
Compact NIZKs from Standard Assumptions on Bilinear Maps
Shuichi Katsumata1, Ryo Nishimaki2, Shota Yamada1, Takashi Yamakawa2

1National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2NTT Secure Platform Laboratories, Tokyo, Japan
{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

February 20, 2020

Abstract
A non-interactive zero-knowledge (NIZK) protocol enables a prover to convince a verifier of the truth of a statement

without leaking any other information by sending a single message. The main focus of this work is on exploring
short pairing-based NIZKs for all NP languages based on standard assumptions. In this regime, the seminal work of
Groth, Ostrovsky, and Sahai (J.ACM’12) (GOS-NIZK) is still considered to be the state-of-the-art. Although fairly
efficient, one drawback of GOS-NIZK is that the proof size is multiplicative in the circuit size computing the NP
relation. That is, the proof size grows by O(|C|κ), where C is the circuit for the NP relation and κ is the security
parameter. By now, there have been numerous follow-up works focusing on shortening the proof size of pairing-based
NIZKs, however, thus far, all works come at the cost of relying either on a non-standard knowledge-type assumption
or a non-static q-type assumption. Specifically, improving the proof size of the original GOS-NIZK under the same
standard assumption has remained as an open problem.

Our main result is a construction of a pairing-based NIZK for all of NP whose proof size is additive in |C|, that
is, the proof size only grows by |C|+ poly(κ), based on the decisional linear (DLIN) assumption. Since the DLIN
assumption is the same assumption underlying GOS-NIZK, our NIZK is a strict improvement on their proof size.

As by-products of our main result, we also obtain the following two results: (1) We construct a perfectly zero-
knowledge NIZK (NIPZK) for NP relations computable in NC1 with proof size |w| · poly(κ) where |w| is the witness
length based on the DLIN assumption. This is the first pairing-based NIPZK for a non-trivial class of NP languages
whose proof size is independent of |C| based on a standard assumption. (2) We construct a universally composable
(UC) NIZK for NP relations computable in NC1 in the erasure-free adaptive setting whose proof size is |w| · poly(κ)
from the DLIN assumption. This is an improvement over the recent result of Katsumata, Nishimaki, Yamada, and
Yamakawa (CRYPTO’19), which gave a similar result based on a non-static q-type assumption.

The main building block for all of our NIZKs is a constrained signature scheme with decomposable online-offline
efficiency. This is a property which we newly introduce in this paper and construct from the DLIN assumption. We
believe this construction is of an independent interest.

1 Introduction
1.1 Background
Zero-knowledge proof system [GMR89] is an interactive protocol that allows a prover to convince a verifier about the
validity of a statement without revealing anything beyond the fact that the statement is true. A variant of this, which is
both practically and theoretically important, are non-interactive zero-knowledge (NIZK) proofs1 [BFM88] where the
prover is only required to send one message to the verifier to prove the validity of the statement in question. Not only
have NIZKs shown to be a ubiquitous building block for cryptographic primitives and protocols, but it has also shown to
be a mine of theoretical questions with interesting technical challenges.

1 In the introduction, we do not distinguish between proofs and arguments for simplicity.

1

Unfortunately, it is known that NIZKs for non-trivial languages (i.e., NP) do not exist in the plain model where
there is no trusted setup [GO94]. Therefore, NIZKs for non-trivial languages are typically constructed in the common
reference string (CRS) model where the prover and verifier have access to a CRS generated by a trusted entity. We will
call such NIZKs in the CRS model simply as NIZKs.

The most successful NIZK for all of NP is arguably the pairing-based NIZK of Groth, Ostrovsky, and Sahai
[GOS12] (GOS-NIZK). GOS-NIZKs are based on the standard decisional linear (DLIN) or the subgroup decision
(SD) assumptions. Due to its simplicity and efficiency, pairing-based NIZKs have flourished into a research topic
on its own, and the original GOS-NIZK has been followed by many subsequent works trying to improve on it
through various approaches. For example, many works such as [GS12, JR17, JR14, KW15] aim to make GOS-
NIZK more efficient by limiting the language to very specific pairing induced languages, while other works such as
[Gro10b, Lip12, GGPR13, DFGK14, Gro16] aim to gain efficiency by relying on a much stronger assumption known
as knowledge assumptions (i.e., a type of non-falsifiable [Nao03, GW11] assumption). In fact, all works that achieve any
notion of “better efficiency” compared to GOS-NIZK only succeeds by either restricting the language or by resorting to
use stronger assumptions compared to DLIN or SD.

Similarly with many prior works, the main focus of “efficiency” in our work will be the proof size of the NIZK.
Denoting C as the circuit computing the NP relation, GOS-NIZK requires a proof size as large as O(|C|κ), where κ is
the security parameter. Borrowing terminology from the recent work of Katsumata et al. [KNYY19a, KNYY19b], what
we would like instead is a more compact proof size, that is, a proof size with only an additive overhead |C|+ poly(κ)
rather than a multiplicative overhead. For instance, the above latter approach using knowledge assumptions are known
to achieve pairing-based NIZKs for NP with a significantly short proof size that only depends on the security parameter;
in particular, the proof size does not even depend on the witness size. However, unfortunately, it is known that NIZKs
with such an unusually short proof (i.e., proof size poly(κ) · (|x| + |w|)o(1) where x is the statement and w is the
witness) inevitably require strong non-falsifiable assumptions [GW11]. The most compact NIZK based on any falsifiable
assumption is due to [Gen09, GGI+15] which achieves proof size |w| + poly(κ). However, since it uses (circular
secure) fully homomorphic encryption (FHE) its instantiation is solely limited to lattice-based assumptions. Other
than lattice-based constructions, Groth [Gro10a] proposed a NIZK based on the security of Naccache-Stern public key
encryption scheme [NS98] with a proof size |C| · polylog(κ), which is asymptotically shorter than that of GOS-NIZK.
Very recently, Katsumata et al. [KNYY19b] provided the first compact NIZK based on any falsifiable pairing-based
assumption achieving a proof size of |C|+ poly(κ). Their construction relies on a new primitive called homomorphic
equivocal commitment (HEC), and they instantiate HEC using a non-static Diffie-Hellman type assumption recently
introduced in [KNYY19a]. Unfortunately, the construction of HEC seems to be tailored to their specific non-static
assumption, and it seems quite difficult to construct HEC based on a clean static assumption such as DLIN.

In summary, despite the considerable work that has been put into paring-based NIZKs, improving the proof size of
GOS-NIZK while simultaneously maintaining the language and assumption has shown to be elusive. Therefore, in this
work, the main question we ask is:

Can we construct compact NIZKs for all of NP based on standard assumptions over a pairing group?

1.2 Our Result
In this work, we present the first compact pairing-based NIZK for all of NP with proof size |C|+ poly(κ) based on
the DLIN assumption.2 Along the way, we also obtain several interesting compact variants of our NIZK such as
non-interactive perfect zero-knowledge (NIPZK) and universally composable NIZK (UC-NIZK) [GOS12] from the
DLIN assumption. We provide a list of NIZKs which we achieve below and refer to Table 1 and 2 for comparison
between prior works. We note that the table only includes NIZKs for NP based on falsifiable assumptions.

1. We construct a compact NIZK for all of NP languages with proof size |C| + poly(κ) based on the DLIN
assumption. This is the first NIZK to achieve a proof size shorter than that of GOS-NIZK under the same
assumption required by GOS-NIZK. Moreover, if we assume the NP relation to be computable in NC1, the proof
size can be made as small as |w| + poly(κ), which matches the state-of-the-art of compact NIZKs from any

2 More precisely, we can base it on the weaker MDDH assumption, which includes the DLIN and symmetric external Diffie-Hellman (SXDH)
assumptions as a special case.

2

primitive based on (possibly non-pairing) falsifiable assumptions, e.g., fully-homomorphic encryption [GGI+15].
Our NIZK can also be seen as an improvement of the recently proposed compact NIZK of Katsumata et al.
[KNYY19b] in the following two aspects. First, our construction relies on a standard assumption, whereas theirs
rely on a non-static q-type assumption. Second, our construction is fairly efficient since we only use pairing group
operations in a black-box manner, whereas their construction is highly inefficient since they require pairing group
operations in a non-black-box way.

2. We construct NIPZKs for NP languages that are computable in NC1 with proof size |w| · poly(κ) from the DLIN
assumption. This is the first pairing-based perfectly zero-knowledge NIZK for a non-trivial class of NP languages
whose proof size is independent of |C| based on a standard assumption.

3. We construct UC-NIZKs for NP languages that are computable in NC1 with proof size |w| · poly(κ) from the
DLIN assumption. This is an improvement over the recent result of Katsumata et al. [KNYY19b], which gave a
similar result based on a non-static q-type assumption.

The main building block for all of our NIZKs is a constrained signature scheme with decomposable online-offline
efficiency. This is a property which we newly introduce in this paper and construct from the DLIN assumption. We
believe this construction is of independent interest.

Table 1: Comparison of CRS-NIZKs for NP.
Reference Soundness ZK CRS size Proof size Assumption Misc

[FLS99] stat. comp. poly(κ, |C|) poly(κ, |C|) trapdoor permutation†

[Gro10a] stat. comp. |C| · ktpm · polylog(κ) + poly(κ) |C| · ktpm · polylog(κ) + poly(κ) trapdoor permutation†
[Gro10a] stat. comp. |C| · polylog(κ) + poly(κ) |C| · polylog(κ) + poly(κ) Naccache-Stern PKE
[GOS12] perf. comp. poly(κ) O(|C|κ) DLIN/SD
[GOS12] comp. perf. poly(κ) O(|C|κ) DLIN/SD
[CHK07, Abu13] stat. comp. poly(κ, |C|) poly(κ, |C|) CDH pairing group
[GGI+15] stat. comp. poly(κ) |w|+ poly(κ) FHE and CRS-NIZK circular security
[KNYY19b] comp. comp. poly(κ, |C|) |C|+ poly(κ) (n,m)-CDHER
[KNYY19b] comp. comp. poly(κ, |C|, 2d) |w|+ poly(κ) (n,m)-CDHER limited to NC1 relation

[KNYY19b] stat./comp. comp. poly(κ, |x|, |w|, d) poly(κ, |x|, |w|, d) LFE and CRS-NIZK prover-efficient,
implied by sub-exp. LWE

[KNYY19b] stat./comp. comp. (|x|+ |w|) · poly(κ, d) Õ(|x|+ |w|) · poly(κ, d) LFE and CRS-NIZK‡ prover-efficient,
implied by adaptive LWE

Section 5.1 comp. comp. poly(κ, |C|) |C|+ poly(κ) DLIN
Section 5.1 comp. comp. poly(κ, |C|, 2d) |w|+ poly(κ) DLIN limited to NC1 relation
Section 5.2 comp. perf. poly(κ, |C|, 2d) |w| · poly(κ) DLIN limited to NC1 relation

In column “Soundness” (resp. “ZK”), perf., stat., and comp. means perfect, statistical, and computational soundness (resp. zero-knowledge), respectively. In column “CRS size” and
“Proof size”, κ is the security parameter, |x|, |w| is the statement and witness size, |C| and d are the size and depth of the circuit computing the NP relation, and ktpm is the length of the
domain of the trapdoor permutation. In column “Assumption”, (n,m)-CDHER stands for the (parameterized) computational DH exponent and ratio assumption, LFE stands for laconic
functional evaluation, and sub-exp. LWE stands for sub-exponentially secure learning with errors (LWE).
† If the domain of the permutation is not {0, 1}n, we further assume they are doubly enhanced [Gol04].
‡We additionally require a mild assumption that the prover run time is linear in the size of the circuit computing the NP relation.

1.3 Technical Overview
1.3.1 Reviewing Previous Results

Here, we review definitions and previous results that are required for explaining our approach. We remark that we explain
previous works [KW18, KNYY19a, KNYY19b] in terms of constrained signatures (CS) instead of homomorphic
signatures, even though they are based on the latter primitive. This is because these primitives are actually equivalent as
shown by Tsabary [Tsa17] and explaining in this way allows us to ignore small differences between our approach and
previous ones that stem from the syntactic difference between them.

DP-NIZK and CS:We first explain the notion of designated prover NIZK (DP-NIZK), which is a relaxed notion of
the standard notion of NIZK. In order to differentiate them, we call the latter CRS-NIZK in the following. In DP-NIZK,

3

Table 2: Comparison of UC-NIZKs for NP.

Reference Security
(erasure-free) CRS size Proof size Assumption Misc

[GOS12] adaptive (X) poly(κ) O(|C|κ) DLIN/SD
[GGI+15] adaptive (7) poly(κ) |w|+ poly(κ) FHE and UC-NIZK circular security
[CsW19] adaptive (X) poly(κ, d) |w| · poly(κ, d) HTDF and UC-NIZK
[KNYY19b] adaptive (X) poly(κ, |C|, 2d) |w| · poly(κ) (n,m)-CDHER and UC-NIZK limited to NC1 relation
Section 6 adaptive (X) poly(κ, |C|, 2d) |w| · poly(κ) DLIN limited to NC1 relation

In column “CRS size” and “Proof size”, κ is the security parameter, |w| is the witness size, |C| and d are the size and depth of circuit
computing theNP relation. In column “Assumption”, DLIN stands for the decisional linear assumption, SD stands for the subgroup decision
assumption, HTDF stands for homomorphic trapdoor functions, and (n,m)-CDHER stands for the (parameterized) computational DH
exponent and ratio assumption.

only a prover who possesses a secret proving key can generate a proof for an NP statement, and the verification can be
done publicly by any entity. Here, the secret proving key is generated along with the CRS by a trusted entity. We require
that soundness holds against a malicious prover who possesses the secret proving key and that zero-knowledge holds
against a malicious verifier who only accesses the CRS and the proofs, but not the secret proving key. We then explain
the notion of CS, which is a slightly simplified version of attribute-based signature [MPR11]. CS is an advanced form
of signature where a signing key is associated with some circuit C : {0, 1}` → {0, 1} and using the signing key, one
can sign on a message x if C(x) = 1. The signature can be verified by a public verification key. As for security, we
require unforgeability and privacy. The former requires that one cannot forge a valid signature on a message x if it only
has a signing key CS.skC for C such that C(x) = 0. The latter requires that an honestly generated signature reveals
nothing about the circuit C associated with the signing key that is used for generating the signature. In addition to the
above security notions, we also require CS to have compact signatures in the sense that the size of the signatures is a
fixed polynomial that is independent of the size of the circuit C and the length of the message x.

DP-NIZK from CS [KW18]: We then explain the generic construction of DP-NIZK from CS shown by Kim and
Wu [KW18]. This will serve as a good starting point for us because their conversion allows us to convert a compact
CS into a compact DP-NIZK as we will see. Let us fix an NP language L that is verified by a circuit R that takes
as input a statement x and a witness w and outputs R(x,w) ∈ {0, 1}. In their construction, they set the CRS of
the DP-NIZK to be a verification key of the CS. Furthermore, they set the secret proving key for the DP-NIZK to
be a secret key K of an SKE and a CS signing key CS.skCK for circuit CK . Here, CK is a circuit that takes as
input an SKE ciphertext SKE.ct and a statement x and outputs 1 if R(x, SKE.Dec(K,SKE.ct)) = 1 and 0 otherwise.
To generate a proof for an NP statement x corresponding to a witness w, the prover encrypts the witness w by the
SKE to obtain SKE.ct = SKE.Enc(K,w) and then signs on the message (x, SKE.ct) using the CS signing key for
CK . By the correctness of the SKE, we have CK(x, SKE.ct) = R(x,w) = 1, which implies the completeness of the
DP-NIZK. The soundness of the protocol follows from the unforgeability of the underlying CS. This is because any
valid proof for an invalid statement x∗ 6∈ L is a valid signature on (x∗,SKE.ct∗) for some SKE.ct∗, for which we have
CK(x∗,SKE.ct∗) = R(x∗,SKE.Dec(K,SKE.ct∗)) = 0. The zero-knowledge property of the protocol follows from
the following intuition. From the privacy of the CS, information of K hardwired into the circuit CK is not leaked
from the CS signature. We, therefore, can use the security of SKE to conclude that SKE.ct leaks no information of the
witness w.

We now focus on the efficiency of the resultant DP-NIZK. If we instantiate the DP-NIZK with an SKE with additive
ciphertext overhead and a CS with compact signatures, this gives us a compact DP-NIZK. Note that an SKE scheme
with additive ciphertext overhead can be realized from very mild assumptions such as CDH. Therefore, their result
suggests that it suffices to construct compact CS in order to construct a compact DP-NIZK.

1.3.2 Overview of Our Approach

Here, we provide an overview of our approach. In high level, we follow the same approach as Katsumata et
al. [KNYY19a, KNYY19b], who constructed a compact CRS-NIZK from a non-static assumption over bilinear maps.
Specifically, we will first construct a CS, then convert it into a DP-NIZK, and then modify it into a CRS-NIZK. However,

4

our approach significantly differs from theirs in low level details. We will provide a comparison with their work after
describing our approach in the following.

Compact DP-NIZK from a standard assumption: We set the construction of compact DP-NIZK from a static
assumption as an intermediate goal. Thanks to the Kim-Wu conversion, the problem is reduced to the construction
of a CS scheme with compact signatures from a static assumption. To achieve the goal, we follow the folklore
conversion that converts an attribute-based encryption (ABE) into a CS that is somewhat reminiscent of the Naor
conversion [BF01] (See e.g., [OT11]). In order to obtain the CS scheme with the desired properties, it turns out that
we need to construct an adaptively secure ABE scheme whose ciphertext size is bounded by some fixed polynomial.
Although there is no ABE scheme with the required properties from a static assumption in the literature, we are
able to construct it by modifying the very recent ABE scheme proposed by Kowalczyk and Wee [KW19], who
resolved the long-standing open problem of constructing adaptively secure ABE for NC1 whose ciphertext length
is independent of the circuit size from a static assumption by cleverly adapting the piecewise guessing frameworks
[FKPR14, FJP15, HJO+16, JW16, JKK+17, KW19] to the setting of ABE. We modify their scheme so that it has even
shorter ciphertexts by aggregating the ciphertext components and adding extra components to the secret keys as was
done in previous works on ABE with short ciphertexts [ALdP11, HW13]. The security proof for the scheme is again
similar to that of Kowalczyk and Wee, where we decompose the secret keys into smaller pieces and gradually randomize
them via carefully chosen sequence of hybrid games. The additional challenge for the proof in our setting is to deal with
the extra components in the secret keys. We handle this by observing that the originally proof strategy by Kowalczyk
and Wee for randomizing the secret keys works even with these extra components. From this ABE scheme, we can
obtain a CS scheme with the desired properties. Furthermore, by applying the Kim-Wu conversion to the CS scheme,
we obtain a new compact DP-NIZK from a static assumption. Although this is not our main goal, we note that this
improves the compact DP-NIZK scheme from a non-static assumption by Katsumata et al. [KNYY19a].

Removing Secret Proving Key: We then try to remove the necessity of the secret proving key from the DP-NIZK
described above to obtain a CRS-NIZK. Toward this goal, our first idea is to make the signing key of the CS scheme
public by including it into the CRS. When we do so, we stop hardwiring the secret keyK of the SKE into the circuit
associated with the signing key and change the circuit so that it takes K as an input. The obvious reason for this is
because we would like to use the security of SKE at some later point. More concretely, we include CS.skC into the CRS,
where C is a circuit that takes as input the secret keyK of SKE, a statement x, and a ciphertext SKE.ct of SKE and
outputs R(x, SKE.Dec(K,SKE.ct)). When generating a proof, the prover chooses a randomK on its own, computes
SKE.ct $← SKE.Enc(K,w), and signs on the message (x, SKE.ct,K) by using CS.skC to obtain a signature CS.σ,
which is possible because we have C(x, SKE.ct,K) = 1 by the definition of C. The problem with this approach is that
we do not know what components to publish as the final proof. More specifically, we run into the following deadlock: If
we includeK into the proof, then the scheme is not zero-knowledge anymore because one can decrypt SKE.ct by using
K to retrieve w. On the other hand, if we do not includeK into the proof, we can no longer verify the validity of CS.σ
sinceK, which is now a part of the message, is required to verify the signature.

Introducing Non-Compact NIZK: We resolve the above issue by using a CRS-NIZK that is not necessarily compact
(non-compact NIZK in the following) and change the scheme so that it proves the validity of the CS signature
without revealing K nor the signature. In more detail, the prover generates K,SKE.ct $← SKE.Enc(K,w),CS.σ $←
CS.Sign(CS.skC , (x, SKE.ct,K)) as above. It then proves that there exists (K,CS.σ) such that CS.σ is a valid signature
on a message (x, SKE.ct,K) under the verification key CS.vk by using the non-compact NIZK. It then outputs
(SKE.ct,CS.σ, π) as the final proof, where π is the non-compact proof for the above statement.

We then explain that the scheme satisfies soundness and zero-knowledge. To see this, we first observe that to break
the soundness of the resultant NIZK scheme, it is necessary to break the soundness of the underlying non-compact NIZK
or generate a valid CS signature on (x∗,SKE.ct∗,K∗) such that x∗ 6∈ L. By our assumption, the former is impossible.
Furthermore, the latter is also impossible, since we have C(x∗,SKE.ct∗,K∗) = 0 for any choice ofK∗ and SKE.ct∗
and thus it implies a forgery against the CS scheme. The zero-knowledge property of the scheme holds since the proof
consists of the SKE ciphertext and the proof of the non-compact NIZK. Intuitively, since the latter does not leak the
information aboutK, we can use the security of SKE to conclude that w is hidden from the adversary.

