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Abstract. In ASIACRYPT 2019, Genise et al. describe [GGH+19] a new somewhat
homomorphic encryption scheme. The security relies on an inhomogeneous and non-
structured variant of the NTRU assumption that they call MiNTRU. To allow for
meaningful homomorphic computations, they use overstretched parameters, but they
do not provide an analysis of their new assumption against the state-of-the-art attack
of Kirchner and Fouque [KF17] for overstretched modulus. We show that the pa-
rameters of [GGH+19] do not satisfy the desired security by actually conducting the
known analysis. We also report a successful break of the smallest set of parameters in
around 15 hours of computations while they are claimed to reach 100 bits of security.

1 Introduction

Introduced by Hoffstein, Pipher and Silverman [HPS98], the NTRU problem is
informally the following: given a polynomial h := f/g mod q ∈ Zq[X]/Φ where
f, g ∈ Z[X] are secret with small coefficients and Φ is a power-of-two cyclotomic
polynomial, recover the pair (f, g). It is is believed to be (quantumly) hard, and its
variants have been popular choices to design efficient post-quantum schemes: among
others, NIST round 2 candidates (KEMs [ZCH+19, BCLv19], signatures [DDLL13,
PFH+19]), an IBE scheme [DLP14], multilinear maps [GGH13,LSS14,ACLL15] and
homomorphic encryption schemes [LATV12,BLLN13].

The so-called ”overstretched” variant uses a huge modulus q compared to the
dimension 2n of the underlying lattices. An application of this variant was used to
construct homomorphic encryption [LATV12,BLLN13] and a candidate of multilin-
ear map [GGH13,LSS14,ACLL15]. However, this largeness of q induced a disastrous
security loss for such schemes. Cheon, Jeong and Lee [CJL16] and Albrecht, Bai and
Ducas [ABD16] independently presented the subfield attack on the overstretched
NTRU problem, which was already a huge blow to the security level for the pro-
posed parameters. Soon after, Kirchner and Fouque [KF17] showed that the attack
boils down to pure lattice reduction of a well-chosen sublattice of the NTRU lattice
Λq := {(u, v) ∈ Z2n : vh − u = 0 mod q}. The crux of the attack is to observe
that (f, g) is a very short vector of this lattice, and that together with its Galois
conjugates, it spans a rank n sublattice of very small volume. Because the volume
Vol(Λq) = qn is very large in the overstretched case, this gap between volumes has
to be compensated in some way: short vectors found by lattice reduction over

BNTRU =

(
qIn 0
h In

)
will necessarily belong to the lattice spanned by the secret (f, g). Moreover, because
the Gram-Schmidt orthogonalization preserves volume during basis reduction, such



short vectors are likely to be detected in large enough sublattices. This intuition
can be made more formal using a lemma of Pataki and Tural [PT08] guaranteeing
that the product of the smallest Gram-Schmidt is smaller than the volume of any
sublattice of L(BNTRU ), combined with the Geometric Series Assumption.3 This
allowed Kirchner and Fouque to improve the practical efficiency of the attack, dealing
a killing blow to the overstreteched NTRU schemes. Additionally, it showed that
the algebraic structure provided by the cyclotomic ring had little impact on the
concrete security in the overstretched case. The only benefit of the structure is to
actually ensure that, as long as one short vectors is obtained, then an entire full-
rank sublattice is deduced by action of the Galois conjugates; on an anecdotical
level, it also helps in estimating the volume of the small sublattice. But ultimately,
only geometric properties and the existence of a ”large rank but very small volume”
sublattice are core to the attack.

In ASIACRYPT 2019, Genise et al. describe [GGH+19] a new somewhat ho-
momorphic encryption scheme. The authors relies on an inhomogeneous and non-
structured variant of the NTRU assumption that they call MiNTRU. Let the so-
called gadget matrix be G = [In| . . . |2log q−1In] ∈ Zn×mq , with m = n log q. Then,
the variant of the MiNTRU problem considered by [GGH+19] is the following: given
A := S−1 · (G− E) mod q ∈ Zn×mq where S ∈ Zn×nq and E ∈ Zn×mq are binary ran-
dom matrices, recover the pair (S,E).4 For their most efficient set of parameters, the
authors claims 100 bits of security, but in order to support meaningul homomorphic
computations, this scheme also uses overstretched parameters. Yet, the authors do
not provide any analysis of the impact of the sublattice attack against their scheme.

