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Abstract

At the core of Apple’s iMessage is a signcryption scheme that involves symmetric encryption
of a message under a key that is derived from the message itself. This motivates us to formalize
a primitive we call Encryption under Message-Derived Keys (EMDK). We prove security of the
EMDK scheme underlying iMessage. We use this to prove security of the signcryption scheme
itself, with respect to definitions of signcryption we give that enhance prior ones to cover issues
peculiar to messaging protocols. Our provable-security results are quantitative, and we discuss
the practical implications for iMessage.
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1 Introduction
Apple’s iMessage app works across iOS (iPhone, iPad) and OS X (MacBook) devices. Laudably, it
aims to provide end-to-end security. At its heart is a signcryption scheme.

The current scheme —we refer to the version in iOS 9.3 onwards, revised after the attacks of
GGKMR [51] on the iOS 9.0 version— is of interest on two fronts. (1) Applied: iMessage encrypts
(according to an Internet estimate) 63 quadrillion messages per year. It is important to determine
whether or not the scheme provides the security expected by its users. (2) Theoretical: The scheme
involves (symmetric) encryption of a message under a key that is derived from the message itself,
an uncommon and intriguing technique inviting formalization and a foundational treatment.
Contributions in brief. Signcryption theory: We extend the prior Signcryption definitions of
ADR [4] to capture elements particular to messaging systems, and give general results that simplify
the analysis of the candidate schemes. EMDK : We introduce, and give definitions (syntax and
security) for, Encryption under Message Derived Keys. iMessage EMDK scheme: We extract from
iMessage an EMDK scheme and prove its security in the random-oracle model. Composition and
iMessage Signcryption: We give a way to compose EMDK, PKE and signatures to get signcryption,
prove it works, and thereby validate the iMessage signcryption scheme for appropriate parameter
choices.
Background. By default, the iMessage chatting app encrypts communications between any two
iMessage users. The encryption is end-to-end, under keys stored on the devices, meaning Apple
itself cannot decrypt. In this way, iMessage joins Signal, WhatsApp and other secure messaging
apps as a means to counter mass surveillance, but the cryptography used is quite different, and while
the cryptography underlying Signal and WhatsApp, namely ratcheting, has received an extensive
theoretical treatment [32, 21, 54, 73, 2, 55, 44], that underlying iMessage has not.

In 2016, Garman, Green, Kaptchuk, Miers and Rushanan (GGKMR) [51] gave chosen-ciphertext
attacks on the then current, iOS 9 version, of iMessage that we will denote iMsg1. Its encryption
algorithm is shown on the left in Figure 1. In response Apple acknowledged the attack as CVE-
2016-1788 [33], and revised the protocol for iOS 9.3. We’ll denote this version iMsg2, its encryption
algorithm is shown on the right in Figure 1. It has been stable since iOS 9.3. It was this revision
that, for the specific purpose of countering the GGMKR attack, introduced (symmetric) encryption
with message-derived keys: message M at line 4 is encrypted under a key K derived, via lines 1–3,
from M itself. The question we ask is, does the fix work?
Identifying the goal. To meaningfully answer the above question we must first, of course, iden-
tify the formal primitive and security goal being targeted. Neither Apple’s iOS Security Guide [5],
nor GGKMR [51], explicitly do so. We suggest that it is signcryption. Introduced by Zheng [84],
signcryption aims to simultaneously provide privacy of the message (under the receiver’s public
encryption key) and authenticity (under the sender’s secret signing key), and can be seen as the
asymmetric analogue of symmetric authenticated encryption. A formalization was given by An,
Dodis and Rabin (ADR) [4]. They distinguish between outsider security (the adversary is not one
of the users) and the stronger insider security (the adversary could be a sender or receiver).

Identifying the iMessage goal as signcryption gives some perspective on, and understanding of,
the schemes and history. The iMessage schemes can be seen as using some form of ADR’s Encrypt-
then-Sign (EtS) method. The iMsg1 scheme turns out to be a simple scheme from ADR [4]. It
may be outsider-secure, but ADR give an attack that shows it is not insider secure. (The adversary
queries the sender encryption oracle to get a ciphertext ((C1, C2), S), substitutes S with a signature
S′ of H = SHA1(C1∥C2) under its own signing key, which it can do as an insider, and then queries
this modified ciphertext to the recipient decryption oracle to get back the message underlying the
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iMsg1.Enc(pkr , sks,M)

1. K←$ {0, 1}128
2. C1 ← AES-CTR.Enc(K,M)

3. C2 ← RSA-OAEP.Enc(pkr ,K)

4. H ← SHA1(C1∥C2)

5. S ← EC-DSA.Sign(sks,H)

6. Return ((C1, C2), S)

iMsg2.Enc(pkr , sks,M)

1. L←$ {0, 1}88
2. h← HMAC(L,pks∥pkr∥M)[1..40]

3. K ← L∥h
4. C1 ← AES-CTR.Enc(K,M)

5. C2 ← RSA-OAEP.Enc(pkr ,K)

6. H ← SHA1(C1∥C2)

7. S ← EC-DSA.Sign(sks,H)

8. Return ((C1, C2), S)

Figure 1: Encryption in iMsg1 (left) and iMsg2 (right). Here pkr is the recipient’s public RSA
encryption key, sks is the sender’s ECDSA secret signing key and pks is the sender’s ECDSA public
verification key. Our analysis and proofs consider general schemes of which the above emerge as
instantiations corresponding to particular choices of primitives and parameters.

original ciphertext.) The GGKMR [51] attack on iMsg1 is a clever improvement and real-world
rendition of the ADR attack. That Apple acknowledged the GGKMR attack, and modified the
scheme to protect against it, indicates that they want insider security, not just outsider security,
for their modified iMsg2 scheme. So the question becomes whether this goal is achieved.

Signcryption theory extended. We could answer the above question relative to ADR’s (ex-
isting) definitions of insider-secure signcryption, but we do more, affirming the iMsg2 signcryption
scheme under stronger definitions that capture elements particular to messaging systems, making
our results of more applied value.

When you send an iMessage communication to Alice, it is encrypted to all her devices (her
iPhone, MacBook, iPad, ...), so that she can chat seamlessly across them. To capture this, we
enhance signcryption syntax, making the encryption algorithm multi-recipient. (It takes not one,
but a list of receiver public encryption keys.) We also allow associated data as in symmetric
authenticated encryption [75].

We give, like in prior work [4], a privacy definition (priv) and an authenticity definition (auth);
but, unlike prior work, we also give a strong, unified definition (sec) that implies auth+priv. We
show that (under certain conditions) sec is implied by auth+priv, mirroring analogous results for
symmetric authenticated encryption [24, 17]. Proving that a scheme satisfies sec (the definition
more intuitively capturing the practical setting) now reduces to the simpler tasks of separately
showing it satisfies auth and priv. These definitions and results are for both insider and outsider
security, and parameterized by choices of relaxing relations that allow us to easily capture variants
reflecting issues like plaintext or ciphertext integrity [16], gCCA2 [4] and RCCA [28].

EMDK definitions. Recall that a scheme for conventional symmetric encryption specifies a key-
generation algorithm that is run once, a prioi, to return a key k; the encryption algorithm then takes
k and message m to return a ciphertext. In our definition of a scheme for (symmetric) Encryption
under Message-Derived Keys (EMDK), there is no dedicated key-generation algorithm. Encryption
algorithm EMDK.Enc takes only a message m, returning both a key k and a ciphertext c, so that
k may depend on m. Decryption algorithm EMDK.Dec takes k —in the overlying signcryption
scheme, this is communicated to the receiver via asymmetric encryption— and c to return either
m or ⊥.

We impose two security requirements on an EMDK scheme. (1) The first, called ae, adapts the
authenticated encryption requirement of symmetric encryption [75]. (Our game formalizing ae is in
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Figure 8.) (2) The second, called rob, is a form of robustness or wrong-key detection [1, 27, 46, 47].
(Our game formalizing rob is also in Figure 8.) Of course one may define many other and alternative
security goals for EMDK, so why these? We have focused on these simply because they suffice for
our results.

EMDK is different from both (Symmetric) Encryption of Key-Dependent Messages (EKDM) [23,
26] and (Symmetric) Encryption secure against Related-Key Attack (ERKA) [15]. To begin with,
these definitions apply to syntactically different objects. Namely, both EKDM and ERKA are
security metrics for the standard symmetric encryption syntax where the encryption algorithm
takes a key and message as input and returns a ciphertext, while in EMDK the encryption algorithm
takes only a message and itself produces a key along with the ciphertext. (Note that the latter is
also different from the syntax of a Key-Encapsulation mechanism, where encryption does produce
a key and ciphertext, but takes no input message.) These syntactic differences make comparison
moot, but one can still discuss intuitively how the security requirements relate. In the security
games for EKDM there is an honestly and randomly chosen target key k, and challenge messages
to be encrypted may depend on k, but in our security games for EMDK, the key is not chosen
honestly and could depend on the message being encrypted. In ERKA also, like EKDM but unlike
EMDK, a target key k is chosen honestly and at random. One can now have the game apply
the encryption algorithm under a key k′ derived from k, but this does not capture the encryption
algorithm not taking a key as input but itself producing it as a function of the message, as in
EKDM.
Deconstructing iMessage. Equipped with the above, we show how to cast the iMsg2 signcryp-
tion scheme as the result of a general transform (that we specify and call IMSG-SC) on a particular
EMDK scheme (that we specify) and some standard auxiliary primitives (that we also specify). In
Section 5, we prove that IMSG-SC works, reducing insider security (priv, auth, sec) of the signcryp-
tion scheme to the security of the constituents, leaving us with what is the main technical task,
namely showing security of the EMDK scheme.

In more detail, IMSG-SC takes a scheme EMDK for encryption under message-derived keys,
a public-key encryption scheme PKE and a digital signature scheme DS to return a signcryption
scheme SC = IMSG-SC[EMDK,PKE,DS]. (In the body of the paper, this is done in two steps, with
a multi-recipient public-key encryption scheme [13] as an intermediate point, but for simplicity we
elide this here.) Both iMessage signcryption schemes (i.e. iMsg1 and iMsg2) can be seen as results
of this transform. The two make the same choices of PKE and DS, namely RSA-OAEP and EC-DSA
respectively, differing only in their choice of EMDK, which for iMsg1 is a trivial scheme that we
call the basic scheme, and for iMsg2 a more interesting scheme that we denote IMSG-EMDK[F, SE]
and discuss below. Our Section 5 result is that signcryption scheme SC = IMSG-SC[EMDK,PKE,
DS] provides insider security (priv, auth, sec) assuming ae- and rob-security of EMDK and under
standard assumptions on PKE and DS.
EMDK results. In Figure 10 we specify an EMDK scheme IMSG-EMDK[F,SE] constructed from a
given function family F and a given, ordinary one-time (assumed deterministic) symmetric encryp-
tion scheme SE. Setting F to HMAC and SE to AES-CTR recovers the EMDK scheme underlying
iMsg2 signcryption. This EMDK scheme captures the heart of iMsg2 signcryption, namely lines
1–4 of the right side of Figure 1.

The security analysis of IMSG-EMDK[F, SE] is somewhat complex. We prove ae-security of this
EMDK scheme assuming F is a random oracle and SE has the following properties: one-time IND-
CPA privacy, a property we define called uniqueness, and partial key recovery security. The latter
strengthens key recovery security to say that, not only is it hard to recover the key, but it is hard
to recover even a prefix, of a certain prescribed length, of this key. We prove rob-security of the
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Figure 2: Lower bounds for the bit-security of privacy achieved by iMessage, depending on the key
size of AES-CTR and the length of the authentication tag returned by HMAC. iMessage 10 uses
128-bit AES key and 40-bit long HMAC authentication tag, and hence guarantees at least 39 bits
of security for privacy. (Any choice of parameters guarantees 71 bits of security for authenticity.)

EMDK scheme assuming F is a random oracle and SE satisfies uniqueness and weak robustness.
The properties assumed of SE appear to be true for the AES-CTR used in iMessage, and could be
shown in idealized models.
Practical implications for iMessage. What we have proved is that iMsg2 signcryption is se-
cure in principle, in the sense that the underlying template is sound. (That is, the signcryption
scheme given by our IMSG-SC transform is secure assuming the underlying primitives are secure.)
For the practical implications, we must consider the quantitative security guaranteed by our the-
orems based on the particular choices of parameters and primitives made in iMsg2 signcryption
scheme. Here, things seem a bit borderline, because iMsg2 signcryption has made some specific
parameter choices that seem dangerous. Considering again the right side of Figure 1, the 128-bit
AES key K at line 3 has only 88 bits of entropy —all the entropy is from the choice of L at line 1—
which is not only considered small in practice but also is less than for iMsg1. (On the left side of
the Figure we see that line 1 selects an AES key K with the full 128 bits of entropy.) Also the tag
h produced at line 2 of the right-hand-side of the Figure is only 40 bits, shorter than recommended
lengths for authentication tags. To estimate the impact of these choices, we give concrete attacks
on the scheme. They show that the bounds in our theorems are tight, but do not contradict our
provable-security results.

Numerical estimates based on our provable-security results say that iMessage 10 guarantees at
least 39 bits of security for privacy, and 71 bits of security for authenticity, if HMAC and AES
are modeled as ideal primitives. Fig. 2 shows the guaranteed bit-security of privacy for different
choices of AES key length and HMAC tag length. For the small parameter choices made in iMsg2
signcryption, the attacks do approach feasibility in terms of computational effort, but we wouldn’t
claim they are practical, for two reasons. First, they only violate the very stringent security
goals that are the target of our proofs. Second, following the GGKMR [51] attacks, Apple has
implemented decryption-oracle throttling that will also curtail our attacks.

Still, ideally, a practical scheme would implement cryptography that meets even our stringent
security goals without recourse to extraneous measures like throttling. We suggest that parameter
and primitive choices in iMessage signcryption be revisited, for if they are chosen properly, our
results do guarantee that the scheme provides strong security properties.
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Discussion. When a new primitive (like EMDK) is defined, the first question of a theoretical
cryptographer is often, does it exist, meaning, can it be built, and under what assumptions? At
least in the random-oracle model [18] in which our results are shown, it is quite easy to build, under
standard assumptions, an EMDK scheme that provides the ae+rob-security we define, and we show
such a scheme in Figure 9. The issue of interest for us is less existence (to build some secure
EMDK scheme) and more the security of the particular IMSG-EMDK[F,SE] scheme underlying
iMsg2 signcryption. The motivation is mainly applied, stemming from this scheme running in
security software (iMessage) that is used by millions.

But, one may then ask, WHY did Apple use their (strange) EMDK scheme instead of one like
that in Figure 9, which is simpler and provable under weaker assumptions? We do not know. In
that vein, one may even ask, why did Apple use EMDK at all? The literature gives Signcryption
schemes that are efficient and based on standard assumptions. Why did they not just take one
of them? Again, we do not know for sure, but we can speculate. The EMDK-based template
that we capture in our IMSG-SC transform provides backwards decryption compatibility; an iMsg1
implementation can decrypt an iMsg2 ciphertext. (Of course, security guarantees revert to those of
the iMsg1 scheme under such usage, but this could be offset by operational gains.) Moving to an
entirely new signcryption scheme would not provide this backwards compatibility. But we stress
again that this is mere speculation; we did not find any Apple documents giving reasons for their
choices.
Related work. We have discussed some related work above. However, signcryption is a big
research area with a lot of work. We overview this in Appendix A.

2 Preliminaries
In Appendix D we provide the following standard definitions. We state syntax, correctness and
security definitions for function families, symmetric encryption, digital signatures, public-key en-
cryption, and multi-recipient public-key encryption. We define the random oracle model, the ideal
cipher model, and provide the birthday attack bounds. In this section we introduce the basic
notation and conventions we use throughout the paper.
Basic notation and conventions. Let N = {1, 2, . . .} be the set of positive integers. For i ∈ N
we let [i] denote the set {1, . . . , i}. If X is a finite set, we let x←$ X denote picking an element of
X uniformly at random and assigning it to x. Let ε denote the empty string. By x ∥ y we denote
the concatenation of strings x and y. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i]
denotes its i-th bit, and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If mem is a table, we use mem[i]
to denote the element of the table that is indexed by i. We use a special symbol ⊥ to denote an
empty table position; we also return it as an error code indicating an invalid input to an algorithm
or an oracle, including invalid decryption. We assume that adversaries never pass ⊥ as input to
their oracles.
Uniquely decodable encoding. We write ⟨a, b, . . .⟩ to denote a string that is a uniquely decod-
able encoding of a, b, . . ., where each of the encoded elements can have an arbitrary type (e.g. string
or set). For any n ∈ N let x1, . . . , xn and y1, . . . , yn be two sequences of elements such that for each
i ∈ [n] the following holds: either xi = yi, or both xi and yi are strings of the same length.
Then we require that |⟨x1, . . . , xn⟩| = |⟨y1, . . . , yn⟩|, and that ⟨x1, . . . , xi−1, xi, xi+1, . . . , xn⟩ ⊕
⟨x1, . . . , xi−1, yi, xi+1, . . . , xn⟩ = ⟨x1, . . . , xi−1, (xi ⊕ yi), xi+1, . . . , xn⟩ for all i ∈ [n].
Algorithms and adversaries. Algorithms may be randomized unless otherwise indicated. Run-
ning time is worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
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coins r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the result of picking
r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs
of A when invoked with inputs x1, . . .. The instruction abort(x1, . . . ) is used to immediately halt
the algorithm with output (x1, . . . ). Adversaries are algorithms.
Security games and reductions. We use the code based game playing framework of [20]. (See
Fig. 5 for an example.) We let Pr[G] denote the probability that game G returns true. In the
security reductions, we omit specifying the running times of the constructed adversaries when they
are roughly the same as the running time of the initial adversary.
Implicit initialization values. In algorithms and games, uninitialized integers are assumed to
be initialized to 0, Booleans to false, strings to the empty string, sets to the empty set, and tables
are initially empty.
Bit-security of cryptographic primitives. Let prim be any cryptographic primitive, and let
sec be any security notion defined for this primitive. We say that prim has n bits of security with
respect to sec (or n bits of sec-security) if for every adversary A that has advantage ϵA and runtime
TA against sec-security of prim it is true that ϵA/TA < 2−n. In other words, if there exists an
adversary A with advantage ϵA and runtime TA against sec-security of prim, then prim has at most
− log2(ϵA/TA) bits of security with respect to sec. This is the folklore definition of bit-security for
cryptographic primitives. Micciancio and Walter [68] recently proposed an alternative definition
for bit-security.
Bit-security lower bounds. Let BS(prim, sec) denote the bit-security of cryptographic primi-
tive prim with respect to security notion sec. Consider any security reduction showing Advsecprim(A) ≤∑

i Adv
seci
primi

(BAi ) by constructing for any adversary A and for each i a new adversary BAi with run-
time roughly TA. Then we can lower bound the bit-security of prim with respect to sec as

BS(prim, sec) = min
∀A
− log2

(
ϵA
TA

)
≥ min

∀A
− log2

(∑
i Adv

seci
primi

(BAi )
TA

)
≥ − log2

(∑
i

2−BS(primi,seci)

)
.

3 Signcryption
In this section we define syntax, correctness and security notions for multi-recipient signcryption
schemes. We assume that upon generating any signcryption key pair (pk, sk), it gets associated to
some identity id. This captures a system where users can indepenently generate their cryptographic
keys prior to registering them with a public-key infrastructure. We require that all identities are
distinct values in {0, 1}∗. Depending on the system, each identity id serves as a label that uniquely
identifies a device or a user. Note that pk cannot be used in place of the identity, because different
devices can happen to use the same public keys (either due to generating the same key pairs by
chance, or due to maliciously claiming someone’s else public key). We emphasize that our syntax
is not meant to capture identity-based signcryption, where a public key would have to depend on
the identity. In Appendix A we provide an extensive summary of prior work on signcryption.

We focus on authenticity and privacy of signcryption in the insider setting, meaning that the
adversary is allowed to adaptively compromise secret keys of any identities as long as that does
not enable the adversary to trivially win the security games. Our definitions can also capture the
outsider setting by considering limited classes of adversaries. We define our security notions with
respect to relaxing relations. This allows us to capture a number of weaker security notions in a
fine-grained way, by choosing an appropriate relaxing relation in each case. In Appendix C we
define a combined security notion for signcryption that simultaneously encompasses authenticity
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π←$ SC.Setup
(pk, sk)←$ SC.Kg(π)
C ←$ SC.SigEnc(π, ids,pks, sks,R,m, ad)
m← SC.VerDec(π, ids,pks, idr ,pkr , skr , c, ad)

Figure 3: Syntax of the consistuent algorithms of signcryption scheme SC.

Rm.Vf(z0, z1)

(x0, y0)← z0 ; (x1, y1)← z1
Return x0 = x1

Rid.Vf(z0, z1)

Return z0 = z1

Figure 4: Relaxing relations Rm and Rid.

and privacy, and prove that it is equivalent to the separate notions under certain conditions.
Multi-recipient signcryption schemes. A multi-recipient signcryption scheme SC specifies al-
gorithms SC.Setup, SC.Kg, SC.SigEnc, SC.VerDec, where SC.VerDec is deterministic. Associated to
SC is an identity space SC.ID. The setup algorithm SC.Setup returns public parameters π. The
key generation algorithm SC.Kg takes π to return a key pair (pk, sk), where pk is a public key and
sk is a secret key. The signcryption algorithm SC.SigEnc takes π, sender’s identity ids ∈ SC.ID,
sender’s public key pks, sender’s secret key sks, a set R of pairs (idr ,pkr) containing recipient
identities and public keys, a plaintext m ∈ {0, 1}∗, and associated data ad ∈ {0, 1}∗ to return a set
C of pairs (idr , c), each denoting that signcryption ciphertext c should be sent to the recipient with
identity idr . The unsigncryption algorithm SC.VerDec takes π, sender’s identity ids, sender’s public
key pks, recipient’s identity idr , recipient’s public key pkr , recipient’s secret key skr , signcryption
ciphertext c, and associated data ad to return m ∈ {0, 1}∗ ∪ {⊥}, where ⊥ indicates a failure to
recover plaintext. The syntax used for the constituent algorithms of SC is summarized in Fig. 3.
Correctness of signcryption. The correctness of a signcryption scheme SC requires that for
all π ∈ [SC.Setup], all n ∈ N, all (pk0, sk0), . . . , (pkn, skn) ∈ [SC.Kg(π)] all id0 ∈ SC.ID, all
distinct id1, . . . , idn ∈ SC.ID, all m ∈ {0, 1}∗, and all ad ∈ {0, 1}∗ the following conditions hold.
Let R = {(idi,pki)}1≤i≤n.We require that for all C ∈ [SC.SigEnc(π, id0, pk0, sk0,R,m, ad)]: (i)
|C| = |R|; (ii) for each i ∈ {1, . . . , n} there exists a unique c ∈ {0, 1}∗ such that (idi, c) ∈ C; (iii) for
each i ∈ {1, . . . , n} and each c such that (idi, c) ∈ C we have m = SC.VerDec(π, id0,pk0, idi, pki, ski,
c, ad).
Relaxing relations. A relaxing relation R ⊆ {0, 1}∗×{0, 1}∗ is a set containing pairs of arbitrary
strings. Associated to a relaxing relation R is a membership verification algorithm R.Vf that takes
inputs z0, z1 ∈ {0, 1}∗ to return a decision in {true, false} such that ∀z0, z1 ∈ {0, 1}∗ : R.Vf(z0, z1) =
true iff (z0, z1) ∈ R. We will normally define relaxing relations by specifying their membership
verification algorithms. Two relaxing relations that will be used throughout the paper are defined
in Fig. 4.

