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Abstract. The Authenticated Encryption with Associated Data (AEAD) primitive, which integrates
confidentiality and integrity services under a single roof, found wide-spread adoption in industry and
became indispensable in practical protocol design. Recognizing this, academic research put forward
a large number of candidate constructions, many of which come with provable security guarantees.
Nevertheless, the recent past has shaken up with the discovery of vulnerabilities, some of them fatal,
in well-regarded schemes, stemming from weak underlying primitives, flawed security arguments,
implementation-level vulnerabilities, and so on. Simply reacting to such findings by replacing broken
candidates by better(?) ones is in many cases unduly, costly, and sometimes just impossible. On the
other hand, as attack techniques and opportunities change over time, it seems venturous to propose
any specific scheme if the intended lifetime of its application is, say, twenty years.

In this work we study a workable approach towards increasing the resilience against unforeseen
breaks of AEAD primitives. Precisely, we consider the ability to combine two AEAD schemes into
one such that the resulting AEAD scheme is secure as long as at least one of its components is (or:
as long as at most one component is broken). We propose a series of such combiners, some of which
work with fully generic AEAD components while others assume specific internal structures of the
latter (like an encrypt-then-MAC design). We complement our results by proving the optimality of
our constructions by showing the impossibility of combiners that get along with less invocations of
the component algorithms.
Keywords: Secure Combiners · Provable Security · AEAD · Encrypt-then-MAC · Ciphertext Transla-
tion · Impossibility Result

1 Introduction

AEAD. Authenticated Encryption with Associated Data (AEAD, [Rog02, McG08]) is a cryptographic
primitive that gained more and more importance in the recent years. It consists of two symmetrically
keyed algorithms: an encryption algorithm that is invoked by a sender and transforms a message into
a ciphertext, and a decryption algorithm that is invoked by a receiver and transforms the ciphertext
back to the message. The two algorithms further depend on an additional input referred to as associated
data into which the sender and receiver can encode the context in which they perform their operations;
equality of these contexts (i.e., associated data strings) is assumed for successful message recovery. The
security typically expected of an AEAD scheme covers both confidentiality and authenticity.

Combiners. The idea of cryptographic combiners is to introduce redundancy in security by combining
multiple constructions of the same primitive into one, to prepare for the case that one or more, but not
all, of these building blocks turn out to be insecure. As long as at least one component stays secure, the
combined primitive does as well.

Combiners have been studied for multiple cryptographic primitives, including one-way functions,
hash functions, message authentication codes, signatures, symmetric encryption schemes, key encapsula-
tion mechanisms, indistinguishability obfuscation [MH81, Her05, HKN+05, DK05, FL07, FL08, FLP08,
FHNS16, GHP18]. Some of these works are more on the theoretical side by considering puristic feasibility
results, while others aim at proposing solutions to a practical problem. For instance, while the KEM
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combiners of [GHP18] employ hash functions and PRFs as additional building blocks, which is in line
with the practical use cases envisioned by the authors, Dodis and Katz [DK05] consider a more pure
form of PKE combiner that does not add more hardness assumptions but gets along with adding only
information-theoretic ingredients. While the focus of our work is on practical AEAD combiners, we
achieve our goals without adding more primitives or assumptions.

1.1 Motivation for AEAD Combiners
Research in symmetric cryptography succeeded with proposing a plethora of AEAD schemes. While many
of these come with formal security arguments, there remain a number of reasons why combining two
AEAD schemes into one to strengthen their security might still be attractive. The arguments span over
various domains and are connected to flawed security arguments, implementation issues, management
practices, or simply politics.

Flawed Security Arguments. Even if a cryptographic scheme comes with a “security proof”, the
unfortunate truth is that the corresponding arguments might be flawed and the scheme weak. This also
holds for AEAD designs, where it seems fair to say that the high level of integration that the most efficient
blockcipher-based schemes feature also makes the schemes challenging to fully comprehend and surround
on a formal level. A prime example of where the security argument of an intricate AEAD scheme turned
out to be fatally flawed, and this went unnoticed for a rather long period of time, is given by the recent
results on OCB2 that completely broke the scheme [IIMP19]. There are several similar cases to report on,
including the flawed EAX’ scheme [MLMI14], a flawed argument in the security proof of GCM [IOM12],
and flaws in some of the CAESAR submissions [Nan14, BS16, SMAP16].

Untested Assumptions. Schemes might rely on relatively new and untested building blocks. For
instance, the winners of the CAESAR competition, besides OCB3 which is based on plain AES, are
Ascon, ACORN, AEGIS, Deoxys, and COLM, where the former two use ad-hoc constructions and the
latter three build on the AES round function but in a different context than in plain AES. While no
insecurities of any of these modes have been identified as of today, one could argue that the assumptions
are too fresh to be fully relied upon.

Implementation-Based Attacks. Even if a construction comes with a correct formal security argument,
securely implementing it might be tricky. For instance, if components of the primitive are conveniently
implemented via look-up tables, cache timing side channels are hard to evade. See [Ber05] for classic
practical attacks against AES implementations, and the suggestion in [KS09] for side-channel attacks
against table-based implementations of GCM’s field arithmetic.

Standards. The use of a particular AEAD scheme might be required to achieve standard conformance,
or to obtain a positive certification by government bodies. This might be the case even if the AEAD
scheme is known to be weak, or at least its security is questionable. Examples may include cases in
the payment industry where the use of 3DES still seems to be fashionable even though its blocksize is
too small to achieve security in many applications [BL16], or where the use of ISO standardized AEAD
schemes like the broken OCB2 are required, etc. An AEAD combiner allows using weak yet mandated
schemes without risking security.

Political Issues. The Snowden revelations of 2013 suggested that state agencies might engage in
subverting cryptographic primitives. While the best and most clear example remains to be the Dual-EC-
DRBG incident1, some actors actively avoid other NSA approved cryptosystems as well. For instance,
instant messenger vendor SilentCircle switched from using the AES blockcipher to TwoFish2, and the
Simon and Speck blockciphers were not adopted by the ISO for standardization3.4 Not all of these
decisions are purely justifiable on an academic level, but seem partially also political in nature. The use
of an AEAD combiner might contribute to satisfying the politically induced requirements of some people.

To conclude: For many popular encryption schemes, more or less compelling arguments can be found
for not using them. It seems to be a matter of personal preference which of these schemes to trust or

1https://en.wikipedia.org/wiki/Dual_EC_DRBG
2https://silentcircle.wordpress.com/2013/09/30/nncs/
3https://mobile.reuters.com/article/amp/idUSKCN1BW0GV
4That also symmetric schemes can be subverted is illustrated in works like [BPR14, AP19a, AP19b].
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distrust. Using an AEAD combiner might help finding a common denominator among communication
participants. In any case, as we argue next, it is essential that such combiners fulfill two important
properties: simplicity and efficiency.

We advocate that AEAD combiners be simple. A complex combiner might lead to incomprehensible
security analyses, and might be hard to implement correctly, and thus potentially introduce new security
risks. In such a case it is conceivable that the combination of two secure AEAD schemes is actually
insecure, with the combiner being responsible for the problems.

We further advocate that AEAD combiners be efficient. Indeed, AEAD schemes are used in almost
all modern protocols, protecting billions of communications every day, and top performance is therefore a
top priority. Of course a combined AEAD scheme is less efficient than its components; but the overhead
should be reduced to the absolute minimum, ideally none.

All our combiners have a very clear design, come with rigorous, yet easy to verify proofs, do not
require any exotic hardness assumptions of their components, and are highly efficient (in some cases we
even claim optimality).

1.2 Approach and Results
In the course of this article we expose a number of AEAD combiners. While those of Section 3 are generic
in the sense that they do not rely on any property of the component AEAD schemes that goes beyond
their blackbox properties (i.e., their syntax, correctness, and security), those of Section 4 are non-generic
and require a specific internal structure of at least one of their components (e.g., that it is induced by an
encrypt-then-MAC design). All our combiners take two AEAD schemes and achieve security if (at least)
one of them is secure. The resulting scheme can, of course, be combined in the same way with a third
AEAD scheme, a fourth, and so on.5 Conveniently, our non-generic combiners preserve the non-blackbox
properties they require of their components. That is, also these combiners are smoothly amenable to a
scaling process to more input schemes.

One efficiency metric for combiners is the number of internal invocations of their AEAD components.
The intuitive minimum is likely four, suggested by each combined encryption operation requiring one
internal invocation of each component’s encryption algorithm, and each combined decryption operation
requiring one internal invocation of each component’s decryption algorithm. In Section 5 we present
a result that shows that for generic (blackbox) AEAD schemes this minimum cannot be reached, but
that at least five invocations are necessary.6 Five internal invocations are also sufficient: Our generic
combiners are optimal in this sense, requiring two internal encryptions for a combined encryption, and
two internal decryptions plus one internal encryption for a combined decryption. Also our non-generic
combiners get along with five internal invocations. They outperform our generic combiners nevertheless,
but according to different metrics. For instance, observing that the inner building blocks of AEAD
schemes have often dedicated functions, like providing ‘passive confidentiality’ and ‘strong authentication’
in an encrypt-then-MAC design, we can employ the right building blocks for the right tasks (e.g., save
on encryption if confidentiality is not a matter), ultimately making the combiner faster. Further, our
non-generic combiners achieve the shortest ciphertext expansions (which is constant for all our combiners
anyway).

