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Abstract. Indistinguishability against adaptive chosen-ciphertext at-
tacks (IND-CCA2) is usually considered the most desirable security notion
for classical encryption. In this work, we investigate its adaptation in the
quantum world, when an adversary can perform superposition queries.
The security of quantum-secure classical encryption has first been studied
by Boneh and Zhandry (CRYPTO’13), but they restricted the adversary
to classical challenge queries, which makes the indistinguishability only
hold for classical messages (IND-qCCA2). We extend their work by giv-
ing the first security notions for fully quantum indistinguishability under
quantum adaptive chosen-ciphertext attacks, where the indistinguishabil-
ity holds for superposition of plaintexts (qIND-qCCA2). This resolves an
open problem asked by Gagliardoni et al. (CRYPTO’16).
The qCCA2 security is defined in Boneh-Zhandry’s paper using string
copying and comparison, which is inherent in the classical setting. Quan-
tumly, it is unclear what it means for a ciphertext to be different from
the challenge ciphertext, and how the challenger can check the equal-
ity. The classical approach would either violate the no-cloning theorem
or lead to perturbing the adversary’s state, which may be detectable.
To remedy these problems, from the recent groundbreaking compressed
oracle technique introduced by Zhandry (CRYPTO’19), we develop a
generic framework that allows recording quantum queries for probabilistic
functions. We then give definitions for fully quantum real-or-random indis-
tinguishability under adaptive chosen-ciphertext attacks (qIND-qCCA2).
In the symmetric setting, we show that various classical modes of encryp-
tion are trivially broken in our security notions. We then provide the first
formal proof for quantum security of the Encrypt-then-MAC paradigm,
which also answers an open problem posed by Boneh and Zhandry.
In the public-key setting, we show how to achieve these stronger security
notions (qIND-qCCA2) from any encryption scheme secure in the sense
of Boneh-Zhandry (IND-qCCA2). Along the way, we also give the first
definitions of non-malleability for classical encryption in the quantum
world and show that the picture of the relations between these notions is
essentially the same as in the classical setting.
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1 Introduction

Recent advances in quantum computing [AAB+19] show the possible emergence
of new kinds of attacks due to quantum adversaries. The first type of attacks
would be due to adversaries owning a quantum computer and using it to break
computational assumptions (thus attacking classical cryptographic cryptosys-
tems). This has been made possible by the invention of quantum algorithms
that solve factoring and discrete logarithm problems in polynomial time [Sho99]
and consequently, break the security of many classical public-key encryption
schemes based on these assumptions. This threat has led to the emergence of
so-called post-quantum cryptography, based on arguably quantum-resistant as-
sumptions. But this change of assumptions may not be sufficient, and symmetric
cryptosystems may also be impacted, in case we allow a quantum adversary, not
only to perform computation on a quantum computer it may own, but also to
carry out a second type of attacks, by interacting with the target in superpo-
sition. Quantum algorithms for unstructured search [Gro96] or period finding
[Sim94] could then be applied to attack classical constructions using superposition
queries [DFNS14,KLLN16]. Cryptosystems secure against this type of attacks
would be called quantum secure.

As we approach the quantum era, it thus becomes necessary to construct
new public-key cryptosystems based on quantum-resistant assumptions, and to
investigate the security of both symmetric and public-key cryptosystems against
an attacker allowed to interact with honest parties using quantum communica-
tion. Recently, there has been towards this goal extensive research works that
consider this scenario of quantum superposition attacks for different classical
cryptographic constructions such as random oracles, pseudorandom functions,
encryption and signature schemes [BDF+11,Zha12,BZ13b,BZ13a,GHS16] and
give corresponding new security definitions. Furthermore, this new field of re-
search is also motivated by the existence of concrete attacks against classical
constructions using superposition queries (e.g., see [DFNS14,KLLN16] and their
follow up works). In this paper, we continue this line of work and focus on the
security for classical encryption schemes against quantum adversaries allowed to
make quantum encryption and decryption queries.

1.1 Defining Security for Encryption Against Quantum Adversaries

Classical Security Notions. Indistinguishability-based security definitions are
modeled as a game between a challenger and an adversary A. The game starts
with a first learning phase (with access to some oracles), followed by a challenge
phase where A sends a challenge query (two messages x0 and x1 to encrypt) and
receives a challenge ciphertext (encryption of xb). Afterward, a second learning
phase follows, and finally, A outputs a solution (its guess for the bit b). The
security reduction consists of constructing a new adversary which simulates A
and solves some hard underlying problem. The learning phases define the type
of attacks: chosen-plaintext attacks (CPA) if the adversary has access to an
encryption oracle in both learning phases, and chosen-ciphertext attacks (CCA) in
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case it also has access to a decryption oracle in the learning phases (non-adaptive
or CCA1 if it is restricted to the first learning phase, and adaptive or CCA2
otherwise).

Indistinguishability against adaptive chosen-ciphertext attack (IND-CCA2)
is usually considered the most desirable security notion for encryption. In the
CCA2 games, the adversary is restricted not to ask for decryption of the challenge
ciphertext, otherwise, this would lead to a trivial guess of the bit b. It is the role
of the challenger to ensure that the adversary obeys this rule, which intrinsically
requires the ability to copy, store and compare classical strings.

Quantum Attacks on Encryption. With recent advances in quantum com-
puting, a quantum adversary may become a tangible threat in not so long.
Switching to post-quantum computational assumptions is a beginning but may
not be enough in case the adversary gains quantum access to honest parties and
protocols. Consider for instance the well-known construction of CCA2 secure
encryption schemes from lossy trapdoor functions [PW08]: if the construction
is instantiated with lattice-based problems, it is arguably post-quantum secure.
But we show later that, the insecurity may arise from the use of a one-time
pad inside the construction (if one implements this scheme naively). Further-
more, [DFNS14,KLLN16] and their follow up works show that the security of
several classical constructions can be compromised if the adversary can perform
superposition attacks.

Boneh-Zhandry’s Security Notions [BZ13b]. Boneh and Zhandry propose
the first definition of IND-CCA for both symmetric and public-key encryption
schemes against quantum adversaries allowed to make quantum encryption and
decryption queries. But they show that the natural translation of the classical
Find-then-Guess paradigm to the quantum setting is unachievable, even for IND-
CPA security (we discuss in detail in Section 1.4). To overcome this impossibility,
they resort to considering quantum queries during the learning phases only, and
classical queries during the challenge phase. In addition to looking artificial,
this inconsistency between the learning phases and the challenge phase may lead
to a cryptographic construction that fulfills this security notion (IND-qCPA or
IND-qCCA) while being subject to an attack.

