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Abstract

Pseudorandom functions (PRFs) are fundamental objects in cryptography that play a central
role in symmetric-key cryptography. Although PRFs can be constructed from one-way functions
generically, these black-box constructions are usually inefficient and require deep circuits to
evaluate compared to direct PRF constructions that rely on specific algebraic assumptions. From
lattices, one can directly construct PRFs from the Learning with Errors (LWE) assumption
(or its ring variant) using the result of Banerjee, Peikert, and Rosen (Eurocrypt 2012) and its
subsequent works. However, all existing PRFs in this line of work rely on the hardness of the
LWE problem where the associated modulus is super-polynomial in the security parameter.

In this work, we provide two new PRF constructions from the LWE problem. In each of these
constructions, each focuses on either minimizing the depth of its evaluation circuit or providing
key-homomorphism while relying on the hardness of the LWE problem with either a polynomial
modulus or nearly polynomial modulus. Along the way, we introduce a new variant of the LWE
problem called the Learning with Rounding and Errors (LWRE) problem. We show that for
certain settings of parameters, the LWRE problem is as hard as the LWE problem. We then
show that the hardness of the LWRE problem naturally induces a pseudorandom synthesizer
that can be used to construct a low-depth PRF. The techniques that we introduce to study the
LWRE problem can then be used to derive variants of existing key-homomorphic PRFs whose
security can be reduced from the hardness of the LWE problem with a much smaller modulus.

1 Introduction

A pseudorandom function (PRF) [GGM86] is a deterministic function F : K ×X → Y that satisfies

a specific security property: for a randomly sampled key k
r← K, the output of the function F (k, ·)

is computationally indistinguishable from those of a truly random function. PRFs are fundamental
objects in cryptography that serve as a basis for symmetric cryptography. Even beyond symmetric
cryptography, PRFs serve as one of the core building blocks for many advanced cryptographic
constructions and protocols.

In theory, PRFs can be constructed from any one-way function via the transformation of [HILL99,
GGM86]. However, the PRFs that are constructed from one-way functions in a blackbox way are
generally inefficient. Furthermore, the transformation of [HILL99, GGM86] is inherently sequential
and therefore, the resulting PRFs require deep circuits to evaluate. For practical deployment, this is
problematic as symmetric objects like PRFs are often deployed inside designated hardware devices
similar to how modern blockciphers, such as AES, are incorporated into many modern processors.
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For these settings, it is important for PRFs to exhibit low depth evaluation circuits that require few
computing cycles to evaluate using multiple cores or processing units.

For these reasons, constructing low-depth pseudorandom functions from standard cryptographic
assumptions have been a highly active area of research. Starting from the seminal work of Naor and
Reingold [NR99], there have been great progress in constructing low-depth pseudorandom functions
from group-based assumptions like the Decisional Diffie-Hellman (DDH) assumption [NR99, ABP15a,
ABP15b]. However, constructing low-depth PRFs from standard lattice assumptions such as the
Learning with Errors (LWE) assumption [Reg09] has been surprisingly more difficult. Indeed, a
low-depth PRF from LWE was constructed by a breakthrough result of Banerjee, Peikert, and
Rosen [BPR12], but only after the realization of seemingly more powerful primitives such as (lattice-
based) identity-based encryption [GPV08, ABB10a, ABB10b, CHKP10] and fully homomorphic
encryption [Gen09, BV11b, BV11a].

Key-homomorphic PRFs. Since the work of [BPR12], the study of lattice-based PRFs has become
a highly productive area of research. There have been a sequence of results that further improve the
constructions of [BPR12] with various trade-offs in the parameters [BLMR13, BP14, DS15, Mon18,
JKP18]. A long sequence of results also show how to construct PRFs with useful algebraic properties
such as key-homomorphic PRFs [BLMR13, BP14, BV15], constrained PRFs [BV15, BKM17, CC17,
BTVW17], and even watermarkable PRFs [KW17, CC17, QWZ18, KW19] from LWE.

A special family of PRFs that are particularly useful for practical applications are key-
homomorphic PRFs. The concept was first introduced by Naor, Pinkas, and Reingold [NPR99]
and it was first formalized as a cryptographic primitive by Boneh et al. [BLMR13]. We say that a
pseudorandom function F : K × X → Y is key-homomorphic if the key-space (K,⊕) and the range
of the PRF (Y,⊗) exhibit group structures such that for any two keys k1, k2 and input x ∈ X , we
have F (k1 ⊕ k2, x) = F (k1, x)⊗ F (k2, x). Key-homomorphic PRFs have many useful applications
in symmetric cryptography and give rise to distributed PRFs, symmetric-key proxy re-encryption,
and updatable encryption. The study of updatable encryption, in particular, have recently gained
a considerable amount of traction [BLMR13, EPRS17, LT18, KLR19, BDGJ19]. Most of these
existing proposals for updatable encryption rely on key-homomorphic PRFs or use direct updatable
encryption constructions that take advantage of similar algebraic structures.

LWE modulus. Despite significant progress in our understanding of lattice-based PRFs as
described above, all existing direct PRF constructions suffer from one caveat: the modulus q,
which defines the underlying ring for the PRF, must be set to be super-polynomial in the security
parameter. The need for a large modulus q has several disadvantages. The first and immediate
disadvantage is efficiency. A lattice-based PRF is generally defined with respect to a set of public
matrices in Zn×mq and a secret vector in Znq for some suitable choice of parameters n and m. A
bigger modulus q means that more space is required to store these values and more time is needed
to evaluate the PRF.

Another disadvantage of a large modulus q is related to the quality of the LWE assumption that
is needed to prove security. Generally, PRFs that are defined with a super-polynomial modulus q
relies on the hardness of the LWE problem with a super-polynomial noise-to-modulus ratio. This
means that the security of the PRF can only be based on the hardness of solving worst-case
lattice problems with a super-polynomial approximation factor, which is a significantly stronger
assumption than what is required by many other lattice-based cryptographic constructions. In fact,
today, we can base seemingly stronger primitives like fully-homomorphic encryption [BV14, AP14]
and attribute-based encryption [GV15] (when restricted to NC1 computations) on the hardness of
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approximating worst-case lattice problems with only polynomial approximation factors. This clearly
demonstrates that our current understanding of lattice-based PRFs is still quite limited.

Many existing lattice-based PRFs including the original constructions of [BPR12] are, in fact,
conjectured to be secure even when they are instantiated with much smaller values of the modulus q.
However, their formal proof of security has been elusive for many years. An important question in
the study of lattice-based PRFs is whether there exist direct lattice-based PRF constructions that
rely on a polynomial modulus q that still exhibit some of the useful features not satisfied by the
generic constructions [HILL99, GGM86] such as low-depth evaluation circuits or key-homomorphism.

1.1 Our Contributions

In this work, we present two PRF constructions from the hardness of the LWE problem with a
small modulus q. For our first construction, we focus on minimizing the depth of the evaluation
circuit while in our second construction, we focus on constructing a key-homomorphic PRF. In both
settings, our goal is to construct lattice-based PRFs that work over small moduli q.

1.1.1 Low-depth PRF

In our first PRF construction, our main focus is on minimizing the size of the modulus q while also
minimizing the depth of the PRF evaluation circuit. We provide an overview of the construction in
Section 2 and briefly discuss our approach below. The resulting PRF can be instantiated with a
range of parameter settings that are determined by a trade-off between the depth of the evaluation
circuit and the associated modulus q. We consider two types of parameter settings that provide
different levels of security.

• Theoretical security : In this setting, we guarantee that any adversary has at most a negligible
advantage in breaking the PRF. For this level of security, we can set the parameters of our
PRF such that the modulus is polynomial in the security parameter q = Õ(λ2.5) and the
depth of the evaluation circuit is in NC2.

• 2λ-security : In this setting, we guarantee that an adversary’s advantage in breaking the
PRF degrades exponentially in the security parameter. For this level of security, we can set
the parameters of our PRF such that the depth of the evaluation circuit is Õ(λ/ log q). In

particular, setting q = 2Õ(
√
λ), the PRF evaluation can be done in depth Õ(

√
λ). Previously,

all lattice-based PRFs either required that the depth of the evaluation circuit is at least Õ(λ)

or the modulus q to be at least 2Õ(λ).

We provide a comparison of the size of the modulus q and the depth of the evaluation circuit that
is needed for our PRF with those of existing LWE-based PRFs in Table 1. We further discuss
how to interpret our parameter settings in Section 1.2 and how to concretely instantiate them in
Section 4.3.

Synthesizers and LWRE. The main intermediate object that we use to construct our PRF is a
pseudorandom synthesizer (Definition 4.5), which was first introduced by Naor and Reingold [NR99].
They showed that a pseudorandom synthesizer that can be computed by a low-depth circuit can be
used to construct a PRF that can also be computed by a low-depth circuit. The work of Banerjee,
Peikert, and Rosen [BPR12] first showed that such pseudorandom synthesizers can be constructed

3



Construction Size of Modulus Evaluation Depth

[BPR12, GGM] λΩ(1) Ω(λ log λ)

[BPR12, Synthesizer] 2Ω(λ) Ω(log2 λ)

[BPR12, Direct] 2Ω(λ log λ) Ω(log2 λ)

[BLMR13] 2Ω(λ log λ) Ω(log2 λ)

[BP14] 2Ω(λ) Ω(log2 λ)

[DS15] 2Ω(λ) Ω(log1+o(1) λ)

[Mon18] 2Ω(λ) Ω(log2 λ)

[JKP18] 2Ω(λ) Ω(log1+o(1) λ)

This work: Synthesizer-based 2Ω(
√
λ) Ω(

√
λ log λ)

This work: BP-based λΩ(1) Ω(λ2 log λ)

Table 1: Comparison of the PRF constructions in this work and the existing PRF
constructions based on LWE. For each of the PRF constructions, the table denotes
the size of the modulus q that is needed to prove 2λ-security from LWE and the depth
of the evaluation circuit that is needed to evaluate the PRFs.

from a natural variant of the LWE problem called the Learning with Rounding (LWR) problem.
They showed that the hardness of the LWR problem can be reduced from the hardness of the LWE
problem when the modulus q is set to be very large.

To construct a pseudorandom synthesizer from a small-modulus LWE problem, we introduce
yet another variant of the LWE problem called the Learning with Rounding and Errors (LWRE)
problem whose hardness naturally induces a pseudorandom synthesizer. The challenger for an
LWRE problem chains multiple samples of the LWR and LWE problems together such that the
error terms that are involved in each of the LWE samples are derived from the “noiseless” LWR
samples. This specific way of chaining LWR and LWE samples together allows us to reduce the
hardness of LWRE from the hardness of the LWE problem with a much smaller modulus q. We
provide an overview of the LWRE problem and the reduction from LWE in Section 2. We precisely
formulate the LWRE problem in Definition 4.1 and provide the formal reduction in Section A.

The LWRE problem and our synthesizer construction naturally extend to the ring setting
as well. In Definition 5, we formulate the Ring-LWRE problem similarly to how the Ring-LWE
and Ring-LWR problems are defined. Then, in Construction 5.4, we show how to construct a
pseudorandom synthesizer from the Ring-LWRE problem.

1.1.2 Key-homomorphic PRF

For our second construction, we focus on constructing a key-homomorphic PRF with a small
modulus q. Specifically, we provide a key-homomorphic PRF whose security (either theoretical
or 2λ-security) can be based on the hardness of LWE with a polynomial size q without relying on
random oracles. All previous key-homomorphic PRFs from lattices either relied on LWE with a
super-polynomial modulus q [BLMR13, BP14, BV15] or random oracles [NPR99, BLMR13]. As in
previous LWE-based key-homomorphic PRFs, our construction is “almost” key-homomorphic in
that the homomorphism on the PRF keys hold subject to some small rounding error, which does
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not significantly impact its usefulness to applications.
Our construction relies on the same chaining technique that is used to construct our first PRF.

This time, instead of chaining multiple LWE and LWR samples together as was done in our first
construction, we chain multiple instances of the existing lattice-based PRFs themselves. For most
existing PRF constructions that are based on LWE, their proof of security proceeds in two steps:

1. Define a “noisy” variant of the deterministic PRF function whose security can be based on
the hardness of the LWE problem.

2. Show that the deterministic PRF function and its “noisy” variant have the same input-output
behavior with overwhelming probability over the randomness used to sample the noise.

Generally, in order to show that the deterministic PRF and its “noisy” variant are statistically
indistinguishable in step 2 above, the modulus q has to be set to be super-polynomial in the security
parameter.

To reduce the need for a large modulus q in step 2, we chain multiple instances of the deterministic
PRF and its noisy variant. Namely, our PRF construction consists of many noisy variants of these
PRFs that are chained together such that the noise that is needed to evaluate the noisy PRF in a
chain is derived from a PRF in the previous level of the chain. By setting the initial PRF at the
start of the chain to be the original deterministic PRF, the entire evaluation of the chained PRF
can be made to be deterministic.

This simple way of chaining multiple instances of deterministic and noisy variants of PRFs allows
us to prove the security of the final PRF from the hardness of LWE with a much smaller modulus q.
In fact, when we chain multiple instances of a key-homomorphic PRF, the resulting PRF is also
key-homomorphic. Instantiating the chain with the Banerjee-Peikert key-homomorphic PRF [BP14]
results in a key-homomorphic PRF that works over a polynomial modulus q. We provide a detailed
overview of our technique in Section 2 and provide the formal construction and its security proof in
Section 6.

1.2 Discussions

Regarding theoretical and 2λ-security. The reason why we present our results with respect to
both theoretical and 2λ-security is due to the fact that the generic PRF constructions [GGM86]
can already be used to construct a low-depth PRF that provides asymptotically equivalent level of
security. Note that using a length-doubling pseudorandom generator, the Goldwasser, Goldreich,
and Micali [GGM86] construction can be used to provide a PRF that can be evaluated in depth
linear in the input size of the PRF. One way to achieve a poly-logarithmic depth PRF using the
GGM construction is to first hash the input using a universal hash function into a domain of
size 2ω(log λ) and then apply the PRF on the hash of the message. As the hashed outputs are
poly-logarithmic in length, the PRF can be evaluated in poly-logarithmic depth. At the same time,
as long as the adversary is bounded to making a polynomial number of evaluation queries on the
PRF, a collision on the hash function occurs with negligible probability and therefore, any efficient
adversary can have at most negligible advantage in breaking the PRF. As a length-doubling PRG
can be constructed from LWE with a polynomial modulus q, this gives an LWE-based PRF with
both small evaluation depth and small modulus q. Of course, the actual security of this final PRF
is quite poor since the probability that an adversary forces a collision on the hash function is barely
negligible.
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Therefore, the way to view our low-depth PRF is to consider its parameters when they are
set to provide 2λ-security. In this setting, our PRF provides security under the condition that
d log q = Ω̃(λ) where d is the depth of the evaluation circuit. When setting Ω̃(log q) =

√
λ, the

evaluation circuit has depth that scales with
√
λ. This means that setting λ = 128 and ignoring

arithmetic and vector operations, our PRF can be evaluated by a circuit with depth ≈ 11 that
works over a ≈ 11-bit modulus. The GGM PRF, on the other hand, requires a circuit with depth at
least λ = 128, which is prohibitive for practical use, while the existing lattice-based PRFs require
7 ≈ log λ circuit depth, but must operate over at least a 128-bit modulus. We discuss concrete
instantiation of our scheme in Section 4.3.

We note that for key-homomorphic PRFs, no construction that works over a polynomial modulus
was previously known. Therefore, our second PRF construction can be viewed as the first key-
homomorphic PRF that works over a polynomial modulus independent of whether it provides
theoretical or 2λ-security.

