i

}i∈[n] from the Step-6 decommit-
ments.

4. Output: E outputs C∗’s view of the above execution along with σ.

From the above description, it is clear that E runs in expected polynomial-time, because the simulator of
Protocol 1 runs in expected polynomial time and all the remaining steps run in polynomial time. Also, if C∗

does not abort, E will be able to extract the value σ. In the following, we show that C∗’s behavior (actually
its view) will not change (up to negligible probability) between the real execution and its interaction with E .

We now show that the view output by E is computationally indistinguishable from C∗’s view in a real
execution through the following sequence of hybrids:

– Hybrid H0: This hybrid runs the real execution 〈C∗, R〉 between the (malicious) committer C∗ and the
honest receiver R. At the end of the execution, H1 outputs the view of C∗.

– Hybrid H1: this hybrid is identical to the H0 except that the zero-knowledge argument verified by C∗

in Step 5-(d) is replaced by a simulated one using the simulator of Protocol 1.

– Hybrid H2: this hybrid is identical to H1 except that the commitment received by C∗ in Step 5-(a) is
to 0n rather than to a random string r1;

– Hybrid H3: this hybrid is identical to H2 except that the value r1 in Step 5-(c) is set to r1 := r2 ⊕
(τ1‖ . . . ‖τn), where τ i = 1⊕τi. (Note that the output of this hybrid is identical to the view of C∗ output
by E).

The computational indistinguishability between (the output of) H0 and H1 can be established by the
ZK property of the proof stage of Protocol 1. The computational indistinguishability between H1 and H2

can be established by the hiding property of the committing stage of Protocol 1 (simply by forwarding the
commitment on which these two hybrids differ to an outside challenger for the hiding property of VSSCom).

The computational indistinguishability between H2 and H3 can be established by standard hybrid argu-
ments. More specifically, we consider the following intermediate hybrids:

– Hybrids Hi
3 (i ∈ [n]): this hybrid is identical to H3 except that the value r1 in Step 5-(c) is set to

r1 := r2 ⊕ (τ1‖ . . . ‖τ i‖ui+1‖ . . . ‖un), where τ j = 1⊕ τj (j ∈ [i]) and uk (k ∈ {i+ 1, . . . , n}) is a random
bit sampled independently.

Note that Hn
3 is identical to H3. We additional define H0

3 := H2. Then the computational indistinguishability
between Hi−1

3 and Hi
3 (∀i ∈ [n]) follows from the security of OT against malicious senders. Concretely, the i-

th OT execution is forwarded between C∗ and an external OT challenger, playing the role of honest receiver.
If the view of C∗ between Hi−1

3 and Hi
3 changes in a non-negligible way, the hybrid constitutes a ppt

machine that tells the secret input of the challenger non-negligibly better than random guess. Thus, we have

H0
c
≈ H1

c
≈ H2

c
≈ H3, which finishes the proof of extractability.

This finishes the proof of Theorem 4.

Remark 5 (Committing to Strings). One obvious way to extend Protocol 2 to support multi-bit strings is to
commit to each bit independently in parallel. A more efficient way is to replace the single-bit commitments
in Step 2 and OTs in Step 3 and 4 with their multi-bit version. It is straightforward to see that same proof
for correctness and security holds for this the multi-bit version.

6 Our Bounded-Concurrent OT Protocol

In this section, we prove the following theorem.

19

The ideal OT functionality FOT interacts with a sender S and a receiver R.

– Upon receiving a message (sid, sender, v0, v1) from S, where each vi ∈ {0, 1}n, store (v0, v1).

– Upon receiving a message (sid, receiver, u) from R, where u ∈ {0, 1}, check if a (sid, sender, . . .) message was
previously sent. If yes, send (sid, vu) to R and (sid) to the adversary Sim and halt. If not, send nothing to
R.

Fig. 1. The oblivious transfer functionality FOT .

Theorem 5. Assume the existence of constant-round semi-honest oblivious transfer protocols and collision-
resistant hash functions. Let FOT be the ideal oblivious transfer functionality (Figure 1). Then, for every
polynomial m, there exists a constant-round protocol that securely computes FOT under m-bounded concurrent
composition, and it uses the underlying primitives in the black-box way.

6.1 Protocol Description

In our protocol, we use the following building blocks.
– The robust-extractable commitment scheme defined in Protocol 2, to which we refer as RobCom. Note

that the commitment protocol is based only on CRHFs and semi-honest OTs in a black-box manner.

– A four-round statistically-binding extractable commitment ExtCom, which can be constructed from one-
way functions in the black-box way [Nao91, HILL99, PW09].

– A O(1)-round OT protocol mS-OT that is secure against malicious senders and semi-honest receivers.12

As shown in [HIK+11], such a OT protocol can be obtained from any semi-honest one in the black-box
way.

– A O(1)-round parallel non-malleable commitment NMCom that is parallel k-robust for sufficiently large
constant k. (Concretely, we require that k is larger than the round complexity of the above three building
blocks.) Such a non-malleable commitment scheme can be constructed from CRHFs in the black-box way
[GKP18].

Our OT protocol ΠOT is described below. As explained in Section 2.1, (1) our protocol is based on the
OT protocol of [GKP18], which roughly consists of coin-tossing, semi-honest OT, OT combiner, and cut-
and-choose, and relies on non-malleable commitments to make sure adversary cannot setup the “trapdoor
statement” to be true even in the bounded-concurrent setting; and (2) our protocol additionally uses a
black-box “commit-and-prove” protocol that is `-robust-ZK for a suitably large ` to commit a string and
later prove in zero-knowledge that the opened value is indeed what was committed. Below, we give intuitive
explanations in italic.

Parameters: The security parameter is n, and the bounded-concurrent composition parameter is m :=
m(n).

Inputs: The input to the sender S is v0, v1 ∈ {0, 1}n.The input to the receiver R is u ∈ {0, 1}. The identities
of S and R are idS , idR respectively.

Stage 0: (Extractable Commitments to Randomness)

1. Commitments to S’s randomness.

(a) S samples independently two random strings φS and ψS = ψS1 ‖ . . . ‖ψS11n of proper length (see
the comment at the end of this stage).

(b) S and R involve in 11n + 1 executions of RobCom in parallel, where S commits to φS and
ψS1 , . . . , ψ

S
11n respectively.

Note that for the ZK argument in Step 5d of Protocol 2, we set the robustness parameter to be
`(n) = m · νot(n) where νot is defined towards the end. This Proof Phase includes the long
message of Protocol 1. We call this message sender’s long message.

12 We only requires mS-OT to be secure under a game-based definition (which is preserved under parallel composition).
For details, see the the proofs of Lemma 7 and Claim 7.

20

2. Commitments to R’s randomness.

(a) R samples independently two random strings φR and ψR = ψR1 ‖ . . . ‖ψR11n of proper length (see
the comment at the end of this stage).

(b) S and R involve in 11n + 1 executions of RobCom in parallel, where R commits to φR and
ψR1 , . . . , ‖ψR11n respectively.

Note that for the ZK argument in Step 5d of Protocol 2, we set the robustness parameter to be
`(n) = m · νot(n) where νot is defined towards the end. This Proof Phase includes the long
message of Protocol 1. We call this message receiver’s long message.

Comment: In step 1 of this Stage, φS will be used in Stage 1-1 as a One-Time Pad to “mask” the
sender’s secrete ΓS (which in turn is used as the sender’s challenge for cut-and-choose). Similarly, ψS

will be used in Stage 2-1 to mask the sender’s secrete aS.
Step 2 is just the symmetric execution of the same protocol where S and R exchange their role.

Stage 1: (Preprocess for cut-and-choose)

1. S samples a random subset ΓS := {γS1 , ..., γSn} ⊂ [11n] of size n.13 It then sends to R the value
ΓS ⊕ φS , i.e. the bit representation of ΓS masked by the string φS using exclusive-or.

2. R samples a random subset ΓR := {γR1 , ..., γRn } ⊂ [11n] of size n. It then sends to S the value ΓR⊕φR.

Comment: As in the OT protocols of [LP12, GKP18], the subsets to for the cut-and-choose stages are
committed in advance to prevent selective opening attacks.

Stage 2: Coin-tossing for sub-protocols

1. (Coin tossing for S) S samples random strings aS = (aS1 , . . . , a
S
11n). It then sends to R the values

zSi := aSi ⊕ ψSi for each i ∈ [11n]. Let dSi be the decommitments w.r.t. the Stage-0-1 RobCom of
φSi . R then sends random strings bS = (bS1 , . . . , b

S
11n) to S. S then defines rS = (rS1 , . . . , r

S
11n) by

rSi
def
= aSi ⊕ bSi for each i ∈ [11n] and parses rSi as si,0 ‖si,1 ‖τSi for each i ∈ [11n].

2. (Coin tossing for R) R samples random strings aR = (aR1 , . . . , a
R
11n). It then sends to S the values

zRi := aRi ⊕ ψRi for each i ∈ [11n]. Let dRi be the decommitments w.r.t. the Stage-0-2 RobCom of
φRi . S then sends random strings bR = (bR1 , . . . , b

R
11n) to R. R then defines rR = (rR1 , . . . , r

R
11n) by

rRi
def
= aRi ⊕ bRi for each i ∈ [11n] and parses rRi as si,0 ‖si,1 ‖τRi for each i ∈ [11n].

Stage 3: (mS-OTs with random inputs)
S and R execute 11n instances of mS-OT in parallel. In the i-th instance, S uses (si,0, si,1) as the input
and τSi as the randomness, and R uses ci as the input and τRi as the randomness, where {si,0, si,1, τSi }i
and {ci, τRi }i are the random coins that were obtained in Stage 2. The output to R is denoted by
s̃1, . . . , s̃11n, which are supposed to be equal to s1,c1 , . . . , s11n,c11n .

Stage 4: (NMCom and ExtCom for checking honesty of R)

1. R commits to (aR1 , d
R
1), . . . (aR11n, d

R
11n) using NMCom and identity idR. Let eR1 , . . . , e

R
11n be the de-

commitments.

2. R commits to (aR1 , d
R
1 , e

R
1), . . . (aR11n, d

R
11n, e

R
11n) using ExtCom.

Comment: Roughly, the commitments in this stage, along with the cut-and-choose in the next stage, will
be used in the security proof to argue that even cheating R must behave honestly in most instances of
mS-OT in Stage 3. A key point is that given the values that are committed to in NMCom or ExtCom in
this stage, one can obtain the random coins that R obtained in Stage 2 and thus can check whether R
behaved honestly in Stage 3.

Stage 5: (Cut-and-choose against R)

1. S reveals ΓS by sending φS and the decommitment information w.r.t. Stage-0-1 RobCom of φS .

2. For every i ∈ ΓS , R reveals (aRi , d
R
i , e

R
i) by decommitting the i-th ExtCom commitment in Stage 4.

3. For every i ∈ ΓS , S checks the following.

(a) ((aRi , d
R
i), eRi) is a valid decommitment of the i-th NMCom commitment in Stage 4.

13 Note that ΓS can be represented using a bit-string of length 11n.

21

Reconstruction Procedure Value(·, ·): For a sharing s = (si)i∈∆ and a set Θ ⊂ ∆, the output of Value(s, Θ)
is computed as follows. If s is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies si = wi for every i ∈ Θ,
then Value(s, Θ) is the value decoded from w; otherwise, Value(s, Θ) = ⊥.

Fig. 2. The function Value(·, ·).

(b) dRi is a valid decommitment of ψRi w.r.t. Stage-0-1 RobCom, and aRi ⊕ψRi equals the value zRi it
received in Stage-2-1.

(c) R executed the i-th mS-OT in Stage 3 honestly using ci ‖τRi , which is obtained from rRi = aRi ⊕bRi
as specified by the protocol.

Comment: In other words, for each index that it randomly selected in Stage 1, S checks whether R
behaved honestly in Stages 3 and 4 on that index.

Stage 6: (OT combiner) Let ∆ := [11n] \ ΓS .

1. R sends αi := u⊕ ci to S for every i ∈ ∆.

2. S computes a (6n + 1)-out-of-10n secret sharing of v0, denoted by ρ0 = (ρ0,i)i∈∆, and computes a
(6n+1)-out-of-10n secret sharing of v1, denoted by ρ1 = (ρ1,i)i∈∆. Then, S sends βb,i := ρb,i⊕si,b⊕αi

to R for every i ∈ ∆, b ∈ {0, 1}.
3. R computes ρ̃i := βu,i ⊕ s̃i for every i ∈ ∆. Let ρ̃ := (ρ̃i)i∈∆.

Comment: In this stage, S and R execute OT with their true inputs by using the outputs of mS-OT
in Stage 3. Roughly speaking, this stage is secure as long as most instances of mS-OT in Stage 3 are
correctly executed.

Stage 7: (NMCom and ExtCom for checking honesty of S)

1. S commits to (aS1 , d
S
1), . . . (aS11n, d

S
11n) using NMCom and identity idS . Let eS1 , . . . , e

S
11n be the decom-

mitments.

2. S commits to (aS1 , d
S
1 , e

S
1), . . . (aS11n, d

S
11n, e

S
11n) using ExtCom.

Stage 8: (Cut-and-choose against S)

1. R reveals ΓR by sending φR and the decommitment information w.r.t. Stage-0-2 RobCom of φR.

2. For every i ∈ ΓR, S reveals (aSi , d
S
i , e

S
i) by decommitting the i-th ExtCom commitment in Stage 7.

3. For every i ∈ ΓR, R checks the following.

(a) ((aSi , d
S
i), eSi) is a valid decommitment of the i-th NMCom commitment in Stage 7.

(b) dSi is a valid decommitment of ψSi w.r.t. Stage-0-2 RobCom, and aSi ⊕ ψSi equals the value zSi it
received in Stage-2-2.

(c) S executed the i-th mS-OT in Stage 3 honestly using si,0 ‖ si,1 ‖ τSi , which is obtained from
rSi = aSi ⊕ bSi as specified by the protocol.

Parameter νOT : All messages of this OT protocol except the sender’s and receiver’s long messages are
called short messages. Then, νot(n) denotes the total length of all short messages of this protocol.

Output: R outputs Value(ρ̃, ΓR ∩∆), where Value(·, ·) is the function that is defined in Fig. 2.
Comment: As in the OT protocols of [LP12, GKP18], a carefully designed reconstruction procedure
Value(·, ·) is used here so that the simulator can extract correct implicit inputs from cheating S by ob-
taining sharing that is sufficiently “close” to ρ̃.