While this gives a secure construction, it is unclear whether this is a step forward at this point since we merely
constructed a NIZK from a CS by further assuming a NIZK, which seems to be a vacuous statement. Furthermore,
the construction we described so far is not compact since the relation proven by the underlying non-compact NIZK

5

is verified by a circuit whose size depends on |C|. To see this, we recall that the verification circuit for the relation
proven by the non-compact NIZK takes as input the statement x′ = (CS.vk, x,SKE.ct) and witness w′ = (K,CS.σ)
and outputs 1 if and only if CS.σ is a valid signature on (x, SKE.ct,K). This circuit is not compact, since it takes as
input x, which can be as large as |C| in general and CS.vk, which is much larger than |C| in our specific CS scheme.

Exploiting the Special Efficiency Property of the CS: We observe that what should be kept secret in the above
construction areK and CS.σ,3 and (x, SKE.ct) can be made public without losing the zero-knowledge property. To get
a clearer understanding of the problem, we slightly generalize and simplify the problem as follows. What we would
like to do is to give a compact proof that we have a valid signature CS.σ on a message (y, z) for public y and secret z
without revealing z nor CS.σ using a non-compact NIZK. Here, y is not compact while z and CS.σ are compact. In our
context, y = (x, SKE.ct) and z = K. In this generalized setting, the above approach is equivalent to proving that CS.σ
is a valid signature on (y, z) under the verification key CS.vk. This relation is verified by a circuit that directly takes
(CS.vk, (y, z),CS.σ) as inputs. This approach does not work simply because the input is not compact.

Our first observation is that if we were somehow able to compress the verification circuit size of the relation proven
by the non-compact NIZK to be a fixed polynomial without changing the functionality, then the resultant NIZK scheme
will have compact proofs. Fortunately, our CS scheme has a nice property that brings us closer to this goal. Namely, in
the scheme, the verifier can aggregate the verification key CS.vk depending on a messagem to obtain an aggregated
verification key CS.vkm, which is of fixed polynomial size. Then, a signature CS.σ can be verified by using only the
aggregated verification key CS.vkm. In particular, the verification circuit no longer takes m as an input. Typically,
the aggregation of the verification key is done offline, where one is allowed to perform heavy computation, and the
actual verification step is done online, where the computation is very fast even ifm is a very long string. We call this
property online-offline efficiency. We note that our CS scheme inherits this property from the underlying ABE scheme,
where secret keys can be aggregated depending on an attribute in offline phase so that the decryption of a ciphertext
corresponding to the same attribute in the online phase is very fast.

A natural approach to compress the verification circuit (for the non-compact NIZK) would be to replace the inputs
CS.vk and (y, z) with its aggregated version CS.vk(y,z). In particular, we replace the verification circuit which takes as
input CS.vk, (y, z), and CS.σ and verifies the signature with the corresponding online verification circuit which takes
CS.vk(y,z) and CS.σ as inputs. This circuit is compact thanks to the online-offline efficiency of the CS. However, since
CS.vk(y,z) cannot be publicly computed, we would have to move the term CS.vk(y,z) into the witness. Furthermore, we
additionally have to prove that CS.vk(y,z) is honestly computed from CS.vk and (y, z) using the non-compact NIZK.
The problem is that the resulting proof is not compact since this is a statement that involves non-compact terms. Put
differently, even though we can compactly prove that we have a signature that passes the online verification under a
compressed verification key, we cannot compactly prove that we honestly execute the offline phase to compute the
compressed verification key.

As we saw above, the idea of compressing CS.vk depending on the entire string (y, z) does not work. Our idea is to
“partially” compress CS.vk depending on the public part y and then use this compressed version of the verification key
to construct the verification circuit for the non-compact NIZK. To enable the idea, let us assume that we can compress
CS.vk with respect to a string y and obtain CS.vky . Then, further assume that we can compress CS.vky into CS.vk(y,z)
using z, so that the verification of a message (y, z) is possible using CS.vk(y,z). Furthermore, we require that the
computational cost of compressing CS.vky into CS.vk(y,z) depends only on |z|, not on |y|. Therefore if z is compact,
we can compute CS.vk(y,z) from CS.vky and z by a compact circuit. Assuming this property, we can solve the above
generalized problem as follows: We first compress CS.vk depending on y to obtain CS.vky. We then prove that there
exists CS.σ and z such that CS.σ is a valid signature under CS.vk(y,z), where CS.vk(y,z) is obtained by compressing
CS.vky depending on the string z. This statement can be proven compactly, since both verification under the verification
key CS.vk(y,z) and the compression of CS.vky into CS.vk(y,z) can be done compactly. Furthermore, unlike the previous
attempt, we do not have to prove that we honestly executed the offline computation. Namely, we do not have to prove
the consistency between CS.vk, y, and CS.vky, since CS.vky is publicly computable from CS.vk and y. Therefore, it
suffices to show that our CS scheme has the structure that allows one to compress the verification key in two steps. We
name this property online-offline decomposability and show that our construction indeed has the property.4

3Note that CS.σ should be kept secret since it reveals partial information ofK.
4Actually, the definition of online-offline decomposability is slightly different from the one in the main body, but the latter implies the former.

6

1.3.3 Comparison with Katsumata et al. [KNYY19b]

Here, we compare our approach with the one by Katsumata et al. [KNYY19a, KNYY19b], who showed a similar result
from a non-static assumption. As we already mentioned, at the highest level, their approach is the same as ours in that
they first construct a CS [KNYY19a], then convert it into a DP-NIZK, and then modify it into a CRS-NIZK [KNYY19b].
However, the way they obtained the CS, and the way they modify their DP-NIZK into a CRS-NIZK is significantly
different from ours. We elaborate on this below.

Compact CS Scheme by Katsumata et al. [KNYY19a]: Similarly to us, their approach is to construct an ABE scheme
and then convert it into a CS scheme. However, the requirements for the ABE are different from ours. For the ABE
scheme, they require short secret keys, whereas we require short ciphertexts. Furthermore, they require the ABE scheme
to be secure following a so-called “single-shot” reduction, where the reduction algorithm runs the adversary only once
and perfectly simulates the view of the game. Roughly, this is equivalent to saying that the proof cannot go through
hybrid arguments. Therefore, their approach does not seem to be promising when we try to construct a compact CS
scheme from a static assumption. Notably, their single-shot reduction requirement excludes the dual system encryption
methodology [Wat09], which is a powerful tool for proving the security of an ABE scheme from static assumptions.
On the other hand, we manage to employ the dual system encryption methodology to obtain an ABE scheme with the
desired properties from static assumptions.

From DP-NIZK to CRS-NIZK in Katsumata et al. [KNYY19b]: They construct a DP-NIZK (as an intermediate goal)
by applying the Kim-Wu conversion on their CS scheme. They then modify their DP-NIZK to a CRS-NIZK scheme by
a non-generic technique. Here, we review their approach and compare it with ours. Recall that, in general, a DP-NIZK
constructed from a CS via the Kim-Wu conversion, the CRS consists of the verification key of the CS CS.vk, and the
secret proving key consists of the secret key of an SKEK and a signing key of the CS CS.skCK . Their observation was
that they can divide the CS verification key CS.vk into two components CS.vk := (CS.vk0,CSvk1) such that CS.vk1 is
very short and anyone can compute CS.vk1 from CS.skCK and K. Note that as a stand-alone CS scheme, the secret
key CS.skCK is computed using the master key of the CS only after CS.vk = (vk0, vk1) is defined. What they observe
is that the other direction of the computation is possible using the specific structure of their CS scheme. In order
to construct a CRS-NIZK using this special structure, they remove CS.vk1 from the CRS. Then they let the prover
pickK and CS.skCK on their own and let it compute CS.vk1. At this point, the prover can generate a proof as in the
original DP-NIZK. In order to prevent the adversary to maliciously chooseK, CS.skCK , and CS.vk1, they let the prover
prove consistency among the components using a non-compact NIZK and outputs the proof along with CS.vk1. The
additional consistency proof by the non-compact NIZK as well as CS.vk1 appended to the final proof does not harm the
compactness of the resulting NIZK, since all parameters involved are compact.

We note that their approach is not applicable to our specific CS scheme. The reason is that our signing key for the
CS is as large as the circuit size and we cannot prove the consistency betweenK, CS.skCK , and CS.vk1 compactly no
matter how we divide the CS verification key. We, therefore, take a different path from theirs and this entails several
challenges that are not present in their approach.

1.4 Related Work
The first NIZK for NP was given by [FLS99] based on the existence of trapdoor permutations (whose arguments were
later refined by several works [BY96, Gol04]). The next generation of NIZK following a completely different set of
approaches were provided by Groth, Ostrovsky, and Sahai [GOS12] (GOS-NIZK) based on pairings. Due to its simplicity
and efficiency, pairing-based NIZKs have flourished into a research topic on its own, and the original GOS-NIZK has
been followed by many subsequent works [Gro10a, Gro10b, Lip12, GS12, GGPR13]. More than roughly a decade
later, a new type of NIZKs based on indistinguishable obfuscation (iO) were proposed [SW14, BP15, BPW16, CL18].
Finally, very recently, a different path for designing NIZKs based on correlation intractable hash functions (CIH)
[KRR17, CCRR18, CCH+19] have gained much attention and has finally lead to the closing of a long-standing problem
of constructing NIZKs based on lattice-based assumptions [PS19].

7

2 Definitions
2.1 Preliminaries on Bilinear Maps
A bilinear group generator GGen takes as input 1κ and outputs a group descriptionG = (p,G1, G2, GT , e, g1, g2), where
p is a prime such that p > 22κ, G1, G2, and GT are cyclic groups of order q, e : G1 ×G2 → GT is a non-degenerate
bilinear map, and g1 and g2 are generators of G1 and G2, respectively. We require that the group operations in G1, G2,
and GT as well as the bilinear map e can be efficiently computed. We employ the implicit representation of group
elements: for a matrix A over Zq, we define [A]1 := gA

1 , [A]2 := gA
2 , [A]T := gA

T , where exponentiation is carried
out component-wise.

Definition 2.1 (MDDHk assumption [EHK+13]). Let GGen be a group generator. We say that the matrix DDH
(MDDHk) assumption holds on G1 with respect to GGen, if for all PPT adversaries A, we have

Advmddh
A (λ) := |Pr [A(G, [M]1, [Ms]1)→ 1]− Pr [A(G, [M]1, [u]1)→ 1]|

is negligible, where the probability is taken over the choice of G $← GGen(1κ), M $← Z(k+1)×k
p , s $← Zkp , and

u $← Zk+1
p . We can similarly define MDDHk assumption on G2.

In fact, the above assumption is called MDDHk assumption for uniform distribution by Escala et al. [EHK+13]
since M is chosen uniformly at random. As shown by them, MDDHk assumptions for uniform distribution is weaker
than MDDHk assumption for all other distributions and in particular is implied by the k-LIN assumption.

2.2 Secret Key Encryption
Let {Mκ}κ∈N be a family of message space. In the following, we occasionally drop the subscript and simply writeM
when the meaning is clear. The following definition is taken verbatim from [KNYY19a].

Definition 2.2 (Symmetric Key Encryption). A symmetric key encryption (SKE) scheme ΠSKE for message spaceM
consists of PPT algorithms (SKE.KeyGen,SKE.Enc,SKE.Dec).

SKE.KeyGen(1κ)→ KSKE: The key generation algorithm takes as input the security parameter 1κ and outputs a secret
key KSKE.

SKE.Enc(KSKE,M)→ ct: The encryption algorithm takes as input a secret key KSKE and a message M ∈ M and
outputs a ciphertext ct.

SKE.Dec(KSKE, ct)→ M or ⊥: The decryption algorithm takes as input a secret key KSKE and a ciphertext ct and
outputs a message M ∈M or a special symbol ⊥ indicating decryption failure.

Correctness. For all κ ∈ N, M ∈M, and KSKE ∈ SKE.KeyGen(1κ), we have

SKE.Dec(KSKE,SKE.Enc(KSKE,M)) = M.

CPA-Security. For all κ ∈ N and all PPT adversaries A, if we run KSKE
$← SKE.KeyGen(1κ), then we have∣∣∣Pr[AO0(KSKE,·,·)(1κ) = 1]− Pr[AO1(KSKE,·,·)(1κ) = 1]

∣∣∣ = negl(κ),

where Ob(KSKE,M0,M1) outputs SKE.Enc(KSKE,Mb) for b ∈ {0, 1}.

For our construction of NIZKs in the following sections, we require an SKE scheme whose ciphertext overhead (i.e.,
|ct| − |m|) is poly(κ) and whose decryption algorithm can be represented as a circuit in NC1. As noted in [KNYY19a],
such an SKE exists under the CDH assumption over pairing-free groups.

8

2.3 One-Time Signature
Let {Mκ}κ∈N be a family of message space. In the following, we occasionally drop the subscript and simply writeM
when the meaning is clear.

Definition 2.3 (One-time Signature). A one-time signature (OTS) scheme ΠOTS for message spaceM consists of PPT
algorithms (OTS.KeyGen,OTS.Sign,OTS.Verify).

OTS.KeyGen(1κ)→ (vkOTS, sigkOTS): The key generation algorithm takes as input the security parameter 1κ and
outputs a verification key vkOTS and a signing key sigkOTS.

OTS.Sign(sigkOTS,M)→ σ: The signing algorithm takes as input a signing key sigkOTS and a message M ∈M and
outputs a signature σ.

OTS.Verify(vkOTS,M, σ)→ > or ⊥: The decryption algorithm takes as input a verification key vkOTS, a message M
and a signature σ and outputs > to indicate acceptance of the signature and ⊥ otherwise.

Correctness. For all κ ∈ N, M ∈ M, (vkOTS, sigkOTS) ∈ OTS.KeyGen(1κ), and σ ∈ OTS.Sign(sigkOTS,M), we
have OTS.Verify(vkOTS,M, σ) = >.

Strong One-Time Unforgeability. For all κ ∈ N and all PPT adversaries A = (A1,A2),we have

Pr

 OTS.Verify(vkOTS,M∗, σ∗) = >
(M, σ) 6= (M∗, σ∗)

∣∣∣∣∣∣∣∣∣
(vkOTS, sigkOTS) $← OTS.KeyGen(1κ)

(M, st) $← A1(vkOTS),
σ

$← OTS.Sign(sigkOTS,M)
(M∗, σ∗) $← A2(st, σ)

 ≤ negl(κ).

2.4 Non-Interactive Zero-Knowledge Arguments
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation. For (x,w) ∈ R, we call x as the
statement and w as the witness. Let L be the corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}. Below, we
define non-interactive zero-knowledge arguments for NP languages.5

Definition 2.4 (NIZK Arguments). A non-interactive zero-knowledge (NIZK) argument ΠNIZK for the relation R
consists of PPT algorithms (Setup,Prove,Verify).

Setup(1κ)→ crs: The setup algorithm takes as input the security parameter 1κ and outputs a common reference string
crs.

Prove(crs, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x, and a
witness w and outputs a proof π.

Verify(crs, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common reference string, a statement x, and a
proof π and outputs > to indicate acceptance of the proof and ⊥ otherwise.

We consider the following requirements for a NIZK argument ΠNIZK, where the probabilities are taken over the random
choice of the algorithms.

Completeness. For all pairs (x,w) ∈ R, if we run crs $← Setup(1κ), then we have

Pr[π $← Prove(crs, x, w) : Verify(crs, x, π) = >] = 1.

Adaptive Soundness. For all PPT adversaries A, if we run crs $← Setup(1κ), then we have

5 We say it is a non-interactive zero-knowledge proofs when the soundness property holds for even unbounded adversaries. In this paper, we will
only be interested in computationally bounded adversaries.

9

Pr[(x, π) $← A(1κ, crs) : x 6∈ L ∧ Verify(crs, x, π) = >] = negl(κ).

Non-Adaptive Soundness. We also consider the slightly weaker variant of adaptive soundness above. For all PPT
adversaries A and for all x 6∈ L, if we run crs $← Setup(1κ), then we have

Pr[π $← A(1κ, crs, x) : Verify(crs, x, π) = >] = negl(κ).

Zero-Knowledge. For all adversariesA, there exists a PPT simulatorS = (S1,S2) such that if we run crs $← Setup(1κ)
and (crs, τ̄) $← S1(1κ), then we have∣∣∣Pr[AO0(crs,·,·)(1κ, crs) = 1]− Pr[AO1(c̄rs,τ̄ ,·,·)(1κ, crs) = 1]

∣∣∣ = negl(κ),

whereO0(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and⊥ otherwise, andO1(crs, τ̄ , x, w) outputs S2(crs, τ̄ , x)
if (x,w) ∈ R and ⊥ otherwise. We say it is computational (resp. statistical) zero-knowledge if the adversary is
computationally bounded (resp. unbounded). Moreover, we further say it is perfect zero-knowledge if the above r.h.s.
equals 0 for computationally unbounded adversaries.

We also define a stronger notion of soundness called extractability following [KNYY19b].

Definition 2.5 (Extractability). An NIZK argument is said to be extractable if the following is satisfied:
Extractability. There is a deterministic algorithm Extract (called extractor) such that for all PPT adversary A, we
have

Pr
[

Verify(crs, x, π) = >
(x,w) /∈ R

∣∣∣∣∣ crs $← Setup(1κ), (x, π) $← A(crs),
w

$← Extract(rSetup, π)

]
≤ negl(κ).

where rSetup is the randomness used in Setup to generate crs.

We can convert any adaptively sound NIZK into an extractable one additionally assuming the existence of PKE
[KNYY19b].

Lemma 2.6. If there exist an adaptively sound NIZK for all of NP and a CPA-secure PKE scheme, then there exists an
extractable NIZK for all of NP.

2.5 Key-Policy Attribute-Based Encryption
Here, we define key-policy attribute-based encryption (KP-ABE) for monotone Boolean formulae.

Definition 2.7 (Attribute-Based Encryption). A key-policy attribute-based encryption (KP-ABE) scheme with at-
tribute space {0, 1}n for family of Boolean formulae F = {f : {0, 1}n → {0, 1}} consists of PPT algorithms
(Setup,KeyGen,Enc,Dec).

Setup(1κ, 1n)→ (mpk,msk): The setup algorithm on input the security parameter 1λ and the input length 1n, outputs
a master secret key msk and a master public key mpk.

KeyGen(msk, f)→ skf : The key generation algorithm on input a master secret key msk and a monotone Boolean
formula f ∈ F , outputs a secret key skf .

Enc(mpk, x,M)→ ct: The encryption algorithm on input the master public key mpk, an attribute x ∈ {0, 1}n, and a
messageM and outputs a ciphertext ctx.

Dec(mpk, skf , ctx)→M or ⊥: The decryption algorithm on input the verification key mpk, a secret key skf , and a
ciphertext ctx and outputs either messageM or ⊥ (indicating the ciphertext is valid).

10

A KP-ABE scheme must satisfy the following requirements.

Correctness. For all κ ∈ N, n = n(κ) ∈ N, (mpk,msk) $← Setup(1κ, 1n), x ∈ {0, 1}n, f ∈ F such that f(x) = 1,
messageM , and skf

$← KeyGen(msk, f), we have

Pr[Dec(mpk, skf ,Enc(mpk, x,M)) = M] = 1.

Adaptive Security. We define (adaptive) security of ABE. The security notion is defined by the following game
between a challenger and an adversary A.

Setup: The challenger runs (mpkmsk) $← Setup(1κ, 1n) and gives mpk to A. It also prepares an empty list Q.

Key Queries: A can adaptively make key queries unbounded polynomially many times throughout the game. When A
queries f ∈ F , the challenger runs skf

$← KeyGen(msk, f) and returns skf to A. Finally, the challenger updates
Q ← Q∪ {f}.

Challenge Phase: At some point, A specifies its target attribute x∗ and messages (M0,M1) it would like to be
challenged on. Then, the challenger flips a random coin coin $← {0, 1}, encrypt the corresponding message
ct $← Enc(mpk, x,Mcoin), and returns ct to A.

Guess: Eventually, A outputs coin′ as its guess for coin. We say A wins if coin′ = coin. Furthermore, we say that A is
admissible if f(x∗) = 0 holds for all f ∈ Q at the end of the game.

We say the ABE scheme is adaptively secure if the winning probability for all admissible PPT adversaries A in the
above game is negl(κ), where the probability is taken over the randomness of all algorithms.