For instance, in [ATTU16], the authors verify IND-qCPA security of XTS
mode of operation (with quantum learning queries and classical challenge queries).
They design a block cipher such that an encryption scheme in XTS mode,
instantiated with that block cipher, can be attacked during the learning phase
using quantum learning queries. However, this attack cannot be used to violate
the IND-qCPA security definition. The explanation for this inconsistency is that
this attack cannot be implemented in the challenge phase due to the classical
restriction imposed on the adversary. This example supports our claim that
the inconsistency between the learning phases and the challenge phase can be
problematic and should be overcome.

IND-CCA2 Security Notions. To date, defining the CCA2 security with
quantum challenge queries remains unsolved. In [GHS16], the authors address
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the inconsistency described above for the case of symmetric encryption, but only
for IND-CPA, and leave as an open problem for the IND-CCA definitions.

The main obstacle is to define how the challenger should reply to the quantum
decryption queries after the adversary has made the quantum challenge queries.
When the challenge queries are classical, they can be stored and later the challenger
can return ⊥ if the adversary submits one of them as a decryption query. Although
it is trivial and inherent to store the challenge ciphertext in the classical setting,
it is highly non-trivial to store ciphertexts in the quantum world, due to a number
of technical obstacles, all of which can be traced to quantum no-cloning [WZ82]
and the destructiveness of quantum measurements [FP96].

Since we now consider the adversary’s challenge queries as quantum states, it
may be tempting to think that the approaches from the literature on quantum
encryption (that is, the problem of encrypting quantum data) would work here.
The notorious “recording barrier” that we face in this work has arisen previously
in the literature on quantum encryption. In particular, devising the notions of
quantum ciphertext indistinguishability under adaptive chosen-ciphertext attack
and quantum authenticated encryption [BJ15,AGM18] requires circumventing
similar obstacles.

In this paper, we manage to overcome this recording barrier by using Zhandry’s
compressed oracle technique [Zha19] (an overview is given in Section 1.2) and we
propose the first quantum version for IND-CCA security notion. We justify our
definitions in Section 1.3. Finally, in Section 1.4, we discuss our work compared
to that of [GHS16] and we also briefly restate the approach of [AGM18] and
explain why it does not obliviously work in our setting.

1.2 Our Technique

Towards resolution, we depart from a very recent groundbreaking technique
that allows for on-the-fly simulation of random oracles in the quantum setting:
Zhandry’s compressed oracles [Zha19]. The goal of his work is to overcome the
recording barrier, by allowing the reduction to record information about the
adversary’s queries, which is a key feature of many classical ROM proofs.

Zhandry’s key observations are threefold. First, instead of considering a
random function h being chosen beforehand, one can purify the adversary’s
mixed state by putting h in uniform superposition

∑
h |h〉. This observation

is a technicality that allows us to fulfill the two next points. Then, the next
observation is that, by doing the queries in the Fourier basis, the data will be
written to the oracle’s registers instead of writing to the opposite direction. This
enables the simulator to get some information about the adversary’s queries.
Finally, the last and most important one is that the simulator needs to be ready
to forget some point it simulated previously, by performing a particular test on
the database after answering the query. In particular, Zhandry defines a test
computation that maps |+〉 7→ |+〉 |1〉 and |φ〉 7→ |φ〉 |0〉 for any |φ〉 is orthogonal
to |+〉, where |+〉 =

∑
x |x〉 is the uniform superposition state. The “test-and-

forget” procedure can be implemented by first performing the query in the Fourier
basis and then doing the test operation on the output registers (of the simulator).
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This test determines whether the adversary has any information of the oracle
at some input. If not, that pair will be removed from the database so that the
adversary cannot detect that it is interacting with a simulated oracle.

This technique has been extended from random oracles to lazy-sampling of
non-uniform random functions in [CMSZ19]. The intuition is almost the same,
except that now one starts from the all-zero state, performs an efficient operation
that computes the function f(x) according to some non-uniform distribution–it is
the quantum Fourier transform (QFT) operation in the uniform setting. One then
performs the query in the Fourier basis, transforms back to the computational
basis and applies the “test-and-forget” operation (which is defined similarly as in
the uniform setting).

This idea seems to give us some possibilities to record the challenge queries.
In order to make the challenger able to record the quantum encryption queries in
the challenge phase and to answer the quantum decryption queries in the second
learning phase, we implement the encryption oracle as a compressed oracle which
keeps in its internal state a database of the adversary’s queries. Informally, it
would work as follows, where we denote the randomized encryption algorithm as
a probabilistic function f : X ×R → Y.

– For each encryption query, sample a uniformly and independently random
coin. From the adversary’s perspective, it is equivalent to purifying a coin
toss. The joint system state can be written as

∑
x,y αx,y |x, y〉XY ⊗

∑
r |r〉R.

– Initiate new registers and compute |x, y〉XY |r〉R 7→ |x, y〉XY |r〉R |f(x; r)〉F .
– Change the basis of the adversary’s Y registers and the oracle’s F registers

to the Fourier basis (by applying QFT operations on these registers), and
update the F registers to contain (f(x; r)⊕ y).

– Change the F registers back to the computational basis, un-compute f(x; r)
and check if it is all-zero. If yes, discard it. Otherwise, compute f again and
record a pair (x, f(x; r)) into the database D (initially empty).

Instantiating the encryption oracle with this approach would offer a simple way
to keep track of the information needed to formulate the CCA2 notions, namely
the challenge queries the adversary has made, and the challenge ciphertexts it
has received. Given the ability to record the challenge ciphertext, the decryption
procedure in the second phase of a CCA2 game can look up for a pair (x, y) ∈ D
on every query on y (in superposition), and return ⊥ if it is found; otherwise,
the normal decryption algorithm is applied.

The above idea gives us a reasonable way to define adaptive chosen ciphertext
security against quantum challenge queries, which partially fulfill our goals. Un-
fortunately, there are several shortcomings to this approach. First, implementing
the compressed encryption oracle this way needs one to make at least three calls
to the encryption algorithm: one computing query and one un-computing query
to perform the “test-and-forget” procedure, and one last computing query to
record the information. Second, we note that these computations of the encryp-
tion (within a query of the adversary) are needed to be always the same. This
requirement is guaranteed in the security definition because the challenger has
controls over all the randomness.
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Now, imagine that we want to use this approach to prove the security of
the Encrypt-then-MAC paradigm. At some point in the proof, the reduction
algorithm would play a game against the underlying CPA encryption. In this
game, the reduction no longer has access to the decryption oracle, thus, it needs
to be able to record all the encryption queries to answer subsequent decryption
queries itself. However, in this case, the CPA encryption, which is done by some
external challenger, would return different ciphertexts (which are computed with
different randomness). This renders the recording technique unusable.