Our contribution. We show that the current choice of parameters of MiNTRU
problem are far from giving the claimed security. As expected, it amounts to apply-
ing several sublattice attacks for suitable parameters, the rest of the attack having
negligble cost overall. For the smallest parameter sets proposed by [GGH+19], we
ran the attack sucessfully in around 15 hours of computations with fplll/BKZ 2.0
in Sagemath on a single core of a personal laptop. As it involves different lattices,
the full lattice phase can be parallized easily and would recover the encryption key
S in essentially this amount of time. This completely breaks the scheme as we can
now decrypt any cipher. For the sake of completeness, we give a quick reminder of
the analysis and provide experimental results for smaller parameters in the over-
stretched ranges. We hope to make it clear that overstretched parameters should be
avoided when designing NTRU-based schemes.

2 Preliminaries

2.1 Lattices

A lattice L is a discrete subgroup of Rm. It is usually represented by a basis, that
is, a set of linearly independent vectors b1, . . . ,bk. The integer k is called the rank
of L. Next we state a useful heuristics and lemmas related to a lattice.
3 This heuristic states that after lattice reduction, the Gram-Schmidt of the outputted basis de-

crease geometrically.
4 Actually, they rely on a decisional version of this problem.
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Heuristic 1 (Gaussian heuristic). For any lattice L of rank k, we have

λ1(L) =

√
k

2πe
·Vol(L)1/k.

The Geometric Series Assumption is nowadays a standard heuristic assumption
to predict the behaviour of lattice block-reduction algorithms. It has been backed-
up by extensive experimental results [Ajt06], and expresses that the Gram-Schmidt
vectors after reduction decrease in a geometric manner.

Heuristic 2 (Geometric Series Assumption (GSA)). Let L be a rank k lattice
with basis b1, . . . ,bk. After execution of BKZ with block-size β, the norms of the
Gram-Schmidt vectors satisfy

‖b∗i ‖ = δ2β · ‖b∗i+1‖,

for 1 ≤ i ≤ k − 1, and where δβ =
(

β
2πe(πβ)1/β

)1/(2(β−1))
.

The quantity δβ is known as the β-root Hermite factor. It is used to get estima-
tions on Gram-Schmidt norms.

Lemma 2.1 (Heuristic). Let k ≥ 1 be an integer, and B ∈ Z2k×2k be a basis. For β
a divisor of k, let b∗1, . . . ,b

∗
2k be the rows of the Gram-Schmidt orthogonalization of B

after performing lattice reduction in block-size β. If the Geometric Series Assumption
holds, we have

δ
−k(3k+1)
β · ‖b1‖k =

k∏
i=1

‖b∗k+i‖,

where δβ is the β-Hermite Factor.

Proof. By successive applications of the GSA, we have for all indices i where this

makes sense that
∏β
i=1 ‖b∗i ‖ = δ2β

2

β ·
∏β
i=1 ‖b∗i+β‖ for two successive blocks. Hence

for two blocks “at distance k”, this gives

β∏
i=1

‖b∗i ‖ = δ2kββ

β∏
i=1

‖b∗kβ+i‖. (2.1)

We now cut the 2k Gram-Schmidt vectors in successive blocks of size β and use
Equation (2.1) to obtain the second inequality:

k∏
i=1

‖b∗i ‖ =

k/β∏
j=1

δ2kββ

β∏
i=1

‖b∗k+(j−1)β+i‖

= δ2k
2

β ·
k∏
i=1

‖b∗k+i‖. (2.2)

The result is obtained by successive applications of the GSA in the above equality.
ut

Lemma 2.2 (Pataki-Tural). Let L be a full rank lattice in Rn and b1, . . . ,bn be
a basis of L. For any rank d ≤ n sublattice L′ of L, we have

min
S⊂[n]
|S|=d

∏
i∈S
‖b∗i ‖ ≤ VolL′.
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2.2 Binary matrices

The target scheme samples binary secret keys and encryption noise. This section
gathers some results that will help in assessing the power of our attack.