We define our security notions for signcryption with respect to relaxing relations. Relaxing
relations are used to restrict the queries that an adversary is allowed to make to its unsigncryption
oracle. The choice of different relaxing relations can be used to capture a variety of different
security notions for signcryption in a fine-grained way. We will use relaxing relations Rid and Rm

to capture strong vs. standard authenticity (or unforgeability) of signcryption, and IND-CCA
vs. RCCA [28, 53] style indistinguishability of signcryption. In Section 5.3 we will aso define
unforgeability of digital signatures with respect to relaxing relations, allowing to capture standard
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Games Gauth
SC,R,F

π←$ SC.Setup ; FNewH,NewC,Exp,SigEnc,VerDec(π) ; Return win

NewH(id)

If initialized[id] then return ⊥
initialized[id]← true ; (pk, sk)←$ SC.Kg(π) ; pk[id]← pk ; sk[id]← sk ; Return pk

NewC(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

Exp(id)

If not initialized[id] then return ⊥
exp[id]← true ; Return sk[id]

SigEnc(ids, I,m, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) then return ⊥
R ← ∅ ; For each id ∈ I do R← R∪ {(id, pk[id])}
C ←$ SC.SigEnc(π, ids, pk[ids], sk[ids],R,m, ad)

For each (idr , c) ∈ C do Q← Q ∪ {((ids, idr ,m, ad), c)}
Return C
VerDec(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return ⊥
m← SC.VerDec(π, ids, pk[ids], idr , pk[idr ], sk[idr ], c, ad) ; If m =⊥ then return ⊥
z0 ← ((ids, idr ,m, ad), c) ; If ∃z1 ∈ Q : R.Vf(z0, z1) then return m

cheated← exp[ids] ; If not cheated then win← true
Return m

Figure 5: Game defining authenticity of signcryption scheme SC with respect to relaxing relation
R.

and strong unforgeability notions in a unified way.
Authenticity of signcryption. Consider game Gauth of Fig. 5 associated to a signcryption
scheme SC, a relaxing relation R and an adversary F . The advantage of adversary F in breaking
the AUTH-security of SC with respect to R is defined as AdvauthSC,R(F) = Pr[Gauth

SC,R,F ]. Adversary F
has access to oracles NewH, NewC, Exp, SigEnc, and VerDec. The oracles can be called in any
order. Oracle NewH generates a key pair for a new honest identity id. Oracle NewC associates
a key pair (pk, sk) of adversary’s choice to a new corrupted identity id; it permits malformed
keys, meaning sk should not necessarily be a valid secret key that matches with pk. Oracle Exp
can be called to expose the secret key of any identity. The game maintains a table exp to mark
which identities are exposed; all corrupted identities that were created by calling oracle NewC are
marked as exposed right away. The signcryption oracle SigEnc returns ciphertexts produced by
sender identity ids to each of the recipient identities contained in set I, encrypting message m with
associated data ad. Oracle VerDec returns the plainext obtained as the result of unsigncrypting
the ciphertext c sent from sender ids to recipient idr , with associated data ad. The goal of adversary
F is to forge a valid signcryption ciphertext, and query it to oracle VerDec. The game does not
let adversary win by querying oracle VerDec with a forgery that was produced for an exposed
sender identity ids, since the adversary could have trivially produced a valid ciphertext due to its
knowledge of the sender’s secret key. Certain choices of relaxing relation R can lead to another
trivial attack.
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A choice of relaxing relation for authenticity. When adversary F in game Gauth
SC,R,F calls

oracle SigEnc on inputs ids, I,m, ad, then for each ciphertext c produced for a recipient idr ∈ I
the game adds a tuple ((ids, idr ,m, ad), c) to set Q. This set is then used inside oracle VerDec.
Oracle VerDec constructs z0 = ((ids, idr ,m, ad), c) and prevents the adversary from winning the
game if R.Vf(z0, z1) is true for any z1 ∈ Q. If the relaxing relation is empty (meaning R = ∅ and
hence R.Vf(z0, z1) = false for all z0, z1 ∈ {0, 1}∗) then an adversary is allowed to trivially win the
game by calling oracle SigEnc and claiming any of the resulting ciphertexts as a forgery (without
changing the sender and recipient identities). Let us call this a “ciphertext replay” attack.

In order to capture a meaningful security notion, the AUTH-security of SC should be considered
with respect to a relaxing relation that prohibits the above trivial attack. The strongest such
security notion is achieved by considering AUTH-security of SC with respect to the relaxing relation
Rid that is defined in Fig. 4; this relaxing relation prevents only the ciphertext replay attack.
The resulting security notion captures the strong authenticity (or unforgeability) of signcryption.
Alternatively, one could think of this notion as capturing the ciphertext integrity of signcryption.

Note that a relaxing relation R prohibits the ciphertext replay attack iff Rid ⊆ R. Now consider
the relaxing relation Rm as defined in Fig. 4; it is a proper superset of Rid. The AUTH-security of
SC with respect to Rm captures the standard authenticity (or unforgeability, or plaintext integrity)
of signcryption. The resulting security notion does not let adversary win by merely replaying an
encryption of (m, ad) from ids to idr for any fixed (ids, idr ,m, ad), even if the adversary can produce
a new ciphertext that was not seen before.

Capturing outsider authenticity. Game Gauth
SC,R,F captures the authenticity of SC in the in-

sider setting, because it allows adversary to win by producing a forgery from an honest sender iden-
tity to an exposed recipient identity. This, in particular, implies that SC assures non-repudiation,
meaning that the sender cannot deny the validity of a ciphertext it sent to a recipient (since the
knowledge of the recipient’s secret key does not help to produce a forgery). In contrast, the out-
sider authenticity only requires SC to be secure when both the sender and the recipient are honest.
Our definition can capture the notion of outsider authenticity by considering a class of outsider
adversaries that never query VerDec(ids, idr , c, ad) when exp[idr ] = true.

Privacy of signcryption. Consider game Gpriv of Fig. 6 associated to a signcryption scheme SC,
a relaxing relation R and an adversary D. The advantage of adversary D in breaking the PRIV-
security of SC with respect to R is defined as AdvprivSC,R(D) = 2Pr[Gpriv

SC,R,D] − 1. The game samples
a challenge bit b ∈ {0, 1}, and the adversary is required to guess it. Adversary D has access to
oracles NewH, NewC, Exp, LR, and VerDec. The oracles can be called in any order. Oracles
NewH, NewC, and Exp are the same as in the authenticity game (with the exception of oracle
Exp also checking table ch, which is explained below). Oracle LR encrypts challenge message mb

with associated data ad, produced by sender identity ids to each of the recipient identities contained
in set I. Oracle LR aborts if m0 ̸= m1 and if the recipient set I contains an identity idr that is
exposed. Otherwise, the adversary would be able to trivially win the game by using the exposed
recipient’s secret key to decrypt a challenge ciphertext produced by this oracle. If m0 ̸= m1 and
none of the recipient identities is exposed, then oracle LR uses table ch to mark each of the recipient
identities; the game will no longer allow to expose any of these identities by calling oracle Exp.
Oracle VerDec returns the plaintext obtained as the result of unsigncrypting the ciphertext c
sent from ids to idr with associated data ad. We discuss the choice of a relaxing relation R below.
However, note that oracle LR updates the set Q (used by relaxing relation) only when m0 ̸= m1.
This is because the output of LR does not depend on the challenge bit when m0 = m1, and hence
such queries should not affect the set of prohibited queries to oracle VerDec.
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Game Gpriv
SC,R,D

b←$ {0, 1} ; π←$ SC.Setup ; b′←$DNewH,NewC,Exp,LR,VerDec(π) ; Return b′ = b

NewH(id)

If initialized[id] then return ⊥
initialized[id]← true ; (pk, sk)←$ SC.Kg(π) ; pk[id]← pk ; sk[id]← sk ; Return pk

NewC(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

Exp(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return sk[id]

LR(ids, I,m0,m1, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true
R← ∅ ; For each id ∈ I do R← R∪ {(id, pk[id])}
C ←$ SC.SigEnc(π, ids, pk[ids], sk[ids],R,mb, ad)

For each (idr , c) ∈ C do
If m0 ̸= m1 then
Q← Q ∪ {((ids, idr ,m0, ad), c)}
Q← Q ∪ {((ids, idr ,m1, ad), c)}

Return C
VerDec(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return (⊥, “init”)
m← SC.VerDec(π, ids, pk[ids], idr , pk[idr ], sk[idr ], c, ad)

If m =⊥ then return (⊥, “dec”)
z0 ← ((ids, idr ,m, ad), c) ; If ∃z1 ∈ Q : R.Vf(z0, z1) then return (⊥, “priv”)
Return (m, “ok”)

Figure 6: Games defining privacy of signcryption scheme SC with respect to relaxing relation R.

Outputs of oracle VerDec. The output of oracle VerDec in game Gpriv is a pair containing
the plaintext (or the incorrect decryption symbol ⊥) as its first element, and the status message
as its second element. This ensures that the adversary can distinguish whether VerDec returned
⊥ because it failed to decrypt the ciphertext (yields error message “dec”), or because the relaxing
relation prohibits the query (yields error message “priv”). Giving more information to the adversary
results in a stronger security definition, and will help us prove equivalence between the joint and
separate security notions of signcryption in Appendix C. Note that an adversary can distinguish
between different output branches of all other oracles used in our authenticity and privacy games.

A choice of relaxing relation for privacy. Consider relaxing relations Rid and Rm that are
defined in Fig. 4. We recover IND-CCA security of SC as the PRIV-security of SC with respect
to Rid. And we capture the RCCA security of SC as the PRIV-security of SC with respect to
Rm. Recall that the intuition behind the RCCA security [28, 53] is to prohibit the adversary from
querying its decryption oracle with ciphertexts that encrypt a previously queried challenge message.
In particular, this is the reason that two elements are added to set Q during each call to oracle
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Figure 7: Constituent algorithms of encryption scheme under message derived keys EMDK.

LR, one for each of m0 and m1. Our definition of RCCA security for SC is very similar to that of
IND-gCCA2 security as proposed by An, Dodis and Rabin [4]. The difference is that our definition
passes the decrypted message as input to the relation, whereas IND-gCCA2 instead allows relations
that take public keys of sender and recipient as input. It is not clear that having the relation take
the public key would make our definition meaningfully stronger.

Capturing outsider privacy. Game Gpriv
SC,R,D captures the privacy of SC in the insider setting,

meaning that the adversary is allowed to request challenge encryptions from ids to idr even when
ids is exposed. This implies some form of forward security because exposing the sender’s key does
not help the adversary win the indistinguishability game. To recover the notion of outsider privacy,
consider a class of outsider adversaries that never query LR(ids, I,m0,m1, ad) when exp[ids] =
true.

4 Encryption under message derived keys

We now define Encryption under Message Derived Keys (EMDK). It can be thought of as a special
type of symmetric encryption allowing to use keys that depend on the messages to be encrypted.
This type of primitive will be at the core of analyzing the security of iMessage-based signcryption
scheme. In Section 4.1 we define syntax, correctness and basic security notions for EMDK schemes.
In Section 4.2 we define the iMessage-based EMDK scheme and analyse its security.

4.1 Syntax, correctness and security of EMDK

We start by defining the syntax and correctness of encryption schemes under message derived keys.
The interaction between constituent algorithms of EMDK is shown in Fig. 7. The main security
notions for EMDK schemes are AE (authenticated encryption) and ROB (robustness). We also
define the IND (indistinguishability) notion that will be used in Section 4.2 for an intermediate
result towards showing the AE-security of the iMessage-based EMDK scheme.

Encryption schemes under message derived keys. An encryption scheme under message de-
rived keys EMDK specifies algorithms EMDK.Enc and EMDK.Dec, where EMDK.Dec is determin-
istic. Associated to EMDK is a key length EMDK.kl ∈ N. The encryption algorithm EMDK.Enc
takes a message m ∈ {0, 1}∗ to return a key k ∈ {0, 1}EMDK.kl and a ciphertext c ∈ {0, 1}∗. The
decryption algorithm EMDK.Dec takes k, c to return message m ∈ {0, 1}∗ ∪ {⊥}, where ⊥ denotes
incorrect decryption. Decryption correctness requires that EMDK.Dec(k, c) = m for all m ∈ {0, 1}∗,
and all (k, c) ∈ [EMDK.Enc(m)].

Indistinguishability of EMDK. Consider game Gind of Fig. 8, associated to an encryption
scheme under message derived keys EMDK, and to an adversary D. The advantage of D in breaking
the IND security of EMDK is defined as AdvindEMDK(D) = 2 · Pr[Gind

EMDK,D] − 1. The game samples
a random challenge bit b and requires the adversary to guess it. The adversary has access to an
encryption oracle LR that takes two challenge messages m0,m1 to return an EMDK encryption of
mb.
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Game Gind
EMDK,D

b←$ {0, 1} ; b′←$DLR

Return b = b′

LR(m0,m1)

If |m0| ̸= |m1| then return ⊥
(k, c)←$ EMDK.Enc(mb)

Return c

Game Gae
EMDK,D

b←$ {0, 1} ; b′←$DLR,Dec

Return b = b′

LR(m0,m1)

If |m0| ̸= |m1| then return ⊥
n← n+ 1

(k[n], c[n])←$ EMDK.Enc(mb)

Return (n, c[n])

Dec(i, c)

If i ̸∈ [n] or c[i] = c then return ⊥
m← EMDK.Dec(k[i], c)
If b = 1 then return m else return ⊥

Game Grob
EMDK,G

(i, k)←$ GEnc
If i ̸∈ [n] then return false
m← EMDK.Dec(k, c[i])
Return m ̸=⊥ and m ̸= m[i]

Enc(m)

(k, c)←$ EMDK.Enc(m)

n← n+1 ; m[n]← m ; c[n]← c

Return (k, c)

Figure 8: Games defining indistinguishability, authenticated encryption security, and robustness of
encryption scheme under message derived keys EMDK.

EMDK.EncRO(m)

k←$ {0, 1}EMDK.kl ; ℓ← |m|
x← m⊕RO(k, ℓ)
h← RO(k ∥m, ℓ)
c← (x, h)
Return (k, c)

EMDK.DecRO(k, c)

(x, h)← c ; ℓ← |x|
m← x⊕RO(k, ℓ)
h′ ← RO(k ∥m, ℓ)
If h ̸= h′ then return ⊥
Else return m

RO(z, ℓ)

If T [z, ℓ] = ⊥ then
T [z, ℓ]←$ {0, 1}ℓ

Return T [z, ℓ]

Figure 9: Sample EMDK scheme EMDK = SIMPLE-EMDK in the ROM.

Authenticated encryption security of EMDK. Consider game Gae of Fig. 8, associated to
an encryption scheme under message derived keys EMDK, and to an adversary D. The advantage
of D in breaking the AE security of EMDK is defined as AdvaeEMDK(D) = 2 · Pr[Gae

EMDK,D] − 1.
Compared to the indistinguishability game from above, game Gae saves the keys and ciphertexts
produced by oracle LR, and also provides a decryption oracle Dec to adversary D. The decryption
oracle allows to decrypt a ciphertext with any key that was saved by oracle Enc, returning either
the actual decryption m (if b = 1) or the incorrect decryption symbol ⊥ (if b = 0). To prevent
trivial wins, the adversary is not allowed to query oracle Dec with a key-ciphertext pair that were
produced by the same LR query.
Robustness of EMDK. Consider game Grob of Fig. 8, associated to an encryption scheme under
message derived keys EMDK, and to an adversary G. The advantage of G in breaking the ROB
security of EMDK is defined as AdvrobEMDK(G) = Pr[Grob

EMDK,G ]. To win the game, adversary G is
required to find (c, k0, k1,m0,m1) such that c decrypts to m0 under key k0, and c decrypts to m1

under key k1, but m0 ̸= m1. Furthermore, the game requires that the ciphertext (along with one
of the keys) was produced during a call to oracle Enc that takes a message m as input to return
the output (k, c) of running EMDK.Enc(m) with honestly generated random coins. The other key
can be arbitrarly chosen by the adversary. In the symmetric encryption setting, a similar notion
called wrong-key detection was previously defined by Canetti et al. [27]. The notion of robustness
for public-key encryption was formalized by Abdalla et al. [1] and further extended by Farshim et
al. [46].
Sample EMDK scheme SIMPLE-EMDK. It is easy to build an EMDK scheme that is both AE-
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EMDK.Enc(m)

r0←$ {0, 1}F.kl ; r1 ← F.Ev(r0,m)
k ← r0 ∥ r1 ; cse ←$ SE.Enc(k,m)
Return (k, cse)

EMDK.Dec(k, cse)

m← SE.Dec(k, cse) ; If m =⊥ then return ⊥
r0 ← k[1 . . .F.kl] ; r1 ← k[F.kl+ 1 . . . SE.kl]
If r1 ̸= F.Ev(r0,m) then return ⊥
Return m

Figure 10: iMessage-based EMDK scheme EMDK = IMSG-EMDK[F, SE].

Game Gpkr
SE,ℓ,P

PEnc,GuessKey ; Return win

Enc(m)

k←$ {0, 1}SE.kl ; c←$ SE.Enc(k,m)

n← n+ 1 ; k[n]← k[1 . . . ℓ] ; Return c

GuessKey(p)

If ∃i ∈ [n] : k[i] = p then win← true

Game Gwrob
SE,ℓ,G

GEnc ; Return win

Enc(r0,m)

r1←$ {0, 1}ℓ ; k ← r0 ∥ r1
c← SE.Enc(k,m)

If ∃(m′, c) ∈W : m′ ̸= m then
win← true

W ←W ∪ {(m, c)} ; Return r1

Figure 11: Games defining partial key recovery security of symmetric encryption scheme SE with
respect to prefix length ℓ, and weak robustness of deterministic symmetric encryption scheme SE
with respect to randomized key-suffix length ℓ.

secure and ROB-secure. One example of such scheme is the construction SIMPLE-EMDK in the
random oracle model (ROM) that is defined in Fig. 9. In the next section we will define the EMDK
scheme used iMessage; it looks convoluted, and its security is hard to prove even in the ideal models.
In Appendix B we define the EMDK scheme that was initially used in iMessage; it was replaced
with the current EMDK scheme in order to fix a security flaw in the iMessage design. We believe
that the design of the currently used EMDK scheme was chosen based on a requirement to maintain
backward-compatibility across the initial and the current versions of iMessage protocol.

4.2 iMessage-based EMDK scheme

In this section we define the EMDK scheme IMSG-EMDK that is used as the core building block in
the construction of iMessage (we use it to specify the iMessage-based signcryption scheme in Sec-
tion 5). We will provide reductions showing the AE-security and the ROB-security of IMSG-EMDK.
These security reductions will first require us to introduce two new security notions for symmetric
encryption schemes: partial key recovery and weak robustness.
EMDK scheme IMSG-EMDK. Let SE be a symmetric encryption scheme. Let F be a function
family with F.In = {0, 1}∗ such that F.kl + F.ol = SE.kl. Then EMDK = IMSG-EMDK[F, SE] is the
EMDK scheme as defined in Fig. 10, with key length EMDK.kl = SE.kl.

Informally, the encryption algorithm EMDK.Enc(m) samples a hash function key r0 and com-
putes hash r1←$ F.Ev(r0,m). It then encrypts m by running SE.Enc(k,m), where k = r0 ∥ r1 is a
message-derived key. The decryption algorithm splits k into r0 and r1 and – upon recovering m –
checks that r1 = F.Ev(r0,m). In the iMessage construction, SE is instantiated with AES-CTR using
128-bit keys and a fixed IV=1, whereas F is instantiated with HMAC-SHA256 using F.kl = 88 and
F.ol = 40.
Partial key recovery security of SE. Consider game Gpkr of Fig. 11, associated to a sym-
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metric encryption scheme SE, a prefix length ℓ ∈ N and an adversary P. The advantage of P in
breaking the PKR-security of SE with respect to ℓ is defined as AdvpkrSE,ℓ(P) = Pr[Gpkr

SE,ℓ,P ]. The
adversary P has access to oracle Enc that takes a message m and encrypts it under a uniformly
random key k (independently sampled for each oracle call). The goal of the adversary is to recover
the first ℓ bits of any secret key that was used in prior Enc queries.
Weak robustness of deterministic SE. Consider game Gwrob of Fig. 11, associated to a deter-
ministic symmetric encryption scheme SE, a randomized key-suffix length ℓ ∈ N, and an adversary
G. The advantage of G in breaking the WROB-security of SE with respect to ℓ is defined as
AdvwrobSE,ℓ (G) = Pr[Gwrob

SE,ℓ,G ]. The adversary has access to oracle Enc. The oracle takes a prefix of an
encryption key r0 ∈ {0, 1}SE.kl−ℓ and message m as input. It then randomly samples the suffix of
the key r1 ∈ {0, 1}ℓ and returns it to the adversary. The adversary wins if it succeeds to query
Enc on some inputs (r0,m) and (r′0,m

′) such that m ̸= m′ yet the oracle mapped both queries to
the same ciphertext c. In other words, the goal of the adversary is to find k0,m0, k1,m1 such that
SE.Enc(k0,m0) = SE.Enc(k1,m1) and m0 ̸= m1 (which also implies k0 ̸= k1), and the adversary
has only a partial control over the choice of k0 and k1. Note that this assumption can be validated
in the ideal cipher model.
Security reductions for IMSG-EMDK. We now provide the reductions for AE-security and
ROB-security of IMSG-EMDK. The former is split into Theorem 4.1 and Theorem 4.2, whereas
the latter is provided in Theorem 4.3. Note that in Appendix D we provide the standard defini-
tions for the random oracle model, the UNIQUE-security and the OTIND-security of symmetric
encryption, and the TCR-security of function families. The proofs of Theorem 4.1, Theorem 4.2
and Theorem 4.3 are in Appendix E, Appendix F, and Appendix G respectively.