On the chaining method and blockciphers. The pseudorandom synthesizers or PRFs in this
work consist of many repeated rounds of computation that are chained together in such a way that
the output of each round of computation is affected by the output of the previous round. This
way of chaining multiple rounds of computation is reminiscent of the structure of many existing
blockciphers such as DES or AES, which also consist of many rounds of bit transformations that
are chained together. Interestingly, chaining in blockciphers and chaining in our work seem to serve
completely opposite roles. In blockcipher design, chaining is generally used to achieve the effect of
diffusion, which guarantees that a small change to the input to the blockcipher significantly alters
its final output. This assures that no correlation can be efficiently detected between the input and
the output of the blockcipher. In this work, chaining is used to actually prevent diffusion. Namely,
chaining guarantees that some small error that is induced by the PRF evaluation does not affect
the final output of the PRF. This allows us to switch from the real PRF evaluation to the “noisy”
PRF evaluation in our hybrid security argument such that we can embed an LWE challenge to the
output of the PRF.

1.3 Other Related Work

PRF cascades. The techniques that are used in this work are conceptually similar to PRF
cascading, which is the process of chaining multiple small-domain PRFs to construct large-domain
PRFs. The technique was first introduced by Bellare et al. [BCK96b] and was further studied by
Boneh et al. [BMR10]. PRF cascades serve as a basis for NMAC and HMAC PRFs [BCK96a, Bel06].

LWR for bounded number of samples. There have been a sequence of results that study
the hardness of the Learning with Rounding problem when the number of samples are a priori
bounded. Alwen et al. [AKPW13] first showed that such variant of LWR is as hard as LWE even
when the modulus q is set to be polynomial in the security parameter. Bogdanov et al. [BGM+16]
improved the statistical analysis of this reduction using Rényi divergence. Alperin-Sherif and
Apon [AA16] further improved these previous results such that the reduction from LWE to LWR is
sample-preserving.
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2 Overview

In this section, we provide a high level overview of the main techniques that we use in this work.
For the full details of our main results and proofs, we refer the readers to Sections 4 and 6.

We divide the overview into three parts. In Section 2.1, we provide additional background on
existing results on constructing lattice-based PRFs. In Section 2.2, we provide an overview of our
synthesizer construction from a new computational problem called the Learning with Rounding and
Errors (LWRE) problem. Then, in Section 2.3, we show how the technique that we use to prove the
security of our synthesizer-based PRF can be applied to the parameters for existing lattice-based
key-homomorphic PRFs.

2.1 Background on Lattice PRFs via Synthesizers

The main intermediate primitive that we use to construct our first lattice-based PRF is a special
family of pseudorandom generators called pseudorandom synthesizers [NR99]. A pseudorandom
synthesizer over a domain D is a two-to-one function S : D × D → D such that for any (a

priori unbounded) polynomial number of inputs a1, . . . , a`
r← D, and b1, . . . , b`

r← D, the set of `2

elements {S(ai, bj)}i,j∈[`] are computationally indistinguishable from uniformly random elements

{ui,j}i,j∈[`]
r← D`2 .

A pseudorandom synthesizer S : D × D → D induces a PRF F with key space D2`, domain
{0, 1}`, and range D for any positive power-of-two integer ` as follows:

• Define a PRF key to consist of 2` uniformly random elements in D:(
s1,0 s2,0

s1,1 s2,1
· · · s`,0

s`,1

)
.

• To evaluate the PRF on an input x ∈ {0, 1}`, compress the subset of the elements s1,x1 , . . . , s`,x`
into a single element of D by iteratively applying the synthesizer:

S
(
· · ·S

(
S(s1,x1 , s2,x2), S(s3,x3 , s4,x4)

)
, · · ·S(s`−1,x`−1

, s`,x`) · · ·
)
.

The pseudorandomness of the output of the PRF can roughly be argued as follows. Since each of the
` elements s1,x1 , . . . , s`,x` ∈ D that are part of the PRF key are sampled uniformly at random, the
compressed `/2 elements S(s1,x1 , s2,x2), . . . , S(x`−1,x`−1

, x`,x`) are computationally indistinguishable
from random elements in D. This, in turn, implies that the compression of these `/2 elements into
`/4 elements are pseudorandom. This argument can be applied iteratively to show that the final
output of the PRF is computationally indistinguishable from uniform in D.

LWE and Synthesizers. As pseudorandom synthesizers imply pseudorandom functions, one can
naturally hope to construct a pseudorandom synthesizer from the LWE problem [Reg09]. Recall
that the LWEn,q,χ assumption, parameterized by positive integers n, q and a B-bounded error
distribution χ, states that for any (a priori unbounded) m = poly(λ), if we sample a uniformly

random secret vector s
r← Znq , uniformly random public vectors a1, . . . ,am

r← Znq , “small” error

terms e1, . . . , e` ← χm, and uniformly random values u1, . . . , um
r← Zq, the following distributions
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are computationally indistinguishable:

(a1, 〈a1, s〉+ e1) ≈c (a1, u1)
(a2, 〈a2, s〉+ e2) ≈c (a2, u2)

...
...

(am, 〈am, s〉+ em) ≈c (am, um).

Given the LWEn,q,χ assumption, it is natural to define a (randomized) pseudorandom synthesizer
S : Zn×nq × Zn×nq → Zn×nq as follows

S(S,A) = S ·A + E,

where the error matrix E← χn×n is sampled randomly by the synthesizer S. It is easy to show via
a standard hybrid argument that for any set of matrices S1, . . . ,S`

r← Zn×nq , A1, . . . ,A`
r← Zn×nq ,

and E1,1, . . . ,E`,` ← χn×n, the pairwise applications of the synthesizer S(Si,Aj) = Si ·Aj + Ei,j

for all i, j ∈ [n] result in pseudorandom matrices.

Learning with Rounding. The problem with the synthesizer construction above is that the
synthesizer must be randomized. Namely, in order to argue that the synthesizer’s outputs are
pseudorandom, the evaluation algorithm must flip random coins and sample independent error
matrices Ei,j ← χn×n for each execution S(Si,Aj) for i, j ∈ [`]. Otherwise, if the error matrices are
derived from an additional input to the synthesizer, then the error matrices for each evaluation of
the synthesizer S(Si,Aj) for i, j ∈ [`] must inevitably be correlated and hence, the security of the
synthesizer cannot be shown from the hardness of LWEn,q,χ.

Banerjee, Peikert, and Rosen [BPR12] provided a way to overcome this obstacle by introducing
a way of derandomizing errors in LWE samples. The idea is quite simple and elegant: instead of
adding small random error terms e← χ to each inner product 〈a, s〉 ∈ Zq, one can deterministically
round it to one of p < q partitions or “buckets” in Zq. Concretely, the idea can be implemented by
applying the modular rounding operation b·ep : Zq → Zp to the inner product 〈a, s〉, which maps
〈a, s〉 7→ b〈a, s〉 · p/qe. Intuitively, adding a small noise term e← χ to the inner product of 〈a, s〉
in the LWEn,q,χ problem blinds its low-ordered bits from a distinguisher. Therefore, applying the
modular rounding operation to 〈a, s〉, which removes the low-ordered bits (albeit deterministically),
should make the task of distinguishing it from random just as hard.

With this intuition, [BPR12] introduced a new computational problem called the Learning with
Rounding (LWR) problem. For parameters n, q, p ∈ N where p < q, the LWRn,q,p problem asks an
adversary to distinguish the distributions:

(a1, b〈a1, s〉ep) ≈c (a1, u1)
(a2, b〈a2, s〉ep) ≈c (a2, u2)

...
...

(am, b〈am, s〉ep) ≈c (am, um),

where s
r← Znq , a1, . . . ,am

r← Znq , and u1, . . . , um
r← Zp. The hardness of the LWR problem then

induces a deterministic pseudorandom synthesizer S : Zn×nq × Zn×nq → Zn×np that is defined as
follows:

S(S,A) = bS ·Aep,
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where the modular rounding is done component-wise to each entry of the matrix S ·A ∈ Zn×nq .1

Reducing LWE to LWR. Now, the remaining question is whether the LWR problem can formally
be shown to be as hard as the LWE problem. The work of [BPR12] gave a positive answer to
this question. They showed that for any B-bounded distribution χ and moduli q and p for which
q = 2Bpλω(1), the LWRn,q,p problem is as hard as the LWEn,q,χ problem.2 Given an adversary for
the LWRn,q,p problem A, one can construct a simple algorithm B that uses A to solve LWEn,q,χ.
Specifically, on input an LWEn,q,χ challenge (a1, b1), . . . , (am, bm) ∈ Znq × Zq, algorithm B simply
provides (a1, bb1ep), . . . , (am, bbmep) to A.

• If the values b1, . . . , bm ∈ Zq are noisy inner products b1,= 〈a1, s〉+ e1, . . . , bm = 〈am, s〉+ em,
then we have

bbiep = b〈ai, s〉+ eiep = b〈ai, s〉ep

for all i ∈ [m] except with negligible probability over a1, . . . ,am
r← Znq .

• If the values b1, . . . , bm are uniformly random in Zq, then the values bb1ep, . . . , bbmep are also
uniform in Zp.

Hence, the algorithm B statistically simulates the correct distribution of an LWRn,q,p challenge for A
and therefore, can solve the LWEn,q,χ problem with essentially the same advantage as A.

The apparent limitation of this reduction is the need for the modulus q to be super-polynomial in
the security parameter. If q is only polynomial, then with noticeable probability, the inner product
〈ai, s〉 ∈ Zq for any i ∈ [m] lands on a rounding “borderline” set

BorderlineB = [−B,B] + q/p · (Z + 1/2)

= { v ∈ Zq | ∃ e ∈ [−B,B] such that bvep 6= bv + eep },

and hence b〈ai, s〉+ eiep 6= b〈ai, s〉ep. In this case, one cannot guarantee that an adversary A for the
LWRn,q,p problem correctly distinguishes the samples (a1, b〈a1, s〉+ e1ep), . . . , (am, b〈am, s〉+ emep)
from purely random samples.

2.2 Learning with Rounding and Errors.

Chaining LWE Samples. We get around the limitation of the reduction above by using what
we call the chaining method. To demonstrate the idea, let us consider a challenge oracle Oτ,S
that chains multiple LWEn,q,χ samples together. The oracle Oτ,S is parameterized by a chaining
parameter τ ∈ N, a set of secret vectors S = (s1, . . . , sτ ) ∈ Zn×τq , and is defined with respect to a

sampling algorithm Dχ : {0, 1}blog pc → Z, which takes in as input blog pc random coins and samples
an error value e ∈ Z according to the B-bounded error distribution χ.

1Note that the synthesizer maps matrices in Zn×nq to matrices in Zn×np for p < q and hence violates the original syntax
of a synthesizer. This is a minor technicality, which can be addressed in multiple ways. One option is to have a
sequence of rounding moduli p1, . . . , plog ` such that the synthesizer can be applied iteratively. Another option is to
take a pseudorandom generator G : Zn×np → Zn×nq and define S(S,A) = G(bS ·Aep). Finally, one can define the
synthesizer S(S,A) = bS ·Aep with respect to non-square matrices S : Zm×nq × Zn×mq → Zm×mp such that the sets
Zm×nq , Zn×mq , and Zm×mp have the same cardinality |Zm×nq | = |Zn×mq | = |Zm×mp |.

2For the reduction to succeed with probability 1 − 2−λ, we must set q ≥ 2Bp · 2λ. For simplicity throughout the
overview, we restrict to the “negligible vs. non-negligible” type security as opposed to 2λ-security. See Section 1.2 for
further discussions.
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• Oτ,S: On its invocation, the oracle samples a public vector a
r← Znq and an error term e1 ← χ.

Then, for 1 ≤ i < τ , it iteratively computes:

– ri ← b〈a, si〉+ eiep.
– ei+1 ← Dχ(ri).

It then returns (a, b〈a, sτ 〉+ eτep).

In words, the oracle Oτ,S generates (the rounding of) an LWEn,q,χ sample (a, b〈a, s1〉+e1ep) and uses
r1 ← b〈a, s1〉+e1ep as the random coins to sample e2 ← Dχ(r1). It then computes r2 ← b〈a, s2〉+e2ep
and uses r2 to sample the next error term e3 ← Dχ(r2) for the next iteration. The oracle iterates
this procedure for τ steps and finally returns (a, b〈a, sτ 〉+ eτep).

Now, suppose that p divides q. Then a hybrid argument shows that assuming the hardness
of LWEn,q,χ, a sample (a, b)← Oτ,S is computationally indistinguishable from uniform in Znq × Zp.
Specifically, we can argue that the first term (random coins) r1 ← b〈a, s1〉+ e1ep is computationally
indistinguishable from uniform in {0, 1}blog pc by the hardness of LWEn,q,χ. Then, since r1 is
uniform, the error term e2 ← Dχ(r1) is correctly distributed according to χ, which implies that
r2 ← b〈a, s2〉 + e2ep is also computationally indistinguishable from uniform. Continuing this
argument for τ iterations, we can prove that the final output (a, b〈a, sτ 〉+ eτep) is computationally
indistinguishable from uniform in Znq × Zp.

Chaining LWR and LWE Samples. So far, it seems as if we have not made much progress.
Although the oracle Oτ,s returns an “LWR looking” sample (a, b) ∈ Zq × Zp, it must still randomly
sample the initial noise term e1 ← χ, which makes it useless for constructing a deterministic
pseudorandom synthesizer. Our key observation, however, is that when the chaining parameter
τ is big enough, then the initial error term e1 does not affect the final output (a, b〈a, sτ 〉+ eτep)
with overwhelming probability. In other words, e1 can always be set to be 0 without negatively
impacting the pseudorandomness of Oτ,S.

To see this, consider the following modification of the oracle Oτ,S:

• O(lwre)
τ,S : On its invocation, the oracle samples a public vector a

r← Znq and initializes e1 = 0.
Then, for 1 ≤ i < τ , it iteratively computes:

– ri ← b〈a, si〉+ eiep.
– ei+1 ← Dχ(ri).

It returns (a, b〈a, sτ 〉+ eτep).

In contrast to Oτ,S, the oracle O(lwre)
τ,S derives the first set of random coins r1 from an errorless

LWRn,q,p sample r1 ← b〈a, s1〉ep. It then uses r1 to sample the error term e2 ← Dχ(r1) for the next
LWEn,q,χ sample to derive r2 ← b〈a, s2〉+ e2ep, and it continues this procedure for τ iterations. As

the oracle O(lwre)
τ,S is, in effect, chaining LWRn,q,p and LWEn,q,χ samples together, we refer to O(lwre)

τ,S

as the Learning with (both) Rounding and Errors (LWRE) oracle.
We claim that even when q is small, as long as the chaining parameter τ is big enough, the samples

that are output by the oracles Oτ,S and O(lwre)
τ,S are identical except with negligible probability. For

simplicity, let us fix the modulus to be q = 4Bp such that for u
r← Zq, e1, e2 ← χ, we have

Pr[bu+ e1ep 6= bu+ e2ep] ≤
1

2
. (2.1)
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Now, consider a transcript of an execution of the oracles Oτ,S and O(lwre)
τ,S for S

r← Zn×τq , a
r← Znq ,

and any fixed error value e1 ∈ [−B,B]:

Oτ,S : O(lwre)
τ,S :

r1 ← b〈a, s1〉+ e1ep
r2 ← b〈a, s2〉+ e2ep

...

rτ ← b〈a, sτ 〉+ eτep

r̃1 ← b〈a, s1〉+ 0ep
r̃2 ← b〈a, s2〉+ ẽ2ep

...

r̃τ ← b〈a, sτ 〉+ ẽτep

We make the following observations:

1. Since the sampler Dχ is deterministic, if there exists an index 1 ≤ i∗ ≤ τ for which ri∗ = r̃i∗ ,
then this implies that ri = r̃i for all i∗ ≤ i ≤ τ .

2. Since the vectors s1, . . . , sτ are sampled uniformly at random from Znq , the inner products
〈a, si〉 for any 1 ≤ i ≤ τ are distributed statistically close to uniform in Zq.3 Therefore, using
(2.1), we have

Pr
[
b〈a, si〉+ eiep 6= b〈a, si〉+ ẽiep

]
≤ 1

2
+ negl,

for any 1 ≤ i ≤ τ .