Lemma 2.3. Let m ≥ n ≥ 1 be integers and X ←↩ {0, 1}n×m be a random binary
matrix with i.i.d. entries, and assume it has full rank. We have detE[XXt] = (m4 )n ·
(n+ 1).

Proof. If x,y are Bernoulli vectors of length m with i.i.d entries, then E[‖x‖2] =
m/2 and E[〈x,y〉] = m/4. Hence, if X has full rank, then E[XXt] is the n × n
matrix with m/2 on its diagonal, and m/4 everywhere else. Stated in other words,
E[XXt]− (m/4)In has rank 1: this means m/4 is an eigenvalue of multiplicity n− 1
of E[XXt]. Using that the trace is the sum of the eigenvalues, we see that the last
eigenvalue of E[XXt] is (n + 1)m/4. We conclude by using that the determinant is
the product of the eigenvalues. ut

We can use this lemma to estimate the volume of a lattice with a random binary
basis; for example, if m = 2n, we expect that Vol(L(X)) ≈

√
n · (n/2)n/2. We will

use an asymptotic estimate on the smallest singular value of a random binary square
matrix (which are in particular subgaussians). More precise results are known but
they give more than we actually need for our attack. Indeed, the next statement is
verified pretty well in experiments, which is enough for us.

Proposition 2.4 (Adapted from [Ver07]). Let S be an n× n Bernoulli matrix,
and let s be its smallest singular values. Then with high probability, we have s ≈
1/
√
n. In particular, when the latter even happens, we have ‖S−1‖∞ ≈ n.

2.3 The attacked scheme

We recall the Genise et al.’s construction in a nutshell. For a complete construction,
we refer to the original paper [GGH+19]. We note that the semantic security of this
scheme is implied by hardness of decisional-MiNTRU assumption.

First choose integers n,m, q and a binary uniform distribution χ. Then two
secret matrices S and E are sampled from χn×n and χn×m, respectively, until S is
invertible in modulus Zq. Given the secret matirces and a message matrix M ∈ Zn×nq

encryption C of M is defined by

C := S−1 · (M ·G + E) mod q,

where G is a gadget matrix of the form [In| . . . |2log q−1 · In] ∈ Zn×mq .

3 Lattice based analysis

3.1 Overview

In this section, we describe an attack algorithm to recover a secret key of the scheme
described in Section 2.3. The attack runs in two phases. First, lattice reduction is
performed over (possibly several) lattices Λq(C0) defined by ciphertexts. This is the
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most costly part, and we will analyze heuristically its behaviour in the next section.
At the end of this lattice phase, we will recover a matrix X′ = [S′,E′] ∈ Zn×m
with short rows, generating a full-rank sublattice of L(X). In particular, we know
that there is T ∈ Zn×n such that S′ = T · S. If S is a binary matrix, we expect by
Lemma 2.4 that the rows of T have a size not too larger than those of S′. Therefore,
if we have S′ ·Ci mod q = T·(2iM−Ei) for each i’s, then we recover T = d2−iS′ ·Cic
for some i, by rounding each entries to the closest integer.

3.2 Analysis of the lattice phase

Suppose we have a ciphertext C = S−1 · (G ·M − E) mod q ∈ Zn×mq of a known
message matrix M ∈ Zn×nq , where S in the secret encryption key and E is encryption
randomness. From the scheme description with the same notation in the Section 2.3,
For 1 ≤ i ≤ log q, we denote by Ei and Ci i-th n × n block matrix of E and C,
respectively. We first focus on the first block matrix C0 = S−1 ·(M−E0) mod q, and
more precisely on the NTRU lattice Λq(C0) = {(u,v) ∈ Z2n : uC0−v = 0 mod q}.
It is checked that it admits the basis matrix

B :=

(
q · In 0n
C0 In

)
,

and by construction each row of X := [S | M − E0] belongs to this lattice. If the
size of M is short, then the rows of X are short vectors of Λq(C0). As mentioned
before, the goal of the lattice phase is to recover S up to an integer transformation
matrix T.