2.6 NC1 Circuits and Monotone Formulae
Here, we define Monotone Boolean formula following Kowalczyk and Wee [KW19].
Monotone Boolean formula. A monotone Boolean formula f : {0, 1}n → {0, 1} is specified by a directed acyclic
graph (DAG) with three kinds of nodes: input gate nodes, gate nodes, and a single output node. Input nodes have
in-degree 0 and out-degree 1, AND/OR nodes have in-degree (fan-in) 2 and out-degree (fan-out) 1, and the output node
has in-degree 1 and out-degree 0. We number the edges (wires) 1, 2, . . . ,m, and each gate node is defined by a tuple
(g, ag, bg, cg) where g : {0, 1}2 → {0, 1} is either AND or OR, ag and bg are the incoming wires, cg is the outgoing
wire and ag, bg < cg . The size of a formulam is the number of edges in the underlying DAG and the depth of a formula
d is the length of the longest path from the output node.
NC1 and Boolean formulae. The following lemma summarizes the well-known equivalence between the monotone
formulae and NC1 circuits.

Lemma 2.8. Let d = d(κ), n = n(κ), and s = s(κ) be integers. There exist integer parametersm = m(d, n, s) and
deterministic algorithms EncInp and EncCir with the following properties.

- EncInp(x)→ x̂ ∈ {0, 1}2n, where x ∈ {0, 1}n.

- EncCir(C)→ f , where C : {0, 1}n → {0, 1} is a circuit with depth and size bounded by d and s, respectively
and f is a monotone Boolean formula of sizem with input space being {0, 1}2n.

We have f(x̂) = 1 if and only if C(x) = 1. Furthermore, the running time of EncCir is poly(n, s, 2d). In particular, if
C is a polynomial-sized circuit with logarithmic depth (i.e., if the circuit is in NC1), EncCir runs in polynomial time and
we havem = poly(κ). Furthermore, for x ∈ {0, 1}n, we have

x̂ = x1x̄1x2x̄2 · · ·xnx̄n,

where x̄i is the flip of xi.

11

Sketch of the proof of Lemma 2.8. Since the above lemma is a restate of the well-known fact, we only provide a sketch
of the proof here (See Section 2.1 of [KW19] and Section 2.2 of [GGH+13] for example). We describe the algorithm
EncCir that converts C into an equivalent monotone formula f . Given input C, it first converts C into an equivalent
Boolean formula f ′′, which is not necessarily monotone. This can be done with blowup in size at most 2d. It then
eliminates negation gates inside f ′′ (namely, all gates except for input gates) to obtain equivalent formula f ′ such that
negation gates only appear at the input level. This can be done by repeatedly applying the De Morgan’s rule to the gates
in f ′′ from the output gate to the input gates. Finally, EncCir modifies f ′ to form a monotone formula f by changing the
input gate of f ′ that reads the i-th bit (resp., negation of the i-th bit) of x to be a gate that reads the 2i-th bit (resp.,
2i− 1-th bit) of x̂. It is not difficult to see that f ′(x) = f(x̂) holds for x̂ = EncInp(x).

2.7 Piecewise Guessing Frameworks and Pebbling Games
Here, we review some ideas from piecewise guessing frameworks and pebbling games [FKPR14, FJP15, HJO+16,
JW16, JKK+17, KW19]. These notions have been used to prove adaptive security of complex cryptographic objects that
often involve circuits or graphs such as but not limited to garbled circuits [HJO+16, JW16, JKK+17] and ABE [KW19].

In the following, we follow the formalization by Kowalczyk and Wee [KW19]. We use 〈A,G〉 to denote the output
of an adversary A in an interactive game G, and an adversary wins if the output is 1, so that the winning probability is
denoted by Pr[〈A,G〉 = 1].
PiecewiseGuessingFrameworks. Supposewe have two gamesG0 andG1 whichwewould like to show indistinguishable.
In both games, the adversary A makes some adaptive choices that defines a string z ∈ {0, 1}R. In order to prove
indistinguishability between the games, we introduce a family of hybrid games {Hu}u∈{0,1}R′ where the behavior of
the challenger in game Hu is specified by a string u. We also introduce functions h0, . . . , hL : {0, 1}R → {0, 1}R′ and
games Ĥ`,0(u0, u1) and Ĥ`,1(u0, u1) for any u0, u1 ∈ {0, 1}R

′ , where

Ĥ`,b(u0, u1) is the same as Hub , except that we replace the output with 0 whenever (h`−1(z), h`(z)) 6= (u0, u1).

In this setting, Kowalczyk and Wee showed the following lemma.

Lemma 2.9 (Adaptive security lemma [KW19, Lemma 1]). Fix G0, G1 along with h0, . . . , hL : {0, 1}R → {0, 1}R′

and {Hu}u∈{0,1}R′ such that
∀z∗ ∈ {0, 1}R : Hh0(z∗) = G0, HhL(z∗) = G1.

Suppose there exists an adversary A such that

Pr[〈A,G0〉 = 1]− Pr[〈A,G0〉 = 1] ≥ ε

then there exists ` ∈ [L] and u0, u1 ∈ {0, 1}R
′ such that

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1− 〈A, Ĥ`,1(u0, u1)〉 = 1] ≥ ε

22R′L
.

Pebbling Games. Fix a formula f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n for which f(x) = 0. We are allowed
to place or remove pebbles on nodes and gates in f , subject to the following rules. Formally, we consider the following
rules.

Definition 2.10 (Pebbling Rules).
1. We can place or remove a pebble on any AND gate for which (at least) one input wire comes out of a node with

pebble on it.
2. We can place or remove a pebble on any OR gate for which all of the incoming wires come out of nodes which

have pebbles on them.
3. We can place or remove a pebble on any input node for which xi = 0.

12

The goal of the pebbling game is to end up in a configuration where only the root gate has a pebble, starting from
the configuration where there is no pebble at all on any gate, through a sequence of the pebbling instructions that abide
by the above rules. Since the description size for an intermediate configuration and the number of pebbling instructions
to reach the goal affect the security loss, we want them to be as small as possible. We introduce the following lemma,
which was shown by Kowalczyk and Wee who improves the bound on the description size for a configuration compared
to the similar results shown in [JKK+17].

Lemma 2.11 (Pebbling for NC1 [KW19, Theorem 1]). For every input x ∈ {0, 1}n and any monotone formula f of
depth d and fan-in two for which f(x) = 0, there exists a sequence of L(d) = 8d pebbling instructions such that every
intermediate pebbling configurations can be described using R′(d) = 3d bits. Furthermore, there exists an algorithm
Pebble that takes as input f and x and outputs such a sequence in time poly(2d). In particular, Pebble(f, x) runs in
time poly(κ) when d = O(log κ).

3 KP-ABE with Compact Ciphertexts
In this section, we give the construction of KP-ABE scheme for monotone Boolean formulae with constant-size
ciphertexts by extending the scheme by Kowalczyk and Wee [KW19]. The scheme will be used in the construction of
compact constrained signature scheme in Section 4, which will in turn be used for the construction of our compact
NIZKs in Section 5. Our KP-ABE scheme would be of independent interest, since this is the first KP-ABE scheme for
Boolean formulae with constant-size ciphertexts that is secure under a static assumption (rather than non-static q-type
assumption).

3.1 Preliminaries
First, we review the secret sharing scheme for monotone Boolean formulae used by Kowalczyk and Wee, which is based
on secret sharing schemes in [IK02, VNS+03, JKK+17].

Definition 3.1 (Secret Sharing). A secret sharing scheme consists of two algorithms (share, reconstruct).

share(f, µ): This algorithm takes a (monotone) Boolean formula f : {0, 1}n → {0, 1} and µ ∈ Zp and outputs shares
µ1, . . . , µm̂ ∈ Zp and a function ρ : [m̂]→ {0, 1, . . . , n}. We assume that ρ is deterministically determined from
f .

reconstruct(f, x, {µj}j∈S): This algorithms takes an input x ∈ {0, 1}n for f , f , and a subset of shares {µj}j∈S
where S ⊆ [m̂] and outputs the original value µ.

A secret sharing scheme satisfies the following properties.

Correctness: For all x ∈ {0, 1}n, f : {0, 1}n → {0, 1}, µ ∈ Zp, ({µj}j∈[m̂], ρ)← share(f, µ) such that f(x) = 1,
it holds that reconstruct(f, x, {µj}ρ(j)=0∨xρ(j)=1) = µ.

Security: For all x ∈ {0, 1}n, f : {0, 1}n → {0, 1}, µ, µ′ ∈ Zp such that f(x) = 0, the following distributions are
the same:

{{µj}ρ(j)=0∨xρ(j)=1 | ({µj}j∈[m̂], ρ)← share(f, µ)} ≡ {{µ′j}ρ(j)=0∨xρ(j)=1 | ({µ′j}j∈[m̂], ρ)← share(f, µ′)}

Linearity: The algorithm reconstruct is a linear function of the shares over Zp. That is, there exists ωj ∈ Zp for
j ∈ [m̂] and we can compute µ =

∑
ρ(j)=0∨xρ(j)=1 ωjµj .

We present their secret sharing scheme (share, reconstruct) in Figure 1 as it is. The scheme satisfies Definition 3.1.
As Kowalczyk and Wee observed, it is easy to extend the secret sharing scheme to treat vectors of secrets. That is, for a
vector v ∈ Zkp , we define

share(f,v) := ({vj = (v1,j , . . . , vk,j)}j∈[m̂], ρ) where ({vi,j}j∈[m̂], ρ)← share(f, vi)

13

and

reconstruct(f, x, {vj}ρ(j)=0∨xρ(j)=1) :=
∑

ρ(j)=0∨xρ(j)=1

ωjvj where {ωj}j∈[m̂] is defined as above.

share(f, µ)
Input: A formula f : {0, 1}n → {0, 1} of sizem (that is, the number of edges in f ism) and a secret µ ∈ Zp.

1. For each non-output wire j = 1, . . . ,m− 1, choose a uniformly random µ̂j
$← Zp. For the output wire, set µ̂m := µ.

2. For each outgoing wire j from input node i, add µj := µ̂j to the output set of shares and set ρ(j) := i.
3. For each AND gate g with input wires a, b and output wire c, add µc := µ̂c + µ̂a + µ̂b ∈ Zp to the output set of shares and set
ρ(c) := 0.

4. For each OR gate g with input wires a, b and output wire c, add µca := µ̂c + µ̂a ∈ Zp and µcb := µ̂c + µ̂b ∈ Zp to the output
set of shares and set ρ(ca) := 0 and ρ(cb) := 0.

5. Output ({µj}j∈[m̂], ρ).
reconstruct(f, x, {µj}ρ(j)=0∨xρ(j)=1)
Input: A formula f : {0, 1}n → {0, 1} of sizem, x ∈ {0, 1}n, and {µj}ρ(j)=0∨xρ(j)=1.
From the leaves of the formula to the root, we compute the output wire value µ̂c at each node.

1. Given µ̂a, µ̂b associated with the input wires a and b of an AND gate, we compute µ̂c = µc − µ̂a − µ̂b.
2. Given µ̂a (or µ̂b) associated with the input wires a (or b) of an OR gate, we compute µ̂c = µca − µ̂a (or µ̂c = µcb − µ̂b).

Output µ = µ̂m.

Figure 1: Information-theoretic linear secret sharing for monotone Boolean formulae by Kowalczyk and Wee [KW19]

3.2 Construction
Here, we give the construction of KP-ABE with short ciphertext from the MDDHk assumption.

Setup(1κ, 1n): Run G = (p,G1, G2, GT , e)
$← GGen(1κ). Sample A $← Zk×(k+1)

p , Wi
$← Z(k+1)×k

p for i ∈ [n],
v $← Zk+1

p and output

mpk = ([A]1, [AW1]1, . . . , [AWn]1, e([A]1, [v]2)), msk = (v,W1, . . . ,Wn).

Enc(mpk, x,M): To encrypt a messageM ∈ GT for a string x ∈ {0, 1}n, sample s $← Zkp and output

ctx =

ct1 := [s>A]1, ct2 =
[

s>
∑
i:xi=1

AWi

]
1

, ct3 := e([s>A]1, [v]2) ·M

 .

KeyGen(msk, f): To generate a secret key for a Boolean formula f , sample ({vj}j∈[m̂], ρ) $← share(f,v), rj
$← Zkp

and output skf , which consists of the following.({
skj := [rj]2, skρ(j),j := [vj + Wρ(j)rj]2, {ski,j := [Wirj]2 }i∈[n]\{ρ(j)}

}
j∈[m̂]

)
where W0 = 0 and m̂ is the number of shares. We note that for j such that ρ(j) = 0, we have [n]\{ρ(j)} = [n].

Dec(mpk, skf , ctx): Compute ωj such that v =
∑
j:ρ(j)=0∨xρ(j)=1 ωjvj and output

ct3 · e

ct2,
∏

j:ρ(j)=0∨xρ(j)=1

skωjj

 · e
ct1,

∏
j:ρ(j)=0∨xρ(j)=1

(∏
i:xi=1

ski,j

)ωj−1

.

14

Correctness. The correctness follows since we have

∏
j:ρ(j)=0∨xρ(j)=1

(∏
i:xi=1

ski,j

)ωj
=
[

v +
∑
i:x̂i=1

Wir
]

2

,

∏
j:ρ(j)=0∨xρ(j)=1

skωjj = [r]2, where r =
∑

j:ρ(j)=0∨x̂ρ(j)=1

ωjrj

for honestly generated secret key sk for f such that f(x) = 1 from the correctness of the secret sharing.

3.3 Key Lemma for Security Proof
In this section, we prove the following lemma, which will be used for proving the security of our KP-ABE scheme.

Lemma 3.2. Under the MDDHk assumption, we have∣∣∣∣∣Pr
[
µ(0), µ(1) $← Zp; w0 := 0,w1, . . . ,wn

$← Zkp;
1← AOF,0(·),OX(·),OE(·)(µ(0))

]
− Pr

[
µ(0), µ(1) $← Zp; w0 := 0,w1, . . . ,wn

$← Zkp;
1← AOF,1(·),OX(·),OE(·,·)(µ(0))

]∣∣∣∣∣ = negl(κ),

where A adaptively interacts with three oracles:

OF,β(f) :=
(
{µj}j:ρ(j)=0 ∪

{
[rj]2, [µj + w>ρ(j)rj]2,

{
[w>i rj]2

}
i∈[n]\{ρ(j)}

}
j∈[m̂]

)
where ({µj}j∈[m̂], ρ)← share(f, µ(β))

OX(x) := ({wi}i:xi=1)

OE() :=
(

[r]2,
{

[w>i r]2
}
i∈[n]

)
where r $← Zkp

with the restriction that (i) only one query is made to each of OF,β(·) and OX(·), and (ii) the queries f and x to OF,β(·)
and OX(·) respectively, satisfy f(x) = 0.

Note that the statement of the lemma is similar to that of Theorem 2 in [KW19]. There, OF,β(f) returns(
{µj}j:ρ(j)=0 ∪

{
[rj]2, [µj + wρ(j)rj]2

}
j:ρ(j)6=0

)
andOE takes as input i ∈ [m] and returns ([r]2, [w>i r]2).6 Since the answers by the oracles in [KW19] can be simulated
by our oracles by just stripping off appropriate components, our statement is stronger than theirs. Nonetheless, we can
prove the above lemma with very similar proof to that of Theorem 2 in [KW19].

We define

Pr[〈A,G1-abe
β 〉 = 1] := Pr

[
µ(0), µ(1) $← Zp; w0 := 0,w1, . . . ,wn

$← Zkp;
1← AOF,β(·),OX(·),OE(·)(µ(0))

]
.

Then, our goal is to prove
∣∣Pr[〈A,G1-abe

0 〉 = 1]− Pr[〈A,G1-abe
1 〉 = 1]

∣∣ = negl(κ). To do so, we define a modified
secret sharing scheme shareu in Figure 2 and hybrid distributions in Definition 3.3. In shareu(f, µ), we first generate
shares of µ as in share. However, we then replace all shares that are associated with output wires of the pebbled gates
with random values.

Definition 3.3 (hybrid distribution and function taken from [KW19]). Let Hu be the same as G1-abe
0 except that we

use shareu(f, µ(0)) in the implementation of oracle OF,0(·). Let h` : NC1 × {0, 1}n → {0, 1}R′ be as follows: h`
takes as input formula f and input x ∈ {0, 1}n where f(x) = 0 and outputs the pebbling configuration created from
following the first ` instructions from Pebble(f, x) defined in Lemma 2.11.

6More accurately, OE takes as input [M]2 ∈ G2 in addition to i in [KW19]. But we can ignore the additional input [M]2 without loss of
generality.

15

shareu(f, µ)

Input: A formula f : {0, 1}n → {0, 1}, a secret µ ∈ Zp, and a pebbling configuration u of the nodes of f .
1. Compute ({µ′

j}j∈[m̂], ρ)← share(f, µ) as defined in Figure 1.

2. For each µ′
j , if j ∈ u (i.e., if j is the output wire of a pebbled node), then choose µj

$← Zp. Otherwise, set µj := µ′
j .

3. Output ({µj}j∈[m̂], ρ).

Figure 2: Pebbling-modified secret sharing scheme by Kowalczyk and Wee [KW19]

From the definition, when ` = 0, h0 is a constant function for all f and x since there is no pebble in the configuration.
When ` = L, hL is also a constant function for all f and x where f(x) = 0 since the pebbling strategy in Lemma 2.11
yields a configuration with single pebble on the root gate.

By the description of shareu, it holds that for all such f and x,

• Hh0(f,x) ≡ G1-abe
0 since shareh0(f,x)(f, µ(0)) = share(f, µ(0)).

• HhL(f,x) ≡ G1-abe
1 since sharehL(f,x)(f, µ(0)) = share(f, µ(1)) for an independently random µ(1).

As in Section 2.7, we define games Ĥ`,0(u0, u1) and Ĥ`,1(u0, u1) for ` ∈ [0, L]. For these games, we have the following
lemma.

Lemma 3.4 (neighboring indistinguishability). For all ` ∈ [L] and u0, u1 ∈ {0, 1}R
′ , it holds that

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≤ n · Advmddh
B (κ).

Our proof strategy basically follows that of Kowalczyk and Wee. However, unlike the proofs of Kowalczyk and
Wee [KW19], we directly prove Lemma 3.4 by using the MDDHk assumption instead of using CPA-secure secret-key
encryption based on the MDDHk assumption. The reason is that OF,β(f) outputs not only {µj}ρ(j)=0 ∪ ([rj]2, [µj +
w>ρ(j)rj]2) but also

{
[w>i rj]2

}
i∈[n]\{ρ(j)}, which shares the same randomness of [µj + w>ρ(j)rj]2 (This is the SKE

part of Kowalczyk and Wee OF). Therefore, we cannot use the abstraction of SKE.
Before we prove Lemma 3.4, we prove Lemma 3.2 by using Lemma 3.4.

Proof of Lemma 3.2. By Lemma 3.4 and adaptive security lemma (Lemma 2.9), we obtain

Pr[〈A,G1-abe
0 〉 = 1]− Pr[〈A,G1-abe

1 〉 = 1] ≤ 22R′ · L · n · Advmddh
B (κ)

where R′ is the description size of a pebbling configuration and L is the length of the sequence of the pebbling
instructions. By pebbling lemma (Lemma 2.11), we have R′ ≤ 3d and L ≤ 8d and thus

Pr[〈A,G1-abe
0 〉 = 1]− Pr[〈A,G1-abe

1 〉 = 1] ≤ 26d · 8d · n · Advmddh
B (κ).

Since d = O(log κ), this completes the proof of Lemma 3.2.

Now, we move to the proof of Lemma 3.4.

Proof of Lemma 3.4. The only difference between Ĥ`,0(u0, u1) and Ĥ`,1(u0, u1) is that the former uses shareu0 inOF,0
and the latter uses shareu1 in OF,0. There are two cases to consider.

• There does not exist x′ ∈ {0, 1}n such that h`−1(f, x′) = u0 ∧ h`(f, x′) = u1.

• There exists x′ ∈ {0, 1}n such that h`−1(f, x′) = u0 ∧ h`(f, x′) = u1.

16

In the first case, both 〈A, Ĥ`,0(u0, u1)〉 and 〈A, Ĥ`,1(u0, u1)〉 abort with probability 1 and two games are perfectly
indistinguishable.

Thus, we focus on the second case in the rest of the proof. In this case, u0 and u1 are neighboring pebbling
configurations in Pebble(f, x′). Therefore, the difference between the two games should be caused by an instruction
that follows one of the pebbling rules in Definition 2.10. As the proof by Kowalczyk and Wee, we can consider three
cases depending on which instruction changes the configuration u0 into u1. The second and third cases below are
almost the same as those by Kowalczyk and Wee, but we provide the proofs for completeness.

Pebble/unpebble input node with out-going wire j∗: Let us consider the case where the difference between the
games is caused by the third item of pebbling rules in Definition 2.10. In particular, let us assume that input node
with out-going wire j∗ ∈ [m̂] is unpebbled in Ĥ`,0(u0, u1) and it is pebbled in Ĥ`,1(u0, u1). (The proof for the
other case is similar.) Note that such j∗ is uniquely determined from u0 and u1. The only difference between the
games is that shareu0(f, µ(0)) sets µj∗ to be an honestly generated share of µ(0), but shareu1(f, µ(0)) sets it to be
a random element in Zp. We assume that A chooses x and f such that xρ(j∗) = 0 since otherwise both games
output 0.

Claim 3.5. Under the MDDHk assumption, for the case of pebble/unpebble input node, the two neighboring
hybrids Ĥ`,0(u0, u1) and Ĥ`,1(u0, u1) are indistinguishable.