In Table 1 we compare our various combiners with respect to their performance and the assumptions
posed on the underlying schemes. Observe that no combiner outperforms all others in all categories.
Thus, which combiner to pick depends on the specific use case.

The intuitive minimum for the ‘Processed Data’ column is 2A+2M 2A+2M (as each component
should process each associated data and each message at least once). Our impossibility result from
Section 5 shows that this minimum is not attainable. However the table clarifies that the combiners
we propose are quite close to it. Note that the shortest ciphertext length to be expected is M + τ (the
message itself, plus a tag), and that one of the combiners meets this efficiency goal. (And again, the other
combiners get quite close.)

5Note that the overall combiner’s performance may depend on the order of combinations.
6This result can be evaded by requiring additional (non-blackbox) properties of the component schemes. For instance,

our discussion at the end of Section 3 appreciates that many practical schemes feature a specific property, tidiness, that
allows for combiners that require just four invocations.
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Table 1: AEAD combiners compared with respect to assumptions on their underlying component schemes
and their overall performance. Column ‘Structure’ describes the required construction principle of
underlying scheme AEi (blackbox, encrypt-then-MAC, ciphertext translated), ‘Required Security’ lists
the underlying schemes’ security guarantees (such that either of the two cells in a row must be met for a
secure combination), ‘Processed Data’ adds up necessary processing of data (‘A’ is a unit for the length of
processed associated-data strings, and ‘M ’ is a unit for the length of encrypted messages) per combined
encryption and decryption, and ‘Ctxt. Length’ adds up the combined ciphertexts’ length (depending on
message length and tag length; we use symbol τ as a placeholder for the common tag length of all AEAD
schemes).

Structure Required Security Processed Data Ctxt.
AE0 AE1 AE0 has: or AE1 has: enc dec Length

Blackbox 1 BB BB INT, IND INT, IND 2A+2M 3A+3M M+2τ
Enc-then-MAC 1 EtM BB SUF,pIND INT, IND 2A+3M 2A+3M M+2τ
Enc-then-MAC 2 EtM EtM SUF,pIND SUF,pIND 2A+4M 2A+4M M+τ
Ciphertext transl. BB CT INT, IND INT, IND 2A+2M 2A+3M M+2τ
Blackbox 2 BB BB INT, IND INT, IND 2A+3M 2A+3M ≥M+3τ
Blackbox 3 BB BB IND$ IND$ 2A+4M 2A+4M M+3τ
Impossible BB BB INT, IND INT, IND Σ ≤ 4A+4M

1.3 Related Work
The literature on combiners is as broad as the literature on cryptography in general since, theoretically,
combiners can be studied for any cryptographic primitive. We concentrate here on work that focuses
on combining symmetric encryption or message authentication codes (since both primitives are close to
AEAD).

The initial motivation for combining schemes was not to rely on either of the underlying schemes’
security but to increase the (assumed) security of one specific scheme by applying it multiple times.
Merkle and Hellman [MH81] analyze the security of the Data Encryption Standard (DES) when being
iteratively applied on some input, and specifically compare two versus three iterations of DES.

Today’s motivation for combining schemes is to maintain security if at least one of them is secure. In
this setting, Herzberg [Her05] considers different encryption and MAC combiners. He shows for randomized
schemes that neither nested encryption nor certain parallel variants of encryption (where ciphertexts
of the underlying schemes are encrypted iteratively or in parallel) can achieve strong confidentiality
(IND-CCA security) if only one underlying scheme reaches this property. In contrast, he shows that certain
nested and parallel combiners of MACs and signatures inherit unforgeability (EUF-CMA) guarantees
of an underlying scheme. We note that [Her05] does not consider strong unforgeability (SUF), which is
necessary for AEAD.

Zhang et al. [ZHSI04], Dodis and Katz [DK05], as well as Giacon et al. [GHP18] consider combiners
for public key encryption and key encapsulation mechanisms. Their results include combiners that achieve
IND-CCA security from either of the underlying schemes. Harnik et al. [HKN+05] propose combiners for
one-way functions, oblivious transfer, public key encryption, as well as key exchange. In a line of work
Fischlin and Lehmann [FL07, FL08], also together with Pietrzak [FLP08], analyze and propose combiners
for hash functions. Finally, Fischlin et al. [FHNS16] consider combiners for obfuscation.

2 Preliminaries
We introduce general notations and the syntax and security of AEAD and MAC schemes.

Notation. We denote deterministic assignments with ‘←’, probabilistic assignments with ‘←$’, definitional
assignments with ‘:=’. If variables A,B represent sets we write ‘A ∪← B’ shorthand for ‘A← A ∪B’. We
denote with ⊕ the bit-wise XORing operation of two bit-strings; if the strings have different lengths, the
shorter one is padded with 0 bits at the end before the operation is performed.

With ‘a ‖ b ‖ . . .’ we denote the classic concatenation of strings a, b, . . . (into a single string), whereas
with ‘a q b q . . .’ we denote an injective encoding of a, b, . . . into a string such that a, b, . . . can be
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unambiguously recovered from the result.
We label algorithm specifications with ‘Proc’, security games with ‘Game’, and oracles that can be

queried in games with ‘Oracle’. Security games are terminated via certain instructions: ‘Reward x’ means
that the game terminates with return value 1 if condition x is met (otherwise execution continues),
‘Require x’ means that the game terminates with value 0 if condition x is not met (otherwise execution
continues), and ‘Stop with b’ means that the game terminates with return value b. These terms convey
an intuitive meaning, e.g., for rewarding an adversary if a winning condition is reached, or penalizing an
adversary that does not follow the game rules. For a game G that outputs a Boolean value when run
with an adversary A, we write Pr[G(A)] for the probability that the game outputs 1.

AEAD. A scheme for providing (nonce-based) authenticated encryption with associated data (AEAD)
consists of deterministic algorithms enc,dec and associated spaces K,N ,AD,M, C. The encryption
algorithm enc takes a key k ∈ K, a nonce n ∈ N , an associated-data string ad ∈ AD, and a message
m ∈M, and returns a ciphertext c ∈ C. The decryption algorithm dec takes a key k ∈ K, a nonce n ∈ N ,
an associated-data string ad ∈ AD, and a ciphertext c ∈ C, and returns either a message m ∈M or the
rejection symbol ⊥ /∈M. A shortcut notation for this syntax is

K ×N ×AD ×M→ enc→ C and K ×N ×AD × C → dec→M∪ {⊥}.

For correctness we require of an AEAD scheme that for all k ∈ K, n ∈ N , ad ∈ AD, m ∈M, and c ∈ C,
we have that enc(k, n, ad,m) = c implies that dec(k, n, ad, c) = m.

Practical AEAD schemes have spaces K,N ,AD,M, C such that K = {0, 1}κ for some κ ≥ 80,
{0, 1}96 ⊆ N ⊆ {0, 1}∗, and AD = M = C = {0, 1}∗,7 and they have constant expansion, i.e., all
ciphertexts are a constant number of bits longer than the messages they encode. Formally, the latter
property is given if there exists a number τ ∈ N such that for any (k, n, ad,m) ∈ K ×N ×AD ×M we
have that |enc(k, n, ad,m)| = |m|+ τ . We assume for all AEAD schemes considered in this paper that
they are of this type.8

We formalize three standard security requirements: That the integrity of ciphertexts be protected
(INT-CTXT), that encryptions be indistinguishable in the presence of chosen-ciphertext attacks (IND-
CCA), and that encryptions be indistinguishable in the presence of (passive) chosen-plaintext attacks
(IND-CPA). These notions are defined via the INT and INDb games in Figure 1, and the games pINDb

which are like INDb but with the decryption oracle Dec removed. Intuitively, a scheme provides integrity
if the maximum advantage Advint(A) := Pr[INT(A)] that can be attained by realistic adversaries A is
negligible, it provides indistinguishability if the same holds for the advantage Advind(A) := |Pr[IND1(A)]−
Pr[IND0(A)]|, and it provides indistinguishability against passive adversaries if the same holds for the
advantage Advind(A) := |Pr[pIND1(A)]− Pr[pIND0(A)]|.9

Message Authentication Codes. A message authentication code (MAC) for message spaceM consists
of a key space K and a tag space C, and a deterministic algorithm M that processes a key and a message
into a tag:

K ×M→ M→ C.

We formalize the standard security requirement that a MAC scheme provide authenticity. This is defined
via the SUF game in Figure 1. We say that a scheme provides strong unforgeability if the maximum
advantage Advsuf(A) := Pr[SUF(A)] that can be attained by realistic adversaries A is negligible.

