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ABSTRACT

The goal of this investigation is effective method of key exchange which based on non-commutative

group G. The results of Ko et al. [6] is improved and generalized.

The size of a minimal generating set for the commutator subgroup of Sylow 2-subgroups of alternat-

ing group is found. The structure of the commutator subgroup of Sylow 2-subgroups of the alternat-

ing group A2k is investigated and used in key exchange protocol which based on non-commutative

group.

We consider non-commutative generalization of CDH problem [4, 3] on base of metacyclic group

of Miller-Moreno type (minimal non-abelian group). We show that conjugacy problem in this group

is intractable. Effectivity of computation is provided due to using groups of residues by modulo n.

The algorithm of generating (designing) common key in non-commutative group with 2 mutually

commuting subgroups is constructed by us.
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1 Introduction

In this paper new conjugacy key exchange scheme is proposed. This protocol based on conjugacy problem in non-

commutative group [2, 3, 4, 5, 10]. We slightly generalize Ko Lee’s [6] protocol of key exchange. Public key crypto-

graphic schemes based on the new systems are established. The conjugacy search problem in a group G is the problem

of recovering an (a ∈ G) from given (w ∈ G) and h = a−1wa. This problem is in the core of several recently

suggested public key exchange protocols. One of them is most notably due to Anshel, Anshel, and Goldfeld [2] and

another due to Ko et al. [6]. As we know if CCP problem is tractable in G then problem of finding wab by given w,

wa = a−1wa, wb = b−1wb for an arbitrary fixed w ∈ G such that is not from center of G, wab is the common key

that Alice and Bob have to generate.

Recently, a novel approach to public key encryption based on the algorithmic difficulty of solving the word and

conjugacy problems for finitely presented groups has been proposed in [1, 2]. The method is based on having a

canonical minimal length form for words in a given finitely presented group, which can be computed rather rapidly,

and in which there is no corresponding fast solution for the conjugacy problem. A key example is the braid group.

We denote by wx the conjugated element u = x−1wx. We show that efficient algorithm that can distinguish between

two probability distributions of (wx, wy, wxy) and
(
wg, wh, wgh

)
does not exist. Also, an efficient algorithm which

recovers wxh from w, wx and wy does not exist. This group has representation

G =
⟨
a, b|ap

m

= e, bp
n

= e, b−1ab = a1+pm−1

,m ≥ 2, n ≥ 1
⟩
.

As a generators a, b can be chosen two arbitrary commuting elements [8, 10, 7].

Consider non-metacyclic group of Millera Moreno. This group has representation

G =
⟨
a, b

∣∣|c| = p, |a| = pm, |a| = pn,m ≥ 1, n ≥ 1, b−1ab = ac, b−1cb = c
⟩
.

To find a length of orbit of action by conjugation by b we consider the class of conjugacy of elements of form ajci.

This class has length p because of action b−1ajcib = aj+1ci, . . . , as well as b−1ajci+p−1b = ajci+p = ajci increase

the power of c on 1. Thus, the first repetition of initial power j in ajci occurs though n conjugations of this word by

b, where 1 ≤ j ≤ p. Therefore, the length of the orbit is p.

We need to have an effective algorithm for computation of conjugated elements, if we want to design a key exchange

algorithm based on non-commutative DH problem [5]. Due to the relation in metacyclic group, which define the

homomorphism φ : ⟨b⟩ → Aut(⟨a⟩) to the automorphism group of the B = ⟨b⟩, we obtain a formula for finding a

conjugated element. Using this formula, we can efficiently calculate the conjugated to element by using the raising to

the 1 + pm−1-th power,, where m > 1.
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There is effective method of checking the equality of elements due to cyclic structure of group A = ⟨a⟩ and B = ⟨b⟩

in this group G.

We have an effective method of checking the equality of elements in the additive group Zn because of reducing by

finite modulo n.

2 Proof that conjugacy problem is NP-hard in G. Size of a conjugacy class

The orbit of the given base element w ∈ G must must be long enough if we want to have problem of DL or equally

problem of conjugacy in non-commutative group G like NP-hard problem.

Let elements of G act by conjugation on w ∈ G, where w /∈ Z(G).

Theorem 1. The length of conjugacy class of non-central element w is equal to p.

Proof. Recall the inner automorphism in G is determined by the formula b−1ab = a1+pm−1

. Let us recall the structure

of minimal non-abelian Metacyclic group, namely G = B nφ A, where A = ⟨a⟩ and B = ⟨b⟩ are finite cyclic

groups. Therefore, the formula b−1ab = a1+pm−1

defines a homomorphism φ in the subgroup of inner automorphisms

Aut(⟨a⟩). It is well-known that each finite cyclic group is isomorphic to the correspondent additive cyclic group

modulo n residue Zn. In this group equality of elements can be checked effectively due to reducing the elements of

the module group.