6.2 Security Proof

The security proof for our OT protocol is similar as that of [GKP18], except that we substitute the “brute-
force” extraction of the simulator with polynomial-time, straight-line extraction to learn the adversary’s
secrets. As mentioned in the technical overview part, our modification does not introduce new malleabil-
ity issues, and the session-by-session substitution in the hybrids of [GKP18] will still apply (with careful
modification). We give the full security proof in Section B.

22

7 Our Bounded-Concurrent MPC Protocol

In this section, we prove the following theorem.

Theorem 6. Assume the existence of constant-round semi-honest oblivious transfer protocols and collision-
resistant hash functions. Let F be any well-formed functionality. Then, for every polynomial m, there exists
a constant-round protocol that securely computes F under m-bounded concurrent composition; furthermore,
it uses the underlying primitives in the black-box way.

The protocol and the proofs are identical to those in [GKP18] except that we use the bounded-concurrent
secure OT protocol described in previous section. We now provide more details. We focus on the two-party
case below (the MPC case is analogous).

Protocol Description. Roughly speaking, we obtain our bounded-concurrent 2PC protocol by composing
our bounded-concurrent OT protocol in Section 6 with a UC-secure OT-hybrid 2PC protocol. Concretely,
let ΠOT be our `-bounded-concurrent OT protocol in Section 6, and ΠFOT

2PC be a UC-secure OT-hybrid 2PC
protocol with the following property: The two parties use the OT functionality FOT only at the beginning of
the protocol, and they send only randomly chosen inputs to FOT . Then, we obtain our bounded-concurrent
2PC protocol Π2PC by replacing each invocation of FOT in ΠFOT

2PC with an execution of ΠOT (i.e., the
two parties execute ΠOT instead of calling to FOT), where all the executions of ΠOT are carried out in a
synchronous manner, i.e., in a manner that the first message of all the executions are sent before the second
message of any execution is sent etc.; furthermore, the bounded-concurrency parameter for ΠOT is set to be
m′ defined as follows: let ν

2PC
denote the length of all messages of the hybrid 2PC protocol ΠFOT

2PC protocol
(which does not include the length of messages corresponding to OT calls since we are in the hybrid model).
Then, we set m′ so that the length ` of long messages of ΠOT would be n bits longer than ν

OT
+ν

2PC
. This can

be ensured by setting m′ = a ·m where a is the smallest integer that is bigger than max(νOT/ν2PC , ν2PC/νOT).
As the UC-secure OT-hybrid 2PC protocol, we use the constant-round 2PC (actually, MPC) protocol

of Ishai et al. [IPS08], which makes only black-box use of pseudorandom generators (which in turn can be
obtained in the black-box way from any semi-honest OT protocol). (The protocol of Ishai et al. [IPS08]
itself does not satisfy the above property, but as shown in [GKP18], it can be easily modified to satisfy it.)
Since the OT-hybrid protocol of Ishai et al. [IPS08] (as well as its modification in [GKP18]) is a black-box
construction and has only constant number of rounds, our protocol Π2PC is also a black-box construction
and has only constant number of rounds.

The security of this protocol can be proved in a similar way as our OT protocol. The formal proof is
given in Section D.

23

References

ABG+20. Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Separating
two-round secure computation from oblivious transfer. In 11th Innovations in Theoretical Computer
Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

Bar01. Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106–115. IEEE
Computer Society Press, October 2001.

Bar02. Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared random
string model. In 43rd FOCS, pages 345–355. IEEE Computer Society Press, November 2002.

BDH+17. Brandon Broadnax, Nico Döttling, Gunnar Hartung, Jörn Müller-Quade, and Matthias Nagel. Con-
currently composable security with shielded super-polynomial simulators. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 351–381.
Springer, Heidelberg, April / May 2017.

Bea91. Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–391, 1991.
BGJ+17. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit Sahai. Round

optimal concurrent MPC via strong simulation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 743–775. Springer, Heidelberg, November 2017.

BL02. Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction. In 34th ACM
STOC, pages 484–493. ACM Press, May 2002.

BP12. Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-black-box simulation
technique. In 53rd FOCS, pages 223–232. IEEE Computer Society Press, October 2012.

BP13. Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and applications to
resettable cryptography. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 241–250. ACM Press, June 2013.

BS05. Boaz Barak and Amit Sahai. How to play almost any mental game over the net - concurrent composition
via super-polynomial simulation. In 46th FOCS, pages 543–552. IEEE Computer Society Press, October
2005.

Can00. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, January 2000.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

CDMW09. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Simple, black-box constructions
of adaptively secure protocols. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
387–402. Springer, Heidelberg, March 2009.

CDSMW17. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. A black-box construction of
non-malleable encryption from semantically secure encryption. Journal of Cryptology, Mar 2017.

CHH+07. Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, abhi shelat,
and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In Kaoru Kurosawa, editor, ASI-
ACRYPT 2007, volume 4833 of LNCS, pages 502–518. Springer, Heidelberg, December 2007.

CKL03. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 68–86. Springer, Heidelberg, May 2003.

CLP10. Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security in the plain model
from standard assumptions. In 51st FOCS, pages 541–550. IEEE Computer Society Press, October 2010.

CPS13. Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-way functions and
applications to resettable security. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 231–240. ACM Press, June 2013.

DMRV13. Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthuramakrishnan Venkitasubramaniam.
Adaptive and concurrent secure computation from new adaptive, non-malleable commitments. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 316–336.
Springer, Heidelberg, December 2013.

FS90. Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In 22nd ACM
STOC, pages 416–426. ACM Press, May 1990.

GGJS12. Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure computation in con-
stant rounds. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 99–116. Springer, Heidelberg, April 2012.

24

GGS15. Vipul Goyal, Divya Gupta, and Amit Sahai. Concurrent secure computation via non-black box simula-
tion. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 23–42. Springer, Heidelberg, August 2015.

GJ13. Vipul Goyal and Abhishek Jain. On concurrently secure computation in the multiple ideal query model.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
684–701. Springer, Heidelberg, May 2013.

GK90. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. In Automata,
Languages and Programming, 17th International Colloquium, ICALP, pages 268–282, 1990.

GKOV12. Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti. Impossibility results
for static input secure computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 424–442. Springer, Heidelberg, August 2012.

GKP18. Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. A new approach to black-box concurrent secure
computation. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 566–599. Springer, Heidelberg, April / May 2018.

GL91. Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of immoral
majority. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS,
pages 77–93. Springer, Heidelberg, August 1991.

GL02. Shafi Goldwasser and Yehuda Lindell. Secure computation without agreement. In DISC, pages 17–32,
2002.

GLOV12. Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable com-
mitments: A black-box approach. In 53rd FOCS, pages 51–60. IEEE Computer Society Press, October
2012.

GLP+15. Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit Sahai. Round-efficient concurrently
composable secure computation via a robust extraction lemma. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 260–289. Springer, Heidelberg, March
2015.

GM00. Juan A. Garay and Philip D. MacKenzie. Concurrent oblivious transfer. In 41st FOCS, pages 314–324.
IEEE Computer Society Press, November 2000.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

GOSV14. Vipul Goyal, Rafail Ostrovsky, Alessandra Scafuro, and Ivan Visconti. Black-box non-black-box zero
knowledge. In David B. Shmoys, editor, 46th ACM STOC, pages 515–524. ACM Press, May / June
2014.

Goy11. Vipul Goyal. Constant round non-malleable protocols using one way functions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704. ACM Press, June 2011.

Goy12. Vipul Goyal. Positive results for concurrently secure computation in the plain model. In 53rd FOCS,
pages 41–50. IEEE Computer Society Press, October 2012.

Hai08. Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In Ran Canetti, editor,
TCC 2008, volume 4948 of LNCS, pages 412–426. Springer, Heidelberg, March 2008.

HIK+11. Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions
of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Composable adaptive secure protocols
without setup under polytime assumptions. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 400–432. Springer, Heidelberg, October / November 2016.

IKLP06. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions for secure
computation. In Jon M. Kleinberg, editor, 38th ACM STOC, pages 99–108. ACM Press, May 2006.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer,
Heidelberg, August 2008.

Kiy14. Susumu Kiyoshima. Round-efficient black-box construction of composable multi-party computation. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
351–368. Springer, Heidelberg, August 2014.

KMO14. Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round black-box construction
of composable multi-party computation protocol. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 343–367. Springer, Heidelberg, February 2014.

25

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Matthew
Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354. Springer, Heidelberg, August
2004.

Lin03. Yehuda Lindell. Bounded-concurrent secure two-party computation without setup assumptions. In 35th
ACM STOC, pages 683–692. ACM Press, June 2003.

Lin04. Yehuda Lindell. Lower bounds for concurrent self composition. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 203–222. Springer, Heidelberg, February 2004.

LP09. Huijia Lin and Rafael Pass. Non-malleability amplification. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 189–198. ACM Press, May / June 2009.

LP12. Huijia Lin and Rafael Pass. Black-box constructions of composable protocols without set-up. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 461–478. Springer,
Heidelberg, August 2012.

LPV08. Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-malleable com-
mitments from any one-way function. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
571–588. Springer, Heidelberg, March 2008.

LPV09. Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for con-
current security: universal composability from stand-alone non-malleability. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 179–188. ACM Press, May / June 2009.

MMY06. Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental security from number
theoretic assumptions. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
343–359. Springer, Heidelberg, March 2006.

MPR06. Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In 47th FOCS, pages
367–378. IEEE Computer Society Press, October 2006.

MR92. Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 392–404. Springer, Heidelberg, August 1992.

Nao91. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–158, January
1991.

ORS15. Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box two-party compu-
tation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 339–358. Springer, Heidelberg, August 2015.

OSV15. Rafail Ostrovsky, Alessandra Scafuro, and Muthuramakrishnan Venkitasubramaniam. Resettably sound
zero-knowledge arguments from OWFs - the (semi) black-box way. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 345–374. Springer, Heidelberg, March
2015.

Pas03. Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 160–176. Springer, Heidelberg, May
2003.

Pas04. Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In László
Babai, editor, 36th ACM STOC, pages 232–241. ACM Press, June 2004.

PLV12. Rafael Pass, Huijia Lin, and Muthuramakrishnan Venkitasubramaniam. A unified framework for UC
from only OT. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,
pages 699–717. Springer, Heidelberg, December 2012.

PR03. Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a constant number
of rounds. In 44th FOCS, pages 404–415. IEEE Computer Society Press, October 2003.

PS04. Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal composability without
trusted setup. In László Babai, editor, 36th ACM STOC, pages 242–251. ACM Press, June 2004.

PW09. Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from one-way functions.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 403–418. Springer, Heidelberg, March
2009.

PW11. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM Journal on
Computing, 40(6):1803–1844, 2011.

Ven14. Muthuramakrishnan Venkitasubramaniam. On adaptively secure protocols. In Michel Abdalla and
Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 455–475. Springer, Heidelberg, Septem-
ber 2014.

Wee10. Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability amplification. In 51st
FOCS, pages 531–540. IEEE Computer Society Press, October 2010.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

26

Appendix

A Additional Preliminaries

A.1 Shamir’s Secret Sharing

We first recall Shamir’s secret sharing scheme. (In this paper, we use only the (6n + 1)-out-of-10n version
of it.) To compute a (6n+ 1)-out-of-10n secret sharing s = (s1, . . . , s10n) of a value v ∈ GF (2n), we choose

random a1, . . . , a6n ∈ GF (2n), let p(z)
def
= v+ a1z+ · · ·+ a6nz

6n, and set si := p(i) for each i ∈ [10n]. Given
s, we can recover v by obtaining polynomial p(·) through interpolation and then computing p(0). We use
Decode(·) to denote the function that recovers v from s as above.

For any positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s
′
10n), we say that s

and s′ are x-close if |{i ∈ [10n] s.t. si = s′i}| ≥ x · 10n. If s and s′ are not x-close, we say that they are
(1− x)-far. Since the shares generated by (6n+ 1)-out-of-10n Shamir’s secret sharing scheme are actually a
codeword of the Reed-Solomon code with minimum relative distance 0.4, if a (possibly incorrectly generated)
sharing s is 0.8-close to a valid codeword w, we can recover w from s efficiently by using, for example, the
Berlekamp-Welch algorithm.

A.2 Commitment Schemes

Recall that a commitment scheme is a two-party protocol between a committer and a receiver. We say that a
commitment is accepting if the receiver does not abort in the commit phase, and valid if there exists a value
to which the commitment can be decommitted (i.e., if there exists a decommitment that the verifier accepts
in the decommit phase). The committed value of a commitment is the value to which the commitment can
be decommitted. We define the committed value of an invalid commitment as ⊥.

There exists a two-round statistically binding commitment scheme Com based on one-way functions
[Nao91, HILL99], and it uses the underlying one-way function in a black-box way.

A.3 Extractable Commitment Schemes

We next recall the definition of extractable commitment schemes from [PW09]. Roughly speaking, a com-
mitment scheme is extractable if there exists an expected polynomial-time oracle machine, an extractor, E
such that for any adversarial committer C∗ that gives a commitment to honest receiver, the extractor EC

∗

extracts the committed value of the commitment from C∗ as long as the commitment is valid. We note that
when the commitment is invalid, E can output an arbitrary garbage value; this is called over-extraction.

Formally, extractable commitment schemes are defined as follows. A commitment scheme 〈C,R〉 is ex-
tractable if there exists an expected polynomial-time extractor E such that for any ppt committer C∗, the
extractor EC

∗
outputs a pair (τ, σ) that satisfies the following properties.

– τ is identically distributed with the view of C∗ that interacts with an honest receiver R in the commit
phase of 〈C,R〉. Let cτ be the commitment that C∗ gives in τ .

– If cτ is accepting, then σ 6= ⊥ except with negligible probability.

– If σ 6= ⊥, then it is statistically impossible to decommit cτ to any value other than σ.

There exists a four-round extractable commitment scheme ExtCom based on one-way functions [PW09],
and it uses the underlying one-way function in a black-box way. Furthermore, ExtCom satisfies extractability
in a stronger sense: It is extractable even against adversarial committers that give polynomially many ExtCom
commitments in parallel. (The extractor outputs (τ, σ1, σ2, . . .) for such committers.)

27

B Security Proof For Our OT Protocol

B.1 Simulator SimOT

To prove the security of ΠOT, we consider the following simulator SimOT. Recall that our goal is to prove
that ΠOT securely realizes FOT (see Fig. 1) under m-bounded concurrent (self) composition. We therefore
consider a simulator that works against adversaries that participate in at most (and w.l.o.g., exactly) m
sessions of ΠOT both as senders and as receivers.

Let A be any adversary that participates in m sessions of ΠOT. Our simulator SimOT internally invokes
A and simulates each of the sessions for A as follows.