Another example is that this approach would not help us to prove the security
of some classical paradigm including one-time adaptive chosen ciphertext security
from one-time CPA encryption and one-time MAC, for a clear reason that
the reduction algorithm needs to make at least three calls to the challenger to
implement the database, which would break the one-time security anyway.

To remedy the problem, we go one step further and change the order of the
computations: first, check whether the adversary’s response register is zero (in the
Fourier basis), and only perform the computation of f if it is not. To see why this
works, notice that since the encryption is randomized, each query is treated with
an independent, separated instance of the oracle. With our compressed oracle,
this means that before each query, the database for that query is always empty.
Then, in order to avoid entanglement attacks by the adversary, the compressed
oracle operation on a pair (x, y) can be informally defined as: if y = 0, do nothing;
otherwise add (x, f(x; r)) to the database. By implementing the compressed
encryption oracle this way, we only compute f once for each query, which thus
resolves all the problems mentioned above. In Section 3, we formally show how
to obtain the compressed encryption oracle.

1.3 Our Contributions

Quantum Oracle Queries Recording Framework. Towards our main goal,
we first build on Zhandry’s compressed oracle technique to propose a quantum
queries recording framework for probabilistic functions that supports answering
inverse queries in Section 3. That is, the adversary is allowed to make quantum
queries to the oracles of both a function f and its inverse f−1. The family of
functions we consider covers a broad class of cryptographic primitives including
permutations, symmetric encryption, and public-key encryption with decryption
failures. We use this recording technique in various ways in what follows but this
contribution is of independent interest and we hope it can find applications in
other settings as well.

New Notions of Quantum Indistinguishability. Based on this framework,
we define novel security notions for encryption in both the symmetric (Definition 2
in Section 4) and public-key settings (Definition 3 in Section 5). Our main
contribution is to propose the first definitions for adaptive chosen ciphertext
security that support fully quantum indistinguishability, resolving an outstanding
open problem posed by Gagliardoni et al. [GHS16]. Furthermore, to justify our
formalization, we show that our notions
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– are all closed under composition (see Theorem 1 and Theorem 4).
– are strictly stronger than previous notions with classical challenge queries
(see Theorem 2 and Theorem 6). In particular, this shows the (in)security
of various symmetric encryption schemes including stream cipher and some
block cipher modes of operation such as CFB, OFB, CTR. This even extends
to authenticated encryption, in which some most widely used encryption
modes like GCM are also resulting in an insecure scheme.

– (when restricted to classical challenge queries) are equivalent to Boneh-
Zhandry’s notions [BZ13b].
In this work, we adopt the real-or-random security definition. At first glance,

the naive attempt is to use the compressed oracle in the challenge phase, with
f = Enc in the real-world, and f = Enc ◦ π in the random-world for a random
permutation π. However, keeping a database (in superposition) requires quantum
memory. Let us consider a motivating example of quantum security: the frozen
smart-card attacks [GHS16]. In this setting, the target is a purely classical device
with no quantum memory, but a quantum hacker can trick the encryption chip
into quantum behavior, which allows the adversary to query the target device
(i.e., encryption) in superposition. Mapping this to the game-based definitions,
the target device would play the role of the challenger. This shows that the
requirement of quantum memory for the challenger could be artificial in the real
world.

Here, we take an alternative approach. Informally, in the real game, the
adversary has no restrictions on the use of the decryption oracle. Only in the
random game, the challenge encryption oracle is implemented as a compressed
oracle: it applies a random permutation π to the plaintext register before doing the
encryption. For each decryption query, the challenger looks for the query’s basis
state in the database (in superposition) and if found, it reasonably guesses that
the adversary is trying to decrypt the challenge ciphertext, and so it returns the
adversary’s original message (which is what is stored in the database). Otherwise,
it decrypts normally. Intuitively, the security is established by the distinguishing
probability of the adversary between whether its messages is encrypted with Enc
or Enc ◦ π.

New Notions of Quantum Non-Malleability. We initiate the study of def-
initions of non-malleability for classical public-key encryption in the quantum
world. This notion, first introduced by Dolev, Dwork and Naor [DDN00], is
the strongest integrity-like notion that is achievable using public-key encryption
only. The goal of the adversary, given a ciphertext y, is not to learn some-
thing about its plaintext x, but rather to output a different ciphertext y′ such
that its plaintext x′ is “meaningfully related” to x. In the classical setting,
the notion of non-malleability has been formalized using different definitional
approaches: the indistinguishability-based approach [BDPR98,BS06,PsV07] and
the simulation-based approach [DDN00,BS06,PsV07]. In the scope of this pa-
per, we give indistinguishability-based definitions (Definition 4) and leave the
semantic-based approach, as well as their full characterization as a future work.
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We show that our notions are closed under composition (Theorem 5) and we give
the relations between indistinguishability and non-malleability notions (Figure 2).

Formal Proof for Quantum Security of Encrypt-then-MAC. Encrypt-
then-MAC is a well-known paradigm first proven in [BN08] to show that the
combination of an IND-CPA symmetric encryption scheme and a EUF-CMA
secure MAC scheme yields an IND-CCA symmetric encryption scheme. As
an application of our technique, we solve the open problem of the quantum
security of Encrypt-then-MAC (EtM), which was asked by Boneh and Zhandry
in [BZ13b]. The classical proof does not work directly, because in one step of the
proof, the reduction needs to store all the encryption queries in order to answer
decryption queries. This is crucial to reduce to the security of the underlying
CPA encryption, without requiring the decryption oracle. Even in the weaker
model of classical challenge queries with quantum learning queries, the proof is
not obvious, because all encryption queries (including the ones in the learning
phases) need to be recorded, and it is not straightforward to do so in the quantum
setting. In Section 4.3, we show how to adapt our technique to prove the quantum
security of EtM (Theorem 3)1.

A Lifting Theorem for Public-Key Cryptosystems. Concerning the public-
key setting, we propose a compiler that lifts any secure encryption scheme in the
sense of [BZ13b] to an encryption scheme secure in the sense of our notions in
Section 5.3 (Theorem 7). The compiler follows the classical hybrid encryption
paradigm, where we encrypt the message with a one-time symmetric encryption
which can be constructed from pseudorandom functions, and then encrypt the
symmetric key with a secure public-key scheme (in the sense of [BZ13b]).

1.4 Related Work and Discussion

Boneh-Zhandry’s Impossibility. A notion of fully quantum indistinguishabil-
ity (BZ-IND-fqCPA) was previously proposed by Boneh and Zhandry [BZ13b], in
which the adversary is allowed to send the two input-message superpositions in
the challenge phase:∑

x0,x1,y

αx0,x1,y |x0, x1, y〉 7→
∑

x0,x1,y

αx0,x1,y |x0, x1, y ⊕ Enc(xb)〉 .