Proof. For the sake of contradiction, let us assume thatA distinguishes the neighboring games. We then construct
an algorithm B, which is given the MDDHk instance ([M]2, [u]2) ∈ G(k+1)×k

2 ×Gk+1
2 and breaks the MDDHk

problem by using A. That is, B tries to distinguish whether [u]2 = [Ms]2 for s $← Zkp or [u]2
$← (G2)k+1 by

interacting with A. In order to do so, B must simulate OF,0(·), OX(·), and OE() for the adversary A.

Setup. Given ([M]2, [u]2), B first picks random guess i∗ $← [n] for ρ(j∗), where ρ : [m̂]→ {0, 1, . . . , n} is the
function associated with the function f that will be chosen by A later in the game. B then chooses wi

$← Zkp for
i ∈ [n] \ {i∗} and µ(0), µ(1) $← Zp and sends µ(0) to A.
Throughout the game, B implicitly sets

[rj∗]2 := [Ms]2 and wi∗ := (M ·M−1)>,

where rj∗ is the randomness that will be used to answer the query to OF,0, and M ∈ Zk×kp and M ∈ Z1×k
p are

the first k rows and the last row of M, respectively. That is, if [u]2 = [Ms]2, we have

[u]2 =
[(rj∗

w>i∗rj∗

)]
2

since w>i∗rj∗ = (M ·M−1)Ms = Ms. On the other hand, if [u]2
$← (G2)k+1, we have [u]2 =

[(rj∗
u′

)]
2 where

rj∗
$← Zkp and u′

$← Zp are uniformly random.

Simulating OF,0(·). Given a query f to OF,0(·) made by A, B first checks whether i∗ = ρ(j∗). If it does not
hold, it outputs a random bit and aborts. Otherwise, B computes ({µj}j∈[m̂], ρ) ← shareu0(f, µ(0)), chooses
sj

$← Zkp for j ∈ [m̂] \ {j∗} , and returns

{µj}j∈[m̂]:ρ(j)=0

∪
{

[Msj]2, [µj + w>ρ(j)Msj]2,
({

[w>i Msj]2
}
i∈[n]\{ρ(j),i∗}, [Msj]2

)}
j∈[m̂]\{j∗}:ρ(j)6=i∗

(1)

∪
{

[Msj]2, [µj + Msj]2,
{

[w>i Msj]2
}
i∈[n]\{i∗}

}
j∈[m̂]\{j∗}:ρ(j)=i∗

(2)

∪
{

[u]2, [µj∗ + u]2, {[w>i u]2}i∈[n]\{i∗}

}
(3)

17

in the appropriate order, where u and u are the first k elements and the (k+ 1)-th element of u, respectively. Note
that the above terms can be efficiently computed since B has {wi}i∈[n]\{i∗}, [M]2, [u]2 and {sj}j∈[m]\{j∗}.
It is easy to see that {µj}j∈[m̂]:ρ(j)=0 generated as above are distributed as in the games. We claim that the terms
in Equation (1) and (2) are distributed as the terms in{

[rj]2, [µj + w>ρ(j)rj]2,
{

[w>i rj]2
}
i∈[n]\{ρ(j)}

}
j∈[m̂]

(4)

with corresponding j after the appropriate rearrangement of the terms, where rj
$← Zk for j ∈ [m̂] and {µj}j∈[m̂]

are chosen as Ĥ`,0(u0, u1) in Equation (4).7 We also claim that the terms in Equation (3) are distributed as the
terms in Equation (4) with j = j∗ in Ĥ`,0(u0, u1) if u = Ms and as in Ĥ`,1(u0, u1) if u $← Zk+1

p . We prove
them in the following.

• We first focus on the terms in Equation (1). If we set rj := Msj , we have

[Msj]2 = [rj]2 and [Msj]2 = [(M ·M−1)(Msj)]2 = [w>ρ(j∗)rj]2.

We can see that rj is distributed uniformly at random over Zkq since so is sj and M is invertible. Therefore,
the distribution of the terms in Equation (1) is the same as those in Equation (4) for j ∈ [m̂] \ {j∗} such that
ρ(j) 6= i∗.

• We then focus on the terms in Equation (2). Similarly to the case above, by setting rj := Msj , we can see
that the distribution of the terms in Equation (2) is the same as those in Equation (4) for j ∈ [m̂] \ {j∗} such
that ρ(j) = i∗.

• We finally focus on the terms in Equation (3). If [u]2 = [Ms]2, then B perfectly simulates OF,0(f) since
[u]2 =

[(rj∗
w>i∗rj∗

)]
2
in this case. That is, the terms in Equation (3) can be represented as

([rj∗]2, [µj∗ + w>i∗rj∗]2, {[w>i rj∗]2}i∈[n]\{i∗}),

where we recall that i∗ = ρ(j∗). If u $← Zk+1
p , then [µj∗ + u]2 and [u]2 = [rj∗]2 are uniformly random

over G2 and Gk2 , respectively. Thus, B perfectly simulates the game where we use shareu1(f, µ(0)).

SimulatingOX(·). Given a query x toOX(·) made byA, B aborts and outputs a random bit if xi∗ = 1. Otherwise,
B sends {wi}i:xi=1 toA. Note that although B does not have wi∗ , it can answer the query as long as the guess i∗
for ρ(j∗) is correct, since we have xi∗ = xρ(j∗) = 0 in that case.

Simulating OE(). For a query to OE(), B chooses s′ $← Zkp and computes [Ms′]2 (we can compute this from
[M]2 and s′). It then sets [r′]2 := [Ms′]2 and returns(

[r′]2, {[w>i r′]2}i∈[n]\{i∗}, [Ms′]2
)

in the appropriate order. We can see [Ms′]2 = [(M ·M−1)(Ms′)]2 = [w>i∗r′]2 since wi∗ = (M ·M−1)>.
Therefore, B perfectly simulates OE().

Guess. When A halts and outputs a bit, B outputs the same bit as its guess.

Based on the argument above,B perfectly simulates Ĥ`,0(u0, u1) if [u]2 = [Ms]2 and Ĥ`,1(u0, u1) if [u]2
$← Gk+1

2
for A conditioned that the guess i∗ for ρ(j∗) is correct. Since i∗ is chosen uniformly at random and hidden from
the adversary, the guess is correct with probability 1/n. Therefore, if A has distinguishing advantage ε for these
two games, B has advantage ε/n against the MDDHk problem. This completes the proof of the claim.

7 Notice that the distribution of {µj}j 6=j∗ in Ĥ`,0(u0, u1) is the same as that in Ĥ`,1(u0, u1).

18

Pebble/unpebble AND gate with out-going wire c and input wires a, b corresponding to nodes ga, gb: The differ-
ence between the two games is that shareu0(f, µ(0)) sets µc := µ̂a + µ̂b + µ̂c whereas shareu1(f, µ(0)) chooses
it uniformly at random as µc

$← Zp (or vice-versa in the unpebble case). These distributions are perfectly
indistinguishable by the following reason. By the pebbling rule for AND gate, either ga or gb must be pebbled.
We consider the case ga is pebbled (we can similarly treat the case gb is pebbled). When ga is pebbled, µ̂a is
independently and uniformly random in both shareu0(f, µ(0)) and shareu1(f, µ(0)) since the fan-out of ga is 1
and µ̂a does not appear in any other place. Therefore, µc = µ̂a + µ̂b + µ̂c in Ĥ`,0(u0, u1) is independently and
uniformly random. The indistinguishability holds even if {wi}i∈[n] is given to A since this argument is purely
information theoretic. Therefore, these two neighboring hybrids are perfectly indistinguishable in this case.

Pebble/unpebble OR gate with out-going wire c and input wires a, b corresponding to nodes ga, gb: The difference
between the two games is that shareu0(f, µ(0)) sets µca := µ̂a + µ̂c and µcb := µ̂b + µ̂c whereas shareu1(f, µ(0))
chooses them uniformly at random as µca , µcb

$← Zp (or vice-versa in the unpebble case). These distributions
are perfectly indistinguishable by the following reason. By the pebbling rule for OR gate, both ga and gb
must be pebbled. When ga and gb are pebbled, µ̂a and µ̂b are independently and uniformly random in both
shareu0(f, µ(0)) and shareu1(f, µ(0)) since the fan-out of ga and gb is 1 and µ̂a and µ̂b do not appear in any other
place. Therefore, µca = µ̂a + µ̂c and µcb = µ̂b + µ̂c in Ĥ`,0(u0, u1) are independently and uniformly random.
The indistinguishability holds even if {wi}i∈[n] is given to A since this argument is purely information theoretic.
Therefore, these two neighboring hybrids are perfectly indistinguishable in this case.

In the second and third cases, the indistinguishability between two neighboring games is purely information theoretic
and we can simulate all the oracles. In the first case, the indistinguishability between two neighboring games is reduced
to the MDDHk assumption as we see saw in the above. This completes the proof of the following: For all ` ∈ [L] and
u0, u1 ∈ {0, 1}R

′ , it holds that

Pr[〈A, Ĥ`,0(u0, u1)〉 = 1]− Pr[〈A, Ĥ`,1(u0, u1)〉 = 1] ≤ n · Advmddh
B (κ).

This completes the proof of Lemma 3.4.

3.4 Security Proof
Here, we prove the following theorem, which addresses the security of the scheme. The proof of the theorem is again
similar to the equivalent in [KW19], but with some appropriate adaptations.

Theorem 3.6. The above construction is adaptively secure under the MDDHk assumption.

Proof. We prove the theorem by considering a sequence of hybrid games. To define the hybrid distributions, it would
be helpful to first give names of various forms of ciphertext and secret keys that will be used. A ciphertext (of message
M under attribute x) can be one of the following forms:

Normal: A normal ciphertext is generated as in the scheme.

SF: This is the same as normal ciphertext except that s>A is replaced by a random vector c> $← Zk+1
p . That is,

ctx :=

 ct1 :=
[

c>
]

1
, ct2 :=

[
c>

∑
i:xi=1

Wi

]
1

, ct3 := e
([

c>
]

1
, [k]2

)
·M

 .

A secret key (for a Boolean formula f) can be one of the following forms:

Normal: A normal key is generated by KeyGen.

19

SF: An SF key is sampled as a normal key except that v is replaced by v + δa⊥, where a fresh δ is chosen per SF key
and a⊥ is any fixed a⊥ ∈ Zk+1

p \{0}. That is,

skf =
({

skj := [rj]2, skρ(j),j := [vj + Wρ(j)rj]2, { ski,j := [Wirj]2 }i∈[n]\{ρ(j)}

}
j∈[m̂]

)
where ({vj}j∈[m̂], ρ) $← share(f, v + δa⊥), rj

$← Zkp .

We then define the following sequence of games to prove the security. Let the number of key generation queries made
by an adversary be Q.

- H0 : This is the real security game for adaptive security where all ciphertexts and keys are normal.

- H1 : This game is the same as H0 except that the challenge ciphertext is SF.

- H2,` : This game is the same as H1 except that the first ` keys are SF and the remaining Q− ` keys are normal. The
game is defined for ` = 0, 1, . . . , Q.

- H3 : This is the same as HQ except that the message to be encrypted is replaced by a random group element M̃ .

Let us fix a PPT adversaryA and denote the advantage ofA in Hxx by Advxx. We can easily see that H1 ≡ H2,0 and
Adv3 = 0. Therefore, to complete the proof of Theorem 3.6, it suffices to prove Lemmata 3.7 to 3.9 in the following.
Note that proofs for Lemmata 3.7 and 3.9 are exactly the same as their counterparts in [KW19], whereas we need some
adaptations for the proof of Lemma 3.8. For the sake of completeness, we give all the proofs in the following.

Lemma 3.7. Under the MDDHk assumption on G1, we have |Pr[〈A,H0〉 = 1]− Pr[〈A,H1〉 = 1]| = negl(κ).

Proof. For the sake of contradiction, we assume that A distinguishes H0 and H1 with non-negligible advantage and
show that we can construct another adversary B that solves the MDDHk assumption. On input (G, [A]1, [z]1), where
either z> = s>A or z = c for s $← Zkp and c $← Zk+1

p , B proceeds as follows.
Setup. B chooses Wi for i ∈ [n] and v and sets mpk and msk as in the scheme. Note that [AWi]1 can be computed
from [A]1 and Wi.
Secret Keys. B can answer any secret key query made by A because it has msk.
Ciphertext. When A asks for the challenge ciphertext with respect to messages (M0,M1) and attribute x, B samples
coin← {0, 1} and sets the challenge ciphertext as

ctx :=

[z>]1,
[

z>
∑
i:xi=1

Wi

]
1

, e([z>]1, [v]2) ·Mcoin

 .

Guess. When A halts with output coin′, B outputs 1 if coin′ = coin and 0 otherwise.
It is straightforward to see that B simulates H0 forA when z = s>A and H1 otherwise. This completes the proof of

Lemma 3.7.

Lemma 3.8. Under the MDDHk assumption on G2, we have |Pr[〈A,H2,`−1〉 = 1]− Pr[〈A,H2,`〉 = 1]| = negl(κ)
for ` ∈ [Q].

Proof. For the sake of contradiction, we assume that A distinguishes H2,`−1 and H2,` with non-negligible advantage
and show that we can construct another adversary B that distinguishes the oracles in Lemma 3.2. By the same lemma,
this implies an attacker against the MDDHk assumption. Given µ(0) as an input and equipped with oracles OF,β , OX,
and OE, B proceeds as follows.
Setup. First, B chooses A $← Zk×(k+1)

p , W̃i
$← Z(k+1)×k

p for i ∈ [n], and ṽ $← Zk+1
p , computes a⊥ ∈ Zk+1

p \{0}
such that Aa⊥ = 0. It then sets W̃0 := 0 and implicitly defines

v := ṽ + µ(0)a⊥, Wi := W̃i + a⊥w>i for i ∈ [0, n]

20

where wi ∈ Zkp and µ(0) ∈ Zp are chosen by the game. Then, B gives

mpk :=
(

[A]1, [AW̃1]1, . . . , [AW̃n]1, e([A]1, [v]2)
)

to A.
Secret Keys. B handles the secret key queries made by A as follows.

- For the first `− 1 secret key queries, say for formula f of sizem, B computes

({vj}j∈[m̂], ρ) $← share(f, ṽ + δ̃a⊥︸ ︷︷ ︸
=v+δa⊥

)

where δ̃ $← Zp is drawn independently for each key (here, the per-key δ = δ̃−µ(0) implicitly). Next, for each j ∈ [m̂],
it queries OE → ([rj]2, {[w>i rj]2}i∈[n]) and forms the following SF key as

skf =

[rj]2, [vj + W̃ρ(j)rj + a⊥w>ρ(j)rj︸ ︷︷ ︸

=vj+Wρ(j)rj

]2,
{

[W̃irj + a⊥w>i rj︸ ︷︷ ︸
=Wirj

]2
}
i∈[n]\{ρ(j)}

j∈[m̂]

 .

Then, it returns skf to A.

- For the lastQ− ` secret key queries, say for formula f of sizem, B proceeds as before for the first `− 1 queries except

({vj}j∈[m̂], ρ) $← share(f, ṽ + µ(0)a⊥︸ ︷︷ ︸
=v

).

It is easy to see that it forms a normal key.

- For the `-th secret key queries, say for formula f of size m, B computes ({vj}j∈[m̂], ρ) $← share(f, ṽ), queries

OF,β(f)→
({

[rj]2, [µj + wρ(j)rj]2,
{

[w>i rj]2
}
i∈[n]\{ρ(j)}

}
j∈[m̂]

)
and uses these components to return:

skf =

[rj]2, [vj + W̃ρ(j)rj + a⊥(µj + w>ρ(j)rj)︸ ︷︷ ︸

=(vj+µja⊥)+Wρ(j)rj

]2,
{

[W̃irj + a⊥w>i rj︸ ︷︷ ︸
=Wirj

]2
}
i∈[n]\{ρ(j)}

j∈[m̂]

We claim that if β = 0, then skf is a normal key, and if β = 1, then skf is an SF key. This follows from the fact that
thanks to linearity, the shares

({vj + µja⊥}j∈[m̂], ρ), where ({vj}j∈[m̂], ρ) $← share(f, ṽ), ({µj}j∈[m̂], ρ) $← share(f, µ(β))

are identically distributed to share(f, ṽ +µ(β)a⊥). The claim then follows from the fact that v = ṽ +µ(0)a⊥ and that
ṽ + µ(1)a⊥ is identically distributed to v + δa⊥, where we set δ := µ(1) − µ(0) is a fresh random value for the key.

Ciphertext. When A asks for the challenge ciphertext with respect to messages (M0,M1) and attribute x, B queries
OX on input x to obtain {wi}i:xi=1 It then samples coin ← {0, 1}, c $← Zk+1

p and returns the following challenge
ciphertext for A:

ctx :=

[c>]1,

c>
∑
i:xi=1

(W̃i + a⊥w>i︸ ︷︷ ︸
=Wi

)

1

, e([c>]1, [ṽ + µ(0)a⊥]2) ·Mcoin

 .

Guess. When A halts with output coin′, B outputs 1 if coin′ = coin and 0 otherwise.
Putting everything together, we can see that B simulates H2`−1 forAwhen β = 0 and H2` otherwise. This completes

the proof of Lemma 3.8.

21

Lemma 3.9. We have |Pr[〈A,H2,`〉 = 1]− Pr[〈A,H3〉 = 1]| = 1/p unconditionally.

Proof. We show that these two hybrids are identically distributed conditioned on c>a⊥ 6= 0. To see this, consider two
ways of sampling v: as ṽ $← Zk+1

p and as ṽ + m̃a⊥ for an independent m̃ $← Zp. Note that both result in v having a
uniform distribution.

Using ṽ to simulate hybrid H2,Q obviously results in H2,Q (where v = ṽ). However, using the identically distributed
v = ṽ + m̃a⊥ to simulate H2,Q results in H3 with M̃ = M · e([c>]1, [m̃a⊥]2) and re-defined randomness δ̃j := δj + m̃
in the secret keys. Note that the information of m̃ is not revealed to A from the secret key queries because m̃ is masked
by per-key randomness δj . Therefore, M̃ is distributed uniformly at random over GT as long as c>a 6= 0.

Since c is chosen at random and independent from a⊥ 6= 0, so c>a⊥ = 0 with probability 1/p, and since we know
that H2,Q ≡ H3 conditioned on c>a⊥ 6= 0, the lemma follows.

This completes the proof of Theorem 3.6.

4 Compact Constrained Signature
4.1 Constrained Signature
We provide definition of a constrained signature (CS) scheme. We also provide an additional feature (i.e., online/offline
efficiency) for CS schemes which will play a vital role in our compact NIZK construction in Section 5.

Definition 4.1 (Constrained Signature). A constrained signature (CS) scheme with message space {0, 1}n for a circuit
class C = {C : {0, 1}n → {0, 1}} consists of PPT algorithms (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy).

CS.Setup(1κ, 1n)→ (msk, vk): The setup algorithm on input the security parameter 1λ and the input length 1n,
outputs a master secret key msk and a verification key vk.

CS.KeyGen(msk, C)→ skC: The key generation algorithm on input a master secret key msk and a circuit C ∈ C,
outputs a signing key skC .

CS.Sign(skC , x)→ σ: The signing algorithm on input the signing key skC and message x ∈ {0, 1}n, outputs a
signature σ.

CS.Vrfy(vk, x, σ)→ > or ⊥: The verification algorithm on input the verification key vk, message x, and signature σ,
outputs either ⊥ (indicating the signature is valid) or > (indicating the signature is invalid).

A CS scheme must satisfy the following requirements.

Correctness. For all κ ∈ N, n = n(κ) ∈ N, (msk, vk) $← CS.Setup(1κ, 1n), x ∈ {0, 1}n,C ∈ C such thatC(x) = 1,
and skC

$← CS.KeyGen(msk, C), we have

Pr[CS.Vrfy(vk, x,CS.Sign(skC , x)) = >] = 1

Unforgeability. We define (adaptive) unforgeability for a CS scheme. The security notion is defined by the following
game between a challenger and an adversary A.

Setup: The challenger runs (msk, vk) $← CS.Setup(1κ, 1n) and gives vk to A. It also prepares an empty list Q.

Key Queries: A can adaptively make key queries unbounded polynomially many times throughout the game. When A
queries C ∈ C, the challenger runs skC

$← CS.KeyGen(msk, C) and returns skC to A. Finally, the challenger
updates Q ← Q∪ {C}.

Forgery: Eventually,A outputs (x∗, σ∗) as the forgery. We sayA wins if CS.Vrfy(vk, x∗, σ∗) = > holds. Furthermore,
we say that A is admissible if C(x∗) = 0 holds for all C ∈ Q at the end of the game.

22

We say the CS scheme is (adaptively) unforgeable if the winning probability for all admissible PPT adversaries A in the
above game is negl(κ), where the probability is taken over the randomness of all algorithms.

