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Abstract

An updatable encryption scheme is a symmetric-key encryption scheme that supports key-rotation
on ciphertexts. A server that hosts a user’s encrypted data can use a user-provided update token to
rotate the key under which the data is encrypted while not learning any information about the underlying
data. Recent work on updatable encryption led to several security definitions and proposed constructions.
However, our understanding of this notion still remains quite limited, and the existing constructions are
not yet efficient enough for practical adoption.

This work’s contributions are threefold. First, we introduce new definitions for updatable encryption
(in the ciphertext-dependent setting) that capture desirable security properties not covered in prior work.
Next, we construct two new updatable encryption schemes. The first construction relies only on symmetric
cryptographic primitives but only supports a bounded number of key rotations. The second supports
a (nearly) unbounded number of updates and relies on almost key-homomorphic PRFs. We construct
an efficient almost key-homomorphic PRF from the Ring Learning with Errors (RLWE) assumption to
concretely instantiate our second construction. Finally, we implement both constructions and compare
their performance to prior work. Our RLWE-based construction outperforms an existing updatable
encryption scheme based on the hardness of DDH in elliptic-curve groups by over 200× in speed. Our
construction based only on symmetric primitives has the highest encryption throughput, approaching the
performance of AES, and the highest decryption throughput on ciphertexts that were re-encrypted fewer
than fifty times, at which point the RLWE construction dominates.

1 Introduction

Consider a ciphertext ct that is a symmetric encryption of some data using key k. Key rotation is the process
of decrypting ct using k, and re-encrypting the result using a fresh key k′ to obtain a new ciphertext ct′. One
then stores ct′ and discards ct. Periodic key rotation is recommended, and even required, in several security
standards and documents, including NIST publication 800-57 [Bar16], the Payment Card Industry Data
Security Standard (PCI DSS) [PCI18], and Google’s cloud security recommendations [Goo].

Key rotation can be expensive when the ciphertext is stored in the cloud, and the cloud does not have
access to the keys. Key rotation requires the client to retrieve all the encrypted data from the cloud, re-encrypt
it by decrypting with the old key and re-encrypting with the new key, and upload the resulting ciphertext
back to the cloud. The traffic to and from the cloud can incur significant networking costs when large amounts
of data are involved. Alternatively, the client can send the old and the new key to the cloud, and have the
cloud re-encrypt in place, but this gives the cloud full access to the data in the clear. We note that either
way, the cloud must be trusted to discard the old ciphertext.

Updatable encryption [BLMR13, EPRS17, LT18, KLR19, BDGJ19] is a much better approach to key
rotation for encrypted data stored in the cloud. Updatable encryption is a symmetric encryption scheme
that supports the standard key-generation, encryption, and decryption algorithms, along with two additional
algorithms called ReKeyGen and ReEncrypt used for key rotation. The re-key generation algorithm is invoked
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as ReKeyGen(k, k′)→ ∆, taking as input a pair of keys k and k′, and outputting a short “update token” ∆,
also called a re-encryption key. The re-encryption algorithm is invoked as ReEncrypt(∆, ct)→ ct′, taking as
input a short ∆ and a ciphertext ct encrypted under k, and outputting an updated ciphertext ct′ that is the
encryption of the same data as in ct, but encrypted under k′.

If the client’s data is encrypted using an updatable encryption scheme, then the client can use the re-key
generation algorithm ReKeyGen to generate a short update token ∆ to send the cloud. The cloud can then
run the re-encryption algorithm ReEncrypt to update all the client’s ciphertexts. As before, the cloud must
be trusted to discard the old ciphertexts.

Defining security Intuitively, the update token ∆ must not reveal any “useful” information to the cloud.
This was formalized by Boneh et al. [BLMR13] against passive adversaries, and was improved and extended
to provide security against active adversaries by Everspaugh et al. [EPRS17].

However, we show in Section 3 that these existing elegant definitions can be insufficient, and may not
prevent some undesirable information leakage. In particular, we give a simple construction that satisfies the
existing definitions, and yet an observer can easily learn the age of a ciphertext, namely the number of times
that the ciphertext was re-encrypted since it was initially created. Ideally, this information should not leak to
an observer. This issue was recently independently pointed out in [BDGJ19].

To address this leakage, we define a stronger confidentiality property that requires that a re-encrypted
ciphertext is always computationally indistinguishable from a freshly generated ciphertext, no matter how
many times it was re-encrypted (Sections 3.2 and 3.3). We also strengthen the integrity definition of [EPRS17]
to cover additional tampering attacks, as discussed in Section 3.4.

Constructing updatable encryption Next, we look for efficient constructions that satisfy our definitions.
We give two constructions: one based on nested authenticated encryption and another based on the Ring
Learning With Errors (RLWE) problem [Reg05, LPR13].

Our first construction, presented in Section 4, makes use of carefully designed nested encryption, and
can be built from any authenticated encryption cipher. It satisfies our strong confidentiality and integrity
requirements, so that an adversary cannot learn the age of a ciphertext. However, the scheme only supports
a bounded number of re-encryptions, where the bound is set when the initial ciphertext is created. The main
limitation of this scheme is that decryption time grows linearly with the age of the ciphertext. Hence, the
scheme is practical as long as the maximum number of re-encryptions is relatively small. Our implementation
and experiments, discussed below, make this precise.

Our second construction, presented in Section 5, makes use of an almost key-homomorphic PRF (KH-PRF)
built from the RLWE problem. Recall that a key-homomorphic PRF (KH-PRF) [NPR99, BLMR13] is a
secure PRF F : K ×X → Y, where (K,+) and (Y,+) are finite groups, and the PRF is homomorphic with
respect to its key, namely F (k1, x) + F (k2, x) = F (k1 + k2, x) for all k1, k2 ∈ K and x ∈ X . We say that the
PRF is an almost KH-PRF if the equality above holds up to a small additive error (see Definition 2.5). To see
why a KH-PRF is useful for updatable encryption, consider a single message block mi ∈ Y that is encrypted
using counter mode as cti ← mi + F (k, i), for some i ∈ X and k ∈ K. To rotate the key, the client chooses a
new key k′ ← K and sends ∆ = k′ − k ∈ K to the cloud. The cloud computes ct′i = cti + F (∆, i), which by
the key-homomorphic property satisfies ct′i = mi + F (k′, i), as required. This basic idea, also used in prior
work, must be enhanced with several additional components to satisfy the definitions of confidentiality and
integrity.

It remains an open challenge to construct a secure KH-PRF whose performance is comparable to AES.
However, there are several known algebraic constructions. In the random oracle model [FS86, BR93], there is
a simple KH-PRF based on the Decision Diffie-Hellman (DDH) assumption [NPR99], and a simple almost
KH-PRF based on the Learning With Errors (LWE) problem [BLMR13]. There are also several KH-PRFs
whose security does not depend on random oracles, as discussed in the related work section.

Everspaugh et al. [EPRS17] constructed an updatable encryption scheme by combining a key-homomorphic
PRF with authenticated encryption and a collision-resistant hash function. They evaluated their construction
using the KH-PRF derived from DDH, in the random oracle model, instantiated in the 256-bit elliptic curve
Curve25519 [Ber06].
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We extend the scheme of Everspaugh et al. [EPRS17] to also work using an almost key-homomorphic PRF.
This leads to some ciphertext expansion to handle the noise that arises from the imperfection of the KH-PRF.
We then construct an efficient almost key-homomorphic PRF from the Ring Learning with Errors (RLWE)
assumption [Reg05, LPR13], also in the random oracle model, to instantiate our updatable encryption scheme.
Our KH-PRF is significantly faster than the DDH-based scheme.

Implementation and experiments In Section 7 we experiment with our two updatable encryption schemes
and measure their performance. For our first construction based on authenticated encryption, we measure the
trade-off between its efficiency and the number of key-rotations it can support. Based on our evaluation, our
first construction performs better than the other schemes in both speed and ciphertext size, as long as any
given ciphertext is to be re-encrypted at most twenty times over the course of its lifetime. It outperforms the
other schemes in speed (but not in ciphertext size) as long as ciphertexts are re-encrypted at most fifty times.

For our second construction, which uses an almost key-homomorphic PRF based on RLWE, we compare its
performance with that of Everspaugh et al. [EPRS17], which uses a key-homomorphic PRF over Curve25519.
Since we use an almost key-homomorphic PRF that is inherently noisy, any message to be encrypted
must be padded on the right to counteract the noise. Therefore, compared to the elliptic-curve based
construction of Everspaugh et al., our construction produces larger ciphertexts (32% larger than those of
Everspaugh et al.). However, in terms of speed, our implementation shows that our construction outperforms
that of Everspaugh et al. by over 200×. We provide a more detailed analysis in Section 7. Implementations
of both constructions are open source and available at [imp].

Summary of our contributions. Our contributions are threefold. First, we strengthen the definition of
updatable encryption to provide stronger confidentiality and integrity guarantees. Second, we propose two con-
structions that satisfy the stronger definitions. Finally, we experiment with both constructions and report on
their real world performance and ciphertext expansion. Our second construction, based on a key-homomorphic
PRF from RLWE, is considerably faster than the previous construction of Everspaugh et al. [EPRS17], which
is based on elliptic curves.

1.1 Related Work

Two flavors of updatable encryption There are two flavors of updatable encryption: ciphertext-dependent
schemes [BLMR13, EPRS17] and ciphertext-independent schemes [LT18, KLR19, BDGJ19]. In a ciphertext-
dependent updatable encryption scheme, the client can re-download a tiny fraction of the ciphertext that is
stored by the server before generating the update tokens. In a ciphertext-independent updatable encryption
scheme, the client generates its update token without needing to download any components of its ciphertext.
In this work, we focus on the ciphertext-dependent setting, where constructions are considerably more efficient.
We provide a detailed comparison of the two settings in Appendix B. Further discussion of the two models
can be found in [LT18].

Key-homomorphic PRFs. The concept of key-homomorphic PRFs was introduced by Naor, Pinkas, and
Reingold [NPR99], and was first formalized as a cryptographic primitive by Boneh et al. [BLMR13], who
construct two KH-PRFs secure without random oracles: one from LWE, and another from multilinear maps.
They also observe that any seed homomorphic PRG G : S → S2 gives a key-homomorphic PRF. More
constructions for key-homomorphic PRFs from LWE include [BP14, BV15, Kim20].

2 Preliminaries

Basic notation. For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a
distribution D, we write x← D to denote that x is sampled from D; for a finite set S, we write x←R S to
denote that x is sampled uniformly from S. We say that a family of distributions D = {Dλ}λ∈N is B-bounded
if the support of D is {−B, . . . , B − 1, B} with probability 1.
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Unless specified otherwise, we use λ to denote the security parameter. We say a function f(λ) is negligible
in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We use poly(λ) to denote a quantity whose value is
bounded by a fixed polynomial in λ.

2.1 Basic Cryptographic Primitives

In this section, we review a number of basic cryptographic primitives that we use in this work. To analyze
the exact security of our constructions in Sections 4 and 5, we parameterize the security of these notions with
respect to advantage functions ε : N→ R that bounds the probability of an efficient adversary in breaking
the security of the primitive.

Definition 2.1 (Collision-Resistant Hash Functions). Let Hλ = {H : X → Yλ} be a family of hash functions.
We say that H is εcr-secure as a collision resistant hash function if for all efficient adversaries A, we have

Pr
[
A(1λ, H)→ (x0, x1) ∧H(x0) = H(x1) : H ←R Hλ

]
= εcr(λ).

We say that H is secure as a collision resistant hash function if εcr(λ) = negl(λ).

Definition 2.2 (Pseudorandom Generators). Let G : Xλ → Yλ be a keyed function. We say that G is
εprg-secure as a pseudorandom generator (PRG) if for all efficient adversaries A, we have∣∣∣Pr

[
A(1λ, y0) = 1 : s←R Xλ, y0 ← G(s)

]
− Pr

[
A(1λ, y1) = 1 : y1 ←R Yλ

]∣∣∣ = εprg(λ).

We say that G is a secure pseudorandom generator if |Xλ| < |Yλ|, and εprg(λ) = negl(λ).

2.2 Pseudorandom Functions

In this section, we review the definition of a pseudorandom function.

Definition 2.3 (Pseudorandom Functions [GGM84]). Let F : Kλ × X → Y be a keyed function. We say
that F is εprf -secure as a pseudorandom function (PRF) if for all efficient adversaries A, we have∣∣∣Pr

[
AF (k,·)(1λ) = 1 : k←R Kλ

]
− Pr

[
Af(·)(1λ) = 1 : f ←R Funs[Xλ,Yλ]

]∣∣∣ = εprf(λ),

where Funs[X ,Y] denotes the set of all functions with domain X and range Y. We say that F is a secure
pseudorandom function if εprf(λ) = negl(λ).

In this work, we use a special family of pseudorandom functions called key-homomorphic PRFs (KH-PRFs)
that satisfy additional algebraic properties. Specifically, the key space K and the range Y of the PRF exhibit
certain group structures such that its evaluation on any fixed input x ∈ X is homomorphic with respect to
these group structures. Formally, we define a key-homomorphic PRF as follows.

Definition 2.4 (Key-Homomorphic PRFs [NPR99, BLMR13]). Let (K,⊕), (Y,⊗) be groups. Then, a keyed
function F : Kλ ×Xλ → Yλ is a key-homomorphic PRF (KH-PRF) if

• F is a secure PRF as specified in Definition 2.3.
• For every key k1, k2 ∈ K and every input x ∈ X , we have

F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x).

In this work, we also work with a slight relaxation of the notion of key-homomorphic PRFs. Namely, instead
of requiring that the PRF outputs are perfectly homomorphic with respect to the PRF keys, we require that
they are “almost” homomorphic in that F (k1, x)⊗ F (k2, x) ≈ F (k1 ⊕ k2, x). Precisely, we define an almost
key-homomorphic PRF as follows.
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Definition 2.5 (Almost Key-Homomorphic PRFs [BLMR13]). Let (K,⊕) be a group and let m and q be
positive integers. Then, an efficiently computable deterministic function F : K × X → Zmq is a γ-almost
key-homomorphic PRF if

• F is a secure PRF (Definition 2.3).
• For every key k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m such that

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e (mod q).

2.3 Authenticated Encryption

We recall the notion of an authenticated encryption scheme [BN00].

Definition 2.6 (Authenticated Encryption [BN00]). An authenticated encryption scheme for a message
space M is a tuple of efficient algorithms ΠAE = (KeyGen,Encrypt,Decrypt) that have the following syntax:

• KeyGen(1λ)→ k: On input a security parameter λ, the key-generation algorithm returns a key k.

• Encrypt(k,m) → ct: On input a key k and a message m ∈ M, the encryption algorithm returns a
ciphertext ct.

• Decrypt(k, ct)→ m/⊥: On input a key k and a ciphertext ct, the decryption algorithm returns a message
m or ⊥.

We define the correctness, confidentiality, and integrity properties for an authenticated encryption scheme in
the standard way.

Definition 2.7 (Correctness). We say that an authenticated encryption scheme ΠAE = (KeyGen,Encrypt,
Decrypt) is correct if for all λ ∈ N and m ∈M, we have

Pr
[
Decrypt

(
k,Encrypt(k,m)

)
= m

]
= 1,

where k← KeyGen(1λ).

Definition 2.8 (Confidentiality). Let ΠAE = (KeyGen,Encrypt,Decrypt) be an authenticated encryption
scheme for a message space M. We say that ΠAE satisfies εconfae -confidentiality if for all efficient adversaries A,
we have ∣∣∣Pr

[
AOk,0(·,·)(1λ) = 1

]
− Pr

[
AOk,1(·,·)(1λ) = 1

]∣∣∣ = εconfae (λ),

where k← KeyGen(1λ), and the oracle Ok,b for b ∈ {0, 1} is defined as follows:

• Ok,b(m
(0),m(1)): On input two messages m(0),m(1) ∈ M, the oracle computes ct ← Encrypt(k,m(b))

and returns ct.

We say that ΠAE satisfies confidentiality if εconfae (λ) = negl(λ).

Definition 2.9 (Integrity). Let ΠAE = (KeyGen,Encrypt,Decrypt) be an authenticated encryption scheme
for a message space M. We say that ΠAE satisfies εintae -integrity if for all efficient adversaries A, we have

Pr
[
AOk(·)(1λ) = ct ∧ Decrypt(k, ct) 6= ⊥ ∧ ct /∈ Table

]
= εintae (λ),

where k←R KeyGen(1λ), and the oracle Ok and table Table are defined as follows:

• Ok(m): On input a message m ∈M, the oracle computes ct← Encrypt(k,m), adds Table = Table∪{ct},
and returns ct.

We say that ΠAE satisfies integrity if εintae (λ) = negl(λ).
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For our updatable encryption scheme in Section 4, we make use of authenticated encryption schemes that
satisfy a stronger confidentiality requirement than Definition 2.8. Namely, we rely on authenticated encryption
schemes that satisfy ciphertext pseudorandomness, which requires that an encryption of any message is
computationally indistinguishable from a random string of suitable length. Authenticated encryption schemes
that satisfy ciphertext pseudorandomness can be constructed from pseudorandom functions or blockciphers in
a standard way. Widely-used modes for authenticated encryption such as AES-GCM also satisfy ciphertext
pseudorandomness.

Definition 2.10 (Ciphertext Pseudorandomness). Let ΠAE = (KeyGen,Encrypt,Decrypt) be an authenticated
encryption scheme for a message spaceM. We say that ΠAE satisfies εrandae -ciphertext pseudorandomness if for
all efficient adversaries A, we have∣∣∣Pr

[
AOk,0(·)(1λ) = 1

]
− Pr

[
AOk,1(·)(1λ) = 1

]∣∣∣ = εrandae (λ),

where k← KeyGen(1λ), and the oracles Ok,b for b ∈ {0, 1} are defined as follows:

• Ok,0(m): On input a message m ∈M, the oracle computes ct← Encrypt(k,m) and returns ct.

• Ok,1(m): On input a message m ∈M, the oracle computes ct← Encrypt(k,m), samples ct′ ←R {0, 1}|ct|,
and returns ct′.

We say that ΠAE satisfies ciphertext pseudorandomness if εrandae (λ) = negl(λ).

3 New Definitions for Updatable Encryption

In this section, we present new security definitions for updatable encryption in the ciphertext dependent
setting. Our definitions build upon and strengthen the confidentiality and integrity definitions for an updatable
authenticated encryption scheme from Everspaugh et al. [EPRS17]. We start by defining the syntax for an
updatable encryption scheme and its compactness and correctness conditions in Section 3.1. We then present
security definitions for confidentiality and integrity, comparing each to prior definitions as we present them.

3.1 Updatable Encryption Syntax

For ciphertext-dependent updatable encryption schemes, it is useful to denote ciphertexts as consisting of
two parts: a short ciphertext header ĉt, which the client can download to generate its update token, and a
ciphertext body ct that encrypts the actual plaintext.

Formally, we define the syntax for an updatable encryption scheme as follows. To emphasize the ciphertext
integrity properties of our constructions in Section 4 and Section 5, we refer to an updatable encryption
scheme as an updatable authenticated encryption scheme in our definitions.

Definition 3.1 (Updatable Authenticated Encryption). An updatable authenticated encryption (UAE)
scheme for a message space M = (Mλ)λ∈N is a tuple of efficient algorithms ΠUAE = (KeyGen,Encrypt,
ReKeyGen,ReEncrypt,Decrypt) that have the following syntax:

• KeyGen(1λ)→ k: On input a security parameter λ, the key generation algorithm returns a secret key k.

• Encrypt(k,m)→ (ĉt, ct): On input a key k and a message m ∈Mλ, the encryption algorithm returns a
ciphertext header ĉt and a ciphertext body ct.

• ReKeyGen(k1, k2, ĉt)→ ∆1,2,ĉt/⊥: On input two keys k1, k2, and a ciphertext header ĉt, the re-encryption
key generation algorithm returns an update token ∆1,2,ĉt or ⊥.

• ReEncrypt(∆, (ĉt, ct)) → (ĉt
′
, ct′)/⊥: On input an update token ∆, and a ciphertext (ĉt, ct), the

re-encryption algorithm returns a new ciphertext (ĉt
′
, ct′) or ⊥.
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• Decrypt(k, (ĉt, ct))→ m/⊥: On input a key k, and a ciphertext (ĉt, ct), the decryption algorithm returns
a message m or ⊥.

A trivial way of achieving an updatable authenticated encryption scheme is to allow a client to re-download
the entire ciphertext, re-encrypt it, and send it back to the server. Therefore, for a UAE scheme to be useful
and meaningful, we require that communication between the client and server be bounded and independent
of the size of the message encrypted in the ciphertext to be updated. This is captured by the compactness
property, which requires that any ciphertext header and update token have lengths that depend only on the
security parameter.

Definition 3.2 (Compactness). We say that an updatable authenticated encryption scheme ΠUAE = (KeyGen,
Encrypt,ReKeyGen,ReEncrypt,Decrypt) for a message spaceM = (Mλ)λ∈N is compact if there exist functions
poly1(·), poly2(·) such that for any λ ∈ N and message m ∈Mλ, we have

|ĉt| ≤ poly1(λ), |∆1,2,ĉt| ≤ poly2(λ),

where k1, k2 ← KeyGen(1λ), (ĉt, ct)← Encrypt(k1,m), and ∆1,2,ĉt ← ReKeyGen(k1, k2, ĉt).

The correctness condition for an updatable encryption scheme is defined in a natural way.

Definition 3.3 (Correctness). We say that an updatable authenticated encryption scheme ΠUAE = (KeyGen,
Encrypt,ReKeyGen,ReEncrypt,Decrypt) for a message space M = (Mλ)λ∈N is correct if for any λ ∈ N,
N = poly(λ), and m ∈Mλ, we have

Pr
[
Decrypt(kN , (ĉtN , ctN )) = m

]
= 1,

where k1, . . . , kN ← KeyGen(1λ), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , N − 1.

We note that the definition above requires that the correctness of decryption to hold even after unbounded
number of key updates. In Definition 4.1, we define a relaxation of this definition that requires correctness of
decryption for a bounded number of updates.

3.2 Prior Notions of Confidentiality

Standard semantic security for a symmetric encryption scheme requires that an encryption of a message does
not reveal any information about the message. In a regular symmetric encryption scheme, there exists only
one way to produce a ciphertext: via the encryption algorithm. In an updatable authenticated encryption
scheme, there exist two ways of producing a ciphertext: the encryption algorithm Encrypt that generates fresh
ciphertexts and the re-encryption algorithm ReEncrypt that generates re-encrypted ciphertexts. Previous
formulations of updatable encryption security capture the security of these algorithms in two separate security
experiments. The security of the regular encryption algorithm Encrypt is captured by the notion of message
confidentiality [BLMR13, EPRS17] while the security of the re-encryption algorithm ReEncrypt is captured
by the notion of re-encryption indistinguishability [EPRS17].

Both security experiments are divided into three phases, and are parameterized by h, the number of
honest keys, and d, the number of dishonest keys. During the setup phase of the security experiment, the
challenger generates h keys k1, . . . , kh ← KeyGen(1λ) that are kept private from the adversary, and d keys
kh+1, . . . , kh+d that are provided to the adversary. During the query phase of the experiment, the adversary
is given access to a set of oracles that evaluate the algorithms Encrypt, ReKeyGen, and ReEncrypt, allowing
the adversary to obtain ciphertexts under honest keys and rekey them.

The only distinction between the message-confidentiality and re-encryption indistinguishability experiments
is in the way we define the final challenge oracle. In the message confidentiality experiment, the adversary is
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given access to a challenge oracle where it can submit a pair of messages (m0,m1). As in a standard semantic
security definition, the challenge oracle provides the adversary with an encryption of either m0 or m1 under
a specified honest key, and the adversary’s goal is to guess which of the messages was encrypted. In the
re-encryption indistinguishability experiment, on the other hand, the adversary submits a pair of ciphertexts(
(ĉt0, ct0), (ĉt1, ct1)

)
of the same length to the challenge oracle and receives a re-encryption of one of the

ciphertexts. The adversary’s goal in the re-encryption indistinguishability experiment is to guess which of the
two ciphertexts was re-encrypted.

During the query phase of the experiment, the adversary can make queries to all four oracles as long
as their evaluations do not allow the adversary to “trivially” learn which messages are encrypted by the
challenge oracle. In particular, this means that no oracle will be allowed to rekey a challenge ciphertext from
an honest key to a dishonest key. To this end, the challenger in each experiment keeps a table of challenge
ciphertexts generated under each honest key and their re-encryptions. Much of the apparent complexity of
formalizing the definition arises from enforcing this straightforward check. We provide the full definitions of
Everspaugh et al. [EPRS17] for reference in Appendix A. 1

3.3 Improving Confidentiality

One property that is not captured by the combination of message confidentiality and re-encryption indistin-
guishability is the indistinguishability of fresh ciphertexts from re-encrypted ciphertexts. In particular, an
encryption scheme in which fresh ciphertexts have a completely different structure than those of re-encrypted
ciphertexts can still separately satisfy message confidentiality for fresh encryptions and re-encryption indistin-
guishability for re-encryptions. In many real-world scenarios, an adversary that learns whether a ciphertext
is a fresh encryption or a re-encryption can deduce information about the underlying plaintext of a message.