Theorem 4.1 Let SE be a symmetric encryption scheme. Let F be a function family with F.In =
{0, 1}∗, such that F.kl + F.ol = SE.kl. Let EMDK = IMSG-EMDK[F,SE]. Let DAE be an adversary
against the AE-security of EMDK. Then we build an adversary U against the UNIQUE-security of
SE, an adversary H against the TCR-security of F, and an adversary DIND against the IND-security
of EMDK such that

AdvaeEMDK(DAE) ≤ 2 · AdvuniqueSE (U) + 2 · AdvtcrF (H) + AdvindEMDK(DIND).

Theorem 4.2 Let SE be a symmetric encryption scheme. Let F be a function family with F.In =
{0, 1}∗ and F.kl + F.ol = SE.kl, defined by F.EvRO(r,m) = RO(⟨r,m⟩,F.ol) in the random oracle
model. Let EMDK = IMSG-EMDK[F, SE]. Let DEMDK be an adversary against the IND-security of
EMDK that makes qLR queries to its LR oracle and qRO queries to random oracle RO. Then we
build an adversary P against the PKR-security of SE with respect to F.kl, and an adversary DSE

against the OTIND-security of SE, such that

AdvindEMDK(DEMDK) ≤ 2 · γ + 2 · AdvpkrSE,F.kl(P) + AdvotindSE (DSE),

where

γ =
(2 · qRO + qLR − 1) · qLR

2F.kl+1
.

Theorem 4.3 Let SE be a deterministic symmetric encryption scheme. Let F be a function family
with F.In = {0, 1}∗ and F.kl + F.ol = SE.kl, defined by F.EvRO(r,m) = RO(⟨r,m⟩,F.ol) in the
random oracle model. Let EMDK = IMSG-EMDK[F,SE]. Let GEMDK be an adversary against the
ROB-security of EMDK. Then we build an adversary U against the UNIQUE-security of SE, and
an adversary GSE against the WROB-security of SE with respect to F.ol such that

AdvrobEMDK(GEMDK) ≤ AdvuniqueSE (U) + AdvwrobSE,F.ol(GSE).
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Scheme Construction Figure
EMDK IMSG-EMDK[F,SE] 10
MRPKE IMSG-MRPKE[EMDK,PKE] 14
SC IMSG-SC[MRPKE,DS] 13

Scheme Instantiation
F HMAC-SHA256 (F.kl = 88, F.ol = 40)
SE AES-CTR with 128-bit key and IV=1
PKE RSA-OAEP with 1280-bit key
DS ECDSA with NIST P-256 curve

Figure 12: Modular design of iMessage-based signcryption scheme. The boxed nodes in the diagram
denote transforms that build a new cryptographic scheme from two underlying primitives.

5 Design and security of iMessage
In this section we define a signcryption scheme that models the current design of iMessage protocol
for end-to-end encrypted messaging, and we analyze its security. All publicly available information
about the iMessage protocol is provided by Apple in iOS Security Guide [5] that is regularly updated
but is very limited and vague. So in addition to the iOS Security Guide, we also reference work that
attempted to reverse-engineer [74, 70] and attack [51] the prior versions of iMessage. A message-
recovery attack against iMessage was previously found and implemented by Garman et al. [51] in
2016, and subsequently fixed by Apple starting from version 9.3 of iOS, and version 10.11.4 of Mac
OS X. The implemented changes to the protocol prevented the attack, but also made the protocol
design less intuitive. It appears that one of the goals of the updated protocol design was to preserve
backward-compatibility, and that could be the reason why the current design is a lot more more
sophisticated than otherwise necessary. Apple has not formalized any claims about the security
achieved by the initial or the current iMessage protocol, or the assumptions that are required from
the cryptographic primitives that serve as the building blocks. We fill in the gap by providing
precise claims about the security of iMessage design when modeled by our signcryption scheme. In
this section we focus only on the current protocol design of iMessage. In Appendix B we provide
the design of the initial iMessage protocol, we explain the attack proposed by Garman et al. [51],
and we introduce the goal of backward-compatibility for signcryption schemes.

5.1 iMessage-based signcryption scheme IMSG-SC

Identifying signcryption as the goal. The design of iMessage combines multiple cryptographic
primitives to build an end-to-end encrypted messaging protocol. It uses HMAC-SHA256, AES-
CTR, RSA-OAEP and ECDSA as the underlying primitives. Apple’s iOS Security Guide [5] and
prior work on reverse-engineering and analysis of iMessage [74, 70, 51] does not explicitly indicate
what type of cryptographic scheme is built as the result of combining these primitives. We iden-
tify it as a signcryption scheme. We define the iMessage-based signcryption scheme IMSG-SC in a
modular way that facilitates its security analysis. Fig. 12 shows the order in which the underlying
primitives are combined to build IMSG-SC, while also providing intermediate constructions along
the way. We now explain this step by step.
Modular design of IMSG-SC. Our construction starts from choosing a function family F and
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SC.Setup

π ← MRPKE.Setup ; Return π

SC.SigEnc(π, ids,pks, sks,R,m, ad)

I ← ∅ ; Rpke ← ∅ ; C ← ∅
For each (idr ,pkr) ∈ R do
(vkr , ekr)← pkr

I ← I ∪ {idr}
Rpke ←Rpke ∪ {(idr , ekr)}

mpke ← ⟨m, ids, I⟩
Cpke ←$ MRPKE.Enc(π,Rpke ,mpke)
(tks,dks)← sks

For each (idr , cpke) ∈ Cpke do
σ←$ DS.Sig(tks, ⟨cpke , ad⟩)
c← (cpke , σ) ; C ← C ∪ {(idr , c)}

Return C

SC.Kg(π)

(vk, tk)←$ DS.Kg
(ek,dk)←$ MRPKE.Kg(π)
pk ← (vk, ek) ; sk ← (tk,dk)
Return (pk, sk)

SC.VerDec(π, ids,pks, idr ,pkr , skr , c, ad)

(cpke , σ)← c ; (vks, eks)← pks

(vkr , ekr)← pkr ; (tkr ,dkr)← skr

d← DS.Ver(vks, ⟨cpke , ad⟩, σ)
If not d then return ⊥
mpke ← MRPKE.Dec(π, ekr ,dkr , cpke)
If mpke =⊥ then return ⊥
⟨m, id∗

s , I⟩ ← mpke

If ids ̸= id∗
s or idr ̸∈ I then return ⊥

Return m

Figure 13: Signcryption scheme SC = IMSG-SC[MRPKE,DS].

a symmetric encryption scheme SE (instantiated with HMAC-SHA256 and AES-CTR in iMes-
sage). It combines them to build an encryption scheme under message derived keys EMDK =
IMSG-EMDK[F,SE]. The resulting EMDK scheme is combined with public-key encryption scheme
PKE (instantiated with RSA-OAEP in iMessage) to build a multi-recipient public-key encryption
scheme MRPKE = IMSG-MRPKE[EMDK,PKE] (syntax and correctness of MRPKE schemes is de-
fined in Appendix D). Finally, MRPKE and digital signature scheme DS (instantiated with ECDSA
in iMessage) are combined to build the iMessage-based signcryption scheme SC = IMSG-SC[MRPKE,
DS]. The definition of IMSG-EMDK was provided in Section 4.2. We now define IMSG-SC and
IMSG-MRPKE.
Signcryption scheme IMSG-SC. Let MRPKE be a multi-recipient public-key encryption scheme.
Let DS be a digital signature scheme. Then SC = IMSG-SC[MRPKE,DS] is the signcryption scheme
as defined in Fig. 13, with SC.ID = {0, 1}∗. In order to produce a signcryption of message m with
associated data ad, algorithm SC.SigEnc performs the following steps. It builds a new message
mpke = ⟨m, ids, I⟩ as the unique encoding of m, ids, I, where I is the set of recipients. It then calls
MRPKE.Enc to encrypt the same message mpke for every recipient. Algorithm MRPKE.Enc returns
a set Cpke containing pairs (idr , cpke), each indicating that an MRPKE ciphertext cpke was produced
for recipient idr . For each recipient, the corresponding ciphertext cpke is then encoded with the
associated data ad into ⟨cpke , ad⟩ and signed using the signing key tks of sender identity ids, produc-
ing a signature σ. The pair (idr , (cpke , σ)) is then added to the output set of algorithm SC.SigEnc.
When running the unsigncryption of ciphertext c sent from ids to idr , algorithm SC.VerDec ensures
that the recovered MRPKE plaintext mpke = ⟨m, id∗

s , I⟩ is consistent with ids = id∗
s and idr ∈ I.

Multi-recipient public-key encryption scheme IMSG-MRPKE. Let EMDK be an encryption
scheme under message derived keys. Let PKE be a public-key encryption scheme with PKE.In =
{0, 1}EMDK.kl. Then MRPKE = IMSG-MRPKE[EMDK,PKE] is the multi-recipient public-key en-
cryption scheme as defined in Fig. 14. Algorithm MRPKE.Enc first runs (k, cse)←$ EMDK.Enc(m)
to produce an EMDK ciphertext cse that encrypts m under key k. The obtained key k is then
independently encrypted for each recipient identity idr using its PKE encryption key ekr , and the
corresponding tuple (idr , (cse , cpke)) is added to the output set of algorithm MRPKE.Enc.
Combining everything together. Let SC be the iMessage-based signcryption scheme that is
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MRPKE.Setup

π ← ε ; Return π

MRPKE.Enc(π,R,m)

C ← ∅ ; (k, cse)←$ EMDK.Enc(m)
For each (idr , ekr) ∈ R do
cpke ←$ PKE.Enc(ekr , k)
c← (cse , cpke) ; C ← C ∪ {(idr , c)}

Return C

MRPKE.Kg(π)

(ek,dk)←$ PKE.Kg ; Return (ek,dk)

MRPKE.Dec(π, ek,dk, c)

(cse , cpke)← c
k ← PKE.Dec(ek,dk, cpke)
If k =⊥ then return ⊥
m← EMDK.Dec(k, cse)
Return m

Figure 14: Multi-recipient public-key encryption scheme MRPKE = IMSG-MRPKE[EMDK,PKE].

Figure 15: Algorithms SC.SigEnc (left panel) and SC.VerDec (right panel) for SC = IMSG-SC
[MRPKE,DS], where MRPKE = IMSG-MRPKE[EMDK,PKE] and EMDK = IMSG-EMDK[F, SE]. For
simplicity, we let idr be the only recipient, and we do not show how to parse inputs and combine
outputs for the displayed algorithms. The dotted lines inside SC.VerDec denote equality check, and
the dotted arrow denotes membership check.

produced by combining all of the underlying primitives described above. Then the data flow within
the fully expanded algorithms SC.SigEnc and SC.VerDec is schematically displayed in Fig. 15. For
simplicity, the diagrams show the case when a message m is sent to a single recipient idr .

Details not captured by our model. Our goal in this work was to capture the iMessage de-
sign as closely as possible. Garman et al. [51] provided the most detailed description of the iMessage
design prior to the changes deployed in version 9.3 of iOS, and version 10.11.4 of Mac OS X. The
only publicly available information about the current iMessage design is provided in iOS Security
Guide [5] and is very vague. We used the former in order to fill in the gaps in our understanding
whenever the latter was too ambiguous. This approach seems to be justified by Apple’s apparent
goal to preserve backward-compatibility between the two versions of iMessage’s end-to-end encryp-
tion protocol. Based on the above, we now list the main differences that we believe exist between
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our constuction and the iMessage design.
In our construction, the message encrypted by the EMDK scheme is ⟨m, ids, I⟩, which is the

uniquely decodable encoding of values m, ids, I. As per our requirements from Section 2, we
assume that this encoding is trivially malleable. In the implementation of iMessage the values
m, ids, I are encoded into a binary plist key-value data structure, then compressed using the gzip
compression format, and only then encrypted with the EMDK scheme (i.e. using AES-CTR). In
order to implement a practical attack against the initial iMessage design, Garman et al. [51] had
to come up with a novel, non-trival technique of exploiting the malleability of AES-CTR when it
encrypts gzip compressed data.

Now let cmrpke be the MRPKE ciphertext and let cpke be the PKE ciphertext (to disambiguate
between different meanings of cpke in our schemes). As per the description of Garman et al. [51],
iMessage splits the EMDK ciphertext cse into c1 ∥ c2 such that c1 contains the first 101 bytes of cse .
It then computes cpke ←$ PKE.Enc(ekr , k ∥ c1), and sets cmrpke = (c2, cpke). This is clearly done
in order to optimize the bandwidth. It could also significantly improve the security of the entire
scheme whenever the length of EMDK ciphertext does not exceed 101 bytes. However, according
to Garman et al. [51], the first 101 bytes of the EMDK ciphertext will normally contain only plist
key values and gzip header information (such as Huffman table). So we chose to omit this detail in
our construction, and instead not put any part of the EMDK ciphertext into the PKE ciphertext.

Our iMessage-based signcryption scheme allows to use arbitrary associated data ad. The iMes-
sage implementation does not appear to use associated data. In particular, iMessage implementation
uses DS to sign only the MRPKE ciphertext, and it was our own choice to also sign associated data
(as opposed to appending ad to the EMDK message).

5.2 Parameter-choice induced attacks on privacy of iMessage

The iMessage-based signcryption scheme SC uses the EMDK scheme EMDK = IMSG-EMDK[F, SE]
as one of its underlying primitives. Recall that in order to encrypt a payload m′ = ⟨m, ids, I⟩, the
EMDK scheme samples a function key r0←$ {0, 1}F.kl, computes a hash of m′ as r1 ← F.Ev(r0,m

′),
sets the encryption key k ← r0 ∥ r1, and produces a ciphertext as cse ←$ SE.Enc(k,m′). The imple-
mentation of iMessage uses parameters F.kl = 88 and F.ol = 40. In this section we provide three
adversaries against the privacy of SC whose success depends on the choice of F.kl and F.ol. In next
sections we will provide security proofs for SC. We will show that each adversary in this section
arises from an attack against a different step in our security proofs. We will be able to conclude
that these are roughly the best attacks that arise from the choice of EMDK parameters. We will also
explain why it is hard to construct any adversaries against the authenticity of SC. Now consider
the adversaries of Fig. 16. The formal claims about each adversary will be stated at the end of this
section.
Exhaustive key search. Adversary Dexhaustive,n is parameterized by message length n ∈ N. It
calls oracle LR to produce a single challenge ciphertext (encrypting m0 or m1) from an honest
sender ids to an honest recipient idr . Then for every possible value of r0 ∈ {0, 1}F.kl, it computes
r1 as the hash of payload m′

1 = ⟨m1, ids, {idr}⟩, sets k ← r0 ∥ r1, and uses it to decrypt the EMDK-
encrypted part of the challenge ciphertext. The adversary returns 1 iff the ciphertext decrypts to
m′

1. Dexhaustive,n always returns 1 when b = 1, but it is very unlikely to return 1 when b = 0 because
m1 is uniformly random and independent of m0.
Birthday attack. Adversary Dbirthday makes roughly 2F.kl/2 queries to oracle LR, using distinct
values for message m0 and a fixed value for message m1. The adversary returns 1 iff two different
challenge ciphertexts produced by LR contain the same EMDK ciphertext. Due to the birthday

19



DNewH,NewC,Exp,LR,VerDec
exhaustive,n (π)

ids ← “send” ; pks←$ NewH(ids)
idr ← “recv” ; pkr ←$ NewH(idr)
I ← {idr} ; ad ← ε
m0 ← 0n ; m1←$ {0, 1}n
C ←$ LR(ids, I,m0,m1, ad)
{(idr , c)} ← C ; ((cse , cpke), σ)← c
m′

1 ← ⟨m1, ids, I⟩
For each r0 ∈ {0, 1}F.kl do
r1 ← F.Ev(r0,m

′
1) ; k ← r0 ∥ r1

If SE.Dec(k, cse) = m′
1 then return 1

Return 0

DNewH,NewC,Exp,LR,VerDec
birthday (π)

ids ← “send” ; pks←$ NewH(ids)
idr ← “recv” ; pkr ←$ NewH(idr)
I ← {idr} ; ad ← ε
S ← ∅ ; p← ⌈F.kl/2⌉ ; m1 ← 0p

For each m0 ∈ {0, 1}p do
C ←$ LR(ids, I,m0,m1, ad)
{(idr , c)} ← C ; ((cse , cpke), σ)← c
If cse ∈ S then return 1
S ← S ∪ {cse}

Return 0

DNewH,NewC,Exp,LR,VerDec
ADR02 (π)

ids ← 0128 ; pks←$ NewH(ids) ; idr ← 1128 ; pkr ←$ NewH(idr)
I ← {idr} ; m0 ← 0128 ; m1 ← 1128 ; ad ← ε
C ←$ LR(ids, I,m0,m1, ad) ; {(idr , c)} ← C ; ((cse , cpke), σ)← c
idc ← 064164 ; (pkc , skc)←$ SC.Kg(π) ; NewC(idc ,pkc , skc) ; (tkc ,dkc)← skc

m′
1 ← ⟨m1, ids, {idr}⟩ ; m′′

1 ← ⟨m1, idc , {idr}⟩ ; c′se ← cse ⊕ (m′
1 ⊕m′′

1)
σ′←$ DS.Sig(tkc , ⟨(c′se , cpke), ad⟩) ; c′ ← ((c′se , cpke), σ

′)
(m, err)← VerDec(idc , idr , c

′, ad) ; If m = m1 then return 1 else return 0

Figure 16: Adversaries Dexhaustive,n, Dbirthday and DADR02 against the PRIV-security of
SC = IMSG-SC[MRPKE,DS], where MRPKE = IMSG-MRPKE[EMDK,PKE] and EMDK =
IMSG-EMDK[F,SE]. Adversary DADR02 requires that SE is AES-CTR with a fixed IV.

paradox, this is likely to occur if b = 1; it happens whenever the same value of r0 ∈ {0, 1}F.kl is
sampled twice. But this is a lot less likely to occur if b = 0; it happens whenever two distinct
messages encrypted under two distinct EMDK keys produce the same EMDK ciphertext.
Multi-user attack. AdversaryDADR02 calls oracle LR to get a challenge ciphertext c = ((cse , cpke),
σ) encrypting message mb from an honest sender ids to an honest recipient idr . It then creates a
corrupted identity idc , mauls the EMDK ciphertext cse to replace the original sender identity ids

with idc , resigns the MRPKE ciphertext (cse , cpke) with idc ’s signing key tkc , and passes the result-
ing ciphertext c′ = ((c′se , cpke), σ

′) to oracle VerDec in order to get the message mb in plain. This
attack uses the malleability of AES-CTR, and the malleability of the encoding ⟨mb, ids, {idr}⟩ (as
required in Section 2). Furthermore, this attack only succeeds when F.Ev(r0, ⟨mb, idc , {idr}⟩) = r1,
where k = r0 ∥ r1 is the EMDK key that was used to encrypt the challenge message between honest
identities. The advantage of adversary DADR02 can be amplified by trying many distinct corrupted
identities until the above condition is satisfied; but this comes at the expense of making a higher
number of oracle queries (and hence a higher runtime complexity). This attack was initially pro-
posed by An, Dodis and Rabin [4] to show that privacy of signcryption in two-user setting does
not imply its privacy in multi-user setting. This also served as the starting point for the practical
message-recovery attack implemented by Garman et al. [51] against the initial design of iMessage
(see Appendix B for details).
Formal claims and analysis. We provide the number of queries, the runtime complexity and
the advantage of each adversary in Fig. 17. The assumptions necessary to prove the advantage are
stated in Lemma 5.1 below. Note that Dbirthday represents a purely theoretical attack, but both
Dexhaustive and DADR02 can lead to practical message-recovery attacks (the latter used by Garman
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Adversary qLR qNewC qVerDec Runtime complexity Advantage
Dexhaustive,n 1 0 0 2F.kl evaluations of F.Ev, SE.Enc ≥ 1− 2SE.kl−n

Dbirthday 2⌈F.kl/2⌉ 0 0 2p · p for p = ⌈F.kl/2⌉ > 1/8− 2F.kl−128

DADR02 1 1 1 1 evaluation of SC.Kg, DS.Sig = 2−F.ol

Figure 17: The resources used by adversaries Dexhaustive,n, Dbirthday and DADR02, and the advantage
achieved by each of them. Columns labeled qO denote the number of queries an adversary makes
to oracle O. All adversaries make 2 queries to oracle NewH, and 0 queries to oracle Exp. See
Lemma 5.1 for necessary assumptions.

et al. [51]).
Let EMDK = IMSG-EMDK[F, SE]. Adversary DADR02 shows that EMDK can have at most F.ol

bits of security with respect to PRIV, and adversary Dbirthday shows that EMDK can have at most
≈ F.kl/2 + log2 F.kl bits of security with respect to PRIV. It follows that setting F.ol ≈ F.kl/2 is
a good initial guideline, and roughly corresponds to the parameter choices made in iMessage. We
will provide a more detailed analysis in Section 5.5. The proof of Lemma 5.1 is in Appendix H.

Lemma 5.1 Let SE be a symmetric encryption scheme. Let F be a function family with F.In =
{0, 1}∗ such that F.kl + F.ol = SE.kl. Let EMDK = IMSG-EMDK[F, SE]. Let PKE be a public-key
encryption scheme with PKE.In = {0, 1}SE.kl. Let MRPKE = IMSG-MRPKE[EMDK,PKE]. Let DS
be a digital signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let R ⊆ {0, 1}∗ × {0, 1}∗ be any
relaxing relation. Then for any n > SE.kl,

AdvprivSC,R(Dexhaustive,n) ≥ 1− 2SE.kl−n.

Furthermore, for any 1 ≤ F.kl ≤ 124, if SE is AES-CTR with a fixed IV, and if AES is modeled as
the ideal cipher, then

AdvprivSC,R(Dbirthday) > 1/8− 2F.kl−128.

Let Rm be the relaxing relation defined in Fig. 4. If SE is AES-CTR with a fixed IV, and if F is
defined as F.EvRO(r,m) = RO(⟨r,m⟩,F.ol) in the random oracle model, then

AdvprivSC,Rm
(DADR02) = 2−F.ol.