When R is corrupted: In a session where the receiver R is corrupted, SimOT simulates the sender S for
A by extracting the implicit input u∗ ∈ {0, 1} from A. During the simulation, SimOT extracts the values φR

and ψR (in straight-line, using the code of A) such that it can later extract the value ΓR and aR in Stages
1 and 2 ; the former extraction is needed to execute most instances mS-OT in Stage 3 with true randomness
(which is crucial to use their security in the analysis), and the latter extraction is needed to infer what
information A obtained in the mS-OT instances in Stage 3 (which is crucial to extract the implicit input
u∗ ∈ {0, 1} from A).

Concretely, SimOT simulates all steps of Stage 0 in the same way as an honest S, except that in Stage
0-2, SimOT uses the strategy of the (straight-line) extractor for Protocol 2 in its interaction with A. At the
end of this Stage 0-2, it learns the value φR and ψR = ψR1 ‖ . . . ‖ψR11n committed by A.

Remark 6. Note that SimOT can extract ΓR using φR in Stage 1-2. Likewise, in Stage 2-2 it can extract aR

using relevant parts of ψR.

Next, from Stage 1 to Stage 5, SimOT interacts with A in the same way as an honest S except for the
following.

– For the commitments from A in Stages 1-2 and 2-2, the committed subset ΓR and the committed strings
aR = (aR1 , . . . , a

R
11n) are extracted by SimOT as described in Remark 6.

SimOT then defines rR = (rR1 , . . . , r
R
11n) by rRi

def
= aRi ⊕ bRi for each i ∈ [11n] and parses rRi as ci ‖τRi for

each i ∈ [11n]. (Notice that rR is the outcome of the coin-tossing that A must have obtained.)

– In Stage 3, the i-th mS-OT is executed with a random input and true randomness rather than with
(si,0, si,1) and τSi for every i 6∈ ΓR.

In Stage 6, SimOT interacts with A as follows.

1. Receive {αi}i∈∆ from A in Stage 6-1.

2. Determine the implicit input u∗ of A as follows. Let I0, I1 be the sets such that for b ∈ {0, 1} and i ∈ ∆,
we have i ∈ Ib if and only if:

– i ∈ ΓR, or

– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖τRi as the input and randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input and
randomness.

Abort the simulation if both of |I0| ≥ 6n + 1 and |I1| ≥ 6n + 1 hold. Otherwise, define u∗ by u∗
def
= 0

if |I0| ≥ 6n+ 1 and u∗
def
= 1 otherwise. (Roughly, |Ib| is the number of strings that A can obtain out of

{si,b⊕αi
}i∈∆ by requiring S to reveal them in Stage 8, by cheating in mS-OT, or by executing mS-OT

honestly with input b ⊕ αi. We remind the readers that {si,b⊕αi
}i∈∆ are the strings that are used to

mask ρb = (ρb,i)i∈∆ in Stage 6.)

3. Send u∗ to the ideal functionality and obtains v∗.

4. Subsequently, interact with A in the same way as an honest S assuming that the inputs to S are vu∗ = v∗

and random v1−u∗ .

28

From Stage 7 to Stage 8, SimOT interacts with A in the same way as an honest S except that in Stage 7, an
all-zero string is committed in the i-th NMCom rather than (aSi , d

S
i) for every i 6∈ ΓR, and an all-zero string

is committed in the i-th ExtCom rather than (aSi , d
S
i , e

S
i) for every i 6∈ ΓR.

When S is corrupted: In a session where the sender S is corrupted, SimOT simulates the receiver R for
A by extracting the implicit input v∗0 , v

∗
1 from A. During the simulation, SimOT extracts the values φS and

ψS (in straight-line, using the code of A) such that it can later extract the value ΓS and aS in Stages 1 and
2; the former extraction is needed to execute most instances mS-OT in Stage 3 with true randomness (which
is crucial to use their security in the analysis), and the latter extraction is needed to learn what input A
used in the mS-OT instances in Stage 3 (which is crucial to extract the implicit input v∗0 , v

∗
1 from A).

Concretely, SimOT simulates all steps of Stage 0 in the same way as an honest R, except that in Stage
0-1, SimOT uses the strategy of the (straight-line) extractor for Protocol 2 in its interaction with A. At the
end of this Stage 0-1, it learns the value φS and ψS = ψS1 ‖ . . . ‖ψS11n committed by A.

Remark 7. As in Remark 6, SimOT can extract ΓS and aS in Stage 1-1 and Stage 2-1 respectively.

Next, SimOT interacts with A in the same way as an honest R in all the stages except for the following.

– For the commitments from A in Stages 1-1, the committed subset ΓS is extracted by SimOT as described
in Remark 7.

– In Stage 3, the i-th mS-OT is executed with a random input and true randomness rather than with ci
and τRi for every i 6∈ ΓS .

– In Stage 4, an all-zero string is committed in the i-th NMCom rather than (aSi , d
S
i) for every i 6∈ ΓS , and

an all-zero string is committed in the i-th ExtCom rather than (aSi , d
S
i , e

S
i) for every i 6∈ ΓS .

– In Stage 6, αi is a random bit rather than αi = u ⊕ ci for every i ∈ ∆, and ρ̃i is not computed for any
i ∈ ∆.

Then, SimOT determines the implicit inputs v∗0 , v
∗
1 of A as follows.

1. For the commitments from A in Stage 2-1, the committed strings aS = (aS1 , . . . , a
S
11n) are extracted by

SimOT as described in Remark 7.

2. Define rS = (rS1 , . . . , r
S
11n) by rSi

def
= aSi ⊕ bSi for each i ∈ [11n] and parse rSi as si,0 ‖ si,1 ‖ τSi for each

i ∈ [11n]. (Notice that rS is the outcome of the coin-tossing that A must have obtained.)

3. Define ρextb = (ρextb,i)i∈∆ for each b ∈ {0, 1} as follows: ρextb,i
def
= βb,i ⊕ si,b⊕αi if A executed the i-th mS-OT

in stage 3 honestly using si,0 ‖si,1 ‖τSi , and ρextb,i
def
= ⊥ otherwise.

4. For each b ∈ {0, 1}, define v∗b
def
= Value(ρextb , ΓR ∩∆).

Then, SimOT sends v∗0 , v
∗
1 to the ideal functionality if both of the following hold for each b ∈ {0, 1}:

1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR or
0.14-far from any such valid codeword.

Otherwise (i.e. if there exists b ∈ {0, 1}) such that one of the above does not holds), SimOT aborts the
simulation.

B.2 Proof of Indistinguishability

We show the indistinguishability by using a hybrid argument. Before defining hybrid experiments, we define
special messages, which we use in the definitions of the hybrid experiments. (Essentially, they are the messages
on extracted by the simulator in straight-line using the code of A.)

– first special message is the message sent by S in Stage 1-1 (which is supposed to be ΓS ⊕ φS).

– second special message is the message sent by R in Stage 1-2 (which is supposed to be ΓR ⊕ φR).

– third special message is the message sent by S in Stage 2-1 (which is supposed to be {zSi }i∈[11n]).

– fourth special message is the message sent by R in Stage 2-2 (which is supposed to be {zRi }i∈[11n]).

29

B.2.1 Hybrid experiments

Now, we define hybrid experiments. Let m be the bound on the number of the sessions that A starts. Note
that the number of special messages among m sessions can be bounded by 4m. We order those 4m special
messages by the order of their appearances; we use SMk to denote the k-th special message, and s(k) to
denote the session that SMk belongs to.

We start by defining hybrids H0 and Hk:1, . . . ,Hk:7 for k ∈ [4m]. In addition, we will additionally have

2m intermediate hybrids, denoted: H
(1)
k:1 to H

(m)
k:1 and H

(1)
k:5 to H

(m)
k:5 , for each k. (For convenience, in what

follows we occasionally denote H0 as H0:7.)

Remark 8 (Rough idea of the hybrids). In the sequence of the hybrid experiments, we gradually modify the
real-world experiment to the ideal-world one. We make sure that Hk:i (i ∈ [7]) deviates from the previous
hybrid only after SMk. These properties help us prove the indistinguishability of each neighboring hybrids
by using the extracted commitment as non-uniform advice and rely on the non-uniform security of the
underlying primitives to prove indistinguishability.14 ♦

Hybrid H0. H0 is the same as the real experiment.

Hybrid H
(i)
k:1 (i ∈ [m]). Recall that Stage 0-1 contains 11n+ 1 (independent) parallel executions of RobCom

(Protocol 2), where S commits to φS , ψS1 , . . . , ψ
S
11n respectively. Hybrid H

(i)
k:1 is identical to Hk−1:7 except

that in session i, if S is corrupted, SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in all
the 11n+ 1 RobCom executions in Stage 0-1b.

Note that in hybrid H
(i)
k:1, SimOT extracts all the values φS , ψS1 , ‖ . . . , ψS11n for session i. For future usage,

the hybrid also extracts the values of ΓS and aS that S commits to in Stages 1-2 and 2-2 respectively, as
described in Remark 7, and stores them in a global table T with the corresponding session number.

Hybrid Hk:1. Hk:1 is the same as H
(m)
k:1 except that in session s(k), if S is corrupted and SMk is first special

message,

– Query table T to get the extracted value ΓS corresponding to session s(k),

– the value committed to in the i-th NMCom commitment in Stage 4 is switched to an all-zero string for
every i 6∈ ΓS ,

– the value committed to in the i-th ExtCom commitment in Stage 4 is switched to an all-zero string for
every i 6∈ ΓS .

Hybrid Hk:2. Hk:2 is the same as Hk:1 except that in session s(k), if S is corrupted and SMk is first special
message, the i-th mS-OT in Stage 3 is executed with a random input and true randomness for every i 6∈ ΓS .

Hybrid Hk:3. Hk:3 is the same as Hk:2 except that in session s(k), if S is corrupted and SMk is third special
message, the following modifications are made.

1. Query table T to get the extracted value aS corresponding to session s(k). Define rS = (rS1 , . . . , r
S
11n) by

rSi
def
= aSi ⊕ bSi for each i ∈ [11n], and parse rSi as si,0 ‖si,1 ‖τSi for each i ∈ [11n]. Define ρextb = (ρextb,i)i∈∆

for each b ∈ {0, 1} as follows: ρextb,i
def
= βb,i ⊕ si,b⊕αi if A executed the i-th mS-OT in stage 3 honestly

using si,0 ‖si,1 ‖τSi , and ρextb,i = ⊥ otherwise.

2. R outputs Value(ρextu , ΓR ∩ ∆) rather than Value(ρ̃, ΓR ∩ ∆). (Recall that u is the real input to R.) if
both of the following hold for each b ∈ {0, 1}:
(a) |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

(b) ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR or
0.15-far from any such valid codeword.

Otherwise (i.e. if there exists b ∈ {0, 1}) such that one of the above does not holds), the execution of the
hybrid is aborted.

14 We remark that, unlike [GKP18], in our case it is possible to get rid of the non-uniform argument by using (a
slightly more involved) averaging argument since in our case, the extraction procedure is polynomial time. The
proof using non-uniform advice is simpler.

30

Hybrid Hk:4. Hk:4 is the same as Hk:3 except that in session s(k), if S is corrupted and SMk is third special
message, αi is a random bit rather than αi = u⊕ci for every i ∈ ∆ in Stage 6-1 and ρ̃i is no longer computed
for any i ∈ ∆ in Stage 6-3.

Hybrid H
(i)
k:5 (i ∈ [m]). Recall that Stage 0-2 contains 11n+ 1 (independent) parallel executions of RobCom

(Protocol 2), where R commits to φR, ψR1 , . . . , ψ
R
11n respectively. Hybrid H

(i)
k:5 is identical to Hk:4 except that

in session i, if R is corrupted, SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in all the
11n+ 1 RobCom executions in Stage 0-2b.

Note that in hybrid H
(i)
k:5, SimOT already extracts all the values φR, ψR1 , ‖ . . . , ψR11n for session i. For

future usage, the hybrid also extracts the values of ΓR and aR that R commits to in Stages 1-2 and 2-2
respectively, as described in Remark 6, and stores them in a global table T with the corresponding session
number.

Hybrid Hk:5. Hk:5 is the same as H
(m)
k:5 except that in session s(k), if R is corrupted and SMk is second

special message,

– Query table T to get the extracted value ΓR corresponding to session s(k),

– the value committed in the i-th NMCom commitment in Stage 7 is switched to an all-zero string for
every i 6∈ ΓR,

– the value committed in the i-th ExtCom commitment in Stage 7 is switched to an all-zero string for every
i 6∈ ΓR.

Hybrid Hk:6. Hk:6 is the same as Hk:5 except that in session s(k), if R is corrupted and SMk is second
special message, the i-th mS-OT in Stage 3 is executed with a random input and true randomness for every
i 6∈ ΓR.

Hybrid Hk:7. Hk:7 is the same as Hk:6 except that in session s(k), if R is corrupted and SMk is fourth special
message, the following modifications are made.

1. Query table T to get the extracted value aR corresponding to session s(k). Define rR = (rR1 , . . . , r
R
11n)

by rRi
def
= aRi ⊕ bRi for each i ∈ [11n], and parse rRi as ci ‖τRi for each i ∈ [11n]. Define u∗ as follows. Let

I0 and I1 be the set such that for b ∈ {0, 1} and i ∈ ∆, we have i ∈ Ib if and only if:

– i ∈ ΓR, or

– A did not execute the i-th mS-OT in Stage 3 honestly using ci ‖τRi as the input and randomness, or

– ci = b ⊕ αi, and A executed the i-th mS-OT in Stage 3 honestly using ci ‖ τRi as the input and
randomness.

Abort the execution if both of |I0| ≥ 6n + 1 and |I1| ≥ 6n + 1 hold. Otherwise, define u∗ by u∗
def
= 0 if

|I0| ≥ 6n+ 1 and u∗
def
= 1.

2. In Stage 6, ρ1−u∗ is a secret sharing of a random bit rather than that of v1−u∗ .

We remark that in H4m:7, all the messages from the honest parties and their output are computed as in
SimOT.

B.2.2 Indistinguishability of each neighboring hybrids

Below, we show that each neighboring hybrids are indistinguishable, and additionally show, for technical
reasons, that an invariant condition holds in each session of every hybrid.

First, we define the invariant condition.

Definition 5 (Invariant Condition (when R is corrupted)). For any session in which R is corrupted,
we say that the invariant condition holds in that session if the following holds when the cut-and-choose in
Stage 5 is accepted.