When the dimension of B is large, it is unlikely that a lattice reduction algorithm
on the full matrix B will terminate fast enough to qualify as an efficient attack.
Thus we follow the Kirchner and Fouque’s approach [KF17] in order to reduce the
dimension of the problem to a practical range. The main idea is to extract a suitable
submatrix and to perform a lattice reduction algorithm on the submatrix. More
precisely, the basis matrix B can be divided into blocks as

B =


q · In−k 0 0 0

0 q · Ik 0 0
C00 C01 Ik 0

C10 C11 0 In−k

 ,

where Cij is the corresponding block matrix of the matrix C0, and we consider the
central lower triangular submatrix

B′ =

(
q · Ik 0k
C01 Ik

)
.

We let b′1, . . . ,b
′
k be the basis obtained by performing lattice reduction in block size

β over B′.

We heuristically assume that the output basis follow the Geometric Series As-
sumption (GSA). It implies in particular that the k last Gram-Schmidt vectors are
the smallest ones. By Pataki-Tural’s lemma, this product is bounded by the volume
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of any rank k sublattice L. Combining with Lemma 2.1, we have for such a lattice
that

δ
−k(3k+1)
β · ‖b′1‖k ≤ VolL.

We now argue that a lattice L(B′) includes a k-rank sublattice L such that
Vol(L) ≤ Vol(L(X)), and uses it as an upper bound of ‖b′1‖ in the equation above.
The Hermite normal form of the matrix X ∈ Zn×2n is likely to bex11 x12 det(M−E0) 0 0

x21 x22 x23 Ik−1 0
x31 x32 x33 0 In−k

 ,

where the xij ’s are the corresponding block matrices. In particular, each block matrix
xi2 has k columns. Considering the k × 2k submatrix

X′ :=

(
x12 det(M−E0) 0
x22 x23 Ik−1

)
,

we then see that 1) Vol(L(X′)) ≤ Vol(L(X)) and 2) each row of X′ are included in
the lattice L(B′). To sum-up, we must have ‖b′1‖ ≤ δ

3k+1
β Vol(L(X′))1/k.

On the other hand, let L⊥ be the orthogonal projection of L(B′) into the space
spanned by X′. The Gaussian Heuristic in L⊥ gives us

λ1(L⊥)k =
( n

2πe

)k/2
· qk

Vol(L(X′))

If ‖b′1‖ < λ1(L⊥), then it means that b′1 ∈ L(X′). To understand when this happens,
we assume by contradiction that ‖b′1‖ ≥ λ1(L⊥). Combining everything so far, this
implies that

δ
−k(3k+1)
β ·

( n

2πe

)k/2
· qk ≤ Vol(L(X′))2, (3.1)

and we are now looking for (k, β) violating this condition. For such a pair, we can
conclude that the last k entries in b′1 (appropriately padded with zeros) gives a
vector in L(S). Observe that the smaller Vol(L(X′)) is compared to q, the smaller
k and β will be.

In practice: In practice we start by selecting the 2k central rows of B and perform
lattice reduction. Next, we repeat this process by selecting the n− k, . . . , n-th rows
and the n + k + 1, . . . , n + 2k-th rows instead, and so on until the full matrix has
been covered. This gives several linearly independent lattice vectors in L(S). If we
do not have enough to span a full rank sublattice, we can continue with another
cipher of a small message M. For example, we can start by encrypting the identity
matrix, then encrypting any permutation matrix until n linearly independent short-
ish vectors have been found in L(S). It is clear that all these lattice steps can be
parallelized, so it boils down to see the practical cost of the first lattice reduction.
As claimed, we end this phase with a matrix S′ generating a full-rank sublattice.
Experimentally, the behaviour of lattice reduction is in fact even more optimistic:
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reducing the central subalttice for k, β large enough, one finds in fact k short vectors
among the k first vectors of the reduced basis, the k next ones being far greater (as
again, the overall volume should be preserved).