5.3 Authenticity of iMessage
In this section we reduce the authenticity of the iMessage-based signcryption scheme SC to the
security of its underlying primitives. First we reduce the authenticity of SC = IMSG-SC[MRPKE,
DS] to the unforgeability of DS and to the robustness of MRPKE. And then we reduce the robustness
of MRPKE = IMSG-MRPKE[EMDK,PKE] to the robustness of either PKE or EMDK; it is sufficient
that only one of the two is robust.
Reduction showing authenticity of IMSG-SC. Recall that an SC ciphertext is a pair (cpke , σ)
that consists of an MRPKE ciphertext cpke (encrypting some ⟨m, ids, I⟩) and a DS signature σ of
⟨cpke , ad⟩. Intuitively, the authenticity of SC requires some type of unforgeability from DS in
order to prevent the adversary from producing a valid signature on arbitrary cpke and ad of its
own choice. However, the unforgeability of DS is not a sufficient condition, because the adversary
is allowed to win the game Gauth by forging an SC ciphertext for a corrupted recipient identity
that uses maliciously chosen SC keys. So an additional requirement is that the adversary should
not be able to find an SC key pair (pk, sk) that succesfully decrypts an honestly produced SC
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IMSG-AUTH-REL[R∗].Vf(z, z∗)

((ids, idr ,m, ad), (cpke , σ))← z ; z0 ← ((ids, idr ,m, ad, cpke), σ)
((id∗

s , id
∗
r ,m

∗, ad∗), (c∗pke , σ
∗))← z∗ ; z1 ← ((id∗

s , id
∗
r ,m

∗, ad∗, c∗pke), σ
∗)

Return R∗.Vf(z0, z1)

Figure 18: Relaxing relation IMSG-AUTH-REL[R∗].

ciphertext (cpke , σ) to an unintended message. To ensure this, we require that MRPKE is robust,
for a robustness notion that we define below. Note that finding a new key pair that decrypts the
ciphertext to the original message will not help the adversary to win the game because then the
decryption will fail by not finding the corrupted recipient’s identity in recipient set I.

The necessity for MRPKE to be robust is inherent in the construction of IMSG-SC, even if its
authenticity was required only in the outsider setting. In the outsider setting, the authenticity
game requires the adversary to use an honest recipient for the attack. But one would still need
to make sure that an MRPKE ciphertext is unlikely to be decrypted to an unintended message
using honestly generated keys of an unintended recipient. So this would still require a weak notion
of robustness from MRPKE. This could have been avoided if the recipient’s identity was directly
signed by DS, e.g. by adding idr to ⟨cpke , ad⟩.

We define unforgeability UF of a digital signature scheme with respect to a relaxing relation R,
such that the standard unforgeability is captured with respect to Rm and the strong unforgeability
is captured with respect to Rid. We show that if DS is UF-secure with respect to a relaxing
relation R∗ ∈ {Rm,Rid} then SC is AUTH-secure with respect to the corresponding parameterized
relaxing relation IMSG-AUTH-REL[R∗], which we define below. ECDSA signatures are not strongly
unforgeable [49], so iMessage is AUTH-secure with respect to IMSG-AUTH-REL[Rm].
Relaxing relation IMSG-AUTH-REL. Let Rm and Rid be the relaxing relations defined in Sec-
tion 3. Let R∗ ∈ {Rm,Rid}. Then IMSG-AUTH-REL[R∗] is the relaxing relation as defined in Fig. 18.
Note that

Rid = IMSG-AUTH-REL[Rid] ⊂ IMSG-AUTH-REL[Rm] ⊂ Rm,

where AUTH-security with respect to Rid captures the stronger security definition due to imposing
the least number of restrictions regarding which queries are permitted to oracle VerDec. Relax-
ing relation IMSG-AUTH-REL[Rm] does not allow adversary to win the authenticity game by only
mauling the signature σ and not changing anything else.
Unforgeability of digital signatures. Consider game Guf of Fig. 19, associated to a digital
signature scheme DS, a relaxing relation R, and an adversary F . The advantage of F in breaking
the UF-security of DS with respect to R is defined as AdvufDS,R(F) = Pr[Guf

DS,R,F ]. UF-security with
respect to Rm captures the standard unforgeability, and UF-security with respect to Rid captures
the strong unforgeability.
Robustness of MRPKE. Consider game Grob of Fig. 20, associated to a multi-recipient public-
key encryption scheme MRPKE and an adversary G. The advantage of G in breaking the ROB-
security of MRPKE is defined as AdvrobMRPKE(G) = Pr[Grob

MRPKE,G ]. Adversary G has access to oracle
Enc that returns MRPKE ciphertexts encrypting message m to every recipient from set R. Set R
contains pairs (id, ek) each containing a user identity id ∈ {0, 1}∗ and an MRPKE encryption key
ek. In order to win the game, adversary G has to find a key pair (ek,dk) that decrypts a ciphertext
returned by Enc to a message that is different from the originally encrypted message. Throughout
the game, adversary is allowed to use arbitrary MRPKE keys (including maliciously generated key
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Game Guf
DS,R,F

(id,m, σ)←$ FNewUser,Exp,Sign ; If (not initialized[id]) or exp[id] then return false
z0 ← ((id,m), σ) ; If ∃z1 ∈ Q : R.Vf(z0, z1) then return false
d← DS.Ver(vk[id],m, σ) ; Return d

NewUser(id)

If initialized[id] then return ⊥
initialized[id]← true ; (vk, tk)←$ DS.Kg ; vk[id]← vk ; tk[id]← tk ; Return vk

Exp(id)

If not initialized[id] then return ⊥
exp[id]← true ; Return tk[id]

Sign(id,m)

If not initialized[id] then return ⊥
σ←$ DS.Sig(tk[id],m) ; Q← Q ∪ {((id,m), σ)} ; Return σ

Figure 19: Game defining unforgeability of digital signature scheme DS with respect to relaxing
relation R.

Game Grob
MRPKE,G

π ← MRPKE.Setup ; (ek,dk, c)←$ GEnc(π)
m1 ← MRPKE.Dec(π, ek,dk, c)
Return m1 ̸=⊥ and (∃(m0, c) ∈W : m0 ̸= m1)

Enc(R,m)

C ←$ MRPKE.Enc(π,R,m)

For each (id, c) ∈ C do W ←W ∪ {(m, c)}
Return C

Game Grob
PKE,G

(i, ek,dk)←$ GEnc
If i ̸∈ [n] then return false
m← PKE.Dec(ek,dk, c[i])
Return m ̸=⊥ and m ̸= m[i]

Enc(ek,m)

c←$ PKE.Enc(ek,m) ; n← n+ 1

m[n]← m ; c[n]← c ; Return c

Figure 20: Games defining robustness of multi-recipient public-key encryption scheme MRPKE, and
robustness of public-key encryption scheme PKE.

pairs that do not provide decryption correctness). However, oracle Enc runs algorithm MRPKE.Enc
with honestly sampled random coins.

Theorem 5.2 Let MRPKE be a multi-recipient public-key encryption scheme. Let DS be a digital
signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let R∗ ∈ {Rm,Rid}. Let FSC be an adversary
against the AUTH-security of SC with respect to relaxing relation R = IMSG-AUTH-REL[R∗]. Then
we build an adversary FDS against the UF-security of DS with respect to R∗, and an adversary G
against the ROB-security of MRPKE such that

AdvauthSC,R(FSC) ≤ AdvufDS,R∗(FDS) + AdvrobMRPKE(G).

The proof of Theorem 5.2 is in Appendix I.
Reduction showing robustness of MRPKE. The ciphertext of MRPKE = IMSG-MRPKE[EMDK,
PKE] is a pair (cse , cpke), where cse is an EMDK ciphertext encrypting some m∗ = ⟨m, ids, I⟩, and
cpke is a PKE ciphertext encrypting the corresponding EMDK key k. The decryption algorithm of
MRPKE first uses the PKE key pair (ek, dk) to decrypt cpke , and then uses the recovered EMDK
key k to decrypt cse . We show that just one of PKE and EMDK being robust implies that MRPKE
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is also robust. Our definition of robustness for public-key encryption requires that it is hard to find
a key pair (ek,dk) that decrypts an honestly produced ciphertext to a plaintext that is different
from the originally encrypted message. If this condition holds for PKE, then clearly MRPKE is
robust regardless of whether EMDK is robust. On the other hand, if PKE is not robust, then the
robustness of EMDK (as defined in Section 4) would guarantee that the adversary is unlikely to
decrypt cse to a message other than m∗ even if it has full control over the choice of EMDK key
k. It is not known whether RSA-OAEP is robust, so our concrete security analysis of iMessage in
Section 5.5 will rely entirely on the robustness of EMDK = IMSG-EMDK.
Robustness of PKE. Consider game Grob of Fig. 20, associated to a public-key encryption scheme
PKE and an adversary G. The advantage of G in breaking the ROB-security of PKE is defined as
AdvrobPKE(G) = Pr[Grob

PKE,G ]. The adversary has access to oracle Enc that takes ek,m as input to
return a ciphertext c computed by running PKE.Enc(ek,m) with honestly sampled random coins;
the adversary can call this oracle many times. In order to win the game, the adversary has to
provide a key pair ek,dk that decrypts any of these ciphertexts (produced in Enc) to a message
that is different from the message that was used to produce this specific ciphertext. Note that the
key pair ek, dk is allowed to be maliciously generated and even malformed.

The notions of robustness for public-key encryption were first formalized by Abdalla et al. [1],
and later extended by Farshim et al. [46]. Our security notion requires the adversary to come up
with a ciphertext that is mapped to two distinct messages; this was not required by prior security
notions. The prior security notions require the adversary to come up with two different key pairs
that map some ciphertext to valid messages. In contrast, our security notion also allows adversary
to win by coming up with a single malformed key pair that can encrypt some message m into
a ciphertext c that decrypts to a different message m′ ̸= m (since decryption correctness is only
required for honestly generated keys). So our security notion is incomparable to prior notions.

Theorem 5.3 Let EMDK be an encryption scheme under message derived keys. Let PKE be a
public-key encryption scheme with PKE.In = {0, 1}EMDK.kl. Let MRPKE = IMSG-MRPKE[EMDK,
PKE]. Let GMRPKE be an adversary against the ROB-security of MRPKE. Then we build an
adversary GEMDK against the ROB-security of EMDK such that

AdvrobMRPKE(GMRPKE) ≤ AdvrobEMDK(GEMDK),

and an adversary GPKE against the ROB-security of PKE such that

AdvrobMRPKE(GMRPKE) ≤ AdvrobPKE(GPKE).

The proof of Theorem 5.3 is in Appendix J.

5.4 Privacy of iMessage
In this section we reduce the PRIV-security of SC = IMSG-SC[MRPKE,DS] to the INDCCA-security
of MRPKE, then reduce the INDCCA-security of MRPKE = IMSG-MRPKE[EMDK,PKE] to the AE-
security of EMDK and the INDCCA-security of PKE. The reductions are straightforward.

An adversary attacking the PRIV-security of SC is allowed to query oracle LR and get a
challenge ciphertext from an exposed sender as long as the recipient is honest. This means that the
adversary can use the sender’s DS signing key to arbitrarily change associated data ad and signature
σ of any challenge ciphertext prior to querying it to oracle VerDec. Our security reduction for
PRIV-security of SC will be with respect to a relation that prohibits the adversary from trivially
winning this way. Note that if IMSG-SC was defined to instead put ad inside ⟨m, ids, I⟩, then our
security reduction would be able to show the PRIV-security of SC with respect to Rid assuming DS
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IMSG-PRIV-REL.Vf(z, z∗)
((ids, idr ,m, ad), (cpke , σ))← z ; ((id∗

s , id
∗
r ,m

∗, ad∗), (c∗pke , σ
∗))← z∗

Return (ids, idr ,m, cpke) = (id∗
s , id

∗
r ,m

∗, c∗pke)

Figure 21: Relaxing relation IMSG-PRIV-REL.

had unique signatures. However, ECDSA does not have this property (for the same reason it is not
strongly unforgeable, as explained in [49]).
Relaxing relation IMSG-PRIV-REL. Let IMSG-PRIV-REL be the relaxing relation defined in
Fig. 21. It first discards the associated data ad and the signature σ, and then compares the
resulting tuples against each other. This reflects the intuition that an adversary can trivially
change the values of ad and σ in any challenge ciphertext when attacking the PRIV-security of
IMSG-SC.

Theorem 5.4 Let MRPKE be a multi-recipient public-key encryption scheme. Let DS be a digital
signature scheme. Let SC = IMSG-SC[MRPKE,DS]. Let DSC be an adversary against the PRIV-
security of SC with respect to the relaxing relation R = IMSG-PRIV-REL. Then we build an adversary
DMRPKE against the INDCCA-security of MRPKE such that

AdvprivSC,R(DSC) ≤ AdvindccaMRPKE(DMRPKE).

The proof of Theorem 5.4 is in Appendix K.

Theorem 5.5 Let EMDK be an encryption scheme under message derived keys. Let PKE
be a public-key encryption scheme with input set PKE.In = {0, 1}EMDK.kl. Let MRPKE =
IMSG-MRPKE[EMDK,PKE]. Let DMRPKE be an adversary against the INDCCA-security of
MRPKE. Then we build an adversary DPKE against the INDCCA-security of PKE, and an
adversary DEMDK against the AE-security of EMDK such that

AdvindccaMRPKE(DMRPKE) ≤ 2 · AdvindccaPKE (DPKE) + AdvaeEMDK(DEMDK).

The proof of Theorem 5.5 is in Appendix L.
Privacy in the outsider setting. In the outsider setting, the PRIV-security of SC with respect
to relaxing relation IMSG-AUTH-REL[R∗] can be shown assuming UF-security of DS with respect
to R∗ (same as in Section 5.3) and the INDCPA-security of MRPKE. The latter can be further
reduced to the INDCPA-security of PKE and the IND-security of EMDK.

5.5 Concrete security of iMessage
In this section we summarize the results concerning the security of our iMessage-based signcryption
scheme. For simplicity, we use the constructions and primitives from all across our work without
formally redefining each of them.
Corollary for abstract schemes. Let SC be the iMessage-based signcryption scheme, defined
based on the appropriate underlying primitives. Let Rauth = IMSG-AUTH-REL[R∗] and Rpriv =
IMSG-PRIV-REL. Then for any adversary FSC attacking the AUTH-security of SC we can build
new adversaries such that:

AdvauthSC,Rauth
(FSC) ≤ AdvufDS,R∗(FDS) + min(AdvrobPKE(GPKE), α),
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where

α = AdvuniqueSE (U0) + AdvwrobSE,F.ol(GSE).

For any adversary DSC attacking the PRIV-security of SC, making qLR queries to LR oracle and
qRO queries to RO oracle, we build new adversaries such that:

AdvprivSC,Rpriv
(DSC) ≤ 2 · (β + γ) + AdvotindSE (DSE),

where

β = AdvindccaPKE (DPKE) + AdvuniqueSE (U1) + AdvtcrF (H) + AdvpkrSE,F.kl(P),

γ =
(2 · qRO + qLR − 1) · qLR

2F.kl+1
.

Bit-security of iMessage. We now assess the concrete security of iMessage when the abstract
schemes that constitute SC are instantiated with real-world primitives. First, note that AdvuniqueSE (U) =
0 for any U when SE is AES-CTR. We will approximate the bit-security of SC based on the other
terms above.

We assume that ECDSA with 256-bit keys (on the NIST P-256 curve) has 128 bits of UF-
security with respect to Rm [34, 10]. We assume that RSA-OAEP with 1280-bit keys has 80 bits
of INDCCA-security [34, 57]. SE is AES-CTR with key length SE.kl; we assume that SE has SE.kl
bits of OTIND-security.

For every other term used above, we approximate the corresponding bit-security based on the
advantage ϵ and the runtime T of the best adversary we can come up with. For simplicity, we model
F as the random oracle and we model SE as the ideal cipher. This simplifies the task of finding
the “best possible” adversary against each security notion and then calculating its advantage. In
each case we consider either a constant-time adversary making a single guess in its security game
(achieving some advantage ϵ in time T ≈ 1), or an adversary that runs a birthday attack (achieving
advantage ϵ ≥ 0.3 · q·(q−1)

N in time T ≈ q · log2 q for q =
√
2N). We use the following adversaries:

(i) Assume SE is AES-CTR where AES modeled as the ideal cipher with block length 128. In
game Gwrob

SE,F.ol,G consider an adversary G that repeatedly queries its oracle Enc on inputs
(r0,m) where all r0 ∈ {0, 1}F.kl are distinct and all m ∈ {0, 1}128 are distinct. The adversary
wins if a collision occurs across the 128-bit outputs of SE.Enc. Then ϵ = AdvwrobSE,F.ol(GSE) ≥
0.3 · qEnc∗(qEnc−1)

2128
and T = qEnc · log2 qEnc for qEnc =

√
2128+1.

(ii) In game Gtcr
F,H consider an adversaryH that queries its oracle NewKey(x0) for any x0 ∈ {0, 1}∗

and then makes a guess (1, x1) for any x0 ̸= x1. Then ϵ = AdvtcrF (H) = 2−F.ol and T ≈ 1 in
the random oracle model.

(iii) In game Gpkr
SE,F.kl,P consider an adversary P that makes a single call to Enc and then randomly

guesses any key prefix p ∈ {0, 1}F.kl. Then ϵ = AdvpkrSE,F.kl(P) = 2−F.kl and T ≈ 1 in the ideal
cipher model.

(iv) The term γ upper bounds the probability of an adversary finding a collision when running the
birthday attack (in the random oracle model). The corresponding lower bound (for qRO = 0)
is ϵ ≥ 0.3 · qLR·(qLR−1)

2F.kl
with T = qLR · log2 qLR and qLR =

√
2F.kl+1.

We wrote a script that combines all of the above to find the lower bound for the bit-security of
SC (with respect to PRIV and AUTH security notions) for different choices of SE.kl, F.kl and F.ol.
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SE.kl F.kl F.ol PRIV bit-security AUTH bit-security

128
88 40 39

71

80 48 45
72 56 41

192
128 64 63
120 72 66
112 80 62

256 168 88 79
160 96 79

Figure 22: Lower bounds for bit-security of SC across different parameter choices.

This assumes that the above adversaries are optimal, and computes the lower bound according
to Section 2. Fig. 2 (in Section 1) shows the bit-security lower bounds with respect to privacy,
depending on the choice of symmetric key length SE.kl and authentication tag length F.ol. Fig. 22
shows the choices of F.kl and F.ol that yield the best lower bounds for the bit-security of PRIV
for each SE.kl ∈ {128, 192, 256}. According to our results, the security of the iMessage-based
signcryption scheme would slightly improve if the value of F.ol was chosen to be 48 instead of
40. The bit-security of SC with respect to AUTH is constant because it does not depend on the
values of SE.kl, F.kl, F.ol. The assumption that RSA-OAEP with 1280-bit long keys has 80 bits
of INDCCA-security limits the bit-security that can be achieved when SE.kl = 256; otherwise, the
PRIV bit-security for SE.kl = 256 would allow a lower bound of 86 bits. But note that using
SE.kl ∈ {192, 256} is likely not possible while maintaining the backward-compatibility of iMessage.
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A Prior work on signcryption
Signcryption combines public-key encryption and signatures into a single cryptographic primitive
that performs both functionalities simultaneously. The main goal of signcryption is to provide
a better efficiency than by performing the encryption and signing separately. The concept and
the first scheme were proposed by Zheng [84] in 1997, and over the years led to a wide body of
research. In this section we summarize the prior work on signcryption, outlining the main research
contributions in the literature. We note that a comprehensive analysis of early signcryption work
was also provided by Dent and Zheng [41] in 2010.
Security notions. The initial paper by Zheng [84] did not propose a security definition. The
first security notion for authenticity of signcryption (but not for privacy) was defined by Steinfeld
and Zheng [82]. Full security of signcryption (i.e. both authenticity and privacy) was concurrently
defined in 2002 by An, Dodis and Rabin [4], and by Baek, Steinfeld and Zheng [7] (the former
partially encompasses [3]) These papers define separate security notions for authenticity and privacy
of signcryption. Furthermore, either security notion can be defined in two-user or multi-user setting,
and in outsider or insider setting. These papers show that the security of signcryption in multi-user
setting is not implied by its security in two-user setting, so the subsequent work uses multi-user
definitions.

In the insider setting, the adversary has access either to sender’s secret key (when attacking
privacy), or to recipient’s secret key (when attacking authenticity). In the outsider setting, the
adversary does not have access to sender’s and recipient’s secret keys. The security definitions in
the insider setting are strictly stronger than in the outsider setting. In the insider setting, the
privacy of signcryption guarantees some form of forward security, and the authenticity guarantees
non-repudiation; neither property is guaranteed in the outsider setting. But it might not be clear
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EMDK.Enc(m)

k←$ {0, 1}SE.kl ; cse ←$ SE.Enc(k,m)
Return (k, cse)

EMDK.Dec(k, cse)

m← SE.Dec(k, cse)
Return m

Figure 23: Basic EMDK scheme EMDK = BASIC-EMDK[SE].

that insider security is necessary to model the real-world requirements, so some of the subsequent
work is done in the outsider setting. In a recent work, Badertscher, Banfi and Maurer [6] analyzed
the security notions for signcryption in the constructive cryptography framework [67] and concluded
that the insider security notions should be considered as the standard for signcryption.

Boyen [25] proposed additional security notions for signcryption called ciphertext unlinkability
and ciphertext anonymity (the later also called key privacy). Libert and Quisquater [60] defined key
invisibility of signcryption. Wang et al. [83] showed that key invisibility implies all other security
notions for confidentiality of signcryption.
Constructions. Prior work proposes a variety of generic constructions to build signcryption
schemes. This includes generic compositions of encryption and signature schemes [4, 72, 66, 40,
45], encompassing “encrypt-then-sign”, “sign-then-encrypt”, “encrypt-and-sign”, “commit-then-
encrypt-and-sign”, “encrypt-then-sign-then-encrypt”, and more. More generic constructions are
known from hybrid KEM-DEM techniques [38, 37, 64, 22, 52, 66, 58, 30] and from any trapdoor
permutation [42].

Direct constructions of signcryption schemes are known from DH assumptions [84, 8, 81], from
RSA problem or integer factorization [82, 65], and from hard problems in groups with bilinear
maps [59, 60, 61].
Extensions. In order to address certificate management challenges in a public-key infrastructure,
prior work considers different types of signcryption schemes. The solutions include identity-based
signcryption [63, 25, 59, 31, 29, 11, 62, 77, 79] and certificateless signcryption [9, 58, 76]. This can
be further generalized to obtain attribute-based signcryption [50, 71, 35] and functional signcryp-
tion [36].

Orthogonal to the certificate management problem, some of the prior work aims to build sign-
cryption schemes with advanced functionality, such as deterministic signcryption [40], aggregate
signcryption [78, 39], sanitizable signcryption [48], publicly verifiable signcryption [8, 31, 77, 45],
and multi-recipient signcryption [43].