3 Blackbox Combiners for AEAD
We present an AEAD combiner that is fully black-box, meaning that it works generically for any two
component AEADs. Clearly, any such combiner invokes each component scheme at least once: The
combined encryption will invoke each component’s encryption algorithm, and the combined decryption
will invoke each component’s decryption algorithm. We refer to such combiners as two-enc-two-dec
combiners. The combiner we present here requires more invocations, as its decryption algorithm makes

7Among other standards, these parameter sets are mandated by RFC5116 [McG08].
8This is a mild assumption: We are not aware of any practically relevant AEAD scheme that has non-constant expansion.
9Our approach deliberately does not formalize of the intuitive meanings of “realistic” and “negligible”. We formally

define only the security games and adversary advantages.
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Game INT(A)
00 k ←$ K
01 Q← ∅
02 N← ∅
03 Invoke A
04 Stop with 0

Oracle Enc(n, ad,m)
05 Require n /∈ N
06 c← enc(k, n, ad,m)
07 Q ∪← {(n, ad, c)}
08 N ∪← {n}
09 Return c

Oracle Dec(n, ad, c)
10 m← dec(k, n, ad, c)
11 If m = ⊥: Return ⊥
12 Reward (n, ad, c) /∈ Q
13 Return m

Game INDb(A)
14 k ←$ K
15 Q← ∅
16 N← ∅
17 b′ ← A
18 Stop with b′

Oracle Enc(n, ad,m0,m1)
19 Require n /∈ N
20 Require |m0| = |m1|
21 c← enc(k, n, ad,mb)
22 Q ∪← {(n, ad, c)}
23 N ∪← {n}
24 Return c

Oracle Dec(n, ad, c)
25 m← dec(k, n, ad, c)
26 If m = ⊥: Return ⊥
27 If (n, ad, c) ∈ Q:
28 m← �
29 Return m

Game SUF(A)
30 k ←$ K
31 Q← ∅
32 Invoke A
33 Stop with 0

Oracle Tag(m)
34 t← M(k,m)
35 Q ∪← {(m, t)}
36 Return t

Oracle Vfy(m, t)
37 t′ ← M(k,m)
38 If t′ 6= t: Return 0
39 Reward (m, t) /∈ Q
40 Return 1

Figure 1: AEAD games INT, IND0, IND1 and MAC game SUF. The condition n /∈ N of lines 05, 19
checks for nonce freshness. The symbol ‘�’ of line 28 is used to suppress sharing the value of m with the
adversary.

three invocations of component algorithms. This is only seemingly suboptimal, as in Section 5 we prove
that generically secure two-enc-two-dec combiners actually do not exist. Indeed, the three-invocation
combiner from the current section can be seen as tightly complementing the impossibility result.

Actually, it may even be surprising that AEAD combiners that leverage on the security of just
one component, while requiring effectively nothing of the other, can exist in the first place. Consider
that, during encryption, one component will be invoked first and transform some message into some
ciphertext, and then the second component will be invoked on input a message that may depend on the
first ciphertext, and output its own ciphertext; the combined ciphertext will be a function of the former
two and is required to be INT-secure, i.e., none of its parts may be malleable. While this intuitively
requires that the two components protect their ciphertexts mutually (the one scheme protects the other’s
ciphertext, and vice versa), in practice one component has to be invoked last, so its output cannot be
integrity protected by the other.

Our combiner uses an intriguing technique to side-step this seeming contradiction. Its code is specified
in Figure 2. (We silently assume sufficiently compatible nonce spaces, associated data spaces, message
spaces, and ciphertext spaces.) The combined encryption is simply a nested encryption of the two
component algorithms, using the same nonce and associated data for both (lines 01,02). Note that this is
already sufficient to achieve confidentiality (against passive adversaries), if at least one of the components
provides confidentiality. The combined decryption first recovers the message by reversing the nesting (lines
05–08). The integrity protection of the outer ciphertext (i.e., the component ciphertext not protected
by the other component) is accomplished by re-computing and confirming it (lines 09–10). Note that
this approach only works because AEAD encryption is deterministic. (We generalize this re-encryption
technique in Section 4.3, where we show that it can be used to turn every INT-PTXT secure scheme into
an INT-CTXT secure one.)

We show that if either of the two component schemes is a secure AEAD scheme, then so is the
combined scheme. For the following formal statement we assume N ⊆ N0 ∩ N1, AD ⊆ AD0 ∩ AD1,
M ⊆M0, and C0 ⊆ M1, where Ni, ADi,Mi, Ci are the spaces of nonces, associated data, messages,
and ciphertexts of scheme AEi, and, without indices, of combiner CB.

Theorem 1. For all pairs of correct AEAD schemes AE0 with constant expansion and AE1, all in-
dices i ∈ {0, 1}, and all adversaries A against the combined scheme CB(AE0,AE1) as defined in Fig-
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Proc enc(k, n, ad,m)
00 (k0, k1)← k
01 c0 ← enc0(k0, n, ad,m)
02 c1 ← enc1(k1, n, ad, c0)
03 Return c1

Proc dec(k, n, ad, c)
04 (k0, k1)← k
05 c0 ← dec1(k1, n, ad, c)
06 If c0 = ⊥: Return ⊥
07 m← dec0(k0, n, ad, c0)
08 If m = ⊥: Return ⊥
09 c′1 ← enc1(k1, n, ad, c0)
10 If c′1 6= c: Return ⊥
11 Return m

Figure 2: Blackbox AEAD combiner CB(AE0,AE1) = (enc,dec) from two AEAD schemes AEi =
(enci,deci), i ∈ {0, 1}. The combiner invokes each scheme’s algorithms once per operation plus one
additional encryption under scheme AE1 during combined decryption. Associated cost: enc: (A+M) +
(A+M) = 2A+ 2M ; dec: (A+M) + (A+M) + (A+M) = 3A+ 3M . Ciphertext length: M + τ + τ .

ure 2, there exists an adversary Bint
i such that Advint

CB(AE0,AE1)(A) ≤ Advint
AEi

(Bint
i ), an adversary Bind

0
such that Advind

CB(AE0,AE1)(A) ≤ Advind
AE0

(Bind
0 ), and an adversary Bind

1 such that Advind
CB(AE0,AE1)(A) ≤

Advint
AE1

(Bint
1 ) + Advind

AE1
(Bind

1 ). The running time of the adversaries B is about that of A.

Proof. From an adversary A against INT security of the combined scheme CB(AE0,AE1) we construct an
adversary Bint

i against the AEAD security of scheme AEi as follows: Bi entirely simulates scheme AEj , j ∈
{0, 1} \ {i} itself and derives the encryptions and decryptions under scheme AEi by forwarding the inputs
to the encryption and decryption oracles respectively of game INT against scheme AEi.

Adversary Bint
1 , obtaining a forgery for a combined ciphertext c in the decryption oracle, can imme-

diately forward this forgery c to the decryption oracle of the INT game against scheme AE1; note that
set Q in the combined INT game (against which A plays) directly complies with set Q in the INT game
against scheme AE1 (against which Bint

1 plays). Observe that the re-encryption in combined decryption
does not need to be simulated in a reduction to AE1’s INT security as the adversary either provides a
forgery (which is directly reduced with the simulation of line 05), or a ciphertext that has been obtained
from the combined encryption oracle (for which no integrity verification is necessary), or a ciphertext
that decrypts to ‘⊥’ in the first place.

Adversary Bint
0 can compute all algorithms of AE1 directly and use the oracles from the INT game

against scheme AE0 to simulate AE0. For a ciphertext c, queried to the combined decryption oracle,
that has not been an output under the same nonce and associated data of the combined encryption
oracle, Bint

0 first decrypts c to obtain c0. If c0 was neither derived as part of a combined encryption
query under the same nonce and associated data, its decryption either fails or it represents a forgery
against INT security of scheme AE0 (such that the reduction is successful in this case). If c0 was, however,
derived as part of such a previous combined encryption query, then c′1 6= c would have been the resulting
ciphertext under scheme AE1 (as computed in lines 09–10). Consequently, the combined decryption
rejects this ciphertext (as line 10 would output ⊥). Thereby, the only way, adversary A produces a valid
forgery, can be reduced to INT security of scheme AE0 such that Advint

CB(AE0,AE1)(A) ≤ Advint
AEi

(Bint
i ) for

both i ∈ {0, 1}.
Reducing successful adversaries against confidentiality to AE0’s IND security is trivial: Bind

0 derives c0
from the encryption oracle in the IND game against scheme AE0 by querying both messages m0 and m1

under (n, ad), and encrypts c0 under AE1 itself with (k1, n, ad). The decryption oracle in the IND game
against the combiner can accordingly be simulated by actually computing decryptions under scheme AE1
and deriving decryptions under scheme AE0 from the IND game against AE0. A successful guess b′ for
the challenge bit b by adversary A is thereby immediately a successful guess for Bind

0 as well. Hence, we
have Advind

CB(AE0,AE1)(A) ≤ Advind
AE0

(Bind
0 ).

For the reduction to scheme AE1, we proceed in one game hop: in game G1 we abort on decryptions
(in the IND game’s decryption oracle against the combiner) that output a message (i.e., not ⊥). An
adversary, detecting this game hop, breaks INT security (see above for the reduction). As a result,
we have Advind

CB(AE0,AE1)(A) ≤ Advint
AE1

(Bint
1 ) + AdvG1 . In game G1 we can assume that none of the

ciphertexts, given to the combiner’s decryption oracle, result in a valid message (hence the decryption
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oracle does not need to be simulated anymore).10 From game G1, we can directly reduce to the IND
security of scheme AE1. Bind

1 encrypts both messages m0 and m1 under (k0, n, ad) itself and then queries
the encryption oracle of the IND game against scheme AE1 for both resulting ciphertexts c0

0 and c1
0 as

input messages (where |c0
0| = |c1

0|). The guessed bit b′ is therefore valid in case of a successful adversary A,
resulting in Advind

CB(AE0,AE1)(A) ≤ Advint
AE1

(Bint
1 ) + Advind

AE1
(Bind

1 ).