Furthermore, in the re-encryption indistinguishability experiment, an adversary is required to submit two
ciphertexts ct0, ct1 that have the same size |ct0| = |ct1|. If we consider the re-encryption algorithm ReEncrypt
to be another form of fresh encryption, this admissibility condition on the adversary is quite intuitive.
However, unlike the encryption algorithm Encrypt, the re-encryption algorithm ReEncrypt is designed to be
applied multiple times on a single ciphertext and therefore, it must take into account the varying lengths of
ciphertexts that are handled by the re-encryption algorithm.

Thus the existing confidentiality definitions for an authenticated updatable encryption scheme fail to
enforce the following properties:

• Property 1: Freshly generated ciphertexts are indistinguishable from ciphertexts that are generated
via re-encryption.

• Property 2: Ciphertexts do not reveal how many times a re-encryption algorithm was performed on a
given ciphertext.

We now augment the confidentiality security definitions of Everspaugh et al. [EPRS17] to enforce these two
properties.

Enforcing property 1. A natural way to enforce that fresh ciphertexts are indistinguishable from re-
encrypted ciphertexts is to define a security experiment analogous to the definitions of message confidentiality
and re-encryption indistinguishability, but with respect to a challenge oracle that takes in either a message m
or a ciphertext (ĉt, ct) and either encrypts m or re-encrypts (ĉt, ct).

We present the full definition of confidentiality below. The various checks included in the description of
the oracles only serve to ensure that an adversary cannot take a challenge ciphertext under an honest key
and obtain its re-encryption under a dishonest key, as this would result in a trivial win.

Definition 3.4 (Confidentiality). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) be an updat-
able authenticated encryption scheme for a message space M = (Mλ)λ∈N. Then, for a security parameter λ,

1The definitions that we present in Appendix A are actually simpler variants of the Everspaugh et al. [EPRS17] definitions.
Our improvements to their definitions, presented in this section, are orthogonal to any simplifications that we make. See the
appendix for a full discussion.
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positive integers h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the confidentiality experiment
ExptconfΠUAE

(λ, h, d,A, b) as follows:

ExptconfΠUAE
(λ, h, d,A, b):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies. This table holds the
body of the encryption of a challenge ciphertext, and its re-encryptions. The adversary is allowed
to make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h] and a message m ∈ Mλ. The challenger
returns Encrypt(ki,m) to A.

– OReKeyGen(i, j, ĉt): A query consists of indices i, j ∈ [h + d] and a ciphertext header ĉt.
If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥. Otherwise, it computes ∆i,j,ĉt ←
ReKeyGen(ki, kj , ĉt) and returns ∆i,j,ĉt to A. If T[i, ĉt] 6= ⊥, then the challenger computes

ReEncrypt
(
∆i,j,ĉt, (ĉt,T[i, ĉt])

)
and sets T[j, ĉt

′
]← ct′.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: A query consists of indices i, j ∈ [h+ d] and a ciphertext (ĉt, ct). The

challenger computes an update token ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt) and updated ciphertext

(ĉt
′
, ct′) ← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
. If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥.

Otherwise, it returns (ĉt
′
, ct′) to A. Finally, if j ≤ h and T[i, ĉt] 6= ⊥, the challenger sets

T[j, ĉt
′
]← ct′.

– OChallenge

(
i, j,m, (ĉt, ct)

)
: A query consists of indices i ∈ [h+ d], j ∈ [h], a message m ∈Mλ,

and a ciphertext (ĉt, ct). The challenger computes the following values:

(ĉt
′
0, ct

′
0)← Encrypt(kj ,m)

∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

(ĉt
′
1, ct

′
1)← ReEncrypt(∆i,j,ĉt, (ĉt, ct))

If |ĉt′0| 6= |ĉt
′
1|, |ct′0| 6= |ct′1|, or if either of the algorithms ReKeyGen(ki, kj , ĉt), ReEncrypt(∆i,j,ĉt,

(ĉt, ct)) outputs ⊥, then the challenger returns ⊥. Otherwise, it sets T[j, ĉt
′
b]← ct′b and returns

(ĉt
′
b, ct

′
b) to A.

• Output phase: At the end of the experiment, the adversary A outputs a bit b ∈ {0, 1}, which is
the output of the experiment.

We say that an updatable authenticated encryption scheme ΠUAE satisfies confidentiality if there exists a
negligible function negl(·) such that for all h, d = poly(λ) and efficient adversaries A, we have∣∣∣Pr

[
ExptconfΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
ExptconfΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣ = negl(λ).

Although our original goal in defining the confidentiality experiment above is to enforce the condition that fresh
ciphertexts are indistinguishable from re-encrypted ciphertexts, the experiment captures a much wider class of
confidentiality properties for an updatable authenticated encryption scheme. In fact, it is straightforward to
show that a UAE scheme that satisfies the single confidentiality definition above automatically satisfies both
message confidentiality and re-encryption indistinguishability. Specifically, since the confidentiality definition
above implies that an encryption of a message is indistinguishable from a re-encryption of a ciphertext (given
that the resulting ciphertexts are of the same length), this implies that for any two messages m0,m1 such
that |m0| = |m1|, we have

Encrypt(k,m0) ≈c (ĉt
′
, ct′) ≈c Encrypt(k,m1),
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for any key k that is hidden from an adversary and any re-encrypted ciphertext (ĉt
′
, ct′) of appropriate length.

Similarly, the confidentiality definition above implies that given two ciphertexts (ĉt0, ct0) and (ĉt1, ct1) of the
same length, we have

ReEncrypt
(
ReKeyGen(k, k′, ĉt0),(ĉt0, ct0)

)
≈c (ĉt

′
, ct′) ≈c ReEncrypt

(
ReKeyGen(k, k′, ĉt1), (ĉt1, ct1)

)
,

for an appropriate key k′ that is hidden from an adversary and any fresh ciphertext (ĉt
′
, ct′) of appropriate

length.
In combination with our new strong compactness requirement (which we introduce in Definition 3.5), the

security experiment in Definition 3.4 captures all the confidentiality properties we expect from an updatable
encryption scheme. This is why we refer to the experiment in Definition 3.4 simply as the “confidentiality”
experiment.

Enforcing property 2. Enforcing that an updatable encryption ciphertext hides the number of key updates
is less straightforward. Perhaps the most natural and general way to enforce this property is to modify the
challenge oracle in Definition 3.4 as follows:

• OChallenge

(
I, (ĉt0,0, ct0,0),J , (ĉt1,0, ct1,0)

)
: A query consists of two sequences of indices I = (i1, . . . , iτ ),

J = (j1, . . . , jτ ′) for τ, τ ′ ∈ N such that iτ = jτ ′ are honest keys, and |ct0,0| = |ct1,0|. The challenger
computes two sequences of ciphertexts

∆iγ−1,iγ ← ReKeyGen(kiγ−1
, kiγ , ĉt0,iγ )

(ĉt0,iγ , ct0,iγ )← ReEncrypt(∆iγ−1,iγ , ĉt0,iγ−1
, ct0,iγ−1

) ∀γ ∈ [τ ],

and

∆′jγ−1,jγ ← ReKeyGen(kjγ−1 , kjγ , ĉt1,jγ )

(ĉt1,jγ , ct1,jγ )← ReEncrypt(∆′jγ−1,jγ , ĉt1,jγ−1
, ct1,jγ−1

) ∀γ ∈ [τ ′].

It returns either (ĉt0,jτ , ct0,jτ ) or (ĉt1,jτ′ , ct1,jτ′ ).

The challenge oracle above takes in two sequences of indices I, J , and re-encrypts either the ciphertext
(ĉt0,0, ct0,0) according to the sequence of keys specified by I or the ciphertext (ĉt1,0, ct1,0) according to J .
Since the two sequences I and J can have differing lengths, an updatable encryption scheme that satisfies a
security experiment with respect to such a challenge oracle must hide the number of times the re-encryption
algorithm was applied to a ciphertext.

However, a security experiment that is defined with respect to the challenge oracle above is generally
difficult to work with and requires notationally complicated proofs. Hence, instead of using the challenge
oracle as defined above, we define a stronger compactness requirement on the ciphertexts of an updatable
encryption scheme. Specifically, in addition to the compactness requirement as specified in Definition 3.2,
we require that the size of a ciphertext always remains fixed no matter how many times the re-encryption
algorithm is performed on a ciphertext.

Definition 3.5 (Strong Compactness). We say that an updatable authenticated encryption scheme ΠUAE =
(KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) for a message space M = (Mλ)λ∈N is strongly compact if it
satisfies the following two properties:

• Header compactness: There exist functions poly1(·), poly2(·) such that for any λ ∈ N and message
m ∈Mλ, we have

|ĉt| ≤ poly1(λ), |∆1,2,ĉt| ≤ poly2(λ),

where k1, k2 ← KeyGen(1λ).
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• Body compactness: For any m ∈ Mλ and sequence of keys k0, k1, . . . , kN ← KeyGen(1λ), if we set
(ĉt0, ct0)← Encrypt(k0,m), and

(ĉti, cti)← ReEncrypt
(
ReKeyGen(ki−1, ki, ĉti−1), (ĉti−1, cti−1)

)
,

for i ∈ [N ], we have |cti| = |ctj | for all 0 ≤ i, j ≤ N .

In combination with Definition 3.4, the strong compactness property implies that ciphertexts do not reveal how
many times a re-encryption algorithm was performed on a given ciphertext. The confidentiality property of
Definition 3.4 implies that the re-encryption of any two ciphertexts of the same size must be indistinguishable
to an adversary. The strong compactness property requires that no matter how many re-encryption operations
are performed on a given ciphertext, its length always remains the same size, thereby complementing
Definition 3.4.

Update independence. In Construction 4.2, we present a UAE scheme that satisfies the strong compactness
property of Definition 3.5 as well as message confidentiality and re-encryption indistinguishability, but does
not fully satisfy the stronger notion of confidentiality as defined in Definition 3.4. Therefore, we define
a slight relaxation of the confidentiality requirement as formulated in Definition 3.4 that we call update
independence and show that Construction 4.2 satisfies this security definition. An update independence
security experiment is defined identically to the confidentiality security experiment but without the re-
encryption oracle OReEncrypt. Since the re-encryption oracle is removed, update independence does not suffice
to imply message confidentiality and re-encryption indistinguishability. However, it still suffices to guarantee
that fresh ciphertexts are indistinguishable from re-encrypted ciphertexts as long as update tokens are hidden
from an adversary. For completeness, we state the full definition of update independence in Appendix C.

In combination with the message confidentiality and re-encryption indistinguishability properties, this
relaxed requirement of update independence suffices for many practical scenarios. Since update tokens are
generally sent over secure channels (e.g. TLS connection) from a client to a server, no malicious eavesdropper
can gain access to them. For malicious servers that have access to update tokens, on the other hand, hiding
how many times a re-encryption operation was previously applied on a ciphertext is less useful since the storage
metadata of the ciphertexts already reveal this information to the server. In essence, update independence,
when combined with message confidentiality and re-encryption indistinguishability, seems to satisfy the two
properties we wanted from our new confidentiality definition without the convenient benefit of a single unified
definition.

3.4 Integrity

The final security property that an updatable authenticated encryption scheme must provide is ciphertext
integrity. The ciphertext integrity experiment for UAE is analogous to the standard ciphertext integrity
experiment of an authenticated encryption scheme. As in the confidentiality experiment, the challenger starts
the experiment by generating a set of honest keys, which are kept private from the adversary, and dishonest
keys, which are provided to the adversary. Then, given oracle access to OEncrypt, OReEncrypt, and OReKeyGen,
the adversary’s goal is to generate a new valid ciphertext that was not (1) previously output by OEncrypt or
OReEncrypt, and (2) cannot be trivially derived via update tokens output by OReKeyGen.

Our integrity definition is similar to that of Everspaugh et al. [EPRS17] (rewritten in Appendix A),
except the previous definition does not include the re-encryption oracle OReEncrypt, which we add. Giving the
adversary access to a re-encryption oracle captures scenarios that are not covered by the previous definition.
For instance, security with respect to our stronger integrity experiment guarantees that an adversary who
compromises the key for a ciphertext cannot tamper with the data after the key has been rotated and the
data re-encrypted.

Definition 3.6 (Integrity). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) be an updatable au-
thenticated encryption scheme for a message spaceM = (Mλ)λ∈N. Then, for a security parameter λ, positive
integers h, d ∈ N, and an adversary A, we define the re-encryption integrity experiment ExptintΠUAE

(λ, h, d,A)
as follows:
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ExptintΠUAE
(λ, h, d,A):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies. The adversary is
allowed to make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h+ d] and a message m ∈Mλ. The challenger
computes (ĉt, ct)← Encrypt(ki,m) and sets T[i, ĉt]← ct. It returns (ĉt, ct) to A.

– OReKeyGen(i, j, ĉt): A query consists of indices i, j ∈ [h+ d] and a ciphertext header ĉt. If i > h
and j ≤ h, the challenger returns ⊥. Otherwise, it computes ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

and returns ∆i,j,ĉt to A. If T[i, ĉt] 6= ⊥, the challenger computes (ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt,

(ĉt,T[i, ĉt])
)

and sets T[j, ĉt
′
]← ct′.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: A query consists of indices i, j ∈ [h + d] and a ciphertext (ĉt, ct).

The challenger computes an update token ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt), updated ciphertext

(ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
, and returns (ĉt

′
, ct′) to A. If j ≤ h, it sets T[j, ĉt

′
]← ct′.

• Output phase: At the end of the experiment, the adversary A returns an index i ∈ [h] and a
ciphertext (ĉt, ct). The challenger computes m ← Decrypt

(
ki, (ĉt, ct)

)
and checks the following

conditions:

– m = ⊥,

– T[i, ĉt] = ct.

If either of the conditions above are met, then the challenger returns 0. Otherwise, it returns 1.

We say that an updatable authenticated encryption scheme ΠUAE satisfies re-encryption integrity if
there exists a negligible function negl(·) such that for all h, d ∈ N and any efficient adversary A, we have

Pr
[
ExptintΠUAE

(λ, h, d,A) = 1
]

= negl(λ).

Although our UAE construction in Section 4 can be shown to satisfy the strong notion of integrity formulated
above, the construction in Section 5 that relies on almost key-homomorphic PRFs is not sufficient to satisfy
the stronger notion. In Section 5, we formulate a relaxation of the notion of integrity that we call relaxed
integrity and show that UAE in Construction 5.2 satisfies this weaker variant.

4 UAE with Bounded Updates

We begin this section by presenting an insecure UAE scheme that demonstrates the importance of the new
definitions presented in Section 3. This scheme leaks the age of ciphertexts but nonetheless satisfies all
security definitions for ciphertext-dependent UAE from prior work.

Next, we extend the insecure scheme to hide the age of ciphertexts, thereby satisfying the definition of
update independence (Section 3.3, Definition C.1). This upgrade comes at the cost of relaxing the correctness
requirement of an updatable encryption scheme: the correctness of decryption is guaranteed only for an a
priori bounded number of key updates.

4.1 A Simple Nested Construction

In this section, we provide a simple updatable authenticated encryption scheme using any authenticated
encryption scheme. Our simple construction inherently leaks information about the message; namely, the
construction leaks how many re-encryption operations were previously performed on a given ciphertext,
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thereby leaking information about the age of the encrypted message. Despite this information leakage, the
construction satisfies all the UAE security definitions of Everspaugh et al. [EPRS17]. Hence, this construction
demonstrates that prior security definitions did not yet capture all the necessary security properties that an
updatable encryption scheme must provide.

The construction uses an authenticated encryption (AE) scheme. A key for this UAE scheme is a

standard AE key k̂, which we call the header key. The UAE encryption algorithm implements standard
chained encryption. To encrypt m using k̂, first generate a fresh body key kae and then encrypt the plaintext
ct← AE.Encrypt(kae,m). Next, the body key kae is encrypted under the header key ĉt← AE.Encrypt(k̂, kae)
to form the ciphertext header. Finally, output the UAE ciphertext (ĉt, ct).

To update a ciphertext, the client and server proceed as follows:

• Client : The client downloads the ciphertext header ĉt to recover the body key kae. It then generates
fresh header and body keys k̂′ and k′ae, and sends a new ciphertext header ĉt

′ ← AE.Encrypt
(
k̂′, (k′ae, kae)

)
along with k′ae to the server.

• Server : The server replaces the old ciphertext header ĉt with the new header ĉt
′
. It also generates a

new ciphertext body by encrypting the original ciphertext as ct′ ← AE.Encrypt
(
k′ae, (ĉt, ct)

)
.

Now, even with many such key updates, the client can still recover the original ciphertext. Specifically, the
client can first use its current header key k̂ to decrypt the ciphertext header and recover a body key kae and
the old header key k̂′. It uses kae to remove the outer layer of encryption and recover the old ciphertext
(ĉt
′
, ct′). The client repeats the same procedure with the old header key k̂′ and the old ciphertext (ĉt

′
, ct′).

Note that decryption time grows linearly in the number of re-encryption operations.
To prove security, we must introduce an additional step during a ciphertext update. Namely, in-

stead of setting the new ciphertext body as the encryption of the old ciphertext header and body ct′ ←
AE.Encrypt

(
k′ae, (ĉt, ct)

)
, the server replaces ĉt with a new ciphertext header ĉthistory that the client provides

to the server encrypted under a new key k̂history. The main intuition of the construction, however, remains
unchanged from the description above. Since the construction is a simpler form of the one formalized in
Construction 4.2, we defer the formal statement of the construction and its associated security theorems for
compactness, correctness, update independence, message confidentiality, re-encryption indistinguishability,
and ciphertext integrity to Appendix D.

4.2 Bounded Correctness

We now define a variation of correctness that we call bounded correctness. The bounded correctness condition
is defined in a natural way and analogously to Definition 3.3 (correctness). However, we do modify the syntax
of the key generation algorithm KeyGen to additionally take in a parameter t ∈ N that specifies an upper
bound on the number of key updates that a scheme can support. This allows the key generator to flexibly set
this parameter according to its needs.

Definition 4.1 (Bounded Correctness). We say that an updatable authenticated encryption scheme
ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) for a message spaceM = (Mλ)λ∈N satisfies bounded
correctness if for any λ, t ∈ N, and m ∈Mλ, we have

Pr
[
Decrypt(kt, (ĉtt, ctt)) = m

]
= 1,

where k1, . . . , kt ← KeyGen(1λ, 1t), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , t− 1.
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4.3 Nested Construction with Padding

Our modification of the nested construction is straightforward: we pad the ciphertexts such that as long as
the number of key updates is bounded, their lengths are independent of the number of key updates that are
performed on the ciphertexts. However, executing this simple idea requires some care. First, padding the
(original) ciphertexts with structured strings reveals information about how many updates were previously
performed on the ciphertexts. Therefore, we modify the encryption algorithm such that it pads the ciphertexts
with random strings. If the underlying authenticated encryption scheme satisfies ciphertext pseudorandomness
(Definition 2.10), an adversary cannot determine which component of a ciphertext corresponds to the original
ciphertext and which component corresponds to a pad.2

However, simply padding the (original) ciphertexts with random strings also makes them highly malleable
and easy to forge. To achieve integrity, we modify the encryption and re-encryption algorithms to additionally
sample a pseudorandom generator (PRG) seed and include it as part of the UAE ciphertext header. The
encryption and re-encryption algorithms then generate the ciphertext pads from an evaluation of the PRG.
By PRG security, the original ciphertext components and the pads are still computationally indistinguishable
to an adversary, but now the adversary cannot easily forge ciphertexts as the decryption algorithm can verify
the validity of a pad using the PRG seed.

The only remaining issue is correctness. Since the ciphertexts of our UAE scheme are pseudorandom,
the re-encryption algorithm also does not have information about where the original ciphertext ends and
padding begins. Therefore, we include this information as part of the re-encryption key (update token).
The re-encryptor can now apply the re-encryption on the original ciphertext and adjust the padding length
accordingly. Formally, our nested UAE works as follows.

Construction 4.2 (Nested Authenticated Encryption). Our construction uses the following building blocks:

• An authenticated encryption scheme ΠAE = (KeyGen,Encrypt,Decrypt) with message space M =
(Mλ)λ∈N. We additionally assume that AE.Encrypt behaves as a PRF, i.e., that encryptions under AE
are indistinguishable from random strings.

For the construction description below, we let ρ = ρλ denote the maximum size of an authenticated
encryption key and we let ν = poly(λ) be an additive overhead incurred by the encryption algorithm:
for any key kae ← AE.KeyGen(1λ) and any message m ∈Mλ, we have

|kae| = ρ, |ct| ≤ |m|+ ν,

where ct← AE.Encrypt(kae,m).

• A pseudorandom generator G : {0, 1}λ → {0, 1}∗. To simplify the presentation of the construction, we
assume that G has unbounded output that is truncated to the required length on each invocation.

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) for message space M = (Mλ)λ∈N as follows:

• KeyGen(1λ, 1t)→ k: On input the security parameter λ, and a bound on the number of re-encryption up-

dates t ∈ N, the key generation algorithm samples an authenticated encryption key k̂← AE.KeyGen(1λ)

and sets k← (k̂, t).

• Encrypt(k,m)→ (ĉt, ct): On input a key k = (k̂, t) and a message m ∈Mλ, the encryption algorithm
first samples a new authenticated encryption key kae ← AE.KeyGen(1λ) and a PRG seed s←R {0, 1}λ.
It then generates the ciphertext components as follows:

– ctpayload ← AE.Encrypt
(
kae,m),

2As discussed in Section 2.3, authenticated encryption schemes that satisfy pseudorandomness can be constructed from
pseudorandom functions or blockciphers in a standard way. Widely-used modes for authenticated encryption such as AES-GCM
also satisfy pseudorandomness.
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– ctpad ← G(s) such that ctpad ∈ {0, 1}t·(2ρ+ν),

– ĉt← AE.Encrypt
(
k̂, (s, |ctpayload|, kae,⊥)).

It then sets ct← (ctpayload, ctpad) and returns the ciphertext (ĉt, ct).

• ReKeyGen(k1, k2, ĉt)→ ∆1,2,ĉt/⊥: On input two keys k1 = (k̂1, t), k2 = (k̂2, t) and a ciphertext header

ĉt, the re-encryption key generation algorithm first checks if AE.Decrypt(k1, ĉt) = ⊥. If this is the case,
then it returns ⊥. Otherwise, it proceeds as follows:

1. It sets (s, `, kae, k̂history)← AE.Decrypt(k̂1, ĉt) (output ⊥ if decryption outputs ⊥).

2. It samples a new authenticated encryption key k̂′history ← AE.KeyGen(1λ) and encrypts ĉthistory ←
AE.Encrypt(k̂′history, (kae, k̂history)).

3. It samples a new authenticated encryption key k′ae ← AE.KeyGen(1λ), a new PRG seed s′ ←R {0, 1}λ,

sets `′ ← `+ |ĉthistory|, and encrypts ĉt
′ ← AE.Encrypt

(
k̂2, (s

′, `′, k′ae, k̂
′
history)

)
.

It sets the token as ∆1,2,ĉt ← (ĉt
′
, ĉthistory, `, k

′
ae, s

′), and returns ∆1,2,ĉt.

• ReEncrypt
(
∆1,2,ĉt, (ĉt, ct)

)
→ (ĉt

′
, ct′)/⊥: On input an update token ∆1,2,ĉt and a ciphertext (ĉt, ct),

the re-encryption algorithm first parses the update token and the ciphertext body as

– ∆1,2,ĉt = (ĉt
′
, ĉthistory, `, k

′
ae, s

′),

– ct = (ctpayload, ctpad) ∈ {0, 1}` × {0, 1}|ct|−` (if |ct| < `, output ⊥).

Then, the re-encryption algorithm encrypts ct′payload ← AE.Encrypt
(
k′ae, (ctpayload, ĉthistory)

)
and evaluates

the PRG ct′pad ← G(s′) such that ct′ ← (ct′payload, ct
′
pad) ∈ {0, 1}|ct| (if |ct′payload| > |ct|, return ⊥). Finally,

it returns (ĉt
′
, ct′).

• Decrypt
(
k, (ĉt, ct)

)
→ m/⊥: on input a key k = (k̂, t) and a ciphertext (ĉt, ct), the decryption algorithm

proceeds as follows:

1. It sets (s, `, k′ae, k̂
′
history)← AE.Decrypt(k̂, ĉt) and outputs ⊥ if decryption outputs ⊥.

2. It parses ct = (ctpayload, ctpad) ∈ {0, 1}` × {0, 1}|ct|−` (if |ct| < `, output ⊥)

3. It evaluates ct′pad ← G(s), |ct′pad| = |ctpad| and outputs ⊥ if ct′pad 6= ctpad.

4. It decrypts (ct′, ĉt
′
history)← AE.Decrypt(k′ae, ctpayload) and outputs ⊥ if decryption outputs ⊥.

5. It relabels k′ae as kae, k̂
′
history as k̂history, ct

′ as ct, and ĉt
′
history as ĉthistory.

6. It decrypts (k′ae, k̂
′
history)← AE.Decrypt(k̂history, ĉthistory), and outputs ⊥ if decryption outputs ⊥.

7. It decrypts (ct′, ĉt
′
history)← AE.Decrypt(kae, ct), and outputs ⊥ if decryption outputs ⊥.

8. If k̂′history 6= ⊥, it returns to Step 5 above. Otherwise it proceeds.

9. It sets m← AE.Decrypt(k′ae, ct
′) and outputs m.

We formally state the compactness, correctness, and security properties of Construction 4.2 in the following
theorem. We provide the formal proof in Appendix E.