As already observed in [BZ13b], this notion is unachievable, even for CPA
security. This shows that some seemingly natural notions of quantum indis-
tinguishability are too strong and might go beyond what a meaningful notion
of indistinguishability should achieve. Recall the basic security requirement of
an encryption scheme: the ciphertext does not leak any information about the
message, except its length. A scheme is broken if it leaks at least one bit of
information to the adversary. However, any scheme would be broken in the sense
1 We note that in [SJS16], the authors claim to have solved this question (in the
weaker model proposed by Boneh-Zhandry [BZ13b]), but a closer look at their proof
shows that they make certain implicit assumptions on the ability to record quantum
encryption queries, which was not known how to do at that time.
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of BZ-IND-fqCPA notion even the adversary has no information whatsoever. To
put it another way, there are encryption schemes that are insecure in the sense
of BZ-IND-fqCPA but may be arguably secure for practical use.

Notice that Boneh-Zhandry’s impossibility uses Fourier sampling (i.e., apply
Hadamard transform and then measure) to distinguish between a pair of plaintext
and ciphertext registers that are entangled after the encryption, and another
separate plaintext register. In our security model, there is only a single plaintext
register, which is always entangled with the ciphertext register after the query.
This thwarts Boneh-Zhandry’s attack and allows us to bypass their impossibility2.

Comparison with [GHS16]’s Quantum Indistinguishability. In [GHS16],
Gagliardoni, Hülsing and Schaffner discuss a “security tree” of some possible
choices for quantum indistinguishability against quantum chosen-plaintext attacks
(in regard to symmetric encryption cryptosystems), and analyze some meaningful
notions.

On a high-level, their security tree is built from different perspectives of how
we model the interaction between the adversary and the challenger. In particular,
the candidates are: 1) how the challenge phase is implemented: a black-box
unitary (the oracle model) or an external challenger (the challenger model) who
has additional input and/or output out of A’s control; 2) how the adversary
sends its challenge queries: by a quantum state or by a classical description
(which prevents the entanglement of the messages with other registers); 3) the
availability of the plaintext registers after the query; and 4) the query model:
the standard query model or the minimal oracle model (see [KKVB02]).

Since we aim to achieve the strongest possible security notions, we focus our
discussion on the first and the fourth point, and stay on the safe-side for the
others (that is, we choose the models that give the adversary more power). This
can be seen in our definition, as we use the oracle model in the real game and
the challenger model in the random game. However, as we will show, the two
type of models are completely equivalent.

[GHS16]’s strongest notion is the one considered in the minimal oracle model,
which is a map |x〉 7→ |Enc(x)〉. They show that with the decryption oracle,
minimal oracle can be efficiently simulated by standard oracles. However, we
stress that in general, unlike the symmetric setting, in the public-key setting,
the requirement of having the decryption key simultaneously with the public
key is unrealistic. The encryption machine should not hold the secret key for
practical use. Another important reason is that this approach is only applicable
to injective functions, which definitely does not include decryption. We note that
one can use our technique for the minimal encryption oracle and the standard
decryption oracle. For consistency, we decide to stick with only the standard
query model.
2 In [CETU20], the authors study all possible IND-CPA security notion for symmetric
encryption schemes against a quantum adversary and their relations to each other.
The quantum real-or-random indistinguishability is one of the strongest and at the
same time realizable security notions studied in [CETU20].
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Quantum Encryption Approaches [AGM18]. In this paper, on a high
level, an adversary A has negligible probability in distinguishing between two
experiments: in the real one, it has access to encryption and decryption oracles
with no restrictions, whereas in the random one, the challenge encryption oracle
replaces A’s queried plaintexts by random ones (half of a maximally-entangled
state), and the decryption oracle answers with the originally queried plaintexts if
the adversary asked for decryption of a challenge ciphertext (which can be done
by first decrypting the ciphertext and applying a measurement on the entangled
state), otherwise it answers normally. However, in the context of classical
encryption, the standard oracle for encryption is a map |x, y〉 7→ |x, y ⊕ f(x)〉
where f is the encryption algorithm. The adversary can then use the same
strategy to detect the random experiment’s simulation: it prepares a maximally-
entangled state |φ+〉XX′ and uses half of it (the registers X) as the challenge
plaintext, and keeps X ′. After receiving the challenge ciphertext, it measures the
plaintext registers and X ′, and trivially distinguishes whether it is in the random
experiment. We note that this attack cannot be performed without relaying,
that is the plaintext registers X need to be available to A after the challenge
encryption. However, non-relaying is indistinguishable from being traced out the
plaintext registers (from A’s perspective). This inherently reduces to a definition
with classical challenge queries, which defeats our goals3.

Related Work. The real-or-random approach that we use here was first pro-
posed by Mossayebi and Schack in [MS16] (in which they call “real-or-permuted”)
for defining quantum security for symmetric encryption. Up to some small modi-
fications in the formalization, their notion for chosen-plaintext security and ours
are equivalent. However, they have not overcome the main obstacle in defining
notions for adaptive chosen-ciphertext security, that is, how the challenger can
check if a quantum decryption query submitted by the adversary is not “related”
to the challenge queries. Instead, in their definition, the adversary is imposed
by a restriction that it cannot submit such decryption queries, which cannot
be verified by the challenger. Without being able to verify that the adversary
follows the restriction, the definition is meaningless because the adversary can
trivially break security without the challenger being aware of it. In our paper,
we explicitly show how to impose this restriction on the adversary, and present a
meaningful quantum counterpart of chosen-ciphertext security.

Concurrent Work. In concurrent and independent work, Gagliardoni, Krämer,
and Struck [GKS20] propose alternative quantum security notions for public-key
encryption against chosen-plaintext attacks. Their security notions extend the
results from [GHS16] to the public-key scenario, using the minimal oracle model.
Most importantly, they show that for many real-world public-key encryption
schemes, the minimal oracle for encryption can be implemented efficiently without
knowledge of the secret key (i.e., without the decryption oracle). Recall that in
general, one would need both the standard encryption oracle and decryption
oracle to efficiently implement a minimal encryption oracle.
3 A similar discussion also appeared in [GHS16].
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Their notions and ours are inherently incomparable due to the difference in
how we model quantum oracles access. We leave the problem of unifying these
security notions for future study.

2 Preliminaries

2.1 Notations

Let λ ∈ N be the security parameter. We say that a function is negligible in λ if
it is a f (λ) = λ−ω(1). When sampling uniformly at random a value a from a set
U , we employ the notation a $← U . When sampling a value a from a probabilistic
algorithm A, we employ the notation a← A. For a ∈ N, [a] = {x ∈ N | x ≤ a}
will denote the closed integer interval with endpoints 0 and a. Let |·| denote
either the length of a string, or the cardinal of a finite set, or the absolute value.
By PPT we mean a polynomial-time non-uniform family of probabilistic circuits,
and by QPT we mean a polynomial-time non-uniform family of quantum circuits.
Let δx,x′ denote the Kronecker delta function.