Note that our combiner inherits the security guarantees of its underlying secure scheme. As a result,
it can be applied recursively to combine more than two AEAD schemes (such that only one of them needs
to remain secure). Also it is notable that for the combiner’s INT and IND security it suffices to have
scheme AE0 only IND secure and scheme AE1 only INT secure.11

In Appendix A we present two further blackbox combiners that have different performance properties
(i.e., slightly better in some dimensions while worse in other dimensions). We provide these combiners for
didactic reasons since we believe the underlying concepts support the understanding of AEAD combiners
in general.

Remarks on Tidy Encryption Schemes The tidiness property [NRS14] of an AEAD scheme requires
that different ciphertexts decrypt to different messages. Equivalently, it is required that any ciphertext
that validly decrypts to a message is also the result of an encryption of that message (under the same key,
nonce, and associated data). Given a candidate AEAD scheme it is typically straight-forward to decide
from its specification whether it is tidy or not, and in fact most modern AEAD schemes turn out to have
this property. (This includes EtM constructions as well as highly integrated modes like OCB. We note
however that tidiness is neither a necessary nor a sufficient condition for attaining INT or IND security.)

For tidy schemes, the decrypt-then-encrypt-then-compare component of our blackbox combiner
collapses to a simple decryption. As a consequence, securely combining two AEAD schemes, one of which
is guaranteed to be tidy, can be done in a particularly efficient way. (The combiner would be just like the
one of Figure 2, but with lines 09,10 removed.) We caution however that blindly relying on this simpler
and more efficient combiner in practice, even if all component schemes are evidently tidy according to
their specification, might lead to fatal results. This is because ‘tidiness by specification’ means little if
‘tidiness of implementation’ is what ultimately counts. We note that it is fairly easy to (mis)implement a
theoretically tidy scheme in a practically untidy way: The decryption process of most current AEAD
schemes concludes with a step where some authentication value is computed from the results of the
plaintext recovery and compared with a tag positioned at the end of the ciphertext. It seems conceivable
that a flawed implementation would compare these two values in an incomplete way, e.g., by comparing
the values except for their last bits. Such an implementation would still be formally correct, and could
also provide a very fair level of authenticity and confidentiality, yet it would be untidy. As we believe that
effectively assessing the practical tidiness of schemes implemented as closed-source software or in silicon is
unrealistically costly, and even in the case of open-source software may represent a considerable challenge,
we ultimately only recommend using our generic combiner (or one of the combiners from Section 4).

We finally note that a combination based on a tidy scheme allows for a circumvention of our performance
bound from Section 5 since then only one algorithm invocation per scheme and operation is necessary.
Our impossibility result is based on combining a secure AEAD scheme with an insecure untidy scheme,
and crucially exploits the untidiness of the latter.

4 Non-Blackbox Combiners for AEAD
In the previous section we proposed an AEAD combiner that used its component AEAD schemes fully
generically, i.e., we assumed no property of the latter other than correctness and security. In this section

10The simulation of the re-encryption in the combiner’s decryption is the problematic part because of which we first
reduce to INT security. We cannot use the encryption oracle in the IND game against AE1 to simulate this re-encryption
because either the respective nonce was used in a combined encryption query before (not allowing us to query encryption
under the same nonce again), or the adversary wants to query a combined encryption under the same nonce in the future
(which it then cannot do as our simulation exhausted this nonce already). For nonce misuse-resilient schemes (for which the
security experiment allows for multiple encryptions under the same nonce, as long as e.g., associated data changes), this
issue is resolved.

11The inverse combination of security properties between the underlying schemes (i.e., AE0 is only INT secure and AE1 is
only IND secure) is, however, not implied to be sufficient by our proof (also reflected in the advantage bounds) of Theorem 1.
We give an intuition why our proof uses INT and IND security to reduce the combiner’s IND security to scheme AE1 below.
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we study more efficient AEAD combiners, at the expense of having to require specific structures of at
least one component. Concretely, we propose two classes of improved combiners. The first class applies
in cases where at least one of the AEAD components is induced by the encrypt-then-MAC paradigm,
and the second class can be used if the AEAD component is constructed from an AE scheme and a PRF
using ciphertext translation.12

4.1 EtM-Structured AEAD
In practice, authenticated encryption is often achieved from an encryption scheme and a message
authentication code (MAC) using the encrypt-then-MAC (EtM) paradigm, either explicitly or implicitly.
The idea is that first the message is encrypted using some passively secure encryption scheme, and then
the ciphertext is integrity-protected using the MAC, providing INT security and lifting IND-CPA to
IND-CCA security. Many real-world protocols such as TLS [Gut14] and SSH [SSH, ADHP16] can be
used with such an AEAD construction. Further, many direct AEAD constructions make use of this
design principle as well, though rather implicitly. Examples for the latter include the GCM [MV04] and
CWC [KVW04] modes of operation.

We propose two EtM based combiners: One that combines a generic AEAD scheme with an EtM-
structured one, and a second that combines two EtM-structured AEAD schemes. By explicitly considering
the design principle of the component schemes, the combiners can distribute the processing overhead
between encryption and decryption more evenly compared to the blackbox combiner of Section 3. The
second combiner has also particularly short ciphertexts.

We say that an AEAD scheme is EtM-structured if its key space and its ciphertext space have the
form K = K′ ×K′′ and C = C′ × C′′ for some sets K′,K′′, C′, C′′, and there exist three algorithms

K′ ×N ×M→ E→ C′ K′ ×N × C′ → D→M∪ {⊥} K′′ ×M′ → M→ C′′ ,

where we writeM′ = N ×AD × C′, such that the code in Figure 3 implements algorithms enc and dec.
Note how algorithms E and D stand for the encryption and decryption algorithms, respectively, while
M implements the MAC. An EtM-structured AEAD scheme is secure if algorithms (E,D) provide
indistinguishability against passive adversaries (according to game pIND)13 and algorithm M is a strongly
unforgeable MAC (according to game SUF).

Proc enc(k, n, ad,m)
00 (ke, km)← k
01 c′ ← E(ke, n,m)
02 t← M(km, n q ad q c′)
03 c← c′ q t
04 Return c

Proc dec(k, n, ad, c)
05 (ke, km)← k
06 c′ q t← c
07 t′ ← M(km, n q ad q c′)
08 If t 6= t′: Return ⊥
09 m← D(ke, n, c′)
10 Return m

Figure 3: EtM construction.

EtM with Blackbox Combiner We specify our first EtM combiner in Figure 4. It intertwines an
EtM-structured AEAD scheme AE0 implemented by algorithms (E0,D0,M0) with a blackbox AEAD
scheme AE1 = (enc1,dec1). For combined encryption, the ciphertext of the message encryption under the
EtM-scheme (line 01) is fed into the blackbox encryption algorithm (line 02). The resulting ciphertext is
then MACed together with the associated data (line 03). The combined decryption first verifies the MAC
(lines 08–09) and then, if verification succeeds, reverses the nested encryption by decrypting under both
schemes (lines 10–12).

Confidentiality is protected by the combiner due to the nested encryption, and integrity is maintained
since either the MAC is secure and c thus protected directly, or c1 is integrity protected by enc1 such
that the MAC reduces to being just a deterministic computation on it (which cannot be manipulated).

12With ‘ciphertext translation’ [Rog02] we refer to a technique that transforms an AE scheme into an AEAD scheme by
XOR-ing the PRF evaluation of the associated data into the ciphertext. This is, for instance, used in EAX and OCB.

13Note that (E, D) have no associated-data input. Oracle Enc thus ignores the ad input in game pIND against these
algorithms.
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Proc enc(k, n, ad,m)
00 ((ke, km), k1)← k
01 c0 ← E0(ke, n,m)
02 c1 ← enc1(k1, n, ad, c0)
03 t← M0(km, n q ad q c1)
04 c← c1 q t
05 Return c

Proc dec(k, n, ad, c)
06 ((ke, km), k1)← k
07 c1 q t← c
08 t′ ← M0(km, n q ad q c1)
09 If t 6= t′: Return ⊥
10 c0 ← dec1(k1, n, ad, c1)
11 If c0 = ⊥: Return ⊥
12 m← D0(ke, n, c0)
13 Return m

Figure 4: EtM combiner. Associated cost: enc: M + (A+M) + (A+M) = 2A+ 3M ; dec: (A+M) +
(A+M) +M = 2A+ 3M . Ciphertext length: M + τ + τ .

Our EtM combiner is INT and IND secure for an EtM-structured scheme AE0 and a blackbox AEAD
scheme AE1 if AE0’s algorithms provide SUF and pIND security respectively, or AE1 is a secure AEAD
scheme. For the following formal statement we assume N ⊆ N0 ∩ N1, AD ⊆ AD0 ∩ AD1, M ⊆ M0,
C0 ⊆ M1, and N ×AD × C1 ⊆ M′0, where Ni, ADi,Mi,Mi’, Ci are the spaces of nonces, associated
data, messages, and ciphertexts of scheme AEi and, without indices, of combiner CB.