The following property is optional in the sense that our CS scheme can achieve the following property, but the
property is not strictly necessary for our application of CS to the construction of compact NIZKs.
Context-Hiding (optional). For all κ, n ∈ N, (mpk,msk) $← Setup(1κ, 1n), x ∈ {0, 1}n, C0, C1 ∈ C, (msk, vk) $←

CS.Setup(1κ, 1n), skC0
$← CS.KeyGen(msk, C0), and skC1

$← CS.KeyGen(msk, C1), we need that the following
distributions are statistically close:

{σ $← CS.Sign(skC0 , x)} stat
≈ {σ $← CS.Sign(skC1 , x)}

where the probability is only over the randomness used by CS.Sign.
Additionally to the above essential requirements for CS, we introduce a natural notion of decomposable online-offline

efficiency. At a high level, this notion states that if we (partially) knew the message x to be signed in advance, then we
can modify the verification key vk to a message specific verification key vkx which allows for an efficient verification of
signature σ with running time independent of |x|. More formally, the notion is defined as follows.

Definition 4.2 (Decomposable Online-Offline Efficiency). A constrained signature with message space {0, 1}n for a
circuit class C = {C : {0, 1}n → {0, 1}} is said to have decomposable online-offline efficiency if there further exists
PPT algorithms (CS.Aggrgt,CS.VrfyOnL) exhibiting the following properties.

• The verification key vk can be decomposed into vk = (vk0, {vki,b ∈ VK}i∈[n],b∈{0,1}), where VK is a space of
verification key component.

• Any component in VK, any honestly generated vk0, and any honestly generated signature σ can be represented as
binary strings of fixed polynomial length poly(κ). In particular, length of these components are independent from
n.

• Algorithm CS.Aggrgt takes as input an element of VK∗ = ∪`∈NVK` and outputs an element in VK. We require
that for any y, z ∈ {0, 1}∗ such that x = y‖z ∈ {0, 1}n, we have

CS.Aggrgt
(
{vki,xi}i∈[n]

)
=CS.Aggrgt

(
CS.Aggrgt

(
{vki,yi}i∈[|y|]

)
,CS.Aggrgt

(
{vk|y|+i,zi}i∈[|z|]

))
.

• Algorithm CS.VrfyOnL takes as input vk0, a component in VK and a signature in σ, and outputs either > or ⊥.
We require that for any x ∈ {0, 1}n, for any honestly generated vk, and for any (possibly maliciously generated)
σ, we have

CS.Vrfy(vk, x, σ) = CS.VrfyOnL
(
vk0,CS.Aggrgt

(
{vki,xi}i∈[n]

)
, σ
)
.

Observe that the input length of CS.VrfyOnL is independent from n, which follows from the second item of this
definition. We require that the running time of CS.VrfyOnL is independent from n as well.

4.2 Construction and Security
Here, we give the construction of our constrained signature (CS) scheme that will be used for the construction of the
compact NIZK. The CS scheme has very compact signature size and the decomposable online-offline efficiency defined
in Definition 4.2. In order to get the CS scheme, we apply the folklore conversion that converts ABE into CS to our
compact KP-ABE scheme in Section 3, where the signing key skf for the function f in the CS scheme is the same as the
secret key skf for the same function f in the ABE scheme, and the signature on a string x in the CS scheme is certain
“aggregated form" of the secret key that is derived when decrypting an ABE ciphertext encrypted for the attribute x. To
verify a signature on x in the CS, we encrypt a random message for x in the underlying ABE and then see if the message
is recovered or not when decrypting the ciphertext using the signature as an (aggregated form of) secret key.

23

The CS scheme obtained by the above conversion can only deal with monotone Boolean formulae, since the original
ABE is for the same class of functions. For our purpose, we need CS scheme for NC1 circuits, which is more general
class than monotone Boolean formulae. This gap can be filled using Lemma 2.8.

We then provide the description of the construction.

CS.Setup(1κ, 1n): RunG = (p,G1, G2, GT , e)
$← GGen(1κ). SampleA $← Zk×(k+1)

p ,Wi
$← Z(k+1)×k

p for i ∈ [2n]
and v $← Zk+1

p and output

vk = ([A]1, [AW1]1, . . . , [AW2n]1, e([A]1, [v]2)), msk = (v,W1, . . . ,W2n).

CS.KeyGen(msk, C): To generate a signing key for a circuit C, run EncCir(C)→ f . Then sample ({vj}j∈[m̂], ρ) $←
share(f,v) and rj

$← Zkp for j ∈ [m̂] and output skf , which consists of the following.({
skj := [rj]2, skρ(j),j := [vj + Wρ(j)rj]2, {ski,j := [Wirj]2 }i∈[2n]\{ρ(j)}

}
j∈[m̂]

)
where W0 = 0 and m̂ is the number of shares that are generated by share(f,v).

CS.Sign(skf , x): Set x̂ := EncInp(x) and compute ωj such that v =
∑
j:ρ(j)=0∨x̂ρ(j)=1 ωjvj and output

σ =

σ1 =
∏

j:ρ(j)=0∨x̂ρ(j)=1

(∏
i:x̂i=1

ski,j

)ωj
, σ2 =

∏
j:ρ(j)=0∨x̂ρ(j)=1

skωjj

 .

CS.Vrfy(vk, x, σ): Parse σ → (σ1, σ2) ∈ Gk2 × Gk2 and output ⊥ if the signature is not in this form. Otherwise,
compute x̂ = EncInp(x) and

vk′ =
∏
i:x̂i=1

[AWi]1. (5)

Then output > if the following holds and ⊥ otherwise:

e([A]1, σ1) · e(vk′, σ2)−1 = e([A]1, [v]2).

Correctness. The correctness follows since we have f(x̂) = 1 when C(x) = 1 from Lemma 2.8 and

σ1 =
[

v +
∑
i:x̂i=1

Wir
]

2

, σ2 = [r]2, where r =
∑

j:ρ(j)=0∨x̂ρ(j)=1

ωjrj . (6)

Online-Offline Decomposability.

Theorem 4.3. The CS scheme above has decomposable online-offline efficiency defined as per Definition 4.2.

Proof. To prove the theorem, we define VK, vk0, and vki,b for i ∈ [n], b ∈ {0, 1} as

VK := Gk×k1 , vk0 := ([A]1, e([A]1, [v]2)) , vki,b := [AW2i−b]1.

It is easy to see that the first and the second items in Definition 4.2 are satisfied. We then define additional algorithms
CS.VrfyOnL and CS.Aggrgt as follows:

CS.Aggrgt({vki}i∈[n′]): If there exists i ∈ [n′] such that vki 6∈ VK = Gk×k1 , output ⊥. Otherwise, output

X :=
∏
i∈[n′]

vki,

where the product represents the component-wise multiplication in G1.

24

CS.VrfyOnL(vk0, vk′, σ): Parse vk0 → (A ∈ Gk×(k+1)
1 , V ∈ GkT), vk′ ∈ Gk×k1 , and σ → (σ1, σ2) ∈ Gk2 × Gk2 .

Then output > if the following holds and ⊥ otherwise:

e(A, σ1) · e(vk′, σ2)−1 = V.

The third item in Definition 4.2 follows from the fact that the following equation holds for any x = y‖z ∈ {0, 1}n:∏
i∈[2n]

[AWi,2i−xi]︸ ︷︷ ︸
=vki,xi

=
∏
i∈[|y|]

[AWi,2i−xi] ·
∏

i∈[|y|+1,|y|+|z|]

[AWi,2i−xi]

=
∏
i∈[|y|]

[AWi,2i−yi] ·
∏

i∈[|y|+1,|y|+|z|]

[AWi,2i−zi−|y|]

=
∏
i∈[|y|]

[AWi,2i−yi]︸ ︷︷ ︸
=vki,yi

·
∏
j∈[|z|]

[AW|y|+j,2(|y|+j)−zj]︸ ︷︷ ︸
=vk|y|+j,zj

.

To prove the fourth item, it suffices to show that vk′ computed as Equation (5) equals to CS.Aggrgt({vki,xi}i∈[n]).
This follows since the former is the product of [AWi]1 over i in S := {i ∈ [2n] : x̂i = 1} and the latter is over i in
S′ := {2j − xj : j ∈ [n]}, and we have S = S′ by the definition of x̂ (See Lemma 2.8).

Security. In the following, we show that the above construction is unforgeable and then discuss how to extend the
scheme to satisfy context-hiding. While the latter property is not necessary for our application of CS in Section 5, this
property may be useful when we use the CS scheme stand-alone.

Theorem 4.4. The above construction is (adaptively) unforgeable under the MDDHk assumption.

Proof. For the sake of contradiction, suppose that there exists an adversaryA that breaks unforgeability of the ΠCS with
non-negligible probability ε. We then construct a PPT adversary B that breaks the adaptive security of the ABE with
advantage ε for the attribute length 2n as follows.

B(mpk): It sets vk := mpk and gives the master public key toA. WhenA makes a signing key query for a circuit C, B
runsEncCir(C)→ f andmakes a key generation query for f to obtain skf . Then,B passes skf toA. At some point,
A outputs a forgery (x∗, σ∗). Then, B outputs a random bit and abort if CS.Vrfy(vk, x∗, σ∗) = ⊥. Otherwise, B
samples two random distinctive messagesM0,M1 ∈ GT and makes a challenge query for (x̂∗, (M0,M1)), where
x̂∗ = EncInp(x∗). Given the challenge ciphertext ct, it first parses ct→ (ct1 ∈ Gk+1

1 , ct2 ∈ Gk1 , ct3 ∈ GT) and
σ∗ → (σ∗1 ∈ Gk+1

2 , σ∗2 ∈ Gk+1
2) and computesM ′ := e(ct1, σ

∗
1)−1 · e(ct2, σ

∗
2) · ct3. It outputs 0 ifM ′ = M0

and 1 otherwise.

We first check that B is an admissible adversary if so is A, since we have C(x∗) = 0 iff f(x̂∗) = 0 for any C and
f = EncCir(C) from Lemma 2.8. We then claim that whenever CS.Vrfy(vk, x∗, σ∗) = >, we haveM ′ = Mcoin. To
prove the claim, let us assume that CS.Vrfy(vk, x̂∗, σ∗) = > holds. Then, we have

e([A]1, σ∗1) · e(
∏

i:x̂∗
i
=1

[AWi]1, σ∗2)−1 = e([A]1, [v]2)

by the definition of CS.Vrfy. Furthermore, there exists s ∈ Zkp such that ct1 = [s>A]1, ct2 = [s>
∑
i:y∗
i
=1 AWi]1,

and ct3 = e([s>A]1, [v]2) ·Mcoin by the definition of Enc. Then, the above equation implies

e(ct1, σ
∗
1) · e(ct2, σ

∗
2)−1 = e([s>A]1, [v]2)

which in turns implies M ′ = Mcoin. Thus, B correctly guesses coin when A breaks the unforgeability of ΠCS and
outputs a random bit otherwise. This implies that the advantage of B is ε, which is non-negligible as desired.

25

Remark 4.5 (Adding Context-Hiding for the Scheme). We remark that it is possible to make the above scheme
context-hiding by adding the following modification. Namely, we change the scheme so that it contains

[R]2, [W1R]2, . . . , [W2nR]2,

for random R ∈ Zk×kp in vk. This modification allows us to randomize r in Equation (6), which makes the
scheme context-hiding. We discuss that even with this change, the scheme remains adaptively unforgeable. For
proving this, it suffices to show that our KP-ABE scheme in Section 3 remains adaptively secure even if we add
([R]2, [W1R]2, . . . , [WnR]2) to the master public key. To show this, we explain the necessary modifications for the
proof of Theorem 3.6, which consists of Lemmata 3.7 to 3.9. We first observe that the proof of Lemma 3.7 is unchanged
by this change, since the reduction algorithm in the proof knows all of {Wi}i and can simulate the extra terms. Similarly,
the proof for Lemma 3.9 is unchanged, since this is shown by an information theoretic argument that holds even if the
adversary knows all of {Wi}i. As for the proof of Lemma 3.8, slight care is needed since {Wi}i are not known to
the simulator. In this case, the simulator makes multiple queries for OE() to get {[rj]2, {[w>i r]2}i∈[n]}j∈[k] and forms
([R]2, {[w>i R]2}i∈[n]), where R ∈ Zk×kp is the concatenation of {rj}j . Then the simulator can simulate the terms
{[WiR]2}i∈[n] from ([R]2, {[w>i R]2}i∈[n]), a⊥, and W̃i, since we have

[WiR]2 = [W̃iR + a⊥(w>i R)]2.

5 Compact NIZK from Compact Constrained Signatures
5.1 Main Construction
Here, we construct a compact NIZK based on the compact CS scheme which we constructed in Section 4. Let L be an
NP language defined by a relationR ⊆ {0, 1}∗ × {0, 1}∗. Let n(κ) andm(κ) be any fixed polynomials. Let C be a
circuit that computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we have C(x,w) = 1
if and only if (x,w) ∈ R.
The construction will be given by combining following ingredients.

• A symmetric key encryption (SKE) scheme ΠSKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) with message space
{0, 1}m, key space {0, 1}` and ciphertext space {0, 1}|ct|. We require that its decryption circuit can be computed
in NC1, and it has an additive ciphertext overhead (i.e., |ct| = m+ poly(κ)).

• A constrained signature scheme (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy,CS.Aggrgt,CS.VrfyOnL) we con-
structed in Section 4. The scheme should support the circuit f that computes

f(K,x, ct) = C(x, SKE.Dec(K, ct)).

• (Not necessarily compact) extractable NIZK scheme ΠNIZK = (Setup,Prove,Verify) for the language corre-
sponding to the relation R̃ defined below:
((vk0, {vki,b}i∈[`],b∈{0,1}, Y), (K,σ)) ∈ R̃ if and only if the followings are satisfied:

1. K ∈ {0, 1}`,
2. CS.VrfyOnL(vk0, Z, σ) = > where Z = CS.Aggrgt

(
CS.Aggrgt({vki,Ki}i∈[`]), Y

)
Our compact NIZK is described as follows.

Setup′(1κ):

1. Generate crs $← Setup(1κ).

2. Generate (vk = (vk0, {vki,b}i∈[`+n+|ct|],b∈{0,1}),msk) $← CS.Setup(1κ, 1`+n+|ct|).

3. Generate skf
$← CS.KeyGen(msk, f).

26

4. Output crs′ = (crs, vk, skf).

Prove′(crs′, x, w):

1. Abort ifR(x,w) = 0. Otherwise, do the following.
2. Parse crs′ → (crs, vk = (vk0, {vki,b}i∈[`+n+|ct|],b∈{0,1}), skf).

3. GenerateK $← SKE.KeyGen(1κ) and ct $← SKE.Enc(K,w).

4. Compute σ $← CS.Sign(skf , (K,x, ct)).
5. Compute Y := CS.Aggrgt({vk`+i,yi}i∈[n+|ct|]) where y := (x, ct) ∈ {0, 1}n+|ct|.

6. Compute π $← Prove((vk0, {vki,b}i∈[`],b∈{0,1}, Y), (K,σ)).
7. Output π′ := (ct, π).

Verify′(crs′, x, π′):

1. Parse π′ → (ct, π). If it is not in this form, reject it. Otherwise, do the following.
2. Parse crs′ → (crs, vk = (vk0, {vki,b}i∈[`+n+|ct|],b∈{0,1}), skf).

3. Compute Y := CS.Aggrgt({vk`+i,yi}i∈[n+|ct|]) where y := (x, ct) ∈ {0, 1}n+|ct|.
4. Output > if Verify((vk0, {vki,b}i∈[`],b∈{0,1}, Y), π) = > and otherwise ⊥.

Correctness. Suppose that (ct, π) is an honestly generated proof on (x,w) ∈ R. Then we have ct $← SKE.Enc(K,w)
and π $← Prove((vk0, {vki,b}i∈[`],b∈{0,1}, Y), (K,σ)) where K $← SKE.KeyGen(1κ), σ $← CS.Sign(skf , (K,x, ct)),
and

Y = CS.Aggrgt({vk`+i,yi}i∈[n+|ct|]).

By the correctness of ΠSKE, we have f(K,x, ct) = 1. Furthermore, by the correctness of ΠCS, we have
CS.Vrfy(vk, (K,x, ct), σ) = >, which is equivalent to

CS.VrfyOnL(vk0, Z, σ) = > where Z = CS.Aggrgt
(
CS.Aggrgt({vki,Ki}i∈[`]), Y

)
.

Therefore we have ((vk0, {vki,b}i∈[`],b∈{0,1}, Y), (K,σ)) ∈ R̃ and thus we haveVerify((vk0, {vki,b}i∈[`],b∈{0,1}, Y), π)
= > by the correctness of ΠNIZK.
Efficiency. We first observe that the size of the verification circuit for the relation R̃ is poly(κ), which is independent
of the size of the verification circuit for R. This is because Z = CS.Aggrgt

(
CS.Aggrgt({vki,Ki}i∈[`]), Y

)
can be

computed in polynomial time in κ and the length ` = poly(κ) of K and the running time of CS.VrfyOnL(vk0, Z, σ)
does not depend on the length of (x, ct) (and in particular the complexity of the circuit f) as required in Definition 4.2.
Therefore, the size of π is poly(κ) and independent of |x|, |w|, or |C| even though we do not require any compactness
requirement for the underlying NIZK ΠNIZK. Since we assume |ct| = m+ poly(κ), the total proof size is |w|+ poly(κ).
We note that this scheme can be directly implemented only when the relationR can be verified in NC1. Otherwise, we
have to first expand the witness to make the relation verifiable in NC1 similarly to [GGH+16, KNYY19b]. This is done
by considering all values corresponding to all gates when computing the circuit C on input (x,w) to be the new witness
and have the new circuit verify the consistency of the values for all gates in C. In this case, the proof size becomes
|C|+ poly(κ).

Since the relation R̃ is well-suited to be proven by the Groth-Sahai proof, a fairly efficient instantiation is possible
based on the Groth-Sahai proof. Especially, a proof consists of |C| bits, 6κ+ 14 elements of G1 and 7κ+ 25 elements
ofG2 when instantiated under the SXDH assumption. See Appendix B for more details. We also note that if the relation
R can be verified by a “leveled circuit” [BGI16], we can further reduce the proof size to |w|+ |C|/ log κ+ poly(κ)
which is sublinear in |C| similarly to [KNYY19b]. (See [KNYY19b] for details.)
Security. In the following, we prove the soundness and the zero-knowledge property of Π′NIZK.

27

Theorem 5.1 (Soundness). The above NIZK scheme Π′NIZK is computationally (adaptive) sound if ΠNIZK satisfies
extractability and ΠCS is unforgeable.

Proof. Suppose that there is a PPT adversary A that breaks soundness. Then we construct a PPT adversary B that
breaks the unforgeability of ΠCS as follows.

B(vk): It queries f to the key generation oracle to obtain skf where f is the circuit as defined in the description
of the scheme. Then it generates crs $← Setup(1κ; rSetup), runs A(crs′) to obtain (x∗, π′∗ = (ct, π)) where
crs′ := (crs, vk, skf). Then it computes (K,σ) $← Extract(rSetup, π) and outputs ((K,x∗, ct), σ) as a forgery.

This completes the description of B. In the following, we show that B breaks the unforgeability of ΠCS. Let
VK[0,`] := (vk0, {vki,b}i∈[`],b∈{0,1}). Since we assume A breaks the soundness of Π′NIZK,

Pr[x∗ /∈ L ∧ Verify((VK[0,`], Y
∗), π) = >]

is non-negligible where Y ∗ = CS.Aggrgt({vk`+i,y∗
i
}i∈[n+|ct|]) and y∗ := (x∗, ct) ∈ {0, 1}n+|ct|. On the other hand,

by the extractability of ΠNIZK,

Pr[Verify((VK[0,`], Y
∗), π) = > ∧ ((VK[0,`], Y

∗), (K,σ)) /∈ R̃]

is negligible. Therefore

Pr[x∗ /∈ L ∧ Verify((VK[0,`], Y
∗), π) = > ∧ ((VK[0,`], Y

∗), (K,σ)) ∈ R̃]

is non-negligible. Suppose that this event happens. Since we have x∗ /∈ L, we have f(K,x∗, ct) = 0. On the
other hand, ((VK[0,`], Y

∗), (K,σ)) ∈ R̃ implies that we have K ∈ {0, 1}` ∧ CS.VrfyOnL(vk0, Z, σ) = > where
Z = CS.Aggrgt

(
CS.Aggrgt({vki,Ki}i∈[`]), Y ∗

)
, which implies CS.Vrfy(vk, (K,x∗, ct), σ) = >. This means that B

succeeds in breaking the unforgeability of ΠCS.

Theorem 5.2 (Zero-Knowledge). The above NIZK scheme Π′NIZK is computationally zero-knowledge if ΠNIZK is
computationally zero-knowledge and ΠSKE is CPA-secure.

Proof. Let (S1,S2) be the simulator for ΠNIZK. We describe the simulator (S ′1,S ′2) for Π′NIZK below.

S ′1(1κ): It generates (crs, τV) $← S1(1κ), (vk = (vk0, {vki,b}i∈[`+n+|ct|],b∈{0,1}),msk) $← CS.Setup(1κ, 1`+n+|ct|),
and skf

$← CS.KeyGen(msk, f), and outputs crs′ := (crs, vk, skf) and τ ′V := τV.