Theorem 4.3. Suppose ΠAE satisfies correctness, εconfae -confidentiality, εintae -integrity, and εrandae -ciphertext pseu-
dorandomness, and G satisfies εprg PRG security. Then the updatable authenticated encryption scheme ΠUAE

in Construction 4.2 satisfies strong compactness, correctness, update independence, message confidentiality,
and re-encryption indistinguishability.

For confidentiality, we have the following concrete security bounds for all h, d = poly(λ) and efficient
adversaries A that make at most Q oracle queries:
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∣∣∣Pr
[
Exptupd-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptupd-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣

≤ 2h · εconfae (λ) + 2h · εintae (λ) + 2Q · εprg(λ) + 4Q · εrandae (λ)∣∣∣Pr
[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 0) = 1

]
− Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 1) = 1

]∣∣∣
≤ (2h+ 4Q) · εconfae (λ) + 2h · εintae (λ)∣∣∣Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣
≤ (2h+ 4Q) · εconfae (λ) + 2h · εintae (λ)

For integrity, we have the following bound for all h, d = poly(λ) and efficient adversaries A that make at
most Q challenge, ReKeyGen, or ReEncrypt queries:

Pr
[
ExptintΠUAE

(λ, h, d,A) = 1
]
≤ (h+Q) · εintae (λ) + (h+Q) · εconfae (λ) +Q/2λ

5 UAE from Key-Homomorphic PRFs

In this section, we construct an updatable authenticated encryption scheme from almost key-homomorphic
PRFs (Definition 2.5). The construction is heavily based on the construction of Everspaugh et al. [EPRS17]
that works over perfectly key-homomorphic PRFs. The main difference between their construction and
our construction is the use of a suitable encoding scheme for the messages. In our construction, we use an
encoding scheme to encode the messages before applying the encryption to correct any small errors that are
incurred by the use of almost key-homomorphic PRFs. We provide the syntax for an encoding scheme that
we use in Section 5.1. Due to the use of an encoding scheme, our construction can be viewed as supporting
only a bounded number of updates. However, the bound on the number of updates grows exponentially in
the size of the parameters of the scheme and therefore, the construction can be interpreted as permitting
unbounded updates. Moreover, due to the use of an encoding scheme, our construction cannot satisfy the
full integrity condition of Definition 3.6. In Section 5.2, we present an integrity notion that we call relaxed
integrity. Finally, in Section 5.3, we present our UAE scheme based on almost key-homomorphic PRFs.

5.1 Encoding Scheme

Our construction of an updatable authenticated encryption scheme relies on an almost key-homomorphic PRF
for which key-homomorphism holds under small noise. To cope with the noise in our updatable encryption
scheme in Section 5.3, we must encode messages prior to encrypting them such that they can be fully recovered
during decryption. A simple way of encoding the messages is to pad them with additional least-significant
bits. However, more sophisticated ways of encoding the messages are possible with general error-correcting
codes. In our construction description in Section 5.3, we use the syntax of a general encoding scheme that is
described in Fact 5.1 below. In Section 7, we test the performance of our construction in Section 5.3 with
simple padding.

Fact 5.1. Let n, q, γ be positive integers such that γ < q/4, µ = µ(λ) be a polynomial in λ, and M =(
{0, 1}µ(λ)

)
λ∈N be a message space. Then there exists a set of algorithms (Encode,Decode) with the following

syntax:

• Encode(m) → (m1, . . . ,m`): On input a message m ∈ Mλ, the encoding algorithm returns a set of
vectors m1, . . . ,m` ∈ Znq for some ` ∈ N.

• Decode(m1, . . . ,m`)→ m: On input a set of vectors m1, . . . ,m` ∈ Znq , the decoding algorithm returns a
message m ∈Mλ.
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The algorithms (Encode,Decode) satisfy the following property: for all strings m ∈Mλ and any error vectors
e1, . . . , e` ∈ [γ]n, if we set (m1, . . . ,m`)← Encode(m), we have

Decode(m1 + e1, . . . ,m` + e`) = m.

5.2 Relaxing Integrity

In this section, we formulate a relaxation of the notion of integrity in Definition 3.6 that we call relaxed
integrity. The relaxed integrity security experiment relaxes Definition 3.6 (integrity) in two aspects. First, in
the relaxed integrity security experiment, an adversary is provided access to a re-encryption oracle OReEncrypt

as in Definition 3.6, but we require that any of an adversary’s queries to the oracle are well-formed ciphertexts
that do not decrypt to “⊥”. As we discuss in Remark 5.4, this relaxation of Definition 3.6 is necessary as
there are attacks on Construction 5.2 that violate Definition 3.6.

The second relaxation that we make on Definition 3.6 is the adversary’s winning condition in the experiment.
Since we use almost key-homomorphic PRFs, any re-encryption of the ciphertexts evidently incurs a small
error that affects the low-ordered bits of the ciphertext. Therefore, to achieve perfect correctness, we encrypt
an encoding of a message (Fact 5.1) such that the decryption algorithm can still recover the full message
even if the low-ordered bits are corrupted. However, this also forces the construction to violate traditional
ciphertext integrity as an adversary can forge new ciphertexts by adding noise to the low-ordered bits of the
ciphertext. Therefore, we define the notion of relaxed integrity that is parameterized by a positive integer
γ ∈ N. An adversary wins in the relaxed integrity experiment only if it produces a valid ciphertext that differs
from any of the ciphertexts that it is given on the high ordered bits of the ciphertext or decrypts to a plaintext
that differs in any way from a plaintext it has given to the challenger. Variants of this relaxation of ciphertext
integrity have been defined in a number of previous works (e.g. [Kra01, CKN03]) and are sufficient for most
practical applications. Since the definiton of relaxed integrity is otherwise very similar to Definition 3.6, we
present the formal statement of the definition in Appendix C.

5.3 Construction

Our construction (based on that of Everspaugh et al. [EPRS17]) encrypts messages using almost key-
homomorphic PRFs in counter mode. Since almost KH-PRFs work over groups (i.e. vectors in Znq ), we use
an encoding scheme to map messages to group elements. The almost KH-PRF key that is used to encrypt
the message via counter mode is encrypted inside the ciphertext header such that a user can recover the key
from the header. The ciphertext header also stores the hash of the message for the decryption algorithm to
check ciphertext integrity.

Construction 5.2 (UAE from Key-Homomorphic PRFs). Let n, q, γ, and β be positive integers such that
γ = λω(1), q > γ/4, and n, β = poly(λ). Our construction uses the following building blocks:

• A standard authenticated encryption scheme ΠAE = (AE.KeyGen,AE.Encrypt,AE.Decrypt) with message
space M = (Mλ)λ∈N.

• A B-almost key-homomorphic PRF F : KPRF × {0, 1}∗ → Znq where (KPRF,+) and (Znq ,+) form groups.

• A collision resistant hash family H =
{
H :Mλ → {0, 1}λ

}
. To simplify the description of the construc-

tion, we assume that a description of a concrete hash function H ←R H is included in each algorithms
below as part of a global set of parameters.

• An encoding scheme (Encode,Decode) that encodes messages in (Mλ)λ∈N as elements in Znq . The
Decode algorithm decodes any error vectors e ∈ [γ]n as in Fact 5.1.

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) for message space (Mλ)λ∈N as follows:
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• KeyGen(1λ) → k: On input the security parameter λ, the key generation algorithm samples an
authenticated encryption key kae ← AE.KeyGen(1λ) and sets k← kae.

• Encrypt(k,m) → (ĉt, ct): On input a key k = kae and a message m ∈ Mλ, the encryption algorithm
encodes the message m to derive a set of vectors (m1, . . . ,m`) ← Encode(m) for some ` ∈ N. It then
samples a PRF key kprf ←R KPRF, computes the hash h← H(m), and generates the following ciphertext

ĉt← AE.Encrypt
(
kae, (kprf , h)

)
.

It encrypts each of the message vectors

cti ← mi + F (kprf , i)

for i = 1, . . . , `, and sets ct = (ct1, . . . , ct`). It returns (ĉt, ct).

• ReKeyGen(k1, k2, ĉt)→ ∆1,2,ĉt/⊥: On input two keys k1, k2 and a ciphertext header ĉt, the re-encryption

key generation algorithm first decrypts the header µ← AE.Decrypt(k1, ĉt). If µ = ⊥, then it returns ⊥.
Otherwise, it proceeds as follows:

1. It parses the decrypted header µ = (kprf , h).

2. It samples a new PRF key k′prf ←
R KPRF and defines the PRF update key kupprf ← k′prf − kprf .

Finally, it sets ĉt
′ ← AE.Encrypt

(
k2, (k

′
prf , h)

)
and returns ∆1,2,ĉt ← (ĉt

′
, kupprf).

• ReEncrypt
(
∆1,2,ĉt, (ĉt, ct)

)
→ (ĉt

′
, ct′)/⊥: On input an update token ∆1,2,ĉt and a ciphertext (ĉt, ct),

the re-encryption algorithm parses the update token as ∆1,2,ĉt = (ĉt
′
, kupprf) and the ciphertext body as

ct = (ct1, . . . , ct`). Then, it updates each block of the ciphertext

ct′i ← cti + F (kupprf , i)

for i = 1, . . . , `. It defines the new ciphertext body ct′ ← (ct′1, . . . , ct
′
`) and returns (ĉt

′
, ct′) as the

updated ciphertext.

• Decrypt
(
k, (ĉt, ct)

)
→ m/⊥: On input a key k and a ciphertext (ĉt, ct), the decryption algorithm first

decrypts the ciphertext header µ ← AE.Decrypt(k, ĉt). If µ = ⊥, then it returns ⊥. Otherwise, it
parses the decrypted header µ = (kprf , h), the ciphertext body ct = (ct1, . . . , ct`), and then decrypts the
messages

mi ← cti − F (kprf , i)

for i = 1, . . . , `. Let m′ ← Decode(m1, . . . ,m`). If H(m′) = h, then it returns m′. Otherwise, it
returns ⊥.

We formally state the compactness, correctness, and security properties of Construction 5.2 in the following
theorem. We provide the formal proof in Appendix F.

Theorem 5.3. Let ΠUAE be the updatable authenticated encryption scheme in Construction 5.2. If ΠAE

satisfies correctness, εconfae -confidentiality and εintae -integrity, F : KPRF × {0, 1}∗ → Y satisfies εprf-security, and
H :Mλ → {0, 1}λ is a εcr-secure collision resistant hash function, then ΠUAE satisfies strong compactness,
correctness, confidentiality, and γ-relaxed integrity.

For confidentiality, we have the following concrete security bounds for all h, d = poly(λ) and efficient
adversaries A that make at most Q challenge queries:∣∣∣Pr

[
ExptconfΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
ExptconfΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣

≤ 2h · εconfae (λ) + 2h · εintae (λ) + 2Q · εprf(λ)

For integrity, we have the following bound for all h, d = poly(λ) and efficient adversaries A:

Pr
[
Exptrelaxed-intΠUAE

(λ, h, d, γ,A) = 1
]
≤ h · εintae (λ) + εcr(λ)
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Remark 5.4 (Regarding relaxed integrity). Construction 5.2 satisfies relaxed integrity as opposed to the
full integrity of Definition 3.6. There exists a simple adversary that breaks the integrity experiment when it
is provided arbitrary access to the re-encryption oracle OReEncrypt. The adversary works as follows:

1. It first uses an encryption oracle OEncrypt to receive a ciphertext (ĉt, ct)← OEncrypt(i,m) for a message
m ∈ Mλ and an honest key index i. For simplicity, suppose that the message m encodes as a single
vector in Znq : Encode(m) ∈ Znq and therefore, ct ∈ Znq .

2. It subtracts an arbitrary vector m′ from the ciphertext body c̃t← ct−m′.

3. It submits the ciphertext (ĉt, c̃t) to the re-encryption oracle OReEncrypt to receive a new ciphertext

(ĉt
′
, c̃t
′
)← OReEncrypt

(
i, j, (ĉt, c̃t)

)
for an honest key index j.

4. It returns (ĉt
′
, c̃t
′
+ m′) as the ciphertext forgery.

Since the re-encryption algorithm is homomorphic, we have

OReEncrypt(i, j, ĉt, c̃t−m′) + m′ = OReEncrypt(i, j, ĉt, c̃t).

Therefore, the ciphertext (ĉt
′
, c̃t
′
+ m) that an adversary returns as a forgery is a valid ciphertext, but it

is not an output of any of the oracles that the adversary is provided with. This attack is ruled out in the
relaxed integrity experiment. Namely, in the relaxed integrity experiment, the re-encryption oracle OReEncrypt

outputs a re-encrypted ciphertext only when the input ciphertexts are well-formed.

6 Key-Homomorphic PRFs from Lattices

In this section, we construct an almost key-homomorphic PRF from the Learning with Errors (LWE)
assumption [Reg05]. There are a number of standard variants of the LWE assumption in the literature that
give rise to efficient PRF constructions. In this work, we work with the hardness of the ring variant of the
LWE problem where LWE matrices and vectors are represented as elements over a polynomial ring. This
variant of the assumption is often called the Ring Learning with Errors (RLWE) assumption [LPR10].

6.1 Ring Learning with Errors.

The Ring Learning with Errors (RLWE) problem works over a polynomial ring of the form R = Z[X]/(φ) and
Rq = R/qR for some polynomial φ ∈ Z[X]. The degree of the polynomial φ denoted n works as a security
parameter for the problem. For simplicity in this work, we restrict to power-of-two positive integers n and
cyclotomic polynomials φ = Xn + 1 ∈ Z[X]. A ring element b ∈ R (Rq) can be represented as a vector of its
polynomial coefficients in Z (Zq). Then, for a ring element b ∈ R with vector representation b = (b1, . . . , bn),
we define its norm ‖b‖ as the infinity norm of its vector representation maxi∈[n] |bi|. For a positive integer
B ∈ N, we let EB ⊆ R to denote the set of all elements in R with norm at most B.

Definition 6.1 (Ring Learning with Errors [Reg05, SSTX09, LPR10]). Let n, q, B be positive integers, let
R = Z[X]/(φ) be a polynomial ring for some φ ∈ Z[X], and Rq = R/qR. Then, for an error distribution χ
over EB ⊆ R, the (decisional) Ring Learning with Errors (RLWE) problem RLWEn,q,χ asks an adversary to
distinguish the following two distributions:

• OReal
s : On its invocation, the oracle samples a random ring element a←R Rq, noise element e← χ, and

returns (a, a · s+ e) ∈ Rq ×Rq.

• OIdeal: On its invocation, the oracle samples random ring elements a, u ←R Rq and returns (a, u) ∈
Rq ×Rq.
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More precisely, we say that RLWEn,q,χ is εRLWE-secure if for all efficient adversaries A, we have∣∣Pr
[
AO

Real
s (1λ) = 1

]
− Pr

[
AO

Ideal
s (1λ) = 1

]∣∣ = εRLWE(λ),

where s←R Rq.

For certain choices of the parameters n, q,B and error distribution χ, the Ring Learning with Errors problem
is hard assuming that certain worst-case lattice problems such as approx-SVP on n-dimensional ideal lattices
are hard to approximate within poly(n · q/B) by a quantum algorithm. [Reg05, Pei09, ACPS09, LPR10,
MM11, MP12, LPR13, BLP+13, LS15].

6.2 Almost Key-Homomorphic PRFs from RLWE

We construct an almost key-homomorphic PRF from the hardness of the Ring Learning with Errors problem
as follows.

Construction 6.2. Let n, q,B, r, ` be positive integers, R = Z[X]/(φ) a polynomial ring for φ ∈ Z[X],
Rq = Zq[X]/(φ), and χ an error distribution over EB ⊆ R. We let Sampχ : {0, 1}r → EB be a sampler for
the error distribution χ that takes in a uniformly random string in {0, 1}r and produces a ring element in EB
according to the distribution χ. For our construction, we set X = {0, 1}` to be the domain of the PRF and
use two hash functions that are modeled as random oracles:

• H0 : {0, 1}` → Rq,
• H1 : Rq × {0, 1}` → {0, 1}r.

We define our pseudorandom function F : Rq × {0, 1}` → Rq as follows:

F (s, x):

1. Evaluate a← H0(x), ρ← H1(s, x).
2. Sample e← Sampχ(ρ).
3. Output y ← a · s+ e.

We summarize the security and homomorphic properties of the PRF construction above in the following
theorem. We provide its proof in Appendix G.

Theorem 6.3. Let n, q,B, r, ` be positive integers, R = Z[X]/(φ) a polynomial ring for φ ∈ Z[X], Rq =
Zq[X]/(φ), and χ an error distribution over EB ⊆ Rq. Then, assuming that RLWEn,q,χ (Definition 6.1) is
εRLWE-secure, the pseudorandom function in Construction 6.2 is a εprf-secure 2B-almost key-homomorphic
PRF (Definition 2.5) with key space and range (Rq,+) such that εprf(λ) = εRLWE(λ).

6.3 Implementation Considerations

In Section 7, we implement our updatable authenticated encryption schemes in Constructions 4.2 and 5.2.
For the scheme in Construction 5.2, we instantiate the (almost) key-homomorphic PRF with the lattice-based
PRF in Construction 6.2. For the implementation of Construction 6.2, there are a number of design decisions
that must be taken into account. We now discuss a subset of these issues and provide the actual evaluation
numbers in Section 7.

Modulus. An important parameter to consider when implementing the key-homomorphic PRF in Construc-
tion 6.2 is the modulus q that defines the ring Rq. Naturally, the smaller the modulus q is, the faster the
ring operations become and therefore, it is preferable to set q to be as small as possible to optimize the speed
of the PRF evaluation. At the same time, since Construction 6.2 is an almost key-homomorphic PRF, it is
beneficial to set q to be as big as possible to minimize the padding that must be added on to the messages
before their encryption, thereby minimizing the space required to store these ciphertexts. In Section 7, to
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RLWE Parameters

|q| = 28 |q| = 60 |q| = 120 |q| = 128

n 1024 2048 4096 4096
B 352 498 704 704

Figure 1: RLWE parameters for each value of |q| used in our evaluation.

test for the optimal trade-offs between speed and space, we test Construction 6.2 with a number of different
moduli to evaluate their performance.

Number-Theoretic Transform. An evaluation of the PRF in Construction 6.2 consists of a polynomial
y = a · s+ e where s ∈ Rq is the PRF key and a ∈ Rq, e ∈ R are polynomials that are derived from the input
to the PRF x ∈ {0, 1}`. Then to multiply two polynomials a and s, it is natural to use fast multiplication
via the number-theoretic transform (NTT). A näıve way of implementing the multiplication via NTT is as
follows:

1. Convert the polynomials a and s from their “coefficient” representations into their “input-output”
(NTT) representations,

2. Multiply the two polynomials in the NTT representation,
3. Convert the result back into the coefficient representation.

For the PRF implementation, one can save on step 1 above. Since the polynomial a is derived from the hash
of the PRF input a← H(x), one can directly interpret the hash H(x) as a representation of a polynomial
already in the NTT representation. Since s is re-used for multiple PRF evaluations, its NTT representation
can also be pre-processed once at setup. This allows the PRF evaluation to require only a single NTT
conversion as opposed three.

Noise distribution and message encodings. Finally, when instantiating Construction 5.2 with Construc-
tion 6.2, an important factor to consider is the noise distribution χ and the message encoding scheme. For
the evaluations in Section 7, we chose to use the uniform distribution over a bounded space. We set the norm
bounds for the uniform distribution based on the best known attacks on the RLWE problem.

For the message encodings, we chose to trivially pad the messages with additional insignificant bits to
cope with noise growth during key-rotation. It is possible to use more sophisticated error correcting codes
to achieve better message-to-ciphertext ratios. We considered a number of options such as BCH codes and
LDPC codes [Gal62]; however, the actual savings in the ciphertext size appeared to be minimal compared to
other optimizations.

7 Evaluation

In this section we evaluate the performance of our nested and KH-PRF based UAE constructions (Construc-
tions 4.2 and 5.2), comparing their performance to that of the ReCrypt scheme of Everspaugh et al. [EPRS17]
both in terms of running time and ciphertext size. We find that our constructions dramatically im-
prove on the running time of the Everspaugh et al. [EPRS17] UAE at the cost of an increase in cipher-
text size (albeit our ciphertext sizes are still considerably smaller than those of ciphertext-independent
schemes [LT18, KLR19, BDGJ19]).

We implemented our constructions in C and evaluated their performance on an 8-core Ubuntu virtual
machine with 4GB of RAM running on a Windows 10 computer with 64GB and a 12-core AMD 1920x processor
@3.8GHz. We use AES-NI instructions to accelerate AES and AVX instructions for applicable choices of
lattice parameters. Our implementation is single-threaded and does not take advantage of opportunities for
parallelism beyond a single core. We rely on OpenSSL for standard cryptographic primitives and rely on
prior implementations of NTT and the SHAKE hash function [ADPS16, Sei18]. All numbers reported are
averages taken over at least 1,000 trials. Our choice of lattice parameters for each modulus size |q| is based
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Encrypt and ReEncrypt Throughput (MB/sec)

KH-PRF UAE ReCrypt Nested
|q| = 28 |q| = 28 (AVX) |q| = 60 |q| = 120 |q| = 128 [EPRS17] t = 128

4KB Messages
Encrypt 24.85 31.97 20.32 0.76 0.70 0.12 406.69
ReEncrypt 29.80 41.03 32.13 0.82 0.74 0.14 706.37

32KB Messages
Encrypt 29.85 39.89 61.90 5.94 5.50 0.12 1836.9
ReEncrypt 32.33 44.51 83.06 6.43 5.85 0.15 2606.8

100KB Messages
Encrypt 31.03 41.63 65.11 9.42 9.12 0.12 3029.5
ReEncrypt 33.30 45.77 79.63 9.92 8.70 0.14 3766.2

Figure 2: Comparing the throughput of our KH-PRF, ReCrypt, and our nested construction
configured to allow 128 re-encryptions, for messages of length 4KB, 32KB, and 100KB. Higher
numbers are better. Our KH-PRF is evaluated with four choices of q. The AVX column refers to an
implementation that takes advantage of Intel’s AVX vector instructions.

KeyGen and ReKeyGen Time (µsecs)

KH-PRF UAE ReCrypt Nested
|q| = 60 [EPRS17] t = 128

32KB Messages
KeyGen 3.0 1.0 2.6
ReKeyGen 72.7 308.8 10.1

Figure 3: KeyGen and ReKeyGen costs. The main differences in performance are caused by whether
the ReKeyGen algorithm needs to sample only AES keys or also KH-PRF keys, the type of KH-PRF
used, and the number of ciphertexts contained in the update token.

on the best known attacks on RLWE [APS15], as shown in Figure 1. Our implementation is open source and
available at [imp].

Encryption and Re-encryption Costs. Figure 2 shows encryption and re-encryption times for our
KH-PRF based UAE construction for various block sizes of the underlying KH-PRF as well as the ReCrypt
scheme [EPRS17] and our nested construction with padding configured to support up to 128 re-encryptions.
Our lattice-based KH-PRF scheme, when run with the best parameters, has from 250× to over 500× higher
encryption throughput than ReCrypt as the message size increases from 4KB to 100KB. The nested AES
construction, in turn, has 13− 47× the encryption throuhgput of our KHPRF-based construction. The nested
AES scheme approaches the machine’s peak AES throughput of 4.45GB/sec as the message size increases.

We find that for small messages (4KB), our KH-PRF with 28 bit output space (and accelerated with
AVX instructions) performs the best, but as messages grow larger the KH-PRF with 60 bit output space
outperforms other categories. Larger block sizes tend to perform worse because the output of the PRF no
longer fits into compiler provided primitive types, causing arithmetic operations to become less efficient.
Increasing the message size improves performance because the proportion of total time occupied by fixed-cost
operations decreases, e.g., due to the large blocks in which the KH-PRF output is generated. We run our
remaining experiments with |q| = 60 because it has the best performance for the most message sizes.

Key generation. Key generation is a faster and less time-sensitive operation than encryption, re-encryption,
and decryption because it only occurs once for a small ciphertext header before an entire ciphertext is
encrypted or re-encrypted. We show the performance of our KH-PRF based UAE as well as ReCrypt and
nested encryption on KeyGen and ReKeyGen operations in Figure 3. Generating a key in all three schemes is
very fast because it only requires generating a random 128-bit symmetric key. The cost of rekeying depends
on the underlying tool used to re-encrypt. ReKeyGen runs very quickly in the nested construction because it
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t = 20 3%
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Figure 4: KH-PRF based UAE (|q| = 60) and nested UAE
(t = 128) decryption times. The KH-PRF construction
decrypts faster than nested AES when there are more than
50 re-encryptions. ReCrypt is not depicted as it takes 500×
longer than our KH-PRF based UAE to decrypt.

Figure 5: Ciphertext body expansion for the KH-PRF
based UAE, Nested UAE, and ReCrypt. Our constructions
generally have larger ciphertext expansion than ReCrypt,
although the Nested UAE matches ReCrypt for some
settings, e.g., annually re-keying data for 20 years.

only consists of a couple AES-GCM encryptions of a fixed-size ciphertext header. The other two constructions
rely on different types of KH-PRFs and incur most of their costs in generating the update keys for those
PRFs.