2.2 Quantum Computing

For notation and conventions regarding quantum information, we refer the reader
to [NC11]. We recall a few basics here. We let |φ〉 denote an arbitrary pure
quantum state, let |x〉 denote an element of the standard (computational) basis.
A mixed state will be denoted by lowercase Greek letters, e.g., ρ. We let |+〉
denote the uniform superposition, that is |+〉 :=

∑
x |x〉.

A pure state |φ〉 can be manipulated by performing a unitary transformation
U to the state |φ〉, which we denote U |φ〉. The identity on a n-bit quantum
system is denoted 1n. Given two quantum systems A,B, with corresponding
Hilbert spaces HA,HB, let |φ〉 = |φ0, φ1〉 be a state of the joint system. We
write UA |φ〉 to denote that we act with U on register A, and with identity 1 on
register B, and we write UAB to denote that we act with U on both registers
A,B simultaneously, that is UAB = UA ⊗ UB .

Partial Measurement. Given two quantum systems A,B, with corresponding
Hilbert spaces HA,HB, let ρAB be the density matrix of the joint system. We
write TrB(ρAB) for the state obtained by tracing out system A.

Quantum Computations. Let Q be a n-bit quantum system over Zq for
some integer q. The Quantum Fourier Transform (QFT) performs the following
operation efficiently:

QFT |x〉 := 1√
qn

∑
y∈{0,1}n

ωx·yq |y〉 ,

where ωq := exp( 2πi
q ), and x ·y denotes the dot product. In this paper, we usually

consider q = 2, so that ωq = (−1).
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Given a function f : X → Y , we model a quantum-accessible oracle O for f as
a unitary transformation Of acting on three registers X,Y, Z with the property
that Of : |x, y, 0〉 7→ |x, y ⊕ f(x), 0〉, where ⊕ is some involutive group operation
(so-called quantum query model). Given an algorithm A, as access to oracles Oi,
we sometime write y ← AO1,O2,...(x) for the event that a quantum adversary A
takes x as input, makes quantum queries to O1,O2, . . ., and finally outputs y.

2.3 Cryptosystems and Notions of Security

Here we briefly recall standard notations of classical cryptosystems [Gol04], see
Appendix A for complete definitions.

Symmetric-key Encryption. A symmetric-key cryptosystem SE consists of
three PPT algorithms SE = (K,SymEnc,SymDec).

The standard correctness requirement is that for any k← K(), any random
coin r of SymEnc and any x ∈ X , we have SymDeck(SymEnck(x; r)) = x. We
sometimes omit the randomness r in SymEnc.

Public-key Encryption. A public-key cryptosystem E consists of three PPT
algorithms E = (KeyGen,Enc,Dec).

The following correctness definition is taken from [HHK17]. We call a public-
key encryption scheme E is δ-correct if

E
[

max
x∈X ,r∈R

Pr
[
Decsk(Encpk(x; r)) 6= x

]]
≤ δ,

where the expectation is taken over (pk, sk)← KeyGen(λ).

Game-based Definitions. Previously, quantum indistinguishability for adap-
tive chosen-ciphertext security has been defined in the work of Boneh and Zhandry
[BZ13b]. At a high level, their notions allow quantum encryption and decryp-
tion queries, but require challenge queries to be classical. Regarding the attack
models, the following security notions are then defined: IND-qCPA, IND-qCCA1,
IND-qCCA2. We briefly recall their definitions in Appendix A.

Message Authentication Code. A message authentication codeMA consists
of three PPT algorithmsMA = (K,MAC,Ver). We require that Verk(x, τ) = 1
if and only if τ = MACk(x), for all x ∈ X and for all k← K(). We also require
that for all k← K() and for all τ , we have Verk(x, τ) = 0 if x = ⊥.

In this work, we use Boneh-Zhandry security for a MAC scheme [BZ13a]: a
MAC is EUF-qCMA secure, if no adversary can use q quantum queries to the
MAC to produce q + 1 valid message/tag pairs except with negligible probability.

3 Quantum Oracle Queries Recording Framework

The starting point towards our goal of defining indistinguishability-based security
notions for encryption is to explain how the challenger should reply to the
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quantum decryption queries in the second learning phase after the adversary
has made the quantum encryption queries in the challenge phase. This implies
explaining how it could record these quantum challenge queries.

We give these explanations in this section in the more general case of a
function f (later instantiated by the encryption algorithm) accessible via an
oracle Of and its inverse f−1 (which models the decryption algorithm) accessible
via an oracle Of−1 . We first describe in Section 3.1 how to record the quantum
queries to Of , and in Section 3.2 how to answer the inverse queries to Of−1 using
the constructed database.

3.1 How to Record Quantum Oracle Queries?

We formalize the technique by considering some probabilistic quantum-polynomial-
time computable function f : X ×R → Y, in the quantum query model, where
an adversary A is given black-box access to f via an oracle Of . By probabilistic,
we mean that a new random coin is flipped independently and uniformly for each
query. On a high-level, in order to record quantum queries to f , we will give the
adversary oracle access to a compressed oracle, denoted CStOf , that we construct
in this section and that is perfectly indistinguishable from Of .

For simplicity, we assume that the domain of f is X = {0, 1}m, its range is
Y = {0, 1}n, and the randomness space R = {0, 1}`. We also make a convention
that f(⊥) = 0 where ⊥ is a bit string that lies outside the message space (⊥ /∈ X ).

Single-query Setting. We first describe the oracle operations handling a single
query. We begin with the usual quantum oracles, the so-called standard oracle
and Fourier oracle. These oracles and their equivalence are proven in much of
literature on quantum-accessible oracles (e.g., see [KKVB02,Zha19,CMSZ19]).
The standard oracle for a function f is the unitary defined as:

Of
∑
x,y

αx,y |x, y〉XY 7→
∑
x,y

αx,y |x, y ⊕ f(x)〉XY .

The function f is computed by first sampling a uniform and independent random-
ness r and then applying f on the input (x; r). From the adversary’s point of view,
this is equivalent to r being in uniform superposition

∑
r |r〉 and perform the

following map: |x, y〉XY ⊗
∑
r |r〉R 7→

∑
r |x, y ⊕ f(x; r)〉XY |r〉R. Augmenting

the joint system with an additional register R is a purification of the adversary’s
mixed state, and tracing out R (i.e., projecting onto the one-dimensional subspace
spanned by |r〉) recovers the original mixed state. Moreover, this projection,
which is outside of the adversary’s view, is undetectable by A.