B Legacy design of iMessage
An attack against the privacy of iMessage was found in 2016 by Garman et al. [51]. In response,
Apple updated the protocol design of iMessage and deployed the fix starting from iOS version 9.3
and Mac OS X version 10.11.4. In Section 5 we analyzed the current version of iMessage. In this
section we provide the initial design of iMessage, we explain the attack by Garman et al. [51], and
we introduce the notion of backward-compatibility for signcryption schemes.

The initial design of iMessage was the same as the current design (defined in Section 5.1), except
it used a different EMDK scheme. We call it BASIC-EMDK and define it below. This EMDK scheme
samples the encryption key k for SE uniformly at random, independently of the message. Note that
instantiating SE with AES-CTR allows trivial attacks against both the AE-security and the ROB-
security of BASIC-EMDK.
EMDK scheme BASIC-EMDK. Let SE be a symmetric encryption scheme. Then EMDK =
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BASIC-EMDK[SE] is the encryption scheme under message derived keys as defined in Fig. 23, with
key length EMDK.kl = SE.kl.
The GGKMR16 attack. Let SC = IMSG-SC[MRPKE,DS] for MRPKE = IMSG-MRPKE[EMDK,
PKE] and EMDK = BASIC-EMDK. Then BASIC-EMDK is used to encrypt m∗ = ⟨m, ids, I⟩. When
instantiated, AES-CTR is used to encrypt m∗ using a uniformly random key k. Due to the mal-
leability of AES-CTR, an adversary can maul the BASIC-EMDK ciphertext to replace ids with an
arbitrary corrupted identity idc of its own choice. Adversary then replaces the DS signature of
MRPKE ciphertext with idc ’s signature of the mauled ciphertext, and queries the VerDec oracle
(in privacy game) to get the decryption of the originally encrypted message. This trivally breaks
the privacy of the scheme, yielding a message-recovery attack. We formalized this adversary as
DADR02 defined in Fig. 16 of Section 5.2, where it was used to attack the new iMessage design.
However, this adversary has a significantly better advantage against the initial iMessage design: it
achieves advantage 1. We formalize this claim as follows.

Proposition B.1 Let SE be a symmetric encryption scheme. Let EMDK = BASIC-EMDK[SE].
Let PKE be a public-key encryption scheme with PKE.In = {0, 1}SE.kl. Let MRPKE =
IMSG-MRPKE[EMDK,PKE]. Let DS be a digital signature scheme. Let SC = IMSG-SC[MRPKE,
DS]. Consider the relaxing relation Rm defined in Section 3, and the adversary DADR02 defined in
Section 5.2. If SE is AES-CTR with a fixed IV, then AdvprivSC,Rm

(DADR02) = 1.

The basic attack idea used by this adversary was proposed by An, Dodis and Rabin [4] to show
that two-user security of signcryption does not imply multi-user security of signcryption. In order
to attack iMessage, Garman et al. [51] adapted the attack to also use the malleability of AES-CTR.
However, the implementation of iMessage encodes m∗ = ⟨m, ids, I⟩ into a binary plist key-value
data structure, and then compresses the result using the gzip compression format. In order to
implement a practical attack against iMessage, Garman et al. [51] had to develop a novel attack
technique to deal with this encoding. Also note that in the practical (message-recovery) attack
implemented by Garman et al. [51], there is no ciphertext decryption oracle, but instead they are
able to use an oracle that returns a single bit indicating whether a ciphertext could be decrypted
correctly.
Backward-compatibility of signcryption. We believe that in response to the attack by Gar-
man et al. [51], the iMessage protocol was changed in a way that its new design is backward-
compatible with the initial design. We now formalize the requirement of backward-compatility for
signcryption schemes.

Let SC0, SC1 be any signcryption schemes. We say that SC1 is backward-compatible with SC0 if
algorithm SC0.VerDec can be used to unsigncrypt ciphertexts produced by scheme SC1. Formally,
consider a new signcryption scheme SC2 such that SC2.Setup = SC1.Setup, SC2.Kg = SC1.Kg,
SC2.SigEnc = SC1.SigEnc, SC2.VerDec = SC0.VerDec, and SC2.ID = SC1.ID. We say that SC1 is
backward-compatible with SC0 if the correctness condition holds for signcryption scheme SC2. The
scheme SC2 in this claim models the interaction between a sender device using scheme SC1 and a
recipient device using scheme SC0.

We stress that backward-compatibility does not guaranteee that schemes SC1 and SC2 satisfy
any security notions, regardless of the guarantees provided by SC0. It is easy to construct contrived
examples where SC1.SigEnc appends all of its inputs (including secret key and plaintext) to the
produced ciphertext. The scheme SC1 will be backward-compatible with SC0 if the latter correctly
decrypts ciphertexts with arbitrary appended suffix strings, but schemes SC1,SC2 will not provide
any security.
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Game Gsec
SC,Rauth,Rpriv,D

b←$ {0, 1} ; π←$ SC.Setup ; b′←$DNewH,NewC,Exp,LR,VerDec(π) ; Return b′ = b

NewH(id)

If initialized[id] then return ⊥
initialized[id]← true ; (pk, sk)←$ SC.Kg(π) ; pk[id]← pk ; sk[id]← sk ; Return pk

NewC(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

Exp(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return sk[id]

LR(ids, I,m0,m1, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true
R← ∅ ; For each id ∈ I do R← R∪ {(id, pk[id])}
C ←$ SC.SigEnc(π, ids, pk[ids], sk[ids],R,mb, ad)

For each (idr , c) ∈ C do
If m0 ̸= m1 then
Qpriv ← Qpriv ∪ {((ids, idr ,m0, ad), c)}
Qpriv ← Qpriv ∪ {((ids, idr ,m1, ad), c)}

Else Qauth ← Qauth ∪ {((ids, idr ,m0, ad), c)}
Return C
VerDec(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return (⊥, “init”)
m← SC.VerDec(π, ids, pk[ids], idr , pk[idr ], sk[idr ], c, ad)

If m =⊥ then return (⊥, “dec”)
z0 ← ((ids, idr ,m, ad), c)

If ∃z1 ∈ Qpriv : Rpriv.Vf(z0, z1) then return (⊥, “priv”)
If ∃z1 ∈ Qauth : Rauth.Vf(z0, z1) then return (m, “auth”)

cheated← exp[ids] ; If cheated then return (m, “cheat”)

If b = 1 then return (m, “ok”) else return (⊥, “chal”)

Figure 24: Games defining the combined security of signcryption scheme SC, simultaneously cap-
turing the authenticity of SC with respect to relaxing relation Rauth and the privacy of SC with
respect to relaxing relation Rpriv.

C Combined security of signcryption
In this section we define a combined security notion for signcryption that simultaneously captures
the authenticity and the privacy notions. We show that the combined security notion implies each
of the two separate security notions. We also show that the separate security notions jointly imply
the combined security notion for certain choices of relaxing relations.
Combined security of signcryption. Consider game Gsec of Fig. 24 associated to a signcryp-
tion scheme SC, relaxing relations Rauth,Rpriv, and an adversary D. The advantage of adversary D
in breaking the SEC-security of SC with respect to Rauth,Rpriv is defined as AdvsecSC,Rauth,Rpriv

(D) =
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2Pr[Gsec
SC,Rauth,Rpriv,D]− 1.

The combined security notion is defined with respect to two relaxing relations: Rauth specifying
the restrictions for the authenticity purposes, and Rpriv specifying the restrictions for the privacy
purposes. The game accordingly builds a separate set for each of the relaxing relations, where
Qpriv contains information relevant to the privacy, and Qauth contains information relevant to the
authenticity. The oracles of the combined security game can be thought of as merging the corre-
sponding oracles of the separate security games for authenticity and privacy; only the definition
of oracle VerDec requires some caution. Specifically, the relaxing relation for privacy has to be
checked before checking the relaxing relation for authenticity. And the last line of the oracle should
only be reached if the adversary did not attempt to cheat by using an exposed sender.
Combined security in the outsider setting. To capture the notion of combined security
in the outsider setting, consider the class of outsider adversaries that (i) never query oracle
LR(ids, I,m0,m1, ad) when exp[ids] = true, and (ii) never query oracle VerDec(ids, idr , c, ad)
when exp[idr ] = true.
Relations between security notions. We reduce the SEC-security of SC with respect to
Rauth,Rpriv (i) to the AUTH-security of SC with respect to Rauth (for any Rpriv), and (ii) to the
PRIV-security of SC with respect to Rpriv (for any Rauth). The other direction is more compli-
cated. For any relaxing relations Rauth,Rpriv, we provide a reduction from the AUTH-security of
SC with respect to Rauth ∩ Rpriv jointly with the PRIV-security of SC with respect to Rpriv, to the
SEC-security of SC with respect to Rauth,Rpriv.

So we can claim that SEC-security with respect to Rauth,Rpriv is equivalent to AUTH-security
with respect to Rauth and PRIV-security with respect to Rpriv whenever Rauth ⊆ Rpriv (which implies
Rauth∩Rpriv = Rauth). Note that this condition holds for the relaxing relations with respect to which
we proved the security of our iMessage-based signcryption scheme, meaning IMSG-AUTH-REL[R∗] ⊆
IMSG-PRIV-REL for any R∗ ∈ {Rm,Rid}.

Lemma C.1 Let SC be a signcryption scheme. Let Rauth, Rpriv be relaxing relations. Let F be
an adversary against the AUTH-security of SC with respect to Rauth. Then we build an adversary
DSEC against the SEC-security of SC with respect to Rauth,Rpriv such that

AdvauthSC,Rauth
(F) ≤ AdvsecSC,Rauth,Rpriv

(DSEC).

Proof of Lemma C.1: We build adversary DSEC against the SEC-security of SC with respect to
Rauth,Rpriv as defined in Fig. 25. It simulates game Gauth

SC,Rauth
for adversary F . Note that F ’s oracle

calls to SigEnc are simulated by calling DSEC’s oracle LR with m0 = m1 as input, so table ch and
set Qpriv are always empty in game Gsec

SC,Rauth,Rpriv,DSEC
. Meaning that DSEC’s oracle VerDec never

returns (⊥, “priv”). This allows DSEC to answer most of F ’s oracle calls by directly calling its own
oracles. Only the simulation of F ’s calls to oracle VerDec requires some care.
Adversary F wins in game Gauth

SC,Rauth
if it manages to set win flag to true. Whenever this happens,

adversary DSEC gets a return value (m, err) from its own oracle VerDec with either err = “ok” or
err = “chal”, thus being able to deduce that the challenge bit value in its own game is b′ = 1 or
b′ = 0, respectively. In either case, adversary DSEC immediately calls abort(b′) to halt with b′ as
its return value.

Lemma C.2 Let SC be a signcryption scheme. Let Rauth, Rpriv be relaxing relations. Let DPRIV

be an adversary against the PRIV-security of SC with respect to Rpriv. Then we build an adversary
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Adversary DNewH,NewC,Exp,LR,VerDec
SEC (π)

FNewH,NewC,Exp,SigEncSim,VerDecSim(π)
Return 0

SigEncSim(ids, I,m, ad)

Return LR(ids, I,m,m, ad)

VerDecSim(ids, idr , c, ad)

(m, err)← VerDec(ids, idr , c, ad)
If err ̸∈ {“ok”, “chal”} then return m
If err = “ok” then b′ ← 1 else b′ ← 0
abort(b′)

Adversary DNewH,NewC,Exp,LR,VerDec
SEC (π)

b′←$DNewH,NewC,Exp,LR,VerDecSim
PRIV (π)

Return b′

VerDecSim(ids, idr , c, ad)

(m, err)← VerDec(ids, idr , c, ad)
If err ∈ {“init”, “dec”, “priv”} then

Return (m, err)
If err ∈ {“auth”, “cheat”} then

Return (m, “ok”)
If err = “ok” then b′ ← 1 else b′ ← 0
abort(b′)

Figure 25: Left: Adversary DSEC for proof of Lemma C.1. DSEC simulates game Gauth
SC,Rauth

for
adversary F . Right: Adversary DSEC for proof of Lemma C.2. DSEC simulates game Gpriv

SC,Rpriv
for

adversary DPRIV.

DSEC against the SEC-security of SC with respect to Rauth,Rpriv such that

AdvprivSC,Rpriv
(DPRIV) ≤ AdvsecSC,Rauth,Rpriv

(DSEC).

Proof of Lemma C.2: We build adversary DSEC against the SEC-security of SC with respect to
Rauth,Rpriv as defined in Fig. 25. It simulates game Gpriv

SC,Rpriv
for adversary DPRIV. The simulation is

perfect unless DSEC gets a response with err ∈ {“ok”, “chal”} from oracle VerDec, while attempt-
ing to simulate DPRIV’s call to its corresponding oracle. However, whenever this happens, DSEC

deduces the challenge bit b′ in its own game without waiting for DPRIV’s guess, and calls abort(b′)
to immediately halt with b′ as its output.

Theorem C.3 Let SC be a signcryption scheme. Let Rauth, Rpriv be relaxing relations. Let DSEC be
an adversary against the SEC-security of SC with respect to Rauth,Rpriv. Then we build an adversary
F against the AUTH-security of SC with respect to Rauth ∩ Rpriv, and an adversary DPRIV against
the PRIV-security of SC with respect to Rpriv such that

AdvsecSC,Rauth,Rpriv
(DSEC) ≤ 2 · AdvauthSC,Rauth∩Rpriv

(F) + AdvprivSC,Rpriv
(DPRIV).

Proof of Theorem C.3: Consider games G0–G1 in Fig. 26. Lines not annotated with comments
are common to both games. Game G0 is equivalent to Gsec

SC,Rauth,Rpriv,DSEC
, so

AdvsecSC,Rauth,Rpriv
(DSEC) = 2 · Pr[G0]− 1.

Games G0 and G1 are identical until bad0. According to the Fundamental Lemma of Game Play-
ing [20] we have

Pr[G0]− Pr[G1] ≤ Pr[badG0
0 ],

where Pr[badQ] denotes the probability of setting bad flag in game Q.
Adversary DSEC setting flag bad0 in oracle VerDec means that the sender ids is not exposed, and
the ciphertext c is not detected as trivial forgery according to Rauth. We build an adversary F
against the AUTH-security of SC with respect to R = Rauth ∩ Rpriv as defined in Fig. 27, such that

Pr[badG0
0 ] ≤ Pr[Gauth

SC,R,F ].
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Games G0–G1

b←$ {0, 1} ; π←$ SC.Setup ; b′←$DNewH,NewC,Exp,LR,VerDec
SEC (π) ; Return b′ = b

NewH(id)

If initialized[id] then return ⊥
initialized[id]← true ; (pk, sk)←$ SC.Kg(π) ; pk[id]← pk ; sk[id]← sk ; Return pk

NewC(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

Exp(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return sk[id]

LR(ids, I,m0,m1, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true

R← ∅ ; For each id ∈ I do R← R∪ {(id, pk[id])}
C ←$ SC.SigEnc(π, ids, pk[ids], sk[ids],R,mb, ad)
For each (idr , c) ∈ C do

If m0 ̸= m1 then
Qpriv ← Qpriv ∪ {((ids, idr ,m0, ad), c)}
Qpriv ← Qpriv ∪ {((ids, idr ,m1, ad), c)}

Else Qauth ← Qauth ∪ {((ids, idr ,m0, ad), c)}
Return C
VerDec(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return (⊥, “init”)
m← SC.VerDec(π, ids, pk[ids], idr , pk[idr ], sk[idr ], c, ad)
If m =⊥ then return (⊥, “dec”)
z0 ← ((ids, idr ,m, ad), c)
If ∃z1 ∈ Qpriv : Rpriv.Vf(z0, z1) then return (⊥, “priv”)
If ∃z1 ∈ Qauth : Rauth.Vf(z0, z1) then return (m, “auth”)
cheated← exp[ids] ; If cheated then return (m, “cheat”)
bad0 ← true
Return (⊥, “bad0”) // G1

If b = 1 then return (m, “ok”) else return (⊥, “chal”)

Figure 26: Games G0–G1 for proof of Theorem C.3. The code added for the transitions between
games is highlighted in green.

Adversary F simulates game G0 for adversary DSEC. It maintains its own copies of initialized,
ch, exp, Qpriv, and Qauth. Every time adversary DSEC makes a query to oracle LR, adversary F
produces a response using its own oracle SigEnc. As a result of this, the set Q in game Gauth

SC,R,F
at any moment is a subset of Q∗ = Qpriv ∪ Qauth in game G0. So setting bad0 in G0 means that
@z1 ∈ Qpriv : Rpriv.Vf(z0, z1) and @z1 ∈ Qauth : Rauth.Vf(z0, z1), where z0 is the tuple constructed
during the corresponding call to DSEC’s oracle VerDec. The two statements imply (but are not
equivalent to) ̸ ∃z1 ∈ Q∗ : R.Vf(z0, z1) for R = Rauth ∩ Rpriv. This means that in game Gauth

SC,R,F the
statement @z1 ∈ Q : R.Vf(z0, z1) for R = Rauth∩Rpriv is also true, justifying the upper bound above.
We now build an adversary DPRIV against the PRIV-security of SC with respect to Rpriv as defined
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Adversary FNewH,NewC,Exp,SigEnc,VerDec(π)

b←$ {0, 1} ; b′←$DNewHSim,NewCSim,ExpSim,LRSim,VerDecSim
SEC (π)

NewHSim(id)

If initialized[id] then return ⊥
initialized[id]← true ; Return NewH(id)

NewCSim(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; Return NewC(id,pk , sk)

ExpSim(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return Exp(id)

LRSim(ids, I,m0,m1, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true
C ←$ SigEnc(ids, I,mb, ad)
For each (idr , c) ∈ C do

If m0 ̸= m1 then
Qpriv ← Qpriv ∪ {((ids, idr ,m0, ad), c)}
Qpriv ← Qpriv ∪ {((ids, idr ,m1, ad), c)}

Else Qauth ← Qauth ∪ {((ids, idr ,m0, ad), c)}
Return C
VerDecSim(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return (⊥, “init”)
m← VerDec(ids, idr , c, ad) ; If m =⊥ then return (⊥, “dec”)
z0 ← ((ids, idr ,m, ad), c)
If ∃z1 ∈ Qpriv : Rpriv.Vf(z0, z1) then return (⊥, “priv”)
If ∃z1 ∈ Qauth : Rauth.Vf(z0, z1) then return (m, “auth”)
cheated← exp[ids] ; If cheated then return (m, “cheat”)
If b = 1 then return (m, “ok”) else return (⊥, “chal”)

Figure 27: Adversary F for proof of Theorem C.3. F simulates game G0 for adversary DSEC. The
highlighted lines mark the code of G0’s simulated oracles changed by F .

in Fig. 28 such that

Pr[G1] ≤ Pr[Gpriv
SC,Rpriv,DPRIV

].

Adversary DPRIV simulates game G1 for adversary DSEC. It maintains its own copies of exp and
Qauth, and uses them to check the two conditions in G1’s simulated oracle VerDecSim that are
not checked during the corresponding call to oracle VerDec in game Gpriv

SC,Rpriv,DPRIV
.

Together, all of the above produces the claim in the theorem statement.
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Adversary DNewH,NewC,Exp,LR,VerDec
PRIV (π)

b′←$DNewH,NewCSim,ExpSim,LRSim,VerDecSim
SEC (π) ; Return b′

NewCSim(id,pk , sk)

d← NewC(id,pk , sk) ; If d ̸=⊥ then exp[id]← true
Return d

ExpSim(id)

sk ← Exp(id) ; If sk ̸=⊥ then exp[id]← true
Return sk

LRSim(ids, I,m0,m1, ad)

C ←$ LRSim(ids, I,m0,m1, ad)
For each (idr , c) ∈ C do

If m0 = m1 then Qauth ← Qauth ∪ {((ids, idr ,m0, ad), c)}
Return C
VerDecSim(ids, idr , c, ad)

(m, err)← VerDec(ids, idr , c, ad) ; If m =⊥ then return (⊥, err)
z0 ← ((ids, idr ,m, ad), c)
If ∃z1 ∈ Qauth : Rauth.Vf(z0, z1) then return (m, “auth”)
cheated← exp[ids] ; If cheated then return (m, “cheat”)
Return (⊥, “bad0”)

Figure 28: Adversary DPRIV for proof of Theorem C.3. DPRIV simulates game G1 for adversary
DSEC.

Game Gtcr
F,H

(i, x1)←$HNewKey

If i ̸∈ [n] then return false
y1 ← F.Ev(fk[i], x1)

win1 ← (x1 ̸= x0[i])
win2 ← (y1 = y0[i])
Return win1 and win2

NewKey(x0)

n← n+ 1 ; fk[n]←$ {0, 1}F.kl
x0[n]← x0

y0[n]← F.Ev(fk[n], x0)

Return fk[n]

Game Gunique
SE,U

(i, c)←$ UEnc

If i ̸∈ [n] then return false
m← SE.Dec(k[i], c)
win1 ← (c ̸= c[i])
win2 ← (m = m[i])

Return win1 and win2

Enc(k,m)

c←$ SE.Enc(k,m)

n← n+ 1 ; k[n]← k

m[n]← m ; c[n]← c

Return c

Game Gotind
SE,D

b←$ {0, 1} ; b′←$DLR

Return b′ = b

LR(m0,m1)

If |m0| ̸= |m1| then
Return ⊥

k←$ {0, 1}SE.kl
c←$ SE.Enc(k,mb)

Return c

Figure 29: Games defining target collision resistance of function family F, ciphertext uniqueness
of symmetric encryption scheme SE, and one-time indistinguishability of symmetric encryption
scheme SE.

D Standard definitions

Function families. A family of functions F specifies a deterministic algorithm F.Ev. Associated
to F is a key length F.kl ∈ N, an input set F.In, and an output length F.ol ∈ N. The evaluation
algorithm F.Ev takes a function key fk ∈ {0, 1}F.kl and an input x ∈ F.In to return an output
y ∈ {0, 1}F.ol.
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Target collision resistance of function family. Consider game Gtcr of Fig. 29, associated
to a function family F and an adversary H. The advantage of H in breaking the TCR-security
of F is defined as AdvtcrF (H) = Pr[Gtcr

F,H]. To win the game, adversary H must find inputs x0, x1
such that F.Ev(fk, x0) = F.Ev(fk, x1) but x0 ̸= x1. The adversary has to choose x0 prior to
receiving the function key fk. It can choose multiple values of x0, but a new uniformly random
key fk is independently sampled for every choice of x0. Target collision resistant hash functions
were introduced by Naor and Yung [69] under the name of Universal One-Way Hash Functions
(UOWHF). Bellare and Rogaway [19] redefined the corresponding security notion under the name
of target collision resistance.