Decryption Costs. Figure 4 shows decryption costs for our two main constructions and the tradeoffs
between them. We omit the decryption performance of ReCrypt from this graph because it is 500× slower than
our KH-PRF based construction and is strictly dominated by both schemes for the range of parameters we
measured. Decryption time for the nested AES construction depends linearly on the number of re-encryptions
that have occured because decryption needs to remove each layer of encryption to reach the plaintext. As
such, it begins much faster than the KH-PRF construction, as it only requires standard symmetric primitives
for which hardware acceleration is available, but becomes slower after about 50 re-encryptions. The KH-PRF
construction could also vary its performance slightly based on the number of expected re-encryptions by
varying the amount of padding applied in the message encoding process. However, we chose to evaluate the
scheme with a fixed amount of padding that is enough to support about 128 re-encryptions.

Ciphertext Size. The ciphertext size of a ciphertext-dependent UAE scheme consists of two parts: a fixed-
size header and the body, whose size depends on the plaintext. Figure 5 compares ciphertext body expansion
between our constructions and ReCrypt. Our KH-PRF based scheme and ReCrypt have 80-Byte headers,
while our nested construction has a 116-Byte header. Our KH-PRF based construction is implemented with
padding on each block depending on the size |q|. For example, a 60-bit block contains 44 bits of plaintext and
16 bits of padding. This corresponds to a 36% ciphertext size expansion. The lowest ciphertext expansion
for our evaluation of the KH-PRF based scheme occure when |q| = 128, with 19% expansion. ReCrypt has
lower ciphertext expansion, at 3%. The ciphertext size of our nested construction depends on the expected
number of encryptions. It has a constant 32-Byte overhead on top of the plaintext, followed by another
48 Bytes for each re-encryption. For a 32KB message, a ReCrypt ciphertext takes 33KB and a ciphertext
under our KH-PRF scheme takes 43.6KB. A ciphertext under our nested construction will match the size of
a ReCrypt ciphertext after 19 re-encryptions. This fits well with a ciphertext that is re-encrypted once a year
over a 20-year lifetime. Supporting 128 re-encryptions still only requires a 38.3KB ciphertext, matching the
expansion of the KH-PRF based PRF when |q| = 128.

Conclusions. Based on the performance of the schemes we evaluated, we can make the following recommen-
dations:

• If the ciphertext is to be re-encrypted only 10 or 20 times over the course of its lifetime, say once a
year for twenty years to satisfy NIST recommendations [Bar16] and PCI DSS [PCI18] requirements,

23



then one should use the nested construction, as it will provide the best performance and ciphertext size.
This is especially true of ciphertexts that are decrypted infrequently.

• For ciphertexts that will be frequently re-keyed, one should use our KHPRF-based construction where
decryption time and ciphertext size do not depend on the number of re-encryptions.

• ReCrypt [EPRS17] can be useful in settings with frequent re-encryptions where ciphertext size is valued
much more than encryption and decryption time.
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[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption
based on ideal lattices. In ASIACRYPT, 2009.

25



A Everspaugh et al. [EPRS17] Security Definitions

This section states the message confidentiality, re-encryption indistinguishability, and ciphertext integrity
definitions of Everspaugh et al. [EPRS17].

The confidentiality security definitions stated here are in fact slight modifications of the definitions of
Everspaugh et al. [EPRS17]. The difference between the two sets of definitions is in the way the challenger
handles trivial wins. In both sets of definitions (the originals and the ones presented here), an adversary
is prohibited from ever receiving a re-encryption of the challenge ciphertext under any of the dishonest
keys. Allowing the adversary to do so makes the security game vacuous as the adversary can use these keys
to decrypt the challenge ciphertext and always win the game. In Definitions A.1 and A.2, we define the
re-encryption oracle OReEncrypt to take in a pair of indices i, j and a ciphertext (ĉt, ct), and output “⊥” if both
the target index j is a compromised key (i.e. j > h) and (ĉt, ct) is either a challenge ciphertext or one of its
derivations via re-encryption. In the definitions of Everspaugh et al. [EPRS17], if an adversary submits a
re-encryption oracle query that satisfies these conditions, the challenger still returns the ciphertext header
“ĉt
′
” (but not the ciphertext body ct′) of the re-encrypted ciphertext instead of outputting ⊥.
The original [EPRS17] definitions provide theoretically stronger security as an adversary in the two

security experiments receives more power from the re-encryption oracle. However, it is difficult to deduce what
additional security property the stronger variant of the definition captures. In the stronger confidentiality
experiments, an adversary has the power to essentially decrypt the ciphertext headers from a challenge
ciphertext. Although ciphertext headers are necessarily transmitted during key updates and therefore more
likely to be exposed to attackers, these headers are still ciphertexts that are designed precisely to provide
confidentiality when they are exposed over public channels. Therefore, assuming that an adversary may
decrypt a challenge ciphertext header without compromising an honest key in the process is unrealistic and
appears to add unnecessary complication to the definition. For this work, we choose to present the simpler
and clear variant of the original set of definitions. The limitations of the definitions that we discuss in
Section 3 are more fundamental to the way the existing confidentiality experiments are designed and are
orthogonal to the issue of handling trivial wins.

We do note that Everspaugh et al. [EPRS17] showed an elegant way of upgrading an updatable encryption
scheme that satisfies the simpler variant of the confidentiality security definitions (Definitions A.1 and A.2) to
the stronger variant of [EPRS17] via a secret-sharing technique. This transformation incurs minimal efficiency
overhead and can also be applied to all of the constructions in this work (Constructions D.1, 4.2 and 5.2).
We present our constructions without this transformation purely for simplicity in the notations and proofs.

Definition A.1 (Message Confidentiality [BLMR13, EPRS17]). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,
ReEncrypt,Decrypt) be an updatable authenticated encryption scheme for a message space M = (M)λ∈N.
Then, for a security parameter λ, positive integers h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we

define the message confidentiality experiment Exptmsg-conf
ΠUAE

(λ, h, d,A, b) as follows:

Exptmsg-conf
ΠUAE

(λ, h, d,A, b):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies. This table holds the
body of the encryption of a challenge message, and its re-encryptions. The adversary is allowed to
make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h] and a message m ∈ Mλ. The challenger
computes (ĉt, ct)← Encrypt(ki,m) and returns (ĉt, ct) to A.

– OReKeyGen(i, j, ĉt): A query consists of indices i, j ∈ [h + d] and a ciphertext header ĉt.
If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥. Otherwise, it computes ∆i,j,ĉt ←
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ReKeyGen(ki, kj , ĉt) and returns ∆i,j,ĉt to A. If T[i, ĉt] 6= ⊥, then the challenger computes

ct′ ← ReEncrypt
(
∆i,j,ĉt, (ĉt,T[i, ĉt])

)
and sets T[j, ĉt

′
]← ct′.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: A query consists of indices i, j ∈ [h+ d] and a ciphertext (ĉt, ct). The

challenger computes an update token ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt) and updated ciphertext

(ĉt
′
, ct′) ← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
. If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥.

Otherwise, it returns (ĉt
′
, ct′) to A. Finally, if j ≤ h and T[i, ĉt] 6= ⊥, the challenger sets

T[j, ĉt
′
]← ct′.

– OChallenge

(
i,m0,m1

)
: A query consists of indices i ∈ [h] and a pair of messages m0,m1 ∈Mλ

such that |m0| = |m1|. The challenger computes (ĉtb, ctb)← Encrypt(ki,mb), sets T[i, ĉtb]← ct,
and returns (ĉtb, ctb) to A.

• Output phase: At the end of the experiment, the adversary A outputs a bit b ∈ {0, 1}, which is
the output of the experiment.

We say that an updatable authenticated encryption scheme ΠUAE satisfies message confidentiality if there
exists a negligible function negl(·) such that for all h, d = poly(λ) and efficient adversaries A, we have∣∣∣Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 0) = 1

]
− Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 1) = 1

]∣∣∣ = negl(λ).

Definition A.2 (Re-Encryption Indistinguishability [EPRS17]). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,
ReEncrypt,Decrypt) be an updatable authenticated encryption scheme for a message space Mλ. Then, for a
security parameter λ, positive integers h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the
re-encryption indistinguishability experiment Exptre-enc-indΠUAE

(λ, h, d,A, b) as follows:

Exptre-enc-indΠUAE
(λ, h, d,A, b):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies. The adversary is
allowed to make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h] and a message m ∈ Mλ. The challenger
returns Encrypt(ki,m) to A.

– OReKeyGen(i, j, ĉt): A query consists of indices i, j ∈ [h + d] and a ciphertext header ĉt.
If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥. Otherwise, it computes ∆i,j,ĉt ←
ReKeyGen(ki, kj , ĉt) and returns ∆i,j,ĉt to A. If T[i, ĉt] 6= ⊥, then the challenger computes

ReEncrypt
(
∆i,j,ĉt, (ĉt,T[i, ĉt])

)
and sets T[j, ĉt

′
]← ct′.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: A query consists of indices i, j ∈ [h+ d] and a ciphertext (ĉt, ct). The

challenger computes an update token ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt) and updated ciphertext

(ĉt
′
, ct′) ← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
. If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥.

Otherwise, it returns (ĉt
′
, ct′) to A. Finally, if j ≤ h and T[i, ĉt] 6= ⊥, the challenger sets

T[j, ĉt
′
]← ct′.

– OChallenge

(
i, j, (ĉt0, ct0), (ĉt1, ct1)

)
: A query consists of indices i ∈ [h + d], j ∈ [h], and a

pair of ciphertexts (ĉt0, ct0), (ĉt1, ct1) such that |ct0| = |ct1|. The challenger first computes

∆i,j,ĉtb ← ReKeyGen(ki, kj , ĉtb) and (ĉt
′
b, ct

′
b) ← ReEncrypt(∆i,j,ĉtb , (ĉtb, ctb)). If any of the

algorithms ReKeyGen(ki, kj , ĉtb) or ReEncrypt(∆i,j,ĉtb , (ĉtb, ctb)) outputs ⊥, then the challenger

returns ⊥. Otherwise, it sets T[j, ĉt
′
b]← ct′b and returns (ĉt

′
b, ct

′
b) to A.

• Output phase: At the end of the experiment, the adversary A outputs a bit b ∈ {0, 1}, which is
the output of the experiment.

27



We say that an updatable authenticated encryption scheme ΠUAE satisfies re-encryption indistinguishability if
there exists a negligible function negl(·) such that for all h, d = poly(λ) and efficient adversaries A, we have∣∣∣Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣ = negl(λ).

Definition A.3 (Ciphertext Integrity [EPRS17]). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) be an updatable authenticated encryption scheme for a message space M = (Mλ)λ∈N. Then,
for a security parameter λ, positive integers h, d ∈ N, and an adversary A, we define the ciphertext integrity
experiment Exptctxt-intΠUAE

(λ, h, d,A) as follows:

Exptctxt-intΠUAE
(λ, h, d,A):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies. The adversary is
allowed to make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h+ d] and a message m ∈Mλ. The challenger
computes (ĉt, ct)← Encrypt(ki,m) and sets T[i, ĉt]← ct. It returns (ĉt, ct) to A.

– OReKeyGen(i, j, ĉt): A query consists of indices i, j ∈ [h+ d] and a ciphertext header ĉt. If i > h
and j ≤ h, the challenger returns ⊥. Otherwise, it computes ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

and returns ∆i,j,ĉt to A. If T[i, ĉt] 6= ⊥, the challenger computes (ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt,

(ĉt,T[i, ĉt])
)

and sets T[j, ĉt
′
]← ct′.

• Output phase: At the end of the experiment, the adversary A returns an index i ∈ [h] and a
ciphertext (ĉt, ct). The challenger computes m ← Decrypt

(
ki, (ĉt, ct)

)
and checks the following

conditions:

– m = ⊥,

– T[i, ĉt] = ct.

If any of the conditions above are met, then the challenger returns 0 and otherwise, it returns 1.

We say that an updatable authenticated encryption scheme ΠUAE satisfies ciphertext integrity if there
exists a negligible function negl(·) such that for all h, d ∈ N and any efficient adversary A, we have

Pr
[
Exptctxt-intΠUAE

(λ, h, d,A) = 1
]

= negl(λ).

B Comparison to the Ciphertext-Independent Setting

Adaptive vs. Static corruption. Security definitions in the ciphertext-independent setting are largely
defined analogously to those in ciphertext-dependent setting. One distinction, however, is in the way an
adversary can query the oracles OReKeyGen and OReEncrypt. In the security definitions for ciphertext-dependent
updatable encryption, an adversary can query these oracles arbitrarily in any order, as long as the adversary
does not make a sequence of queries that allows it to trivially win the game. In the ciphertext-independent
setting as formulated in [LT18], the confidentiality security experiment is divided into epochs that must be
executed in a fixed order. Each key that is generated in the experiment is associated with a unique epoch and
therefore, an adversary is required to query these keys in a fixed order. Furthermore, the security definitions
in the ciphertext-independent setting allow for separate compromises of keys and update tokens. These
distinctions allow the existing updatable encryption constructions in the ciphertext-independent setting to
satisfy adaptive security where the adversary can corrupt additional malicious keys throughout the progression
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of the experiment. In contrast, all existing constructions in the ciphertext-dependent setting, including the
constructions in this work, satisfy static security.

Integrity. The only work that considers integrity for updatable encryption in the ciphertext-independent
setting is that of Klooß et al. [KLR19], which provides two integrity definitions. In the first definition, the re-
encryption oracle only accepts the ciphertexts that are honestly derived from ciphertexts that were previously
provided by the challenger. The second integrity definition removes this restriction on re-encryption oracle
queries. The first definition is analogous to the relaxed integrity notion that we describe in Definition C.2,
and their stronger integrity definition is analogous to the integrity described in Definition 3.6. Klooß et al.
[KLR19] also provide two constructions that each satisfy one of these definitions: a practical updatable
encryption construction that satisfies the weaker integrity definition, and a theoretical construction that
satisfies the stronger definition.

Efficiency. Although none of the existing updatable encryption schemes in the ciphertext-independent setting
have yet been implemented, we can compare their asymptotic performance with those of the constructions
in this work. The most efficient ciphertext-independent updatable encryption scheme, SHINE [BDGJ19],
requires a similar number of symmetric and group operations as the ReCrypt updatable encryption scheme
of [EPRS17], which works in the ciphertext-dependent setting. In Section 7, we show that the constructions
in this work further improve the performance of ReCrypt and therefore, they would also outperform the
existing updatable encryption schemes in the ciphertext-independent setting. Furthermore, unlike ReCrypt
and the constructions in this work, SHINE does not provide any integrity protection. The best known
ciphertext-independent construction that does provide integrity is that of Klooß et al. [KLR19], which requires
plaintext-to-ciphertext ratio of 3, which is prohibitive for most applications.

C Full Definitions of Update Independence and Relaxed Integrity

For completeness, this section states the full definitions of update independence and relaxed integrity, which
were omitted from the body of the text due to their similarity to security definitions already described earlier.

Definition C.1 (Update Independence). Let ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,Decrypt) be
an updatable authenticated encryption scheme for a message space M = (Mλ)λ∈N. Then, for a security
parameter λ, positive integers h, d ∈ N, an adversary A, and a binary bit b ∈ {0, 1}, we define the update

independence experiment Exptupd-ind
ΠUAE

(λ, h, d,A, b) as follows:

Exptupd-ind
ΠUAE

(λ, h, d,A, b):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies. The adversary is
allowed to make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h] and a message m ∈ Mλ. The challenger
returns Encrypt(ki,m) to A.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: A query consists of indices i, j ∈ [h+ d] and a ciphertext (ĉt, ct). The

challenger computes an update token ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt) and updated ciphertext

(ĉt
′
, ct′) ← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
. If j > h and T[i, ĉt] 6= ⊥, the challenger returns ⊥.

Otherwise, it returns (ĉt
′
, ct′) to A. Finally, if j ≤ h and T[i, ĉt] 6= ⊥, the challenger sets

T[j, ĉt
′
]← ct′.

– OChallenge

(
i, j,m, (ĉt, ct)

)
: A query consists of indices i ∈ [h+ d], j ∈ [h], a message m ∈Mλ,

and a ciphertext (ĉt, ct). The challenger computes (ĉt
′
0, ct

′
0) ← Encrypt(kj ,m), ∆i,j,ĉt ←
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ReKeyGen(ki, kj , ĉt), and (ĉt
′
1, ct

′
1) ← ReEncrypt(∆i,j,ĉt, (ĉt, ct)). If |ĉt′0| 6= |ĉt

′
1|, |ct′0| 6= |ct′1|,

or any of the algorithms ReKeyGen(ki, kj , ĉt), ReEncrypt(∆i,j,ĉt, (ĉt, ct)) outputs ⊥, then the

challenger returns ⊥. Otherwise, it sets T[j, ĉt
′
b]← ct′b and returns (ĉt

′
b, ct

′
b) to A.

• Output phase: At the end of the experiment, the adversary A outputs a bit b ∈ {0, 1}, which is
the output of the experiment.

We say that an updatable authenticated encryption scheme ΠUAE satisfies update independence if there exists
a negligible function negl(·) such that for all h, d = poly(λ) and efficient adversaries A, we have∣∣∣Pr

[
Exptupd-ind

ΠUAE
(λ, h, d,A, 0) = 1

]
− Pr

[
Exptupd-ind

ΠUAE
(λ, h, d,A, 1) = 1

]∣∣∣ = negl(λ).

Definition C.2 (Relaxed Integrity). Let n and q be a positive integers, and let ΠUAE = (KeyGen,Encrypt,
ReKeyGen,ReEncrypt,Decrypt) be an updatable authenticated encryption scheme for a message space M and
ciphertext space (Znq )∗. Then, for a security parameter λ, positive integers h, d, γ ∈ N, and an adversary A,

we define the relaxed integrity experiment Exptrelaxed-int
ΠUAE

(λ, h, d, γ,A) as follows:

Exptrelaxed-int
ΠUAE

(λ, h, d, γ,A):

• Setup phase: At the start of the experiment, the challenger generates h uncorrupted keys
k1, . . . , kh ← KeyGen(1λ) and d corrupted keys kh+1, . . . , kh+d ← KeyGen(1λ). It provides the
corrupted keys kh+1, . . . , kh+d to the adversary A.

• Query phase: Throughout the query phase of the experiment, the challenger maintains a look-up
table T that maps key index and ciphertext header pairs to ciphertext bodies and plaintexts. The
adversary is allowed to make the following queries to the challenger:

– OEncrypt(i,m): A query consists of an index i ∈ [h+ d] and a message m ∈M. The challenger
computes (ĉt, ct)← Encrypt(ki,m) and sets T[i, ĉt]← (ct,m). It returns (ĉt, ct) to A.

– OReKeyGen(i, j, ĉt): A query consists of indices i, j ∈ [h+ d] and a ciphertext header ĉt. If i > h
and j ≤ h, the challenger returns ⊥. Otherwise, it computes ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt)

and returns ∆i,j,ĉt to A. If T[i, ĉt] 6= ⊥, let (ct,m) ← T[i, ĉt]. The challenger computes

(ĉt
′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
and sets T[j, ĉt

′
]← (ct′,m).

– OReEncrypt

(
i, j, (ĉt, ct)

)
: A query consists of indices i, j ∈ [h + d] and a ciphertext (ĉt, ct).

The challenger first decrypts m ← Decrypt
(
ki, (ĉt, ct)

)
and returns ⊥ if m = ⊥. Otherwise,

the challenger computes an update token ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt), updated ciphertext

(ĉt
′
, ct′) ← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
, and returns (ĉt

′
, ct′) to A. If j ≤ h, it sets T[j, ĉt

′
] ←

(ct′,m).

• Output phase: At the end of the experiment, the adversary A returns an index i ∈ [h] and a
ciphertext (ĉt, ct) for ct = (ct1, . . . , ct`) ∈ (Znq )`. The challenger computes m← Decrypt

(
ki, (ĉt, ct)

)
and checks the following conditions:

– m = ⊥,

– For (ct′,m′)← T[i, ĉt], ct′ = (ct′1, . . . , ct
′
`′), we have that m = m′, ` = `′, and

∥∥ctj − ct′j
∥∥ ≤ γ

for all j ∈ [`].

If either of the conditions above are met, then the challenger returns 0. Otherwise, it returns 1.

We say that an updatable authenticated encryption scheme ΠUAE satisfies γ-relaxed integrity if there exists a
negligible function negl(·) such that for all h, d ∈ N and any efficient adversary A, we have

Pr
[
Exptrelaxed-int

ΠUAE
(λ, h, d, γ,A) = 1

]
= negl(λ).

30



D Full Construction of Simple Nested Scheme

Construction D.1. Our construction uses the following building block:

• A standard authenticated encryption scheme ΠAE = (KeyGen,Encrypt,Decrypt) with message spaceM =
(Mλ)λ∈N.

We construct an updatable authenticated encryption scheme ΠUAE = (KeyGen,Encrypt,ReKeyGen,ReEncrypt,
Decrypt) for message space M = (Mλ)λ∈N as follows:

• KeyGen(1λ) → k: On input the security parameter λ, the key generation algorithm samples an

authenticated encryption key k̂← AE.KeyGen(1λ) and sets k← k̂.

• Encrypt(k,m) → (ĉt, ct): On input a key k = k̂, and a message m ∈ Mλ, the encryption algorithm
first samples a new authenticated encryption key kae ← AE.KeyGen(1λ). It then encrypts the key

ĉt← AE.Encrypt
(
k̂, (kae,⊥)

)
, encrypts the message ct← AE.Encrypt

(
kae, (m,⊥)

)
, and returns (ĉt, ct).

• ReKeyGen(k1, k2, ĉt)→ ∆1,2,ĉt/⊥: On input two keys k1 = k̂1, k2 = k̂2, and a ciphertext header ĉt, the

re-encryption key generation algorithm first samples new authenticated encryption keys k̂history, k
′
ae ←

AE.KeyGen(1λ). It then re-encrypts the ciphertext header ĉthistory ← AE.Encrypt
(
k̂history,AE.Decrypt(k̂1,

ĉt)
)
, generates a new ciphertext header ĉt ← AE.Encrypt

(
k̂2, (k

′
ae, k̂history)

)
, and returns ∆1,2,ĉt ←

(k′ae, ĉt
′
, ĉthistory).

• ReEncrypt
(
∆1,2,ĉt, (ĉt, ct)

)
: On input an update token ∆1,2,ĉt and a ciphertext (ĉt, ct), the re-encryption

algorithm first parses ∆1,2,ĉt = (k′ae, ĉt
′
, ĉthistory). Then, it encrypts the ciphertext ct′ ← AE.Encrypt

(
k′ae,

(ct, ĉthistory)
)

and returns (ĉt
′
, ct′).

• Decrypt
(
k, (ĉt, ct)

)
→ m/⊥: On input a key k = k̂ and a ciphertext (ĉt, ct), the decryption algorithm

proceeds as follows:

1. If AE.Decrypt(k̂, ĉt) = ⊥, then return ⊥. Otherwise, set (k′ae, k̂
′
history)← AE.Decrypt(k̂, ĉt).

2. If AE.Decrypt(k′ae, ct) = ⊥, then return ⊥. Otherwise, set (ct′, ĉt
′
history)← AE.Decrypt(k′ae, ct).

3. If k̂′history 6= ⊥, then set k̂← k̂′history, ct← ct′, ĉt← ĉt
′
history, and return to step 1.

4. Otherwise, set m← ct′.

If the decryption algorithm does not abort above, then it returns m.

We state the compactness, correctness, and the security properties of Construction D.1 as follows.

Theorem D.2 (Compactness). The updatable authenticated encryption scheme ΠUAE in Construction D.1
satisfies compactness (Definition 3.2).

Theorem D.3 (Correctness). Suppose that ΠAE satisfies correctness (Definition 2.7). Then, the updatable
authenticated encryption scheme ΠUAE in Construction D.1 satisfies correctness (Definition 3.3).

Theorem D.4 (Message Confidentiality). Let ΠUAE be the updatable authenticated encryption scheme in
Construction D.1. If ΠAE satisfies correctness, εconfae -confidentiality, and εintae -integrity, then for all h, d = poly(λ)
and efficient adversaries A that make at most Q oracle queries, we have∣∣∣Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 0) = 1

]
− Pr

[
Exptmsg-conf

ΠUAE
(λ, h, d,A, 1) = 1

]∣∣∣
≤ (2h+ 4Q) · εconfae (λ) + 2h · εintae (λ).

In particular, if ΠAE satisfies correctness, confidentiality, and integrity, then ΠUAE satisfies message confiden-
tiality (Definition A.1).

31



Theorem D.5 (Re-Encryption Indistinguishability). Let ΠUAE be the updatable authenticated encryption
scheme in Construction D.1. If ΠAE satisfies correctness, εconfae -confidentiality, and εintae -integrity, then for all
h, d = poly(λ) and efficient adversaries A that make at most Q oracle queries, we have∣∣∣Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 0) = 1
]
− Pr

[
Exptre-enc-indΠUAE

(λ, h, d,A, 1) = 1
]∣∣∣
≤ (2h+ 4Q) · εconfae (λ) + 2h · εintae (λ).

In particular, if ΠAE satisfies correctness, confidentiality, and integrity, then ΠUAE satisfies confidentiality
(Definition A.2).

Theorem D.6 (Ciphertext Integrity). Let ΠUAE be the updatable authenticated encryption scheme in Con-
struction D.1. If ΠAE satisfies correctness, εconfae -confidentiality, εintae -integrity, then for all h, d = poly(λ) and
efficient adversaries A that make at most Q challenge, ReKeyGen, or ReEncrypt queries, we have

Pr
[
Exptctxt-intΠUAE

(λ, h, d,A) = 1
]
≤ (h+Q) · εintae (λ) + (h+Q) · εconfae (λ) +Q/2λ.