Theorem 2. For all pairs of correct AEAD schemes AE0, implemented by (E0,D0,M0) with constant ex-
pansion, and AE1, all indices i ∈ {0, 1}, and all adversaries A against the combined scheme CB(AE0,AE1)
from Figure 4, there exists an adversary Bint

0 such that Advint
CB(AE0,AE1)(A) ≤ Advsuf

M0
(Bint

0 ), an adver-
sary Bint

1 such that Advint
CB(AE0,AE1)(A) ≤ Advint

AE1
(Bint

1 ), an adversary Bind
0 such that Advind

CB(AE0,AE1)(A) ≤
Advsuf

M0
(Bint

0 ) + Advpind
AE0

(Bind
0 ), and an adversary Bind

1 such that Advind
CB(AE0,AE1)(A) ≤ Advind

AE1
(Bind

1 ).
The running time of the adversaries B is about that of A.

Proof. We split our proof into reductions to integrity of each scheme and reductions to confidentiality of
each scheme.

The reduction from INT security of the combiner to SUF security of scheme AE0’s MAC is straight
forward. All encryption and decryption queries of an adversary A against the combiner are simulated by
reduction Bint

0 by directly computing all algorithms except for the MAC M0. MAC computations are
instead derived from the SUF game such that lines 08–09 are obtained from oracle Vfy (cf. Figure 1). In
case adversary A queries the decryption oracle on a ciphertext that it did not obtain from the encryption
oracle under the same pair (n, ad), then the MAC verification either fails (such that it is neither a forgery
in game INT nor in game SUF) or succeeds such that the forgery in the INT game is directly forwarded
as a forgery in the SUF game. Thus, we have Advint

CB(AE0,AE1)(A) ≤ Advsuf
M0

(Bint
0 ).

Adversary Bint
1 , reducing INT security of the combiner to INT security of scheme AE1, computes all

algorithms of scheme AE0 directly and derives all computations under AE0 from the INT game, against
which it plays. A ciphertext c = c1 q t, provided to the combined decryption oracle, that differs from
all ciphertexts under the same pair (n, ad), output by the combined encryption oracle, can differ in the
ciphertext part c1 and in the tag part t. If it only differs in the tag part, then the tag verification will
fail as there only exists one valid tag per tuple (n, ad, c1) (as MAC computation is deterministic). If it
differs in the ciphertext part, then either decryption under dec1 outputs ⊥ or A broke INT security of
scheme AE1 such that Advint

CB(AE0,AE1)(A) ≤ Advint
AE1

(Bint
1 ).

For the reduction of confidentiality from the combiner to the EtM-structured scheme, we proceed
in a (short) sequence of games. In the first game, we output ⊥ on any combined decryption query. An
adversary, distinguishing this game from the original IND game against the combiner, breaks the SUF
security of MAC M0 as shown above. Due to this game hop, adversary Bind

0 , reducing successful IND
adversaries A from this game to the pIND security of scheme AE0’s algorithms, does not need to
simulate the combined decryption oracle anymore. The simulation of the combined encryption oracle
is conducted by querying the encryption oracle of game pIND against algorithm E0 of scheme AE0
for both messages m0 and m1 that are input to the combined encryption oracle. The remaining
computations are conducted directly by reduction Bind

0 . As distinguishing between combined encryptions
of m0 and m1 distinguishes encryptions of m0 and m1 under the EtM-structured scheme, we have
Advind

CB(AE0,AE1)(A) ≤ Advsuf
M0

(Bint
0 ) + Advpind

AE0
(Bind

0 ).
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The reduction Bind
1 , reducing IND security of the combiner to IND security of scheme AE1, computes

all algorithm invocations except for enc1 and dec1 directly. Computations of enc1 and dec1 are obtained
from the IND game against scheme AE1. In order to embed the challenge, reduction Bind

1 computes
algorithm E0 twice during combined encryption: once under each message m0 and m1. Then it queries
the two resulting equally long ciphertexts as challenge messages to oracle Enc in game IND against
scheme AE1. The resulting ciphertext c1 is MACed by Bind

1 to obtain c = c1 q t. An adversary A,
successfully guessing bit b in the IND game against the combiner, thereby successfully guesses bit b in
the IND game against scheme AE1. Consequently we have Advind

CB(AE0,AE1)(A) ≤ Advind
AE1

(Bind
1 ) which

completes the proof.

EtM with EtM Combiner We now consider a combiner that takes two EtM-structured schemes AE0
and AE1 implemented by algorithms (E0,D0,M0) and (E1,D1,M1), respectively, and produces an AEAD
scheme that is EtM-structured as well. As many real-world protocols are based on EtM-structured AEAD
schemes, when aiming to combine these schemes with others there is a wide range of options to choose
from. This combiner features the shortest ciphertext length among the ones considered in this article.
Last not least, since the combined scheme is again EtM-structured, it can straight-forwardly be combined
with further EtM-structured schemes.

We specify our combiner in Figure 5, where we make the algorithms (E,D,M) of the EtM-structured
result explicit. To obtain the full AEAD scheme from this, apply the procedures from Figure 3. The
following description refers to the latter.

The combined encryption encrypts the message in a nested form under both schemes (see lines 01–02)
and then computes MACs over the final ciphertext under both MAC algorithms (see lines 10–11). The
resulting MAC tags are then XORed and appended to the final encryption ciphertext. For combined
decryption, first the MAC computations are repeated and compared with the provided XOR of MAC tags
in the input ciphertext (compare with Figure 3 lines 07–08). Finally, the nested encryption is reversed
(lines 05–07 in Figure 5). Note that in most practical cases the ciphertext output by E has the same
length as the input message. If we further assume that both component schemes use the same tag length,
the overall combined ciphertext has the length of the message plus this tag length.

Confidentiality is again achieved by the nested encryption, and integrity is protected under each MAC.
If one MAC is secure, the other MAC can be seen as a function, deterministically computed on integrity
protected input, whose output is added only for transportation.

Proc E(ke, n,m)
00 (ke,0, ke,1)← ke
01 c0 ← E0(ke,0, n,m)
02 c← E1(ke,1, n, c0)
03 Return c

Proc D(ke, n, c)
04 (ke,0, ke,1)← ke
05 c0 ← D1(ke,1, n, c)
06 If c0 = ⊥: Return ⊥
07 m← D0(ke,0, n, c0)
08 Return m

Proc M(km,m)
09 (k0, k1)← k
10 t0 ← M0(k0,m)
11 t1 ← M1(k1,m)
12 tag ← t0 ⊕ t1
13 Return tag

Figure 5: EtM-EtM combiner. Associated cost: enc: M +M + (A+M) + (A+M) = 2A+ 4M ; dec:
(A+M) + (A+M) +M +M = 2A+ 4M . Ciphertext length: M + τ .

If either of the underlying MtE-structured schemes provides SUF and pIND security for its respective
algorithms, then the combiner from Figure 5 achieves the same security properties. Moreover, it suffices if
one scheme has a secure MAC and the other scheme’s encryption provides confidentiality against passive
adversaries to obtain a secure combination. For the formal statement we assume N ⊆ N0 ∩N1,M⊆M0,
C0 ⊆M1, and N ×AD×C1 ⊆M′i where Ni, ADi,Mi,M′i, Ci are the spaces of nonces, associated data,
messages, and ciphertexts of scheme AEi and, without indices, of combiner CB, and

Theorem 3. For all pairs of correct AEAD schemes AE0 with constant expansion and AE1 implemented
by (Ei,Di,Mi), all indices i ∈ {0, 1}, and all adversaries A against the combined scheme CB(AE0,AE1) as
depicted in Figure 5, there exists an adversary Bsuf

i such that Advsuf
CB(M0,M1)(A) ≤ Advsuf

Mi
(Bsuf
i ), and an

adversary Bpind
i such that Advpind

CB(AE0,AE1)(A) ≤ Advpind
AEi

(Bpind
i ). The running time of the adversaries B

is about that of A.

Parts of this statement have been proven before when pure symmetric encryption was considered
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(e.g., by Herzberg [Her05]) but we are not aware of SUF secure MAC combiners in the literature. For
completeness we give a full proof.

Proof. Reduction Bsuf
i , playing the SUF game against the MAC of scheme AEi while simulating the SUF

game for adversary A against the combined MAC M, computes algorithm Mj , j ∈ {0, 1} \ {i} directly. In
order to obtain MAC tags ti for A’s queries to oracle Tag, it queries the Tag oracle in the SUF game
against MAC Mi. For the simulation of oracle Vfy towards A on input (m, t), Bsuf

i first computes tj
under Mj directly and then queries oracle Vfy for input (m, t⊕ tj). The result of this query is forwarded
to adversary A. For a forgery against the combined MAC, input (m, t) to the combined Vfy oracle must
not have been an input-output pair of a combined Tag oracle query before. If only the tag input t to
a combined Vfy oracle query differs from previous queries to the combined Tag oracle, then, by the
determinism of both algorithms Mi and Mj , this query is answered with ⊥. If, on a new message input
(i.e., not yet queried to combined Tag) to the combined Vfy oracle, the tag verification succeeds (such that
this is a valid forgery against the combined MAC), then (m, t⊕ tj) is a valid forgery against algorithm Mi

(since 1. m was not queried before and 2. t⊕ tj must be the MAC under Mi for m). Consequently, we
have Advsuf

CB(M0,M1)(A) ≤ Advsuf
Mi

(Bsuf
i ).