Symmetric encryption schemes. A symmetric encryption scheme SE specifies algorithms SE.Enc
and SE.Dec, where SE.Dec is deterministic. Associated to SE is a key length SE.kl ∈ N and a cipher-
text length function SE.cl : N→ N. The encryption algorithm SE.Enc takes a key k ∈ {0, 1}SE.kl and
a message m ∈ {0, 1}∗ to return a ciphertext c ∈ {0, 1}SE.cl(|m|). The decryption algorithm SE.Dec
takes k, c to return message m ∈ {0, 1}∗ ∪ {⊥}, where ⊥ denotes incorrect decryption. Decryption
correctness requires that SE.Dec(k, SE.Enc(k,m)) = m for all k ∈ {0, 1}SE.kl and all m ∈ {0, 1}∗.

Ciphertext uniqueness of SE. Consider game Gunique of Fig. 29, associated to a symmetric
encryption scheme SE and an adversary U . The advantage of U in breaking the UNIQUE-security
of SE is defined as AdvuniqueSE (U) = Pr[Gunique

SE,U ]. The game requires adversary H to (roughly) find
distinct ciphertexts c0, c1 and some key k such that both ciphertexts decrypt to the same message
under key k. However, the adversary does not have a full control over the choice of c0. Instead,
it has to query its Enc oracle on inputs k,m to get a ciphertext that is computed by runnning
SE.Enc(k,m) with honestly sampled random coins. The adversary can call this oracle many times.

One-time indistinguishability of SE. Consider game Gotind of Fig. 29, associated to a symmet-
ric encryption scheme SE and an adversary D. The advantage of D in breaking the OTIND-security
of SE is defined as AdvotindSE (D) = 2 ·Pr[Gotind

SE,D]− 1. The adversary has access to oracle LR and can
query it on messages m0,m1 to get back SE.Enc(k,mb) for the challenge bit b. It can query the
oracle many times, but for each of them the key k is sampled uniformly at random, independently
of other LR calls. The adversary wins the game by guessing the challenge bit b.

Digital signature schemes. A digital signature scheme DS specifies algorithms DS.Kg, DS.Sig,
DS.Ver, where DS.Ver is deterministic. The key generation algorithm DS.Kg returns a verification
key vk and a signing key tk. The signing algorithm DS.Sig takes tk and a message m ∈ {0, 1}∗
to return a signature σ. The verification algorithm DS.Ver takes vk,m, σ to return a decision d ∈
{true, false} regarding whether σ is a valid signature of m under vk. Correctness condition requires
that DS.Ver(vk,m, σ) = true for all (tk, vk) ∈ [DS.Kg], all m ∈ {0, 1}∗, and all σ ∈ [DS.Sig(tk,m)].

Public-key encryption schemes. A public-key encryption scheme PKE specifies algorithms
PKE.Kg, PKE.Enc and PKE.Dec, where PKE.Dec is deterministic. Associated to PKE is an in-
put set PKE.In. The key generation algorithm PKE.Kg returns a key pair (ek,dk), where ek is
an encryption key and dk is a decryption key. The encryption algorithm PKE.Enc takes ek and a
message m ∈ PKE.In to return a ciphertext c. The decryption algorithm PKE.Dec takes ek,dk, c to
return m ∈ PKE.In∪{⊥}, where ⊥ denotes incorrect decryption. Correctness condition requires that
PKE.Dec(ek,dk, c) = m for all (ek, dk) ∈ [PKE.Kg], all m ∈ PKE.In, and all c ∈ [PKE.Enc(ek,m)].

INDCCA security of PKE. Consider game Gindcca of Fig. 31, associated to a public-key encryp-
tion scheme PKE and an adversary D. The advantage of D in breaking the INDCCA-security of
PKE is defined as AdvindccaPKE (D) = 2 ·Pr[Gindcca

PKE,D]− 1. The adversary can create an arbitrary number
of user identities (key pairs) by calling oracle NewUser. For each user, the adversary can call

41



π←$ MRPKE.Setup
(ek,dk)←$ MRPKE.Kg(π)
C ←$ MRPKE.Enc(π,R,m)

m← MRPKE.Dec(π, ek,dk, c)

Figure 30: Syntax of the consistuent algorithms of multi-recipient public-key encryption scheme
MRPKE.

LR to get a challenge ciphertext, call Dec to decrypt a ciphertext, and call Exp to get this user’s
decryption key. The adversary wins if it can guess the challenge bit b. To avoid trivial attacks, the
game does not allow adversary to use Dec for decrypting challenge ciphertexts produced by LR,
and it also enforces that oracles Exp and LR can be called for the same user simultaneously.
Multi-recipient public-key encryption schemes. A multi-recipient public-key encryption
scheme MRPKE specifies algorithms MRPKE.Setup, MRPKE.Kg, MRPKE.Enc and MRPKE.Dec,
where MRPKE.Dec is deterministic. The setup algorithm MRPKE.Setup returns public parameters
π. The key generation algorithm MRPKE.Kg takes π to return a key pair (ek, dk), where ek is an
encryption key and dk is a decryption key. The encryption algorithm MRPKE.Enc takes π, a set
R of pairs (id, ek) each containing recipient identity id ∈ {0, 1}∗ and encryption key ek, and a
message m ∈ {0, 1}∗ to return a set C of pairs (id, c), each denoting that ciphertext c should be sent
to recipient with identity id. The decryption algorithm MRPKE.Dec takes π, ekr ,dkr , c to return
m ∈ {0, 1}∗ ∪ {⊥} where ⊥ denotes incorrect decryption. The syntax used for the constituent
algorithms of MRPKE is summarized in Fig. 30. Multi-recipient public-key encryption was defined
by Bellare et al. [12] (see also [56, 14]).

Decryption correctness of MRPKE requires that for all π ∈ [MRPKE.Setup], all n ∈ N,
all (ek1, dk1), . . . , (ekn,dkn) ∈ [MRPKE.Kg(π)], all distinct id1, . . . , idn ∈ {0, 1}∗, and all
m ∈ {0, 1}∗ the following conditions hold. Let R = {(idi, eki)}1≤i≤n. We require that for
all C ∈ [MRPKE.Enc(π,R,m)]: (i) |C| = |R|; (ii) for each i ∈ {1, . . . , n} there exists a unique
c ∈ {0, 1}∗ such that (idi, c) ∈ C; (iii) for each i ∈ {1, . . . , n} and each c such that (idi, c) ∈ C we
have m = MRPKE.Dec(π, eki,dki, c).
INDCCA security of MRPKE. Consider game Gindcca in the right panel of Fig. 31, associated
to a multi-recipient public-key encryption scheme MRPKE and an adversary D. The advantage of
D in breaking the INDCCA-security of MRPKE is defined as AdvindccaMRPKE(D) = 2 ·Pr[Gindcca

MRPKE,D]− 1.
The game is defined in the same way as the INDCCA game for PKE, except now the LR oracle
takes a set of recipients, and returns a set of pairs each containing a recipient identity and the
corresponding ciphertext.
Random oracle model. In the random oracle model (ROM) [18], the random oracle RO models
a truly random function f : D → R with some domain D and range R. In this paper we use RO
to model functions with D = {0, 1}∗ and R = {0, 1}ℓ for some ℓ ∈ N. So we let f(z) = RO(z, ℓ)
for the random oracle RO defined as follows:

RO(z, ℓ)

If T [z, ℓ] = ⊥ then T [z, ℓ]←$ {0, 1}ℓ
Return T [z, ℓ]

It takes a string z ∈ {0, 1}∗ and an output length ℓ ∈ N as input, to return an element from {0, 1}ℓ.
Ideal cipher model. In the ideal cipher model [80], a block cipher is modeled by a random
permutation for every key in its key space. Formally, a block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n
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Game Gindcca
PKE,D

b←$ {0, 1}
b′←$DNewUser,Exp,LR,Dec

Return b′ = b

NewUser(id)

If initialized[id] then return ⊥
initialized[id]← true
(ek,dk)←$ PKE.Kg ; ek[id]← ek

dk[id]← dk ; Return ek

Exp(id)

If not initialized[id] then return ⊥
If ch[id] then return ⊥
exp[id]← true ; Return dk[id]

LR(id,m0,m1)

If not initialized[id] then return ⊥
If |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If exp[id] then return ⊥
ch[id]← true

c←$ PKE.Enc(ek[id],mb)

Q← Q ∪ {(id, c)}
Return c

Dec(id, c)

If not initialized[id] then return ⊥
If (id, c) ∈ Q then return ⊥
m← PKE.Dec(ek[id], dk[id], c)
Return m

Game Gindcca
MRPKE,D

b←$ {0, 1} ; π←$ MRPKE.Setup
b′←$DNewUser,Exp,LR,Dec(π)

Return b′ = b

NewUser(id)

If initialized[id] then return ⊥
initialized[id]← true
(ek,dk)←$ MRPKE.Kg(π) ; ek[id]← ek

dk[id]← dk ; Return ek

Exp(id)

If not initialized[id] then return ⊥
If ch[id] then return ⊥
exp[id]← true ; Return dk[id]

LR(I,m0,m1)

If ∃id ∈ I : not initialized[id] then return ⊥
R ← ∅ ; If |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true

For each id ∈ I do R← R∪ {(id, ek[id])}
C ←$ MRPKE.Enc(π,R,mb)

For each (id, c) ∈ C do Q← Q ∪ {(id, c)}
Return C
Dec(id, c)

If not initialized[id] then return ⊥
If (id, c) ∈ Q then return ⊥
m← MRPKE.Dec(π, ek[id], dk[id], c)
Return m

Figure 31: Games defining indistinguishability of public-key encryption scheme PKE under chosen
ciphertext attack, and indistinguishability of multi-recipient public-key encryption scheme MRPKE
under chosen ciphertext attack.

is modeled as E(k, x) = EO(k, x) and its inverse is modeled as E−1(k, y) = EO−1(k, y) for all
k ∈ {0, 1}κ and all x, y ∈ {0, 1}n, where oracles EO and EO−1 are defined as follows:

EO(k, x)

ℓ← |x|
If T [k, ℓ, x] = ⊥ then
y←$ {0, 1}ℓ \R[k, ℓ]
D[k, ℓ]← D[k, ℓ] ∪ {x}
R[k, ℓ]← R[k, ℓ] ∪ {y}
T [k, ℓ, x]← y ; T−1[k, ℓ, y]← x

Return T [k, ℓ, x]

EO−1(k, y)

ℓ← |y|
If T−1[k, ℓ, y] = ⊥ then
x←$ {0, 1}ℓ \D[k, ℓ]
D[k, ℓ]← D[k, ℓ] ∪ {x}
R[k, ℓ]← R[k, ℓ] ∪ {y}
T−1[k, ℓ, y]← x ; T [k, ℓ, x]← y

Return T [k, ℓ, y]

Let ℓ be the input/output length of the block cipher. Then the oracles maintain (shared) sets
D[k, ℓ] and R[k, ℓ] with unused elements in the domain and range of the random permutation for
key k, respectively. Furthermore, table entries T [k, ℓ, ·] and T−1[k, ℓ, ·] are used to save the mapping
between the input and output elements of the random permutation for key k.
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Games G0–G2

b←$ {0, 1} ; b′←$DLR,Dec
AE ; Return b = b′

LR(m0,m1)

If |m0| ̸= |m1| then return ⊥
n← n+ 1 ; r0←$ {0, 1}F.kl ; r1 ← F.Ev(r0,mb) ; k[n]← r0 ∥ r1
c[n]←$ SE.Enc(k[n],mb) ; m[n]← mb ; Return (n, c[n])

Dec(i, c)

If i ̸∈ [n] or c[i] = c then return ⊥
m← SE.Dec(k[i], c) ; If m =⊥ then return ⊥
If m = m[i] then
bad0 ← true
Return ⊥ // G1, G2

s← k[i] ; r0 ← s[1 . . .F.kl] ; r1 ← s[F.kl+ 1 . . . SE.kl]
If r1 ̸= F.Ev(r0,m) then return ⊥
bad1 ← true
Return ⊥ // G1, G2

If b = 1 then return m else return ⊥

Figure 32: Games G0–G2 for proof of Theorem 4.1. The code added by expanding the algorithms
of EMDK in game Gae

EMDK,DAE
is highlighted in gray. The code added for the transitions between

games is highlighted in green.

Birthday problem. Let q,N ∈ N. Consider an experiment that samples q values x1, . . . , xq from
a set S of size |S| = N . The values are sampled uniformly at random and independent of each
other. Let

C(N, q) = Pr[x1, . . . , xq are not all distinct].

Then
0.3 · q · (q − 1)

N
≤ C(N, q) ≤ 0.5 · q · (q − 1)

N
,

where the lower bound holds for 1 ≤ q ≤
√
2N .

E Proof of Theorem 4.1
Consider games G0–G2 in Fig. 32. Lines not annotated with comments are common to all games.
Game G0 is equivalent to Gae

EMDK,DAE
, so

AdvaeEMDK(DAE) = 2 · Pr[G0]− 1.

Games G0 and G1 are identical until bad0; games G1 and G2 are identical until bad1. According to
the Fundamental Lemma of Game Playing [20] we have

Pr[G0]− Pr[G1] ≤ Pr[badG0
0 ] and Pr[G1]− Pr[G2] ≤ Pr[badG1

1 ],

where Pr[badQ] denotes the probability of setting bad flag in game Q. Setting flag bad0 in game G0

means that SE.Dec(k[i], c[i]) = SE.Dec(k[i], c) for some c ̸= c[i]. We use this to build an adversary
U against the UNIQUE-security of SE, simulating game G0 for DAE as defined in Fig. 33, such that

Pr[badG0
0 ] ≤ Gunique

SE,U .

Setting flag bad1 in game G1 means that F.Ev(r0,m[i]) = F.Ev(r0,m) for some m ̸= m[i], such that
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Adversary UEnc

b←$ {0, 1} ; b′←$DLRSim,DecSim
AE ; Return out

LRSim(m0,m1)

If |m0| ̸= |m1| then return ⊥
n← n+ 1 ; r0←$ {0, 1}F.kl ; r1 ← F.Ev(r0,mb) ; k[n]← r0 ∥ r1
c[n]←$ Enc(k[n],mb) ; m[n]← mb ; Return (n, c[n])

DecSim(i, c)

If i ̸∈ [n] or c[i] = c then return ⊥
m← SE.Dec(k[i], c) ; If m =⊥ then return ⊥
If m = m[i] then out← (i, c)
s← k[i] ; r0 ← s[1 . . .F.kl] ; r1 ← s[F.kl+ 1 . . . SE.kl]
If r1 ̸= F.Ev(r0,m) then return ⊥
If b = 1 then return m else return ⊥

Figure 33: Adversary U for proof of Theorem 4.1. U simulates game G0 for adversary DAE. The
highlighted lines mark the code of G0’s simulated oracles changed by U .

Adversary HNewKey

b←$ {0, 1} ; b′←$DLRSim,DecSim
AE ; Return out

LRSim(m0,m1)

If |m0| ̸= |m1| then return ⊥
n← n+ 1 ; r0←$ NewKey(mb) ; r1 ← F.Ev(r0,mb) ; k[n]← r0 ∥ r1
c[n]←$ SE.Enc(k[n],mb) ; m[n]← mb ; Return (n, c[n])

DecSim(i, c)

If i ̸∈ [n] or c[i] = c then return ⊥
m← SE.Dec(k[i], c) ; If m =⊥ then return ⊥
If m = m[i] then return ⊥
s← k[i] ; r0 ← s[1 . . .F.kl] ; r1 ← s[F.kl+ 1 . . . SE.kl]
If r1 ̸= F.Ev(r0,m) then return ⊥
out← (i,m)
If b = 1 then return m else return ⊥

Figure 34: Adversary H for proof of Theorem 4.1. H simulates game G1 for adversary DAE. The
highlighted lines mark the code of G1’s simulated oracles changed by H.

r0 ∈ {0, 1}F.kl was sampled uniformly at random and m[i] was chosen independently of it. We use
this to build an adversary H against the TCR-security of F, simulating game G1 for DAE as defined
in Fig. 34, such that

Pr[badG0
1 ] ≤ Gtcr

F,H.

In game G2 the oracle Dec always returns ⊥. We use this to build an adversary DIND against the
IND-security of EMDK, simulating game G2 for DAE as defined in Fig. 35, such that

Pr[G2] = Gind
EMDK,DIND

.

Together, all of the above produce the claim in the theorem statement.
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Adversary DLR
IND

b′←$DLRSim,DecSim
AE ; Return b′

LRSim(m0,m1)

If |m0| ̸= |m1| then return ⊥
n← n+ 1 ; c←$ LR(m0,m1) ; Return (n, c)

DecSim(i, c)

Return ⊥

Figure 35: Adversary DIND for proof of Theorem 4.1. DIND simulates game G2 for adversary DAE.
The highlighted lines mark the code of G2’s simulated oracles changed by DIND.

Games G0–G3

b←$ {0, 1} ; b′←$DLR,RO
EMDK ; Return b = b′

LR(m0,m1)

If |m0| ̸= |m1| then return ⊥
r0←$ {0, 1}F.kl
r1←$ RO(⟨r0,mb⟩,F.ol) // G0

r1←$ {0, 1}F.ol // G0, G1, G2, G3

If T [⟨r0,mb⟩,F.ol] ̸=⊥ then
bad1 ← true
r1 ← T [⟨r0,mb⟩,F.ol] // G0, G1

T [⟨r0,mb⟩,F.ol]← r1 // G0, G1, G2, G3

k ← r0 ∥ r1 ; c←$ SE.Enc(k,mb) ; Return c

RO(z, ℓ)

If local[z, ℓ] then return T [z, ℓ]
local[z, ℓ]← true ; h←$ {0, 1}ℓ
If T [z, ℓ] ̸= ⊥ then
bad2 ← true
h← T [z, ℓ] ; local[z, ℓ]← false // G0, G1, G2

T [z, ℓ]← h ; Return T [z, ℓ]

Figure 36: Games G0–G3 for proof of Theorem 4.2. The code added by expanding the algorithms
of EMDK in game Gind

EMDK,D is highlighted in gray. The code added for the transitions between
games is highlighted in green.

F Proof of Theorem 4.2

Consider games G0–G3 in Fig. 36. Lines not annotated with comments are common to all games.
Game G0 is equivalent to Gind

EMDK,DEMDK
when F is modeled as the random oracle, so

AdvindEMDK(DEMDK) = 2 · Pr[G0]− 1.

Game G1 expands the code of the RO call inside oracle LR, so games G0 and G1 are equivalent,
and

Pr[G0] = Pr[G1].
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Adversary PEnc,GuessKey

b←$ {0, 1} ; b′←$DLRSim,ROSim
EMDK

LRSim(m0,m1)

If |m0| ̸= |m1| then return ⊥
c←$ Enc(mb) ; Return c

ROSim(z, ℓ)

If local[z, ℓ] then return T [z, ℓ]
local[z, ℓ]← true ; h←$ {0, 1}ℓ ; If |z| ≥ F.kl then GuessKey(z[1 . . .F.kl])
T [z, ℓ]← h ; Return T [z, ℓ]

Figure 37: Adversary P for proof of Theorem 4.2. P simulates game G3 for adversary DEMDK. The
highlighted lines mark the code of G3’s simulated oracles changed by P.

Games G1 and G2 are identical until bad1; games G2 and G3 are identical until bad2. According to
the Fundamental Lemma of Game Playing [20] we have

Pr[G1]− Pr[G2] ≤ Pr[badG1
1 ] and Pr[G2]− Pr[G3] ≤ Pr[badG3

2 ],

where Pr[badQ] denotes the probability of setting bad flag in game Q.
The probability of setting flag bad1 in game G1 can be upper bounded by assuming that (in

the worst case) adversary will make qRO queries to oracle RO prior to its first query to oracle LR.
Specifically, consider an adversary that queries its oracles only on inputs that require the game to
access table T at indices z = ⟨r0,m⟩ and ℓ = F.ol for some fixed message m. All values of r0 used
for calls to oracle RO should be chosen to be distinct, whereas oracle LR chooses r0 uniformly at
random and there is a chance that it matches one of the values that was used before. Then the
probability of the condition T [⟨r0,mb⟩,F.ol] ̸=⊥ being true (setting flag bad1) during some call to
oracle LR in game G1 can be upper bounded as follows:

Pr[badG1
1 ] ≤

qLR−1∑
i=0

qRO + i

2F.kl
=

(2 · qRO + qLR − 1) · qLR
2F.kl+1

.

Setting flag bad2 in game G3 means that table entry T [z, ℓ] was initialized during adversary’s
call to LR(m0,m1), so z = ⟨r0,mb⟩ for some r0 that is the prefix of the secret key k that was
subsequently used to run SE.Enc(k,mb) at the end of this call to oracle LR. We use this observation
to build an adversary P against PKR-security of SE with respect to F.kl, simulating game G3 for
DEMDK as defined in Fig. 37, such that

Pr[badG3
2 ] ≤ Gpkr

SE,F.kl,P .

Note that adversary P makes a query to its oracle GuessKey regardless of whether T [z, ℓ] ̸= ⊥
would be true in game G3, because it cannot check this condition itself. However, any time this
condition would be true while DEMDK is playing in (simulated) game G3 – adversary P would
succeed to break the PKR-security of SE accordingly.

In G3 the consistency between oracles LR and RO is no longer maintained (both oracles only
write to table T and never read from it). We use this to build an adversary DSE against OTIND-
security of SE, simulating game G3 for DEMDK as defined in Fig. 38, such that

Pr[G3] ≤ Gotind
SE,DSE

.

Together, all of the above produce the claim in the theorem statement.
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Adversary DLR
SE

b′←$DLRSim,ROSim
EMDK ; Return b′

LRSim(m0,m1)

Return LR(m0,m1)

ROSim(z, ℓ)

If local[z, ℓ] then return T [z, ℓ]
local[z, ℓ]← true ; T [z, ℓ]←$ {0, 1}ℓ ; Return T [z, ℓ]

Figure 38: Adversary DSE for proof of Theorem 4.2. DSE simulates game G3 for adversary DEMDK.
The highlighted lines mark the code of G3’s simulated oracles changed by DSE.