These observations imply that unless all of the inner products 〈a, s1〉 , . . . , 〈a, sτ 〉 land on the

“borderline” set of Zq, the samples of Oτ,S and O(lwre)
τ,S coincide for a

r← Znq . Furthermore, such bad
event occurs with probability at most ≈ 1/2τ . Hence, even for very small values of the chaining

parameter τ = ω(log λ), with overwhelming probability over the matrix S
r← Zn×τq , no information

about the initial error term e1 is revealed from a single sample of Oτ,S or O(lwre)
τ,S . This can be

extended to argue that no information about e1 is leaked from any polynomial number of samples
via the union bound. Hence, for τ = ω(log λ), any polynomial number of samples from Oτ,S or

O(lwre)
τ,S are statistically indistinguishable.

In the discussion above, we set the modulus q = 4Bp purely for simplicity. If we set q to be
slightly greater than 2Bp (by a polynomial factor), the chaining parameter τ can be set to be any

super-constant function τ = ω(1) to guarantee that the output of the oracles Oτ,S and O(lwre)
τ,S are

statistically indistinguishable.

Synthesizer from LWRE. The oracle O(lwre)
τ,S naturally induces a computational problem. Namely,

for a set of parameters n, q, p, χ, and τ , we define the LWREn,q,p,χ,τ problem that asks an adver-

sary to distinguish the samples (a1, b1), . . . , (am, bm) ← O(lwre)
τ,S from uniformly random samples

(a1, b̂1), . . . , (am, b̂m)
r← Znq × Zp. Using the ideas highlighted above, we can show that for small

values of q and τ , the LWREn,q,p,χ,τ is at least as hard as the LWEn,m,q,χ problem. Specifically, we

can first show that the oracle O(lwre)
τ,S is statistically indistinguishable from Oτ,S. Then, via a hybrid

argument, we can show that the oracle Oτ,S is computationally indistinguishable from a uniform
sampler over Znq × Zp by the hardness of LWEn,q,χ.

3When the modulus q is prime, then the inner product 〈a, si〉 is certainly uniform in Zq. Even when q is composite
(i.e. q is divisible by p), under mild requirements on q, the inner product 〈a, si〉 is statistically close to uniform in Zq.
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The LWREn,q,p,χ,τ problem naturally induces a pseudorandom synthesizer. One can first define
an “almost” pseudorandom synthesizer G : Znq × Zn×τq → Zp that emulates the LWREn,q,p,χ,τ oracle
as follows:

• G(a,S): On input a ∈ Znq and S = (s1, . . . , sτ ) ∈ Zn×τq , the LWRE function sets e1 = 0 and
computes for i = 1, . . . , τ − 1:

1. ri ← b〈a, si〉+ eiep,
2. ei+1 ← Dχ(ri).

It then sets b = b〈a, sτ 〉+ eτep and returns b ∈ Zp.

It is easy to see that as long as the LWREn,q,p,χ,τ problem is hard, then for any ` = poly(λ),

a1, . . . ,a`
r← Znq , S1, . . . ,S` ← Zn×τq , and u1,1, . . . , u`,`

r← Zp, we have{
G(ai,Sj)

}
i,j∈[`]

≈c
{
ui,j

}
i,j∈[`]

∈ Z`
2

p .

Furthermore, this indistinguishability holds even for small values of the chaining parameter τ = ω(1)
and hence, the function G can be computed by shallow circuits.

The only reason why G : Znq × Zn×τq → Zp is not a pseudorandom synthesizer is that the
cardinality of the sets Znq , Zn×τq , and Zp are different. However, this can easily be fixed by defining a

synthesizer S : (Znq )`1 × (Zn×τq )`2 → (Zp)`1×`2 that takes in a set of `1 vectors (a1, . . . ,a`) ∈ (Znq )`1 ,

and `2 matrices (S1, . . . ,Sτ ) ∈ (Zn×τq )`2 , and then returns {G(ai,Sj)}i,j∈[`]. The parameters `1 and
`2 can be set to be any positive integers such that∣∣(Znq )`1

∣∣ =
∣∣(Zn×τq )`2

∣∣ =
∣∣Z`1×`2p

∣∣,
which makes S to be a two-to-one function over a fixed domain. The PRF that is induced by the
synthesizer S : (Znq )`1 × (Zn×τq )`2 → (Zp)`1×`2 corresponds to our first PRF construction.

We note that for practical implementation of the synthesizer, the large PRF key can be derived
from a λ-bit PRG seed. Furthermore, the discrete Gaussian sampler Dχ can always be replaced by
a suitable look-up table with pre-computed Gaussian noise as the modulus p is small. Therefore,
the synthesizer can be implemented quite efficiently as it simply consists of τ inner products of two
vectors modulo a small integer and their rounding. We refer to Section 4.3 for a discussion on the
parameters and implementations.

2.3 Chaining Key-Homomorphic PRFs

The method of chaining multiple LWR/LWE samples can also be applied directly to existing
lattice-based PRF constructions to improve their parameters. Furthermore, when applied to existing
key-homomorphic PRFs, the resulting PRF is also key-homomorphic. Here, we demonstrate the idea
with the PRF construction of [BLMR13] as it can be described quite compactly. In the technical
section (Section 6), we show how to chain the PRF construction of [BP14] as it is a generalization
of the previous PRF constructions of [BPR12, BLMR13] and it also allows us to set the parameters
such that the underlying modulus q is only polynomial in the security parameter.

Background on BLMR [BLMR13]. Recall that the BLMR PRF is defined with respect to two
public binary matrices A0,A1 ∈ {0, 1}n×n for a suitable choice of n = poly(λ). A PRF key is set to
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be a vector s ∈ Znq , and the PRF evaluation for an input x ∈ {0, 1}` is defined to be the rounded
matrix product

F (BLMR)(s, x) =
⌊
sᵀ
∏̀
i=1

Axi

⌉
p
.

We can reason about the security of the BLMR PRF by considering its “noisy” variant that is
defined as follows:

F (noise)(s, x):

1. Sample error vectors e1, . . . , e` ← χn,

2. Return the vector⌊((
(sᵀAx1 + eᵀ1) ·Ax2 + eᵀ2

)
· · ·
)
·Ax` + eᵀ`

⌉
p

=
⌊
sᵀ
∏̀
i=1

Axi +
`−1∑
i=1

eᵀi

`−1∏
j=i+1

Axj + eᵀ`︸ ︷︷ ︸
e∗

⌉
p
.

Since the error vectors e1, . . . , e` ← χn has small norm and the matrices A0,A1 ∈ {0, 1}n×n are
binary, the error term e∗ is also small. Therefore, if the modulus q is sufficiently big, then with
overwhelming probability, the error vector e∗ is “rounded away” and does not contribute to the final
output of the PRF. This shows that when the modulus q is big, the evaluations of the functions
F (s, ·) and F (noise)(s, ·) are statistically indistinguishable.

Now, it is easy to show that F (noise)(s, ·) is computationally indistinguishable from a truly
random function using the hardness of the LWEn,q,χ problem.4 We can first argue that the vector

sᵀ1A1,x1 + eᵀ1 is computationally indistinguishable from a uniformly random vector s2
r← Znq . This

implies that the vector sᵀ2A2,x2 + eᵀ2 is computationally indistinguishable from a random vector

s3
r← Znq . We can repeat the argument for ` steps to prove that the final output of the PRF is

computationally indistinguishable from a uniformly random output.

Chaining BLMR. For the security argument of the BLMR PRF to be valid, it is crucial that the
modulus q is large enough such that the error term e∗ rounds away with the modular rounding
operation. Specifically, the modulus q must be set to be greater than the maximum possible norm
of the error term ‖e∗‖ by a super-polynomial factor in the security parameter.

To prevent this blow-up in the size of q, we can chain multiple instances of the functions F (BLMR)

and F (noise) together. Consider the following chained PRF F (chain) : Zn×τq × {0, 1}` → Znp :

F (chain)
(
S = (s1, . . . , sτ ), x

)
:

1. Evaluate r2 ← F (BLMR)(s1, x).

2. For i = 2, . . . , τ − 1, compute:

- ri+1 ← F (noise)(si, x; ri).
4Technically, the reduction uses the hardness of the non-uniform variant of the LWE problem [BLMR13] where the
challenger samples the public vectors a1, . . . ,am uniformly at random from {0, 1}n as opposed to sampling them
from Znq . The work of [BLMR13] shows that this variant of the LWE problem is as hard as the traditional version of
LWE for suitable choices of parameters.
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3. Return F (noise)(sτ , x; rτ ).

In words, the chained PRF F (chain)(s, x) evaluates the “random coins” that are needed to evaluate
the randomized PRF F (noise)(si, x) from the previous execution of F (noise)(si−1, x). The initial
random coins are derived from the errorless BLMR PRF F (BLMR)(s1, x).

We can prove that the chained PRF F (chain) is secure using the same argument that was used
to show the hardness of the LWRE problem. Namely, we first argue that even if the modulus q is
greater than the maximum possible norm of the error term ‖e∗‖ only by a polynomial factor, for
any two random coins ri, r

′
i, we have F (noise)(si, x; ri) = F (noise)(si, x; r′i) with noticeable probability.

Therefore, if we set τ to be sufficiently big, then we can replace F (BLMR)(s1, ·) with the randomized
function F (noise)(s1, ·) without changing the output of the PRF. Now, we can use the fact that
F (noise)(s1, ·) is computationally indistinguishable from a truly random function to argue that the
function F (chain)(S, ·) is computationally indistinguishable from a truly random function.

The parameters for the chained PRF F (chain) provide a trade-off between the depth of the
evaluation circuit and the size of the modulus q (and therefore, the quality of the LWE assumption).
If we set τ = 1, then we recover the original BLMR PRF, which requires very large values of the
modulus q. As we increase τ , the modulus q can be set to be arbitrarily close to the maximum
possible value of the error vector ‖e∗‖ for F (noise)(s, x). For the Banerjee-Peikert PRF [BP14], the
maximum possible value of the error vector ‖e∗‖ can be made to be only polynomial in the security
parameter, thereby allowing us to set q to be a polynomial function of the security parameter.

Key-homomorphism. The BLMR PRF is key-homomorphic because the modular rounding
operation is an almost linear operation. Namely, for any input x ∈ {0, 1}` and any two keys
s, s̃ ∈ Znq , we have

F (BLMR)(s, x) + F (BLMR)(s̃, x) =
⌊
sᵀ
∏̀
i=1

Axi

⌉
p

+
⌊
s̃ᵀ
∏̀
i=1

Axi

⌉
p

≈
⌊
(s + s̃)ᵀ

∏̀
i=1

Axi

⌉
p

= F (BLMR)(s + s̃, x).

Due to this algebraic structure, the “noisy” variant of the BLMR PRF is also key-homomorphic.
Namely, for any input x ∈ {0, 1}`, any two keys s, s̃ ∈ Znq , and any random coins r, r̃, r′ that is used
to sample the noise, we have

F (noise)(s, x; r) + F (noise)(s̃, x; r̃) =
⌊
(s + s̃)ᵀ

∏̀
i=1

Axi + (e∗ + ẽ∗)
⌉
p

≈ F (noise)(s + s̃, x; r′),

Now, note that the final output of the chained PRF F (chain) on an input x ∈ {0, 1}` and a key
(s1, . . . , sτ ) ∈ Zn×τq with chaining parameter τ is simply the output of the noisy PRF F (noise)(sτ , x; rτ )

where rτ is the randomness that is derived from the previous execution of rτ ← F (noise)(sτ−1, x; rτ−1).
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Therefore, for any input x ∈ {0, 1}`, and two keys S, S̃ ∈ Zn×τq , we can show that

F (chain)(S, x) + F (chain)(S̃, x) = F (noise)(sτ , x; rτ ) + F (noise)(s̃τ , x; r̃τ )

≈ F (noise)(sτ + s̃τ , x)

≈ F (chain)(S + S̃, x)

Specifically, we can show that for a suitable choice of the modulus q, the resulting PRF is 2-almost
key-homomorphic in that for any input x ∈ {0, 1}` and two keys S, S̃ ∈ Zn×τq , there exists an error
vector η ∈ [0, 2]n such that

F (chain)(S, x) + F (chain)(S̃, x) = F (chain)(S + S̃, x) + η.

The exact argument to show that the chained BLMR PRF is 2-almost key-homomorphic can be
used to show that the chained BP PRF [BP14] is also 2-almost key-homomorphic. We provide the
formal details in Section 6.

3 Preliminaries

Basic notations. Unless specified otherwise, we use λ to denote the security parameter. We say a
function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say that a
function f(λ) is noticeable in λ if f(λ) = Ω(1/λc) for some c ∈ N. We say that an event happens
with overwhelming probability if its complement happens with negligible probability. We say that
an algorithm is efficient if it runs in probabilistic polynomial time in the length of its input. We use
poly(λ) to denote a quantity whose value is bounded by a fixed polynomial in λ.

For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D,

we write x← D to denote that x is sampled from D; for a finite set S, we write x
r← S to denote

that x is sampled uniformly from S. For a positive integer B, we say that a distribution D over Z
is B-bounded if Pr[x← D ∧ |x| > B] is negligible. Finally, we write Funs[X ,Y ] to denote the set of
all functions mapping from a domain X to a range Y.

Vectors and matrices. We use bold lowercase letters (e.g., v,w) to denote vectors and bold
uppercase letters (e.g., A,B) to denote matrices. Throughout this work, we always use the
infinity norm for vectors and matrices. Therefore, for a vector x, we write ‖x‖ to denote maxi |xi|.
Similarly, for a matrix A, we write ‖A‖ to denote maxi,j |Ai,j |. If x ∈ Zn and A ∈ Zn×m, then
‖xA‖ ≤ n · ‖x‖ · ‖A‖.

Modular rounding. For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. Here, the operation b·e is the
integer rounding operation over the real numbers. It can be readily checked that for any two values
x, y ∈ Zq, there exists some η ∈ {0, 1} such that bxep + byep = bx+ yep + η.

Bit-decomposition. Let n and q be positive integers. Then we define the “gadget matrix”

G = g ⊗ In ∈ Zn×n·dlog qe
q where g = (1, 2, 4, . . . , 2dlog qe−1). We define the inverse bit-decomposition

function G−1 : Zn×mq → Zndlog qe×m
q which expands each entry x ∈ Zq in the input matrix into a

column of size dlog qe that consists of the bits of the binary representation of x.

15



3.1 Learning with Errors

In this section, we define the Learning with Errors (LWE) problem [Reg09] and the Ring-LWE
(RLWE) problem [LPR10].

Learning with Errors. We define the LWE problem with respect to the real and ideal oracles.

Definition 3.1 (Learning with Errors). Let λ ∈ N be the security parameter. Then the learning
with errors (LWE) problem is parameterized by a dimension n = n(λ), modulus q = q(λ), and error

distribution χ = χ(λ). It is defined with respect to the real and ideal oracles O(lwe)
s and O(ideal) that

are defined as follows:

• O(lwe)
s : The real oracle is parameterized by a vector s ∈ Znq . On its invocation, the oracle

samples a random vector a
r← Znq , and an error term e← χ. It sets b = 〈a, s〉+ e, and returns

(a, b) ∈ Znq × Zq.

• O(ideal): On its invocation, the ideal oracle samples a random vector a
r← Znq , random element

u
r← Zq, and returns (a, u) ∈ Znq × Zq.

The LWEn,q,χ problem is to distinguish the oracles O(lwe)
s and O(ideal). More precisely, we define an

adversary A’s distinguishing advantage AdvLWE(n, q, χ,A) as the probability

AdvLWE(n, q, χ,A) =
∣∣Pr

[
AO

(lwe)
s (1λ) = 1

]
− Pr

[
AO(ideal)

(1λ) = 1
]∣∣,

where s
r← Znq . The LWEn,q,χ assumption state that for any efficient adversary A, its distinguishing

advantage is negligible AdvLWE(n, q, χ,A) = negl(λ).