1. Let (âR1 , d̂
R
1), . . . (âR11n, d̂

R
11n) be the values that are committed in NMCom in Stage 4. Let Ibad ⊂ [11n] be

the set such that i ∈ Ibad if and only if

31

(a) (âRi , d̂
R
i) is not valid in terms of the check in Stage 5-3b, i.e. d̂Ri is not a valid decommitment of ψRi

w.r.t. Stage-0-2 RobCom, or âRi ⊕ ψRi does not equal the value zRi it received in Stage-2-2; or

(b) R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as the input and randomness,
where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, it holds that |Ibad| < n.

Remark 9. Roughly speaking, this condition guarantees that most of the mS-OTs in Stage 3 are honestly
executed using the outcome of the coin tossing, which in turn guarantees that the cheating receiver’s input
can be extracted by extracting the outcome of the coin tossing. ♦

Remark 10. When Stage 5 is accepted, we also have Ibad ∩ ΓS = ∅ from the definition of Ibad. ♦

Definition 6 (Invariant Condition (when S is corrupted)). For any session in which S is corrupted,
we say that the invariant condition holds in that session if the following hold when the cut-and-choose in
Stage 8 is accepted.

1. Let (âS1 , d̂
S
1), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in Stage 7. Let Ibad ⊂ [11n] be

the set such that i ∈ Ibad if and only if

(a) (âSi , d̂
S
i) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decommitment of ψSi

w.r.t. Stage-0-1 RobCom, or âSi ⊕ ψSi does not equal the value zSi it received in Stage-2-1; or

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input and random-
ness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnmb = (ρnmb,i)i∈∆ as follows: ρnmb,i
def
= βb,i ⊕ ŝi,b⊕αi

if i 6∈ Ibad and ρnmb,i
def
= ⊥

otherwise. Then, for each b ∈ {0, 1}, ρnmb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies
wi = ρnmb,i for every i ∈ ΓR or 0.15-far from any such valid codeword.

Remark 11. Roughly speaking, this condition guarantees that the cheating sender’s input can be extracted
from the outcome of the coin tossing. In particular, it guarantees that the sharing that is computed from
the outcome of mS-OTs (i.e., the sharing that is computed by the honest receiver) and the sharing that is
computed from the outcome of the coin tossing (i.e., the sharing that is computed by the simulator) are very
“close” (see Claim 5 below). ♦

Remark 12. When Stage 8 is accepted, we also have Ibad ∩ ΓR = ∅ from the definition of Ibad. ♦

Next, we show that the invariant condition holds in every session in H0 (i.e., the real experiment).

Definition 7. We say that A cheats in a session if the invariant condition does not hold in that session.

Next, we establish the computational indistinguishability among hybrids by a sequence of lemmata. We
start with the following lemma:

Lemma 1. In H0, A does not cheat in every session except with negligible probability.

Proof. The proof of this lemma is identical to the proof in [GKP18]. We include it here for completeness.
Assume for contradiction that in H0, A cheats in a session with non-negligible probability. Since the

number of the sessions is bounded by a polynomial, there exists a function i∗(·) and a polynomial p(·) such
that for infinitely many n, A cheats in the i∗(n)-th session with probability at least 1/p(n); furthermore,
since A cheats only when either R or S is corrupted, in the i∗(n)-th session either R is corrupted for infinitely
many such n or S is corrupted for infinitely many such n. In both cases, we derive contradiction by using A
to break the hiding property of RobCom.

Case 1. R is corrupted in the i∗(n)-th session. We show that when A cheats, we can break the hiding
property of the RobCom(φS) commitment in Stage 0-1 (i.e., the commitment by which φS is committed to).
From the definition of the invariant condition (Definition 5), when A cheats, we have |Ibad| ≥ n even though

32

the cut-and-choose in Stage 5 is accepting (and hence Ibad ∩ ΓS = ∅ as remarked in Remark 10), where
Ibad ⊆ [11n] is the set defined from the committed values of the NMCom commitments in Stage 4. If we can
compute Ibad efficiently, we can use it to distinguish ΓS from a random subset of size n (this is because a
random subset Γ of size n satisfies Ibad ∩Γ = ∅ only with negligible probability when |Ibad| ≥ n), so we can
use it to break the hiding property of the RobCom commitment to φS , which is used to mask ΓS . However,
Ibad is not efficiently computable since the committed values of the NMCom commitments are not efficiently
computable. We thus first show that we can “approximate” Ibad by extracting the committed values of the
ExtCom commitments in Stage 4. Details are given below.

First, we observe that if we extract the committed values of the ExtCom commitments in Stage 4 of the
i∗(n)-th session, the extracted values (âR1 , d̂

R
1 , ê

R
1), . . . , (âR11n, d̂

R
11n, ê

R
11n), satisfy the following condition.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âRi , d̂
R
i), êRi) is not a valid decommitment of the i-th NMCom commitment in Stage 4; or

2. (âRi , d̂
R
i) is not valid in terms of the check in Stage 5-3b, i.e. d̂Ri is not a valid decommitment of ψRi

w.r.t. Stage-0-2 RobCom, or âRi ⊕ ψRi does not equal the value zRi it received in Stage-2-2; or

3. R does not execute the i-th mS-OT in Stage 3 honestly using ĉi ‖ τ̂Ri as the input and randomness,
where ĉi ‖ τ̂Ri is obtained from r̂Ri = âRi ⊕ bRi .

Then, |Îbad| ≥ n and Îbad ∩ ΓS = ∅ with probability at least 1/2p(n).

The extracted values satisfy this condition because when A cheats, we have |Îbad| ≥ n and Îbad ∩ ΓS = ∅
except with negligible probability. (We have |Îbad| ≥ n since we have Ibad ⊂ Îbad from the definitions of
Ibad, Îbad and the binding property of NMCom. We have Îbad ∩ ΓS = ∅ since when the cut-and-choose in
Stage 5 is accepting, for every i ∈ ΓS the i-th ExtCom commitment is a valid decommitment of the i-th
NMCom commitment, and Ibad ∩ ΓS = ∅.)

Based on this observation, we derive contradiction by considering the following adversary ARobCom against
the hiding property of RobCom.

ARobCom receives a RobCom commitment c∗ in which either φ0
S or φ1

S is committed. Then, ARobCom

internally executes the experiment H0 honestly except that in the i∗(n)-th session, ARobCom uses c∗

as the commitment in Stage 0-1 (i.e., as the RobCom commitment in which S commits to string
which will be used to mask ΓS in Stage 1-1). In Stage 1-1, ARobCom always use φ1

S to mask ΓS . When
the experiment H0 reaches Stage 4 of the i∗(n)-th session, ARobCom extracts the committed values of
the ExtCom commitments in this stage by using its extractability.15 Let Îbad ⊂ [11n] be the set that
is defined as above from the extracted values. Then, ARobCom outputs 1 if and only if |Îbad| ≥ n and
Îbad ∩ ΓS = ∅.

If ARobCom receives a commitment to φ1
S , ARobCom outputs 1 with probability at least 1/2p(n) (this follows

from the above observation). In contrast, if ARobCom receives a commitment to φ0
S , ARobCom outputs 1 with

exponentially small probability (this is because φS1 ⊕ΓS is a pure random string now, so the probability that
|Îbad| ≥ n but Îbad ∩ Γ 1

S = ∅ is exponentially small). Hence, ARobCom breaks the hiding property of RobCom.

Case 2. S is corrupted in the i∗(n)-th session. The proof for this case is similar to (but a little more
complex than) the one for Case 1. Specifically, we show that if the invariant condition does not hold, we
can break the hiding property of RobCom(φR) in Stage 0-2 by approximating Ibad using the extractability
of ExtCom. We give a formal proof for this case in Section C.1. (A somewhat similar proof is given as the
proof of Claim 6 later.) ut

Next, we show the indistinguishability between each neighboring hybrids.

Lemma 2. Assume that in Hk−1:7 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk−1:7 and H
(1)
k:1 are indistinguishable, and

15 This extraction involves rewinding the execution of the whole experiment, i.e., the adversary as well as all the
other parties.

33

– in H
(1)
k:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first prove the indistinguishability.

In session 1 of H
(1)
k:1 , if S is not corrupted, H

(1)
k:1 and Hk−1:7 are identical, and the claim holds.

Otherwise, the only difference between the two hybrids is that while simulating R for the adversary in

sessions 1, hybrid Hk−1:7 uses the honest prover algorithm whereas H
(1)
k:1 uses the extractor of Protocol 2 in

the 11n+ 1 RobCom executions in Stage 0-1b.
We introduce the following sequence of intermediate hybrids, where we switch from the honest receiver

algorithm to the extractor for these 11n+ 1 RobCom executions one by one:

Hybrid H
(1:j)
k:1 (j ∈ [11n+ 1]). This hybrid is identical to Hk−1:7 except that in session 1, if S is corrupted,

SimOT uses the (straight-line) extractor’s strategy of Protocol 2 in the first j RobCom executions in Stage
0-1b.

Specially, we denote H
(1:0)
k:1 = Hk−1:7. Also note that H

(1:11n+1)
k:1 is identical to H

(1)
k:1 .

For all j ∈ [11n+1], the indistinguishability between H
(1:j−1)
k:1 and H

(1:j)
k:1 follows from the same argument

in the proof of the extractability for Protocol 2, with the only difference that there are other sessions
running besides the j + 1-th RobCom in Stage 0-1b of session 1. To deal with this, we note that Step 5d
in Protocol 2 is instantiated with the commit-and-proof scheme shown in Protocol 1, whose Proof Phase
gives us `-robustness (as we proved in Theorem 3). In the design of our OT, we set the robustness to be
`(n) = m · νot(n), which is large enough to encompass all the messages from the remaining part of the
execution. With this modification, the same sequence of hybrids for the extractability of Protocol 2 also

works for proving indistinguishability among H
(1:0)
k:1 to H

(1:11n+1)
k:1 . This established the indistinguishability

between Hk−1:7 and H
(1)
k:1 .

To prove that A does not cheat in sessions s(k), ..., s(4m) of H
(1)
k:1 , we exploit the same argument as in

the proof of Lemma 1. Note that the proof of Lemma 1 involves a rewinding step to extract the committed
value of ExtCom. However, this rewinding happens only after the completion of Stage 0-1b and in particular
does not rewind any part of Stage 0-1b of session 1. Therefore, the same proof goes through. ut

Then we note that for i ∈ {2, . . . ,m}, the switch from H
(i−1)
k:1 to H

(i)
k:1 is just identical to the one in

Lemma 2, but happening in session i. Therefore, using the proof of Lemma 2, we have the following lemma.

Lemma 3. For i ∈ {2, . . . ,m}, assume that in H
(i−1)
k:1 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)

except with negligible probability. Then,

– H
(i−1)
k:1 and H

(i)
k:1 are indistinguishable, and

– in H
(i)
k:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

From here onwards, the proof of indistinguishability of hybrids up to hybrid Hk:4 is identical to the proofs
in [GKP18] (with minor notational changes) except that we do not require brute-force extraction of inputs;
instead they are accessed directly from table T . We provide the proofs here for completeness.

Lemma 4. Assume that in H
(m)
k:1 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with

negligible probability. Then,

– H
(m)
k:1 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. This proof for this lemma is identical to that in [GKP18], except that the hybrid uses the table T
to get the extracted values it needs, instead of extracting by brute force. We present the full proof here for
completeness.

We prove the lemma by using a hybrid argument. Specifically, we consider the following intermediate
hybrid H ′k:1.

Hybrid H ′k:1. H
′
k:1 is the same as H

(m)
k:1 except that in session s(k), if S is corrupted and SMk is first special

message,

34

– the committed subset ΓS is extracted by querying T in Stage 1-1, and

– the value committed to in the i-th ExtCom commitment in Stage 4 is switched to an all-zero string for
every i 6∈ ΓS .

Claim 3. Assume that in H
(m)
k:1 , A does not cheat in sessions s(k), . . . , s(4m) except with negligible proba-

bility. Then,

– H
(m)
k:1 and H ′k:1 are indistinguishable, and

– in H ′k:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first show the indistinguishability between H
(m)
k:1 and H ′k:1. Assume for contradiction that H

(m)
k:1

and H ′k:1 are distinguishable. From an average argument, we can fix the execution of the experiment up

until SMk (inclusive) in such a way that even after being fixed, H
(m)
k:1 and H ′k:1 are still distinguishable.

As remarked in Remark 8, no extraction is performed after SMk in H
(m)
k:1 and H ′k:1; hence, by considering

the transcript (including the inputs and randomness of all the parties) and the table T up until SMk as
non-uniform advice, we can break the hiding property of ExtCom as follows.

The adversary AExtCom internally executes H
(m)
k:1 from SMk using the non-uniform advice. In Stage 4

of session s(k), AExtCom sends (aRi , d
R
i , e

R
i)i 6∈ΓS

and (0, 0, 0)i 6∈ΓS
to the external committer, receives

back ExtCom commitments (in which either (aRi , d
R
i , e

R
i)i 6∈ΓS

or (0, 0, 0)i 6∈ΓS
are committed to), and

feeds them into H
(m)
k:1 . After the execution of H

(m)
k:1 finishes, AExtCom outputs whatever Z outputs in

the experiment.

When AExtCom receives commitments to (aRi , d
R
i , e

R
i)i 6∈ΓS

, the internally executed experiment is identical with

H
(m)
k:1 , whereas when AExtCom receives a commitments to (0, 0, 0)i6∈ΓS

, the internally executed experiment is

identical with H ′k:1. Hence, from the assumption that H
(m)
k:1 and H ′k:1 are distinguishable (even after being

fixed up until SMk), AExtCom distinguishes ExtCom commitments.
We next show that in H ′k:1, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that

in H ′k:1, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from an
average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way that even

after being fixed, A cheats in session s(j) only with negligible probability in H
(m)
k:1 but with non-negligible

probability in H ′k:1.
Then, by considering the transcript and the table T up until SMk as non-uniform advice, we can break the

robust non-malleability of NMCom as follows. (Note that the ExtCom commitments in sessions s(k), . . . , s(4m)
starts only after SMk.)

The man-in-the-middle adversary ANMCom internally executes H
(m)
k:1 from SMk using the non-uniform

advice. In Stage 4 of session s(k), ANMCom sends (aRi , d
R
i , e

R
i)i 6∈ΓS

and (0, 0, 0)i 6∈ΓS
to the external

committer, receives back ExtCom commitments (in which either (aRi , d
R
i , e

R
i)i6∈ΓS

or (0, 0, 0)i 6∈ΓS
are

committed to), and feeds them into H
(m)
k:1 . Also, in session s(j), ANMCom forwards the NMCom com-

mitments from A to the external receiver (specifically, the NMCom commitments in Stage 4 if R is

corrupted and in Stage 7 if S is corrupted). After the execution of H
(m)
k:1 finishes, ANMCom outputs

its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed ex-
periment). DNMCom then outputs 1 if and only if A cheated in session s(j). (Notice that given the
committed values of the NMCom commitments, DNMCom can check whether A cheated or not in
polynomial time.)