Next, we consider the oracle in the truth table form: for each query, its internal
state consists of two sets of registers: `-qubit R registers representing randomness
to the function, n2m-qubit F registers containing the truth table of the function
with the given randomness. For short, we write |r〉 |f(0; r)‖ . . . ‖f(2m − 1; r)〉 as
|r〉 |Dr〉. Dr can be seen as the truth table of f , where Dr(x) := f(x; r). We call
this oracle StOf , which performs the map (on the adversary’s basis states):
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StOf |x, y〉XY ⊗
1√
2`
∑
r

|r〉R |Dr〉F 7→
1√
2`
∑
r

|x, y ⊕Dr(x)〉XY |r〉R |Dr〉F

= 1√
2`
∑
r

|x, y ⊕ f(x; r)〉XY |r〉R |Dr〉F

Lemma 1. Of and StOf are perfectly indistinguishable.

Proof. The lemma follows directly from the fact that for each query, if we trace
out the oracle’s internal registers, the mixed state of the adversary in both cases
will be identical.

Next, we consider the Fourier oracle model FourierOf , which technically
provides a different interface to the adversary, but can be mapped to the standard
oracle by QFT operations. The initial state of FourierOf is

1√
2`
∑
r

|r〉R QFTF |Dr〉F = 1√
2`

1√
2n2m

∑
r

∑
E

(−1)E·Dr |r〉R |E〉F .

On the basis states, the Fourier oracle FourierOf is defined as follows.

FourierOf |x, z〉XY ⊗
1√
2`

1√
2n2m

∑
r

∑
E

(−1)E·Dr |r〉R |E〉F

7→ 1√
2`

1√
2n2m

∑
r

∑
E

(−1)E·Dr |x, z〉XY |r〉R |E ⊕ Px,z〉F .

where Px,z is the point function that outputs z on x and 0 everywhere else.
Intuitively, with the Fourier oracle, instead of adding data from the oracle’s
registers to the adversary’s registers, it adds in the opposite direction.

Lemma 2. FourierOf and StOf are equivalent.

Proof. Each can be constructed by an f -independent quantum circuit containing
just one copy of the other, that is

QFTY F ◦ StOf ◦ QFT†Y F = FourierOf ,

QFT†Y F ◦ FourierOf ◦ QFTY F = StOf .

For completeness, we provide concrete computations for these equalities in Ap-
pendix B.1.

We now describe our compressed oracles. Consider the Fourier oracle FourierOf ,
after the query, the oracle’s F registers will be XORed with a point function. If
we transform this register back to the computational basis (by applying QFT
operations), and un-compute f , F will be zero in all but at most one location.
Therefore, we can discard all except at most one pair (x, z) such that z 6= 0. We
then obtain the compressed Fourier oracle for f , whose initial state is empty.
The action of the compressed oracle and its indistinguishability from the Fourier
oracle are formally stated as follows.

Lemma 3. In the single-query setting, the compressed Fourier oracle CFourierOf

acts on a quantum state |x, z〉 where x ∈ X and z ∈ Y, as follows.



15

– If z = 0n, then CFourierOf |x, z〉 7→ |x, z〉 1√
2`
∑
r |r〉.

– If z 6= 0n, then CFourierOf |x, z〉 7→ |x, z〉 ⊗ |φx,z〉, where

|φx,z〉 := 1√
2`
∑
r

∑
u

1√
2n

(−1)f(x;r)·u |x, r, z ⊕ u〉 .

Furthermore, CFourierOf and FourierOf are perfectly indistinguishable.

Proof Sketch. Let Uf be the unitary implementing f , that is: Uf |r, x, u〉 =
|r, x, u⊕ f(x; r)〉. We define a two-input conditional unitary Decompx acting on
R and n-qubit registers, based on x, as Decompx := QFT ◦Uf . Let Decomp to be
the unitary which applies Decompx for all x in the domain, one at a time from 0
up to 2m − 1.
1. We start with the Fourier oracle, whose initial state is Fourier-transformed

truth table of f . Then, the initial state of the oracle can be prepared by first
initializing the uniform superposition R registers, and applying Decomp to
x,R and F . This action can be seen as a sort of local decompression for F .

2. Next, we apply the Fourier oracle operation, which replaces the x-th row of
the truth table F with some u⊕ z.

3. Finally, we reverse the oracle’s initialization step (i.e., Decomp†). Notice that
Decompx′ and the Fourier oracle operation commute for any x′ different from
the input x, so that the two applications of Decompx′ and Decomp†x′ cancel
out. A computational basis test on the x′-th row of the F registers to test
if they contain 0 will always return true for any x′ 6= x, thus these registers
can be discarded. This means that after the query, the oracle’s F registers
only have at most 1 defined point. This action can be seen as a sort of local
re-compression for F .

4. Now, if we change the representation of the F registers from the truth table
to a database D, and decompress D again, we would obtain the compressed
Fourier oracle.

The formal proof is given in Appendix B.2.
Notice that from its description above, we implement this oracle with three

computations of Uf (by three computations of Decompx). However, as we will see
in later sections, it is crucial for our security reductions to simulate CFourierOf

with only one computation of Uf , which allows us to “outsource” parts of Uf
computations to other oracles. We now give an intuition why we can reduce
three computations of Uf to one computation. Let’s consider the following cases.
– The z register is all-zero. Note that since the initial state of the database D is

also all-zero, applying Decompx in the first step (i.e., locally decompressing D)
and then XORing z to the database’s u register (in Step 2) does not change
the database’s state. Finally, locally re-compressing D (Step 3) brings it
back to all-zero state, which can be discarded. At the end of this step, D is
empty, thus decompressing it also yields an empty database. In this case,
we see that we can skip Step 2, and two applications of Decompx in Step 1
and Decomp†x in Step 3 cancel out, leaving us only one application of Uf in
Step 4.



16

– The z register is not zero. By a similar argument, we have that at the end
of Step 3, D has one defined point, thus the two applications of Decomp†x in
Step 3 and Decompx in Step 4 cancel out, leaving us only one application
of Uf in Step 1.

We describe a quantum circuit in Figure 1, which applies a single computation
of Uf , implementing our compressed oracle. Let Test be the unitary defined as
Test |0〉 |b〉 7→ |0〉 |b〉 and Test |φ〉 |b〉 7→ |φ〉 |b⊕ 1〉 for any |φ〉 orthogonal to |0〉
and b ∈ {0, 1}. A concrete computation (given in Appendix B.2) reveals that
this circuit outputs the same quantum state as stated in the Lemma, when the
oracle’s registers are initialized with |0〉.

|x〉 |x〉

|z〉
Test Test

|z〉O
racle’s

registers

|0〉 |0〉

|0〉

Uf

|x〉

|0〉 QFT |r〉

|0〉 QFT |u⊕ z〉

Fig. 1. A quantum circuit implementing our CFourierOf oracle. Depending on the
control bit b which is the output of Test, if b = 1, we apply Uf , otherwise, we apply the
identity. The bit b will be discarded after the computation.