In particular, if ΠAE satisfies correctness, confidentiality, and integrity then ΠUAE satisfies integrity (Defini-
tion 3.6).

In Section 4 (Construction 4.2), we augment Construction D.1 such that it achieves our new security definitions
of body compactness (Definition 3.5) and update independence (Definition C.1). As the proofs of compactness,
correctness, and security for Construction D.1 are identical to the proofs of compactness, correctness, and
security for Construction 4.2, we refrain from duplicating the proofs.

E Proof of Theorem 4.3

E.1 Proof of Strong Compactness

Header compactness. Fix the security parameter λ, any message m ∈Mλ, and let k1, k2 ← KeyGen(1λ),
(ĉt, ct)← Encrypt(k1,m), and ∆1,2,ĉt ← ReKeyGen(k1, k2, ĉt). By construction, the ciphertext header ĉt and
the re-encryption key ∆1,2,ĉt has the following form:

• Ciphertext header : By the specification of Encrypt and ReKeyGen, we have ĉt = AE.Encrypt
(
k1, (s, `, kae,

k̂history)
)
. Here, kae, k̂history are authenticated encryption keys and s is a PRG seed whose lengths depend

only on the security parameter λ. The positive integer ` specifies the length of the ciphertext body,
whose length can fixed to be poly(λ).

• Re-encryption key : The re-encryption key ∆1,2,ĉt consists of a new ciphertext header ĉt
′
, a ciphertext

ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history)), length bound `, a PRG seed s′, and an encryption key k′ae.

As described above, the lengths of ĉt
′
, `, kae, and s′ are all either fixed or depend only on λ. This is

also true of |ĉthistory| because it is an encryption of two encryption keys, each of which has a length that
depends only on λ. Therefore, |∆1,2,ĉt| = poly2(λ) for some polynomial poly2.

Body compactness. Fix the security parameter λ, number of updates N ∈ N, and any message m ∈Mλ.
Let k1, . . . , kt ← KeyGen(1λ, 1t), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , t − 1. By construction, the ciphertext body cti for i > 1 always has the same size |cti−1|
as the preceding ciphertext because padding is added until the new ciphertext matches the length of the
previous ciphertext. Thus we only need to consider the size of the first ciphertext |ct1|. The ciphertext

32



ct1 consists of ctpayload ← AE.Encrypt(kae,m) and t(2ρ + ν) bits of padding generated by the PRG G, for
ρ and ν determined by λ and the AE scheme used. Thus the size of the padding |ctpad| = poly1(t, λ) for
some polynomial poly1. We have that |AE.Encrypt(kae,m)| = poly2(λ,m) for some polynomial poly2. Then
|ct| = poly1(t, λ) + poly2(λ,m) = poly(λ, t,m) for another polynomial poly, completing the proof of bounded
body compactness.

E.2 Proof of Correctness

Fix the security parameter λ, number of updates N ∈ N, and any message m ∈ Mλ. Let k1, . . . , kN ←
KeyGen(1λ), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , N − 1. We must show that

Decrypt
(
kN , (ĉtN , ctN )

)
= m.

We will prove correctness of Construction 4.2 by induction on i, the number of layers of encryption on the
ciphertext body ct. First we consider the base case of i = 1, where (ĉt1, ct1)← Encrypt(k1,m). In this case
we have

- ctpayload ← AE.Encrypt
(
kae,m)

- ctpad ← G(s) such that ctpad ∈ {0, 1}t·(2ρ+ν)

- ct1 ← (ctpayload, ctpad)

- ĉt1 ← AE.Encrypt
(
k̂1, (s, |ctpayload|, kae,⊥))

During decryption, by the correctness of ΠAE, we have that AE.Decrypt(k̂1, ĉt1) = (s, |ctpayload|, kae,⊥). Thus
the Decrypt algorithm correctly regenerates G(s) = ctpad and strips it from ct1. Finally, again using the
correctness of ΠAE, AE.Decrypt(kae, ctpayload) = m.

Next, assuming Decrypt(ki, (ĉti, cti)) = m, and that decryption of ctpayload ,i under kae ,i outputs m, we
show that Decrypt(ki+1, (ĉti+1, cti+1)) = m as well. For consistency of notation, we will denote ciphertexts
corresponding to the encryption under ki without a subscript and denote ciphertexts corresponding to the
encryption under ki+1 with a prime, e.g., ĉt

′
. Now we have

- ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history))

- ct′payload ← AE.Encrypt
(
k′ae, (ctpayload, ĉthistory)

)
- ct′pad ← G(s′)
- ct′ ← (ct′payload, ct

′
pad)

- ĉt
′ ← AE.Encrypt

(
k̂i+1, (s

′, `, k′ae, k̂
′
history)

)
As above, during decryption, by the correctness of ΠAE, we have that AE.Decrypt(k̂′, ĉt

′
) = (s′, `, k′ae, k̂

′
history).

Thus the Decrypt algorithm correctly regenerates G(s′) = ctpad and strips it from ct1. By again using the cor-

rectness of ΠAE, we have that AE.Decrypt(k′ae, ct
′
payload) = (ctpayload, ĉthistory) and that AE.Decrypt(k̂′history, ĉthistory) =

(kae, k̂history). Now, by the induction hypothesis, we have ctpayload under kae decrypts to m.

E.3 Proofs of Update Independence, Message Confidentiality, and Re-encryption
Indistinguishability

The proofs of update independence, message confidentiality, and re-encryption indistinguishability are almost
identical. Therefore, we provide a full proof of update independence and discuss the minor modifications that
are required to adapt the proof for message confidentiality and re-encryption indistinguishability.

Update independence. We proceed via a sequence of hybrid experiments that are defined as follows:
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• Hyb0: This hybrid experiment corresponds to the real updatable authenticated encryption update

independence experiment Exptupd-ind
ΠUAE

(λ, h, d,A, 0) that is instantiated with Construction 4.2.

• Hyb1: In this hybrid experiment, we introduce an additional abort condition to the challenger’s
simulation. Namely, throughout the query phase of the experiment, the challenger maintains an
additional look-up table Theader that keeps track of all of the “well-formed” ciphertext headers under
honest keys that A receives from the challenger throughout the experiment. The table is initially set to
be empty, and the challenger answers each of A’s oracle queries as follows:

– OEncrypt(i,m): The challenger answers the oracle exactly as in Hyb0 by generating the ciphertext
header

ĉt← AE.Encrypt
(
k̂i, (s, |ctpayload|, kae,⊥)

)
,

and the ciphertext body as specified in construction 4.2. However, after returning the ciphertext
(ĉt, ct) to A, it additionally adds the mapping Theader[i, ĉt] ← (s, |ctpayload|, kae,⊥) to the table if
i < h.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger first checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if so. This

check is skipped if i > h (if i does not correspond to an honest key). If it does not abort,

then the challenger proceeds exactly as in Hyb0 by setting ĉt
′ ← AE.Encrypt

(
k̂j , (s

′, l, k′ae, k̂
′
history)

)
,

computing ∆i,j,ĉt, and returning ReEncrypt
(
∆i,j,ĉt, (ĉt, ct)

)
to A. However, after returning the

updated ciphertext to A, it adds the mapping Theader[j, ĉt
′
]← (s′, l, k′ae, k̂

′
history) to the table.

– OChallenge(i, j,m, (ĉt, ct)): The challenger first checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if so. This
check is skipped if i > h (if i does not correspond to an honest key). If it does not abort, then the
challenger answers the oracle query exactly as in Hyb0 by generating the ciphertext header

ĉt
′ ← AE.Encrypt

(
kj , (s, |ctpayload|, kae,⊥)

)
,

and the ciphertext body ct′ according to the specification of Encrypt(kj ,m) when b = 0 or by
generating the ciphertext header

ĉt
′ ← AE.Encrypt

(
kj , (s

′, l, k′ae, k̂
′
history)

)
and ciphertext body ct′ according to ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
when b = 1. However, af-

ter returning the ciphertext (ĉt
′
, ct′) to A, it additionally adds the mapping Theader[j, ĉt

′
] ←

(s, |ctpayload|, kae,⊥) to the table when b = 0 or Theader[j, ĉt
′
]← (s′, l, k′ae, k̂

′
history) when b = 1.

The rest of the experiment remains unchanged from Hyb0.

In Lemma E.1 below, we show that the hybrid experiments Hyb0 and Hyb1 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

• Hyb2: In this hybrid experiment, we erase the decryption algorithm AE.Decrypt from the challenger’s
simulation for honest keys in ciphertext headers. Namely, the challenger answers A’s re-encryption
oracle and challenge oracle as follows when i ≤ h:

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger answers the oracle exactly as in Hyb1, but instead of

decrypting the ciphertext header µ← AE.Decrypt(ki, ĉt), it sets µ← Theader[i, ĉt]. If no such entry
exists in Theader, then it immediately aborts the experiment and outputs ⊥.

– OChallenge(i, j,m, (ĉt, ct)): The challenger answers the oracle exactly as in Hyb1, but instead of
decrypting the ciphertext header µ ← AE.Decrypt(ki, ĉt) in the call to ReKeyGen, it sets µ ←
Theader[i, ĉt]. If no such entry exists in Theader, then it immediately aborts the experiment and
outputs ⊥.

34



The rest of the experiment remains unchanged from Hyb1.

In Lemma E.2 below, we show that the hybrid experiments Hyb1 and Hyb2 are perfectly indistinguishable
assuming that ΠAE is correct.

• Hyb3: In this hybrid experiment, we erase the contents of ciphertext headers for honest keys. Namely,
the challenger answers each of A’s oracle queries as follows, where intlen represents the number of bits
required to represent an integer:

– OEncrypt(i,m): If i ≤ h, the challenger answers the oracle query exactly as in Hyb2, but it sets the
ciphertext header ĉt to be

ĉt← AE.Encrypt
(
k̂i, (0

|s|, 0intlen, 0|kae|, 0λ)
)
.

The rest of the simulation in answering A’s queries remain unchanged.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, the challenger answers the oracle query exactly as in Hyb2, but it

sets the ciphertext header ĉt
′

to be

ĉt
′ ← AE.Encrypt

(
k̂j , (0

|s′|, 0intlen, 0|k
′
ae|, 0|k̂

′
history|)

)
.

The rest of the simulation in answering A’s queries remain unchanged.

– OChallenge(i, j,m, (ĉt, ct)): If j ≤ h, the challenger answers the oracle query exactly as in Hyb2, but

it sets the ciphertext header ĉt
′

to be

ĉt
′ ← AE.Encrypt

(
k̂j , ((0

|s|, 0intlen, 0|kae|, 0λ)
)

when b = 0 or
ĉt
′ ← AE.Encrypt

(
k̂j , ((0

|s′|, 0intlen, 0|k
′
ae|, 0k̂

′
history)

)
when b = 1. The rest of the simulation in answering A’s queries remain unchanged.

The rest of the experiment remains unchanged from Hyb2.

In Lemma E.3 below, we show that the hybrid experiments Hyb2 and Hyb3 are computationally
indistinguishable assuming that ΠAE satisfies confidentiality.

• Hyb4: In this hybrid experiment, we replace the output of G(·) with a random string. Namely, the
challenger answers each of A’s oracle queries as follows:

– OEncrypt(i,m): If i ≤ h, the challenger answers the oracle exactly as in Hyb3, but instead of
evaluating ctpad ← G(s), it sets ctpad ←R {0, 1}t(2ρ+ν). The rest of the simulation in answering A’s
queries remains unchanged.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, the challenger answers the oracle exactly as in Hyb3, but instead of

evaluating ct′pad ← G(s′), it sets ct′pad ←
R {0, 1}|ct|−|ct

′
payload|. The rest of the simulation in answering

A’s queries remains unchanged.

– OChallenge(i, j,m, (ĉt, ct)): If j ≤ h, the challenger answers the oracle exactly as in Hyb3, but instead

of evaluating ct′pad ← G(s′) when b = 1, it sets ct′pad ←
R {0, 1}|ct|−|ct

′
payload|. The rest of the simulation

in answering A’s queries remains unchanged.

The rest of the experiment remains unchanged from Hyb3.

In Lemma E.5 below, we show that the hybrid experiments Hyb3 and Hyb4 are computationally
indistinguishable assuming that G satisfies PRG security.

• Hyb5: In this hybrid we replace AE.Encrypt(k̂′history, ·) in oracle queries made under honest keys with a
completely random function. Namely, the challenger answers each of A’s oracle queries as follows:
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– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, the challenger answers the oracle exactly as in Hyb4, but instead

of setting ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history)), it sets ĉthistory ← fk̂′history
((kae, k̂history)), for a

random function fk̂′history
(·). The rest of the simulation in answering A’s queries remains unchanged.

– OChallenge(i, j,m, (ĉt, ct)): If j ≤ h, the challenger answers the oracle exactly as in Hyb4, but

instead of setting ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history)) when b = 1, it sets ĉthistory ←
fk̂′history

((kae, k̂history)), for a random function fk̂′history
(·). The rest of the simulation in answering

A’s queries remains unchanged.

In Lemma E.7 below, we show that the hybrid experiments Hyb4 and Hyb5 are computationally
indistinguishable assuming that AE.Encrypt has ciphertext pseudorandomness.

• Hyb6: In this hybrid experiment, we replace the output of AE.Encrypt(kae, ·) in oracle queries made
under honest keys with that of a completely random function. Namely, the challenger answers each of
A’s oracle queries as follows:

– OEncrypt(i,m): If i ≤ h, the challenger answers the oracle exactly as in Hyb5, but instead of setting
ctpayload ← AE.Encrypt(kae,m), it sets ctpayload ← fkae(m) for a random function fkae(·). The rest of
the simulation in answering A’s queries remains unchanged.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, the challenger answers the oracle exactly as in Hyb5, but instead of

setting ct′payload ← AE.Encrypt(k′ae, (ctpayload, ĉthistory)), it sets ct′payload ← fk′ae((ctpayload, ĉthistory)) for
a random function fk′ae(·). The rest of the simulation in answering A’s queries remains unchanged.

– OChallenge(i, j,m, (ĉt, ct)): If j ≤ h, the challenger answers the oracle exactly as in Hyb5, but
instead of setting ct′payload ← AE.Encrypt(k′ae, (ctpayload, ĉthistory)) when b = 1, it sets ct′payload ←
fk′ae((ctpayload, ĉthistory)) for a random function fk′ae(·). The rest of the simulation in answering A’s
queries remains unchanged.

In Lemma E.9 below, we show that the hybrid experiments Hyb5 and Hyb6 are computationally
indistinguishable assuming that AE.Encrypt has ciphertext pseudorandomness.

• Hyb7: In this hybrid experiment, we modify the challenger from directly encrypting the message m
to re-encrypting the ciphertext (ĉt, ct) when answering A’s challenge query OChallenge

(
i, j,m, (ĉt, ct)

)
.

Namely, on a query OChallenge

(
i, j,m, (ĉt, ct)

)
, instead of proceeding with b = 0, the challenge is handled

with b = 1. The rest of the experiment remains unchanged from Hyb6.

In Lemma E.10 below, we show that the hybrid experiments Hyb6 and Hyb7 are perfectly indistinguish-
able.

• Hyb8: Starting from this hybrid, we start unrolling back the changes that we made from Hyb0. In this
hybrid experiment, we undo the changes that we made in hyb6 by replacing the evaluations of random
functions fkae and fk′ae with evaluations of AE.Encrypt(kae, ·) and AE.Encrypt(k′ae, ·) respectively.

In Lemma E.11 beloew, we show that the hybrid experiments hyb7 and hyb8 are computationally
indistinguishable assuming that AE.Encrypt has ciphertext pseudorandomness.

• Hyb9: In this hybrid experiment, we undo the changes that we made in Hyb5 by replacing the evaluations

of random functions fk̂′history
with evaluations of AE.Encrypt(k̂′history, ·).

In Lemma E.12 below, we show that the hybrid experiments Hyb8 and Hyb9 are computationally
indistinguishable assuming that AE.Encrypt has ciphertext pseudorandomness.

• Hyb10: In this hybrid experiment, we undo the changes that we made in Hyb4 by replacing the random
strings in oracle responses under honest keys with true PRG outputs.

In Lemma E.13 below, we show that the hybrid experiments Hyb9 and Hyb10 are computationally
indistinguishable assuming that G : {0, 1}λ → {0, 1}∗ is a secure PRG.
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• Hyb11: In this hybrid experiment, we undo the changes that we made in Hyb3 by including the real
contents of the ciphertext headers instead of encryptions of zero.

In Lemma E.14 below, we show that the hybrid experiments Hyb10 and Hyb11 are computationally
indistinguishable assuming that ΠAE satisfies confidentiality.

• Hyb12: In this hybrid experiment, we undo the changes that we made in Hyb2 by re-introducing the
decryption algorithm AE.Decrypt in the challenger’s simulation.

In Lemma E.15 below, we show that the hybrid experiments Hyb11 and Hyb12 are perfectly indistin-
guishable assuming that ΠAE is correct.

• Hyb13: In this hybrid experiment, we undo the changes that we made in Hyb1 by removing the additional
abort condition.

In Lemma E.16 below, we show that the hybrid experiments Hyb12 and Hyb13 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

This hybrid experiment corresponds to the real updatable authenticated encryption update independence
experiment Exptupd-ind

ΠUAE
(λ, h, d,A, 1).

We now show that each of the consecutive hybrid experiments are indistinguishable. For a hybrid experiment
Hyb and an adversary A, we use Hyb(A) to denote the random variable that represents the output of
experiment Hyb with adversary A.

Lemma E.1. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries A,
we have ∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣ ≤ h · εintae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb0 and Hyb1. We construct an algorithm B
that uses A to break the integrity of ΠAE (Definition 2.9). Algorithm B works as follows:

• Setup phase: At the start of the experiment, algorithm B samples a random index i∗ ←R [h]. It
generates the keys ki for i ∈ [h+ d]\ {i∗} according to the (identical) specifications of Hyb0 and Hyb1.
For ki∗ , algorithm B leaves it unspecified.

• Query phase: Algorithm B simulates the responses to A’s oracle queries as follows:

– OEncrypt(i,m): If i 6= i∗, algorithm B proceeds according to Hyb0. If i = i∗, it proceeds according
to the specification in Hyb1. Whenever B must use ki∗ to generate the ciphertext header ĉt ←
AE.Encrypt

(
k̂i∗ , (s, |ctpayload|, kae,⊥)), it uses the encryption oracle Ok∗i

(·) for ΠAE.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If i = i∗, algorithm B proceeds according to the specification in Hyb1.

Otherwise, it proceeds according to Hyb0. In both cases, whenever B must use ki∗ to generate the

ciphertext header ĉt
′ ← AE.Encrypt

(
k̂i∗ , (s

′, `, k′ae, k̂
′
history)

)
, it uses the encryption oracle Ok∗i

(·) for

ΠAE (Definition 2.9). If i = i∗ and B must abort, it submits ĉt as a forgery for ΠAE.

– OChallenge(i, j,m, (ĉt, ct)): If i = i∗, algorithm B proceeds according to the specification in Hyb1.
Otherwise, it proceeds according to Hyb0. In both cases, whenever B must use ki∗ to generate the

ciphertext header ĉt
′ ← AE.Encrypt

(
k̂i∗ , (s

′, `, k′ae, k̂
′
history)

)
, it uses the encryption oracle Ok∗i

(·) for

ΠAE (Definition 2.9). If i = i∗ and B must abort, then it submits ĉt as a forgery for ΠAE.

• Output phase: At the end of the experiment, adversary A outputs a bit b ∈ {0, 1}, which algorithm
B returns as the output of the experiment.

By definition, the only difference between the hybrid experiments Hyb0 and Hyb1 is the additional abort
condition when the challenger answers an adversary’s re-encryption or challenge queries in Hyb1. Therefore,
by definition, algorithm B perfectly simulates A’s views of the experiments Hyb0 and Hyb1 modulo the abort
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conditions. Furthermore, by the specification of B, if A forces B to abort in any of these queries, then B
successfully forges a new ciphertext for ΠAE.

To formally analyze the probability that B successfully forges a new ciphertext, let us define the following
set of random variables:

• Let Z denote the event that B successfully forges a ciphertext at the end of the simulation above.

• Let Xi for i ∈ [h] denote the event that i = i∗ during B’s simulation above.

• Let Yi for i ∈ [h] denote the event that adversary A forces the challenger to abort in Hyb1 by submitting
a query OReEncrypt

(
i, j, (ĉt, ct)

)
or OChallenge(i, j,m, (ĉt, ct)).

Then, by definition, algorithm B successfully forges a new authenticated encryption ciphertext when A forces
algorithm B to abort on a query OReEncrypt

(
i∗, j, (ĉt, ct)

)
or OChallenge(i

∗, j,m, (ĉt, ct)):

Pr
[
Z
]

=
∑
i∈[h]

Pr
[
Xi ∩ Yi

]
=
∑
i∈[h]

Pr
[
Xi | Yi

]
· Pr

[
Yi
]

=
∑
i∈[h]

1

h
· Pr

[
Yi
]

=
1

h

∑
i∈[h]

Pr
[
Yi
]

≥ 1

h
· Pr

[
Y1 ∪ . . . ∪ Yh

]
,

where the last inequality follows by the union bound. Now, since the only difference between the hybrid exper-
iments Hyb0 and Hyb1 is the additional abort condition when the challenger answers OReEncrypt

(
i, j, (ĉt, ct)

)
or OChallenge(i, j,m, (ĉt, ct)), an adversary’s advantage in distinguishing the two experiments is bounded by
the probability of the event Y1 ∪ . . . ∪ Yh:∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣ ≤ Pr
[
Y1 ∪ . . . ∪ Yh

]
.

Putting the two inequalities together, we have∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]
∣∣ ≤ Pr

[
Y1 ∪ . . . ∪ Yh

]
≤ h · Pr

[
Z
]

≤ h · εintae (λ),

and the lemma follows.

Lemma E.2. Suppose that ΠAE is correct (Definition 2.7). Then, for all (unbounded) adversaries A, we
have ∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣ = 0.

Proof. The only difference between the two hybrid experiments is in the way the challenger decrypts the
ciphertext headers. For each query to OReEncrypt

(
i, j, (ĉt, ct)

)
and OChallenge(i, j,m, (ĉt, ct)), the challenger in

Hyb1 computes µ ← AE.Decrypt(ki, ĉt) while the challenger in Hyb2 sets µ ← Theader[i, ĉt]. The rest of the
experiments remain identical.

By the correctness condition for ΠAE, these two distributions of µ in the two experiments are identically
distributed as long as (i, ĉt) is contained in Theader. However, in both Hyb1 and Hyb2, if ĉt is not contained
in Theader, the challenger returns ⊥. Therefore, the view of A in the two experiments are identically
distributed.
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Lemma E.3. Suppose that ΠAE satisfies εconfae -confidentiality (Definition 2.8). Then, for all efficient adver-
saries A, we have ∣∣Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]

∣∣ ≤ h · εconfae (λ).

Proof. To prove the lemma, we proceed via a sequence of inner hybrid experiments. For γ = 0, . . . , h, we
define the hybrid experiments Hyb2,γ as follows:

• Hyb2,γ : The challenger proceeds through the setup phase of the experiment according to the specifications
in Hyb2 and Hyb3 (which are identical). The challenger answers each of A’s queries during the query
phase of the experiment as follows:

– OEncrypt(i,m): If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the challenger proceeds
as in Hyb3.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the challenge

proceeds as in Hyb3.

– OChallenge(i, j,m, (ĉt, ct)): If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the
challenger proceeds as in Hyb3.

At the end of the experiment, adversary A outputs a bit b, which the challenger returns as the output
of the experiment.

By definition, experiment Hyb2,0 corresponds to experiment Hyb2, and experiment Hyb2,h correponds to
experiment Hyb3. To prove the lemma, we show that each consecutive hybrid experiments Hyb2,γ−1 and
Hyb2,γ for γ = 1, . . . , h are computationally indistinguishable.

Claim E.4. Suppose that ΠAE satisfies εconfae -confidentiality. Then, for all γ ∈ [h] and all efficient adversaries
A, we have ∣∣Pr[Hyb2,γ−1(A) = 1]− Pr[Hyb2,γ(A)]

∣∣ ≤ εconfae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb2,γ−1 and Hyb2,γ . We construct an algorithm
B that uses A to break the confidentiality of ΠAE. Algorithm B works as follows:

• Setup phase: For the setup phase, algorithm B proceeds according to the specifications in Hyb2,γ−1

and Hyb2,γ (which are identical). However, for the key kγ , it leaves it unspecified.

• Query phase: Algorithm B simulates the responses to A’s oracle queries as follows:

– OEncrypt(i,m): Algorithm B follows the exact specification of the two experiments. However, since
kγ is unspecified, it uses the encryption oracle

Okγ ,b

(
(s, |ctpayload|, kae,⊥), (0|s|, 0intlen, 0|kae|, 0λ)

)
,

in place of AE.Encrypt
(
kγ , (s, |ctpayload|, kae,⊥)

)
or AE.Encrypt

(
kγ , (0

|s|, 0intlen, 0|kae|, 0λ)
)
.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: Algorithm B follows the exact specification of the two experiments. However,

since kγ is unspecified, it uses the encryption oracle

Okγ ,b

(
(s′, `, k′ae, k̂

′
history), (k̂j , (0

|s′|, 0intlen, 0|k
′
ae|, 0|k̂

′
history|)

)
,

in place of AE.Encrypt
(
kγ , (s

′, `, k′ae, k̂
′
history)

)
or AE.Encrypt

(
kγ , (0

|s′|, 0intlen, 0|k
′
ae|, 0|k̂

′
history|)

)
.