S ′2(crs′ := (crs, vk, skf), τ ′V = τV, x): It picks K $← SKE.KeyGen(1κ), computes ct $← SKE.Enc(K, 0m), Y :=
CS.Aggrgt({vk`+i,yi}i∈[n+|ct|])where y := (x, ct) ∈ {0, 1}n+|ct|, andπ $← S2(crs, τV, (vk0, {vki,b}i∈[`],b∈{0,1},
Y)), and outputs π′ := (ct, π).

This completes the description of the simulator. We prove that proofs simulated by the above simulator are computationally
indistinguishable from the honestly generated proofs. To prove this, we consider the following sequence of games
between a PPT adversary A and a challenger.

G0: In this game, proofs are generated honestly. Namely,

1. The challenger generates crs $← Setup(1κ), (vk = (vk0, {vki,b}i∈[`+n+|ct|],b∈{0,1}),msk) $← CS.Setup(1κ,
1`+n+|ct|), and skf

$← CS.KeyGen(msk, f), and gives crs′ := (crs, vk, skf) to A.
2. A is given (1κ, crs′) and is allowed to query O(crs′, ·, ·), which works as follows. When A queries

(x,w), if (x,w) /∈ R, then the oracle returns ⊥. Otherwise, it picks K $← SKE.KeyGen(1κ), computes
ct $← SKE.Enc(K,w), σ $← CS.Sign(skf , (K,x, ct)), Y := CS.Aggrgt({vk`+i,yi}i∈[n+|ct|]) where y :=
(x, ct) ∈ {0, 1}n+|ct|, and π $← Prove(crs, (vk0, {vki,b}i∈[`],b∈{0,1}, Y), (K,σ)), and returns a proof
π′ := (ct, π).

28

3. Finally, A returns a bit β.

G1: This game is identical to the previous game except that crs andπ are generated differently. Namely, the challenger gen-
erates (crs, τV) $← S1(1κ) at the beginning of the game, andπ is generated asπ $← S2(crs, τV, (vk0, {vki,b}i∈[`],b∈{0,1},
Y)) for each oracle query.

G2: This game is identical to the previous game except that ct is generated as ct $← SKE.Enc(K, 0m) for each oracle
query.

Let Ti be the event that A returns 1 in Gi for i = 0, 1, 2. It is easy to see that proofs are generated by S ′ = (S ′1,S ′2) in
G2. Thus we have to prove that |Pr[T0]− Pr[T2]| is negligible. The following lemmas are straightforward to prove.

Lemma 5.3. If ΠNIZK satisfies computational zero-knowledge w.r.t. the simulator S , then |Pr[T0]−Pr[T1]| = negl(κ).

Proof. We observe that every proof π given to A is created for a correct statement in both games. Therefore, the
indistinguishability of the games can be reduced to the zero-knowledge property of ΠNIZK.

Lemma 5.4. If ΠSKE is CPA-secure, then |Pr[T1]− Pr[T2]| = negl(κ).

Proof. Due to the change we introduced in G1, the secret keyK of SKE that is used to generate ct is not used anywhere
else in both games. therefore, the indistinguishability of these games can be reduced to the CPA security of ΠSKE.

This completes the proof of Theorem 5.2.

5.2 Perfect Zero-Knowledge Variant
Here, we give a variant of our NIZK given in Section 5.1 that satisfies perfect zero-knowledge. The construction
supports relations that are verified in NC1 and the proof size is |w| · poly(κ). This is the first pairing-based construction
of a NIZK with perfect zero-knowledge for a non-trivial calss of languages whose proof size is independent of the size
of the circuit that verifies the corresponding relation.
Dual-Mode NIZK. Before stating our construction, we define the notion of dual-mode NIZK, which is used as a
building block of our construction.

Definition 5.5 (Dual-Mode NIZK). A dual-mode NIZK for a language L corresponding to a relationR consists of 6
PPT algorithms Πdm

NIZK = (SimSetup,ExtSetup,Prove,Verify,Sim,Extract).

SimSetup(1κ)→ (crs, τSim): The setup algorithm in the hiding mode takes as input the security parameter 1κ and
outputs a common reference string crs and a simulation trapdoor τSim.

ExtSetup(1κ)→ (crs, τExtract): The setup algorithm in the binding mode takes as input the security parameter 1κ and
outputs a common reference string crs and a extraction trapdoor τExtract.

Prove(crs, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x, and a
witness w and outputs a proof π.

Verify(crs, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common reference string, a statement x, and a
proof π and outputs > to indicate acceptance of the proof and ⊥ otherwise.

Sim : (τSim, x)→ π: The simulation algorithm takes as input a simulation trapdoor τSim and a statement x and outputs
a simulated proof π.

Extract(τExtract, π)→ w: The extraction algorithm takes as input an extraction trapdoor τExtract and a proof π and
outputs an extracted witness w.

29

A NIZK proof ΠNIZK must satisfy the following requirements for all κ ∈ N, where the probabilities are taken over the
random choice of the algorithms.

Completeness. For all pairs (x,w) ∈ R, if we run (crs, τSim) $← SimSetup(1κ) (or (crs, τExtract)
$← ExtSetup(1κ)),

then we have

Pr[π $← Prove(crs, x, w) : Verify(crs, x, π) = >] = 1.

Perfect Simulation in Hiding Mode. For all unbounded-time adversaries A, if we run (crs, τSim) $← SimSetup(1κ),
then we have ∣∣∣Pr[AO0(crs,·,·)(1κ, crs) = 1]− Pr[AO1(τSim,·,·)(1κ, crs) = 1]

∣∣∣ = 0,

where O0(crs, x, w) outputs Prove(crs, x, w) if (x,w) ∈ R and ⊥ otherwise, and O1(τSim, x, w) outputs Sim(τSim, x)
if (x,w) ∈ R and ⊥ otherwise.

Perfect Extraction in Binding Mode. If we run (crs, τExtract)
$← ExtSetup(1κ), then for all x and π such that

Verify(crs, x, π) = >, we have

Pr[w $← Extract(τExtract, π) : (x,w) ∈ R] = 1.

(Non-Uniform) Mode Indistinguishability. For all non-uniform polynomial-time adversaries A,8 we have

∣∣∣Pr[(crs, τSim) $← SimSetup(1κ) : A(crs) = 1]− Pr[(crs, τExtract)
$← Extract(1κ) : A(crs) = 1]

∣∣∣ = negl(κ),

Lemma 5.6 ([GOS12, GS12]). There exists a dual-mode NIZK under the DLIN or SXDH assumption.

Construction. Now, we describe our construction of a NIZK with perfect zero-knowledge. Let L be an NP language
defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that
computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we have C(x,w) = 1 if and only
if (x,w) ∈ R.
The construction will be given by combining following ingredients.

• A constrained signature scheme (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy,CS.Aggrgt,CS.VrfyOnL) we con-
structed in Section 4. The scheme should support the circuit C.

• (Not necessarily compact) dual-mode NIZK scheme Πdm
NIZK = (SimSetup,ExtSetup,Prove,Verify,Sim,Extract)

for the language L̃ corresponding to the relation R̃ defined below:
((vk0, {vki,b}i∈[m],b∈{0,1}, X), (w, σ)) ∈ R̃ if and only if the followings are satisfied:

1. w ∈ {0, 1}m,
2. CS.VrfyOnL(vk0, Z, σ) = > where Z = CS.Aggrgt

(
X,CS.Aggrgt({vki,wi}i∈[m])

)
Our NIZK with perfect zero-knowledge Πpzk

NIZK = (Setuppzk,Provepzk,Verifypzk) is described as follows.

Setuppzk(1κ):

1. Generate (crs, τS) $← SimSetup(1κ).

2. Generate (vk = (vk0, {vki,b}i∈[n+m],b∈{0,1}),msk) $← CS.Setup(1κ, 1n+m).

3. Generate skC
$← CS.KeyGen(msk, C).

4. Output crs′ = (crs, vk, skC).
8We need security against non-uniform adversaries in the proof of soundness in our NIZK with perfect zero-knowledge.

30

Provepzk(crs′, x, w):

1. Abort ifR(x,w) = 0. Otherwise, do the following.
2. Parse crs′ → (crs, vk = (vk0, {vki,b}i∈[n+m],b∈{0,1}), skC).

3. Compute σ $← CS.Sign(skC , (x,w)).
4. Compute X := CS.Aggrgt({vki,xi}i∈[n]).

5. Compute π $← Prove((vk0, {vkn+i,b}i∈[m],b∈{0,1}, X), (w, σ)).
6. Output π.

Verifypzk(crs′, x, π):

1. Parse crs′ → (crs, vk = (vk0, {vki,b}i∈[n+m],b∈{0,1}).
2. Compute X := CS.Aggrgt({vki,xi}i∈[n]).
3. Output > if Verify((vk0, {vkn+i,b}i∈[m],b∈{0,1}, X), π) = > and otherwise ⊥.

Correctness. Suppose thatπ is an honestly generated proof on (x,w) ∈ R. Thenwehaveπ $← Prove((vk0, {vkn+i,b}i∈[m],b∈{0,1},

X), (w, σ)) where σ $← CS.Sign(skC , (x,w)) andX = CS.Aggrgt({vki,xi}i∈[n]). By the correctness of ΠCS, we have
CS.Vrfy(vk, (x,w), σ) = >, which is equivalent to

CS.VrfyOnL(vk0, Z, σ) = > where Z = CS.Aggrgt
(
X,CS.Aggrgt({vkn+i,wi}i∈[m])

)
.

Thereforewe have ((vk0, {vkn+i,b}i∈[m],b∈{0,1}, X), (w, σ)) ∈ R̃ and thusVerify((vk0, {vkn+i,b}i∈[m],b∈{0,1}, Z), π) =
> by the correctness of Πdm

NIZK.
Efficiency. Since the relation R̃ which is proven by using ΠNIZK can be verified by a poly(κ, |w|)-sized circuit
independently of x or |C|, the size of π is poly(κ, |w|) and independent of x or |C|. Similarly to the scheme in
Section 5.1, since the relation R̃ is well-suited to be proven by the Groth-Sahai proof, if we instantiate the scheme based
on the Groth-Sahai proof, then the protocol is quite efficient, and the proof size can be made linear in the witness size,
i.e., |π| = |w| · poly(κ). More precisely, by a similar calculation to the one done in Appendix B, a proof consists of
6|w|+ 14 elements of G1 and 6|w|+ 24 elements of G2 when instantiated under the SXDH assumption. We note that
it is not useful to extend the scheme to support all NP languages by expanding the witness since this would result in a
scheme with proof size |C| · poly(κ) which is no better than the Groth-Ostrovsky-Sahai NIZK.
Security. In the following, we prove the soundness and the perfect zero-knowledge property of Πpzk

NIZK.

Theorem 5.7 (Soundness). The above NIZK scheme Πpzk
NIZK satisfies computational (non-adaptive) soundness if Πdm

NIZK
satisfies perfect extractability in the binding mode, non-uniform mode-indistinguishability, and ΠCS is non-uniformly
unforgeable.

Proof. Suppose that Πpzk
NIZK does not satisfy computational non-adaptive soundness. Then there exists x∗ /∈ L and a non-

uniform polynomial-time adversaryA such that if we generate crs′ = (crs, vk, skC) $← Setuppzk(1κ) and π∗ $← A(crs′),
then Pr[Verifypzk(crs′, x∗, π∗) = >] is non-negligible. By the non-uniform mode-indistinguishability of Πdm

NIZK, if we
generate crs by ExtSetup(1κ) instead of SimSetup(1κ), Pr[Verifypzk(crs′, x∗, π∗) = >] is still non-negligible. Then
we construct a PPT adversary B that breaks the unforgeability of ΠCS as follows.

B(vk): It queries C to the key generation oracle to obtain skC . Then it generates (crs, τExt)
$← ExtSetup(1κ), runs

A(crs′) to obtain π∗ where crs′ := (crs, vk, skC). Then it computes (w, σ) $← Extract(τExt, π
∗) and outputs

((x∗, w), σ) as a forgery.

31

This completes the description of B. In the following, we show that B breaks the unforgeability of ΠCS. By
the perfect extractability of Πdm

NIZK in the binding mode, we have ((vk0, {vki,b}i∈[m],b∈{0,1}, X), (w, σ)) ∈ R̃
whenever Verifypzk(crs′, x∗, π∗) = >, which happens with non-negligible probability. In this case, we have
w ∈ {0, 1}m ∧ CS.VrfyOnL(vk0, Z, σ) = > where Z = CS.Aggrgt

(
X,CS.Aggrgt({vkn+i,wi}i∈[m])

)
, which im-

plies CS.Vrfy(vk, (x∗, w), σ) = >. On the other hand, we never have (x∗, w) ∈ R for any w ∈ {0, 1}m since x∗ /∈ L
and thus we have C(x∗, w) = 0. This means that B succeeds in breaking the unforgeability of ΠCS. This completes the
proof of Theorem 5.7.

Remark 5.8. In the above proof, we assumed non-uniform security for underlying primitives since we rely on non-uniform
reduction algorithms into which x∗ is hardwired.

Remark 5.9. It is not clear how to extend the above proof to the case of the adaptive soundness. The problem is that the
adversary’s advantage may non-negligibly differs when changing crs from hiding mode to binding mode even under the
mode-indistinguishability since the winning condition of the adaptive soundness is not efficiently verifiable. Indeed,
Pass [Pas13] ruled out a black-box reduction from the adaptive soundness of a NIZK with statistical (and thus also
perfect) zero-knowledge to any falsifiable assumption. On the other hand, we can prove a relaxed variant of the adaptive
soundness called the adpative culpable soundness similarly to [GOS12]. Intuitively, the adaptive culpable soundness
ensures the target statement x∗ as long as it provides a witness for x∗ /∈ L. With this relaxed definition, the winning
condition is efficiently verifiable, and the above problem does not occur. In this sense, our scheme satisfies essentially
the same level of soundness under the same assumption as that of Groth-Ostrovsky-Sahai proof [GOS12].

Theorem 5.10 (Perfect Zero-Knowledge). The above NIZK scheme Πpzk
NIZK is perfectly zero-knowledge if Πdm

NIZK is
perfectly zero-knowledge in the hiding mode.

Proof. We describe the simulator (S ′1,S ′2) for Πpzk
NIZK below.

S ′1(1κ): It generates (crs, τSim) $← SimSetup(1κ), (vk = (vk0, {vki,b}i∈[n+m],b∈{0,1}),msk) $← CS.Setup(1κ, 1n+m),
and skC

$← CS.KeyGen(msk, C), and outputs crs′ := (crs, vk, skC) and τ ′V := τSim.

S ′2(crs′ := (crs, vk, skC), τ ′V = τSim, x): It first computes X := CS.Aggrgt({vki,xi}i∈[n]). It then computes π $←
Sim(τSim, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X)) and outputs π.

This completes the description of the simulator. Since we have (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X) ∈ L̃ whenever x ∈ L
by the correctness of ΠCS, the proof generated by the above simulator is perfectly indistinguishable from the real one by
the perfect zero-knowledgeness of Πdm

NIZK in the hiding mode. This completes the proof of Theorem 5.10.

6 UC-NIZK
6.1 UC Framework
Here, we briefly recall the UC framework. We refer to [Can01] for the full descriptions. The following description is
taken verbatim from [KNYY19b]. Readers familiar with the UC framework can safely skip this section.

The UC framework. The UC-security is formalized by indistinguishability of real and ideal worlds. In the real world,
parties P1, ..., PN execute a protocol Π, and an adversary A may corrupt some of them. We say that A is adaptive if it
adaptively decides which party to corrupt. In the ideal world, dummy parties P̃1, ..., P̃N execute an ideal functionality
F , and a simulator S may corrupt some of them. In addition to (dummy) parties and an adversary/simulator, we
consider another entity Z which tries to distinguish these two worlds. In the real (resp. ideal) world, an environment Z ,
which takes the security parameter 1κ and an auxiliary input z as input, can arbitrarily interact with A (resp. S), and it
can also feed any input to any uncorrupted party (resp. dummy party) to let it honestly run the protocol Π (resp. the
ideal functionality) on the input and report the output to Z . Finally, Z outputs a bit as its guess of in which world it
is. We denote the output distribution of Z with auxiliary input z in the real world by REALΠ,A,Z(1κ, z), and denote
the ensemble {REALΠ,A,Z(1κ, z)}κ∈N,z∈{0,1}∗ by REALΠ,A,Z Similarly, we denote the output distribution of Z with

32

auxiliary input z in the ideal world by IDEALF,S,Z(1κ, z), and denote the ensemble {IDEALF,S,Z(1κ, z)}κ∈N,z∈{0,1}∗
by IDEALF,S,Z .

Definition 6.1. Let X = {X(1κ, z)}κ∈N,z∈{0,1}∗ and Y = {Y (1κ, z)}κ∈N,z∈{0,1}∗ be two distribution ensembles over
{0, 1}. We say that X and Y are indistinguishable (denoted by X ≈ Y) if for any c, d ∈ N, there exists κ0 ∈ N such
that we have |Pr[X(1κ, z) = 1]− Pr[Y (1κ, z) = 1]| < κ−c for all κ > κ0 and all z ∈ {0, 1}≤κd .

Definition 6.2. We say that Π UC-realizes F if for all PPT adversaries A, there exists a PPT simulator S such that for
all PPT environment Z 9, we have REALΠ,A,Z ≈ IDEALF,S,Z .

Hybrid models. We often construct a protocol in a setting where (multiple copies of) an ideal functionality F is
available for each party. We call such a model F -hybrid model. Definition 6.2 can be extended to define the notion of a
protocol Π securely realizing a functionality G in the F-hybrid model.

Compositions and universal composition theorem. For a protocol ρ in the F-hybrid model, and a protocol Π that
realizes F (in the standard model), we can naturally define a composed protocol ρΠ in the standard model, in which
calls for F by ρ are responded by Π instead of F . Canetti [Can01] proved the following universal composition theorem.

Theorem 6.3 ([Can01]). If ρ UC-realizes G in the F-hybrid model and Π UC-realizes F , then ρΠ UC-realizes G.

Remark 6.4 (Static/Adaptive Security and Erasure). In some works of the UC-security, one considers a weaker security
called the static security, which only considers adversaries that declare which party to corrupt at the beginning of the
experiment. Also, one often considers the adaptive UC-security in the setting where parties can securely erase their
internal state information so that an adversary that later corrupts the party cannot see the erased information. In this
paper, we consider the strongest UC-security against adaptive adversaries without assuming secure erasures.

6.2 Ideal Functionalities.
Here, we recall ideal functionalities of CRS and NIZK. The ideal functionality of CRS denoted by FDcrs is given in
Figure 3, and that of NIZK denoted by FRNIZK is given in Figure 4. The descriptions here are taken verbatim from
[CsW19]. The ideal functionality FRNIZK captures correctness, soundness, and zero-knowledge as roughly explained
below:

• Correctness is captured since all proofs generated by FRNIZK are stored and thus accepted.

• Soundness is captured since if a proof π on a statement x that has not been generated by FRNIZK passes the
verification, then S should succeed in extracting a valid witness w for the statement x, which is possible only
when x ∈ L where L = {x|∃w s.t. (x,w) ∈ R}.

• Zero-knowledge is captured since S generates a proof π without knowing a witness w.

6.3 Construction
Here, we give our construction of an adaptive UC-NIZK scheme. LetR be any relation over {0, 1}n × {0, 1}m verified
by a circuit C (i.e., we have C(x,w) = 1 if and only if (x,w) ∈ R and 0 otherwise). We construct a UC-NIZK protocol
in the (FR̃NIZK,FDCS

crs)-hybrid model based on the following building blocks where R̃, DCS and DEQCom are defined
below:

• A constrained signature scheme CS = (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy,CS.Aggrgt,CS.VrfyOnL) with
decomposable online-offline efficiency as defined in Definition 4.2. The distribution DCS is the distribution of
(vk, skC) where (vk,msk) $← CS.Setup(1κ), skC

$← CS.KeyGen(msk, C).

9Strictly speaking, Z is limited to be a balanced one, which roughly means that Z should not give too much inputs to the adversary compared to
inputs given to the other parties. See [Can00] for more details.

33

Ideal Functionality FDcrs
FDcrs proceeds as follows, running with parties P1, ..., PN and an adversary S , and parametrized by a distribution D.

• Upon receiving a message (init, sid) from party Pi, do:

1. If there is no value (sid, crs) recorded, then sample crs $← D and record it.
2. Send (sid, crs) as a public delayed output to Pi.a

a“Public delayed output” means that the value is first sent to S, and then sent to Pi after the permission by S. See [Can01] for details.

Figure 3: The common reference string functionality

Ideal Functionality FRNIZK
FRNIZK proceeds as follows, running with parties P1, ..., PN and an adversary S, and parametrized by a relationR.

Proof: On input (prove, sid, x, w) from a party Pi, ignore if (x,w) /∈ R. Send (prove, Pi, sid, x) to S and wait for
(proof, sid, π). Upon receiving the answer store (sid, x, π) and send (proof, sid, π) to Pi.

Verification: On input (verify, sid, x, π) from a party Pj check whether (sid, x, π) is stored. If not send
(verify, Pj , sid, x, π) to S and wait for an answer (witness, w). Upon receiving the answer, check whether
(x,w) ∈ R and in that case, store (sid, x, π). If (sid, x, π) has been stored return (verification, sid, x, π,>)
to Pj , else return (verification, sid, x, π,⊥) to Pj .