Compactly, the LWEn,q,χ assumption states that for any m = poly(λ), s
r← Znq , A← Zn×mq , e← χm,

and u← Zmq , the noisy vector-matrix product (A, sᵀA + eᵀ) is computationally indistinguishable

from (A,uᵀ). It follows from a standard hybrid argument that for any m, ` = poly(λ), S
r← Z`×nq ,

A
r← Zn×mq , E← χ`×m, and U

r← Z`×mq , the noisy matrix product (A,S ·A+E) is computationally
indistinguishable from (A,U) by the LWEn,q,χ assumption.

Let n = poly(λ) and χ be a B-bounded discrete Gaussian distribution. Then the LWEn,q,χ
assumption is true assuming that various worst-case lattice problems such as GapSVP and SIVP
on n-dimensional lattices are hard to approximate to within a factor of Õ(n · q/B) by a quantum
algorithm [Reg09]. Similar reductions of LWEn,q,χ to the classical hardness of approximating
worst-case lattice problems are also known [Pei09, ACPS09, MM11, MP12, BLP+13].

Ring LWE. For simplicity of exposition, we use a special case of the ring-LWE problem throughout
this work. However, all of our definitions and results on ring-LWE and ring-LWRE (Section 5) can
be extended to the more general form as defined in [LPR10, PRSD17].5 Throughout the paper, we
always let R denote the cyclotomic polynomial ring R = Z[X]/(Xn + 1) for a power-of-two integer
n. For any integer modulus q, we let Rq denote the quotient ring Rq = R/qR ∼= Zq[X]/(Xn + 1).
A ring element of R is a polynomial in X and therefore, can be represented as a vector of the

5The main techniques that we use in this work are independent of the underlying ring of the Learning with Errors
problem and therefore, they can be applied to other “algebraically structured” LWE variants that exist in the
literature [SSTX09, BGV14, LS15, RSW18, BBPS18, RSSS17].
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integer coefficients of the polynomial. Similarly, a ring element in Rq can be represented as a vector
of coefficients in Zq. For any element b ∈ R, we define its norm ‖b‖ as the norm of its vector
representation. For p < q and any b ∈ Rq, we let bbep ∈ Rp to denote the modular rounding of each
coefficient of b as a polynomial in X.

Definition 3.2 (Ring-LWE). Let λ ∈ N be the security parameter. Then the ring learning with
errors (RLWE) problem is parameterized by a power-of-two integer n = n(λ), any modulus q = q(λ),
and an error distribution χ = χ(λ) over the cyclotomic ring R = Z[X]/(Xn + 1). It is defined with

respect to the real and ideal oracles O(rlwe)
s and O(ideal) that are defined as follows:

• O(rlwe)
s : The real oracle is parameterized by a ring element s ∈ Rq. On its invocation, the

oracle samples a random vector a
r← Rq, and an error term e← χ. It sets b = a · s+ e, and

returns (a, b) ∈ Rq ×Rq.

• O(ideal): On its invocation, the ideal oracle samples random elements a, b
r← Rq, and returns

(a, b) ∈ Rq ×Rq.

The RLWEn,q,χ problem is to distinguish the oracles O(rlwe)
s and O(ideal). More precisely, we define

an adversary A’s distinguishing advantage AdvRLWE(n, q, χ,A) as the probability

AdvRLWE(n, q, χ,A) =
∣∣Pr

[
AO

(rlwe)
s (1λ) = 1

]
− Pr

[
AO(ideal)

(1λ) = 1
]∣∣,

where s
r← Rq. The RLWEn,q,χ assumption states that for any efficient adversary A, its distinguishing

advantage is negligible AdvRLWE(n, q, χ,A) = negl(λ).

Let n = poly(λ) and χ be a B-bounded discrete Gaussian distribution over R. Then the LWEn,q,χ
assumption is true assuming that certain worst-case lattice problems such as SVP on n-dimensional
ideal lattices are hard to approximate to within poly(n) · q/B by a quantum algorithm [LPR10,
LPR13, LS15].

3.2 Elementary Number Theory

In this section, we state and prove an elementary fact in number theory that we use for our technical
sections. Specifically, we analyze the distribution of the inner product of two uniformly random
vectors 〈a, s〉 where a, s

r← Znq for some positive integers n and q. When n is sufficiently big, then
with overwhelming probability, one of the components of a (or s) will be a multiplicative unit in
Zq and therefore, the inner product 〈a, s〉 will be uniform in Zq. We formally state and prove this
elementary fact in the lemma below. We first recall a general fact of the Euler totient function.

Fact 3.3 ([Lan00]). Let ϕ : Z→ Z be the Euler totient function. Then, there exists a constant c
such that for any q > 264, we have q/ϕ(q) = c · log log q.

The following lemma follows immediately from Fact 3.3.

Lemma 3.4. Let n = n(λ) and q = q(λ) be positive integers such that n = Ω(λ log log q). Then,
for any element d ∈ Zq, we have

Pr[ 〈a, s〉 = d ] ≤ 1/q + 2−λ,

for a, s
r← Znq .
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Proof. If the vector a ∈ Znq has at least one component that is a multiplicative unit in Zq, then since
s is sampled uniformly at random from Znq , we have 〈a, s〉 = d with probability 1/q. By Fact 3.3,
the probability that all components of a is not a unit in Zq is bounded by the probability(

1− 1

c · log log q

)n
for some constant c. Setting λ = Ω(n/ log log q), this probability is bounded by e−λ < 2−λ. The
lemma follows.

3.3 Pseudorandom Functions and Key-Homomorphic PRFs

In this section, we formally define pseudorandom functions [GGM86] and key-homomorphic
PRFs [BLMR13].

Definition 3.5 (Pseudorandom Functions [GGM86]). A pseudorandom function for a key space K,
domain X , and range Y is an efficiently computable deterministic function F : K × X → Y such
that for any efficient adversary A, we have∣∣Pr

[
k

r← K : AF (k,·)(1λ) = 1
]
− Pr

[
f

r← Funs[X ,Y] : Af(·)(1λ) = 1
]∣∣ = negl(λ),

We generally refer to the experiment where the adversary A is given oracle access to the real PRF
F (k, ·) as the real PRF experiment. Analogously, we refer to the experiment where the adversary A
is given oracle access to a truly random function f(·) as the ideal PRF experiment.

Key-homomorphic PRFs are special family of pseudorandom function that satisfy an additional
algebraic property. Specifically, for a key-homomorphic PRF, the key space K and the range Y
of the PRF exhibit certain group structures such that its evaluation on any fixed input x ∈ X is
homomorphic with respect to these group structures. Formally, we define a key-homomorphic PRF
as follows.

Definition 3.6 (Key-Homomorphic PRFs [NPR99, BLMR13]). Let (K,⊕), (Y,⊗) be groups. Then,
an efficiently computable deterministic function F : K ×X → Y is a key-homomorphic PRF if

• F is a secure PRF (Definition 3.5).
• For every key k1, k2 ∈ K and every x ∈ X , we have F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x).

In this work, we will work with a slight relaxation of the notion of key-homomorphic PRFs. Namely,
instead of requiring that the PRF outputs are perfectly homomorphic with respect to the PRF
keys, we require that they are “almost” homomorphic in that F (k1, x)⊗ F (k2, x) ≈ F (k1 ⊕ k2, x).
Precisely, we define an almost key-homomorphic PRF as follows.

Definition 3.7 (Almost Key-Homomorphic PRFs [BLMR13]). Let (K,⊕), (Y,⊗) be groups and let
m and p be positive integers. Then, an efficiently computable deterministic function F : K×X → Zmp
is a γ-almost key-homomorphic PRF if

• F is a secure PRF (Definition 3.5).
• For every key k1, k2 ∈ K and every x ∈ X , there exists a vector e ∈ [0, γ]m such that

F (k1, x) + F (k2, x) = F (k1 ⊕ k2, x) + e (mod p).

Naor et al. [NPR99] and Boneh et al. [BLMR13] gave a number of applications of (almost) key-
homomorphic PRFs including distributed PRFs, symmetric-key proxy re-encryption, updatable
encryption, and PRFs secure against related-key attacks.
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4 Learning with Rounding and Errors

In this section, we present our new lattice-based synthesizer construction. We first define the
Learning with Rounding and Errors (LWRE) problem in Section 4.1. We then show how to use the
LWRE problem to construct a synthesizer in Section 4.2 and discuss its parameters in Section 4.3.
We show that the LWRE problem is as hard as the standard LWE problem for suitable choices of
parameters in Section A.

4.1 Learning with Rounding and Errors

Definition 4.1 (Learning with Rounding and Errors). Let λ ∈ N be the security parameter. The
learning with rounding and errors (LWRE) problem is defined with respect to the parameters

• LWE parameters (n, q, χ),
• Rounding modulus p ∈ N such that p < q,
• Chaining parameter τ ∈ N,

that are defined as functions of λ. Additionally, let Dχ : {0, 1}blog pc → Z be a sampling algorithm

for the error distribution χ. Then, we define the LWREn,q,p,χ,τ real and ideal oracles O(lwre)
τ,S and

O(ideal) as follows:

• O(lwre)
τ,S : The real oracle is defined with respect to a chaining parameter τ ∈ N, and a secret

matrix S = (s1, . . . , sτ ) ∈ Zn×τq . On its invocation, the real oracle samples a vector a
r← Znq

and initializes e1 = 0. Then, for 1 ≤ i < τ , it iteratively computes:

1. ri ← b〈a, si〉+ eiep.
2. ei+1 ← Dχ(ri).

It then sets b = b〈a, sτ 〉+ eτep, and returns (a, b) ∈ Znq × Zp.

• O(ideal): On its invocation, the ideal oracle samples a random vector a
r← Znq , a random element

u
r← Zp, and returns (a, u) ∈ Znq × Zp.

The LWREn,q,p,χ,τ problem is to distinguish the oracles O(lwre)
S and O(ideal) for S

r← Zn×τq . More
precisely, we define an adversary A’s distinguishing advantage AdvLWRE(n, q, p, χ, τ,A) as the
probability

AdvLWRE(n, q, p, χ, τ,A) =
∣∣Pr

[
AO

(lwre)
τ,S (1λ) = 1

]
− Pr

[
AO(ideal)

(1λ) = 1
]∣∣,

for S
r← Zn×τq .

It is easy to see that when τ = 1, the LWREn,q,p,χ,τ problem is identical to the standard Learning
with Rounding problem [BPR12]. Hence, the reduction in [BPR12] immediately shows that for
τ = 1, if the modulus q is sufficiently large such that q = 2Bpnω(1), then the LWREn,q,p,χ,τ problem
is as hard as the LWEn,q,χ problem. We show that when τ is set to be larger, then the modulus q
can be set to be significantly smaller.
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Theorem 4.2. Let λ be the security parameter and n, q, p, χ, τ be a set of parameters for the
LWREn,q,p,χ,τ problem such that p divides q. Then, for any efficient adversary A making at most Q
number of oracle calls, we have

AdvLWRE(n, q, p, χ, τ,A) ≤ Q
(
2Bp/q + 1/2λ

)τ
+ τ · AdvLWE(n, q, χ,A).

In particular, if Q(2Bp/q + 1/2λ)τ = negl(λ), then the LWREn,q,p,χ,τ problem is as hard as the
LWEn,q,χ problem.

We provide the proof of the theorem in Section A. We provide the high-level ideas of the proof in
Section 2.

Remark 4.3. The LWREn,q,p,χ,τ problem is well-defined only when there exists a concrete sampler
Dχ : {0, 1}blog pc → Z, which uses at most blog pc random bits to sample from χ. For the discrete
Gaussian distribution (over Z) with Gaussian parameter σ >

√
n, there exist Gaussian samplers

(i.e., [GPV08]) that require O(log λ) random bits. Therefore, one can always set p = poly(λ) to be
big enough such that LWREn,q,p,χ,τ is well defined for the discrete Gaussian distribution.

To set p to be even smaller, one can alternatively use a pseudorandom generator (PRG) to
stretch the random coins that are needed by the sampler. A single element in Zp for p = poly(λ) is

not large enough to serve as a seed for a PRG. However, one can modify the oracle O(lwre)
τ,S such

that it samples multiples vectors a1, . . . ,a`
r← Znq for some ` = poly(λ) and then derives a vector

of elements ri = (ri,1, . . . , ri,`) ∈ Z`p that can serve as a seed for any (lattice-based) pseudorandom
generator.

Remark 4.4. We note that in Theorem 4.2, we impose the requirement that p perfectly divides
q. This requirement is needed purely to guarantee that the rounding brep of a uniformly random

element r
r← Zq results in a uniformly random element in Zp. However, even when q is not perfectly

divisible by p (i.e. q is prime), the rounding brep of r
r← Zq still results in a highly unpredictable

element in Zp. Therefore, by modifying the oracle O(lwre)
τ,S such that it applies a randomness extractor

after each of the modular rounding operation, one can remove the requirement on the structure of q
with respect to p.

4.2 Pseudorandom Synthesizers from LWRE

In this section, we construct our new pseudorandom synthesizer from the hardness of the LWREn,q,p,χ,τ
problem. A pseudorandom synthesizer over a domain D is a function S : D × D → D satisfying
a specific pseudorandomness property as formulated below. We first recall the formal definition
as presented in [NR99]. As observed in [BPR12], one can also relax the traditional definition of a
pseudorandom synthesizer by allowing the synthesizer function S : D1 ×D1 → D2 to have differing
domain D1 and range D2. A synthesizer satisfying this relaxed definition still induces a PRF as
long as the function can be applied iteratively. For this work, we restrict to the original definition
for a simpler presentation.

Definition 4.5 (Pseudorandom Synthesizer [NR99]). Let D be a finite set. An efficiently computable
function S : D ×D → D is a secure pseudorandom synthesizer if for any polynomial ` = `(λ), the
following distributions are computational indistinguishable

{S(ai, bj)}i,j∈[`] ≈c {ui,j}i,j∈[`],
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where (a1, . . . , a`)
r← D`, (b1, . . . , b`)

r← D`, and (ui,j)i,j∈[`] ← D`×`.

Naor and Reingold [NR99] showed that a secure pseudorandom synthesizer induces a secure
pseudorandom function. Furthermore, if the synthesizer can be computed by a low-depth circuit,
then the final PRF can also be evaluated by a low-depth circuit. We formally state their result in
the following theorem.

Theorem 4.6 ([NR99, BPR12]). Suppose that there exists a pseudorandom synthesizer S : D×D →
D over a finite set D that is computable by a circuit of size s and depth d. Then, for any ` = poly(λ),
there exists a pseudorandom function F : D2`×{0, 1}` → D with key space D2`, domain {0, 1}`, and
range D that is computable by a circuit of size O(s`) and depth O(d log `).

As was shown in [BPR12], the hardness of the Learning with Rounding (LWR) problem (Definition 4.1
for τ = 1) naturally induces a secure pseudorandom synthesizer S : Zn×nq → Zn×nq → Zn×np that
can be compactly defined as S(S,A) = bS ·Aep.6 One can naturally extend this construction to
LWREn,q,p,χ,τ for τ > 1. Unfortunately, as the LWREn,q,p,χ,τ requires the chaining of many samples,
the synthesizer does not exhibit a compact description like the LWR synthesizer. We describe the
LWRE synthesizer in two steps. We first define an LWRE function, which satisfies the security
requirement of a pseudorandom synthesizer, but does not satisfy the strict restriction on the domain
and range of a synthesizer. Then, we show how to modify the LWRE function to achieve a synthesizer
that satisfies Definition 4.5.

Definition 4.7 (LWRE Function). Let λ be the security parameter and let n, q, p, χ, τ be a set
of LWRE parameters. Then, we define the LWREn,q,p,χ,τ function Gn,q,p,χ,τ : Znq × Zn×τq → Zp as
follows:

• Gn,q,p,χ,τ (a,S): On input a ∈ Znq and S = (s1, . . . , sτ ) ∈ Zn×τq , the LWRE function sets e1 = 0
and computes for 1 ≤ i < τ :

1. ri ← b〈a, si〉+ eiep,
2. ei+1 ← D(ri).