Games G0–G2

win← true ; (i, k)←$ GEnc,RO
EMDK ; If i ̸∈ [n] then return false

m← SE.Dec(k, c[i]) ; If m =⊥ then return false
If c[i] ̸= SE.Enc(k,m) then
bad0 ← true
Return false // G1, G2

r0 ← k[1 . . .F.kl] ; r1 ← k[F.kl+ 1 . . . SE.kl]
If r1 ̸= RO(⟨r0,m⟩,F.ol) then return false
Return m ̸=⊥ and m ̸= m[i] and win

Enc(m)

r0←$ {0, 1}F.kl ; r1←$ RO(⟨r0,m⟩,F.ol) ; k ← r0 ∥ r1 ; c← SE.Enc(k,m)
n← n+ 1 ; m[n]← m ; c[n]← c ; Return (k, c)

RO(z, ℓ)

If T [z, ℓ] = ⊥ then
⟨r0,m⟩ ← z
T [z, ℓ]←$ {0, 1}ℓ
r1 ← T [z, ℓ] ; k ← r0 ∥ r1 ; c← SE.Enc(k,m)
If ∃(m′, c) ∈W : m′ ̸= m then
bad1 ← true
win← false // G1, G2

W ←W ∪ {(m, c)}
Return T [z, ℓ]

Figure 39: Games G0–G3 for proof of Theorem 4.3. The code added by expanding the algorithms
of EMDK in game Grob

EMDK,GEMDK
is highlighted in gray. The code added for the transitions between

games is highlighted in green.

G Proof of Theorem 4.3

Consider games G0–G2 in Fig. 39. Lines not annotated with comments are common to all games.
Game G0 is equivalent to Grob

EMDK,GEMDK
when F is modeled as a random oracle, so

AdvrobEMDK(GEMDK) = Pr[G0].

Games G0 and G1 are identical until bad0; games G1 and G2 are identical until bad1. According to
the Fundamental Lemma of Game Playing [20] we have

Pr[G0]− Pr[G1] ≤ Pr[badG0
0 ] and Pr[G1]− Pr[G2] ≤ Pr[badG1

1 ]
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Adversary UEnc

(i, k)←$ GEncSim,ROSim
EMDK ; If i ̸∈ [n] then return false

m← SE.Dec(k, c[i]) ; If m =⊥ then return false
c′ ← Enc(k,m) ; Return (1, c[i])

EncSim(m)

r0←$ {0, 1}F.kl ; r1←$ RO(⟨r0,m⟩,F.ol) ; k ← r0 ∥ r1 ; c← SE.Enc(k,m)
n← n+ 1 ; m[n]← m ; c[n]← c ; Return (k, c)

ROSim(z, ℓ)

If T [z, ℓ] = ⊥ then T [z, ℓ]←$ {0, 1}ℓ
Return T [z, ℓ]

Figure 40: Adversary U for proof of Theorem 4.3. U simulates game G0 for adversary GEMDK.

Adversary GEncSE

(i, k)←$ GEncSim,ROSim
EMDK

EncSim(m)

r0←$ {0, 1}F.kl ; r1←$ RO(⟨r0,m⟩,F.ol) ; k ← r0 ∥ r1 ; c← SE.Enc(k,m)
n← n+ 1 ; m[n]← m ; c[n]← c ; Return (k, c)

ROSim(z, ℓ)

If T [z, ℓ] = ⊥ then
⟨r0,m⟩ ← z ; T [z, ℓ]←$ Enc(r0,m)

Return T [z, ℓ]

Figure 41: Adversary GSE for proof of Theorem 4.3. GSE simulates game G1 for adversary GEMDK.
The highlighted lines mark the code of G1’s simulated oracle changed by GSE.

where Pr[badQ] denotes the probability of setting bad flag in game Q.
Setting flag bad0 in game G0 means that c[i] ̸= SE.Enc(k,m) but m = SE.Dec(k, c[i]) meaning

there exists c′ = SE.Enc(k,m) such that c′ ̸= c[i] and both decrypt to m under key k. We use this
to build an adversary U against UNIQUE-security of SE, simulating game G0 for GEMDK as defined
in Fig. 40, such that

Pr[badG0
0 ] ≤ Gunique

SE,U .

Note that our definition of symmetric encryption schemes requires the decryption correctness to
hold for all keys in {0, 1}SE.kl, so the attack works even though the adversary GEMDK can return an
arbitrary key k. This step of the proof also uses the assumption that SE is deterministic.

Intuitively, the ciphertext uniqueness property of SE (used in transition from G0 to G1) en-
sures that GEMDK winning in game G1 is equivalent to finding k1 and m0 ̸= m1 such that m1 =
SE.Dec(k1,SE.Enc(k0,m0)) for a k0 that is generated during some call to Enc (and depends on
m0). The next step of the proof will reduce this to breaking the weak robustness of SE.

Setting flag bad1 in game G1 means that (r0,m) and (r′0,m
′) for some m ̸= m′ are two inputs to

oracle RO that both happened to produce the same ciphertext c. We use this to build an adversary
GSE against WROB-security of SE with respect to F.ol, simulating game G1 for GEMDK as defined
in Fig. 41. Adversary GSE sets the falg win in game Gwrob

SE,ℓ whenever adversary GEMDK sets flag bad1
in game G1, so

Pr[badG1
1 ] ≤ Gwrob

SE,F.ol,GSE
.
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Finally, G2’s random oracle RO is programmed to set win ← false whenever its output would
otherwise enable adversary GEMDK to win in game G2, meaning

Pr[G2] = 0.

Together, all of the above produce the claim in the theorem statement.

H Proof of Lemma 5.1

First, we prove that AdvprivSC,R(Dexhaustive,n) ≥ 1 − 2SE.kl−n. Let b denote the challenge bit in
game Gpriv

SC,R,Dexhaustive,n
, and let b′ denote the corresponding output value of Dexhaustive,n. Adver-

sary Dexhaustive,n runs an exhaustive search over each of the 2F.kl possible keys that can be used by
IMSG-EMDK for message m′

1 = ⟨m1, ids, I⟩. If b = 1 then the adversary will always find the real key
k that satisfies SE.Dec(k, cse) = m′

1, and hence Pr[ b′ = 1 | b = 1 ] = 1. If b = 0 then m1 is uniformly
random and independent of cse . The adversary returns 1 if the condition SE.Dec(k, cse) = m′

1

checks to be true. There are 2n distinct values that m′
1 can take, and there are 2SE.kl different keys

that can be used to decrypt cse . So the probability that there exists a key that decrypts cse into m′
1

is at most 2SE.kl/2n, meaning Pr[ b′ = 1 | b = 0 ] ≤ 2SE.kl−n. This proves the claim about Dexhaustive,n.
Next, we prove that AdvprivSC,R(Dbirthday) ≥ 1/8− 2F.kl−128. Let b denote the challenge bit in game

Gpriv
SC,R,Dbirthday

, and let b′ denote the corresponding output value of Dbirthday. If b = 1 then adversary
Dbirthday makes 2p calls to oracle LR, each time encrypting the same message m1 = 0128. If the
value of r0 ∈ {0, 1}F.kl (sampled in IMSG-EMDK.Enc) is the same across any two calls to LR, then
both calls will return the same SE ciphertext cse , and the adversary will return 1. According to the
birthday attack bounds from Appendix D, we have

Pr[ b′ = 1 | b = 1 ] ≥ C(2F.kl, 2p) ≥ 0.3 · 2
p · (2p − 1)

2F.kl
> 22p−F.kl−3,

because 0.3 ·2p ·(2p−1) > 1
8 ·2

2p for all p ≥ 1. The lower bound can be used because 2p = 2⌈F.kl/2⌉ ≤√
2 · 2F.kl holds. If b = 0 then adversary Dbirthday calls oracle LR to encrypt 2p distinct messages.

However, two distinct messages might get encrypted into the same IMSG-EMDK ciphertext cse since
each message could get encrypted under a different key. We use the ideal cipher model to upper
bound the probability that any two calls to LR result in the same ciphertext cse . Let AES be
the ideal cipher with 128-bit block length. Let m′ = ⟨m0, ids, {idr}⟩. Without loss of generality,
assume that |m′

0| ≥ 128 when |m0| = p, and assume that the entirety of m0 is encoded in the first
128-bits of m′

0. Then the probability that two different calls to oracle LR returned ciphertexts that
start with the same 128-bit block is as follows:

Pr[ b′ = 1 | b = 0 ] ≤ C(2128, 2p) ≤ 0.5 · 2
p · (2p − 1)

2128
≤ 22p−129.

The above bounds for p = ⌈F.kl/2⌉ give the following:

AdvprivSC,R(Dbirthday) > 22p−F.kl−3 − 22p−129 ≥ 1/8− 2F.kl−128.

Adversary Dbirthday has to maintain a set S that contains up to 2p elements, giving a runtime
complexity roughly 2p · log2 2p = 2p · p.

Finally, we prove that AdvprivSC,Rm
(DADR02) ≥ 2−F.ol. Let b denote the challenge bit in game

Gpriv
SC,Rm,DADR02

, and let b′ denote the corresponding output value of DADR02. The response from
oracle LR contains IMSG-EMDK ciphertext cse that encrypts m′

b = ⟨mb, ids, {idr}⟩ under some key
k = r0 ∥ r1 such that r1 = RO(⟨r0,m′

b⟩,F.ol). Scheme IMSG-EMDK is defined to use AES-CTR with
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a fixed IV as the underlying encryption scheme. Let m′′
1 = ⟨m1, idc , {idr}⟩, as defined in the code

of adversary DADR02, where |ids| = |idc |. The adversary mauls cse , producing a new ciphertext
c′se = cse ⊕ m′

1 ⊕ m′′
1. According to the properties of the uniquely decodable encoding ⟨. . .⟩ as

defined in Section 2, and according to malleability of AES-CTR, the mauled AES-CTR ciphertext
c′se decrypts to m′′

b = ⟨mb, idc , {idr}⟩ under the originally used key k = r0 ∥ r1. This causes the
initial sender’s identity ids to be replaced with the corrupted sender’s identity idc . However, the
IMSG-EMDK scheme also checks the integrity of the key (after decrypting the ciphertext with
AES-CTR), meaning the decryption fails unless r1 = RO(⟨r0,m′′

b ⟩,F.ol) is true. We know that
m′′

b ̸= m′
b, so the probability of this condition being true is 2−F.ol in the ROM. It follow that

Pr[ b′ = 1 | b = 1 ] = 2−F.ol and Pr[ b′ = 1 | b = 0 ] = 0. The latter is because even if the IMSG-EMDK
decryption succeeds, the oracle VerDec would return message m0 that is not equal to m1.
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Games G0–G2

π ← MRPKE.Setup ; FNewH,NewC,Exp,SigEnc,VerDec
SC (π) ; Return win

NewH(id)

If initialized[id] then return ⊥
initialized[id]← true ; (vk, tk)←$ DS.Kg ; (ek,dk)←$ MRPKE.Kg(π) ; pk ← (vk, ek)
pk[id]← pk ; sk[id]← (tk,dk) ; Return pk

NewC(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

Exp(id)

If not initialized[id] then return ⊥
exp[id]← true ; Return sk[id]

SigEnc(ids, I,m, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) then return ⊥
Rpke ← ∅ ; C ← ∅
For each idr ∈ I do
(vkr , ekr)← pk[idr ] ; Rpke ←Rpke ∪ {(idr , ekr)}

mpke ← ⟨m, ids, I⟩ ; Cpke ←$ MRPKE.Enc(π,Rpke ,mpke) ; (tks,dks)← sk[ids]
For each (idr , cpke) ∈ Cpke do
σ←$ DS.Sig(tks, ⟨cpke , ad⟩) ; c← (cpke , σ) ; C ← C ∪ {(idr , c)}
Q∗ ← Q∗ ∪ {((ids, idr ,m, ad, cpke), σ)} ; QDS ← QDS ∪ {((ids, cpke , ad), σ)}
W ←W ∪ {(mpke , cpke)}

Return C
VerDec(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return ⊥
(cpke , σ)← c ; (vks, eks)← pk[ids] ; (vkr , ekr)← pk[idr ] ; (tkr ,dkr)← sk[idr ]
d← DS.Ver(vks, ⟨cpke , ad⟩, σ) ; If not d then return ⊥
z∗0 ← ((ids, cpke , ad), σ)
If ̸ ∃z∗1 ∈ QDS : R

∗.Vf(z∗0 , z
∗
1) and not exp[ids] then

bad0 ← true
Return ⊥ // G1, G2

mpke ← MRPKE.Dec(π, ekr ,dkr , cpke) ; If mpke =⊥ then return ⊥
If ∃(m0, cpke) ∈W : m0 ̸= mpke then
bad1 ← true
Return ⊥ // G1, G2

⟨m, id∗
s , I⟩ ← mpke ; If ids ̸= id∗

s or idr ̸∈ I then return ⊥
If m =⊥ then return ⊥
z0 ← ((ids, idr ,m, ad, cpke), σ) ; If ∃z1 ∈ Q∗ : R∗.Vf(z0, z1) then return m
cheated← exp[ids] ; If not cheated then win← true
Return m

Figure 42: Games G0–G2 for proof of Theorem 5.2. The code added by expanding R.Vf and the
algorithms of SC in game Gauth

SC,R,FSC
is highlighted in gray. The code added for the transitions

between games is highlighted in green.

I Proof of Theorem 5.2

Consider games G0–G2 in Fig. 42. Lines not annotated with comments are common to all games.
All games expand the code of R.Vf (for R = IMSG-AUTH-REL[R∗]) and that of algorithms of SC.
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The former means that oracle VerDec now evaluates R∗.Vf, with respect to an adjusted set Q∗ that
is built according to the definition of IMSG-AUTH-REL[R∗]. Game G0 is equivalent to Gauth

SC,R,FSC
, so

AdvauthSC,R(FSC) = Pr[G0].

Games G0 and G1 are identical until bad0; games G1 and G2 are identical until bad1. According to
the Fundamental Lemma of Game Playing [20] we have

Pr[G0]− Pr[G1] ≤ Pr[badG0
0 ] and Pr[G1]− Pr[G2] ≤ Pr[badG1

1 ],

where Pr[badQ] denotes the probability of setting bad flag in game Q. We will build an adversary
FDS against the UF-security of DS with respect to R∗, and an adversary G against the ROB-security
of MRPKE such that

Pr[badG0
0 ] ≤ Pr[Guf

DS,R∗,FDS
], (1)

and

Pr[badG1
1 ] ≤ Pr[Grob

MRPKE,G ]. (2)

Finally, we will show that adversary FSC is unable to win in game G2, so

Pr[G2] = 0. (3)

Together, all of the above justifies the claim in the theorem statement:

AdvauthSC,R(FSC) ≤ AdvufDS,R∗(FDS) + AdvrobMRPKE(G).

We now explain each of the steps and build the corresponding adversaries.

The transition from G0 to G1 uses set QDS. This set is populated with an element ((ids,
cpke , ad), σ) each time the DS signing key of identity ids is used to sign a message ⟨cpke , ad⟩ to
produce a signature σ. If adversary FSC sets flag bad0 in game G0, then it produced a valid forgery
((ids, cpke , ad), σ) for DS with respect to R∗. It means that the signature σ verifies with respect
to sender ids and message ⟨cpke , ad⟩, while the sender ids is not exposed, and checking the forgery
with respect to QDS and R∗ does not invalidate it as a trivial attack. To justify Equation (1), we
build an adversary FDS against the UF-security of DS with respect to R∗ as defined in Fig. 43.
Adversary FDS simulates game G0 for adversary FSC. As soon as FDS detects a forgery (during the
simulation of oracle VerDecSim for adversary FSC), it calls abort, meaning it immediately halts
the simulation of FSC and returns the forgery as its own output.

The transition from G1 to G2 requires that for any ciphertext cpke produced in oracle SigEnc
using arbitrary MRPKE key pair and message mpke of adversary’s choice, it is hard to find another
MRPKE key pair that decrypts cpke to a different message. This should hold even for MRPKE
keys that are maliciously chosen to be malformed. In particular, the key pairs used for SigEnc
do not need to satisfy the decryption correctness, whereas the key pairs used for VerDec do not
have to work with the signcryption algorithm. In games G1,G2 the set W is used to save every
message-ciphertext pair (mpke , cpke) produced inside oracle SigEnc. Adversary FSC setting bad1
in game G1 means that it found a key pair that decrypts one of the ciphertexts from W into a
different message (note that if two calls to SigEnc map different messages to the same ciphertext,
and one of the used key pairs can decrypt this ciphertext, then adversary can use that to win the
game). To justify Equation (1), we build an adversary G against the ROB-security of MRPKE, as
defined in Fig. 44. Adversary G simulates game G1 for adversary FSC. Whenever adversary FSC

triggers bad1, adversary G saves (in its output variable out) the ciphertext cpke and the key pair
ekr ,dkr that decrypts cpke to a message different than the one that produced this ciphertext during

53



Adversary FNewUser,Exp,Sign
DS

π ← MRPKE.Setup ; FNewHSim,NewCSim,ExpSim,SigEncSim,VerDecSim
SC (π)

NewHSim(id)

If initialized[id] then return ⊥
initialized[id]← true ; vk←$ NewUser(id) ; (ek,dk)←$ MRPKE.Kg(π)
pk ← (vk, ek) ; pk[id]← pk ; sk[id]← (⊥,dk) ; Return pk

NewCSim(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

ExpSim(id)

If not initialized[id] then return ⊥
If not exp[id] then
tk ← Exp(id) ; (⊥,dk)← sk[id] ; sk[id]← (tk,dk)

exp[id]← true ; Return sk[id]

SigEncSim(ids, I,m, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) then return ⊥
Rpke ← ∅ ; C ← ∅
For each idr ∈ I do
(vkr , ekr)← pk[idr ] ; Rpke ←Rpke ∪ {(idr , ekr)}

mpke ← ⟨m, ids, I⟩ ; Cpke ←$ MRPKE.Enc(π,Rpke ,mpke) ; (tks,dks)← sk[ids]
For each (idr , cpke) ∈ Cpke do

If exp[ids] then σ←$ DS.Sig(tks, ⟨cpke , ad⟩) else σ←$ Sign(ids, ⟨cpke , ad⟩)
c← (cpke , σ) ; C ← C ∪ {(idr , c)}
Q∗ ← Q∗ ∪ {((ids, idr ,m, ad, cpke), σ)} ; QDS ← QDS ∪ {((ids, cpke , ad), σ)}

Return C
VerDecSim(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return ⊥
(cpke , σ)← c ; (vks, eks)← pk[ids] ; (vkr , ekr)← pk[idr ] ; (tkr ,dkr)← sk[idr ]
d← DS.Ver(vks, ⟨cpke , ad⟩, σ) ; If not d then return ⊥
z∗0 ← ((ids, cpke , ad), σ)
If ̸ ∃z∗1 ∈ QDS : R

∗.Vf(z∗0 , z
∗
1) and not exp[ids] then

bad0 ← true ; abort(ids, ⟨cpke , ad⟩, σ)
mpke ← MRPKE.Dec(π, ekr ,dkr , cpke) ; If mpke =⊥ then return ⊥
⟨m, id∗

s , I⟩ ← mpke ; If ids ̸= id∗
s or idr ̸∈ I then return ⊥

If m =⊥ then return ⊥
z0 ← ((ids, idr ,m, ad, cpke), σ) ; If ∃z1 ∈ Q∗ : R∗.Vf(z0, z1) then return m
cheated← exp[ids] ; If not cheated then win← true
Return m

Figure 43: Adversary FDS for proof of Theorem 5.2. FDS simulates game G0 for adversary FSC.
The highlighted lines mark the code of G0’s simulated oracles changed by FDS.

a prior call to oracle SigEnc.
We now justify Equation (3). The adversary FSC can only win in game G2 by setting win in or-

acle VerDec. We show that this can never happen for any R∗ ∈ {Rm,Rid}. Consider any FSC’s call
to VerDec that reached the instruction z0 ← ((ids, idr ,m, ad, cpke), σ). We assume that exp[ids]
is not true, otherwise VerDec will not set win. Then we can deduce that ((ids, cpke , ad), σ

′) ∈ QDS

for some σ′, where σ = σ′ is required if R∗ = Rid, and σ ̸= σ′ is allowed if R∗ = Rm; otherwise, ad-
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Adversary GEnc(π)
FNewHSim,NewCSim,ExpSim,SigEncSim,VerDecSim

SC (π) ; Return out

NewHSim(id)

If initialized[id] then return ⊥
initialized[id]← true ; (vk, tk)←$ DS.Kg ; (ek,dk)←$ MRPKE.Kg(π)
pk ← (vk, ek) ; pk[id]← pk ; sk[id]← (tk,dk) ; Return pk

NewCSim(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

ExpSim(id)

If not initialized[id] then return ⊥
exp[id]← true ; Return sk[id]

SigEncSim(ids, I,m, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) then return ⊥
Rpke ← ∅ ; C ← ∅
For each idr ∈ I do
(vkr , ekr)← pk[idr ] ; Rpke ←Rpke ∪ {(idr , ekr)}

mpke ← ⟨m, ids, I⟩ ; Cpke ←$ Enc(Rpke ,mpke) ; (tks,dks)← sk[ids]
For each (idr , cpke) ∈ Cpke do
σ←$ DS.Sig(tks, ⟨cpke , ad⟩) ; c← (cpke , σ) ; C ← C ∪ {(idr , c)}
Q∗ ← Q∗ ∪ {((ids, idr ,m, ad, cpke), σ)} ; QDS ← QDS ∪ {((ids, cpke , ad), σ)}
W ←W ∪ {(mpke , cpke)}

Return C
VerDecSim(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return ⊥
(cpke , σ)← c ; (vks, eks)← pk[ids] ; (vkr , ekr)← pk[idr ] ; (tkr ,dkr)← sk[idr ]
d← DS.Ver(vks, ⟨cpke , ad⟩, σ) ; If not d then return ⊥
z∗0 ← ((ids, cpke , ad), σ)
If ̸ ∃z∗1 ∈ QDS : R

∗.Vf(z∗0 , z
∗
1) and not exp[ids] then

bad0 ← true ; Return ⊥
mpke ← MRPKE.Dec(π, ekr ,dkr , cpke) ; If mpke =⊥ then return ⊥
If ∃(m0, cpke) ∈W : m0 ̸= mpke then
bad1 ← true ; out← (ekr ,dkr , cpke)
⟨m, id∗

s , I⟩ ← mpke ; If ids ̸= id∗
s or idr ̸∈ I then return ⊥

If m =⊥ then return ⊥
z0 ← ((ids, idr ,m, ad, cpke), σ) ; If ∃z1 ∈ Q∗ : R∗.Vf(z0, z1) then return m
cheated← exp[ids] ; If not cheated then win← true
Return m

Figure 44: Adversary G for proof of Theorem 5.2. G simulates game G1 for adversary FSC. The
highlighted lines mark the code of G1’s simulated oracles changed by G.

versary would set bad0 and get ⊥ as output. Furthermore, we know that cpke was decrypted to the
unique mpke for which (mpke , cpke) was inserted into set W during an earlier call to oracle SigEnc;
otherwise, adversary would set bad1 and get ⊥ as output. Message mpke can be uniquely decoded
into ⟨m, id∗

s , I⟩, binding (ids, cpke , ad) to m and to each recipient’s identity from I. It follows that
z1 = ((ids, idr ,m, ad, cpke), σ

′) ∈ Q∗ for σ′ as specified above. Then ∃z1 ∈ Q∗ : R∗.Vf(z0, z1) is true,
so oracle VerDec returns m and does not reach the condition that sets win if cheated is false. This
concludes the proof.
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Adversary GEncEMDK

(ek,dk, c)←$ GEncSimMRPKE(ε) ; (cse , cpke)← c
k1 ← PKE.Dec(ek,dk, cpke)
If k1 =⊥ then return ⊥
m1 ← EMDK.Dec(k1, cse)
If m1 =⊥ then return ⊥
For i = 1, . . . , n do

If c[i] = c and m[i] ̸= m1 then
return (i, k1)

Return ⊥
EncSim(R,m0)

C ← ∅ ; (k0, cse)←$ Enc(m0)
n← n+ 1 ; m[n]← m0 ; c[n]← cse
For each (idr , ekr) ∈ R do
cpke ←$ PKE.Enc(ekr , k0)
c← (cse , cpke) ; C ← C ∪ {(idr , c)}
W ←W ∪ {(m0, c)}

Return C

Adversary GEncPKE

(ek,dk, c)←$ GEncSimMRPKE(ε) ; (cse , cpke)← c
k1 ← PKE.Dec(ek,dk, cpke)
If k1 =⊥ then return ⊥
Fir i = 1, . . . , n do

If c[i] = c and m[i] ̸= k1 then
return (i, ek,dk)

Return ⊥
EncSim(R,m0)

C ← ∅ ; (k0, cse)←$ EMDK.Enc(m0)
For each (idr , ekr) ∈ R do
cpke ←$ Enc(ekr , k0) ; n← n+ 1
m[n]← k0 ; c[n]← cpke
c← (cse , cpke) ; C ← C ∪ {(idr , c)}
W ←W ∪ {(m0, c)}

Return C

Figure 45: Adversaries GEMDK and GPKE for proof of Theorem 5.3. Both adversaries simulate game
Grob

MRPKE for adversary GMRPKE. The highlighted lines mark the code of Grob
MRPKE’s simulated oracle

changed by the corresponding adversary.