– OChallenge(i, j,m, (ĉt, ct)): Algorithm B follows the exact specification of the two experiments.
However, since kγ is unspecified, it uses the encryption oracle Okγ ,b instead of AE.Encrypt(kγ , ·) as
described above for encryption and re-encryption.

• Output phase: At the end of the experiment, adversary A outputs a bit b ∈ {0, 1}, which B returns
as its own output.
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By specification, algorithm B perfectly simulates the experiments Hyb2,γ and Hyb2,γ−1 as long as the
output of the oracle Okγ ,b(·, ·) is consistent with the specifications of the two experiments. By specification
(Definition 2.8), we have

Okγ ,0

(
(s, |ctpayload|, kae,⊥), (0|s|, 0intlen, 0|kae|, 0λ)

)
= AE.Encrypt

(
kγ , (s, |ctpayload|, kae,⊥)

)
,

and
Okγ ,1

(
(s, |ctpayload|, kae,⊥), (0|s|, 0intlen, 0|kae|, 0λ)

)
= AE.Encrypt

(
kγ , (0

|s|, 0intlen, 0|kae|, 0λ)
)
.

This means that if B is interacting with the oracle Okγ ,0, then it perfectly simulates Hyb2,γ−1, and if it is
interacting with the oracle Okγ ,1, then it perfectly simulates Hyb2,γ . Therefore, with the same distinguishing
advantage of the two experiments by A, algorithm B breaks the confidentiality of ΠAE. The claim now
follows.

The statement of the lemma now follows from Claim E.4 and the triangle inequality.

Lemma E.5. Suppose that G : {0, 1}λ → {0, 1}∗ satisfies εprg PRG security (Definition 2.2). Then, for all
efficient adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]

∣∣ ≤ Q · εprg(λ).

Proof. To prove the lemma, we proceed via a sequence of inner hybrid experiments. For γ = 0, . . . , Q, we
define the hybrid experiments Hyb3,γ as follows:

• Hyb3,γ : The challenger proceeds through the setup phase of the experiment according to the specifications
in Hyb3 and Hyb4 (which are identical). The challenger numbers A’s oracle queries and answers each of
A’s kth query during the query phase of the experiment as follows:

– OEncrypt(i,m): If k > γ, then the challenger proceeds as in Hyb3. Otherwise, the challenger proceeds
as in Hyb4.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If k > γ, then the challenger proceeds as in Hyb3. Otherwise, the challenge

proceeds as in Hyb4.

– OChallenge(i, j,m, (ĉt, ct)): If k > γ, then the challenger proceeds as in Hyb3. Otherwise, the
challenger proceeds as in Hyb4.

At the end of the experiment, adversary A outputs a bit b, which the challenger returns as the output
of the experiment.

By definition, experiment Hyb3,0 corresponds to experiment Hyb3, and experiment Hyb3,Q correponds to
experiment Hyb3. To prove the lemma, we show that each consecutive hybrid experiments Hyb3,γ−1 and
Hyb3,γ for γ = 1, . . . , Q are computationally indistinguishable.

Claim E.6. Suppose that G : {0, 1}λ → {0, 1}∗ satisfies εprg PRG security (Definition 2.2). Then, for all
γ ∈ [Q] and all efficient adversaries A, we have∣∣Pr[Hyb3,γ−1(A) = 1]− Pr[Hyb3,γ(A)]

∣∣ ≤ εprg(λ).

Proof. Let A be an adversary that distinguishes experiments Hyb3,γ−1 and Hyb3,γ . We construct an algorithm
B that uses A to break the PRG security of G. Algorithm B proceeds according to the specification of Hyb3,γ−1,

except in the γth call to G, if it is in an execution of OEncrypt(i,m) where i ≤ h or of OReEncrypt

(
i, j, (ĉt, ct)

)
or OChallenge(i, j,m, (ĉt, ct)) where j ≤ h, it passes on its input instead of evaluating G. At the end of the
experiment, B passes on A’s output as its own output.

Since the seed on which G is evaluated by the challenger does not appear in the view of the adversary
A, B provides a perfect simulation of Hyb3,γ−1 if its input is a PRG evaluation and a perfect simulation of
Hyb3,γ if its input is a truly random string. Therefore, with the same distinguishing advantage of the two
experiments by A, algorithm B breaks the PRG security of G. The claim now follows.
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The statement of the lemma now follows from Claim E.6 and the triangle inequality.

Lemma E.7. Suppose that AE.Encrypt satisfies εrandae ciphertext pseudorandomness (Definition 2.10). Then,
for all efficient adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]

∣∣ ≤ Q · εrandae (λ).

Proof. To prove the lemma, we proceed via a sequence of inner hybrid experiments. For γ = 0, . . . , Q, we
define the hybrid experiments Hyb4,γ as follows:

• Hyb4,γ : The challenger proceeds through the setup phase of the experiment according to the specifications
in Hyb4 and Hyb5 (which are identical). The challenger numbers A’s oracle queries, starting from Q
and counting backwards, and answers A’s kth last query during the query phase of the experiment as
follows:

– OEncrypt(i,m): If k > γ, then the challenger proceeds as in Hyb4. Otherwise, the challenger proceeds
as in Hyb5.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If k > γ, then the challenger proceeds as in Hyb4. Otherwise, the challenge

proceeds as in Hyb5.

– OChallenge(i, j,m, (ĉt, ct)): If k > γ, then the challenger proceeds as in Hyb4. Otherwise, the
challenger proceeds as in Hyb5.

At the end of the experiment, adversary A outputs a bit b, which the challenger returns as the output
of the experiment.

By definition, experiment Hyb4,0 corresponds to experiment Hyb4, and experiment Hyb4,Q correponds to
experiment Hyb5. To prove the lemma, we show that each consecutive hybrid experiments Hyb4,γ−1 and
Hyb4,γ for γ = 1, . . . , Q are computationally indistinguishable.

Claim E.8. Suppose that AE.Encrypt satisfies εrandae ciphertext pseudorandomness (Definition 2.10). Then,
for all γ ∈ [Q] and all efficient adversaries A, we have∣∣Pr[Hyb4,γ−1(A) = 1]− Pr[Hyb4,γ(A)]

∣∣ ≤ εrandae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb4,γ−1 and Hyb4,γ . We construct an algorithm
B that uses A to break the ciphertext pseudorandomness of AE.Encrypt. Algorithm B answers each of A’s
oracle queries exactly as the challenger in Hyb4,γ , except it answers the γth query (starting counting queries
from Q and counting downward) as follows:

• OEncrypt(i,m): This query is handled identically to challenger Hyb4,γ .

• OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, B answers the oracle query exactly as in Hyb4,γ , but it sets the value

ĉthistory ← F ((kae, k̂history)) where F (·) is the oracle provided to B in the ciphertext pseudorandomness
experiment. The rest of the simulation in answering A’s queries remains unchanged.

• OChallenge(i, j,m, (ĉt, ct)): If j ≤ h, B answers the oracle query exactly as in Hyb4,γ , but it sets the value

ĉthistory ← F ((kae, k̂history)) where F (·) is the oracle provided to B in the ciphertext pseudorandomness
experiment. The rest of the simulation in answering A’s queries remains unchanged.

Apart from the changes described above, B simulates the challenger of Hyb4,γ exactly. At the end of the
experiment, adversary A outputs a bit b ∈ {0, 1}, which B returns as its own output.

By specification, algorithm B perfectly simulates the experiment Hyb4,γ or Hyb4,γ−1 depending on whether
the output of the oracle F (·) corresponds to evaluation of AE.Encrypt(·, ·) or a randomly chosen function

f(·). This is the case because if j ≤ h, the key k̂′history does not appear in the adversary A’s view: it was

erased from the ciphertext header in Hyb3, and the value of ĉthistory that is based on it was replaced with the
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output of a random function in a previous subhybrid Hyb4,γ′ (this is why we begin counting queries from the
last query instead of the first). If j ≥ h, the hybrids Hyb4,γ and Hyb4,γ−1 are defined identically. Therefore,
with the same distinguishing advantage of the two experiments by A, algorithm B breaks the ciphertext
pseudorandomness of AE.Encrypt. The claim now follows.

The statement of the lemma now follows from Claim E.8 and the triangle inequality.

Lemma E.9. Suppose that AE.Encrypt satisfies εrandae ciphertext pseudorandomness (Definition 2.10). Then,
for all efficient adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb5(A) = 1]− Pr[Hyb6(A) = 1]

∣∣ ≤ Q · εrandae (λ).

Proof. This proof is analagous to the proof of Lemma E.7, so we omit it.

Lemma E.10. For all (unbounded) adversaries A, we have∣∣Pr[Hyb6(A) = 1]− Pr[Hyb7(A) = 1]
∣∣ = 0.

Proof. The only difference between the two hybrid experiments is in the way the challenger responds
to A’s challenge oracle queries to OChallenge. Namely, to generate a ciphertext body ct′ on a query
OChallenge

(
i, j,m, (ĉt, ct)

)
, the challenger in Hyb6 computes ct′payload ← fkae(m) and ct′pad ←

R {0, 1}t·(2ρ+ν),

and then it sets ct′ ← (ct′payload, ct
′
pad). The challenger in Hyb7 computes ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt),

ct′payload ← fk′ae(ctpayload, ĉthistory), and ct′pad ←
R {0, 1}|ct|−|ct

′
payload| and then sets ct′ ← (ct′payload, ct

′
pad). However,

since fkae(·) and fk′ae(·) are completely random functions, these two distributions of the ciphertext body
components are identically distributed independent of m or ct as long as the resulting ciphertexts have the
same length. By specification, the challenger returns ct′ only when this is the case. Therefore, the view of A
in Hyb6 and Hyb7 are identically distributed and the lemma follows.

Lemma E.11. Suppose that AE.Encrypt satisfies εrandae ciphertext pseudorandomness (Definition 2.10). Then,
for all efficient adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb7(A) = 1]− Pr[Hyb8(A) = 1]

∣∣ ≤ Q · εrandae (λ).

Proof. The proof is identical to the proof of Lemma E.9.

Lemma E.12. Suppose that AE.Encrypt satisfies εrandae ciphertext pseudorandomness (Definition 2.10). Then,
for all efficient adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb8(A) = 1]− Pr[Hyb9(A) = 1]

∣∣ ≤ Q · εrandae (λ).

Proof. The proof is identical to the proof of Lemma E.7.

Lemma E.13. Suppose that G : {0, 1}λ → {0, 1}∗ satisfies εprg PRG security (Definition 2.2). Then, for all
efficient adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb9(A) = 1]− Pr[Hyb10(A) = 1]

∣∣ ≤ Q · εprg(λ).

Proof. The proof is identical to the proof of Lemma E.5.

Lemma E.14. Suppose that ΠAE satisfies εconfae -confidentiality (Definition 2.8). Then, for all efficient
adversaries A, we have ∣∣Pr[Hyb10(A) = 1]− Pr[Hyb11(A) = 1]

∣∣ ≤ h · εconfae (λ).

Proof. The proof is identical to the proof of Lemma E.3.
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Lemma E.15. Suppose that ΠAE is correct (Definition 2.7). Then, for all (unbounded) adversaries A, we
have ∣∣Pr[Hyb11(A) = 1]− Pr[Hyb12(A) = 1]

∣∣ = 0.

Proof. The proof is identical to the proof of Lemma E.2.

Lemma E.16. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries
A, we have ∣∣Pr[Hyb12(A) = 1]− Pr[Hyb13(A) = 1]

∣∣ ≤ h · εintae (λ).

Proof. The proof is identical to the proof of Lemma E.1.

By combining the lemmas above and using the triangle inequality, the proof of update independence follows.

Message confidentiality and re-encryption indistinguishability. The proofs of message confidentiality
and re-encryption indistinguishability are almost identical to the proof of update independence. In addition
to modifying the first and the final hybrid experiments, we can adapt the proof of update independence as
follows:

• The proofs of message confidentiality and re-encryption indistinguishability do not include hybrids Hyb4

and Hyb10, which rely on the security of the PRG G. The definitions of message confidentiality and
re-encryption indistinguishability (Definition A.1 and Definition A.2) do not require hiding whether a
ciphertext is a fresh encryption or a re-encryption.

• The proofs of message confidentiality and re-encryption indistinguishability rely on the confidentiality
of ΠAE instead of ciphertext pseudorandomness in the hybrid experiments Hyb5, Hyb6, Hyb8 and Hyb9.
The definitions of message confidentiality and re-encryption indistinguishability do not hide whether a
ciphertext is a fresh encryption or a re-encryption, so the content of an encryption need not appear
random to hide where the encryption ends and a PRG output begins.

• The definitions of message confidentiality and re-encryption indistinguishability include an additional
ReKeyGen oracle OReKeyGen, so the the proofs of message confidentiality and re-encryption indistinguisha-
bility must also discuss this oracle. Changes made to this oracle in all hybrids are identical to changes
made to the OReEncrypt oracle in the proof above.

E.4 Proof of Integrity

We proceed via a sequence of hybrid experiments that are defined as follows:

• Hyb0: This hybrid experiment corresponds to the real updatable authenticated encryption update
independence experiment ExptintΠUAE

(λ, h, d,A) that is instantiated with Construction 4.2.

• Hyb1: In this hybrid experiment, we introduce an additional abort condition to the challenger’s
simulation. Namely, throughout the query phase of the experiment, the challenger maintains an
additional look-up table Theader that keeps track of all of the “well-formed” ciphertext headers (under
honest keys) that A receives from the challenger throughout the experiment. The table is initially set
to be empty, and the challenger answers each of A’s oracle queries as follows:

– OEncrypt(i,m): The challenger answers the oracle exactly as in Hyb0 by generating the ciphertext
header

ĉt← AE.Encrypt
(
k̂i, (s, |ctpayload|, kae,⊥)

)
,

and the ciphertext body as specified in construction 4.2. After returning the ciphertext (ĉt, ct) to
A, it additionally adds the mapping Theader[i, ĉt]← (s, |ctpayload|, kae,⊥) to the table if i ≤ h.
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– OReKeyGen

(
i, j, ĉt

)
: If i ≤ h, then the challenger first checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if

this is the case. If Theader[i, ĉt] 6= ⊥ or i > h, then the challenger proceeds exactly as in Hyb0, by

setting ĉt
′ ← AE.Encrypt

(
k̂j , (s

′, l, k′ae, k̂
′
history)

)
, computing ∆i,j,ĉt, and returning it to A. After

returning ∆i,j,ĉt to A, it adds the mapping Theader[j, ĉt
′
]← (s′, l, k′ae, k̂

′
history) to the table.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If i ≤ h, then the challenger first checks if Theader[i, ĉt] = ⊥ and output ⊥

if this is the case. If Theader[i, ĉt] 6= ⊥ or i > h, then the challenger proceeds exactly as in Hyb0 by

setting ĉt
′ ← AE.Encrypt

(
k̂j , (s

′, l, k′ae, k̂
′
history)

)
, computing ∆i,j,ĉt, and returning ReEncrypt

(
∆i,j,ĉt,

(ĉt, ct)
)

to A. After returning the updated ciphertext to A, it adds the mapping Theader[j, ĉt
′
]←

(s′, l, k′ae, k̂
′
history) to the table.

At the end of the experiment, adversary A outputs an index i ≤ h and a ciphertext (ĉt, ct). As specified
in Hyb0, the challenger checks the following conditions, outputting ⊥ if either are met:

– m = ⊥,

– T[i, ĉt] = ct.

In addition, when invoking the decryption algorithm Decrypt above, the challenger verifies whether
Theader[i, ĉt] = ⊥. If this is the case, then the challenger also outputs ⊥. If none of the conditions are
met, then the challenger returns 1 as the output of the experiment.

During the output phase of the experiment, when the challenger is decrypting the purported forged
ciphertext (ĉt, ct), when the challenger computes µ ← AE.Decrypt(k̂, ĉt) (which occurs in step 1 of
decryption), it also checks the table Theader and sets µ′ ← Theader[i, ĉt]. If µ 6= µ′, the challenger aborts
the experiment and outputs ⊥.

The rest of the experiment remains unchanged from Hyb0.

In Lemma E.17 below, we show that the hybrid experiments Hyb0 and Hyb1 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

• Hyb2: In this hybrid experiment, we erase the decryption algorithm AE.Decrypt from the challenger’s
simulation for honest keys in ciphertext headers. Namely, the challenger answers A’s ReKeyGen and
ReEncrypt oracle queries as follows when i ≤ h:

– OReKeyGen

(
i, j, ĉt

)
: The challenger answers the oracle exactly as in Hyb1, but instead of decrypting

the ciphertext header µ← AE.Decrypt(ki, ĉt), it sets µ← Theader[i, ĉt]. If no such entry exists in
Theader, then it immediately aborts the experiment and outputs ⊥.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger answers the oracle exactly as in Hyb1, but instead of

decrypting the ciphertext header µ← AE.Decrypt(ki, ĉt), it sets µ← Theader[i, ĉt]. If no such entry
exists in Theader, then it immediately aborts the experiment and outputs ⊥.

In the output phase, the challenger answers the oracle exactly as in Hyb1, but instead of decrypting
the ciphertext header µ← AE.Decrypt(ki, ĉt), it sets µ← Theader[i, ĉt]. If no such entry exists in Theader,
then it immediately aborts the experiment and outputs ⊥.

The rest of the experiment remains unchanged from Hyb1.

In Lemma E.18 below, we show that the hybrid experiments Hyb1 and Hyb2 are perfectly indistinguishable
assuming that ΠAE is correct.

• Hyb3: In this hybrid experiment, we erase the contents of ciphertext headers for honest keys. Namely,
the challenger answers each of A’s oracle queries as follows, where intlen represents the number of bits
required to represent an integer:
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– OEncrypt(i,m): If i ≤ h, the challenger answers the oracle query exactly as in Hyb2, but it sets the
ciphertext header ĉt to be

ĉt← AE.Encrypt
(
k̂i, (0

|s|, 0intlen, 0|kae|, 0λ)
)
.

The rest of the simulation in answering A’s queries remain unchanged.

– OReKeyGen

(
i, j, ĉt

)
: If j ≤ h, the challenger answers the oracle query exactly as in Hyb2, but it sets

the ciphertext header ĉt
′

to be

ĉt
′ ← AE.Encrypt

(
k̂j , (0

|s′|, 0intlen, 0|k
′
ae|, 0|k̂

′
history|)

)
.

The rest of the simulation in answering A’s queries remain unchanged.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, the challenger answers the oracle query exactly as in Hyb2, but it

sets the ciphertext header ĉt
′

to be

ĉt
′ ← AE.Encrypt

(
k̂j , (0

|s′|, 0intlen, 0|k
′
ae|, 0|k̂

′
history|)

)
.

The rest of the simulation in answering A’s queries remain unchanged.

The rest of the experiment remains unchanged from Hyb2.

In Lemma E.19 below, we show that the hybrid experiments Hyb2 and Hyb3 are computationally
indistinguishable assuming that ΠAE satisfies confidentiality.

• Hyb4: In this hybrid we erase the contents of ĉthistory ciphertexts produced under honest keys. Namely,
the challenger answers each of A’s ReKeyGen and ReEncrypt oracle queries as follows:

– OReKeyGen

(
i, j, ĉt

)
: If j ≤ h, the challenger answers the oracle exactly as in Hyb3, but instead of

setting ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history)), it sets ĉthistory to be

ĉthistory ← AE.Encrypt(k̂′history, (0
|kae|, 0|k̂history|)).

The rest of the simulation in answering A’s queries remains unchanged.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j < h, the challenger answers the oracle exactly as in Hyb3, but instead

of setting ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history)), it sets ĉthistory to be

ĉthistory ← AE.Encrypt(k̂′history, (0
|kae|, 0|k̂history|)).

The rest of the simulation in answering A’s queries remains unchanged.

In Lemma E.20 below, we show that the hybrid experiments Hyb3 and Hyb4 are computationally
indistinguishable assuming that ΠAE satisfies confidentiality.

• Hyb5: In this hybrid experiment, we introduce an additional abort condition to the challenger’s
simulation. Namely, throughout the query phase of the experiment, the challenger maintains an
additional look-up table Tpayload that keeps track of all of the “well-formed” payload ciphertexts ctpayload
under honest keys that A receives from the challenger throughout the experiment. The table is initially
set to be empty, and the challenger answers A’s Encrypt and ReEncrypt oracle queries as follows:

– OEncrypt(i,m): The challenger proceeds exactly as in Hyb4 and sets ctpayload ← AE.Encrypt(kae,m).
However, it also adds the mapping Tpayload[kae, ctpayload]← m to the table.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger proceeds exactly as in Hyb4 and sets ct′payload ← AE.Encrypt

(
k′ae,

(ctpayload, ĉthistory)
)
. However, it also adds the mapping Tpayload[k′ae, ct

′
payload]← (ctpayload, ĉthistory) to

the table.

45



During the output phase of the experiment, when the challenger is decrypting the purported forged cipher-
text (ĉt, ct), each time the challenger computes µ← AE.Decrypt(k′ae, ctpayload) or µ← AE.Decrypt(kae, ct)
(which occurs in steps 4 and 6 of decryption), it also checks the table Tpayload and sets µ′ ←
Tpayload[k

′
ae, ctpayload] or µ′ ← Tpayload[kae, ct] respectively. If µ 6= µ′, the challenger aborts the ex-

periment and outputs ⊥. This check is skipped if there is no entry in Tpayload[k
′
ae, ·] or Tpayload[kae, ·]

respectively, i.e., if the payload key in question was never used by the challenger. The rest of the
experiment remains unchanged from Hyb4.

In Lemma E.22 below, we show that the hybrid experiments Hyb4 and Hyb5 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

Finally, in Lemma E.23 below, we show that an adversary has negligible advantage in forcing the
challenger to output 1 in Hyb5.

We now show that each of the consecutive hybrid experiments are indistinguishable. For a hybrid experiment
Hyb and an adversary A, we use Hyb(A) to denote the random variable that represents the output of
experiment Hyb with adversary A.

Lemma E.17. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries
A, we have ∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣ ≤ h · εintae (λ).

Proof. This proof is almost identical to that of Lemma E.1, so we omit the full proof.

Lemma E.18. Suppose that ΠAE is correct (Definition 2.7). Then, for all (unbounded) adversaries A, we
have ∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣ = 0.

Proof. The only difference between the two hybrid experiments is in the way the challenger decrypts
the ciphertext headers. For each query to OReKeyGen

(
i, j, ĉt

)
or OReEncrypt

(
i, j, (ĉt, ct)

)
, as well as in the

output phase, the challenger in Hyb1 computes µ ← AE.Decrypt(ki, ĉt) while the challenger in Hyb2 sets
µ← Theader[i, ĉt]. The rest of the experiments remains identical.

By the correctness condition for ΠAE, these two distributions of µ in the two experiments are identically
distributed as long as (i, ĉt) is contained in Theader. However, in both Hyb1 and Hyb2, if ĉt is not contained
in Theader, the challenger returns ⊥. Therefore, the view of A in the two experiments are identically
distributed.

Lemma E.19. Suppose that ΠAE satisfies εconfae -confidentiality (Definition 2.8). Then, for all efficient
adversaries A, we have ∣∣Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]

∣∣ ≤ h · εconfae (λ).

Proof. This proof is almost identical to that of Lemma E.3, so we omit the full proof.

Lemma E.20. Suppose that ΠAE satisfies εconfae -confidentiality (Definition 2.8). Then, for all efficient
adversaries A that make at most Q oracle queries, we have∣∣Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]

∣∣ ≤ Q · εconfae (λ).

Proof. To prove the lemma, we proceed via a sequence of inner hybrid experiments. For γ = 0, . . . , Q, we
define the hybrid experiments Hyb3,γ as follows:

• Hyb3,γ : The challenger proceeds through the setup phase of the experiment according to the specifications
in Hyb3 and Hyb4 (which are identical). The challenger numbers A’s oracle queries, starting from Q
and counting backwards, and answers A’s kth last query during the query phase of the experiment as
follows:
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– OEncrypt(i,m): If k > γ, then the challenger proceeds as in Hyb3. Otherwise, the challenger proceeds
as in Hyb4.

– OReKeyGen

(
i, j, ĉt

)
: If k > γ, then the challenger proceeds as in Hyb3. Otherwise, the challenger

proceeds as in Hyb4.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If k > γ, then the challenger proceeds as in Hyb3. Otherwise, the challenge

proceeds as in Hyb4.

At the end of the experiment, adversary A outputs a bit b, which the challenger returns as the output
of the experiment.

By definition, experiment Hyb3,0 corresponds to experiment Hyb3, and experiment Hyb3,Q correponds to
experiment Hyb4. To prove the lemma, we show that each consecutive hybrid experiments Hyb3,γ−1 and
Hyb3,γ for γ = 1, . . . , Q are computationally indistinguishable.

Claim E.21. Suppose that ΠAE satisfies εconfae -confidentiality. Then, for all γ ∈ [h] and all efficient adversaries
A, we have ∣∣Pr[Hyb3,γ−1(A) = 1]− Pr[Hyb3,γ(A)]

∣∣ ≤ εconfae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb3,γ−1 and Hyb3,γ . We construct an algorithm
B that uses A to break the confidentiality of ΠAE. Algorithm B answers each of A’s oracle queries exactly
as the challenger in Hyb3,γ , except it answers the γth query (starting couting queries from Q and counting
downwards) as follows:

• OEncrypt(i,m): This query is handled identically to challenger Hyb3,γ .