It then sets b = b〈a, sτ 〉+ eτep and returns b ∈ Zp.

For any ` = poly(λ), we can use a standard hybrid argument to show that for a1, . . . ,a`
r← Znq and

S1, . . . ,S`
r← Zn×τq , the set of elements {Gn,q,p,χ,τ (ai,Sj)}i,j∈[`] are computationally indistinguishable

from `2 uniformly random elements in Zp. It readily follows that for any `1, `2 = poly(λ), the function

S : Zn×`1q × (Zn×τq )`2 → Z`1×`2p that takes in as input A = (a1, . . . ,a`1)
r← Zn×`1q , (S1, . . . ,S`2)

r←
(Zn×τq )`2 , and returns the pairwise application of the LWRE function{

Gn,q,p,χ,τ (ai,Sj)
}
i∈[`1],j∈[`2]

satisfies the security requirements for a synthesizer. Therefore, as long as `1 and `2 are set such
that the cardinality of the sets Zn×`1q , (Zn×τq )`2 , and Z`1×`2p have the same cardinality, the function

S : Zn×`1q × (Zn×τq )`2 → Z`1×`2p satisfies Definition 4.5. We can naturally set the parameters `1 and
`2 as

`1 = nτ

⌈
log q

log p

⌉
, `2 = n

⌈
log q

log p

⌉
.

6The LWR synthesizer satisfies the more general definition of a pseudorandom synthesizer where the domain and
range of the synthesizer can differ.
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Formally, we define our LWRE synthesizer as follows.

Construction 4.8 (LWRE Synthesizer). Let λ be the security parameter, let n, q, p, χ, τ be a set of
LWRE parameters, and let ` = nτdlog q/ log pe. We define the LWRE synthesizer S : Zn×`q ×Zn×`q →
Zn×`q as follows:

• S(A,S): On input A,S ∈ Zn×`q , the synthesizer parses the matrices

– A = (a1, . . . ,a`1) where ai ∈ Znq and `1 = nτdlog q/ log pe,
– S = (S1, . . . ,S`2) where Sj ∈ Zn×τq and `2 = ndlog q/ log pe.

Then, the synthesizer computes the LWREn,q,p,χ,τ function bi,j ← Gn,q,p,χ,τ (ai,Sj) for all i ∈ [`1]
and j ∈ [`2]. It translates the bits of {bi,j}j∈[`1],i∈[`2] ∈ Z`1×`2p as the representation of a matrix

B ∈ Zn×`q . It returns B.

We now state the formal security statement for the LWRE synthesizer in Construction 4.8. The
proof follows immediately from Definitions 4.1, 4.7, and Theorem 4.2.

Theorem 4.9 (Security). Let λ be the security parameter and let n, q, p, χ, τ be a set of LWRE
parameters. Then, assuming that the LWREn,q,p,χ,τ problem is hard, the LWRE synthesizer in
Construction 4.8 is a secure pseudorandom synthesizer (Definition 4.5).

By combining Theorems 4.2, 4.6, and 4.9, we get the following corollary.

Corollary 4.10. Let λ be a security parameter and n = poly(λ) be a positive integer. Then, there
exists a pseudorandom function F : K × {0, 1}poly(λ) → Y that can be computed by a circuit in NC3,
and whose security can be reduced from the worst-case hardness of approximating GapSVP and SIVP
to a polynomial approximation factor on n-dimensional lattices.

We additionally dicuss the parameter choices for our PRF in Section 4.3.

4.3 Parameter Instantiations

In this section, we discuss the various ways of instantiating the parameters for the LWRE synthesizer
from Construction 4.8. As discussed in Section 1.2, we consider two parameter settings that provide
different level of security against an adversary. For theoretical security, we require that an efficient
adversary’s distinguishing advantage of the LWRE synthesizer to degrade super-polynomially in λ.
For 2λ-security, we require that an efficient adversary’s advantage degrades exponentially in λ. By
Theorem 4.2, the main factor that we consider in determining the security of the synthesizer is the
term (2Bp/q + 1/2λ)τ .

Theoretical security. For theoretical security, we must let (2Bp/q + 1/2λ)τ = negl(λ). In one
extreme, we can set τ = 1 and q to be greater than 2Bp by a super-polynomial factor in λ, which
reproduces the result of [BPR12].7 As both vector-matrix multiplication and the rounding operation
can be implemented in NC1, the resulting PRF can be implemented in NC2 for input space {0, 1}`
where ` = poly(λ).

If we set τ = ω(1), then we can set q to be any function that is greater than 2Bp by a polynomial
factor in λ. In this case, when considering the depth of the evaluation circuit, we must take into

7We note that the term 1/2λ is needed for Lemma 3.4. If q is set to be prime, then this factor can be ignored.
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account the depth of the sampling algorithm Dχ for the error distribution χ. To base security
on approximating worst-case lattice problems such as GapSVP or SIVP, we must set χ to be the
discrete Gaussian distribution over Z with Gaussian parameter σ >

√
n. In this case, we can either

use the rejection sampling algorithm of [GPV08] or pre-compute the samples for each possible seed
for the sampler and use a look-up table. In both cases, we can guarantee that a random element in
Zp provides enough entropy to the Gaussian sampler by setting p = ω(λ2).

Since the Gaussian function can be computed by an arithmetic circuit with depth O(log p), the
rejection sampling algorithm can be implemented by a circuit of depth ω(log λ · log log λ). Therefore,
the synthesizer can be evaluated by a circuit in NC2+ε for any constant ε > 0 and the final PRF
can be evaluated by a circuit in NC3+ε for input space {0, 1}` where ` = poly(λ). When using a
look-up table, the synthesizer can be evaluated by a circuit in NC1+ε for any constant ε > 0, and
the final PRF can be evaluated in NC2+ε.

2λ-security. For 2λ-security, we must let (2Bp/q)τ = 1/2Ω(λ) or equivalently, τ · log q = Ω̃(λ)
for q prime. This provides a trade-off between the size of q and the chaining parameter τ , which
dictates the depth needed to evaluate the PRF. In one extreme, we can set τ = 1 and require the
modulus to be greater than 2Bp by an exponential factor in λ. In the other extreme, we can let
τ be linear in λ and decrease the modulus to be only a constant factor greater than 2Bp. For
practical implementations, a natural choice of parameters would be to set both τ and log q to be
Ω(
√
λ). For practical implementations, one can derive the secret keys from a single λ-bit seed using

a pseudorandom generator.

Concrete instantiations The concrete parameters for our PRF can be instantiated quite flexibly
depending on the applications. The modulus p can first be set to determine the output of the PRF.
For instance, as the range of the PRF is Zp, the modulus p can be set to be 28 or 216 such that
the output of the PRF is byte-aligned. Then the PRF can be run multiple times (in parallel) to
produce a 128-bit output.

Once p is set, the modulus q and τ can be set such that τ · log q ≈ λ · log p. For instance, to
provide 2λ-bit security, one can reasonable set q to be a 20-bit prime number and τ = 12. Finally,
after q is set, the LWE parameter n and noise distribution χ can be set such that the resulting
LWE problem provides λ-bit level of security. Following the analysis in [APS15], we can set n to be
around 600 (classical security) or 800 (quantum security), and χ to be either a uniform distribution
over [−24, 24] or an analogous Gaussian distribution with similar bits of entropy.

5 The Ring Setting

In this section, we extend the results from Section 4 to the ring setting. We first define the
Ring-LWRE problem (RLWRE) problem, which is defined analogously to the standard LWRE
problem over the ring Rq (Section 3.1).

Definition 5.1 (Ring-LWRE). Let λ ∈ N be the security parameter. The ring learning with
rounding and errors (RLWRE) problem is defined with respect to the parameters

• RLWE parameters (n, q, χ),
• Rounding modulus p ∈ N such that p < q,
• Chaining parameter τ ∈ N,
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that are defined as functions of λ. Additionally, let Dχ : {0, 1}bn log pc → R be a sampling algorithm

for the error distribution χ. Then, we define the RLWREn,q,p,χ,τ real and ideal oracles O(rlwre)
τ,s and

O(ideal) as follows:

• O(rlwre)
τ,s : The real oracle is defined with respect to a chaining parameter τ ∈ N, and a secret

vector of ring elements s = (s1, . . . , sτ ) ∈ Rτq . On its invocation, the real oracle samples a ring

element a
r← Rq, and initializes e1 = 0 ∈ R. Then, for 1 ≤ i < τ , it iteratively computes:

1. ri ← ba · si + eiep.
2. ei+1 ← D(ri).

It then sets b = ba · sτ + eτep, and returns (a, b) ∈ Rq ×Rq.

• O(ideal): On its invocation, the ideal oracle samples a pair of random ring elements a, b
r← Rq,

and returns (a, b) ∈ Rq ×Rq.

The RLWREn,q,p,χ,τ problem is to distinguish the oracles O(rlwre)
τ,s for s

r← Rτq . More precisely, we
way that an adversary A solves the RLWREn,q,p,χ,τ problem if there exists a noticeable function µ(·)
such that for s

r← Rτq , we have∣∣Pr
[
AO

(rlwre)
τ,s (1λ) = 1

]
− Pr

[
AO(ideal)

(1λ) = 1
]∣∣ ≥ µ(λ).

As in the case of the standard LWREn,q,p,χ,τ problem, the RLWREn,q,p,χ,τ problem for τ = 1 is
equivalent to the standard Ring Learning with Rounding problem [BPR12]. For τ > 1, we can
show that the hardness of RLWREn,q,p,χ,τ is implied by the hardness of RLWEn,q,p,χ by extending
Theorem 4.2 to the ring setting.

Theorem 5.2. Let λ be the security parameter and n, q, p, χ, τ be a set of parameters for the
RLWREn,q,p,χ,τ problem such that (2Bp/q+1/2λ)τ = negl(λ) and p divides q. Then, the RLWREn,q,p,χ,τ
problem is as hard as the RLWEn,q,χ problem.

Theorem 5.2 follows by exactly the same argument used to prove the hardness of the standard
LWREn,q,p,χ,τ problem (Section A).

Using the same ideas in Section 4.2, we can construct a pseudorandom synthesizer from the
RLWREn,q,p,χ,τ problem. Specifically, we can naturally extend Definition 4.7 and Construction 4.8
to the ring setting as follows.

Definition 5.3 (RLWRE Function). Let λ be the security parameter and let n, q, p, χ, τ be a set

of RLWRE parameters. Then, we define the RLWREn,q,p,χ,τ function G(rlwre)
n,q,p,χ,τ : Rq × Rτq → Rp as

follows:

• G(rlwre)
n,q,p,χ,τ (a, s): On input a ∈ Rq and s = (s1, . . . , sτ ) ∈ Rτq , the RLWRE function sets
e1 = 0 ∈ R, and computes for 1 ≤ i < τ :

1. ri ← ba · si + eiep.
2. ei+1 ← D(ri).

It sets b = ba · sτ + eτep and returns b ∈ Rp.
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Construction 5.4 (RLWRE Synthesizer). Let λ be the security parameter, let n, q, p, χ, τ be a set of
LWRE parameters, and let ` = τdlog q/ log pe. We define the RLWRE synthesizer S : R`q×R`q → R`q
as follows:

• S(a, s): On input a, s ∈ R`q, the synthesizer parses the vectors

– a = (a1, . . . , a`1) where ai ∈ Rq and `1 = τdlog q/ log pe.
– s = (s1, . . . , s`2) where sj ∈ Rτq and `2 = dlog q/ log pe.

Then, the synthesizer computes the RLWREn,q,p,χ,τ function bi,j ← G(rlwre)
n,q,p,χ,τ (ai, sj) for all

i ∈ [`1] and j ∈ [`2]. It translates the bits of {bi,j} ∈ R`1×`2p as the representation of a vector

b ∈ R`p. It returns the vector b.

We can state the security of Construction 5.4 analogously to Theorem 4.9.

Theorem 5.5. Let λ be the security parameter and let n, q, p, χ, τ be a set of RLWRE parameters.
Then, assuming that the RLWREn,q,p,χ,τ problem is hard, the LWRE synthesizer in Construction 5.4
is a secure pseudorandom synthesizer (Definition 4.5).

Corollary 5.6. Let λ be a security parameter and n = poly(λ) be a positive integer. Then, there
exists a pseudorandom function F : K × {0, 1}poly(λ) → Y that can be computed by a circuit in
NC3 and whose security can be reduced (via a quantum reduction) from the worst-case hardness of
approximating SVP to a polynomial approximation factor on n-dimensional ideal lattices.

6 Key-Homomorphic PRFs

In this section, we show how to use the chaining method to construct key-homomorphic PRFs
directly from the Learning with Errors assumption with a polynomial modulus q. Our construction
is the modification of the Banerjee-Peikert (BP) PRF of [BP14], which generalizes the algebraic
structure of previous LWE-based PRFs [BPR12, BLMR13].

To be precise, the BP PRF is not a single PRF family, but rather multiple PRF families that are
each defined with respect to a full binary tree. The LWE parameters that govern the security of a
BP PRF are determined by the structure of the corresponding binary tree. In order to construct a
key-homomorphic PRF that relies on the hardness of LWE with a polynomial modulus q, we must
use the BP PRF that is defined with respect to the “right-spine” tree. However, as our modification
works over any BP PRF family, we present our construction with respect to any general BP PRF.
For general BP PRFs, our modification is not enough to bring the size of the modulus q to be
polynomial in λ, but it still reduces its size by superpolynomial factors.

We provide our main construction in Section 6.1 and discuss its parameters in Section 6.2. We
provide the proof of security in Section B and proof of key-homomorphism in Section B.2

6.1 Construction

The BP PRF construction is defined with respect to full (but not necessarily complete) binary trees.
Formally, a full binary tree T is a binary tree for which every non-leaf node has two children. The
shape of the full binary tree T that is used to define the PRF determines various trade-offs in
the parameters and evaluation depth. As we only consider full binary trees in this work, we will
implicitly refer to any tree T as a full binary tree.
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Throughout the construction description and analysis, we let |T | denote the number of its leaves.
For any tree with |T | ≥ 1, we let T.` and T.r denote the left and the right subtrees of T respectively
(which may be empty trees). Finally, for a full binary tree T , we define its expansion factor e(T )
recursively as follows:

e(T ) =

{
0 if |T | = 1
max{e(T.`) + 1, e(T.r)} otherwise.

This is simply the “left-depth” of the tree, i.e., the maximum length of a root-to-leaf path, counting
edges from parents to their left children.

With these notations, we define our PRF construction in a sequence of steps. We first define an
input-to-matrix mapping AT : {0, 1}|T | → Zn×mq as follows.

Definition 6.1. Let n, q, χ be a set of LWE parameters, let p < q be a rounding modulus, and
let m = ndlog qe. Then, for a full binary tree T , and matrices A0,A1 ∈ Zn×mq , define the function

AT : {0, 1}|T | → Zn×mq recursively:

AT (x) =

{
Ax if |T | = 1
AT.`(x`) ·G−1(AT.r(xr)) otherwise,

,

where x = x`‖xr for |x`| = |T.`|, |xr| = |T.r|.

Then, for a binary tree T , and a PRF key s ∈ Znq , the BP PRF F (BP) : {0, 1}|T | → Zmp is defined

as F
(BP)
s (x) = bsTAT (x)ep. To define our new PRF, we must first define its “noisy” variant

Gs,E,T : {0, 1}|T | → Zmp as follows.

Definition 6.2. Let n, q, χ be a set of LWE parameters, let p < q be a rounding modulus, and let
m = ndlog qe. Then, for a full binary tree T , public matrices A0,A1 ∈ Zn×mq , error matrix E =

(e1, . . . , ee(T )) ∈ Zm×e(T ), and a secret vector s ∈ Znq , we define the function Gs,E,T : {0, 1}|T | → Zmp :

Gs,E,T (x) =

{
sTAT (x) + eT1 if |T | = 1
Gs,E,T.`(x`) ·G−1

(
AT.r(xr)

)
+ ee(T ) otherwise,

where x = x`‖xr for |x`| = |T.`|, |xr| = |T.r|.