We now explain how to compute parameters (k, β) which satisfy the condi-
tion 3.1. To check the condition, we need to estimate Vol(L(X′)). In the worst case,
Vol(L(X′)) is the same as Vol(L(X)), so we replace it with Vol(L(X)) ≈

√
n·(n/2)n/2

under the Lemma 2.3. In other words, we aim at satisfying the following condition:

δ
−k(3k+1)
β ·

( n

2πe

)k/2
· qk ≥ n · (n/2)n. (3.2)

It allows to violate the condition 3.1. According to the [GN08,Che], the root Hermite
factor the LLL and BKZ algorithm with block size β can be estimated. When given
parameters of n and q, we fix root Hermite factor. After then, we search for the
smallest k that satisfies the condition 3.1.

3.3 Recovering the secret key

At this stage, we assume that S′ = T·S and M are known. Our next goal is to recover
T, from which S is easily deduced. Noting that the size of 2iT may be larger than q,
we claim that we can compute T ·(2iM−Ei) over the integers for all i. First, we can
always chose M small enough (e.g. M = In) so that D0 := S′C0 mod q = T·(M−E0)
holds over the integers. Observe that the matrix 2Ei−Ei+1 is small for all i, so that
we can also compute Di := S′(2Ci − Ci+1) mod q = T · (2Ei − Ei+1). We then
readily check that T · (2iM − Ei) =

∑
0≤j≤i 2i−jDj over the integers too, giving

our claim. Lastly, recall that r = log q − 1 is an integer. According to result of the
Section 3 and with Lemma 2.4, we know that ‖S′‖∞ ≤ n√

2πe
· q
Vol(L(X))1/k

, so that we

expect that ‖TEr‖∞ ≤ ‖S′‖∞‖S−1‖∞‖Er‖∞ ≤ q/4. Therefore, rounding the entries
of T · (2rM−Er)/2

r recovers T ·M, as well as T as long as M was invertible.

4 Experiments and practical attack

In Table 1, we give experimental results for several smaller parameter sets. When
the block-size is 2, the LLL algorithm was used instead of the BKZ algorithm. The
parameter 2k represents the number of rows of the matrices used in the lattice
reduction phase. In all experiments we succeeded in recovering the secret key S.

According to our aforementioned parameter selection, the BKZ algorithm with
a block size of 20 is required for a successful attack when dimensions n are 28 and
29. However, in our experiments, the LLL algorithm was enough to recover S. One
can see that the LLL algorithm overperforms.

logn log q block size β # of rows, 2k max log(‖U · S‖∞) max log(‖U‖∞)

6 22 2 24 7.2479 6.9773
7 27 2 50 9.2192 10.4888
8 32 20(2) 100 12.4571 11.7507
9 37 20(2) 216 15.2833 13.4098

Table 1. Experimental results of the several parameters of MiNTRU problem.
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The practical attack: The smallest parameters of [GGH+19] are n = 210, q = 242.
The secret key S and the encryption noise E are random binary matrices of size
n × n log q. For these parameters, a security level of ≈ 100 bits is claimed. We
started by computing an encryption of In, and run lattice reducion using the cipher
and taking k = 280 and β = 20. We used Sagemath 9.0 and its version of BKZ
2.0 included in fplll (version 0.5.1). This is a floating point implementation, and we
selected a precision of 180 bits since else, the Gram-Schmidt computations tended
to go in “infinite loop in Babai” state. After around 15 hours of computations on a
personal laptop, we obtained k shortish vectors with a log-norm of roughly 22, all
in the lattice L(S). The code for this attack can be found at http://github.com/

awallet/Overstretched. Observe that with 4 cores, more than n such vectors can
be found (either by taking other rows, or using another cipher). The log-norm of the
transformation matrix T is then expected to be way below q/4, so we are essentially
assured that the full attack will work out. This means that these parameters are
broken. The other sets of parameters are not as practical, and the gap between q
and n is even worse, so that the attack is likely to succeed for smaller k’s and β’s
(relatively to the overall dimension). Overall, we conclude that the scheme does
not reach meaningful security guarantees, and that overstretched parameters should
definitely be avoided.

Acknowledgments We want to thank Damien Stehlé for suggesting to look at this
scheme as well as for fruitful discussions.
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