When ANMCom receives commitments to (aRi , d
R
i , e

R
i)i 6∈ΓS

, the internally executed experiment is identical with

H
(m)
k:1 , whereas when ANMCom receives a commitments to (0, 0, 0)i6∈ΓS

, the internally executed experiment is

35

identical with H ′k:1. Hence, from the assumption that A cheats in session s(j) with negligible probability in

H
(m)
k:1 but with non-negligible probability in H ′k:1, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Claim 3. ut

Claim 4. Assume that in H ′k:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.
Then,

– H ′k:1 and Hk:1 are indistinguishable, and

– in Hk:1, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

This claim can be proven very similarly to Claim 3 (the only difference is that we use the hiding property of
NMCom rather than that of ExtCom in the first part, and use the non-malleability of NMCom rather than
its robust non-malleability in the second part). We therefore give a proof in Section C.2.

This completes the proof of Lemma 4. ut

Lemma 5. Assume that in Hk:1 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:1 and Hk:2 are indistinguishable, and

– in Hk:2, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that are used in some of the
mS-OTs in Stage 3, where those that are derived from the outcomes of the coin tossing is used in Hk:1

and random inputs and true randomness are used in Hk:2. Intuitively, we prove this lemma by using the
security of the Stage-2-2 coin tossing (which is guaranteed by the hiding property of RobCom(ψRi)’s) because
it guarantees that the outcome of the coin tossing is pseudorandom. The proof is quite similar to the proof
of Claim 3 (we use the hiding of RobCom(ψRi)’s rather than that of ExtCom), and given in Section C.3.

Lemma 6. Assume that in Hk:2 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:2 and Hk:3 are indistinguishable, and

– in Hk:3, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. Recall that Hk:2 and Hk:3 differ only in that in session s(k) of Hk:3, if S is corrupted and SMk is third
special message, either R outputs Value(ρextu , ΓR ∩∆) rather than Value(ρ̃, ΓR ∩∆) or the hybrid is aborted.

For proving the lemma, it suffices to show that in session s(k) of Hk:3,

1. the hybrid is not aborted except with negligible probability, and

2. if the hybrid is not aborted we have Value(ρextu , ΓR ∩∆) = Value(ρ̃, ΓR ∩∆)

To see that showing these two is indeed sufficient for proving the lemma, observe the following. First, these two
imply that in session s(k) of Hk:3, the probability that the hybrid is aborted or we have Value(ρextu , ΓR∩∆) =
Value(ρ̃, ΓR ∩∆) is negligible, so Hk:2 and Hk:3 are statistically close. Second, since Hk:2 and Hk:3 proceed
identically until the end of session s(k), and

1. if the experiment is not aborted in session s(k), Hk:2 and Hk:3 continue to proceed identically after the
end of session s(k), and

2. if the hybrid is aborted in session s(k), A clearly does not cheat in any session after the end of session
s(k)

the probability that A cheats in sessions s(k), ..., s(4m) is not increased in Hk:3.
Now, we first show that in session s(k) of Hk:3, the hybrid is not aborted except with negligible probability.

Since Hk:2 and Hk:3 proceed identically until the end of session s(k), we have that in Hk:3, A does not cheat
in session s(k) except with negligible probability. So, it suffices to show that when session s(k) is accepting
and A does not cheat in session s(k), the hybrid is not aborted in session s(k). Recall that if A does not
cheat in an accepting session (in which S is corrupted), we have the following.

1. Let (âS1 , d̂
S
1), . . . (âS11n, d̂

S
11n) be the values that are committed in NMCom in Stage 7. Let Ibad ⊂ [11n] be

the set such that i ∈ Ibad if and only if

36

(a) (âSi , d̂
S
i) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decommitment of ψSi

w.r.t. Stage-0-1 RobCom, or âSi ⊕ ψSi does not equal the value zSi it received in Stage-2-1; or

(b) S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input and
randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Then, it holds that |Ibad| < 0.1n.

2. For each b ∈ {0, 1}, define ρnmb = (ρnmb,i)i∈∆ as follows: ρnmb,i
def
= βb,i ⊕ ŝi,b⊕αi

if i 6∈ Ibad and ρnmb,i
def
= ⊥

otherwise. Then, for each b ∈ {0, 1}, ρnmb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies
wi = ρnmb,i for every i ∈ ΓR or 0.15-far from any such valid codeword.

We show that the above two imply that the hybrid is not aborted at the end of the session, i.e. that both
of the following hold for each b ∈ {0, 1}.
1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR or
0.14-far from any such valid codeword.

Fix any b ∈ {0, 1}. First, we notice that we can obtain |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n from |Ibad| < 0.1n since
we have {i ∈ ∆ s.t. ρextb,i 6= ⊥} ⊆ Ibad from the definition of ρextb and Ibad. Next, we observe that ρextb is either
0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR or 0.14-far from any such
valid codeword. From the assumption that A does not cheat, it suffices to consider the following two cases.

Case 1. ρnmb is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every i ∈ ΓR∩∆:
In this case, ρextb is 0.9-close to w, and wi = ρextb,i holds for every i ∈ ΓR. This is because for every i such
that ρnmb,i = wi, we have ρnmb,i 6= ⊥ and thus we have ρnmb,i = ρextb,i from the definition of ρnmb .

Case 2. ρnmb is 0.15-far from any valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i for every
i ∈ ΓR ∩ ∆: In this case, ρextb is 0.14-far from any valid codeword w′ that satisfies w′i = ρextb,i for every
i ∈ ΓR ∩∆. This can be seen by observing the following: (1) for every i ∈ ΓR ∩∆, we have i 6∈ Ibad (this
is because the session is accepting) and hence ρextb,i = ρnmb,i ; (2) therefore, for any valid codeword w′ that
satisfies w′i = ρextb,i for every i ∈ ΓR ∩∆, we have that w′ also satisfies w′i = ρnmb,i for every i ∈ ΓR ∩∆; (3)
then, from the assumption of this case, ρnmb is 0.15-far from w′; (4) now, since ρnmb and ρextb are 0.99-close
(this follows from |Ibad| < 0.1n), ρextb is 0.14-far from w′.

We therefore conclude that when session s(k) is accepting and A does not cheat in session s(k), the hybrid
is not aborted in session s(k).

Next, we show that in session s(k) of Hk:3 if the hybrid is not aborted, we have Value(ρextu , ΓR ∩ ∆) =
Value(ρ̃, ΓR ∩∆). To show this, it suffices to show the following two claims.

Claim 5. For any x = (xi)i∈∆,y = (yi)i∈∆ and a set Θ, we have Value(x, Θ) = Value(y, Θ) if the following
conditions hold.

1. x and y are 0.99-close, and xi = yi holds for every i ∈ Θ.

2. If xi 6= ⊥, then xi = yi.

3. x is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi for every i ∈ Θ or 0.14-far
from any such valid codeword.

Claim 6. In session s(k) of Hk:3, if the sender S is corrupted, the session is accepting, and the session is
not aborted the following hold.

1. ρextu and ρ̃ are 0.99-close, and ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.

2. If ρextu,i 6= ⊥, then ρextu,i = ρ̃i.

3. ρextu is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextu,i for every i ∈ ΓR ∩∆ or
0.14-far from any such valid codeword.

We prove each of the claims below.

Proof (of Claim 5). We consider the following two cases.

37

Case 1. x is 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = xi for every i ∈ Θ: First,
we observe that y is 0.9-close to w. Since w is a valid codeword, we have wi 6= ⊥ for every i ∈ ∆; thus,
for every i such that xi = wi, we have xi 6= ⊥. Recall that from the assumed conditions, for every i such
that xi 6= ⊥, we have xi = yi. Therefore, for every i such that xi = wi, we have yi = wi, which implies
that y is 0.9-close to w.
Next, we observe that w satisfies wi = yi for every i ∈ Θ. From the assumed conditions, we have xi = yi
for every i ∈ Θ. Also, from the condition of this case, w satisfies wi = xi for every i ∈ Θ. From these
two, we have that w satisfies wi = yi for every i ∈ Θ.
Now, from the definition of Value(·, ·), we have Value(x, Θ) = Value(y, Θ) = Decode(w).

Case 2. x is 0.14-far from any valid codeword w = (wi)i∈∆ that satisfies wi = xi for every i ∈ Θ:
For any valid codeword w′ = (w′i)i∈∆ that satisfies w′i = yi for every i ∈ Θ, we observe that y is 0.1-far
from w′. Since we assume that xi = yi holds for every i ∈ Θ, we have w′i = xi for every i ∈ Θ. Therefore,
from the assumption of this case, x is 0.14-far from w′. Now, since we assume that x and y are 0.99-close,
y is 0.1-far from w′.
Now, from the definition of Value(·, ·), we conclude that:

Value(x, Θ) = Value(y, Θ) = ⊥.

Notice that from the assumed conditions, either Case 1 or Case 2 is true. This concludes the proof of Claim 5.
ut

Proof (of Claim 6). Recall that if the hybrid is not aborted in an accepting session in which S is corrupted,
we have the following for each b ∈ {0, 1} in that session.

1. |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n.

2. ρextb is either 0.9-close to a valid codeword w = (wi)i∈∆ that satisfies wi = ρextb,i for every i ∈ ΓR or
0.14-far from any such valid codeword.

Thus, it suffices to show that the above two imply the first condition in the claim statement.
First, we show that ρextu and ρ̃ are 0.99-close and that ρextu,i = ρ̃i holds for every i ∈ ΓR ∩ ∆. From the

definition of ρextu , we have ρextu,i = ρ̃i for every i such that ρextb,i 6= ⊥ (this is because for every such i, A executed
the i-th mS-OT in Stage 3 honestly using the coin obtained in Stage 2-1, which implies that the value s̃i
that was obtained from the i-th mS-OT is equal to the value si,ci that was obtained by extracting the coin
in Stage 2-1 by brute-force). Then, since |{i ∈ ∆ s.t. ρextb,i 6= ⊥}| < 0.1n and {i ∈ ∆ s.t. ρextb,i 6= ⊥} ∩ ΓR = ∅
(the latter holds since the session would be rejected otherwise), we have that ρextu and ρ̃ are 0.99-close and
that ρextu,i = ρ̃i holds for every i ∈ ΓR ∩∆.

Next, we show that if ρextu,i 6= ⊥ then ρextu,i = ρ̃i. From the definition of ρextu , if ρextu,i 6= ⊥, A executed the i-th
mS-OT in Stage 3 honestly using the coin obtained in Stage 2-1, so we have ρextu,i = ρ̃i from the argument
same as above.

This concludes the proof of Claim 6. ut

This concludes the proof of Lemma 6. ut

Lemma 7. Assume that in Hk:3 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:3 and Hk:4 are indistinguishable, and

– in Hk:4, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S is corrupted and SMk is third
special message, αi is a random bit rather than αi = u⊕ ci for every i ∈ ∆ in Stage 6-1. Intuitively, we can
prove this lemma by using the security of mS-OT: For every i 6∈ ΓS , the choice bit ci of the i-th mS-OT in
Stage 3 is hidden from A and hence αi = u ⊕ ci in Hk:3 is indistinguishable from a random bit. Formally,
we prove this Lemma in the same way as we do for Claim 3 (we use the security of mS-OT rather than the
hiding of ExtCom); the proof is given in Section C.4.

38

Lemma 8. Assume that in Hk:4 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:4 and H
(1)
k:5 are indistinguishable, and

– in H
(1)
k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

The only difference between Hk:4 and H
(1)
k:5 is: in session 1, if R is corrupted, while simulating S for the

adversary, hybrid Hk:4 uses the honest prover algorithm whereas H
(1)
k:5 uses the extractor of Protocol 2 to

execute the 11n + 1 RobCom instances in Stage 0-2b (of session 1). The proof of this lemma is identical to
that of Lemma 2, and hence omitted.

Also, similar as for Lemma 3, we have the following lemma.

Lemma 9. For i ∈ {2, . . . ,m}, assume that in H
(i−1)
k:5 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m)

except with negligible probability. Then,

– H
(i−1)
k:5 and H

(i)
k:5 are indistinguishable, and

– in H
(i)
k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

The next lemma is the counterpart of Lemma 4 when R is corrupted.

Lemma 10. Assume that in H
(m)
k:5 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with

negligible probability. Then,

– H
(m)
k:5 and Hk:5 are indistinguishable, and

– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Since hybrids H
(m)
k:5 , Hk:5 differ only in the values committed to in NMCom and ExtCom for the indices

outside of ΓR, this lemma can be proven identically with Lemma 4. For completeness, we give a formal proof
in Section C.5.

Lemma 11. Assume that in Hk:5 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:5 and Hk:6 are indistinguishable, and

– in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Since hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are used in some of the mS-OTs
in Stage 3, this lemma can be proven identically with Lemma 5 (which in turn can be proven quite similarly
to Lemma 4). For completeness, we give a formal proof in Section C.6.

Lemma 12. Assume that in Hk:6 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:6 and Hk:7 are indistinguishable, and

– in Hk:7, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We prove the lemma by considering the following intermediate hybrids H ′k:6, H ′′k:6, and H ′′′k:6.

Hybrid H ′k:6. H
′
k:6 is the same as Hk:6 except that in session s(k), if R is corrupted and SMk is fourth special

message, the following modifications are made.

1. As in Hk:7, the committed strings aR = (aR1 , . . . , a
R
11n) are extracted by querying table T , rR =

(rR1 , . . . , r
R
11n) is defined by rRi

def
= aRi ⊕ bRi for each i ∈ [11n], and rRi is parsed as ci ‖ τRi for each

i ∈ [11n]. Also, I0, I1, and u∗ are defined as in Hk:7.

2. In Stage 6, βb,i is a random bit rather than βb,i = ρb,i⊕si,b⊕αi for every b ∈ {0, 1} and i ∈ ∆\Ib. (Recall
that, roughly, Ib ⊂ ∆ is the set of indices on which A could have obtained si,b⊕αi

.)

Hybrid H ′′k:6. H
′′
k:6 is the same as H ′k:6 except that in session s(k), if R is corrupted and SMk is fourth special

message, the following modification is made.

39

1. The execution of the hybrid is aborted if both of |I0| ≥ 6n+ 1 and |I1| ≥ 6n+ 1 holds.

2. In Stage 6, ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than that of v1−u∗ .

Hybrid H ′′′k:6. H
′′′
k:6 is the same as H ′′k:6 except that in session s(k), if R is corrupted and SMk is fourth special

message, the following modification is made.