We note that when the error matrix E is set to be an all-zero matrix E = 0 ∈ Zm×e(T ), then the
function bGs,0,T (·)ep is precisely the BP PRF.

We define our new PRF to be the iterative chaining of the function Gs,E,T . Specifically, our PRF
is defined with respect to τ secret vectors s1, . . . , sτ ∈ Znq where τ ∈ N is the chaining parameter.

On input x ∈ {0, 1}|T |, the PRF evaluation function computes r1 ← bGs1,0,T (x)ep and uses r1 ∈ Zmp
as a seed to derive the noise term E2 for the next iteration r2 ← bGs2,E2,T (x)ep. The evaluation
function repeats this procedure for τ − 1 iterations and returns rτ ← bGsτ−1,Eτ−1,T (x)ep as the final
PRF evaluation.

Construction 6.3. Let n,m, q, and χ be LWE parameters and p < q be an additional rounding
modulus. Then, our PRF construction is defined with respect to a full binary tree T , two public
matrices A0,A1 ∈ Zn×mq , a secret matrix S ∈ Zm×τq , and a sampler Dχ : {0, 1}mblog pc → Zm×e(T )

for the noise distribution χ. We define our PRF FS : {0, 1}|T | → Zmq as follows:
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• FS(x): On input x ∈ {0, 1}|T |, the evaluation algorithm sets E1 = 0 ∈ Zm×e(T )
q . Then, for

i = 1, . . . , τ − 1, it iteratively computes

1. ri ← bGsi,Ei,T (x)ep.
2. Ei+1 ← Dχ(ri).

It sets y← bGsτ ,Eτ ,T (x)ep, and returns y ∈ Zmp .

For the PRF to be well-defined, we must make sure that a seed ri ← bGsi,Ei,T (x)ep ∈ Zmp for

i ∈ [τ − 1] provides enough entropy to derive the noise terms Ei+1 ← χm×e(T ). As in the case of
LWRE (Remark 4.3), there are two main ways of ensuring this condition. One method is to set the
rounding modulus p to be big enough such that there exists a sampler Dχ : {0, 1}mblog pc → Zm×e(T )

for the noise distribution χm×e(T ). Alternatively, one can expand the seed ri ∈ Zmp using a

pseudorandom generator to derive sufficiently many bits to sample from χm×e(T ). Since the issue
of deriving the noise terms Ei+1 from the seeds ri is mostly orthogonal to the central ideas of our
PRF construction, we assume that the rounding modulus p is set to be big enough such that the
noise terms Ei+1 can be derived from the bits of ri.

We now state the main security theorem for the PRF in Construction 6.3.

Theorem 6.4. Let T be any full binary tree, λ the security parameter, n,m, q, p, τ positive integers
and χ a B-bounded distribution such that m = ndlog qe > 2, (2Rmp/q)τ−1 = negl(λ) for R =
|T |Bme(T ) and p divides q. Then, assuming that the LWEn,q,χ problem is hard, the PRF in
Construction 6.3 is a 2-almost key-homomorphic PRF (Definition 3.6).

We provide the proof of Theorem 6.4 in Section B. Except for the components on chaining, the proof
inherits many of the arguments that are already used in [BP14]. For the main intuition behind the
proof, we refer the readers to Section 2.3.

6.2 Instantiating the Parameters.

As in the original Banerjee-Peikert PRF [BP14], the size of the modulus q and the depth of the
evaluation circuit is determined by the structure of the full binary tree T . The size of the modulus q
is determined by the expansion factor e(T ) or equivalently, the length of the maximum root-to-leaf
path to the left children of T . Namely, to satisfy Theorem 6.4, we require q to be large enough such
that (2Rmp/q)τ−1 = negl(λ) for R = |T |Bme(T ).

The depth of the evaluation circuit is determined by the sequentiality factor s(T ) of the tree,
which is formally defined by the recurrence

s(T ) =

{
0 if |T | = 1
max{s(T.`), s(T.r) + 1} otherwise.

Combinatorially, s(T ) denotes the length of the maximum root-to-leaf path to the right children
of T . For a tree T , our PRF can be evaluated by depth τ · s(T ) log |T |.

When we restrict the chaining parameter to be τ = 1, then we recover the parameters of the
Banerjee-Peikert PRF where the modulus q is required to be q = Rmpλω(1). However, setting τ to
be a super-constant function ω(1), we can set q = 2Rmp · λc for any constant c > 0, which reduces
the size of the modulus q by a super-polynomial factor. To guarantee that an adversary’s advantage
in breaking the PRF degrades exponentially in λ, we can set τ to be linear in λ.
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To set q to be polynomial in the security parameter, we can instantiate the construction with
respect to the “right-spine” binary tree where the left child of any node in the tree is a leaf node.
In this tree T , the sequentiality factor becomes linear in the size of the tree s(T ) = |T |, but the
expansion factor becomes a constant e(T ) = 1. Therefore, when τ = ω(1) (or linear in λ for
2λ-security), the modulus q can be set to be q = 2mpλc for any constant c > 0. The concrete
parameters for our PRF can be set similarly to our synthesizer construction (see Section 4.3).
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Classical hardness of learning with errors. In STOC, 2013.

[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade. In CCS,
2010.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudoran-
dom functions. In CRYPTO, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, 2012.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private
constrained prfs (and more) from lwe. In TCC, 2017.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In FOCS, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In CRYPTO, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In
ITCS, 2014.

29

https://eprint.iacr.org/2019/1457


[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
TCC, 2015.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for NC1 from LWE. In
EUROCRYPT, 2017.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In EUROCRYPT, 2010.
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A Proof of Theorem 4.2

We proceed via a hybrid argument. To do so, we first define a hybrid oracle O(hyb)
τ,S corresponding to

our intermediate hybrid experiment. The oracle O(hyb)
τ,S is defined identically as the real LWREn,q,p,χ,τ

oracle O(lwre)
τ,S except that O(hyb)

τ,S samples e1 ← χ rather than setting it to be initially 0. Formally,

for S = (s1, . . . , sτ ) ∈ Zn×τq , the oracle O(hyb)
τ,S is defined as follows:

• O(hyb)
τ,S : On its invocation, the hybrid oracle first samples a random vector a

r← Znq and an
error vector e1 ← χ. Then, for i = 1, . . . , τ − 1, it iteratively computes:

1. ri ← b〈a, si〉+ eiep.
2. ei+1 ← Dχ(ri).

Then, it sets b = b〈a, sτ 〉+ eτep, and returns (a, b) ∈ Znq × Zp.

With the oracles O(lwre)
S , O(hyb)

S , and O(ideal), we define our hybrid experiments as follows:

• hyb0: This is the real LWREn,q,p,χ,τ experiment where the adversary A is interacting with the

real oracle O(lwre)
τ,S for S

r← Zn×τq as defined in Definition 4.1. At the end of the experiment, A
outputs a bit β ∈ {0, 1}, which is also the output of the experiment.

• hyb1: This is the intermediate security experiment where the adversary A is interacting with

an intermediate oracle O(hyb)
τ,S for S

r← Zn×τq as defined above. At the end of the experiment,
A outputs a bit β ∈ {0, 1}, which is also the output of the experiment.

• hyb2: This is the ideal LWREn,q,p,χ,τ experiment where the adversary A is interacting with
the ideal oracle O(ideal) as defined in Definition 4.1. At the end of the experiment, A outputs
a bit β ∈ {0, 1}, which is also the output of the experiment.

We now bound an adversary’s distinguishing advantage of the consecutive hybrid experiment. For an
experiment hybi and an adversary A, we define hybi(A) to denote the random variable representing
the output of experiment hybi with respect to the adversary A.

Lemma A.1. For any (unbounded) adversary A making at most a Q number of oracle calls, we
have ∣∣Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]

∣∣ ≤ Q(2Bp/q + 1/2λ
)τ
.

Proof. To prove the lemma, we show that for an overwhelming fraction of the vectors a in Znq ,

the oracles O(lwre)
τ,S and O(hyb)

τ,S return the exact same output with overwhelming probability over

the matrix S
r← Zn×τq . Since each of these two oracles generates the vectors a

r← Znq uniformly

at random, this shows that an adversary A that invokes the oracles O(lwre)
τ,S and O(hyb)

τ,S at most a
polynomial number of times will not have enough information to distinguish the two oracles with
overwhelming probability.

To analyze the behavior of O(lwre)
τ,S and O(hyb)

τ,S for a vector a ∈ Znq , we define the following
parameterized (oracle) algorithm:

• Oa,e1(S): The oracle is defined with respect to a vector a ∈ Znq and an error term e1 ∈ [−B,B].
It takes in a matrix S ∈ Zn×τq , and computes for i = 1, . . . , τ − 1:
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1. ri ← b〈a, si〉+ eiep.
2. ei+1 ← Dχ(ri).

It then sets b = b〈a, sτ 〉+ eτep, and returns (a, b) ∈ Znq × Zp.

By definition, for a
r← Znq , e1 ← χ, and S

r← Zn×τq , the output (a, b) ← Oa,0(S) is identically

distributed as a single O(lwre)
τ,S sample, and the output (a, b′)← Oa,e1(S) is identically distributed as

a single O(ideal)
τ,S sample. We show that for a random vector a

r← Znq , S
r← Zn×τq , and any error value

e1 ∈ [−B,B], we have
Pr[Oa,0(S) 6= Oa,e1(S)] = (2Bp/q)τ + 2−λ,

To do this, we consider the transcript of the executions of the two algorithms Oa,0(S) and

Oa,e1(S). Let r
(0)
1 , . . . , r

(0)
τ−1, r

(0)
τ = b(0) be the random coins that are set during the execution of

Oa,0(S), and let r
(1)
1 , . . . r

(1)
τ−1, r

(1)
τ = b(1) be the random coins set during the execution of Oa,e1(S).

Then, for the of analysis, define the following random variables

Xi =

{
1 if r

(0)
i 6= r

(1)
i

0 otherwise.

By definition, we have
Pr[Oa,0(S) 6= Oa,e1(S)] ≤ Pr[Xτ = 1],

and our goal is to bound the probability Pr[Xτ = 1] over a random matrix S
r← Zn×τq .

We first note that for any i ∈ [τ − 1], the condition r
(0)
i = r

(1)
i implies that r

(0)
i+1 = r

(1)
i+1 since the

sampler Dχ is deterministic. This means that for i ∈ [τ − 1], we have

Pr[Xi+1 = 1|Xi = 0] = 0,

and therefore,

Pr[Xi+1 = 1] = Pr[Xi+1 = 1|Xi = 1] · Pr[Xi = 1] + Pr[Xi+1 = 1|Xi = 0] · Pr[Xi = 0]

= Pr[Xi+1 = 1|Xi = 1] · Pr[Xi = 1].

Now, the probability that Xτ = 1 can be represented as the product of the conditional probabilities

Pr[Xτ = 1] =
∏

i∈[τ−1]

Pr[Xi+1 = 1|Xi = 1]. (A.1)

For i ∈ [τ − 1], let us consider the probability that r
(0)
i+1 6= r

(1)
i+1 given that r

(0)
i 6= r

(1)
i . As the error

terms e
(0)
i+1 ← Dχ(r

(0)
i ) and e

(1)
i+1 ← Dχ(r

(1)
i ) are B-bounded, the probability that

r
(0)
i+1 = b〈a, si+1〉+ e

(0)
i+1ep 6= b〈a, si+1〉+ e

(1)
i+1ep = r

(1)
i+1,

is at most the probability that the inner product 〈a, si〉 is in the “boundary” set

〈a, si〉 ∈ [−B,B] +
q

p
·
(
Z +

1

2

)
=

{
q

p
· Z +

⌊
q

2p

⌉
+ [−B,B]

}
,
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which means that

Pr[Xi+1 = 1|Xi = 1] ≤ Pr
[
〈a, si〉 ∈ [−B,B] + q/p · (Z + 1/2)

]
. (A.2)

Finally, using Lemma 3.4, we can bound the probability

Pr
[
〈a, si〉 ∈ [−B,B] + q/p · (Z + 1/2)

]
≤ (2Bp/q) + 2−λ. (A.3)

Combining the relations (A.1), (A.2), and (A.2), we have

Pr[Xτ = 1] ≤
(

2Bp

q
+

1

2λ

)τ
,

and the lemma now follows by a union bound over the number of queries that A makes.

Lemma A.2. For any efficient adversary A, we have∣∣Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]
∣∣ ≤ τ · AdvLWE(n, q, χ,A).

Proof. To prove the lemma, we define a sequence of intermediate hybrid experiments hyb1,j for
j ∈ [τ ]:

• hyb1,j : In this security experiment, the adversary A is given access to the oracle O(j)
τ,S that

works as follows:

– O(j)
τ,S: On its invocation, the oracle samples an error term ej ← χ. Then, for i ∈ [j, τ − 1],

it iteratively computes:

1. ri ← b〈a, si〉+ eiep.
2. ei+1 ← Dχ(ri).

Then, it sets b = b〈a, sτ 〉+ eτep, and returns (a, b) ∈ Znq × Zp.

At the end of the experiment, A outputs a bit β ∈ {0, 1}, which is the output of the experiment.

By definition, the hybrid experiment hyb1,1 corresponds to the experiment hyb1. We show that
each consecutive hybrid experiments hyb1,i and hyb1,i+1 for i = 1, . . . , τ are computationally
indistinguishable. Then, we show that the experiments hybi,τ and hyb2 are computationally
indistinguishable.

Lemma A.3. For any efficient adversary A, we have∣∣Pr[hyb1,i(A) = 1]− Pr[hyb1,i+1(A) = 1]
∣∣ ≤ AdvLWE(n, q, χ,A),

for all i ∈ [τ − 1].

Proof. Let A be a distinguisher for the experiments hyb1,j and hyb1,j+1. We construct an algo-
rithm B that uses A to break the LWEn,q,χ problem. Algorithm B proceeds as follows:

1. At the start of the experiment, algorithm B samples secret vectors sj+1, . . . , sτ
r← Znq .
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2. Whenever A invokes the oracle (one of O(j)
τ,S or O(j+1)

τ,S ), algorithm B first invokes its own

oracle (one of O(lwe)
s or O(ideal)) to receive (a, b̂) ∈ Znq ×Zq. Then, it rounds ri ←

⌊
b̂
⌉
p
, samples

ei+1 ← Dχ(ri), and for i = j + 1, . . . , τ − 1, iteratively computes:

(a) ri ← b〈a, sτ 〉+ eiep.
(b) ei+1 ← Dχ(ri).

It sets b = b〈a, sτ 〉+ eτep, and returns (a, b) ∈ Znq × Zp to A.

3. At the end of the experiment, when A returns its guess β ∈ {0, 1}, algorithm B returns β.

We now show that depending on whether B is interacting with the oracle O(lwe)
s or O(ideal), it

perfectly simulates either O(j)
τ,S or O(j+1)

τ,S .

• Suppose that B is interacting with the real LWE oracle O(lwe)
s for s

r← Znq . Then, for each of

A’s queries, algorithm B receives an LWE sample (a, 〈a, s〉+e) for a
r← Znq and e← χ. Setting

sj = s and ej = e, the response of B for each of A’s oracle queries is distributed exactly as in

O(j)
τ,S by definition.

• Suppose that B is interacting with the ideal oracle O(ideal). Then, for each of A’s queries,
algorithm B receives a uniform sample (a, b̂)

r← Znq × Zq. As b̂ is uniform in Zq and q is

divisible by p, the randomness rj =
⌊
b̂
⌉
p

is also uniformly generated. Therefore, by definition

of the sampler Dχ(rj), the error term ej+1 ← Dχ(rj) is distributed exactly as in ej+1 ← χ,

and B perfectly simulates the distribution of O(j+1)
τ,S .