Reducing pIND security from the combiner to each scheme AEi works by simulating the combined en-
cryption as follows (remember that the combined decryption does not need to be simulated in game pIND):
Reduction Bpind

0 derives ciphertext c0 for a combined encryption query under input (m0,m1) by querying
the encryption oracle in game pIND against scheme AE0 under the same input. Encryptions under
scheme AE1 are thereby directly computed. For reducing to pIND security of scheme AE1, reduc-
tion Bpind

1 computes two equally long ciphertexts c0
0, c

1
0 by encrypting each combined encryption oracle

input m0 and m1 with algorithm E0. These ciphertexts are then forwarded to the encryption oracle in
game pIND against scheme AE1, which outputs the combined ciphertext c. In either of both reductions,
the challenge bit b in the combined pIND game equals the challenge bit in the pIND game against
which Bpind

i plays, such that a successful adversary A breaks both underlying schemes’ pIND security
with Advpind

CB(AE0,AE1)(A) ≤ Advpind
AEi

(Bpind
i ). This completes the proof.

4.2 Ciphertext Translation based AEAD
We consider the combination of AEAD schemes where at least one was obtained via ciphertext transla-
tion [Rog02]. As in Section 4.1 this results in particularly efficient combiners.

The term ‘ciphertext translation’ refers to a technique that transforms an AE scheme into an AEAD
scheme by XORing a PRF value derived from the associated data into the ciphertext. That is, encryption
and integrity protection of the message are conducted independently of the associated data. Examples
where this technique is used include EAX [BRW04] and the OCB family (OCB3 [KR11] and the insecure
OCB2 [Rog04, IIMP19]).

We say that an AEAD scheme is ciphertext translated if there exist three algorithms

K ×N ×M→ E→ C K ×N × C → D→M∪ {⊥} K ×N ×AD → F→ C ,

such that the code in Figure 6 implements algorithms enc and dec. (Note that function F sees the nonce,
but this is actually optional.)

Security-wise, our results assume of a ciphertext translated AEAD scheme that it offers INT and IND
security for the composed algorithms (enc,dec). That is, our consideration of ciphertext translated
schemes is only restrictive regarding their syntax but not regarding security.

Proc enc(k, n, ad,m)
00 c′ ← E(k, n,m)
01 c← c′ ⊕ F(k, n, ad)
02 Return c

Proc dec(k, n, ad, c)
03 c′ ← c	 F(k, n, ad)
04 m← D(k, n, c′)
05 Return m

Figure 6: Ciphertext translated AEAD construction.

The idea behind our combiner of a ciphertext translated AEAD scheme AE1, implemented by
algorithms (E1,D1,F1), with a blackbox AEAD scheme AE0 = (enc0,dec0) is very close to our blackbox
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combiner from Section 3. However, by treating ciphertext translation explicitly, the combiner can save
one operation in decryption and hence reach better efficiency.

We specify our ciphertext translation based combiner in Figure 7. It nests the blackbox AEAD
encryption into the ciphertext translated AEAD encryption for combined encryption (lines 01–03) and
reverses this operation for combined decryption (lines 06–10). To protect the integrity of the ciphertext,
the re-encryption technique from Section 3 is applied: The outer encryption (of the ciphertext translated
scheme) is re-computed to verify that, if the ciphertext translated scheme provides no ciphertext integrity,
the input ciphertext c1 would have been the result of an honest encryption under (k1, n, c0) (lines 11–12).
Since the computation of function F is independent of the input ciphertext c, it does not need to be
re-computed and compared in order to verify integrity.

Proc enc(k, n, ad,m)
00 (k0, k1)← k
01 c0 ← enc0(k0, n, ad,m)
02 c1 ← E1(k1, n, c0)
03 c← c1 ⊕ F1(k1, n, ad)
04 Return c

Proc dec(k, n, ad, c)
05 (k0, k1)← k
06 c1 ← c	 F1(k1, n, ad)
07 c0 ← D1(k1, n, c1)
08 If c0 = ⊥: Return ⊥
09 m← dec1(k1, n, ad, c0)
10 If m = ⊥: Return ⊥
11 c′1 ← E1(k1, n, c0)
12 If c′1 6= c1: Return ⊥
13 Return m

Figure 7: Ciphertext translation based combiner from blackbox AEAD scheme AE0 and ciphertext
translated AEAD scheme AE1. Associated cost: enc: (A+M) + (A+M) = 2A+ 2M ; dec: (A+M) +
(A+M) +M = 2A+ 3M . Ciphertext length: M + τ + τ .

The ciphertext translation based combiner reaches INT and IND security if either of the underlying
schemes provides these properties. For the formal statement we assume N ⊆ N0 ∩N1, AD ⊆ AD0 ∩AD1,
M ⊆M0, and C0 ⊆ M1, where Ni, ADi,Mi, Ci are the spaces of nonces, associated data, messages,
and ciphertexts of scheme AEi and, without indices, of combiner CB.

Theorem 4. For all pairs of correct AEAD schemes AE0 with constant expansion and AE1, implemented
by (E1,D1,F1), all indices i ∈ {0, 1}, and all adversaries A against the combined scheme CB(AE0,AE1)
as depicted in Figure 7, there exists an adversary Bint

i such that Advint
CB(AE0,AE1)(A) ≤ Advint

AEi
(Bint
i ),

an adversary Bind
0 such that Advind

CB(AE0,AE1)(A) ≤ Advind
AE0

(Bind
0 ), and an adversary Bind

1 such that
Advind

CB(AE0,AE1)(A) ≤ Advint
AE1

(Bint
1 ) + Advind

AE1
(Bind

1 ). The running time of the adversaries B is about that
of A.

Proof. The proof proceeds in two steps: first we slightly change the combiner by adding a redundant
computation. Then we apply Theorem 1 since adding the redundant computation makes our combiner
here equivalent with the blackbox combiner from Section 3.

In our first game, we add the computation c′ ← c′1 ⊕ F1(k1, n, ad) to the code from Figure 7 between
lines 11 and 12, and call this addition ‘line 11.5’ hereafter. Additionally, we change the first part of line 12
from “If c′1 6= c1: . . . ” to “If c′ 6= c: . . . ”. These two changes are fully oblivious to the adversary since, by
line 06, c1 and c are in the exact same relation as c′1 and c′ (according to our changes). Consequently, no
adversary can detect this game hop.

Now observe that, due to our changes, all computations of encryptions and decryptions under
scheme AE1 can be merged (disregarding the ciphertext translation idea) to blackbox algorithms (enc1,dec1).
By reversing the explicit consideration from Figure 6, lines 02–03 and lines 11-11.5 are replaced by black-
box enc1 respectively and lines 06–07 are replaced by blackbox dec1. The resulting scheme is exactly the
same as the blackbox combiner from Figure 2. As a result, INT and IND security in this game follow
from the proof of Theorem 1.

Consequently, we obtain Advind
CB(AE0,AE1)(A) ≤ Advind

AE0
(Bind

0 ), Advind
CB(AE0,AE1)(A) ≤ Advint

AE1
(Bint

1 ) +
Advind

AE1
(Bind

1 ), and Advint
CB(AE0,AE1)(A) ≤ Advint

AEi
(Bint
i ) for both i ∈ {0, 1} which concludes our proof.
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4.3 Deriving INT-CTXT from INT-PTXT
So far, all of our combiners use the idea of verifying the integrity of ciphertexts by partially re-computing
them. This technique can be generalized by considering INT-PTXT and INT-CTXT security, where the
latter is defined by our INT game and a formal definition of INT-PTXT security is obtained by changing
lines 07 and 12 of game INT in Figure 1 such that tuples (n, ad,m) are considered in the comparison
instead. Abstractly, every nonce based scheme that is INT-PTXT secure can efficiently be turned into
a scheme that is INT-CTXT secure by verifying the respective ciphertext via re-computation. This
additional computation induces tidiness of the AEAD scheme (see Section 3) such that manipulations of
ciphertexts must result in manipulations of plaintexts.

Jost et al. [JBB18] prove that INT-PTXT and INT-CTXT security are equivalent for schemes that
are also IND secure. Our technique is actually independent of any confidentiality requirements. We are
not aware that this result has been stated in the literature before and thus provide a formal proof.

Lemma 1. For all adversaries A and all nonce-based AEAD schemes AE = (enc,dec) it holds for
nonce-based AEAD scheme AE′ = (enc,dec′) with

dec′(k, n, ad, c): m← dec(k, n, ad, c); If c = enc(k, n, ad,m): Return m; Else: Return ⊥

that there exists an adversary B such that Advint-ctxt
AE′ (A) ≤ Advint-ptxt

AE (B).

Proof. Obviously all queries of an adversary A in the INT-CTXT game can be answered by an adversary B
against the INT-PTXT game by simply relaying the algorithm invocations. If an adversary A provides
a ciphertext to the decryption oracle of the INT-CTXT game, simulated by adversary B, that was not
output by an earlier query to the encryption oracle of the INT-CTXT game, then this ciphertext 1. either
results in a decryption failure under algorithm dec (such that it is no forgery in either game), 2. decrypts
via dec to a message which was queried under the same pair of nonce and associated data to the encryption
oracle before (which is not a forgery in the INT-PTXT game but probably in the INT-CTXT game), or
3. decrypts to a message that has not been queried to the encryption oracle before under the same pair of
nonce and associated data (resulting in a valid forgery against INT-PTXT security). Case 3. can obviously
be reduced to INT-PTXT security. In case 2., the adversary (by definition of the cases) produced a
new ciphertext c′ for a message m that was queried to the encryption oracle, outputting ciphertext c,
such that c 6= c′. Since the consistency check via re-computation will again produce ciphertext c from
message m, the output of dec′ will be ⊥ such that ciphertext c′ cannot be a forgery in either security game.
Consequently, A can only win the INT-CTXT game against scheme AE′ if it produces an INT-PTXT
forgery for scheme AE. This completes the proof.