By applying QFT operations to the adversary’s response registers, and the
oracle’s output registers, we restore the standard oracle, and the oracle’s state
will be (in superposition of) |x, r, f(x; r)〉. We will call this oracle CStOf . The
following Lemma follows immediately from Lemma 2 and Lemma 3. Note
that since the transformation between CStOf and CFourierOf is independent of
function f , CStOf also applies Uf only once.

Lemma 4. CStOf is a QPT unitary operation. Furthermore, CStOf and StOf

are perfectly indistinguishable.

Many-query Setting. Since the functions we consider are randomized, the
oracle would need to flip a new random coin for each query, that is to create a
new register

∑
r |r〉 to purify the adversary’s mixed state for each query. For the

compressed oracles, it is equivalent to initiate a new, independent database. By
the standard hybrid argument, it is easy to verify that:

Lemma 5. CStOf and StOf are perfectly indistinguishable, in the many-query
setting.

For each query, its oracle’s database is |Di〉 := |r〉 |x, f(x; r)〉. Overall, the
oracle’s database D will be a collection of many tuples (r, x, y) where (r, x, y) ∈ D
means y = f(x; r).
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Notation. We formally define the following notation to denote the compressed
oracle of a function f : CStO|r〉f [x 7→ y], where r is the purification of the random-
ness of f , x is the input and y is the output. We sometimes omit the superscript
if it is clear from the context.

Other Variations. We also consider some more oracle variations which give a
different perspective on our compressed oracles. They will be used in the technical
contributions presented in later sections.

Compress then Measure. We define the compress-then-measure oracle for a
function f which is identical to CStO|r〉f , except that after the query, we measure
the purification registers (without measuring the whole database), and get some
classical value r. We will denote this oracle as CtMStO|r〉f [x 7→ y].

Lemma 6. CtMStOf and CStOf are perfectly indistinguishable.

Proof. We delay the measurement, and un-compute all the computations de-
scribed above. We then end up with the standard oracle, which we can measure
the purification registers as a part of the tracing out operation, and get a classical
value r. From the adversary’s point of view, it is undetectable.

Randomness. We consider the following probabilistic function f : X ×R×K →
Y, where both R and K act as randomness, which are controlled by the oracle.
We consider the following implementations of the compressed oracle CStOf :
– CStO|r〉f [(x; k) 7→ y], which purifies the randomness r ∈ R.
– CStO|k〉f [(x; r) 7→ y], which purifies the randomness k ∈ K.
– CStO|r,k〉f [x 7→ y], which purifies both (r, k) ∈ R×K.

Lemma 7. CStO|r〉f [(x; k) 7→ y], CStO|k〉f [(x; r) 7→ y], and CStO|r,k〉f [x 7→ y] are
perfectly indistinguishable.

Proof. The statement follows from the fact that the first and the third variations
can be seen as compress-then-measure oracles of the second one.

3.2 How to Answer Inverse Queries?

We now describe how to answer inverse queries to f−1 using the database con-
structed above. We first define a class of functions for which our technique will
apply, and we call them δ-almost invertible functions. This notion captures a
generic, broad class of cryptographic primitives including pseudorandom per-
mutations and encryption. We then give the adversary access to a new oracle
denoted CInvOf−1 which acts on the database, instead of Of−1 . Given access to
CInvOf−1 , the bound on the distinguishing probability of the adversary when
interacting with the compressed oracle CStOf is stated in Lemma 8.
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Definition 1 (δ-almost invertible Functions). Let F = {f : X ×K → Y} be
a family of functions such that for each f ∈ F , there is a function f−1 : Y×K → X .
F is δ-almost invertible if

E
k∈K

[
max
x∈X

Pr
[
f−1(k, f(k, x)) 6= x

]]
≤ δ.

For example, a pseudorandom permutation, or a symmetric encryption scheme
is an invertible function (with δ = 0), whereas a δ-correct public-key encryption
scheme is a δ-almost invertible function.

Let f be a QPT probabilistic and δ-almost invertible function. We define
a classical procedure FindImage which takes as input an image y ∈ Y, and a
database D. Then, it looks for a triple (x, r, y) ∈ D. If found, it outputs
(b = 1, w = x), otherwise, it outputs (b = 0, w = 0m).

We define the unitary operation CInvOf−1 for the inverse queries which maps
the basis state |y, z〉 ⊗ |D〉 to:{

Uf−1 |y, z〉 ⊗ |D〉 = |y, z ⊕ f−1(y)〉 ⊗ |D〉 if FindImage(y,D) = (0, 0m),
|y, z ⊕ w〉 ⊗ |D〉 if FindImage(y,D) = (1, w).

This unitary is implemented by a single call to f−1, controlled by the output
bit b of FindImage.
Lemma 8. For any (unbounded) oracle algorithm A:∣∣∣Pr

[
AOf ,Of−1 () = 1

]
− Pr

[
ACStOf ,CInvOf−1 () = 1

]∣∣∣ ≤ O(qi · δ),
where qi is the number of inverse queries.

Proof. We prove through a sequence of games.

Game G0: This is the game where A interacts with the standard oracles Of
and Of−1 .

Game G1: This is identical to G0, except that now the oracle Of is simulated
using the compressed oracle CStOf . Notice that Of−1 operation does not touch
the database registers, thus it commutes with any CStOf operation. Since CStOf

is equivalent to the standard oracle Of , A cannot distinguish G1 and G0.

Game G2: This is identical to G1, except that now the oracle Of−1 is replaced
by the oracle CInvOf−1 .

Let |Ψ〉 be the joint system state of the adversary and the oracle before
making any inverse query. Denote ∆ = Of−1 − CInvOf−1 . For each query |y, z〉
to the inverse oracle, we consider the registers y, z,D. We now examine three
cases.
(a) Let D be such that y /∈ D, that is, FindImage(y,D) = (0, 0). Let P1 be

the projection onto the registers y,D such that y /∈ D. In this case, the
inverse oracle in both games applies the unitary mapping |y, z〉 ⊗ |D〉 7→
|y, z ⊕ f−1(y)〉 ⊗ |D〉. Thus, ∆P1 |Ψ〉 = 0.

(b) Let D be such that y ∈ D, that is, FindImage(y,D) = (1, w). Let P2 be the
projection onto the registers y,D such that y ∈ D and f−1(y) = w. In this
case, we also have ∆P2 |Ψ〉 = 0.
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(c) Let D be such that y ∈ D. Let P3 be the projection onto the registers
y,D such that y ∈ D but f−1(y) 6= w. Thus ‖P3 |Ψ〉‖2 is the probability
of measuring y,D and get y /∈ D such that f−1(y = f(x)) 6= x for some
preimage x of y. In this case, we have ‖∆P3 |Ψ〉‖2 ≤ δ, by the definition of f .