We have shown that depending on whether B is interacting with the oracle O(lwe)
s or O(ideal),

it perfectly simulates the distributions of either hyb1,j or hyb1,j+1. Therefore, with the same
distinguishing advantage of A, algorithm B solves the LWEn,q,χ problem.

Lemma A.4. For any efficient adversary A, we have∣∣Pr[hyb1,τ (A) = 1]− Pr[hyb2(A) = 1]
∣∣ = AdvLWE(n, q, χ,A).

Proof. The lemma follows via a similar argument to the proof of Lemma A.3. Let A be a distinguisher
for the experiments hyb1,τ and hyb2. We construct an algorithm B that uses A to break the
LWEn,q,χ problem. Algorithm B proceeds as follows:

1. Whenever A invokes the oracle (one of O(τ)
τ,S or O(ideal)), algorithm B first invokes its own

oracle (one of O(lwe)
s or O(ideal)) to receive (a, b̂) ∈ Znq × Zq. It provides (a,

⌊
b̂
⌉
p
) to A.

2. At the end of the experiment, when A returns its guess β ∈ {0, 1}, algorithm B returns β.

We now show that depending on whether B is interacting with the oracle O(lwe)
s or O(ideal), it

perfectly simulates either O(τ)
S or O(ideal).
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• Suppose that B is interacting with the real LWE oracle O(lwe)
s for s

r← Znq . Then, for each of

A’s queries, algorithm B receives an LWE sample (a, 〈a, s〉+e) for a
r← Znq and e← χ. Setting

sτ = s and eτ = e, the response of B for each of A’s oracle queries is distributed exactly as in

O(τ)
τ,S by definition.

• Suppose that B is interacting with the ideal oracle O(ideal). Then, for each of A’s queries,
algorithm B receives a uniform sample (a, b̂)

r← Znq × Zq. As b̂ is uniform in Zq and q is

divisible by p, the sample (a,
⌊
b̂
⌉
) is uniform in Znq ×Zp. Therefore, by definition, B’s response

for each of A’s oracle queries is distributed exactly as in O(ideal).

We have shown that depending on whether B is interacting with the oracle O(lwe)
s or O(ideal), it

perfectly simulates the distributions of either hyb1,τ or hyb2. Therefore, with the same distinguishing
advantage of A, algorithm B solves the LWEn,q,χ problem. It follows that assuming the hardness of
the LWEn,q,χ problem, the distinguishing advantage of A is negligible.

This concludes the proof of Lemma A.2.

B Proof of Theorem 6.4

In this section, we provide the proof of Theorem 6.4. We start by providing additional definitions
that will simplify our analysis of security and key-homomorphism in Section B.1. Then, we provide
the proof of key-homomorphism in Section B.2 and the proof of security in Section B.3.

B.1 Additional Definitions

We first define a combinatorial operation called pruning.

Definition B.1 (Pruning). For a full binary tree T of at least one node, we define its pruning
T ′ = Prune(T ) inductively as follows:

• If |T.`| ≤ 1, then set T ′ = T.r.
• Otherwise, set T ′.` = Prune(T.`) and T ′.r = T.r.

We let T (i) denote the ith successive pruning of T , i.e., T (0) = T and T (i) = Prune(T (i−1)).

In words, the pruning operation Prune takes in a binary tree, removes its leftmost leaf v, and replaces
the subtree rooted at v’s parent (if it exists) with the sub-tree rooted at v’s sibling. By definition,
for any |T | ≥ 1, we have |T (i)| = |T | − i. Furthermore, the pruning of a tree cannot increase a tree’s
expansion factor, i.e. e(T ′) ≤ e(T ).

Next, we recall two functions ST and ET that characterize the unraveling of the recursive relations
in Definitions 6.1 and 6.2.

Definition B.2. For a full binary tree T of at least one node and two matrices A0,A1 ∈ Zn×mq ,

define the function ST : {0, 1}|T |−1 → Zm×m recursively as follows:

ST (x) =

{
I if |T | = 1
ST.`(x`) ·G−1(AT.r(xr)) otherwise,

.

where x = x`‖xr for |x`| = |T.`| − 1, |xr| = |T.r|.
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Definition B.3. For a full binary tree T of at least one node and two matrices A0,A1 ∈ Zn×mq ,

define the (randomized) function ET : {0, 1}|T | → Zm inductively as follows:

• For |T | = 0, set ET (ε) = 0.

• For |T | ≥ 1, parse x = x1‖x′ ∈ {0, 1} × {0, 1}|T |−1, sample ex1 ← χm, and set

ET (x) = ex1 · ST (x′) + ET ′(x′),

where T ′ is the pruning of T .

It follows by definition that for x = x1‖x′ ∈ {0, 1} × {0, 1}|T |−1, we have

AT (x) = Ax1 · ST (x′),

G · ST (x′) = AT ′(x
′).

Furthermore, for any secret vector s ∈ Znq , and error matrix E← χm×τ , the following distributions
are identical by definition

Gs,E,T (x) ≡ sᵀAT (x) + ET (x).

Finally, before proceeding with the proofs, we bound the norm of the function ET (x) in the following
lemma.

Lemma B.4. Let n, q, χ be LWE parameters where χ is a B-bounded distribution. Then, for any
full binary tree T , matrices A0,A1 ∈ Zn×mq , and input x ∈ {0, 1}|T |, we have

Pr
[
|ET (x)| ≤ |T | ·B ·me(T )

]
= 1,

where the probability is taken over the random coins used by the function ET (·).

Proof. The lemma follows by induction on |T |.

• When |T | = 0, we have ET (x) = 0 by definition.

• When |T | ≥ 1, then for x = x1‖x′ ∈ {0, 1}|T |, T ′ = Prune(T ), and ex1 ← χm, the function
ET (x) is defined as

ET (x) = eᵀx1 · ST (x′) + ET ′(x′).

By induction, we have ‖ET ′(x′)‖ ≤ |T ′| · B ·me(T ′) ≤ (|T | − 1) · B ·me(T ). Furthermore, by
unrolling the recursion in Definition B.2, the output ST (x′) is the product of at most e(T )
binary matrices G−1(·). Therefore, we have ‖ST (x′)‖ ≤ me(T ) and since χ is a B-bounded
distribution, we have ‖ex1‖ ≤ B. The triangle inequality gives∥∥eᵀx1 · ST (x′) + ET ′(x′)

∥∥ ≤ B ·me(T ) + (T − 1) ·B ·me(T ).
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B.2 Proof of Key-Homomorphism

Fix a full binary tree T , public matrices A0,A1 ∈ Zn×mq , PRF input x ∈ {0, 1}|T |, and secret

matrices S, S̃ ∈ Zn×τq . Then by (almost) linearity of rounding, there exists a vector η1 ∈ {0, 1}m
such that

FS(x) + FS̃(x) = bGsτ ,Eτ ,T (x)ep + bGs̃τ ,Ẽτ ,T (x)ep = bGsτ ,Eτ ,T (x) + Gs̃τ ,Ẽτ ,T (x)ep + η1 (B.1)

where the matrices Eτ and Ẽτ are the output of the sampler Eτ ← Dχ(rτ−1) and Ẽτ ← Dχ(r̃τ−1).
Then by Lemma B.4, the values Gs,E,T (x) and Gs̃,Ẽ,T (x) above can each be written as

Gs,Eτ ,T (x) = sᵀAT (x) + eᵀT

Gs̃,Ẽτ ,T (x) = s̃ᵀAT (x) + ẽᵀT ,

for some error vectors eT , ẽT ∈ [−R,R]m where R = |T |Bme(T ). Therefore, their sum can be
represented as

bGs,Eτ ,T (x) + Gs̃,Ẽτ ,T (x)ep = b(sᵀAT (x) + eᵀT ) + (s̃ᵀAT (x) + ẽᵀT )ep
= b(s + s̃)ᵀAT (x) + (eT + ẽT )ᵀep,

Now, by definition, FS+S̃(x) can also be represented with respect to the matrix AT (x) and some
error vector ê ∈ [−R,R]m as

FS+S̃(x) = bGs+s̃,Êτ ,T
(x)ep

= b(s + s̃)ᵀAT (x) + êᵀT ep.

Therefore, we have the relation

bGs,Eτ ,T (x) + Gs̃,Ẽτ ,T (x)ep = b(sᵀAT (x) + eᵀT ) + (s̃ᵀAT (x) + ẽᵀT )ep
= bFS+S̃(x) + (eT + ẽT − êT )ᵀep.

Since ‖eT + ẽT − êT ‖ ≤ 3R and (2Rmp/q)τ−1 = negl(λ), which implies that 2R < q/mp, we have

bGs,Eτ ,T (x) + Gs̃,Ẽτ ,T (x)ep = FS+S̃(x) + η2, (B.2)

for some vector η2 ∈ {0, 1}m. Now, combining (B.1) and (B.2), the 2-almost key-homomorphism of
Construction 6.3 follows.

B.3 Proof of Security

Hybrid PRF. To prove security, we first define a hybrid (randomized) PRF function F̃S(·) for our
intermediate hybrid experiment. The function F̃S(·) is defined identically as the real PRF FS(·)
except that it samples the initial error term E1 from the noise distribution E1 ← χm×` instead of
setting it to be the all-zero matrix E1 = 0. Additionally, before returning the final output Gsτ ,Eτ ,T (x),
the function F̃S(·) checks an extra abort condition and returns ⊥ if the condition is satisfied. Namely,
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at the end of the execution, it verifies whether any of the iterations of Gs1,E1,T (x), . . . ,Gsτ ,Eτ ,T (x)
resulted in a “borderline” vector in the set

BorderlineR =

{
y ∈ Zmq : ∃η ∈ [m] s.t. yη ∈ [−R,R] +

q

p
·
(
Z +

1

2

)}
.

Intuitively, the set BorderlineR captures the set of vectors y ∈ Zmq that can potentially be rounded
to a different value when noise terms noise ∈ [−R,R]m are added prior to rounding y

byep 6= by + noiseep.

Formally, we define the hybrid (randomized) PRF F̃S : {0, 1}|T | → Zmq with respect to a full binary
tree T , two public matrices A0,A1 ∈ Zn×mq , and a secret matrix S ∈ Zm×τq as follows:

F̃S(x): On input x ∈ {0, 1}|T |, the hybrid evaluation algorithm samples e1, . . . , ee(T ) ← χm and
sets E1 = (e1, . . . , ee(T )). Then, for 1 ≤ i < τ , it iteratively computes

1. yi ← Gsi,Ei,T (x).

2. ri ← byiep.
3. Ei+1 ← Dχ(ri).

It sets yτ ← GSτ ,Eτ ,T (x). Before returning yτ , the evaluation algorithm checks whether there
exists an index i ∈ [τ ] for which yi /∈ BorderlineR for R = |T |Bme(T ). If this is not the case,
then it returns ⊥. Otherwise, it returns yτ ∈ Zmq .

Hybrid experiments. We now define our hybrid experiments as follows:

• hyb0: This is the real PRF security experiment of Definition 3.5. Namely, the adversary
A is given oracle access to the real PRF function FS(·) for S

r← Zn×τq . At the end of the
experiment, A outputs a bit β ∈ {0, 1}, which is the output of the experiment.

• hyb1: This is the intermediate security experiment. The adversary A is given oracle access to
the hybrid (randomized) PRF function F̃S(·) for S

r← Zn×τq . At the end of the experiment, A
outputs a bit β ∈ {0, 1}, which is the output of the experiment.

• hyb2: This is the ideal PRF security experiment of Definition 3.5, but the challenger addi-
tionally checks the borderline condition. Specifically, for each query x ∈ {0, 1}|T | that the

adversary A makes, the challenger samples uniformly random vectors ỹ1, . . . , ỹτ−1
r← Zmq .

Then, it checks whether all of these vectors are contained in the borderline set BorderlineR for
R = |T |Bme(T ). If this is the case, then it outputs ⊥. Otherwise, it returns yτ

r← Zmq to A.

• hyb3: This is the ideal PRF security experiment of Definition 3.5. Namely, the adversary A
is given oracle access to a random function f(·) for f

r← Funs
[
{0, 1}|T |,Zmq

]
. At the end of

the experiment, A outputs a bit β ∈ {0, 1}, which is the output of the experiment.

We show that the consecutive hybrid experiments hybi and hybi+1 are either computationally or
statistically indistinguishable for i ∈ {0, 1, 2}. As the proof of indistinguishability of hyb0 and
hyb1 depends on the proof of indistinguishability of hyb1 and hyb2, we show that hyb1 and hyb2
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are computationally indistinguishable before showing that hyb0 and hyb1 are computationally
indistinguishable.

For the lemma statements below, we use the same notation as in the proof of Theorem 4.2.
Namely, for an experiment hybi and an adversary A, we define hybi(A) to denote the random
variable representing the output of experiment hybi with respect to the adversary A.

Lemma B.5. Suppose that the LWEn,q,χ problem is hard. Then, for any efficient adversary A,∣∣Pr[hyb1(A) = 1]− Pr[hyb2(A) = 1]
∣∣ = negl(λ).

Proof. Although the proof of the lemma is conceptually simple, it does require some heavy notations.
To facilitate the presentation, we first fix some additional notation. For a bit string x of length at
least i, let x(i) = x1x2 · · ·xi denote the string of its first i bits, and let x(i) denote the remainder of

the string. Let P ⊂ Zn` denote an arbitrary set of representatives of the quotient group Zmq /Gᵀ ·Znq ,

and define a family of auxiliary function V
(i)
T : {0, 1}|T | → Zm as follows.

Definition B.6. For a full binary tree T , matrices A0,A1 ∈ Zn×mq , and 0 ≤ i ≤ |T |, define the

(randomized) function V
(i)
T : {0, 1}|T | → Zm inductively as follows.

• For i = 0, set V
(0)
T (x) = 0.

• For i ≥ 1, the evaluation algorithm samples vx(i)
r← P. It sets

V
(i)
T (x) = vᵀ

x(i)
· ST (i−1)(x(i)) + V

(i−1)
T (x).

For the proof of the lemma, we also make an additional simplifying assumption on the adversary A.
Namely, we assume that the adversary A makes evaluation queries on a distinct set of inputs in the
domain {0, 1}|T |. This is without loss of generality as the challenger can always keep track of A’s
previous queries and respond to A’s duplicate queries by looking up its previous responses.

Now, we define a sequence of intermediate hybrid experiments hyb1,i∗,η∗ for i∗ ∈ [τ ] and η∗ ∈ [|T |]
as follows:

• hyb1,i∗,η∗ : The challenger maintains a look-up table T : {0, 1}|T |−η∗ → Znq , which maps the

prefixes of x ∈ {0, 1}|T |, which A submits as its evaluation queries to vectors in Znq . Specifically,

for each of these queries x ∈ {0, 1}|T |, the challenger proceeds as follows:

– The challenger first checks if A previously made a query x̂ ∈ {0, 1}|T | for which x̂(η∗−1) =
x(η∗−1). If this is the case, then it looks up the vector sx(η∗−1)

from the table T and

otherwise, it samples a fresh random vector sx(η∗−1)

r← Znq and adds it to T .

Then, the challenger samples an error vector Ei∗ ← χn×η
∗

and computes yi∗ ←
Gsi∗ ,Ei∗ ,T (η∗−1)(x(η∗−1)) + V

(η∗−1)
T (x). If i∗ = τ , then it returns yτ . Otherwise, it sets

Ei∗+1 ← D(ri∗), samples S
r← Zn×τ−i∗q , and iteratively computes for i∗ < i ≤ τ :

1. yi ← Gsi∗ ,Ei∗ ,T (x).

2. ri ← byiep.
3. Ei∗ ← D(ri∗).
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Finally, it sets yτ ← Gsτ ,Eτ ,T (x). Before returning yτ , the challenger samples random

vector ỹ1, . . . , ỹi∗−1
r← Znq . If all of the vectors ỹ1, . . . , ỹi∗−1,yi∗ , . . . ,yτ−1 are contained

in the set BorderlineR for R = |T |Bme(T ), then the challenger returns ⊥. Otherwise, it
returns yτ to A.