1. In Stage 6, βb,i is βb,i = ρb,i ⊕ si,b⊕αi
rather than a random bit for every b ∈ {0, 1} and i ∈ ∆ \ Ib.

Notice that H ′′′k:6 is identical with Hk:7.

Claim 7. Assume that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.
Then,

– Hk:6 and H ′k:6 are indistinguishable, and

– in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is corrupted and SMk is fourth
special message, βb,i is a random bit rather than βb,i = ρb,i ⊕ si,b⊕αi

for every b ∈ {0, 1} and i ∈ ∆ \ Ib.
Intuitively, we can prove this claim by using the security of mS-OT: For every i ∈ ∆ \ Ib, A executed the
i-th mS-OT honestly with choice bit (1 − b) ⊕ αi, and the sender’s input and randomness of this mS-OT
are not revealed in Stage 8; therefore, the value of si,b⊕αi

is hidden from A and thus βb,i = ρb,i ⊕ si,b⊕αi
is

indistinguishable from a random bit. Formally, we prove this claim in the same way as we do for Claim 3
(we use the security of mS-OT rather than the hiding of ExtCom); a formal proof is given in Section C.7.

Claim 8. Assume that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.
Then,

– H ′k:6 and H ′′k:6 are indistinguishable, and

– in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. Recall that hybrid H ′′k:6 differs from H ′k:6 in that in Stage 6 of session s(k), either the hybrid is aborted
or ρ1−u∗ = {ρ1−u∗,i}i∈∆ is a secret sharing of a random bit rather than that of v1−u∗ .

For proving the lemma, it suffices to show that in session s(k) of H ′′k:6, the hybrid is not aborted (i.e. we
have |I0| ≤ 6n or |I1| ≤ 6n) except with negligible probability. To see that showing this is indeed sufficient
for proving the lemma, observe the following: First, if the hybrid is not aborted, we have |I1−u∗ | ≤ 6n, so
β1−u∗,i is a random bit on at least 4n indices and thus ρ1−u∗,i is hidden on at least 4n indices, which implies
that H ′k:6 and H ′′k:6 are statistically indistinguishable. Second, since H ′k:6 and H ′′k:6 proceed indentically until
the beginning of Stage 6-2 of session s(k), and

1. if the experiment is not aborted in session s(k), H ′k:6 and H ′′k:6 continue to proceed identically after Stage
6-2 of session s(k), and

2. if the hybrid is aborted in session s(k), A clearly does not cheat in any session after Stage 6-2 of session
s(k),

the probability that A cheat in sessions s(k), ..., s(4m) is not increased in H ′′k:6.
Hence, we show that in sessoion s(k) of H ′′k:7, the hybrid is not aborted in except with negligible prob-

ability, or equivalently, that we have |I0| ≤ 6n or |I1| ≤ 6n except with negligible probability. Since H ′′k:7

proceeds identically with H ′k:7 until Stage 6-2 of session s(k), we have that A does not cheat in session s(k)
of H ′′k:7 except with negligible probability, so it suffices to show that in session s(k) of H ′′k:7, we have either
|I0| ≤ 6n or |I1| ≤ 6n whenever A does not cheat. Assume that A does not cheat in session s(k) of H ′′k:7.
Then, since |ΓR| = n and that the number of indices on which A does not execute mS-OT using the outcome
of coin-tossing is at most n, we have |I0 ∩ I1| ≤ 2n. Now, since I0, I1 ⊂ ∆ and thus |I0 ∪ I1| ≤ |∆| = 10n, we
have |I0|+ |I1| ≤ 12n, and hence, we have either |I0| ≤ 6n or |I1| ≤ 6n. ut

Claim 9. Assume that in H ′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.
Then,

– H ′′k:6 and H ′′′k:6 are indistinguishable, and

– in H ′′′k:6, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

40

Proof. This claim can be proven identically with Claim 7. ut

This completes the proof of Lemma 12. ut

From Lemmas 4 to 12, we conclude that the output of H0 and that of H4m:7 are indistinguishable, i.e.,
the output of the real world and that of the ideal world are indistinguishable. This concludes the proof of
Theorem 5.

C Omitted Proofs

C.1 The Second Half of Proof of Lemma 1

Case 2. S is corrupted in the i∗(n)-th session. We show that when A cheats, we can break the hiding
property of the RobCom(φS) commitment in Stage 0-2 (i.e., the commitment by which φR is committed to).
From the definition of the invariant condition (Definition 6), when A cheats, we have Ibad ∩ ΓR = ∅ and
either |Ibad| ≥ 0.1n or ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far from a valid codeword w = (wi)i∈∆
that satisfies wi = ρnmb,i for every i ∈ ΓR, where Ibad and ρnmb are defined from the committed values of the
NMCom commitments in Stage 7. Similar to Case 1, we first show that we can “approximate” Ibad and ρnmb
by extracting the committed values of the ExtCom commitments in Stage 7 using its extractability.

First, we observe that if we extract the committed values of the ExtCom commitments in Stage 7 of the
i∗(n)-th session, the extracted values, (âS1 , d̂

S
1 , ê

S
1), . . . , (âS11n, d̂

S
11n, ê

S
11n), satisfy the following.

– Let Îbad ⊂ [11n] be a set such that i ∈ Îbad if and only if

1. ((âS1 , d̂
S
1), êS1) is not a valid decommitment of the i-th NMCom commitment in Stage 7, or

2. (âSi , d̂
S
i) is not valid in terms of the check in Stage 8-3b, i.e. d̂Si is not a valid decommitment of ψSi

w.r.t. Stage-0-1 RobCom, or âSi ⊕ ψSi does not equal the value zSi it received in Stage-2-1; or

3. S does not execute the i-th mS-OT in Stage 3 honestly using ŝi,0 ‖ ŝi,1 ‖ τ̂Si as the input and
randomness, where ŝi,0 ‖ ŝi,1 ‖ τ̂Si is obtained from r̂Si = âSi ⊕ bSi .

Also, for each b ∈ {0, 1}, let ρ̂b = (ρ̂b,i)i∈∆ be defined as follows: ρ̂b,i
def
= βb,i ⊕ ŝi,b⊕αi

if i 6∈ Îbad and

ρ̂b,i
def
= ⊥ otherwise. Then, we have

• Îbad ∩ ΓR = ∅, and

• either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from a valid
codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR

with probability at least 1/2p(n).

More precisely, we observe that when A cheats in the i∗(n)-th session, the extracted values satisfied the
above condition except with negligible probability. Recall that when A cheats, the cut-and-choose in Stage
8 is accepting but we have

– |Ibad| ≥ 0.1n, or

– ∃b ∈ {0, 1} s.t. ρnmb is 0.85-close to but 0.1-far from a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb,i
for every i ∈ ΓR.

Also, notice that we have Îbad∩ΓR = ∅ when the cut-and-choose in Stage 8 is accepting, and have |Îbad| ≥ 0.1n
when |Ibad| ≥ 0.1n (this is because we have Ibad ⊆ Îbad from the definitions of Ibad, Îbad). Hence, to show
that the extracted values satisfy the above condition when A cheats, it suffices to show that when ∃b∗ ∈ {0, 1}
s.t. ρnmb∗ is 0.85-close to but 0.1-far from a valid codeword w = (wi)i∈∆ that satisfies wi = ρnmb∗,i for every

i ∈ ΓR, we have either |Îbad| ≥ 0.1n or ρ̂b∗ is 0.8-close to but 0.1-far from w and satisfies wi = ρ̂b∗,i for every
i ∈ ΓR. This can be shown as follows.

– If |Îbad| ≥ 0.1n, we are done.

– If |Îbad| < 0.1n, we have that ρ̂b∗ is 0.8-close to but 0.1-far from w and satisfies wi = ρ̂b∗,i for every

i ∈ ΓR. This is because if |Îbad| < 0.1n,

41

1. ρ̂b∗ is 0.8-close to w since it is 0.99-close to ρnmb∗ when |Îbad| < 0.1n, and ρnmb∗ is 0.85-close to w,

2. ρ̂b∗ is 0.1-far from w since for every i such that ρnmb∗,i 6= wi, we have ρ̂b∗,i 6= wi from the definition of
ρ̂, and

3. ρ̂b∗ satisfies wi = ρ̂b∗,i for every i ∈ ΓR since we have ρ̂b∗,i = ρnmb∗,i for every i ∈ ΓR when the
cut-and-choose in Stage 8 is accepting, and ρnmb∗ satisfies wi = ρnmb∗,i for every i ∈ ΓR.

Based on this observation, we derive contradiction by considering the following adversary ARobCom against
the hiding property of RobCom.

ARobCom receives a RobCom commitment c∗ in which either φ0
R or φ1

R is committed. Then, ARobCom

internally executes the experiment H0 honestly except that in the i∗(n)-th session, ARobCom uses c∗

as the commitment in Stage 0-2 (i.e., as the RobCom commitment in which R commits to string
which will be used to mask ΓR in Stage 1-2). In Stage 1-2, ARobCom always use φ1

R to mask ΓR. When
the experiment H0 reaches Stage 7 of the i∗(n)-th session, ARobCom extracts the committed values
of the ExtCom commitments in this stage by using its extractability. Let Îbad and ρ̂b (b ∈ {0, 1}) be
defined as above from the extracted values. Then, ARobCom outputs 1 if and only if

– Îbad ∩ ΓR = ∅, and

– either |Îbad| ≥ 0.1n or there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from a valid
codeword w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR.

When ARobCom receives a commitment to φ1
R, ARobCom outputs 1 with probability 1/2p(n) (this follows from

the above observation). It thus suffices to see that when ARobCom receives a commitment to φ0
R, ARobCom

outputs 1 with exponentially small probability. This can be seen by noting that φR1 ⊕ ΓR is a pure random
string now, and thus the following probabilities are exponentially small.

1. the probability that |Îbad| ≥ 0.1n but Îbad ∩ ΓR = ∅
2. the probability that there exists b ∈ {0, 1} such that ρ̂b is 0.8-close to but 0.1-far from a valid codeword
w = (wi)i∈∆ that satisfies wi = ρ̂b,i for every i ∈ ΓR

Hence, ARobCom breaks the hiding property of RobCom.

C.2 Proof of Claim 4

Proof. We first notice that the indistinguishability between H ′k:1 and Hk:1 can be shown as in the proof of
Claim 3. (The only difference is that we use the hiding property of NMCom rather than that of ExtCom.)

We next show that in Hk:1, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that
in Hk:1, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from
an average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way
that even after being fixed, A cheats in session s(j) only with negligible probability in H ′k:1 but with non-
negligible probability in Hk:1. Then, by considering the transcript and the extracted values up until SMk as
non-uniform advice, we can break the non-malleability of NMCom as follows.

The man-in-the-middle adversary ANMCom internally executes H ′k:1 from SMk using the non-uniform
advice. In Stage 4 of session s(k),ANMCom sends (aRi , d

R
i)i6∈ΓS

and (0, 0)i 6∈ΓS
to the external committer,

receives back NMCom commitments (in which either (aRi , d
R
i)i6∈ΓS

or (0, 0)i6∈ΓS
are committed to),

and feeds them into H ′k:1. Also, in session s(j), ANMCom forwards the NMCom commitments from A
to the external receiver (specifically, the NMCom commitments in Stage 4 if R is corrupted and in
Stage 7 if S is corrupted). After the execution of H ′k:1 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to (aRi , d
R
i)i 6∈ΓS

, the internally executed experiment is identical
with H ′k:1, whereas when ANMCom receives a commitments to (0, 0)i 6∈ΓS

, the internally executed experiment
is identical with Hk:1. Hence, from the assumption that A cheats in session s(j) with negligible probability
in H ′k−1:7 but with non-negligible probability in Hk:1, ANMCom breaks the non-malleability of NMCom. ut

42

C.3 Proof of Lemma 5

Proof. Recall that hybrids Hk:1, Hk:2 differ only in the input and the randomness that are used in some of
the mS-OTs in Stage 3, where those that are derived from the outcomes of the coin tossing is used in Hk:1

and random inputs and true randomness are used in Hk:2. We first show the indistinguishability between
Hk:1 and Hk:2, relying on the hiding property of RobCom.

Assume for contradiction that Hk:1 and Hk:2 are distinguishable. We build an efficient adversary ARobCom

that breaks the hiding property of RobCom.

The adversary ARobCom internally executes Hk:1 with the following modification: in Stage 0-2 of
session s(k), it picks two random strings ψR = ψR1 ‖ . . . , ψR11n and ψ̃R = ψ̃R1 ‖ . . . , ψ̃R11n and sends
{ψRi }i/∈ΓS

and {ψ̃Ri }i/∈ΓS
to the external committer and receives back RobComfR commitments (in

which either {ψRi }i/∈ΓS
or {ψ̃Ri }i/∈ΓS

are committed in parallel). Then in Stage 2-2 of session s(k),
ARobCom always use ψRi ’s to mask aRi (i.e. zRi := aRi ⊕ ψRi for all i ∈ [11n]). in the subsequent stages,
A proceeds the experiment as in Hk:1. After the execution of Hk:1 finishes, ARobCom outputs whatever
Z outputs in the experiment.

When ARobCom receives commitments to {ψRi }i 6∈ΓS
, the internally executed experiment is identical with Hk:1,

whereas when ARobCom receives commitments to {ψ̃Ri }i6∈ΓS
, the internally executed experiment is identical

with Hk:2 (this is because when ARobCom receives commitments to (ψ̃Ri)i 6∈ΓS
, the values zRi = ψRi ⊕ aRi (thus

the values rRi = aRi ⊕ bRi) for each i 6∈ ΓS are uniformly random for A. Hence the mS-OT for each i 6∈ ΓS is
executed with a random input and true randomness). Hence, from the assumption that Hk:1 and Hk:2 are
distinguishable, ARobCom distinguishes RobCom commitments.