J Proof of Theorem 5.3
We build an adversary GEMDK against the ROB-security of EMDK, and an adversary GPKE against
the ROB-security of PKE as defined in Fig. 45. Both adversaries simulate game Grob

MRPKE for adver-
sary GMRPKE, replacing the encryption algorithm of EMDK or PKE by a call to the corresponding
scheme’s encryption oracle.

Recall that adversary GMRPKE wins in game Grob
MRPKE if it returns (ek,dk, c) such that decrypting

c = (cse , cpke) produces a plaintext m1 ̸=⊥ that is different from some other plaintext m0 that was
used to build the ciphertext c. The latter condition means that ∃(m0, c) ∈W : m0 ̸= m1. Adversary
GEMDK in game Grob

EMDK can directly use it to produce a ciphertext cse that correctly decrypts to
plaintext m1 that is different from the plaintext m0 that was used to obtain cse , so

AdvrobMRPKE(GMRPKE) ≤ AdvrobEMDK(GEMDK).

Now consider adversary GPKE in game Grob
PKE. Adversary GPKE runs (k0, cse)←$ EMDK.Enc(m0)

at the beginning of the oracle EncSim that it simulates for adverasry GMRPKE, meaning that
decryption correctness holds for key k0. In particular, it implies EMDK.Dec(k0, cse) = m0. As
per above, adversary GMRPKE wins its game by returning ek, dk, c for c = (cse , cpke) that correctly
decrypts to a different message m1. This means that the key k1 obtained by by decrypting cpke
under ek,dk is different from the key k0 used to produce cse in an earlier call to EncSim. So we
have

AdvrobMRPKE(GMRPKE) ≤ AdvrobPKE(GPKE).
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Games G0–G2

b←$ {0, 1} ; π ← MRPKE.Setup ; b′←$DNewH,NewC,Exp,LR,VerDec
SC (π) ; Return b′ = b

NewH(id)

If initialized[id] then return ⊥
initialized[id]← true ; (vk, tk)←$ DS.Kg ; (ek,dk)←$ MRPKE.Kg(π) ; pk ← (vk, ek)
pk[id]← pk ; sk[id]← (tk,dk) ; Return pk

NewC(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

Exp(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return sk[id]

LR(ids, I,m0,m1, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true
Rpke ← ∅ ; C ← ∅
For each idr ∈ I do
(vkr , ekr)← pk[idr ] ; Rpke ←Rpke ∪ {(idr , ekr)}

mpke ← ⟨mb, ids, I⟩ ; Cpke ←$ MRPKE.Enc(π,Rpke ,mpke) ; (tks,dks)← sk[ids]
For each (idr , cpke) ∈ Cpke do
σ←$ DS.Sig(tks, ⟨cpke , ad⟩) ; c← (cpke , σ) ; C ← C ∪ {(idr , c)}
QMRPKE ← QMRPKE ∪ {(idr , cpke)}
If m0 ̸= m1 then
Q∗ ← Q∗ ∪ {(ids, idr ,m0, cpke)}
Q∗ ← Q∗ ∪ {(ids, idr ,m1, cpke)}

Else m[idr , cpke ]← ⟨m0, ids, I⟩
Return C
VerDec(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return (⊥, “init”)
(cpke , σ)← c ; (vks, eks)← pk[ids] ; (vkr , ekr)← pk[idr ] ; (tkr ,dkr)← sk[idr ]
d← DS.Ver(vks, ⟨cpke , ad⟩, σ) ; If not d then return (⊥, “dec”)
If exp[idr ] then mpke ← MRPKE.Dec(π, ekr ,dkr , cpke) // G1, G2

If (not exp[idr ]) and m[idr , cpke ] ̸=⊥ then mpke ← m[idr , cpke ] // G1, G2

If (not exp[idr ]) and m[idr , cpke ] =⊥ and (idr , cpke) ∈ QMRPKE then// G1, G2

mpke ← MRPKE.Dec(π, ekr ,dkr , cpke) // G1

Return (⊥, “priv”) // G1, G2

If (not exp[idr ]) and m[idr , cpke ] =⊥ and (idr , cpke) ̸∈ QMRPKE then// G1, G2

mpke ← MRPKE.Dec(π, ekr ,dkr , cpke)
If mpke =⊥ then return (⊥, “dec”)
⟨m, id∗

s , I⟩ ← mpke ; If ids ̸= id∗
s or idr ̸∈ I then return (⊥, “dec”)

If m =⊥ then return (⊥, “dec”)
If (ids, idr ,m, cpke) ∈ Q∗ then return (⊥, “priv”)
Return (m, “ok”)

Figure 46: Games G0–G2 for proof of Theorem 5.4. The code added by expanding R.Vf and the
algorithms of SC in game Gpriv

SC,R,DSC
is highlighted in gray. The code added for the transition

between games is highlighted in green.
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K Proof of Theorem 5.4
Consider games G0–G2 of Fig. 46. Lines not annotated with comments are common to all games.
Game G0 is equivalent to Gpriv

SC,R,DSC
, so

AdvprivSC,R(DSC) = 2 · Pr[G0]− 1.

Game G1 expands oracle VerDec to obtain plaintext mpke depending on multiple different con-
ditions. In three of four cases mpke is obtained by decrypting cpke as intended; only the second
condition differs. For the second condition, note that if cpke was produced as a result of calling
oracle LR for some m0 = m1 then the value of mpke is saved in m[idr , cpke ], and is used directly
in VerDec, without having to decrypt cpke . This is only done if the recipient’s identity is not ex-
posed, which guarantees that the recipient’s keys were honestly generated and hence the decryption
correctness holds (in contrast, keys added by calling oracle NewC might not provide decryption
correctness). It follows that games G0 and G1 are equivalent, so

Pr[G0] = Pr[G1].

Below we will also show that games G1 and G2 are equivalent, meaning

Pr[G1] = Pr[G2]. (4)

Next we will build an adversary DMRPKE against the INDCCA-security of MRPKE such that

Pr[G2] ≤ Gindcca
MRPKE,DMRPKE

. (5)

Together, all of the above proves the claim in the theorem statement:

AdvprivSC,R(DSC) ≤ AdvindccaMRPKE(DMRPKE).

We now justify Equation (4) and build adversary DMRPKE.
Games G1 and G2 are different only in cases when adversary DSC queries its oracle VerDec

on input that triggers the following condition:

(not exp[idr ]) and m[idr , cpke ] =⊥ and (idr , cpke) ∈ QMRPKE

Since the recipient idr is not exposed, it means its keys were created by calling oracle NewH, and
hence provide decryption correctness. According to the decryption correctness of MRPKE, we know
mpke = MRPKE.Dec(π, ekr , dkr , cpke) is the same plaintext that was used in an earlier call to LR
during which (idr , cpke) was added to QMRPKE. The plaintext uniquely encodes some mb, ids, I, and
these values were also used in LR to populate set Q∗ (as guaranteed by m[idr , cpke ] =⊥). It follows
that Q∗ contains the tuple (ids, idr ,mb, cpke), and hence the current call to oracle VerDec will
eventually return (⊥, “priv”). In this case, game G2 is defined to immediately return (⊥, “priv”),
and is hence functionally equivalent to G1. This justifies Equation (4).

Next we construct an adversary DMRPKE against the INDCCA-security of MRPKE as defined
in Fig. 47. Adversary DMRPKE simulates game G2 for adversary DSC. Note that adversary DMRPKE

only calls its decryption oracle Dec in game Gindcca
MRPKE when initialized[idr ] and (idr , cpke) ̸∈ QMRPKE.

This guarantees that Dec always returns the result of evaluating MRPKE.Dec(π, ekr ,dkr , cpke),
and hence ensures perfect simulation. It follows that DMRPKE wins in game Gindcca

MRPKE whenever DSC

wins in game G2, justifying Equation (5).
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Adversary DNewUser,Exp,LR,Dec
MRPKE (π)

b′←$DNewHSim,NewCSim,ExpSim,LRSim,VerDecSim
SC (π) ; Return b′

NewHSim(id)

If initialized[id] then return ⊥
initialized[id]← true ; (vk, tk)←$ DS.Kg ; ek←$ NewUser(id) ; pk ← (vk, ek)
pk[id]← pk ; sk[id]← (tk,⊥) ; Return pk

NewCSim(id,pk , sk)

If initialized[id] then return ⊥
initialized[id]← true ; exp[id]← true ; pk[id]← pk ; sk[id]← sk ; Return true

ExpSim(id)

If (not initialized[id]) or ch[id] then return ⊥
If not exp[id] then
dk ← Exp(id) ; (tk,⊥)← sk[id] ; sk[id]← (tk,dk)

exp[id]← true ; Return sk[id]

LRSim(ids, I,m0,m1, ad)

If (not initialized[ids]) or (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true

C ← ∅ ; m′
0 ← ⟨m0, ids, I⟩ ; m′

1 ← ⟨m1, ids, I⟩ ; Cpke ←$ LR(I,m′
0,m

′
1)

(tks,dks)← sk[ids]
For each (idr , cpke) ∈ Cpke do

σ←$ DS.Sig(tks, ⟨cpke , ad⟩) ; c← (cpke , σ) ; C ← C ∪ {(idr , c)}
QMRPKE ← QMRPKE ∪ {(idr , cpke)}
If m0 ≠ m1 then
Q∗ ← Q∗ ∪ {(ids, idr ,m0, cpke)}
Q∗ ← Q∗ ∪ {(ids, idr ,m1, cpke)}

Else m[idr , cpke ]← ⟨m0, ids, I⟩
Return C
VerDecSim(ids, idr , c, ad)

If (not initialized[ids]) or (not initialized[idr ]) then return (⊥, “init”)
(cpke , σ)← c ; (vks, eks)← pk[ids] ; (vkr , ekr)← pk[idr ] ; (tkr ,dkr)← sk[idr ]
d← DS.Ver(vks, ⟨cpke , ad⟩, σ) ; If not d then return (⊥, “dec”)
If exp[idr ] then mpke ← MRPKE.Dec(π, ekr ,dkr , cpke)
If (not exp[idr ]) and m[idr , cpke ] ̸=⊥ then mpke ← m[idr , cpke ]
If (not exp[idr ]) and m[idr , cpke ] =⊥ and (idr , cpke) ∈ QMRPKE then return (⊥, “priv”)
If (not exp[idr ]) and m[idr , cpke ] =⊥ and (idr , cpke) ̸∈ QMRPKE then

mpke ← Dec(idr , cpke)
If mpke =⊥ then return (⊥, “dec”)
⟨m, id∗

s , I⟩ ← mpke ; If ids ̸= id∗
s or idr ̸∈ I then return (⊥, “dec”)

If m =⊥ then return (⊥, “dec”)
If (ids, idr ,m, cpke) ∈ Q∗ then return (⊥, “priv”)
Return (m, “ok”)

Figure 47: Adversary DMRPKE for proof of Theorem 5.4. DMRPKE simulates game G2 for adversary
DSC. The highlighted lines mark the code of G2’s simulated oracles changed by DMRPKE.

59



Games G0–G2

b←$ {0, 1} ; π←$ ε ; b′←$DNewUser,Exp,LR,Dec
MRPKE (π) ; Return b′ = b

NewUser(id)

If initialized[id] then return ⊥
initialized[id]← true ; (ek,dk)←$ PKE.Kg ; ek[id]← ek ; dk[id]← dk ; Return ek

Exp(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return dk[id]

LR(I,m0,m1)

If (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true

C ← ∅
If m0 ̸= m1 then
(k1, cse)←$ EMDK.Enc(mb) ; k0 ← 0EMDK.kl

Else
(k1, cse)←$ EMDK.Enc(m0) ; k0 ← k1

For each id ∈ I do
cpke ←$ PKE.Enc(ek[id], k1) // G0, G1

cpke ←$ PKE.Enc(ek[id], k0) // G0, G1,G2

c← (cse , cpke) ; C ← C ∪ {(id, c)} ; Q← Q ∪ {(id, c)}
QPKE ← QPKE ∪ {(id, cpke)} ; k[id, cpke ]← k1

Return C
Dec(id, c)

If (not initialized[id]) or (id, c) ∈ Q then return ⊥
(cse , cpke)← c
If (id, cpke) ∈ QPKE then
k ← PKE.Dec(ek[id], dk[id], cpke) ; If k =⊥ then return ⊥ // G0

k ← k[id, cpke ] // G0, G1, G2

m← EMDK.Dec(k, cse)
Else
k ← PKE.Dec(ek[id], dk[id], cpke) ; If k =⊥ then return ⊥
m← EMDK.Dec(k, cse)

Return m

Figure 48: Games G0–G2 for proof of Theorem 5.5. The code added by expanding the algorithms of
MRPKE in game Gindcca

MRPKE,DMRPKE
is highlighted in gray. The code added for the transitions between

games is highlighted in green.
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L Proof of Theorem 5.5

Consider games G0–G2 of Fig. 48. Lines not annotated with comments are common to all games.
Game G0 is equivalent to Gindcca

MRPKE,DMRPKE
, so

AdvindccaMRPKE(DMRPKE) = 2 · Pr[G0]− 1.

Every time a ciphertext cpke is computed by running PKE.Enc(ek[id], k1) in oracle LR of game G0,
the encrypted key k1 is saved in table entry k[id, cpke ]. Game G1 differs from game G0 in oracle Dec.
Whenever possible, it recovers the value k1 directly from k[id, cpke ] instead of explicitly running the
decryption PKE.Dec(ek[id], dk[id], cpke). The two games are equivalent according to the decryption
correctness of PKE, so

Pr[G0] = Pr[G1].

We will build an adversary DPKE against the INDCCA-security of PKE as follows. Let g denote
the challenge bit in game Gindcca

PKE,DPKE
, and let g′ denote the bit returned by DPKE in this game. We

claim that

Pr[G1] = Pr[ g′ = 1 | g = 1 ] and Pr[G2] = Pr[ g′ = 1 | g = 0 ], (6)

meaning that

Pr[G1]− Pr[G2] = AdvindccaPKE (DPKE).

Finally, we will build an adversary DEMDK against the AE-security of EMDK such that

Pr[G2] ≤ Pr[Gae
EMDK,DEMDK

]. (7)

Together, all of the above proves the claim in the theorem statement:

AdvindccaMRPKE(DMRPKE) ≤ 2 · AdvindccaPKE (DPKE) + AdvaeEMDK(DEMDK).

We now build adversaries DPKE and DEMDK.
To justify the claims in Equation (6), we build an adversary DPKE against the INDCCA-security

of PKE as defined in Fig. 49. Let g denote the challenge bit in game Gindcca
PKE,DPKE

. Adversary DPKE

simulates game G1 for adversary DMRPKE when g = 1, and it simulates game G2 for adversary
DMRPKE when g = 0. Adversary DPKE is defined to return 1 only when adversary DMRPKE would
have won in its own game. Note that adversary DMRPKE is allowed to expose the decryption keys of
any recipients for which it called oracle LR only on challenge messages m0,m1 such that m0 = m1.
In this case the outputs of challenge queries do not depend on the challenge bit b, so even exposing
the key does not allow adversary DMRPKE to trivially win the game. In a similar vein, adversary
DPKE ensures that k0 = k1 whenever it has to simulate oracle LR for adversary DMRPKE on an input
for which m0 = m1. This subsequently allows adversary DPKE to use its Exp oracle to simulate
adversary’s DMRPKE exposure queries. Finally, note that games G1 and G2 do not allow adversary
DMRPKE to call oracle Dec on inputs id, c such that c was previously produced by calling oracle LR
to encrypt some message for recipient id. This avoids trivial attacks. However, games G1 and G2

do allow adversary DMRPKE to call oracle LR to produce a ciphertext c = (cse , cpke) for recipient id,
and subsequently call oracle Dec on input id, c′ for c′ = (c′se , cpke) such that c′se was not produced
during an earlier call to LR. The earlier transition from game G0 to game G1 ensures adversary
DPKE is able to simulate such calls to DMRPKE’s oracle Dec by doing a lookup in k[id, cpke ] instead
of calling its own decryption oracle.

To justify the claim in Equation (7), we build an adversary DEMDK against the AE-security
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Adversary DNewUser,Exp,LR,Dec
PKE

b←$ {0, 1} ; π←$ ε ; b′←$DNewUserSim,ExpSim,LRSim,DecSim
MRPKE (π)

If b = b′ then return 1 else return 0

NewUserSim(id)

If initialized[id] then return ⊥
initialized[id]← true ; ek←$ NewUser(id) ; ek[id]← ek ; dk[id]← ⊥ ; Return ek

ExpSim(id)

If (not initialized[id]) or ch[id] then return ⊥
If not exp[id] then dk[id]← Exp(id)
exp[id]← true ; Return dk[id]

LRSim(I,m0,m1)

If (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true

C ← ∅
If m0 ̸= m1 then
(k1, cse)←$ EMDK.Enc(mb) ; k0 ← 0EMDK.kl

Else
(k1, cse)←$ EMDK.Enc(m0) ; k0 ← k1

For each id ∈ I do
cpke ←$ LR(id, k0, k1) ; c← (cse , cpke) ; C ← C ∪ {(id, c)}
Q← Q ∪ {(id, c)} ; QPKE ← QPKE ∪ {(id, cpke)} ; k[id, cpke ]← k1

Return C
DecSim(id, c)

If (not initialized[id]) or (id, c) ∈ Q then return ⊥
(cse , cpke)← c
If (id, cpke) ∈ QPKE then
k ← k[id, cpke ] ; m← EMDK.Dec(k, cse)

Else
k ← Dec(id, cpke) ; If k =⊥ then return ⊥
m← EMDK.Dec(k, cse)

Return m

Figure 49: Adversary DPKE for proof of Theorem 5.5. Depending on the challenge bit in Gindcca
PKE,DPKE

,
adversary DPKE simulates game G1 or G2 for adversary DMRPKE. The highlighted lines mark the
code of G1’s (or G2’s) simulated oracles changed by DPKE.

of EMDK as defined in Fig. 50. Adversary DEMDK simulates game G2 for adversary DMRPKE. To
simulate DMRPKE’s queries to oracle LR, adversary DEMDK uses its own oracle LR if m0 ̸= m1, and
otherwise encrypts m0 by calling EMDK.Enc(m0) on its own. Adversary DEMDK saves either the key
identity kid1 returned by its LR oracle, or the key k1 used for encrypting m0, accordingly. The saved
information is then used to simulate DMRPKE’s queries to oracle Dec; either by calling DEMDK’s
oracle Dec for key identity kid1 , or by explicitly running the decryption algorithm EMDK.Dec with
key k1.
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Adversary DLR,Dec
EMDK

π←$ ε ; b′←$DNewUserSim,ExpSim,LRSim,DecSim
MRPKE (π) ; Return b′

NewUserSim(id)

If initialized[id] then return ⊥
initialized[id]← true ; (ek,dk)←$ PKE.Kg ; ek[id]← ek ; dk[id]← dk ; Return ek

ExpSim(id)

If (not initialized[id]) or ch[id] then return ⊥
exp[id]← true ; Return dk[id]

LRSim(I,m0,m1)

If (∃id ∈ I : not initialized[id]) or |m0| ̸= |m1| then return ⊥
If m0 ̸= m1 then

If ∃id ∈ I : exp[id] then return ⊥
For each id ∈ I do ch[id]← true
C ← ∅ ; k1 ←⊥ ; kid1 ←⊥
If m0 ̸= m1 then
(kid1 , cse)←$ LR(m0,m1) ; k0 ← 0EMDK.kl

Else
(k1, cse)←$ EMDK.Enc(m0) ; k0 ← k1

For each id ∈ I do
cpke ←$ PKE.Enc(ek[id], k0) ; c← (cse , cpke) ; C ← C ∪ {(id, c)} ; Q← Q ∪ {(id, c)}
QPKE ← QPKE ∪ {(id, cpke)} ; k[id, cpke ]← (k1, k

id
1 )

Return C
DecSim(id, c)

If (not initialized[id]) or (id, c) ∈ Q then return ⊥
(cse , cpke)← c
If (id, cpke) ∈ QPKE then

(k1, k
id
1 )← k[id, cpke ]

If kid1 ̸=⊥ then m← Dec(kid1 , cse) else m← EMDK.Dec(k1, cse)
Else
k ← PKE.Dec(ek[id], dk[id], cpke) ; If k =⊥ then return ⊥
m← EMDK.Dec(k, cse)

Return m

Figure 50: Adversary DEMDK for proof of Theorem 5.5. DEMDK simulates game G2 for adversary
DMRPKE. The highlighted lines mark the code of G2’s simulated oracles changed by DEMDK.
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