Figure 4: The NIZK functionality

• A strongly unforgeable OTS scheme OTS = (OTS.KeyGen,OTS.Sign,OTS.Verify).

• The relation R̃ is defined as follows:
((vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), (w, σCS)) ∈ R̃ if and only if the followings are satisfied:

1. w ∈ {0, 1}m

2. CS.VrfyOnL(vk0, Z, σCS) = > where Z = CS.Aggrgt(X,CS.Aggrgt({vkn+i,wi}i∈[m]))

Our UC-NIZK scheme ΠUCNIZK in the (FR̃NIZK,FDCS
crs)-hybrid model is described in Figure 5. Here, we remark that

we describe the scheme as if there is a common reference string available for every party. Strictly speaking, we should
implement this by using the ideal functionality FDCS

crs . For notational simplicity, we omit this, and just think that a
common reference string is chosen at the beginning of the protocol execution and published for every party.
Security. The following theorem asserts the security of ΠUCNIZK.

Theorem 6.5. ΠUCNIZK UC-realizes FRNIZK in the (FR̃NIZK,FDCS
crs)-hybrid model tolerating adaptive, malicious adver-

saries.

Proof. The proof follows a similar line to existing works that constructed UC-NIZKs [GGI+15, CsW19, KNYY19b].
We note that many parts of the proof are taken verbatim from [KNYY19b] though there are some technical differences
since we rely on different primitives. Let A be any PPT adaptive adversary. What we have to do is to construct a
simulator that interacts with dummy parties P̃1, ..., P̃N and the ideal functionality FRNIZK such that no environment Z
can distinguish the simulated execution from the real execution of A that interacts with real parties P1, ..., PN who run
the real protocol ΠUCNIZK. We first consider a simulator SReal that perfectly simulates the real execution by using an
extended capability that it can know inputs to the ideal functionality FRNIZK and control its output. (Note that this is not
allowed in the ideal world. We consider the execution of SReal just as a mental experiment.) Then we gradually modify
the simulator without letting the environment notice it with a non-negligible advantage, and finally present a legitimate
simulator SSim in the ideal world. We consider the following sequence of simulators.

34

Protocol ΠUCNIZK

• Common reference string: (vk = (vk0, {vki,b}i∈[n+m],b∈{0,1}), skC) where (vk,msk) $← CS.Setup(1κ) and
skC

$← CS.KeyGen(msk, C).

• Upon receiving (prove, sid, x, w), a party proceeds as follows:

1. Compute σCS
$← CS.Sign(skC , (x,w))

2. Compute X := CS.Aggrgt({vki,xi}i∈[n]).

3. Generate (vkOTS, sigkOTS) $← OTS.KeyGen(1κ).

4. Send (prove, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), (w, σCS)) to FR̃NIZK.
5. Wait for the answer (proof, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), πNIZK).

6. Compute σOTS
$← OTS.Sign(sigkOTS, (x, πNIZK, vkOTS)).

7. Return (proof, sid, x, (πNIZK, vkOTS, σOTS)).

• Upon receiving (verify, sid, x, π), a party proceeds as follows:

1. Parse π as (πNIZK, vkOTS, σOTS).
2. Verify that OTS.Verify(vkOTS, (x, πNIZK, vkOTS), σOTS) = >. If not return

(verification, sid, x, πNIZK,⊥).
3. Compute X := CS.Aggrgt({vki,xi}i∈[n]).

4. Send (verify, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), πNIZK) to FR̃NIZK.
5. Wait for the answer (verification, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), πNIZK, b).
6. Return (verification, sid, x, π, b).

Figure 5: Adaptively secure UC-NIZK protocol

35

SReal: As noted above, SReal can know inputs to the ideal functionality FRNIZK and control its output. The simulator
SReal along with dummy parties P̃1, ..., P̃N perfectly simulates the execution between A and P1, ...PN who run
ΠUCNIZK by using these capabilities. Specifically, it works as follows:

• To simulate the common reference string, SReal first generates (vk,msk) $← CS.Setup(1κ) and skC
$←

CS.KeyGen(msk, C), and sets (vk = (vk0, {vki,b}i∈[n+m],b∈{0,1}), skC) as a common reference string
used throughout the execution.

• When SReal receives (prove, Pi, sid, x) from the ideal functionality FRNIZK, it must be the case that honest
P̃i has sent (prove, sid, x, w) to FRNIZK such that (x,w) ∈ R. By using the capability to see the input
(prove, sid, x, w), SReal honestly runs the proving algorithm of ΠUCNIZK on input (prove, sid, x, w) to
generate a proof π, and returns (prove, sid, π) to FRNIZK.

• When SReal receives (verify, Pj , sid, x, π) from the ideal functionality FRNIZK, it must be the case that P̃j has
sent (prove, sid, x, π) to FRNIZK and π is not a proof that has been generated by the ideal functionality FRNIZK.
SReal honestly runs the protocol ΠUCNIZK on input (verify, sid, x, π) to generate (verification, sid, x, π, b),
and instructs FRNIZK to return (verification, sid, x, π, b) to P̃j by using the capability to control the output of
FRNIZK. Note that SReal does not give a witness w to FRNIZK. This is not needed since SReal has the capability
to control the behavior of FRNIZK.

• To simulate the interaction between A and Z , SReal just internally simulates A, and forwards all communi-
cations between A and Z . Whenever A corrupts a party Pi, SReal corrupts the corresponding dummy party
P̃i, and simulate the communication between A and Pi. We note that since all proofs output by FRNIZK are
actually generated by SReal, it knows all internal coins Pi is supposed to know. Therefore it can perfectly
simulate the internal states of corrupted parties that are needed for simulating the communication between
A and Pi.

Lemma 6.6. If ΠCS and ΠOTS are correct, then we have REALΠUCNIZK,A,Z ≈ IDEALFRNIZK,SReal,Z .

Proof. The only difference between the real execution of A interacting with P1, ..., PN and the execution of SReal
interacting with P̃1, ..., P̃N from the view of Z is that in the latter, a proof generated through FRNIZK are always accepted
by FRNIZK (i.e., it returns (verification, ?, ?, ?,>)) without checking the validity of the proofs by using the actual
verification protocol of ΠUCNIZK. On the other hand, it is easy to see that an honestly generated proof is accepted with
probability 1 in ΠUCNIZK by the correctness of ΠCS and ΠOTS and the functionality of FR̃NIZK. Therefore these two
distributions are perfectly indistinguishable.

SExt: This simulatorworks similarly toSReal except theway of simulating verificationwhen it receives (verify, Pj , sid, x, π)
from the ideal functionality FRNIZK. Unlike SReal, SExt does not use the power of controlling the be-
havior of FRNIZK. It then returns some (witness, w) whenever (verify, Pj , sid, x, π) is sent from FRNIZK as
in the description of FRNIZK as follows: Upon receiving (verify, Pj , sid, x, π), SExt honestly runs the ver-
ification algorithm of ΠUCNIZK on input (verify, sid, x, π) to obtain (verification, sid, x, π, b). If b = ⊥,
then it returns (witness,⊥) to FRNIZK. Otherwise, it parses π = (πNIZK, vkOTS, σOTS), computes X :=
CS.Aggrgt({vki,xi}i∈[n]), gives (verification, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), πNIZK) to A, and
waits for the response (witness, (w, σCS)) from A. Then SExt returns (witness, w) to FRNIZK.

Lemma6.7. IfΠOTS is strongly unforgeable andΠCS is unforgeable, thenwe haveIDEALFRNIZK,SReal,Z ≈ IDEALFRNIZK,SExt,Z .

Proof. The differences between the executions of SReal and SExt occurs only when an honest party sends (verify, sid, x, π)
such that (proof, sid, x, π) has not been generated through FRNIZK, π is a valid proof for the statement x, and (x,w) /∈ R
where w is the first component of the witness extracted from πNIZK by A. We prove that this happens with negligible
probability. If (proof, sid, x, π = (πNIZK, vkOTS, σOTS)) has not been generated through FRNIZK, there are the following
two possible cases:

1. No proof of the form (proof, sid, ?, (πNIZK, vkOTS, ?)) has been generated through FRNIZK.

2. A proof (proof, sid, x′, (πNIZK, vkOTS, σ
′
OTS)) such that (x′, σ′OTS) 6= (x, σOTS) has been generated through

FRNIZK.

36

In the second case, σOTS is a valid signature on the message (x, πNIZK, vkOTS) with negligible probability due
to the strong one-time security of ΠOTS, and thus π is not a valid proof for the statement x. Since we are
interested in the case that π is a valid proof for the statement x, we consider the first case in the following.
If π = (πNIZK, vkOTS, σOTS) is a valid proof for the statement x, then πNIZK is a valid proof for the statement
(vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS) by the construction of ΠUCNIZK where X = CS.Aggrgt({vki,xi}i∈[n]). On
the other hand, a proof (proof, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), πNIZK) has never been generated through
FR̃NIZK since this happens only when a proof of the form (proof, sid, ?, (πNIZK, vkOTS, ?)) is generated through
FRNIZK. This means that A must succeed in extracting (w, σCS) such that ((vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS),
(w, σCS)) ∈ R̃ by the definition of ideal functionality FR̃NIZK. Especially, we have CS.VrfyOnL(vk0, Z, σCS) = >
where Z = CS.Aggrgt(X,CS.Aggrgt({vkn+i,wi}i∈[m])), which implies CS.Vrfy(vk, (x,w), σCS) = >. Then we
have (x,w) ∈ R except a negligible probability since otherwise we succeed in breaking the unforgeability of ΠCS by
outputting ((x,w), σCS) as a forgery. (Remark that we have C(x,w) = 0 if (x,w) /∈ R.) In summary, a difference
between executions of these two simulators occurs with negligible probability.

SSim: This simulator works similarly to SExt except the way of simulating a proof when it receives (prove, sid, x) from
the ideal functionality FRNIZK and the way of simulating internal coins of corrupted parties.

• When it receives (prove, Pi, sid, x), it computesX := CS.Aggrgt({vki,xi}i∈[n]), generates (vkOTS, sigkOTS)
$← OTS.KeyGen(1κ), and sends (prove, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS)) to A, which returns

(proof, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS), πNIZK). Then it computesσOTS
$← OTS.Sign(sigkOTS,

(x, πNIZK, vkOTS)) and returns (proof, sid, x, (πNIZK, vkOTS, σOTS)) to FRNIZK. SSim stores all randomness
used in the above simulation (i.e., randomness used in OTS.KeyGen and OTS.Sign) along with the
corresponding party Pi, session ID sid, the statement x, and the proof π = (πNIZK, vkOTS, σOTS).

• When the adversary A corrupts a party Pi, it corrupts P̃i who has generated k proofs π1, ..., πk. Then it
knows from the internal state of P̃j that πj was generated on an input (xj , wj) for each j ∈ [k]. For each
j ∈ [k], SSim computes σCS,j

$← CS.Sign(skC , (xj , wj)). Now, SSim knows the all internal information
that is supposed to be held by Pi (i.e., wj , σCS,j and all randomness used in OTS.KeyGen, OTS.Sign, and
CS.Sign for generating πj and σCS,j). It uses this information to simulate the interaction between A and the
corrupted party Pi.

Lemma 6.8. We have IDEALFRNIZK,SExt,Z ≈ IDEALFRNIZK,SSim,Z .

Proof. The only difference between simulations by SExt and SSim is that SExt generates πNIZK through the ideal
functionality FR̃NIZK as specified in the proving algorithm of ΠUCNIZK whereas SSim generates πNIZK by sending
(prove, sid, (vk0, {vkn+i,b}i∈[m],b∈{0,1}, X, vkOTS)) to the adversaryA. They are exactly identical from the view of the
environment since the proving functionality of FR̃NIZK also generates πNIZK in the latter way as is seen in the definition
of FR̃NIZK.

By combining the above lemmas, we have REALΠUCNIZK,A,Z ≈ IDEALFRNIZK,SSim,Z . Here, we notice that SSim no
longer uses any extended capability, and it is a legitimate simulator in the ideal world. This concludes the proof of
Theorem 6.5

Acknowledgement. We thank anonymous reviewers of Eurocrypt 2020 for their helpful comments. The first and the
third authors were supported by JST CREST Grant Number JPMJCR19F6. The third author was supported by JSPS
KAKENHI Grant Number 16K16068.

References
[Abu13] Hamza Abusalah. Generic instantiations of the hidden bits model for non-interactive zero-knowledge

proofs for NP, 2013. Master’s thesis, RWTH-Aachen University. (Cited on page 3.)

37

[ALdP11] Nuttapong Attrapadung, Benoît Libert, and Elie de Panafieu. Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 90–108. Springer, Heidelberg, March 2011.
(Cited on page 5.)

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001. (Cited
on page 5.)

[BF11] Dan Boneh and DavidMandell Freeman. Homomorphic signatures for polynomial functions. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, Heidelberg, May
2011. (Cited on page 43.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988. (Cited on page 1.)

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation under
DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 509–539. Springer, Heidelberg, August 2016. (Cited on page 27.)

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistin-
guishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 401–427. Springer, Heidelberg, March 2015. (Cited on page 7.)

[BPW16] Nir Bitansky, Omer Paneth, andDanielWichs. Perfect structure on the edge of chaos - trapdoor permutations
from indistinguishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 474–502. Springer, Heidelberg, January 2016. (Cited on page 7.)

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge based on any
trapdoor permutation. Journal of Cryptology, 9(3):149–166, June 1996. (Cited on page 7.)

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067. (Cited on page 33.)

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001. (Cited on page 32, 33, 34.)

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019. (Cited on page 7.)

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation intractability
from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.
(Cited on page 7.)

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. SIAM J. Comput., 14(4):833–839,
1985. (Cited on page 42, 43.)

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. Journal of
Cryptology, 20(3):265–294, July 2007. (Cited on page 3.)

[CL18] Ran Canetti and Amit Lichtenberg. Certifying trapdoor permutations, revisited. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 476–506. Springer,
Heidelberg, November 2018. (Cited on page 7.)

38

http://eprint.iacr.org/2000/067

[CsW19] Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with sublinear communication
complexity. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume
11693 of LNCS, pages 30–60. Springer, Heidelberg, August 2019. (Cited on page 4, 33, 34.)

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs with
applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014. (Cited on page 2.)

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for
Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013. (Cited on page 8.)

[FJP15] Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipolynomial reduction for generalized
selective decryption on trees. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 601–620. Springer, Heidelberg, August 2015. (Cited on page 5, 12.)

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive security of
constrained PRFs. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of
LNCS, pages 82–101. Springer, Heidelberg, December 2014. (Cited on page 5, 12.)

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under general
assumptions. SIAM J. Comput., 29(1):1–28, 1999. (Cited on page 3, 7.)

[Gen09] Craig Gentry. A fully homomorphic encryption scheme, 2009. Ph.D. thesis, Stanford University. (Cited
on page 2.)

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based encryption for
circuits from multilinear maps. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 479–499. Springer, Heidelberg, August 2013. (Cited on page 12.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882–929,
2016. (Cited on page 27.)

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith. Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. Journal of Cryptology,
28(4):820–843, October 2015. (Cited on page 2, 3, 4, 34.)

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. (Cited on page 2, 7.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989. (Cited on page 1.)

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal of
Cryptology, 7(1):1–32, December 1994. (Cited on page 2.)

[Gol04] Oded Goldreich. Foundations of cryptography: Volume 2, basic applications. 2004. (Cited on page 3, 7.)

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J.
ACM, 59(3):11:1–11:35, 2012. (Cited on page 2, 3, 4, 7, 30, 32.)

[Gro10a] Jens Groth. Short non-interactive zero-knowledge proofs. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 341–358. Springer, Heidelberg, December 2010. (Cited on page 2, 3, 7.)

39

[Gro10b] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010. (Cited
on page 2, 7.)

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016. (Cited on page 2.)

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,
41(5):1193–1232, 2012. (Cited on page 2, 7, 30, 45.)

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477.
ACM Press, June 2015. (Cited on page 42, 43, 45.)

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press,
June 2011. (Cited on page 2.)

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs. Adaptively
secure garbled circuits from one-way functions. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, August 2016.
(Cited on page 5, 12.)

[HW13] Susan Hohenberger and BrentWaters. Attribute-based encryption with fast decryption. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 162–179. Springer, Heidelberg,
February / March 2013. (Cited on page 5.)

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect randomizing
polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380 of LNCS, pages 244–256.
Springer, Heidelberg, July 2002. (Cited on page 13.)

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak, and Daniel Wichs.
Be adaptive, avoid overcommitting. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 133–163. Springer, Heidelberg, August 2017. (Cited on page 5, 12, 13.)

[JR14] Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-size NIZK proofs for
linear subspaces. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 295–312. Springer, Heidelberg, August 2014. (Cited on page 2.)

[JR17] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. Journal of
Cryptology, 30(4):1116–1156, October 2017. (Cited on page 2.)

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 433–458. Springer, Heidelberg,
October / November 2016. (Cited on page 5, 12.)

[KNYY19a] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated verifier/prover
and preprocessing NIZKs from diffie-hellman assumptions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651. Springer, Heidelberg, May 2019.
(Cited on page 2, 3, 4, 5, 7, 8, 42.)

[KNYY19b] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Exploring constructions of
compact NIZKs from various assumptions. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 639–669. Springer, Heidelberg, August 2019.
(Cited on page 2, 3, 4, 7, 10, 27, 32, 34, 45.)

40

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security of
Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 224–251. Springer, Heidelberg, August 2017. (Cited on page 7.)

[KW15] Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015. (Cited on page 2.)

[KW18] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 733–765. Springer,
Heidelberg, August 2018. (Cited on page 3, 4.)

[KW19] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NCs1 from k-lin. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 3–33. Springer,
Heidelberg, May 2019. (Cited on page 5, 11, 12, 13, 14, 15, 16, 19, 20.)

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189. Springer,
Heidelberg, March 2012. (Cited on page 2, 7.)

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In Aggelos Kiayias,
editor, CT-RSA 2011, volume 6558 of LNCS, pages 376–392. Springer, Heidelberg, February 2011. (Cited
on page 4.)

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 96–109. Springer, Heidelberg, August 2003. (Cited on
page 2.)

[NS98] David Naccache and Jacques Stern. A new public key cryptosystem based on higher residues. In Li Gong
and Michael K. Reiter, editors, ACM CCS 98, pages 59–66. ACM Press, November 1998. (Cited on
page 2.)

[OT11] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-monotone
predicates in the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, PKC 2011, volume 6571 of LNCS, pages 35–52. Springer, Heidelberg, March 2011. (Cited on
page 5.)

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable commitments. In
Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 334–354. Springer, Heidelberg, March 2013.
(Cited on page 32.)

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 89–114. Springer, Heidelberg, August 2019. (Cited on page 7.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. (Cited
on page 7.)

[Tsa17] Rotem Tsabary. An equivalence between attribute-based signatures and homomorphic signatures, and
new constructions for both. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678
of LNCS, pages 489–518. Springer, Heidelberg, November 2017. (Cited on page 3, 42, 44.)

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). pages 196–203, 1976. (Cited on page 42.)

41

[VNS+03] V. Vinod, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo Kim. On the power of
computational secret sharing. In Thomas Johansson and Subhamoy Maitra, editors, INDOCRYPT 2003,
volume 2904 of LNCS, pages 162–176. Springer, Heidelberg, December 2003. (Cited on page 13.)

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidelberg,
August 2009. (Cited on page 7.)

A Homomorphic Signature from CS
Here, we give a construction of homomorphic signature (HomSig) scheme fromCS. To do so, we apply the CS-to-HomSig
conversion proposed by Tsabary [Tsa17]. Our version of the conversion here is slightly different from hers in that we
sign on circuits rather than signing on messages (or data). We provide discussion on this difference in Remark A.4. We
note that from a theoretical stand point, the two formalizations are equivalent (up to some small differences) since one
can always view circuits and messages interchangeably using universal circuits [Val76, CH85].

A.1 Definition
In the following, we only define single-data HomSig for simplicity. The definition for the multi-data version can be
found in [GVW15, KNYY19a].

Syntax. Let {{0, 1}`(κ)}κ∈N be a family of message spaces. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of
polynomial sized circuits with domain {0, 1}`(κ) and range {0, 1}.10 Below, we omit the subscripts for simplicity.

Definition A.1 (Homomorphic Signatures). A homomorphic signature (HomSig) scheme ΠHS with message space
{0, 1}` for the circuit class C is defined by the following five algorithms:

HS.KeyGen(1κ, 1`)→ (pk, sk): The key generation algorithm takes as input the security parameter 1κ and the message
length 1` and outputs a public verification key pk and a signing key sk.

HS.Sign(sk, C)→ σ: The signing algorithm takes as input a signing key sk and a circuit C ∈ C, and outputs a
signature σ.

HS.Eval(pk, C,x,σ)→ σ: The signature-evaluation algorithm takes as input a verification key pk, a circuit C :
{0, 1}` → {0, 1} in C, messages x ∈ {0, 1}`, and a signature σ and outputs an evaluated signature σ.

HS.Verify(pk,x, z, σ)→ > or ⊥: The verification algorithm splits into a pair of algorithms (HS.VerifyOffL,HS.VerifyOnL):

- HS.VerifyOffL(pk,x) → pkx : The offline verification algorithm takes as input a verification key pk,
messages x ∈ {0, 1}`, and outputs an evaluated verification key pkx.