We next show that in Hk:2, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that
in Hk:2, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from an
average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability in Hk:1 but with non-negligible
probability in Hk:2. Then, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who interacts with a committer of RobCom and a receiver of NMCom,
internally executes Hk:1 from SMk using the non-uniform advice. In Stage 0-2 of session s(k), ANMCom

chooses random strings ψ̃R = ψ̃R1 ‖ . . . ‖ψ̃R11n in addition to ψR = ψR1 ‖ . . . ‖ψR11n, sends {ψRi }i6∈ΓS
and

{ψ̃Ri }i 6∈ΓS
to the external committer and receives back parallel RobCom commitments (in which either

{ψRi }i 6∈ΓS
or {ψ̃Ri }i 6∈ΓS

are committed to), and feeds them into Hk:1. Then in Stage 2-2 of session
s(k), ANMCom always use ψRi ’s to mask aRi (i.e. zRi := aRi ⊕ψRi for all i ∈ [11n]). Also, in session s(j),
ANMCom forwards the NMCom commitments from A to the external receiver. After the execution of
Hk:1 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to {ψRi }i6∈ΓS
, the internally executed experiment is identical with Hk:1,

whereas when ACom receives commitments to {ψ̃Ri }i 6∈ΓS
, the internally executed experiment is identical with

Hk:2. Hence, from the assumption that A cheats in session s(j) with negligible probability in Hk:1 but with
non-negligible probability in Hk:2, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 5. ut

C.4 Proof of Lemma 7

Proof. Recall that Hk:3 and Hk:4 differ only in that in session s(k) of Hk:4, if S is corrupted and SMk is third
special message, αi is a random bit rather than αi = u⊕ ci for every i ∈ ∆ in Stage 6-1.

We first show the indistinguishability between Hk:3 and Hk:4. Intuitively, the indistinguishability follows
from the security of mS-OT: For every i 6∈ ΓS , the choice bit ci of the i-th mS-OT in Stage 3 is hidden from

43

A and hence αi = u⊕ ci in Hk:3 is indistinguishable from a random bit. Formally, we consider the following
security game against cheating sender S∗ of mS-OT.

The cheating sender S∗ first participates in 10n instances of mS-OTs in parallel with an honest
receiver R, who uses a random input ci ∈ {0, 1} in the i-th instance. After the execution with R, S∗

receives either the choice bits {ci} or random bits and then guesses which is the case. If S∗ guesses
correctly, we say that S∗ wins the game.

From the security of mS-OT against malicious senders, any cheating S∗ wins the game with probability at
most 1/2+negl(n). Now, we assume for contradiction that Hk:3 and Hk:4 are distinguishable, and we derive a
contradiction by constructing an adversary who wins the above game with probability non-negligibly higher
than 1/2. From an average argument, we can fix the execution of the experiment up until SMk (inclusive)
in such a way that even after being fixed, Hk:3 and Hk:4 are still distinguishable. Then, by considering the
transcript (including the inputs and randomness of all the parties) and the extracted values up until SMk as
non-uniform advice, we can obtain an adversary who wins the above game with probability non-negligibly
higher than 1/2 as follows.

The adversary AOT internally executes Hk:3 from SMk using the non-uniform advice. In Stage 3 of
session s(k), AOT executes the i-th mS-OT by itself for every i ∈ ΓS but obtains the other 10n
instances of mS-OT from the external receiver. (Recall that in Hk:3, the subset ΓS is extracted in
Stage 1-1.) Then, in Stage 6 of session s(k), AOT receives bits {c∗i }i∈∆ from the external receiver and

uses them to compute {α}i∈∆, i.e., αi
def
= u ⊕ c∗i . After the execution of Hk:3 finishes, AOT outputs

whatever Z outputs in the experiment.

When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the internally executed experiment is identical
with Hk:3, whereas when AOT receives random bits as {c∗i }i∈∆, the internally executed experiment is identical
with Hk:4. Hence, from the assumption that Hk:3 and Hk:4 are distinguishable, AOT wins the game with
probability non-negligibly higher than 1/2.

We next show that in Hk:4, A does not cheat in sessions s(k), . . . , s(4m). (The argument below is similar
to the one in the proof of Lemma 4.) Assume for contradiction that in Hk:4, A cheats in one of those
sessions, say, session s(j), with non-negligible probability. Then, from an average argument, we can fix the
execution of the experiment up until SMk (inclusive) in such a way that even after being fixed, A cheats in
session s(j) only with negligible probability in Hk:3 but with non-negligible probability in Hk:4. Then, by
considering the transcript and the extracted values up until SMk as non-uniform advice, we can break the
robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game of mS-OT while interacting with a
receiver of NMCom, internally executes Hk:3 from SMk using the non-uniform advice. In Stage 3
of session s(k), AOT executes the i-th mS-OT by itself for every i ∈ ΓS but obtains the other 10n
instances of mS-OT from the external receiver. Then, in Stage 6 of session s(k), AOT receives bits

{c∗i }i∈∆ from the external receiver and uses them to compute {α}i∈∆, i.e., αi
def
= u ⊕ c∗i . Also, in

session s(j), ANMCom forwards the NMCom commitments from A to the external receiver. After the
execution of Hk:3 finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When AOT receives the choice bits of the mS-OTs as {c∗i }i∈∆, the internally executed experiment is identical
with Hk:3, whereas when AOT receives random bits as {c∗i }i∈∆, the internally executed experiment is identical
with Hk:4. Hence, from the assumption that A cheats in session s(j) with negligible probability in Hk:3 but
with non-negligible probability in Hk:4, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 7. ut

44

C.5 Proof of Lemma 10

Proof. Recall that hybrids H
(m)
k:5 , Hk:5 differ only in the values committed to in NMCom and ExtCom for the

indices outside of ΓR. Since the binding property of RobCom guarantees that the subset opened in Stage 7
is equal to ΓR, those commitments are never opened, and the check in Stage 8 does not fail in both hybrids.

We prove the lemma by using a hybrid argument. Specifically, we consider the following intermediate
hybrid H ′k:5.

– H ′k:5 is the same as H
(m)
k:5 except that in session s(k), if R is corrupted and SMk is second special message,

• the committed subset ΓR is extracted by querying the table T , and

• the value committed in the i-th ExtCom commitment in Stage 7 is switched to an all-zero string for
every i 6∈ ΓR.

Claim 10. Assume that in H
(m)
k:5 , A does not cheat in sessions s(k), . . . , s(4m) except with negligible proba-

bility. Then,

– H
(m)
k:5 and H ′k:5 are indistinguishable, and

– in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first show the indistinguishability between H
(m)
k:5 and H ′k:5. Assume for contradiction that H

(m)
k:5

and H ′k:5 are distinguishable. From an average argument, we can fix the execution of the experiment up until

SMk (inclusive) in such a way that even after being fixed, H
(m)
k:5 and H ′k:5 are still distinguishable. Then, by

considering the transcript (including the inputs and randomness of all the parties) and the extracted values
up until SMk as non-uniform advice, we can break the hiding property of ExtCom as follows.

The adversary AExtCom internally executes H
(m)
k:5 from SMk using the non-uniform advice. In Stage

7 of session s(k), AExtCom sends (aSi , d
S
i , e

S
i)i 6∈ΓR

and (0, 0, 0)i 6∈ΓR
to the external committer, receives

back ExtCom commitments (in which either (aSi , d
S
i , e

S
i)i 6∈ΓR

or (0, 0, 0)i 6∈ΓR
are committed to), and

feeds them into H
(m)
k:5 . After the execution of H

(m)
k:5 finishes, AExtCom outputs whatever Z outputs in

the experiment.

When AExtCom receives commitments to (aSi , d
S
i , e

S
i)i 6∈ΓR

, the internally executed experiment is identical with

H
(m)
k:5 , whereas when AExtCom receives a commitments to (0, 0, 0)i6∈ΓR

, the internally executed experiment is

identical with H ′k:5. Hence, from the assumption that H
(m)
k:5 and H ′k:5 are distinguishable (even after being

fixed up until SMk), AExtCom distinguishes ExtCom commitments.
We next show that in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that

in H ′k:5, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from
an average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way

that even after being fixed, A cheats in session s(j) only with negligible probability in H
(m)
k:5 but with non-

negligible probability in H ′k:5. Then, by considering the transcript and the extracted values up until SMk as
non-uniform advice, we can break the robust non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes H
(m)
k:5 from SMk using the non-uniform

advice. In Stage 7 of session s(k), ANMCom sends (aSi , d
S
i , e

S
i)i 6∈ΓR

and (0, 0, 0)i 6∈ΓR
to the external

committer, receives back ExtCom commitments (in which either (aSi , d
S
i , e

S
i)i 6∈ΓR

or (0, 0, 0)i6∈ΓR
are

committed to), and feeds them into H
(m)
k:5 . Also, in session s(j), ANMCom forwards the NMCom com-

mitments from A to the external receiver. After the execution of H
(m)
k:5 finishes, ANMCom outputs its

view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

45

When ANMCom receives commitments to (aSi , d
S
i , e

S
i)i 6∈ΓR

, the internally executed experiment is identical with

H
(m)
k:5 , whereas when ANMCom receives a commitments to (0, 0, 0)i 6∈ΓR

, the internally executed experiment is
identical with H ′k:5. Hence, from the assumption that A cheats in session s(j) with negligible probability in

H
(m)
k:5 and H ′k:5, ANMCom breaks the non-malleability of NMCom. ut

Claim 11. Assume that in H ′k:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible proba-
bility. Then,

– H ′k:5 and Hk:5 are indistinguishable, and

– in Hk:5, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Proof. We first notice that the indistinguishability between H ′k:5 and Hk:5 can be shown as in the proof of
Claim 10. (The only difference is that we use the hiding property of NMCom rather than that of ExtCom.)

We next show that in Hk:5, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that
in Hk:5, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from
an average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way
that even after being fixed, A cheats in session s(j) only with negligible probability in H ′k:5 but with non-
negligible probability in Hk:5. Then, by considering the transcript and the extracted values up until SMk as
non-uniform advice, we can break the non-malleability of NMCom as follows.

The man-in-the-meddle adversary ANMCom internally executes H ′k:5 from SMk using the non-uniform
advice. In Stage 7 of session s(k),ANMCom sends (aSi , d

S
i)i 6∈ΓR

and (0, 0)i6∈ΓR
to the external committer,

receives back NMCom commitments (in which either (aSi , d
S
i)i 6∈ΓR

or (0, 0)i6∈ΓR
are committed to),

and feeds them into H ′k:5. Also, in session s(j), ANMCom forwards the NMCom commitments from A
to the external receiver. After the execution of H ′k:5 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to (aSi , d
S
i)i6∈ΓR

, the internally executed experiment is identical with
H ′k:5, whereas when ANMCom receives a commitments to (0, 0)i 6∈ΓR

, the internally executed experiment is
identical with Hk:5. Hence, from the assumption that A cheats in session s(j) with negligible probability in
H ′k:5 but with non-negligible probability in Hk:5, ANMCom breaks the non-malleability of NMCom. ut

This completes the proof of Lemma 10. ut

C.6 Proof of Lemma 11

Proof. Recall that hybrids Hk:5, Hk:6 differ only in the inputs and the randomness that are used in some of
the mS-OTs in Stage 3, where those that are derived from the outcomes of the coin tossing is used in Hk:5

and random inputs and true randomness are used in Hk:6.
First, we show the indistinguishability. Assume for contradiction that Hk:5 and Hk:6 are computationally

distinguishable. We build an efficient adversary ARobCom that breaks the hiding property of RobCom.

The adversary ARobCom internally executes Hk:5 with the following modification: in Stage 0-1 of
session s(k), it picks two random strings ψS = ψS1 ‖ . . . , ψS11n and ψ̃S = ψ̃S1 ‖ . . . , ψ̃S11n and sends
{ψSi }i/∈ΓR

and {ψ̃Si }i/∈ΓR
to the external committer and receives back RobCom commitments (in

which either {ψSi }i/∈ΓR
or {ψ̃Si }i/∈ΓR

are committed in parallel). Then in Stage 2-1 of session s(k),
ARobCom always use ψSi ’s to mask aSi (i.e. zSi := aSi ⊕ψSi for all i ∈ [11n]). in the subsequent stages, A
proceeds the experiment as in Hk:1. After the execution of Hk:1 finishes, ARobCom outputs whatever
Z outputs in the experiment.

When ARobCom receives commitments to {ψSi }i6∈ΓR
, the internally executed experiment is identical with Hk:5,

whereas when ARobCom receives commitments to {ψ̃Si }i 6∈ΓR
, the internally executed experiment is identical

46

with Hk:6 (this is because when ARobCom receives commitments to (ψ̃Si)i 6∈ΓR
, the values zSi = ψSi ⊕ aSi (thus

the values rSi = aSi ⊕ bSi) for each i 6∈ ΓR are uniformly random for A. Hence the mS-OT for each i 6∈ ΓR is
executed with a random input and true randomness). Hence, from the assumption that Hk:5 and Hk:6 are
distinguishable, ARobCom distinguishes RobCom commitments.

We next show that in Hk:6, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that
in Hk:6, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from an
average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way that
even after being fixed, A cheats in session s(j) only with negligible probability in Hk:5 but with non-negligible
probability in Hk:6. Then, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who interacts with a committer of RobCom and a receiver of NMCom,
internally executes Hk:5 from SMk using the non-uniform advice. In Stage 0-1 of session s(k), ANMCom

chooses random strings ψ̃S = ψ̃S1 ‖ . . . ‖ψ̃S11n in addition to ψS = ψS1 ‖ . . . ‖ψS11n, sends {ψSi }i 6∈ΓR
and

{ψ̃Si }i 6∈ΓR
to the external committer and receives back parallel RobCom commitments (in which either

{ψSi }i 6∈ΓR
or {ψ̃Si }i 6∈ΓR

are committed to), and feeds them into Hk:5. Then in Stage 2-1 of session
s(k), ANMCom always use ψSi ’s to mask aSi (i.e. zSi := aSi ⊕ψSi for all i ∈ [11n]). Also, in session s(j),
ANMCom forwards the NMCom commitments from A to the external receiver. After the execution of
Hk:5 finishes, ANMCom outputs its view.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom receives commitments to {ψSi }i 6∈ΓR
, the internally executed experiment is identical with Hk:1,

whereas when ACom receives commitments to {ψ̃Si }i 6∈ΓR
, the internally executed experiment is identical with

Hk:6. Hence, from the assumption that A cheats in session s(j) with negligible probability in Hk:5 but with
non-negligible probability in Hk:6, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof of Lemma 11. ut

C.7 Proof of Claim 7

Proof. Recall that Hk:6 and H ′k:6 differ only in that in session s(k) of H ′k:6, if R is corrupted and SMk is
fourth special message, βb,i is a random bit rather than βb,i = ρb,i⊕si,b⊕αi

for every b ∈ {0, 1} and i ∈ ∆\ Ib.
First, we show the indistinguishability between Hk:6 and H ′k:6. Roughly, we prove the indistinguishability

using the security of mS-OT: For every i ∈ ∆ \ Ib, A executed the i-th mS-OT honestly with choice bit
(1 − b) ⊕ αi, and the sender’s input and randomness of this mS-OT are not revealed in Stage 8; therefore,
the value of si,b⊕αi is hidden from A and thus βb,i = ρb,i ⊕ si,b⊕αi is indistinguishable from a random bit.
Formally, we consider the following security game against cheating receiver R∗ of mS-OT.