Consider the orbit of element w under action by conjugation. The length of such orbit can be found from equality

w(1+pm−1)s = w as minimal power s for which this equality will be true. We apply Newton binomial formula to the

expression
(
1 + pm−1

)
≡ 1 (mod pm) and taking into account the relation ap

m

= e. We obtain

1 + C1
sp

m−1 + 1 + C2
sp

2(m−1) + · · ·+ ps(m−1) ≡ 1 (mod pm)

only if s ≡ pl(mod pm) with l < m because 1 + C1
sp

m−1 = 1 + spm−1 ̸≡ 1(mod ps) if s < p. It means that the

minimal s when this congruence start to holds is equal to p. The prime number p can be chosen as big as we need [13]

which completes the proof.

Let us evaluate the size of subsets S1, S2 with mutually commutative elements. Each of this subset of generated by

them subgroups H1,H2 can be chosen as the subgroups of center of group G. It is well-known that the semidirect

product is closely related to wreath product. The center of the wreath product with non-faithful action were recently

studied [11].

Proposition 1. As it was proved by the author a center of the restricted wreath product with n non-trivial coordinates

(A,X) ≀ B is direct product of normal closure of center of diagonal of Z(Bn), i.e. (E × Z(∆(Bn))), trivial an

element, and intersection of (K)× E with (A). In other words,

Z((A,X) ≀B = ⟨(1;h, h, . . . , h︸ ︷︷ ︸
n

), e(Z(A) ∩ Z(K,X)) ≀ E⟩ ≃ ⟨Z(A) ∩K)× Z(∆(Bn)⟩

where h ∈ Z(B), |X| = n.
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Taking into consideration that a semidirect product is the partial case of wreath product the diagonal of Bn degenerates

in B. Thus, we obtain such formula for the center of semidirect product:

Z ((A,X)oB) = ⟨Z(1;h), e, (Z(A) ∩K,X) ≀ E⟩ ≃ ⟨Z(A) ∩K)× Z(∆(Bn)⟩.

This structure lead to constructive method of finding elements of the center. As it was noted above the elements x and

y are parts of elements of secret key. Therefore as greater a size of center of a considered group as greater a size of a

key space of this protocol.

Also commutator subgroup of sylow 2-subgroup of alternating groups can be used as a support of CSP problem.

Definition 2.1. For an arbitrary k ∈ N we call a k-coordinate subgroup U < G a subgroup, which is determined by

k-coordinate sets [U ]l, l ∈ N, if this subgroup consists of all Kaloujnine’s tableaux a ∈ I for which [a]l ∈ [U ]l.

We denote by Gk(l) a level subgroup of Gk, which consists of the tuples of v.p. from X l, l < k − 1 of any α ∈ Gk.

As a sets S1 and S2 consisting of mutually commutative elements we can use the set of elements of l-coordinate

subgroup of Gk, where l < k, or the elements of Gk(l) that is isomorphic to this subgroup.

According to [9] index of center of metacyclic group has index |G : Z (G)| = p2, therefore the order of Z(G) = pk−2.

Thus, we have p2 − 1 possibilities to choose an element w as an element of the open key, which is in the protocol of

key exchange.

3 Key exchange protocol

Let S1, S2 be subsets from G consisting of mutually commutative elements. We make a generalisation of CDH by

taking into consideration the subgroups H1 = ⟨S1⟩ and H2 = ⟨S2⟩ instead of using S1, S2. We can do this because

the groups H1 and H2 have generating sets S1 and S2 which commute. Because of these mutually commutative

generating sets, we know that the subgroups are additionally mutually commutative.

4 Consideration of base steps of the protocol

Input: Elements w, wx and wy .

Alice selects a private x as the random element x from the subgroup H1 and computes wx = x−1wx. The she sends

it to Bob. Bob selects a private y as the random element y from the subgroup H2 and computes wx. Then he sends it

to Alice. Bob computes (wx)
y
= wxy and Alice computes (wy)

x
= wyx. Taking into consideration that H1 and H2

are mutually commutative groups we obtain that xy = yx. Therefore, we have that wxy = wyx.

Output: wxy that is the common key of Alice and Bob.

Thus, the common key [3, 6, 2, 1] wxy was successfully generated.
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Resistance to a cryptanalysis. But if an analytic use for a cryptanalysis will use for cryptoanalysys solving of

conjugacy search problem the method of reduction to solving of decomposition problem [12], then it lead us to solving

of discrete logarithm problem in the multiplicative cyclic group Zp. This problem is NP-hard for big p.

5 Conclusion

We can choose mutually commutative H1,H2 as subgroups of Z(G). As we said above, x, y are chosen from H1,H2

as components of key. According to [8] Z(G) = pn+m−2 so size of key-space is O(pn+m−2). It should be noted that

the size of key-space can be chosen as arbitrary big number by choosing the parameters p, n,m. As an element for

exponenting we can choose an arbitrary element w ∈ A but w ̸= e, because the size of orbit in result of action of inner

automorphism φ is always not less than p.
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