• OReKeyGen

(
i, j, ĉt

)
: If j ≤ h, B answers the oracle query exactly as in Hyb3,γ , but it sets

ĉthistory ← Okγ ,b((kae, k̂history), (0|kae|, 0|k̂history|))

instead of setting
ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history))

or
ĉthistory ← AE.Encrypt(k̂′history, (0

|kae|, 0|k̂history|)).

The rest of the simulation in answering A’s queries remains unchanged.

• OReEncrypt

(
i, j, (ĉt, ct)

)
: If j ≤ h, B answers the oracle query exactly as in Hyb3,γ , but it sets

ĉthistory ← Okγ ,b((kae, k̂history), (0|kae|, 0|k̂history|))

instead of setting
ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history))

or
ĉthistory ← AE.Encrypt(k̂′history, (0

|kae|, 0|k̂history|)).

The rest of the simulation in answering A’s queries remains unchanged.

Apart from the changes described above, B simulates the challenger of Hyb3,γ exactly. At the end of the
experiment, adversary A outputs a bit b ∈ {0, 1}, which B returns as its own output.

By specification, algorithm B perfectly simulates the experiments Hyb3,γ and Hyb3,γ−1 as long as the
output of the oracle Okγ ,b(·, ·) is consistent with the specifications of the two experiments. By specification
(Definition 2.8), we have

Okγ ,0((kae, k̂history), (0
|kae|, 0|k̂history|)) = ĉthistory ← AE.Encrypt(k̂′history, (kae, k̂history)),
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and
Okγ ,1((kae, k̂history), (0

|kae|, 0|k̂history|)) = AE.Encrypt(k̂′history, (0
|kae|, 0|k̂history|)).

This means that if B is interacting with the oracle Okγ ,0, then it perfectly simulates Hyb3,γ−1, and if it is
interacting with the oracle Okγ ,1, then it perfectly simulates Hyb3,γ . This is the case because if j ≤ h, the

key k̂′history does not appear in the adversary A’s view: it was erased from the ciphertext header in Hyb3, and

it was erased from ĉthistory in a previous subhybrid Hyb3,γ′ (this is why we begin counting queries from the
last query instead of the first). If j ≥ h, the hybrids Hyb3,γ and Hyb3,γ−1 are defined identically. Therefore,
with the same distinguishing advantage of the two experiments by A, algorithm B breaks the confidentiality
of ΠAE. The claim now follows.

The statement of the lemma now follows from Claim E.21 and the triangle inequality.

Lemma E.22. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries
A that make at most Q oracle queries, we have∣∣Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]

∣∣ ≤ Q · εintae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb4 and Hyb5. We construct an algorithm B
that uses A to break the integrity of ΠAE (Definition 2.9). Algorithm B proceeds through the setup phase of
the experiment according to the specifications in Hyb4 and Hyb5 (which are identical). Then it samples a
random index c∗ ←R [Q]. The challenger counts A’s oracle queries and answers each of A’s cth query during
the query phase of the experiment as follows:

• OEncrypt(i,m): If c = c∗, algorithm B proceeds according to the specification in Hyb5. Otherwise, it
proceeds according to Hyb4. In both cases, whenever B must use c∗th value of kae to generate the
ciphertext ctpayload ← AE.Encrypt(kae,m), it uses the encryption oracle Okc∗ (·) for ΠAE (Definition 2.9).
If c = c∗ and B must abort, it submits the c∗th value of ĉthistory as a forgery for ΠAE.

• OReKeyGen

(
i, j, ĉt

)
: If c = c∗, algorithm B proceeds according to the specification in Hyb5. Otherwise,

it proceeds according to Hyb4. In both cases, whenever B must use c∗th value of k′ae to generate the
ciphertext ct′payload ← AE.Encrypt(k′ae, (ctpayload, ĉthistory)), it uses the encryption oracle Okc∗ (·) for ΠAE

(Definition 2.9). If c = c∗ and B must abort, it submits the c∗th value of ĉthistory as a forgery for ΠAE.

• OReEncrypt

(
i, j, (ĉt, ct)

)
: If c = c∗, algorithm B proceeds according to the specification in Hyb5. Otherwise,

it proceeds according to Hyb4. In both cases, whenever B must use c∗th value of k′ae to generate the
ciphertext ct′payload ← AE.Encrypt(k′ae, (ctpayload, ĉthistory)), it uses the encryption oracle Okc∗ (·) for ΠAE

(Definition 2.9). If c = c∗ and B must abort, it submits the c∗th value of ĉthistory as a forgery for ΠAE.

At the end of the experiment, adversary A outputs a bit b ∈ {0, 1}, which algorithm B returns as the output
of the experiment.

By definition, the only difference between the hybrid experiments Hyb4 and Hyb5 is the additional abort
condition when the challenger answers an adversary’s oracle queries in Hyb5. Therefore, by definition,
algorithm B perfectly simulates A’s views of the experiments Hyb4 and Hyb5 modulo the abort conditions.
Furthermore, by the specification of B, if A forces B to abort in any of these queries, then B successfully
forges a new ciphertext for ΠAE.

To formally analyze the probability that B successfully forges a new ciphertext, let us define the following
set of random variables:

• Let Z denote the event that B successfully forges a ciphertext at the end of the simulation above.

• Let Xc for c ∈ [Q] denote the event that c = c∗ during B’s simulation above.

• Let Yc for c ∈ [Q] denote the event that adversary A forces the challenger to abort in Hyb5 by submitting
a query OEncrypt(i,m), OReKeyGen

(
i, j, ĉt

)
, or OReEncrypt

(
i, j, (ĉt, ct)

)
.
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The lemma now follows from the identical argument used to prove Lemma E.1.

Lemma E.23. For all (unbounded) adversaries A, we have∣∣Pr[Hyb5(A) = 1]
∣∣ ≤ Q/2λ.

Proof. We now prove that the adversary in Hyb5 has an at most negligible probability of forging a UAE
ciphertext (ĉt, ct) under a key ki of its choosing, i ≤ h. For the sake of contradiction, suppose that A
successfully produces such a forgery.

First, recall that if the experiment completes without aborting, then ĉt must appear in Theader. Thus we
can recover (s′, `, k′ae, k̂

′
history)← Theader[i, ĉt], the plaintext of ĉt. If G(s′) 6= ctpad, then decryption would fail

(in step 3), so it must be that G(s′) = ctpad. This means we can strip off ctpad from ct to recover ctpayload.
Now consider µ ← Tpayload[k

′
ae, ctpayload]. Since decryption completes without aborting, this entry must

exist. Observe that since k′ae contains λ bits of entropy, the probability of Tpayload containing two or more
entries of the form Tpayload[k′ae, ·] is at most Q/2λ. We will only consider the case where there is only one such
entry. By construction, Tpayload[k′ae, ctpayload] must be added to Tpayload in the same oracle call that Theader[i, ĉt]
is added to Theader. This means that, in the same oracle call, the entry T[i, ĉt] ← ct was added to T, for
ct = (ctpayload, ctpad). But this is a contradiction because (ĉt, ct) cannot be a forgery for ki if it appears in
the table. Thus a successful forgery in Hyb5 leads to a contradiction with probability at least 1 − Q/2λ,
completing the proof.

By combining the lemmas above and using the triangle inequality, the proof of integrity follows.

F Proof of Theorem 5.3

F.1 Proof of Strong Compactness

Header compactness. Fix the security parameter λ, any message m ∈Mλ, and let k1, k2 ← KeyGen(1λ),
(ĉt, ct)← Encrypt(k1,m), and ∆1,2,ĉt ← ReKeyGen(k1, k2, ĉt). By construction, the ciphertext header ĉt and
the re-encryption key ∆1,2,ĉt has the following form:

• Ciphertext header : By the specification of Encrypt, we have ĉt = AE.Encrypt
(
k1, (kprf , h)

)
where

kprf ∈ KPRF and h = H(m). The PRF key space KPRF depends only on the security parameter, and by
definition of H, we have |h| = λ. Therefore, we have |ĉt| = poly1(λ) for some polynomial poly1.

• Re-encryption key : The re-encryption key ∆1,2,ĉt consists of a new ciphertext header ĉt
′

and a PRF

key kupprf . By the specification of ReEncrypt, we have ĉt
′

=
(
k2, (k

′
prf , h)

)
where k′prf ∈ KPRF and

h = H(m), and therefore, we have |ĉt′| = poly′2(λ) for some polynomial poly′2 as above. Furthermore, by
specification, kupprf ←

R KPRF and therefore, |kupprf | = poly′′2(λ) for some polynomial poly′′2 . This shows that

|∆1,2,ĉt| = poly′2(λ) + poly′′2(λ) = poly2(λ) for some polynomial poly2.

Compactness now follows.

Body compactness. Fix the security parameter λ, number of updates N ∈ N, and any message m ∈Mλ.
Let k1, . . . , kN ← KeyGen(1λ), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , N − 1. By construction, the ciphertext body cti has the form cti = (ct1, ..., ct`) where ` ∈ N is
the size of the output, in blocks, of (m1, ...,m`)← Pad(m), which depends only on m. Therefore, we have
|cti| = poly(m) for some polynomial poly, completing the proof of body compactness.
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F.2 Proof of Correctness

Fix the security parameter λ ∈ N, number of updates N = poly(λ), and any message m ∈ Mλ. Let
k1, . . . , kN ← KeyGen(1λ), (ĉt1, ct1)← Encrypt(k1,m), and

(ĉti+1, cti+1)← ReEncrypt
(
ReKeyGen(ki, ki+1, ĉti), (ĉti, cti)

)
,

for i = 1, . . . , N − 1. We must show that

Decrypt
(
kN , (ĉtN , ctN )

)
= m.

To do this, we show that (ĉti, cti) for i ∈ [N ] satisfies:

• ĉti = AE.Encrypt
(
k, (kprf , h)

)
for a PRF key kprf ∈ KPRF and h = H(m).

• cti = (cti,1, . . . , cti,`) where each ciphertext block cti,j for j ∈ [`] has the form

cti,j ← mj + F (kprf,i, j) + ei,j ,

for some |ei,j | ≤ i · β and (m1, . . . ,m`)← Pad(m).

This implies that Decrypt
(
kN , (ĉtN , ctN )

)
= m by the specification of Decrypt and the correctness of the

encoding scheme.
The show that (ĉti, cti) for i ∈ [N ] has the form as above, we proceed via induction.

• The ciphertext (ĉt1, ct1) has the form above simply by the specification of the Encrypt algorithm.

• Now assuming that (ĉti−1, cti−1) for some i ∈ [N ] has the form above, let us consider (ĉti, cti). We
know that (ĉti−1, cti−1 satisfies

– ĉti−1 = AE.Encrypt
(
ki−1, (kprf,i−1, h)

)
for a PRF key kprf,i−1 ∈ KPRF and h = H(m).

– cti−1 = (cti−1,1, . . . , cti−1,`) where each ciphertext block for j ∈ [`] has the form

cti−1,j ← mi−1,j + F (kprf , j) + ei−1,j ,

for some noise |ei−1,j | ≤ (i− 1) · β.

On input two keys ki−1, ki, and ciphertext header ĉti−1, the ReKeyGen algorithm proceeds as follows:

1. It decrypts (k′prf,i−1, h
′)← AE.Decrypt(ki−1, ĉti−1).

2. It samples a new PRF key kprf,i ←R KPRF and defines kupprf ← kprf,i − k′prf,i−1.

3. It sets ĉt
′
i ← AE.Encrypt

(
ki, (kprf,i, h

′)
)

and ∆i−1,i ← (ĉt
′
i, k

up
prf).

By the correctness of ΠAE (Definition 2.7), we have k′prf,i−1 = kprf,i−1 and h′ = h. Therefore, we have

ĉt
′
i = AE.Encrypt

(
ki, (kprf,i, h)

)
and kupprf = kprf,i − kprf,i−1.

Now, on input ∆i−1,i = (ĉti, k
up
prf) and ciphertext (ĉti−1, cti−1), the ReEncrypt algorithm proceeds as

follows:

1. It sets ĉti ← ĉt
′
i = AE.Encrypt

(
ki, (kprf,i, h)

)
.

2. For cti = (cti,1, . . . , cti,`), it sets

cti,j ← cti−1,j + F (kupprf , j) =
(
mi + F (kprf,i−1, j) + ei−1,j

)
+
(
F (kprf,i − kprf,i−1, j)

)
= mi + F (kprf,i, j) + ei−1,j + e′i,j ,

for error |e′i,j | ≤ β for j = 1, . . . , `. This means that |ei−1,j + e′i,j | ≤ i · β.

Correctness now follows.
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F.3 Proof of Confidentiality

We proceed via a sequence of hybrid experiments that are defined as follows:

• Hyb0: This hybrid experiment corresponds to the real updatable authenticated encryption confidentiality
experiment ExptconfΠUAE

(λ, h, d,A, 0) that is instantiated with Construction 5.2.

• Hyb1: In this hybrid experiment, we introduce an abort condition to the challenger’s simulation. Namely,
throughout the query phase of the experiment, the challenger maintains an additional look-up table
Theader that keeps track of all of the “well-formed” ciphertext headers under honest keys that A receives
from the challenger throughout the experiment. The table is initially set empty and the challenger
answers each of A’s oracle queries as follows:

– OEncrypt(i,m): The challenger answers the oracle exactly as in Hyb0 by generating the ciphertext
header

ĉt← AE.Encrypt
(
ki, (kprf , h)

)
,

and the ciphertext body ct = (ct1, . . . , ct`) according to the specification of Encrypt(ki,m).
Furthermore, after returning the ciphertext (ĉt, ct) to A, it additionally adds the mapping
Theader[i, ĉt]← (kprf , h) to the table.

– OReKeyGen(i, j, ĉt): If i ≤ h, then the challenger checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if this
is the case. If Theader[i, ĉt] 6= ⊥ or i > h, then the challenger proceeds exactly as in Hyb0 by

computing ĉt
′ ← AE.Encrypt

(
kj , (k

′
prf , h)

)
, and returning ∆i,j,ĉt ← (ĉt

′
, kupprf) to A. Furthermore, if

j ≤ h, then it adds the mapping Theader[j, ĉt
′
]← (k′prf , h) to the table.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If i ≤ h, then the challenger checks if Theader[i, ĉt] = ⊥ and outputs ⊥

if this is the case. If Theader[i, ĉt] 6= ⊥ or i > h, then the challenger proceeds exactly as in

Hyb0 by computing ĉt
′ ← AE.Encrypt

(
kj , (k

′
prf , h)

)
, setting ∆i,j,ĉt ← (ĉt

′
, kupprf), and returning

ReEncrypt
(
∆i,j,ĉt, (ĉt, ct)

)
to A. Furthermore, if j ≤ h, then it adds the mapping Theader[j, ĉt

′
]←

(k′prf , h) to the table.

– OChallenge(i, j,m, (ĉt, ct)): If i ≤ h, then the challenger checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if
this is the case. If Theader[i, ĉt] 6= ⊥ or i > h, then the challenger answers the oracle query exactly
as in Hyb0 by generating the ciphertext header

ĉt
′ ← AE.Encrypt

(
kj , (kprf , h)

)
,

and the ciphertext body ct′ = (ct′1, . . . , ct
′
`) according to the specification of Encrypt(kj ,m). After

returning the ciphertext (ĉt
′
, ct′) to A, it adds the mapping Theader[j, ĉt

′
]← (kprf , h) to the table.

The rest of the experiment remains unchanged from Hyb0.

In Lemma F.1 below, we show that the hybrid experiments Hyb0 and Hyb1 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

• Hyb2: In this hybrid experiment, we erase the decryption algorithm AE.Decrypt from the challenger’s
simulation. Namely, the challenger answers A’s oracle queries exactly as in Hyb1. However, for the
re-encryption key generation, re-encryption, and challenge oracle queries where the input index i ≤ h,
the challenger works as follows:

– OReKeyGen(i, j, ĉt): The challenger answers the oracle exactly as in Hyb1, but instead of decrypting
the ciphertext header µ← AE.Decrypt(ki, ĉt), it sets µ← Theader[i, ĉt]. If no such entry exists in
Theader, then it aborts the experiment and outputs ⊥.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger answers the oracle exactly as in Hyb1, but instead of

decrypting the ciphertext header µ← AE.Decrypt(ki, ĉt), it sets µ← Theader[i, ĉt]. If no such entry
exists in Theader, then it aborts the experiment and outputs ⊥.
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– OChallenge(i, j,m, (ĉt, ct)): The challenger answers the oracle exactly as in Hyb1, but whenever it
must compute µ← AE.Decrypt(ki, ĉt) in the call to ReKeyGen, it sets µ← Theader[i, ĉt]. If no such
entry exists in Theader, then it aborts the experiment and outputs ⊥.

The rest of the experiment remains unchanged from Hyb1.

In Lemma F.2 below, we show that the hybrid experiments Hyb1 and Hyb2 are perfectly indistinguishable
assuming that ΠAE is correct.

• Hyb3: In this hybrid experiment, we erase the PRF keys kprf and any information about the plaintext
m from the ciphertext headers. Namely, the challenger answers each of A’s oracle queries as follows:

– OEncrypt(i,m): The challenger answers the oracle query exactly as in Hyb2, but instead of setting
the ciphertext header ĉt← AE.Encrypt

(
ki, (kprf , h)

)
, it sets

ĉt← AE.Encrypt
(
ki, (0

|kprf |, 0|h|)
)
.

The rest of the simulation in answering A’s queries remains unchanged.

– OReKeyGen(i, j, ĉt): If j > h, then the challenger answers the oracle query exactly as in Hyb2. If

j ≤ h, then instead of setting the new ciphertext header ĉt
′ ← AE.Encrypt

(
k2, (k

′
prf , h)

)
, it sets

ĉt
′ ← AE.Encrypt

(
k2, (0

|k′prf |, 0|h|)
)
.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If j > h, then the challenger answers the oracle query exactly as in Hyb2.

If j ≤ h, then instead of setting the new ciphertext header ĉt
′ ← AE.Encrypt

(
k2, (k

′
prf , h)

)
, it sets

ĉt
′ ← AE.Encrypt

(
k2, (0

|k′prf |, 0|h|)
)
.

– OChallenge(i, j,m, (ĉt, ct)): The challenger answers the oracle query exactly as in Hyb2, but instead

of setting the ciphertext header ĉt
′ ← AE.Encrypt

(
kj , (kprf , h)

)
, it sets

ĉt
′ ← AE.Encrypt

(
kj , (0

|kprf |, 0|h|)
)
.

The rest of the simulation in answering A’s queries remain unchanged.

The rest of the experiment remains unchanged from Hyb2.

In Lemma F.3 below, we show that the hybrid experiments Hyb2 and Hyb3 are computationally
indistinguishable assuming that ΠAE satisfies confidentiality.

• Hyb4: In this hybrid experiment, we replace the PRF F with a completely random function. Namely,
when answering A’s challenge oracle queries OChallenge(i, j,m, (ĉt, ct)), instead of evaluating the PRFs
F (kprf , ·) and F (kupprf , ·), it uses a random function fkprf (·) or fkupprf (·) instead (for the PRF output that

affects the returned ciphertext). The rest of the experiment remains unchanged from Hyb3.

In Lemma F.5 below, we show that the hybrid experiments Hyb3 and Hyb4 are computationally
indistinguishable assuming that F : KPRF × {0, 1}∗ → Y is a secure PRF.

• Hyb5: In this hybrid experiment, we modify the challenger from directly encrypting the message m
to re-encrypting the ciphertext (ĉt, ct) when answering A’s challenge query OChallenge

(
i, j,m, (ĉt, ct)

)
.

Namely, on a query OChallenge

(
i, j,m, (ĉt, ct)

)
, instead of computing (m1, . . . ,m`)← Pad(m) and setting

ct′i ← mi + fkprf (i) for i ∈ [`], the challenger proceeds as follows:

1. It computes ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt),

2. It parses ∆i,j,ĉt = (ĉt
′
, kupprf), ct = (ct1, . . . , ct`),
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3. It sets ct′i ← cti + fkupprf (i) for i ∈ [`].

The rest of the experiment remains unchanged from Hyb3.

In Lemma F.7 below, we show that the hybrid experiments Hyb4 and Hyb5 are perfectly indistinguishable.

• Hyb6: Starting from this hybrid, we start unrolling back the changes that we made from Hyb0. In
this hybrid experiment, we undo the changes that we made in Hyb4 by replacing the random function
evaluations with true PRF evaluations.

In Lemma F.8 below, we show that the hybrid experiments Hyb5 and Hyb6 are computationally
indistinguishable assuming that F : KPRF × {0, 1}∗ → Y is a secure PRF.

• Hyb7: In this hybrid experiment, we undo the changes that we made in Hyb3 by including the PRF
keys kprf and information about the plaintext m in the ciphertext headers.

In Lemma F.9 below, we show that the hybrid experiments Hyb6 and Hyb7 are computationally
indistinguishable assuming that ΠAE satisfies confidentiality.

• Hyb8: In this hybrid experiment, we undo the changes that we made in Hyb2 by re-introducing the
decryption algorithm AE.Decrypt in the challenger’s simulation.

In Lemma F.10 below, we show that the hybrid experiments Hyb7 and Hyb8 are perfectly indistinguishable
assuming that ΠAE is correct.

• Hyb9: In this hybrid experiment, we undo the changes that we made in Hyb1 by removing the additional
abort condition.

In Lemma F.11 below, we show that the hybrid experiments Hyb8 and Hyb9 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

This hybrid experiment corresponds to the real updatable authenticated encryption confidentiality
experiment ExptconfΠUAE

(λ, h, d,A, 1).

We now show that each of the consecutive hybrid experiments are indistinguishable. For a hybrid experiment
Hyb and an adversary A, we use Hyb(A) to denote the random variable representing the output of experiment
Hyb with adversary A.

Lemma F.1. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries A,
we have ∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣ ≤ h · εintae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb0 and Hyb1. We construct an algorithm B
that uses A to break the integrity of ΠAE (Definition 2.9). Algorithm B works as follows:

• Setup phase: At the start of the experiment, algorithm B samples a random index i∗ ←R [h]. It
generates the keys ki for i ∈ [h+ d]\ {i∗} according to the (identical) specifications of Hyb0 and Hyb1.
For ki∗ , algorithm B leaves it unspecified.

• Query phase: Algorithm B simulates the responses to A’s oracle queries as follows:

– OEncrypt(i,m): If i 6= i∗, algorithm B proceeds according to Hyb0. If i = i∗, it proceeds according
to the specification in Hyb1. Whenever B must use ki∗ to generate the ciphertext header ĉt ←
AE.Encrypt

(
ki∗ , (kprf , h)

)
, it uses the encryption oracle Ok∗i

(·) for ΠAE.

– OReKeyGen(i, j, ĉt): If i 6= i∗, then B proceeds according to the specification in Hyb0. If i = i∗, then
it proceeds according to the specification in Hyb1. In both cases, whenever B must use ki∗ to

generate the ciphertext header ĉt
′ ← AE.Encrypt

(
ki∗ , (k

′
prf , h)

)
, it uses the encryption oracle Ok∗i

(·)
for ΠAE (Definition 2.9). If i = i∗ and B must abort, it submits ĉt as a forgery for ΠAE.

53



– OReEncrypt

(
i, j, (ĉt, ct)

)
: If i = i∗, algorithm B proceeds according to the specification in Hyb1.

Otherwise, it proceeds according to Hyb0. In both cases, whenever B must use ki∗ to generate

the ciphertext header ĉt
′ ← AE.Encrypt

(
ki∗ , (k

′
prf , h)

)
, it uses the encryption oracle Ok∗i

(·) for ΠAE

(Definition 2.9). If i = i∗ and B must abort, it submits ĉt as a forgery for ΠAE.

– OChallenge(i, j,m, (ĉt, ct)): If i = i∗, algorithm B proceeds according to the specification in Hyb1.
Otherwise, it proceeds according to Hyb0. In both cases, whenever B must use ki∗ to generate

the ciphertext header ĉt
′ ← AE.Encrypt

(
ki∗ , (k

′
prf , h)

)
, it uses the encryption oracle Ok∗i

(·) for ΠAE

(Definition 2.9). If i = i∗ and B must abort, then it submits ĉt as a forgery for ΠAE.

• Output phase: At the end of the experiment, adversary A outputs a bit b ∈ {0, 1}, which algorithm
B returns as the output of the experiment.

By definition, the only difference between the hybrid experiments Hyb0 and Hyb1 is the additional abort
condition when the challenger answers an adversary’s re-encryption key generation, re-encryption, or challenge
queries in Hyb1. Therefore, by definition, algorithm B perfectly simulates A’s views of the experiments Hyb0

and Hyb1 modulo the abort conditions. Furthermore, by the specification of B, if A forces B to abort in any
of these queries, then B successfully forges a new ciphertext for ΠAE.

To formally analyze the probability that B successfully forges a new ciphertext, let us define the following
set of random variables:

• Let Z denote the event that B successfully forges a ciphertext at the end of the simulation above.

• Let Xi for i ∈ [h] denote the event that i = i∗ during B’s simulation above.