It follows by definition that hyb1 = hyb1,1,1. We now show that each of the consecutive
experiments are computationally indistinguishable.

Claim B.7. Suppose that p divides q and the LWEn,q,χ problem is hard. Then, for any efficient
adversary A and any i∗ ∈ [τ ], we have∣∣Pr[hyb1,i∗,|T |(A) = 1]− Pr[hyb1,i∗+1,1(A) = 1]

∣∣ = negl(λ).

Proof. Let A be a distinguisher for the experiments hyb1,i∗,|T | and hyb1,i∗+1,1 that makes at
most Q = poly(λ) queries. We construct an algorithm B that uses A to solve the LWEn,q,χ
problem. Algorithm B proceeds as follows:

– At the start of the experiment, algorithm B receives an LWEn,q,χ challenge (A,B) ∈
Zn×2m
q × ZQ×2m

q . It parses A = (A0,A1) and provides A0,A1 ∈ Zn×mq to A.

– The adversary A makes Q adaptive evaluation queries. For each of A’s jth query
xj ∈ {0, 1}|T |, algorithm B parses Bᵀ = (b1, . . . ,bQ) for bj ∈ Z2m

q , bᵀ
j = (bᵀ

j,0,b
ᵀ
j,1), and

computes

yᵀ
i∗ = bᵀ

j,x|T |
+ V

(|T |−1)
T (x) ∈ Zmq .

It then sets ri∗ ← byi∗ep, Ei∗+1 ← Dχ(ri∗), and computes for i∗ + 1 ≤ i < τ :

1. yi ← Gsi,Ei,T (x).
2. ri ← byiep.
3. Ei+1 ← Dχ(ri).

Finally, it sets yτ ← Gsτ ,Eτ ,T (x). Before returning yτ , algorithm B samples random

vectors ỹ1, . . . , ỹi∗−1
r← Zmq . If all of the vectors ỹ1, . . . , ỹi∗−1,yi∗ , . . . ,yτ−1 are contained

in the set BorderlineR for R = |T |Bme(T ), then B returns ⊥. Otherwise, it returns yτ
to A.

– At the end of the experiment, the adversary A outputs a bit β ∈ {0, 1}. Algorithm B
outputs the same bit β.

We now show that depending on whether the algorithm B is interacting with the real LWE

oracle O(lwe)
s or the ideal oracle O(ideal), it perfectly simulates A’s view of either hyb1,i∗,|T | or

hyb1,i∗+1,1.

– If B is interacting with the real LWE oracle O(lwe)
s , then each vector bᵀ

j,b for j ∈ [Q] and

b ∈ {0, 1} is a valid LWE sample sᵀj ·Ab + eᵀj,b for sj
r← Znq , ej,b ← χm. Therefore, by

definition, B perfectly simulates hyb1,i∗,|T |.

– If B is interacting with the ideal oracle O(ideal), then each vector bj,b for j ∈ [Q] and
b ∈ {0, 1} is a random vector in Zmq and therefore, for each of A’s queries, the vector

yᵀ
i∗ = bᵀ

j,x|T |
+ V

(|T |−1)
T (x) is also a uniformly random vector in Zmq . Since p divides
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q, this means that each vector ri∗ = byi∗ep is also uniform in Zmp and hence Ei∗+1 is
distributed exactly as in χm×τ . Hence, algorithm B perfectly simulates hyb1,i∗+1,1.

We have shown that depending on whether B is interacting with the oracle O(lwre)
s or O(ideal),

it perfectly simulates the distributions of either hyb1,i∗,|T | or hyb1,i∗+1,1. Therefore, with
the same distinguishing advantage of A, algorithm B solves the LWEn,q,χ problem. It follows
that assuming the hardness of the LWEn,q,χ problem, the distinguishing advantage of A is
negligible.

Claim B.8. Suppose that p divides q and the LWEn,q,χ problem is hard. Then, for any efficient
adversary A and any i∗ ∈ [τ ], η∗ ∈ [|T |], we have∣∣Pr[hyb1,i∗,η∗(A) = 1]− Pr[hyb1,i∗,η∗+1(A) = 1]

∣∣ = negl(λ).

Proof. Let A be a distinguisher for the experiments hyb1,i∗,η∗ and hyb1,i∗+1,1 that makes at
most Q = poly(λ) queries. We construct an algorithm B that uses A to solve the LWEn,q,χ
problem. Algorithm B proceeds as follows:

– At the start of the experiment, algorithm B receives an LWEn,q,χ challenge (A,B) ∈
Zn×2m
q × ZQ×2m

q . It parses A = (A0,A1) and provides A0,A1 ∈ Zn×mq to A.

– The adversary A makes Q adaptive evaluation queries. For each of A’s jth query
xj ∈ {0, 1}|T |, algorithm B parses Bᵀ = (b1, . . . ,bQ) for bj ∈ Z2m

q , bᵀ
j = (bᵀ

j,0,b
ᵀ
j,1), and

computes

yᵀ
i∗ = bᵀ

j,xη∗
· ST (η∗)

(
x(η∗+1)

)
+ ET (η∗+1)

(
x(η∗+1)

)
+ V

(η∗)
T (x) ∈ Zmq .

It then sets ri∗ ← byi∗ep, Ei∗+1 ← Dχ(ri∗), and computes for i∗ + 1 ≤ i < τ :

1. yi ← Gsi,Ei,T (x).

2. ri ← byiep.
3. Ei+1 ← Dχ(ri)

Finally, it sets yτ ← Gsτ ,Eτ , T (x). Before returning yτ , algorithm B samples random

vectors ỹ1, . . . , ỹi∗−1
r← Zmq . If all of the vectors ỹ1, . . . , ỹi∗−1,yi∗ , . . . ,yτ−1 are contained

in the set BorderlineR for R = |T |Bme(T ), then B returns ⊥. Otherwise, it returns yτ
to A.

We now show that depending on whether the algorithm B is interacting with the real LWE

oracle O(lwe)
s or the ideal O(ideal), it perfectly simulates A’s view of either hyb1,i∗,|T | or

hyb1,i∗+1,1.

– If B is interacting with the real LWE oracle O(lwe)
s , then each vector bᵀ

j,b for j ∈ [Q] and

b ∈ {0, 1} is a valid LWE sample sᵀj ·Ab + eᵀj,b for sj
r← Znq , ej,b ← χm. Therefore, for

each of A’s jth queries, we have

yᵀ
i∗ = (sᵀj ·Ab + eᵀj,b) · ST (i∗)

(
x(i∗+1)

)
+ ET (i∗+1)

(
x(i∗+1)

)
+ V

(i∗)
T (x)

= sᵀj ·Ab · ST (i∗)
(
x(i∗+1)

)
+
(
eᵀj,b · ST (i∗)

(
x(i∗+1)

)
+ ET (i∗+1)

(
x(i∗+1)

))
+ V

(i∗)
T (x)

= sᵀj · ST (i∗−1)

(
x(i∗)

)
+ ET (i∗)

(
x(i∗)

)
+ V

(i∗)
T (x)

exactly as in hyb1,i∗,η∗ .
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– If B is interacting with the ideal oracle O(ideal), then each vector bj,b for j ∈ [Q] and
b ∈ {0, 1} is a random vector in Zmq and therefore, for each of A’s jth queries, we have

yᵀ
i∗ = bᵀ

j,b · ST (i∗)
(
x(i∗+1)

)
+ ET (i∗+1)

(
x(i∗+1)

)
+ V

(i∗)
T (x)

= (sᵀj+1 ·G + vx(j)) · ST (i∗)
(
x(i∗+1)

)
+ ET (i∗+1)

(
x(i∗+1)

)
+ V

(i∗)
T (x)

=
(
sᵀj ·G · ST (i∗)

(
x(i∗+1)

)
+ ET (i∗+1)

(
x(i∗+1)

))
+ vx(j) + V

(i∗)
T (x)

= Gsj ,Ej ,T (η∗)(x) + V
(i∗+1)
T (x)

exactly as in hyb1,i∗,η∗+1.

We have shown that depending on whether B is interacting with the oracle O(lwre)
s or O(ideal),

it perfectly simulates the distributions of either hyb1,i∗,η∗ or hyb1,i∗,η∗+1. Therefore, with
the same distinguishing advantage of A, algorithm B solves the LWEn,q,χ problem. It follows
that assuming the hardness of the LWEn,q,χ problem, the distinguishing advantage of A is
negligible.

Claim B.9. Suppose that the LWEn,q,χ problem is hard. Then, for any efficient adversary A,
we have ∣∣Pr[hyb1,τ,|T |(A) = 1]− Pr[hyb2(A) = 1]

∣∣ = negl(λ).

Proof. Let A be a distinguisher for the experiments hyb1,τ,|T | and hyb2 that makes at most
Q = poly(λ) queries. We construct an algorithm B that uses A to solve the LWEn,q,χ problem.
Algorithm B proceeds as follows:

– At the start of the experiment, algorithm B receives an LWE challenge (A,B) ∈ Zn×2m
q ×

ZQ×mq . It parses A = (A0,A1) and provides A0,A1 ∈ Zn×mq to A.

– The adversary A makes Q adaptive evaluation queries. For each of A’s jth query
xj ∈ {0, 1}|T |, algorithm B parses Bᵀ = (b1, . . . ,bQ) for bj ∈ Z2m

q , bᵀ
j = (bᵀ

j,0,b
ᵀ
j,1), and

computes

yᵀ
τ = bᵀ

j,x|T |
+ V

(|T |−1)
T (x) ∈ Zmq .

Before returning yτ , algorithm B samples random vectors ỹ1, . . . , ỹτ−1
r← Zmq . If all of

these vectors are contained in the set BorderlineR for R = |T |Bme(T ), then B returns ⊥.
Otherwise, it returns yτ to A.

– At the end of the experiment, the adversary A outputs a bit β ∈ {0, 1}. Algorithm B
outputs the same bit β.

We show that depending on whether the algorithm B is interacting with the real LWE oracle

O(lwe)
s or the ideal oracle O(ideal), it perfectly simulates A’s view of either hyb1,τ,|T | or hyb2.

– If B is interacting with the real LWE oracle O(lwe)
s , then each vector bᵀ

j,b for j ∈ [Q] and

b ∈ {0, 1} is a valid LWE sample sᵀj ·Ab + eᵀj,b for sj
r← Znq , ej,b ← χm. Therefore, by

definition, B perfectly simulates hyb1,τ,|T |.
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– If B is interacting with the ideal oracle O(ideal), then each vector bj,b for j ∈ [Q] and
b ∈ {0, 1} is a random vector in Zmq , and therefore, for each of A’s queries, the vector

yᵀ
τ = bᵀ

j,x,|T | + V
(|T |−1)
T (x) is also a uniformly random vector in Zmq . Hence, algorithm B

perfectly simulates hyb2.

We have shown that depending on whether B is interacting with the oracle O(lwre)
s or O(ideal),

it perfectly simulates the distributions of either hyb1,τ,|T | or hyb2. Therefore, with the
same distinguishing advantage of A, algorithm B solves the LWEn,q,χ problem. It follows
that assuming the hardness of the LWEn,q,χ problem, the distinguishing advantage of A is
negligible.

Lemma B.10. Suppose that (2Rmp/q)τ−1 = negl(λ) and the LWEn,q,χ problem is hard. Then, for
any efficient adversary A,∣∣Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]

∣∣ = negl(λ).

Proof. The difference between the evaluation algorithms of FS(·) in hyb0 and F̃S(·) in hyb1 are as
follows:

• On input x ∈ {0, 1}|T |, the evaluation algorithm in hyb0 sets the initial error term to be an
all-zero matrix E1 = 0 while the evaluation algorithm in hyb1 samples the initial error term
from the error distribution Ẽ1

r← χn×m.

• The evaluation algorithm of F̃S(·) in hyb1, additionally checks for the borderline condition.
Specifically, on input x ∈ {0, 1}|T |, let y1, . . . ,yτ be the intermediate computation vectors
yi ← Gsi,Ei,T (x) for i∗ ∈ [τ ]. Then, in the evaluation algorithm additionally checks whether
there exists an index i∗ ∈ [τ ] for which yi∗ /∈ BorderlineR for R = |T |Bme(T ). If this is not the
case, then it returns ⊥.

Now, for the analysis, consider a single fixed input x ∈ {0, 1}|T | that an adversary A submits as a
query and consider the two transcripts of the executions FS(x) and F̃S(x). Specifically, let r1, . . . , rτ
be the set of random vectors that are set during the execution of FS(x) in and let r̃1, . . . , r̃τ be
the set of random vectors that are set during the execution of F̃S(x). We first note that if there
exists an index i∗ ∈ [τ ] for which bGsî,Ei∗ ,T (x)ep = bGsî,Ẽi∗ ,T (x)ep, then by definition, ri = r̃i for all

i∗ < i ≤ τ . Furthermore, by construction, for any s ∈ Znq , E← χn×m, any full binary tree T , and

x ∈ {0, 1}|T |, we have
Gs,E,T (x) = sᵀAT (x) + ET (x),

where |ET (x)| ≤ |T |Bme(T ) (Lemma B.4). This means that by the definition of rounding, as long as
there exists a single index i ∈ [τ ] for which the intermediate vector yi = Gsi,Ei,T (x) is not contained
in the set BorderlineR for R = |T |Bme(T ), the final output of FS(x) and F̃S(x) coincide. In other
words, if any efficient adversary A can force the function F̃S(·) to output ⊥ only with probability
negl(λ), the experiments hyb0 and hyb1 are computationally indistinguishable.∣∣Pr[hyb0(A) = 1]− Pr[hyb1(A) = 1]

∣∣ ≤ Pr
[
AF̃S(·)(1λ)→ x ∧ F̃S(x) = ⊥

]
.
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To show that
Pr
[
AF̃S(·)(1λ)→ x ∧ F̃S(x) = ⊥

]
= negl(λ),

we first note that by Lemma B.5, the hybrid experiments hyb1 and hyb2 are computationally
indistinguishable. Therefore,

Pr
[
AF̃S(·)(1λ)→ x ∧ F̃S(x) = ⊥

]
≤ Pr

[
AOhyb2 (·)(1λ)→ x ∧ Ohyb2(x) = ⊥

]
+ negl(λ), (B.3)

where Ohyb2(·) denotes the response of the challenger in hyb2. Furthermore, in hyb2, the challenger

outputs ⊥ only when ỹi ∈ BorderlineR for all i ∈ [τ − 1], ỹ1, . . . , ỹτ−1
r← Zmq . Therefore, the

challenger outputs ⊥ with probability at most (2Rmp/q)τ−1, which is negligible by assumption

Pr
[
AOhyb2 (·)(1λ)→ x ∧ Ohyb2(x) = ⊥

]
= negl(λ). (B.4)

The lemma follows by combining (B.3) and (B.4).

Lemma B.11. Suppose that (2Rmp/q)τ−1 = negl(λ). Then, for any (unbounded) adversary A
making at most Q = poly(λ) evaluation queries,∣∣Pr[hyb2(A) = 1]− Pr[hyb3(A) = 1]

∣∣ = negl(λ).

Proof. The only difference between the experiments hyb2 and hyb3 is in the way the challenger
returns ⊥ to A’s queries. In hyb2, the challenger samples random vectors ỹ1, . . . , ỹτ−1

r← Zmq and

returns ⊥ if all of these vectors are contained in BorderlineR for R = |T |Bme(T ). In hyb3, the
challenger never returns ⊥.

Since the components of each vector ỹi for i ∈ [τ − 1] are sampled independently, the probability
that a single vector ỹi ∈ BorderlineR is at most 2Rmp/q, and the probability all of these vectors
are contained in BorderlineR is at most (2Rmp/q)τ−1, which is negligible. Since A can make at
most a polynomial number of evaluation queries, it follows that the experiments hyb2 and hyb3

are statistically indistinguishable by the union bound.
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