As a consequence of this result, it actually suffices for our re-computation based combiners that the
outer AEAD scheme (i.e., the one invoked secondly during combined encryption) reaches only INT-PTXT
security in order to achieve INT security for the combined scheme.

Note finally that our result is independent of the associated data. It thus also applies to pure
authenticated encryption.

5 On the Impossibility of Two-Invocation Combiners
We proposed explicit AEAD combiners in Sections 3 and 4. The constructions, though efficient, require
more than the intuitively minimal number of invocations of the components’ encryption and decryption
algorithms. Concretely, while combiners in general will not do without invoking for each encryption
operation at least once the encryption algorithm of each component, and for each decryption operation
at least once the decryption algorithm of each component, it is a priori unclear why a combiner would
necessarily need more than these. In this section we give a negative result, showing that no generic AEAD
combiner that reaches the intuitive minimum can exist.

We note that our impossibility result holds for the combination of generic AEAD schemes, i.e., that
fulfill the set of properties formalized in Section 2. If one demands further properties (that is, if one makes
the primitive stronger) the result may not hold any more. For instance, in Section 4 we demonstrate that
zero-overhead combiners exist for EtM schemes, and in Section 3 we do the same for schemes the tidiness
of which can be effectively confirmed.
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We say that an AEAD combiner CB is two-enc-two-dec if for any AEAD schemes AE0 = (enc0,dec0)
and AE1 = (enc1,dec1) the algorithms enc and dec of CB(AE0,AE1) both internally make precisely two
algorithm invocations: enc invokes enc0 and enc1 one time each, and dec invokes dec0 and dec1 one time
each. The order in which enc and dec invoke their algorithms determines two classes of two-enc-two-dec
combiners: If the first invocations made by enc and dec are both of algorithms of the same component
(i.e., both enc and dec invoke AE0 first, or both enc and dec invoke AE1 first), we say the combiner
is synchronized. Otherwise, if the first invocations are of algorithms of different components (i.e., enc
invokes AE0 first and dec invokes AE1 first, or the other way round), we say the combiner is reversed. The
algorithms specified in Figure 8 characterize synchronized and reversed two-enc-two-dec combiners: A
combiner CB is of the synchronized type if there exist algorithms α, β, γ, ϕ, π, ρ such that CB’s algorithms
coincide with encS and decS , and it is of the reversed type if algorithms α, β, γ, ϕ, π, ρ exist such that the
combiner’s algorithms coincide with encR and decR.

Proc encS(k, n, ad,m)
00 (k0, k1)← k
01 (st0, n0, ad0,m0)← α(n, ad,m)
02 c0 ← enc0(k0, n0, ad0,m0)
03 (st1, n1, ad1,m1)← β(st0, c0)
04 c1 ← enc1(k1, n1, ad1,m1)
05 c← γ(st1, c1)
06 Return c

Proc decS(k, n, ad, c)
07 (k0, k1)← k
08 (st′0, n0, ad0, c0)← ϕ(n, ad, c)
09 m0 ← dec0(k0, n0, ad0, c0)
10 If m0 = ⊥: Return ⊥
11 (st′1, n1, ad1, c1)← π(st′0,m0)
12 m1 ← dec1(k1, n1, ad1, c1)
13 If m1 = ⊥: Return ⊥
14 m← ρ(st′1,m1)
15 Return m

Proc encR(k, n, ad,m)
16 (k0, k1)← k
17 (st0, n0, ad0,m0)← α(n, ad,m)
18 c0 ← enc0(k0, n0, ad0,m0)
19 (st1, n1, ad1,m1)← β(st0, c0)
20 c1 ← enc1(k1, n1, ad1,m1)
21 c← γ(st1, c1)
22 Return c

Proc decR(k, n, ad, c)
23 (k0, k1)← k
24 (st′0, n1, ad1, c1)← ϕ(n, ad, c)
25 m1 ← dec1(k1, n1, ad1, c1)
26 If m1 = ⊥: Return ⊥
27 (st′1, n0, ad0, c0)← π(st′0,m1)
28 m0 ← dec0(k0, n0, ad0, c0)
29 If m0 = ⊥: Return ⊥
30 m← ρ(st′1,m0)
31 Return m

Figure 8: Structure of two-enc-two-dec combiners: synchronized (top) and reversed (bottom). Note that
algorithms encS and encR are identical.

We now formulate our result, stating that secure two-enc-two-dec combiners do not exist:

Theorem 5. No secure two-enc-two-dec AEAD combiner exists (neither synchronized nor reversed).
More precisely, for any x ∈ {S,R} and any set of algorithms α, β, γ, ϕ, π, ρ for Figure 8 there exists a
pair (AE0,AE1) of AEAD schemes, one of which secure, and an adversary A that breaks the combined
scheme CBx(AE0,AE1) = (encx,decx) with high probability.

The theorem follows as a corollary from Lemmas 2 and 3, which handle the synchronized and reversed
case separately.

Lemma 2 (Synchronized case). For any algorithms α, β, γ, ϕ, π, ρ there exist a secure AEAD scheme AE0,
an (insecure) AEAD scheme AE1, and an adversary A, such that A breaks the integrity of the combined
scheme CBS(AE0,AE1) with high probability.

Proof. Let AE,AE′ be secure AEAD schemes, and derive the schemes AEq00,AEq11,AEq0?,AEq1? from AE′
as specified in Figure 9. Note that AEq00 and AEq11 provide authenticity, while ciphertexts of AEq0? and
AEq1? are forgeable by flipping a single bit.

For arbitrarily picked (n, ad,m), consider an encryption c← CB.enc(n, ad,m) followed by a decryption
m← CB.dec(n, ad, c), where the combiner CB := CBS(AE0,AE1) is operated with components AE0 = AE
and either (a) AE1 = AEq00 or (b) AE1 = AEq11. As the difference between the two cases becomes visible
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Proc encqbb(k, n, ad,m)
00 c′ ← enc′(k, n, ad,m)
01 c← c′ q b
02 Return c

Proc decqbb(k, n, ad, c)
03 c′ q b′ ← c
04 If b′ 6= b: Return ⊥
05 m← dec′(k, n, ad, c′)
06 Return m

Proc encqb?(k, n, ad,m)
07 c′ ← enc′(k, n, ad,m)
08 c← c′ q b
09 Return c

Proc decqb?(k, n, ad, c)
10 c′ q b′ ← c
11 m← dec′(k, n, ad, c′)
12 Return m

Figure 9: Schemes AEq00,AEq11,AEq0?,AEq1?, all parameterized with a secure AEAD scheme enc′,dec′.

to CB.enc not before line 04 of Figure 8, the values of n0, ad0,m0, c0 from line 02 are independent of
the case. Further, the values n0, ad0, c0,m0 from line 09 will coincide with those of line 02, as otherwise
the combiner would, with noticeable probability, either abort in line 10 or present a forgery for AE0

14,
contradicting either the correctness of CB or the security of AE0. Observe that the values n0, ad0, c0,m0
can be recovered by exploiting knowledge of values n, ad,m, c and algorithms α,ϕ (see lines 01 and 08).
This further allows to recover the values n1, ad1, c1,m1 (see lines 03 and 11), which again will coincide in
the encS ,decS executions, for the same reason as above. Note that n1, ad1,m1 will be independent of the
case we are in, i.e., (a) vs. (b), while c1 will depend on it.

Consider the adversary that poses an encryption query Enc(n, ad,m), recovers c1 as just described,
derives c′1 from it by flipping its last bit, then computes c′ ← γ(st1, c

′
1) as in line 05 (note that state st1

can be recovered by knowledge of n, ad,m, c0, α, β), and finally poses a decryption query Dec(n, ad, c′).
That is, the adversary transforms a case-(a) ciphertext to a case-(b) ciphertext, and vice versa. The
internals of the CB.dec algorithm are oblivious of the case we are in until at least line 12, so values n1, ad1
in that line will be independent of the case, and coincide with the original ones from line 04. We expect,
of course, the decryption operation of line 12 to reject (as the last bit of c1 is wrong).

Consider finally the two additional cases (a’) AE1 = AEq0? and (b’) AE1 = AEq1?, i.e., the instantiation
of the AE1 component almost as above, the difference being that the decryption algorithms tolerate bit
flips. As the view of CB.enc does not change at all, and the view of CB.dec does not change until line 13
is reached, all arguments made above continue to apply, except that the decryption operation will not
reject but continue operation with the unmodified m1 value. This means that line 14 will recover the
original message m, meaning that ciphertext c′ is a valid forgery.

Lemma 3 (Reversed case). For any algorithms α, β, γ, ϕ, π, ρ there exist a secure AEAD scheme AE0,
an (insecure) AEAD scheme AE1, and an adversary A, such that A breaks the integrity of the combined
scheme CBR(AE0,AE1) with high probability.