- HS.VerifyOnL(pk′, z, σ) → > or ⊥ : The online verification algorithm takes as input an (evaluated)
verification key pk′, a message z ∈ {0, 1}, and a evaluated signature σ, and outputs > if the signature is
valid and outputs ⊥ otherwise.

Correctness. We define correctness for evaluated messages.

Definition A.2 (Correctness).We say a homomorphic signature scheme ΠHS is correct, if for all κ ∈ N, ` ∈ poly(κ),
messages x = (x1, · · · , x`) ∈ {0, 1}`, circuits C ∈ C, and (pk, sk) ∈ HS.KeyGen(1κ, 1`) we have

Pr[HS.Sign(sk, C)→ σ; HS.Eval(pk, C,x,σ)→ σ : HS.Verify(pk,x, C(x), σ) = >] = 1,

where the probability is taken over the randomness used by all of the algorithms.

10 We can consider more general message and circuit classes, however, we consider this simplistic version to match the CS definition we provided.

42

Unforgeability. We now define unforgeability for a HomSig scheme. The security notion is defined formally by the
following game between a challenger and an adversary A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends 1` to the challenger. Then the
challenger generates a signing-verification key pair (pk, sk) $← HS.KeyGen(1κ, 1`) and gives pk to A.

Signing Query: The adversaryA submits a circuit C ∈ C to be signed. The challenger responds by creating a signature
σ

$← HS.Sign(sk, C) and sends σ to A. Here, A can query a circuit only once.

Forgery: Then the adversary A outputs messages x?, a message z? ∈ {0, 1}, and a signature σ? as the forgery. We say
that A wins the game if:

1. x? ∈ {0, 1}`; and
2. C(x?) 6= z?; and
3. HS.Verify(pk,x?, z?, σ?) = >.

The advantage of an adversary winning the above game is defined by Pr[A wins], where the probability is taken over
the randomness used by the challenger and the adversary.

Definition A.3 (Unforgeability). A homomorphic signature scheme ΠHS is said to satisfy unforgeability if for any PPT
adversary A the advantage Pr[A wins] of the above game is negligible.

Compactness and Offline/Online Efficiency. We say a HomSig scheme ΠHS is compact if there exists a universal
polynomial poly(·) such that the evaluated signature σ (output by HS.Eval) satisfies |σ| ≤ poly(κ). Moreover,
we say ΠHS is online-offline efficient if there exists a universal polynomial poly(·) such that the running time of
HS.VerifyOnL is poly(κ). Here, we allow the running time of the offline phase, i.e., running HS.VerifyOffL, to depend
on the size of the messages |x|. In particular, once the messages x is fixed and we preprocess the evaluation key
pkx

$← HS.VerifyOffL(pk,x), then we can verify an evaluated signature with respect to the messages x and any circuit
C in time independent of |C| or |x|.

Remark A.4 (Comparison with HS signing on messages). It is common in the literatures to define the signing algorithm
HS.Sign with respect to messages x rather than a circuit C, e.g., [BF11, GVW15]. In many natural applications, e.g., a
client wants to outsource a computation of many algorithms on a fixed dataset, it may be more convenient to work with
our formalization of HS. However, in either cases, we note that the two formalizations are equivalent from a theoretical
point view in that both definitions are interchangeable using universal circuits. Namely, given messages x, we can view
it as a universal circuit U(·,x) which takes as input a circuit C (represented as say bit strings) output C(x). Since Cook
and Hoover [CH85] showed that U(·,x) can be only a constant times deeper than that of C, this conversion can be
made without incurring any strong restrictions on the circuit class supported by the underlying HS. A shortcoming of
this approach is that the signature size for the message x depends on the description size of C since the input-length of
the universal circuit U(·,x) should be taken as large as the description size of C. On the other hand, compactness for an
evaluated signature is preserved.

A.2 Construction of Homomorphic Signatures from CS
We construct a HomSig scheme with message space {0, 1}` for circuit class C = {C : {0, 1}` → {0, 1}} from a
CS scheme. Concretely, let ΠCS = (CS.Setup,CS.KeyGen,CS.Sign,CS.Vrfy) be a CS scheme with message space
{0, 1}`+1 for a circuit class C̃ defined as

C̃ = {C̃ : {0, 1}`+1 → {0, 1} | for all C ∈ C, (x, z) ∈ {0, 1}` × {0, 1},we have C̃(x, z) =
(
C(x) ?= z

)
}.

More specifically, C̃ is a set of circuits with input length `+1 such that a circuit C̃ ∈ C̃ on input (x, z) ∈ {0, 1}`×{0, 1}
outputs 1 if and only if the associated circuit C ∈ C outputs z on input x. Since (z′ ?= z) can be expressed by a
constant-sized circuit, every circuit in C̃ has depth and size bounded by d+O(1) and s+O(1) respectively, where d

43

and s denotes the maximal depth and size of the circuits in C respectively. In particular, if C is in NC1, then so is C̃.
Further, assume the CS scheme has decomposable online-offline efficiency (see Definition 4.2), and in particular, we
have algorithms (CS.Aggrgt,CS.VrfyOnL).

Our construction of offline-online efficient HomSig with message space {0, 1}` for circuit class C is provided as
follows:

HS.KeyGen(1κ, 1`): On input the security parameter 1κ and themessage length1`, generate (msk, vk) $← CS.Setup(1κ, 1`),
and output pk := vk and sk := msk.

HS.Sign(sk, C): On input sk = msk and C ∈ C, compute the associated circuit C̃ ∈ C̃ defined above. I.e.,
C̃(x′, z′) =

(
C(x′) ?= z′

)
for all (x′, z′) ∈ {0, 1}` × {0, 1}. Then compute skC̃

$← CS.KeyGen(msk, C̃), and
output σ = skC̃ .

HS.Eval(pk, C,x,σ): On input C ∈ C, x ∈ {0, 1}`, and σ = skC̃ , compute z = C(x). Then compute σCS
$←

CS.Sign(skC̃ ,x‖z), and output σ = σCS. Here ·‖· denotes concatenation of bit strings.

HS.Verify(pk,x, z,σ): Run the following algorithms in order:

- HS.VerifyOffL(pk,x) : Parse pk = vk → (vk0, {vki,b}i∈[n+1],b∈{0,1}) and compute vkx = CS.Aggrgt(
{vki,xi}i∈[n]) where xi denotes the i-th bit of x. Finally, output pkx = (vk0, vkx, {vkn+1,b}b∈{0,1}).

- HS.VerifyOnL(pk′, z, σ) : Parse pk′ → (vk0, vkx, {vkn+1,b}b∈{0,1}) and σ → σCS and compute vkx‖z =
CS.Aggrgt(vkx, vkn+1,z). Then output whatever returned by running CS.VrfyOnL(vk0, vkx‖z, σCS).

Security and correctness of the scheme directly follow from the result by Tsabary [Tsa17]. However, since we adapt
slightly different syntax from hers, we show the proofs for the sake of completeness.
Correctness.

Theorem A.5 (Correctness). If ΠCS satisfies correctness, then ΠHS satisfies correctness.

Proof. It can be checked by inspection. Fix messages x ∈ {0, 1}` and a circuit C ∈ C and let z = C(x), Then by
correctness of ΠCS, we have CS.Vrfy(vk,x‖z, vkCS) = > where vkCS

$← CS.Sign(skC̃ ,x‖z), since C̃(x‖z) = 1 by
definition of C̃. Therefore, due to the decomposable online-offline efficiency property of ΠCS (see Definition 4.2), it can
be checked that HS.Verify output > as well.

Security.

Theorem A.6 (Unforgeability). If ΠCS satisfies (adaptive one-key) unforgeability, then ΠHS satisfies unforgeability.

Proof. We prove by contradiction. Suppose that there exists a PPT adversary A that breaks unforgeability of ΠHS with
non-negligible probability ε. We then construct a PPT adversary B that breaks the (adaptive one-key) security of ΠCS
with probability ε as follows.

B(vk): It sets pk := vk and gives the verification key pk to A. When submits a circuit C ∈ C, B first computes the
associated circuit C̃ ∈ C̃ defined as C̃(x′, z′) =

(
C(x′) ?= z′

)
for all (x′, z′) ∈ {0, 1}` × {0, 1}. B then makes

a key generation query for C̃ to its own ΠCS challenger to obtain skC̃ , and gives skC̃ to A. When A outputs a
forgery (x?, z?, σ?), B outputs (x?‖z?, σ?) as its forgery.

It is clear that B perfectly simulates the view of the unforgeability game of ΠHS to A. We claim that whenever A
wins the unforgeability game of ΠHS, B wins the unforgeability game of ΠCS. By the winning condition, A’s forgery
satisfies (x?, z?) ∈ {0, 1}` × {0, 1}, C(x?) 6= z?, and HS.Verify(pk,x?, z?, σ?) = >. In particular, this implies
C̃(x?, z?) = 0 and CS.Vrfy(vk,x?‖z?, σ?) = >. Therefore, B wins the unforgeability game of ΠCS with advantage ε,
which is non-negligible as desired.

44

Remark A.7. (Instantiations.) If we instantiate the scheme based on the decomposable online-offline efficient CS scheme
in Section 4, we obtain a compact offline-online efficient HomSig scheme based on the DLIN assumption where
“compact” means that the evaluated signature size does not depend on the size of the circuit on which the pre-evaluation
signature is generated.

Remark A.8. (Extension to multi-data scheme) By using the generic transformation from single-data scheme to multi-data
scheme by Gorbunov et al. [GVW15], we obtain multi-data HomSig scheme based on CS. Similarly to [KNYY19b],
the resulting scheme does not satisfy amortized verification efficiency, which means that a verifier only needs to perform
a computation depending on the size of the circuit only once and then he can reuse it for verifying signatures generated
by multiple signers w.r.t. multiple data sets.

B Efficient Instantiation based on Groth-Sahai Proof.
Here, we give an efficient instantiation of the scheme given in Section 5.1 based on the Groth-Sahai proof under the
SXDH assumption.
Groth-Sahai Proof. First, we briefly recall the Groth-Sahai proof. We refer the full description to [GS12]. We note
that we focus on the instantiation based on the SXDH assumption here.

Roughly speaking, theGroth-Sahai proof is an efficient NIZK for a specific class of languages associatedwith a pairing-
group. Specifically, it enables one to prove that committed values under an associated extractable11 commitment scheme
satisfy certain algebraic relations. We denote the setup algorithm of the associated commitment scheme by GS.Setup
and committing algorithm in Gb by GS.CommitGb for b = 1, 2. The setup algorithm GS.Setup takes a description of
a pairing group and outputs a common reference string crsGS. The committing algorithm GS.CommitGb in Gb takes
the common reference string crsGS and an element of Gb or Zp as input, and returns a commitment that consists of 2
elementsGb. ForX = (X1, ..., Xm) ∈ Gmb (resp. x = (x1, ..., xm) ∈ Zmp), we denote GS.CommitGb(crsGS, X) (resp.
GS.CommitGb(crsGS, x)) to mean (GS.CommitGb(crsGS, X1), ...,GS.CommitGb(crsGS, Xm)) (resp. (GS.CommitGb
(crsGS, x1), ...,GS.CommitGb(crsGS, xm)))for notational simplicity.

Suppose that (X1, ..., Xm) ∈ Gm1 and (x1, ..., xm′) ∈ Zm′p are committed under GS.CommitG1 and (Y1, ..., Yn) ∈
Gn2 and (y1, ..., yn′) ∈ Zn′p are committed under GS.CommitG2 . Then the GS proof enables one to prove an equation
of the following forms.
Pairing product equation with target 1 ∈ GT :

n∏
i=1

e(Ai, Yi) ·
m∏
i=1

e(Xi, Bi) ·
m∏
i=1

n∏
j=1

e(Xi, Yj)γij = 1,

for constants Ai ∈ G1, Bi ∈ G2, γij ∈ Zp.
Multi-scalar multiplication equation in G1:

n′∏
i=1

Ayii ·
m∏
i=1

Xbi
i ·

m∏
i=1

n′∏
j=1

X
γijyj
i = T1

for constants Ai, T1 ∈ G1, bi, γij ∈ Zp.
Multi-scalar multiplication equation in G2:

n∏
i=1

Y aii ·
m′∏
i=1

Bxii ·
m′∏
i=1

n∏
j=1

Y
γijxi
j = T2

for constants Bi, T2 ∈ G2, ai, γij ∈ Zp.

11Actually, the GS proof is a dual-mode NIZK, and satisfies perfect extractability or perfect zero-knowledge depending on the mode. Here, we
focus on the binding mode where the perfect extractability is satisfied.

45

Quadratic equation in Zp:

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γijxiyj = t mod p

for constants ai, bi, γij , t ∈ Zp.
We summarize the number of group elements that are needed to prove these equations in Table 3.

Table 3: Summary of Sizes of GS Proofs.

G1 G2

Pairing product equation with target 1 ∈ GT 4 4
Multi-scalar multiplication equation in G1 2 4
Multi-scalar multiplication equation in G2 4 2
Quadratic equations in Zp 2 2

Our NIZK. Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let n(κ) and m(κ) be any
fixed polynomials. Let C be an NC1 circuit that computes the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈
{0, 1}n × {0, 1}m, we have C(x,w) = 1 if and only if (x,w) ∈ R. Let ΠSKE = (SKE.KeyGen,SKE.Enc,SKE.Dec)
be an SKE scheme with message space {0, 1}m, key space {0, 1}` and ciphertext space {0, 1}|ct|. We require that its
decryption circuit can be computed in NC1, and it has an additive ciphertext overhead (i.e., |ct| = m+ poly(κ)). We
define a circuit f : {0, 1}n′ → {0, 1} that computes

f(K,x, ct) = C(x,SKE.Dec(K, ct))

where n′ := `+ n+ |ct|. Since we assume that both C and SKE.Dec can be computed in NC1, f can be computed in
NC1. Let share be as defined in Definition 3.1 and EncInp and EncCir be as defined in Lemma 2.8.

Our scheme is described as follows.

Setup(1κ):

1. Run G = (p,G1, G2, GT , e)
$← GGen(1κ). and generate crsGS

$← GS.Setup(G).

2. Sample a $← Z2
p, wi

$← Z2
p for i ∈ [2n′] and v $← Z2

p and set

vk = ([a>]1, [a>w1]1, . . . , [a>w2n′]1, e([a>]1, [v]2)).

3. Compute EncCir(f)→ f ′, sample ({vj}j∈[m̂], ρ) $← share(f ′,v) and rj
$← Zp for j ∈ [m̂] and compute

skf =
({

skj := [rj]2, skρ(j),j := [vj + wρ(j)rj]2, { ski,j := [wirj]2 }i∈[2n′]\{ρ(j)}

}
j∈[m̂]

)
where w0 = 0 and m̂ is the number of shares that is generated by share(f ′,v).

4. Output crs = (G, crsGS, vk, skf).

Prove(crs, x, w):

1. Abort ifR(x,w) = 0. Otherwise, do the following.
2. Parse crs→ (G, crsGS, vk, skf).

46

3. GenerateK $← SKE.KeyGen(1κ) and ct $← SKE.Enc(K,w).
4. Set z := EncInp(K‖x‖ct) and compute ωj such that v =

∑
j:ρ(j)=0∨yρ(j)=1 ωjvj and

σ =

σ1 =
∏

j:ρ(j)=0∨zρ(j)=1

(∏
i:zi=1

ski,j

)ωj
, σ2 =

∏
j:ρ(j)=0∨zρ(j)=1

skωjj

 ∈ G3
2.

5. Compute Y :=
∏
i∈[n+|ct|][a>w2`+2i−yi]1 where y := (x, ct) ∈ {0, 1}n+|ct|.

6. Compute comK
$← GS.CommitG1(crsGS, {Ki}i∈[`]) and com

K̃i

$← GS.CommitG2(crsGS, {K̃i}i∈[`])
where K̃ := K.

7. Compute comZ
$← GS.CommitG1(crsGS, Z) where Z :=

∏
i∈[`][a>w2i−Ki]1 · Y ∈ G1.

8. Compute comV
$← GS.CommitG2(crsGS, V) where V := [v]2 ∈ G2

2.

9. Compute comσ
$← GS.CommitG2(crsGS, σ).

10. Generate a proof πK that proves
Ki − K̃i = 0 mod p,

Ki · K̃i −Ki = 0 mod p

for all i ∈ [`]. (This especially ensuresKi, K̃i ∈ {0, 1} for i ∈ [`].)
11. Generate a proof πZ that proves

Z =
∏
i∈[`]

([a>w2i−1]K̃i1 · [a>w2i]1−K̃i1) · Y.

Note that this is equivalent to
Z =

∏
i∈[`]

[a>w2i−K̃i
]1 · Y

for K̃i ∈ {0, 1}.
12. Generate a proof πV that proves

V = [v]2.

13. Generate a proof πσ that proves

e([a>]1, σ1) · e(Z, σ2)−1 · e([a>]1, V)−1 = 1

14. Output π := (ct, comK , com
K̃
, comZ , comV , comσ, πK , πZ , πV , πσ).

Verify(crs, x, π):

1. Parse π′ → (ct, comK , com
K̃
, comZ , comV , comσ, πK , πZ , πV , πσ). If it is not in this form, reject it.

Otherwise, do the following.
2. Parse crs→ (G, crsGS, vk, skf).
3. Compute Y :=

∏
i∈[n+|ct|][a>w2`+2i−yi]1 where y := (x, ct) ∈ {0, 1}n+|ct|.

4. Output > if all proofs (πK , πZ , πV , πσ) are valid w.r.t. commitments (comK , com
K̃
, comZ , comV , comσ)

and otherwise ⊥.

Efficiency. We summarize the size of each component of the proof in Table 4. Assuming p ≈ 22κ and instantiating
the SKE scheme whose ciphertext overhead consists of log p = κ + 1 elements of G2 and whose secret key length
` = κ , the total proof size is |w|+ (6κ+ 14)|G1|+ (7κ+ 25)|G2|.
Security. Since the above scheme is an instantiation of the scheme in Section 5.1, the security follows from Theorem 5.1
and Theorem 5.2. Specifically, we have the following theorems.

47

Table 4: Summary of Sizes of GS
Commitments andGSProofs inOur
Scheme.

G1 G2

comK 2`
com

K̃
2`

comZ 2
comV 4
comσ 6
πK 4` 4`
πZ 4 2
πV 4 8
πσ 4 4
Total 6`+ 14 6`+ 24

TheoremB.1 (Soundness). The above NIZK scheme ΠNIZK is computationally (adaptive) sound if the SXDH assumption
holds.

Theorem B.2 (Zero-Knowledge). The above NIZK scheme ΠNIZK is computationally zero-knowledge if the SXDH
assumption holds and ΠSKE is CPA-secure.

48

Contents
1 Introduction 1

1.1 Background . 1
1.2 Our Result . 2
1.3 Technical Overview . 3
1.4 Related Work . 7

2 Definitions 8
2.1 Preliminaries on Bilinear Maps . 8
2.2 Secret Key Encryption . 8
2.3 One-Time Signature . 9
2.4 Non-Interactive Zero-Knowledge Arguments . 9
2.5 Key-Policy Attribute-Based Encryption . 10
2.6 NC1 Circuits and Monotone Formulae . 11
2.7 Piecewise Guessing Frameworks and Pebbling Games . 12

3 KP-ABE with Compact Ciphertexts 13
3.1 Preliminaries . 13
3.2 Construction . 14
3.3 Key Lemma for Security Proof . 15
3.4 Security Proof . 19

4 Compact Constrained Signature 22
4.1 Constrained Signature . 22
4.2 Construction and Security . 23

5 Compact NIZK from Compact Constrained Signatures 26
5.1 Main Construction . 26
5.2 Perfect Zero-Knowledge Variant . 29

6 UC-NIZK 32
6.1 UC Framework . 32
6.2 Ideal Functionalities. 33
6.3 Construction . 33

A Homomorphic Signature from CS 42
A.1 Definition . 42
A.2 Construction of Homomorphic Signatures from CS . 43

B Efficient Instantiation based on Groth-Sahai Proof. 45

49

	Introduction
	Background
	Our Result
	Technical Overview
	Reviewing Previous Results
	Overview of Our Approach
	Comparison with Katsumata et al. C:KNYY19

	Related Work

	Definitions
	Preliminaries on Bilinear Maps
	Secret Key Encryption
	One-Time Signature
	Non-Interactive Zero-Knowledge Arguments
	Key-Policy Attribute-Based Encryption
	NC1 Circuits and Monotone Formulae
	Piecewise Guessing Frameworks and Pebbling Games

	KP-ABE with Compact Ciphertexts
	Preliminaries
	Construction
	Key Lemma for Security Proof
	Security Proof

	Compact Constrained Signature
	Constrained Signature
	Construction and Security

	Compact NIZK from Compact Constrained Signatures
	Main Construction
	Perfect Zero-Knowledge Variant

	UC-NIZK
	UC Framework
	Ideal Functionalities.
	Construction

	Homomorphic Signature from CS
	Definition
	Construction of Homomorphic Signatures from CS

	Efficient Instantiation based on Groth-Sahai Proof.