The cheating receiver R∗ gets random input-randomness pairs (ci, τ
R
i)i of mS-OT instances as input.

R∗ then participates in 9n instances of mS-OTs in parallel with an honest sender S, who uses a
random input (si,0, si,1) in the i-th instance. After the execution with S, R∗ receives bits (s∗i,0, s

∗
i,1)i

that are defined as follows: Let b∗ ∈ {0, 1} be a randomly chosen bit; if b∗ = 0, then for every i,

s∗i,0
def
= si,0 and s∗i,1

def
= si,1; if b∗ = 1, then for every i such that R∗ behaved honestly in the i-th

mS-OT using (ci, τ
R
i) as input and randomness, s∗i,ci

def
= si,ci but s∗i,1−ci is a random bit, and for

every other i, s∗i,0
def
= si,0 and s∗i,1

def
= si,1. Then, R∗ guesses the value of b∗, and if the guess is correct,

we say that R∗ wins the game.

From the security of mS-OT against semi-honest receivers, any cheating R∗ wins the game with probability at
most 1/2+negl(n). Now, we assume for contradiction that Hk:6 and H ′k:6 are distinguishable, and we derive a
contradiction by constructing an adversary who wins the above game with probability non-negligibly higher
than 1/2. From an average argument, we can fix the execution of the experiment up until SMk (inclusive)

47

in such a way that even after being fixed, Hk:6 and H ′k:6 are still distinguishable. Then, by considering the
transcript (including the inputs and randomness of all the parties) and the extracted values up until SMk as
non-uniform advice, we can obtain an adversary who wins the above game with probability non-negligibly
higher than 1/2 as follows.

The adversary R∗ gets random input-randomness pairs (ci, τ
R
i)i∈∆\ΓR

of mS-OT instances as its
input, and internally executes H ′k:6 from SMk using the non-uniform advice. In Stage 2-2, R∗ chooses

bR = (bR1 , . . . , b
R
11n) in such a way that rR = (rR1 , . . . , r

R
11n) satisfies rRi = ci ‖τRi for every i ∈ ∆\ΓR,

namely, chooses bR such that bRi = aRi ⊕(ci ‖τRi) for every i ∈ ∆\ΓR. (Recall that in H ′k:6, the subset
ΓR and the strings aR = (aR1 , . . . , a

R
11n) are extracted by brute force and they are included in the

non-uniform advice.) In Stage 3 of session s(k), ANMCom obtains the i-th mS-OT from the external
sender for every i ∈ ∆ \ ΓR and executes other instances of mS-OT by itself. Then, in Stage 6 of
session s(k), R∗ receives bits (s∗i,0, s

∗
i,1)i∈∆\ΓR

from the external sender and uses them to compute
βb,i for every i ∈ ∆ \ ΓR, i.e., βb,i := ρb,i ⊕ s∗i,b⊕αi

. After the execution of H ′k:6 finishes, R∗ outputs
whatever Z outputs in the experiment.

When b∗ = 0 in the security game (and hence s∗i,b⊕αi
= si,b⊕αi

for every i and b), the internally executed
experiment is identical with Hk:6, whereas when b∗ = 1 (and hence s∗i,b⊕αi

is a random bit if i ∈ ∆ \ Ib
and s∗i,b⊕αi

= si,b⊕αi otherwise), the internally executed experiment is identical with H ′k:6. Hence, from the
assumption that Hk:6 and H ′k:6 are distinguishable, R∗ wins the game with probability non-negligibly higher
than 1/2.

Next, we show that in H ′k:6, A does not cheat in sessions s(k), . . . , s(4m). (The argument below is similar
to the one in the proof of Lemma 4.) Assume for contradiction that in H ′k:6, A cheats in one of those
sessions, say, session s(j), with non-negligible probability. Then, from an average argument, we can fix the
execution of the experiment up until SMk (inclusive) in such a way that after being fixed, A cheats in
session s(j) only with negligible probability in Hk:6 but with non-negligible probability in H ′k:6. Then, by
considering the transcript and the extracted values up until SMk as non-uniform advice, we can break the
robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in the above game while interacting with a receiver of
NMCom, gets random input-randomness pairs (ci, τ

R
i)i∈∆\ΓR

of mS-OT instances as its input, and
internally executes H ′k:6 from SMk using the non-uniform advice. In Stage 2-2, ANMCom chooses

bR = (bR1 , . . . , b
R
11n) in such a way that rR = (rR1 , . . . , r

R
11n) satisfies rRi = ci ‖τRi for every i ∈ ∆\ΓR,

namely, chooses bR such that bRi = aRi ⊕ (ci ‖ τRi) for every i ∈ ∆ \ ΓR. In Stage 3 of session s(k),
ANMCom obtains the i-th mS-OT from the external sender for every i ∈ ∆ \ ΓR and executes other
instances of mS-OT by itself. Then, in Stage 6 of session s(k), ANMCom receives bits (s∗i,0, s

∗
i,1)i∈∆\ΓR

from the external sender and uses them to compute βb,i for every i ∈ ∆\ΓR, i.e., βb,i := ρb,i⊕s∗i,b⊕αi
.

Also, in session s(j), ANMCom forwards the NMCom commitments from A to the external receiver.
After the execution of H ′k:6 finishes, ANMCom outputs its view.

The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When b∗ = 0 in the security game (and hence s∗i,b⊕αi
= si,b⊕αi for every i and b), the internally executed

experiment is identical with Hk:6, whereas when b∗ = 1 (and hence s∗i,b⊕αi
is a random bit if i ∈ ∆ \ Ib

and s∗i,b⊕αi
= si,b⊕αi

otherwise), the internally executed experiment is identical with H ′k:6. Hence, from
the assumption that A cheats in session s(j) with negligible probability in Hk:6 but with non-negligible
probability in H ′k:6, ANMCom breaks the robust non-malleability of NMCom.

This completes the proof. ut

48

D Security Proof for Our MPC Protocol

Simulator Sim. As in Section B.1, we consider a simulator that works against any adversary, say A, that
participates in m sessions of Π2PC. Our simulator Sim internally invokes the adversary A, and simulates
each of the sessions by using the simulator of ΠOT (Section B.1) and that of ΠFOT

2PC as follows.

1. In each execution of ΠOT at the beginning of Π2PC, Sim simulates the honest party’s messages for A in
the same way as SimOT.
Recall that SimOT makes a query to FOT during the simulation. When SimOT makes a query to FOT ,
Sim sends those queries to the simulator of ΠFOT

2PC in order to simulate the answer from FOT . (Recall

that the simulator of ΠFOT

2PC simulates FOT for the adversary.)

2. In the execution of ΠFOT

2PC during Π2PC, Sim simulates the honest party’s messages for A by using the

simulator of ΠFOT

2PC , who obtained the queries to FOT as above.

We remark that here we use the simulator of ΠFOT

2PC in the setting where multiple sessions of ΠFOT

2PC are
concurrently executed. However, the use of it in this setting does not cause any problem because it runs in
the black-box straight-line manner.

D.1 Proof of Indistinguishability.

We show that the view of the adversary in the real world and the view output by the simulator in the ideal
world are indistinguishable. The proof proceeds very similarly to the proof for our bounded concurrent OT
protocol (Section 6). To simplify the exposition, below we assume that ΠFOT

2PC makes only a single call to

FOT . (The proof can be modified straightforwardly when ΠFOT

2PC makes multiple calls to FOT .)
Recall that Π2PC is obtained by composing our OT protocol ΠOT with an OT-hybrid 2PC protocol

ΠFOT

2PC . Roughly, we consider a sequence of hybrid experiments in which:

– Each execution of ΠOT is gradually changed to simulation as in the sequence of hybrid experiments that
we considered in the proof of ΠOT (Section B.2.1).

– Once the execution of ΠOT in a session of Π2PC is changed to simulation completely, the execution of
ΠFOT

2PC in that session is changed to simulation.

More concretely, we consider hybrids H0 and Hk:1, . . . ,Hk:9 (and H
(1)
k:1 to H

(m)
k:1 , H

(1)
k:5 to H

(m)
k:5) for k ∈ [4m],

where hybrids Hk:8 and Hk:9 are defined in the following, and the others are defined as in Section B.2.1;.

Hybrid Hk:8. Hk:8 is the same as Hk:7 except that in session s(k), if S is corrupted and SMk is third special
message, all the messages of ΠFOT

2PC from R are generated by the simulator of ΠFOT

2PC . More concretely, the

messages of ΠFOT

2PC from R are generated as follows. Recall that from the definition of Hybrid Hk:3, the

implicit input v∗b
def
= Value(ρextb , ΓR ∩∆) (b ∈ {0, 1}) to ΠOT is extracted from the adversary in session s(k)

(as ρextb are computed for both b ∈ {0, 1}). Now, the messages of ΠFOT

2PC from R are simulated by feeding

those extracted implicit input and the subsequent messages to the simulator of ΠFOT

2PC .

Hybrid Hk:9. Hk:9 is the same as Hk:8 except that in session s(k), if R is corrupted and SMk is fourth special
message, all the messages of ΠFOT

2PC from S are generated by the simulator of ΠFOT

2PC .

Lemma 13. Assume that in Hk:7 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:7 and Hk:8 are indistinguishable, and

– in Hk:8, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

Lemma 14. Assume that in Hk:8 (k ∈ [4m]), A does not cheat in sessions s(k), . . . , s(4m) except with
negligible probability. Then,

– Hk:8 and Hk:9 are indistinguishable, and

– in Hk:9, A does not cheat in sessions s(k), . . . , s(4m) except with negligible probability.

49

Lemma 14 can be proven identically with Lemma 13, and Lemma 13 can be proven quite similarly to
Claim 3 (Section B.2); the only difference is that we use the security of ΠFOT

2PC rather than the hiding of
ExtCom. We give a proof of Lemma 13 in Section D.2.

By combining Lemmas 13 and 14 with Lemma 4 to 12 in Section B.2, we conclude that the output of
H0 and that of H4m:9 are indistinguishable, i.e., the output of the real world and that of the ideal world are
indistinguishable. This concludes the proof of Theorem 6.

D.2 Proof of Lemma 13

Proof (of Lemma 13). We first show the indistinguishability between Hk:7 and Hk:8. Assume for contradiction
that Hk:7 and Hk:8 are distinguishable. From an average argument, we can fix the execution of the experiment
up until SMk (inclusive) in such a way that even after being fixed, Hk:7 and Hk:8 are still distinguishable.
Then, by considering the transcript (including the inputs and randomness of all the parties) and the extracted
values up until SMk as non-uniform advice, we can break the UC security of ΠFOT

2PC as follows.

The environment Z internally executes Hk:7 from SMk using the non-uniform advice while externally
participating in a single session of ΠFOT

2PC via the dummy adversary that corrupts S. In session s(k), Z
forwards all the messages of ΠFOT

2PC from the internal A to the external dummy adversary (including
the query to FOT),16 and those from the external dummy adversary to the internal A. After the
execution of Hk:7 finishes, Z outputs the output of the internally emulated experiment.

When Z interacts with the dummy adversary, the internally executed experiment is identical with Hk:7,
whereas when Z interacts with the simulator of ΠFOT

2PC , the internally executed experiment is identical with

Hk:8. Hence, from the assumption that Hk:7 and Hk:8 are distinguishable, Z breaks the security of ΠFOT

2PC

We next show that in Hk:8, A does not cheat in sessions s(k), . . . , s(4m). Assume for contradiction that
in Hk:8, A cheats in one of those sessions, say, session s(j), with non-negligible probability. Then, from
an average argument, we can fix the execution of the experiment up until SMk (inclusive) in such a way
that even after being fixed, A cheats in session s(j) only with negligible probability in Hk:7 but with non-
negligible probability in Hk:8. Then, by considering the transcript and the extracted values up until SMk as
non-uniform advice, we can break the robust non-malleability of NMCom as follows.

The adversary ANMCom, who participates in an execution of ΠFOT

2PC as the environment (where the
dummy adversary corrupts S) while interacting with a receiver of NMCom, internally executes Hk:7

from SMk using the non-uniform advice. In session s(k), ANMCom forwards all the messages of ΠFOT

2PC

from the internal A to the external dummy adversary (including the query to FOT), and those from
the external dummy adversary to the internal A. Also, in session s(j), ANMCom forwards the NMCom
commitments from A to the external receiver. After the execution of Hk:7 finishes, ANMCom outputs
the output of the internally emulated experiment.
The distinguisher DNMCom takes as input the view of ANMCom and the values committed by ANMCom

(which are equal to the values committed to by A in session s(j) in the internally executed experi-
ment). DNMCom then outputs 1 if and only if A cheated in session s(j).

When ANMCom interacts with the dummy adversary in the execution of ΠFOT

2PC , the internally executed
experiment is identical with Hk:7, whereas when ANMCom interacts with the simulator there, the internally
executed experiment is identical with Hk:8. Hence, from the assumption that A cheats in session s(j) with
negligible probability in Hk:7 but with non-negligible probability in Hk:8, ANMCom breaks the robust non-
malleability of NMCom.

This completes the proof of Lemma 13. ut

16 Note that these messages appear after SMk

50

	Introduction
	Our Contribution
	Other Related Works

	Overview of Our Techniques
	Black-Box (Constant-Round) Bounded-Concurrent OT
	Replacing Com with straight-line extractable commitment
	Robust-ZK for dealing with bounded concurrency

	Composition of OT with OT-hybrid MPC

	Preliminaries
	Non-Malleable Commitment Schemes.
	Bounded-Concurrent MPC with Interchangeable Roles

	Robust Zero-Knowledge and Commit-and-Prove
	Robust Zero-Knowledge
	(Bounded) robust ZK implies bounded cZK

	Constructions of -Robust ZK

	Straight-Line Extractable Commitments
	Proof of Theorem 4
	Computationally-Hiding
	Straight-Line Extractability

	Our Bounded-Concurrent OT Protocol
	Protocol Description
	Security Proof

	Our Bounded-Concurrent MPC Protocol
	Additional Preliminaries
	Shamir's Secret Sharing
	Commitment Schemes
	Extractable Commitment Schemes

	Security Proof For Our OT Protocol
	Simulator SimOT
	Proof of Indistinguishability
	Hybrid experiments
	Indistinguishability of each neighboring hybrids

	Omitted Proofs
	The Second Half of Proof of Lemma 1
	Proof of Claim 4
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Claim 7

	Security Proof for Our MPC Protocol
	Proof of Indistinguishability.
	Proof of Lemma 13