Proof. Let AE be a secure AEAD scheme and M a strongly unforgeable MAC, and derive the schemes
AEmt00,AEmt11,AEmt0?,AEmt1? from M as specified in Figure 10. Note that AEmt00 and AEmt11 provide
authenticity, while ciphertexts of AEmt0? and AEmt1? are forgeable by flipping the last bit of any authentic
ciphertext.

For arbitrarily picked (n, ad,m), consider an encryption c← CB.enc(n, ad,m) followed by a decryption
m← CB.dec(n, ad, c), where the combiner CB := CBR(AE0,AE1) is operated with components AE0 = AE
and either (a) AE1 = AEmt00 or (b) AE1 = AEmt11. The values n0, ad0, c0,m0 from line 28 in Figure 8 will
coincide with those of line 18, as otherwise the combiner would, with noticeable probability, either abort
in line 29 or present a forgery for AE0, contradicting either the correctness of CB or the unforgeability
of AE0. Similarly the values n1, ad1, c1,m1 from line 25 will coincide with those of line 20, as otherwise
the combiner would, with noticeable probability, either abort in line 26 or present a forgery for AE1,
contradicting either the correctness of CB or the unforgeability of AE1. We show that values st1 and c1
from line 21 are publicly recoverable: Recover st′0, c1 from ϕ, n, ad, c as in line 24, recover m1 from c1 by

14We note that neither of the combiner’s algorithms has access to either of the schemes’ symmetric key. Furthermore, the
combiner has no state that stores information (e.g., ciphertexts) beyond one execution of combined encryption or decryption
respectively. Consequently, crafting a different valid ciphertext is for the combiner as hard as for any outside adversary.
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Proc encmtbb(k, n, ad,m)
00 t← M(k, n q ad q m)
01 c← m q t q b
02 Return c

Proc decmtbb(k, n, ad, c)
03 m q t′ q b′ ← c
04 t← M(k, n q ad q m)
05 If (t′, b′) 6= (t, b): Return ⊥
06 Return m

Proc encmtb?(k, n, ad,m)
07 t← M(k, n q ad q m)
08 c← m q t q b
09 Return c

Proc decmtb?(k, n, ad, c)
10 m q t′ q b′ ← c
11 t← M(k, n q ad q m)
12 If t′ 6= t: Return ⊥
13 Return m

Figure 10: Schemes AEmt00,AEmt11,AEmt0?,AEmt1?, all parameterized with a strongly unforgeable MAC
scheme M. Note that algorithms decmt0? and decmt1? are identical.

exploiting that AE1-ciphertexts encode the message in the clear, recover c0 from π, st′0,m1 as in line 27,
recover st0 from α, n, ad,m as in line 17, finally recover st1 from β, st0, c0 as in line 19.

Consider the adversary that poses an encryption query Enc(n, ad,m), recovers st1, c1 as just described,
derives c′1 from c1 by flipping its last bit, then computes c′ ← γ(st1, c

′
1) as in line 21, and finally poses a

decryption query Dec(n, ad, c′).
Consider finally the two additional cases (a’) AE1 = AEmt0? and (b’) AE1 = AEmt1?, i.e., the

instantiation of the AE1 component almost as above, the difference being that the decryption algorithms
tolerate bit flips. As the invocation of β in line 19 is independent of the case we are in (hence st1 is
independent of the cases), the above observation that the values n1, ad1 from lines 20 and 25 are identical
continues to hold in all of these cases. If c1 was generated in case (a’), c′1 looks for γ as in cases (b)
or (b’) and thus c′ looks for algorithms ϕ, π, and ρ as in cases (b) or (b’) as well (and vice versa if c1 was
generated in case (b’)). Observing that the decryption algorithms decmt0? and decmt1? coincide, the value
m1 recovered in line 25 in the Dec query of adversary A is independent of the case, in particular will be
processed as in (a) and (b) and thus accepted. That is, adversary A delivered a successful forgery c′.
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A Additional Combiners
We discuss a couple of combiners that are potentially slightly outperformed regarding efficiency by our
combiners from the main body of the paper. Nevertheless, we believe that the description of these
combiners and their efficiency trade-offs support the understanding of AEAD combiners in general.

A.1 Concatenation Combiner
We specify the encryption and decryption routines of our concatenation combiner in Figure 11. Unlike
the combiners proposed in the main body, the encryption routine performs three invocations of the
component schemes’ routines: two of enc0 and one of enc1. The task of the first enc0 invocation is to
encrypt the message but not to integrity-protect the assocated data or ciphertext, while the second
enc0 invocation is used exclusively to establish integrity. (Note that the second invocation does not
provide any confidentiality as its message input is empty.) We provide the two invocations with the
required different nonces by appending a bit to the input nonce.

Proc enc(k, n, ad,m)
00 (k0, k1)← k
01 c0 ← enc0(k0, n q 0, ε,m)
02 c1 ← enc1(k1, n, ad, c0)
03 c2 ← enc0(k0, n q 1, c1‖ad, ε)
04 Return c1 q c2

Proc dec(k, n, ad, c)
05 (k0, k1)← k
06 c1 q c2 ← c
07 c0 ← dec1(k1, n, ad, c1)
08 Require c0 6= ⊥
09 m← dec0(k0, n q 0, ε, c0)
10 Require m 6= ⊥
11 c′2 ← enc0(k0, n q 1, c1‖ad, ε)
12 Require c2 = c′2
13 Return m

Figure 11: Blackbox AEAD combiner CB(AE0,AE1) = (enc,dec) from AEAD schemes AEi = (enci,deci),
i ∈ {0, 1}, that uses nested encryption to protect confidentiality and re-computation to verify integrity.
Associated cost: enc: M + (A+M) + (A+M) = 2A+ 3M ; dec: (A+M) +M + (A+M) = 2A+ 3M .
Ciphertext length: M + τ + τ + τ (where ciphertext c2 might be larger than τ).

The combined decryption recovers the payload by reversing the nested encryption and re-computing
and checking the second ciphertext. The combiner provides IND and INT security as long as one of
AE0,AE1 is a secure AEAD scheme: Confidentiality is reached due to the nested encryption, and integrity
is reached since either enc1 protects c1, and c2 is derived and verified deterministically, or enc0 protects c1
and its own output c2.

The combined ciphertext is longer and the total number of operations is higher than for our blackbox
combiner from Section 3. In the combined decryption, however, associated data and message inputs are
differently distributed among the algorithm invocations. Firstly, one processing of associated-data input
is saved with this concatenation combiner (the combined decryption here only processes ad twice whereas
the combiner in Figure 2 processes it three times). Secondly, if an underlying scheme AE0 performs better
when either associated data or message input is empty, the combiner from Figure 11 is superior.
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A.2 XOR Combiner
This combiner assumes that the secure component scheme provides IND$ security (indistinguishability
from random strings). This notion is stronger than plain IND, and an AEAD scheme that reaches it can
be (mis-)used as a PRF. We specify the routines of our combiner in Figure 12. The confidentiality of the
message is, once more, guaranteed by nesting encryption invocations of the components (lines 01–02),
while integrity protection is achieved by appending a tag to the resulting ciphertext (line 06). This tag is
computed by XORing a τ -long stretch of the ciphertexts obtained by encrypting the empty message (lines
03–05). The latter step can be seen as considering functions Fi(ki, x) := enci(ki, n, x, ε) as PRFs, with
F ((k0, k1), x) := F0(k0, x)⊕ F1(k1, x) being their secure combination. The decryption routine reverses
the nested encryption, and recomputes and compares the tag. The combiner is INT and IND secure as
long as either of the schemes is INT and IND$ secure.

Proc enc(k, n, ad,m)
00 (k0, k1)← k
01 c0 ← enc0(k0, n q 0, ε,m)
02 c1 ← enc1(k1, n q 0, ε, c0)
03 c2 ← enc0(k0, n q 1, c1‖ad, ε)
04 c3 ← enc1(k1, n q 1, c1‖ad, ε)
05 tag ← (c2 ⊕ c3)[1 . . . τ ]
06 Return c1‖tag

Proc dec(k, n, ad, c)
07 (k0, k1)← k
08 Require |c| > τ
09 c1 ← c[1 . . . |c| − τ − 1]
10 tag ← c[|c| − τ . . . |c|]
11 c0 ← dec1(k1, n q 0, ε, c1)
12 Require c0 6= ⊥
13 m← dec0(k0, n q 0, ε, c0)
14 Require m 6= ⊥
15 c2 ← enc0(k0, n q 1, c1‖ad, ε)
16 c3 ← enc1(k1, n q 1, c1‖ad, ε)
17 If (c2 ⊕ c3)[1 . . . τ ] 6= tag:
18 Return ⊥
19 Return m

Figure 12: Blackbox AEAD combiner CB(AE0,AE1) = (enc,dec) from AEAD schemes AEi = (enci,deci),
i ∈ {0, 1}, that uses nested encryption to protect confidentiality and XOR of ciphertexts to achieve
pseudo-randomness. We denote with ‘c[x . . . y]’ the value of c from position x to position y. Associated
cost: enc: M +M + (A+M) + (A+M) = 2A+ 4M ; dec: M +M + (A+M) + (A+M) = 2A+ 4M .
Ciphertext length: M + τ + τ + τ .
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