• Let Yi for i ∈ [h] denote the event that adversary A forces the challenger to abort in Hyb1 by submitting
a query OReKeyGen(i, j, ĉt), OReEncrypt

(
i, j, (ĉt, ct)

)
, or OChallenge(i, j,m, (ĉt, ct)).

Then, by definition, algorithm B successfully forges a new authenticated encryption ciphertext when A forces
algorithm B to abort on a query OReKeyGen(i

∗, j, ĉt), OReEncrypt

(
i∗, j, (ĉt, ct)

)
, or OChallenge(i

∗, j,m, (ĉt, ct)):

Pr
[
Z
]

=
∑
i∈[h]

Pr
[
Xi ∩ Yi

]
=
∑
i∈[h]

Pr
[
Xi | Yi

]
· Pr

[
Yi
]

=
∑
i∈[h]

1

h
· Pr

[
Yi
]

=
1

h

∑
i∈[h]

Pr
[
Yi
]

≥ 1

h
· Pr

[
Y1 ∪ . . . ∪ Yh

]
,

where the last inequality follows by the union bound. Now, since the only difference between the hybrid
experiments Hyb0 and Hyb1 is the additional abort condition when the challenger answers OReKeyGen(i, j, ĉt),
OReEncrypt

(
i, j, (ĉt, ct)

)
, or OChallenge(i, j,m, (ĉt, ct)), an adversary’s advantage in distinguishing the two experi-

ments is bounded by the probability of the event Y1 ∪ . . . ∪ Yh:∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]
∣∣ ≤ Pr

[
Y1 ∪ . . . ∪ Yh

]
.

Putting the two inequalities together, we have∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]
∣∣ ≤ Pr

[
Y1 ∪ . . . ∪ Yh

]
≤ h · Pr

[
Z
]

≤ h · εintae (λ),

and the lemma follows.
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Lemma F.2. Suppose that ΠAE is correct (Definition 2.7). Then, for all (unbounded) adversaries A, we
have ∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣ = 0.

Proof. The only difference between the two hybrid experiments is in the way the challenger decrypts the
ciphertext headers. For each queries OReKeyGen(i, j, ĉt), OReEncrypt

(
i, j, (ĉt, ct)

)
, and OChallenge

(
i, j,m, (ĉt, ct)

)
,

the challenger in Hyb1 computes µ← AE.Decrypt(ki, ĉt) while the challenger in Hyb2 sets µ← Theader[i, ĉt].
The rest of the experiments remains identical.

By the correctness condition for ΠAE, these two distributions of µ in the two experiments are identically
distributed as long as (i, ĉt) is contained in Theader. However, in both Hyb1 and Hyb2, if ĉt is not contained
in Theader, the challenger returns ⊥. Therefore, the view of A in the two experiments are identically
distributed.

Lemma F.3. Suppose that ΠAE satisfies εconfae -confidentiality (Definition 2.8). Then, for all efficient adver-
saries A, we have ∣∣Pr[Hyb2(A) = 1]− Pr[Hyb3(A) = 1]

∣∣ ≤ h · εconfae (λ).

Proof. To prove the lemma, we proceed via a sequence of inner hybrid experiment. For γ = 0, . . . , h, we
define the hybrid experiments Hyb2,γ as follows:

• Hyb2,γ : The challenger proceeds through the setup phase of the experiment according to the specifications
in Hyb2 and Hyb3 (which are identical). The challenger answers each of A’s queries during the query
phase of the experiment as follows:

– OEncrypt(i,m): If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the challenger proceeds
as in Hyb3.

– OReKeyGen(i, j, ĉt): If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the challenger
proceeds as in Hyb3.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the challenge

proceeds as in Hyb3.

– OChallenge(i, j,m, (ĉt, ct)): If i > γ, then the challenger proceeds as in Hyb2. Otherwise, the
challenger proceeds as in Hyb3.

At the end of the experiment, adversary A outputs a bit b, which the challenger returns as the output
of the experiment.

By definition, experiment Hyb2,0 corresponds to experiment Hyb2, and experiment Hyb2,γ correponds to
experiment Hyb3. To prove the lemma, we show that each consecutive hybrid experiments Hyb2,γ−1 and
Hyb2,γ for γ = 1, . . . , h are computationally indistinguishable.

Claim F.4. Suppose that ΠAE satisfies εconfae -confidentiality. Then, for all γ ∈ [h] and all efficient adversaries
A, we have ∣∣Pr[Hyb2,γ−1(A) = 1]− Pr[Hyb3,γ(A)]

∣∣ ≤ εconfae (λ).

Proof. Let A be an adversary that distinguishes experiments Hyb2,γ−1 and Hyb2,γ . We construct an algorithm
B that uses A to break the confidentiality of ΠAE. Algorithm B works as follows:

• Setup phase: For the setup phase, algorithm B proceeds according to the specifications in Hyb2,γ−1

and Hyb2,γ (which are identical). However, for the key kγ , it leaves it unspecified.

• Query phase: Algorithm B simulates the responses to A’s oracle queries as follows:

55



– OEncrypt(i,m): Algorithm B follows the exact specification of the two experiments. However, since
kγ is unspecified, it uses the encryption oracle

Okγ ,b

(
(kprf , h), (0|kprf |, 0|h|)

)
,

in place of AE.Encrypt
(
kγ , (kprf , h)

)
or AE.Encrypt

(
kγ , (0

|kprf |, 0|h|)
)
.

– OReKeyGen(i, j, ĉt): Algorithm B follows the exact specification of the two experiments. However,
since kγ is unspecified, it uses the encryption oracle

Okγ ,b

(
(k′prf , h), (0|k

′
prf |, 0|h|)

)
,

in place of AE.Encrypt
(
kγ , (kprf , h)

)
or AE.Encrypt

(
kγ , (0

|k′prf |, 0|h|)
)
.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: Algorithm B follows the exact specification of the two experiments. However,

since kγ is unspecified, it uses the encryption oracle

Okγ ,b

(
(k′prf , h), (0|k

′
prf |, 0|h|)

)
,

in place of AE.Encrypt
(
kγ , (kprf , h)

)
or AE.Encrypt

(
kγ , (0

|k′prf |, 0|h|)
)
.

– OChallenge(i, j,m, (ĉt, ct)): Algorithm B follows the exact specification of the two experiments.
However, since kγ is unspecified, it uses the encryption oracle

Okγ ,b

(
(kprf , h), (0|kprf |, 0|h|)

)
,

in place of AE.Encrypt
(
kγ , (kprf , h)

)
or AE.Encrypt

(
kγ , (0

|kprf |, 0|h|)
)
.

• Output phase: At the end of the experiment, adversary A outputs a bit b ∈ {0, 1}, which B returns
as its own output.

By specification, algorithm B perfectly simulates the experiments Hyb2,γ and Hyb2,γ−1 as long as the
output of the oracle Okγ ,b(·, ·) is consistent with the specifications of the two experiments. By specification
(Definition 2.8), we have

Okγ ,0

(
(kprf , h), (0|kprf |, 0|h|)

)
= AE.Encrypt

(
kγ , (kprf , h)

)
,

and
Okγ ,1

(
(kprf , h), (0|kprf |, 0|h|)

)
= AE.Encrypt

(
kγ , (0

|kprf |, 0|h|)
)
.

This means that if B is interacting with the oracle Okγ ,0, then it perfectly simulates Hyb2,γ−1, and if it is
interacting with the oracle Okγ ,1, then it perfectly simulates Hyb2,γ . Therefore, with the same distinguishing
advantage of the two experiments by A, algorithm B breaks the confidentiality of ΠAE. The claim now
follows.

The statement of the lemma now follows from Claim F.4 and the triangle inequality.

Lemma F.5. Suppose that F : KPRF × {0, 1}∗ → Y satisfies εprf-security (Definition 2.3). Then, for all
efficient adversaries A that makes Q challenge oracle queries to OChallenge, we have∣∣Pr[Hyb3(A) = 1]− Pr[Hyb4(A) = 1]

∣∣ ≤ Q · εprf(λ).

Proof. To prove the lemma, we proceed via a sequence of inner hybrid experiments. For γ = 0, . . . , Q, we
define the hybrid experiments Hyb3,γ as follows:

• Hyb3,γ : The challenger proceeds through the setup phase of the experiments according to the specifica-
tions in Hyb3 and Hyb4 (which are identical). The challenger also answers each of A’s oracle queries
OReKeyGen, OEncrypt, OReEncrypt queries according the specifications in the two experiments. Algorithm B
answers A’s challenge oracle queries as follows:
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– OChallenge(i, j,m, (ĉt, ct)): For A’s first γ queries, the challenger proceeds exactly as in Hyb3. For
the rest of the queries, it proceeds as in Hyb4.

At the end of the experiment, adversary A outptus a bit b, which the challenger returns as the output
of the experiment.

By definition, experiment Hyb3,0 corresponds to experiment Hyb3, and experiment Hyb3,Q corresponds to
experiment Hyb4. The lemma follows by the computational indistinguishability of the consecutive hybrid
experiments Hyb3,γ−1 and Hyb3,γ for γ = 1, . . . , Q. The proof of the following claim follows immediately from
the definition of PRF security (Definition 2.3) and the fact that the adversary’s view is independent of the
PRF key kprf or kupprf used in the output of OChallenge(i, j,m, (ĉt, ct)) as enforced by the checks on the table T
in the confidentiality definition.

Claim F.6. Suppose that F : KPRF × {0, 1}∗ → Y satisfies εprf-securitry. Then, for all γ ∈ [Q] and all
efficient adversaries A that makes at most Q challenge oracle queries OChallenge, we have∣∣Pr[Hyb3,γ−1(A) = 1]− Pr[Hyb3,γ(A) = 1]

∣∣ ≤ εprf(λ).

The statement of the lemma now follows from Claim F.6 and the triangle inequality.

Lemma F.7. For all (unbounded) adversaries A, we have∣∣Pr[Hyb4(A) = 1]− Pr[Hyb5(A) = 1]
∣∣ = 0.

Proof. The only difference between the two hybrid experiments is in the way the challenger responds toA’s chal-
lenge oracle queries to OChallenge. Namely, to generate a ciphertext body ct′ on a query OChallenge

(
i, j,m, (ĉt, ct)

)
,

the challenger in Hyb4 computes (m1, . . . ,m`)← Pad(m) and sets

ct′i ← mi + fkprf (i)

for i ∈ [`], while the challenger in Hyb5 computes ∆i,j,ĉt ← ReKeyGen(ki, kj , ĉt) and sets

ct′i ← cti + fkupprf (i)

for i ∈ [`] where ∆i,j,ĉt = (ĉt
′
, kupprf), ct = (ct1, . . . , ct`). However, since fkprf (·) and fkupprf (·) are completely

random functions, these two distributions of the ciphertext body components are identically distributed
independent of m or ct as long as the resulting ciphertexts have the same length. By specification, the
challenger returns ct′ = (ct′1, . . . , ct

′
`) only when this is the case. Therefore, the view of A in Hyb4 and Hyb5

are identically distributed and the lemma follows.

Lemma F.8. Suppose that F : KPRF × {0, 1}∗ → Y satisfies εprf-security (Definition 2.3). Then, for all
efficient adversaries A that makes Q challenge oracle queries to OChallenge, we have∣∣Pr[Hyb5(A) = 1]− Pr[Hyb6(A) = 1]

∣∣ ≤ Q · εprf(λ).

Proof. The proof is identical to the proof of Lemma F.5.

Lemma F.9. Suppose that ΠAE satisfies εconfae -confidentiality (Definition 2.8). Then, for all efficient adver-
saries A, we have ∣∣Pr[Hyb6(A) = 1]− Pr[Hyb7(A) = 1]

∣∣ ≤ h · εconfae (λ).

Proof. The proof is identical to the proof of Lemma F.3.

Lemma F.10. Suppose that ΠAE is correct (Definition 2.7). Then, for all (unbounded) adversaries A, we
have ∣∣Pr[Hyb7(A) = 1]− Pr[Hyb8(A) = 1]

∣∣ = 0.
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Proof. The proof is identical to the proof of Lemma F.2.

Lemma F.11. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries
A, we have ∣∣Pr[Hyb8(A) = 1]− Pr[Hyb9(A) = 1]

∣∣ ≤ h · εintae (λ).

Proof. The proof is identical to the proof of Lemma F.1.

By combining the lemmas above and using the triangle inequality, the proof of confidentiality follows.

F.4 Proof of Relaxed Integrity

We proceed via a sequence of hybrid experiments that are defined as follows:

• Hyb0: This hybrid experiment corresponds to the real updatable authenticated encryption relaxed
integrity experiment Exptrelaxed-int

ΠUAE
(λ, h, d, γ,A) that is instantiated with Construction 5.2.

• Hyb1: In this hybrid experiment, we introduce an additional abort condition to the challenger’s
simulation. Namely, throughout the experiment, the challenger maintains an additional look-up table
Theader that keeps track of all of the “well-formed” ciphertext headers (under the honest keys) that A
receives from the challenger. Then, it answers each of A’s oracle queries as follows:

– OEncrypt(i,m): The challenger answers the oracle exactly as in Hyb0 by generating the ciphertext
header

ĉt← AE.Encrypt
(
ki, (kprf , h)

)
,

and the ciphertext body ct = (ct1, . . . , ct`) according to the specification of Encrypt(ki,m). After
returning the ciphertext (ĉt, ct) to A, it adds the mapping Theader[i, ĉt]←

(
(kprf , h),m

)
to the table

if i ≤ h.

– OReKeyGen(i, j, ĉt): If i > h, then the challenger proceeds exactly as in Hyb0. Otherwise, if i ≤ h, then
the challenger first checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if this is the case. If Theader[i, ĉt] 6= ⊥,
then the challenger proceeds as in Hyb0 by computing ĉt← AE.Encrypt

(
kj , (k

′
prf , h)

)
, and returning

∆i,j,ĉt ← (ĉt
′
, kupprf) to A. Furthermore, if j ≤ h, then it sets (µ,m) ← Theader[i, ĉt] and adds the

mapping Theader[j, ĉt
′
]←

(
(k′prf , h),m

)
to the table.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger answers the query as follows:

∗ If i > h, then the challenger proceeds exactly as in Hyb0 by first computing m← Decrypt
(
ki, (ĉt, ct)

)
.

If m = ⊥, then the challenger returns ⊥. Otherwise, it computes ĉt← AE.Encrypt
(
kj , (k

′
prf , h)

)
,

sets ∆i,j,ĉt ← (ĉt
′
, kupprf), and returns (ĉt

′
, ct′)← ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
to A. If j ≤ h, then

it additionally adds Theader[j, ĉt
′
]←

(
(k′prf , h),m

)
to the table.

∗ If i ≤ h, then the challenger first checks if Theader[i, ĉt] = ⊥ and outputs ⊥ if this is the
case. If Theader[i, ĉt] 6= ⊥, then the challenger proceeds as in Hyb0 by computing ĉt ←
AE.Encrypt

(
kj , (k

′
prf , h)

)
, and returning (ĉt

′
, ct′)← (ReEncrypt

(
∆i,j,ĉt, (ĉt, ct)

)
to A. If j ≤ h,

then it additionally adds Theader[j, ĉt
′
]←

(
(k′prf , h),m

)
to the table.

At the end of the experiment, adversary A outputs an index i ≤ h and a ciphertext (ĉt, ct). As
specified in Hyb0, the challenger computes m← Decrypt

(
ki, (ĉt, ct)

)
and checks the following conditions,

outputting ⊥ if either is met:

– m = ⊥,
– For (ct′,m′)← T[i, ĉt], ct′ = (ct′1, . . . , ct

′
`), we have that m = m′, ` = `′, and

∥∥ctj − ct′j
∥∥ ≤ γ for

all j ∈ [`].
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In addition, the challenger verifies whether Theader[i, ĉt] = ⊥. If this is the case, then the challenger also
outputs ⊥. If none of the conditions above are met, then the challenger returns 1 as the output of the
experiment.

In Lemma F.12 below, we show that the hybrid experiments Hyb0 and Hyb1 are computationally
indistinguishable assuming that ΠAE satisfies integrity.

• Hyb2: In this hybrid experiment, we erase the decryption algorithm AE.Decrypt from the challenger’s
simulation for honest keys. Namely, the challenger answers A’s re-encryption key generation oracle
OReKeyGen and re-encryption oracle OReEncrypt as follows:

– OReKeyGen(i, j, ĉt): The challenger answers the oracle exactly as in Hyb1, but instead of decrypting
the ciphertext header µ← AE.Decrypt(ki, ĉt), it looks up (µ,m)← T[i, ĉt]. If no such entry exists
in Theader, then it immediately aborts the experiments and outputs ⊥.

– OReEncrypt

(
i, j, (ĉt, ct)

)
: The challenger answers the oracle exactly as in Hyb1, but instead of

decrypting the ciphertext header µ← AE.Decrypt(ki, ĉt), it looks up (µ,m)← Theader[i, ĉt]. If no
such entry exists in Theader, then it immediately aborts the experiments and outputs ⊥.

At the end of the experiment, adversary A outputs an index i ≤ h and a ciphertext (ĉt, ct). As
specified in Hyb1, the challenger computes m← Decrypt

(
ki, (ĉt, ct)

)
and checks the following conditions,

outputting ⊥ if either is met:

– m = ⊥,
– For (ct′,m′)← T[i, ĉt], ct′ = (ct′1, . . . , ct

′
`), we have that m = m′, ` = `′, and

∥∥ctj − ct′j
∥∥ ≤ γ for

all j ∈ [`].

However, when computing µ← Decrypt
(
ki, (ĉt, ct)

)
, instead of decrypting the header µ← AE.Decrypt(ki, ĉt),

it sets µ← Theader[i, ĉt]. If no such entry exists in Theader, then it aborts the experiment and outputs ⊥.
The rest of the output phase remains unchanged.

In Lemma F.13 below, we show that the hybrid experiments Hyb1 and Hyb2 are perfectly indistinguishable
assuming that ΠAE satisfies correctness.

Then in Lemma F.14, we show that an adversary’s advantage in forcing the challenger to output 1 in
Hyb2 is negligible assuming that H is collision-resistant.

We now show that each of the consecutive hybrid experiments are indistinguishable. For a hybrid experiment
Hyb and an adversary A, we use Hyb(A) to denote the random variable that represents the output of
experiment Hyb with adversary A.

Lemma F.12. Suppose that ΠAE satisfies εintae -integrity (Definition 2.9). Then, for all efficient adversaries
A, we have ∣∣Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]

∣∣ ≤ h · εintae (λ).

Proof. The proof is almost identical to the proof of Lemma F.1 aside from the different set of oracles that
are available to the adversary in the integrity game. The only distinction between Hyb1 that we consider for
integrity and Hyb1 that we consider for the confidentiality security proof in Lemma F.1 is the content of Theader.
In Hyb1 for integrity, the challenger additionally includes a plaintext message m that is encrypted by the
ciphertext body of each corresponding ciphertext headers. However, this distinction does not actually impact
the security proof as long as there always exists a well-defined plaintext message m for each of A’s oracle
queries to OReEncrypt. This condition is guaranteed by the relaxed integrity security game (Definition C.2) and
therefore, the lemma follows by the same argument as in the proof of Lemma F.1.

Lemma F.13. Suppose that ΠAE is correct (Definition 2.7). Then, for all (unbounded) adversaries A, we
have ∣∣Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]

∣∣ = 0.
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Proof. The proof is identical to the proof of Lemma F.2.

Lemma F.14. Suppose that H is a εcr-secure collision resistant hash function. Then, for all efficient
adversaries A, we have

Pr[Hyb2(A) = 1] ≤ εcr(λ).

Proof. Let A be an adversary that produces a ciphertext forgery in Hyb2. We construct an algorithm B that
uses A to produce a collision for the hash function H. Algorithm B works as follows:

• Algorithm B simply follows the specification of the challenger in Hyb2 until A produces a forgery.
Once A produces a forgery, which consists of an index i ∈ [h] and a ciphertext (ĉt, ct), B verifies if
Theader[i, ĉt] = ⊥. If this is the case, then it aborts and returns ⊥. Otherwise, it decrypts the message
m← Decrypt

(
ki, (ĉt, ct)

)
and also looks up (µ,m′)← Theader[i, ĉt]. It returns (m,m′) as the collision for

the hash function H.

We now show that if A successfully produces a valid forgery for Hyb2, then B’s output (m,m′) is a valid
collision for H: H(m) = H(m′) and m 6= m′. If A’s forgery, which consists of an index i ∈ [h] and a ciphertext
(ĉt, ct), is a valid forgery, then it must be the case that for m← Decrypt

(
ki, (ĉt, ct)

)
, we have

• m 6= ⊥,
• For (ct′,m′) ← T[i, ĉt], ct′ = (ct′1, . . . , ct

′
`), we have that m = m′, ` = `′, and

∥∥ctj − ct′j
∥∥ ≤ γ for all

j ∈ [`].

Now, let
(
(kprf , h),m

)
← Theader[i, ĉt]. We first note that by the specification of the challenger in Hyb2, we have

h = H(m′). Furthermore, by the specification of the Decrypt algorithm, in order for m = Decrypt
(
ki, (ĉt, ct)

)
6=

⊥, we must have m = H(m). Finally, since T[i, ĉt] 6= ct, the forged ciphertext (ĉt, ct) was never output by
the challenger during the simulation of the experiment. Since ct is uniquely determined by the underlying
plaintext m for a fixed PRF key kprf , we have m 6= m′. The lemma follows.

By combining the lemmas above and using the triangle inequality, the proof of relaxed integrity follows.

G Proof of Theorem 6.3

G.1 Security

Let A be an adversary that distinguishes the PRF F (s, x) from a truly random function f ←R Funs[{0, 1}`,Rq].
We construct an algorithm B that uses A to break the Ring Learning with Errors problem RLWEn,q,χ.
Algorithm B proceeds as follows:

• Setup phase: At the start of the experiment, algorithm B initiates a look-up tables T0 and T1:

– T0 is indexed by PRF inputs x ∈ {0, 1}` and stores elements (a, v) ∈ Rq ×Rq.
– T1 is indexed by elements (s, x) and stores elements r ∈ {0, 1}`.

• Query phase: Algorithm B answers each of A’s oracle queries as follows:

– RO queries to H0: For each query x ∈ {0, 1}` to H0, algorithm B checks if T1[x] = ⊥. If this is the
case, then it queries the RLWEn,q,χ oracle to receive a sample (a, v) ∈ Rq ×Rq, sets T1[x]← (a, v),
and returns a to A. If T1[x] 6= ⊥, then it looks up (a, v)← T[x], and returns a to A.

– RO Queries to H1: For each query (s′, x) ∈ Rq × {0, 1}`, algorithm B checks if T2[s′, x] = ⊥. If
this is the case, then it samples a random element r ←R {0, 1}`, sets T [s′, x]← r, and returns r. If
T2[s′, x] 6= ⊥, then it sets r ← T2[s′, x], and returns r.

– Evaluation queries: On an evaluation query x ∈ {0, 1}`, algorithm B checks if T[x] = ⊥. If
this is the case, then it queries the RLWEn,q,χ oracle to receive a sample (a, v) ∈ Rq ×Rq, sets
T[x]← (a, v), and returns v to A. If T[x] 6= ⊥, then it looks up (a, v)← T[x], and returns v to A.
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• Output phase: At the end of the experiment, adversary A outputs a bit b ∈ {0, 1}. Now, algorithm B
proceeds as follows.

– For each (s′, x) ∈ Rq × {0, 1}` for which T2[s′, x] 6= ⊥, it checks if ‖v − a · s′‖ ≤ 2B for each
(a, v) ∈ T1. If there exists such entry (s′, x) ∈ Rq × {0, 1}`, algorithm B outputs 0.

– If no such entry (s′, x) ∈ Rq × {0, 1}` exists, then algorithm B outputs b that A returned.

Suppose that B is interacting with the real RLWE oracle OReal
s , which provides (a, a · s+ e) for a←R Rq and

e← χ to B. Then, by definition, algorithm B perfectly simulates the responses to all of A’s oracle queries as
long as A never submits (s, x) as a query to H1 for some x ∈ {0, 1}`. However, if A submits such a query
to H1, then algorithm B uses s to verify whether it is interacting with the real oracle OReal

s or OIdeal at the
output phase of the simulation.

Now, suppose that B is interacting with the ideal RLWE oracle OIdeal, which provides (a, u)←R Rq ×Rq.
Then, by definition, algorithm B perfectly simulates the responses to A’s queries. At the end of the simulation,
algorithm B returns the output of A as long as A never made a query (s′, x) to H1 for which s′ is a valid
RLWEn,q,χ secret. However, when B is interacting with OIdeal, no such s′ can exist. Therefore, algorithm B
distinguishes oracles OReal

s and OIdeal with at least the distinguishing advantage of A in distinguishing F (s, ·)
and f(·).

G.2 Key-Homomorphism

Key-homomorphism of the PRF follows straightforwardly from the following relation:

F (s1, x) + F (s2, x)− F (s1 + s2, x) = a · s1 + e1 + a · s2 + e2 − a · (s1 + s2) + e3

= e1 + e2 − e3,

where e1 = Samp
(
H1(s1, x)

)
, e2 = Samp

(
H1(s2, x)

)
, and e3 = Samp

(
H1(s1 + s2, x)

)
. By definition of Samp,

the norm of ring elements e1, e2, and e3 are bounded byB. Therefore, ‖e1 + e2 − e3‖ ≤ ‖e1‖+‖e2‖+‖e3‖ ≤ 3B.
The statement of the theorem now follows.
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