Notice that P1+P2+P3 = 1. Therefore, we have ‖∆ |Ψ〉‖2
(∗)
≤
∥∥∥∑3

i=1 ∆Pi |Ψ〉
∥∥∥2 (∗∗)
≤

3 ·
∑3
i=1 ‖∆Pi |Ψ〉‖

2 ≤ 3 · δ, where (∗) uses the triangle inequality and (∗∗) uses
AM-QM inequality. Then the same holds true for any mixed state since any
mixed state is in the convex hull of pure states. If A makes at most qi inverse
queries, the trace distance of the mixed state of the adversary in games G2 and
G1 is at most O(qi · δ). This completes the proof.

4 Quantum-Secure Symmetric Encryption

4.1 Definitions of Security

In this section, we use the compressed oracle technique defined above to define
quantum real-or-random indistinguishability security notions. During the learning
phases, A has access to the encryption standard oracle OSymEnck

. In the CCA
case, it also has access to OSymDeck

in the first learning phase.
We now describe how we handle the challenge phase and the decryption queries

in the second learning phase. Informally, in the real-world (b = 1), the adversary
has no restrictions on the use of the decryption oracle (in particular, A can
freely decrypt the challenge ciphertext), so that the encryption oracle is simply
implemented as the standard encryption oracle OSymEnck

and the decryption oracle
as the standard decryption oracle OSymDeck

. Only in the random-world (b = 0),
the challenge encryption oracle is implemented as a compressed oracle which
purifies the randomness r of the encryption: it applies a random permutation π
to the plaintext register before doing the encryption, leading to CStOSymEnck◦π

4.
Applying naively the recording technique of Section 3.2 with fπ := SymEnck ◦ π
would make the records in the database be of the form (x, r, π, fπ(x; r)) (where we
consider π as a part of the randomness of fπ). Accordingly, the decryption oracle
in the random-world would be implemented as CInvOf−1

π
= CInvOπ−1◦SymDeck

.
But since the permutation π is being chosen randomly for each invocation of the
challenge encryption oracle, it can be chosen classically beforehand and there is
no need to keep it in the database. Thus, it is easier (and equivalent) to consider
that the decryption oracle in the random-world is implemented using CInvOSymDec,
with records in the database of the form (x, r, fπ(x; r)). This decryption oracle
always returns the original plaintext (x) if the query is a challenge one. In both
cases, the adversary outputs an internal state |Φ〉 in the first phase, which will
be given to the second phase.

Formally, let Π be a family of random permutations over X , we define a
“real-or-random” oracle allowing quantum queries as follows.

4 For the sake of simplicity, we abuse notation here and denote fπ := SymEnck ◦ π,
where one should understand fπ(x; r) := SymEnck(π(x); r) if x ∈ X and r ∈ R.
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RR(b) =
{

SymEnck if b = 1,
CStOSymEnck◦π if b = 0,where π $← Π.

For the sake of simplicity, we overload the notation of CInvOSymDeck
to denote

both the standard oracle OSymDeck
in the real-world (when there is no database D)

and the actual CInvOSymDeck
oracle in the random-world.

Definition 2 (Indistinguishability notions for symmetric encryption
(qIND-qCPA, qIND-qCCA1, qIND-qCCA2)).
Let SE = (K,SymEnc,SymDec) be a symmetric encryption scheme and let
A = (A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we
define the following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
SE (λ,A):

1 : k $← K

2 : |Φ〉 ← A
OSymEnck ,O1
1 (λ)

3 : b′ ← A
RR(b),OSymEnck ,O2
2 (|Φ〉)

4 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
OSymDeck

OSymDeck

Oracle O2

∅
∅
CInvOSymDeck

We define A’s advantage by

Advqind-qatk
A,SE (λ) :=

∣∣∣Pr
[

Exptqind-qatk−1
SE (λ,A) = 1

]
− Pr

[
Exptqind-qatk−0

SE (λ,A) = 1
]∣∣∣ .

We say SE is secure in the sense of qIND-qatk if A being QPT implies that
Advqind-qatk

A,SE (λ) is negligible.

Equivalence with Boneh-Zhandry’s Notions. To justify our notions, we
show that when restricting our definitions to classical challenge queries, they are
equivalent to Boneh-Zhandry’s notions (IND-qatk). If we denote our restricted
notions by IND-qatk′, a scheme SE is IND-qatk′ secure iff it is IND-qatk secure.

Indeed, because the challenge queries are classical, the simulator can store the
challenge plaintexts and the challenge ciphertexts. Any simulator that returns
⊥ if the adversary submits a challenge ciphertext in the sense of IND-qatk can
be turned to a simulator that returns the original plaintext x in the sense of
IND-qatk′, and vice versa. More precisely, we have that:

Advind-qatk
A,SE (λ) ≤ 2 · Advind-qatk′

A,SE (λ), and Advind-qatk′
A,SE (λ) ≤ Advind-qatk

A,SE (λ).
This is the standard argument (see [BDJR97]), we omit the details.
Single-message Versus Many-message Security. We have presented defi-
nitions which allow the adversary to make q(λ)-many challenge queries to the
real-or-random oracle. A scheme satisfying the definitions in the case when
q(λ) = 1 is said to be single-message secure. The question of whether single-
message security implies many-message security is the question of composability
of the definitions, which is answered affirmatively below.
Theorem 1. A symmetric encryption scheme SE is many-message qIND-qatk
secure iff it is single-message qIND-qatk secure.

The proof follows the classical hybrid argument; we give it in Appendix D.1.
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4.2 A Separation Example

We show that upgrading from classical challenge queries to quantum chal-
lenge queries gives the adversary more power. In particular, we show that the
IND-qCCA2 secure symmetric encryption scheme given by Boneh and Zhandry
[BZ13b, Construction 4.9] is insecure once the adversary can make even a single
quantum challenge query in the sense of chosen plaintext security (qIND-qCPA).
Our attack can be considered as an impossibility to achieve quantum indistin-
guishability for encryption schemes which follow the stream cipher-like paradigm
(such as stream ciphers, block cipher modes of operation including CFB, OFB,
CTR, or even some most widely used modes like GCM for authenticated encryp-
tions).

Theorem 2. Under the assumption that quantum-secure pseudorandom func-
tions exist, there is an encryption scheme SE which is IND-qCCA2 secure, but
qIND-qCPA insecure.

Proof. We recall Boneh-Zhandry construction as follows.

Construction 1 ([BZ13b]). Let F and G be quantum-secure pseudorandom
functions. We construct the following encryption SE = (SymEnc,SymDec) where:

SymEnck1‖k2
(x) :

1 : r
$← {0, 1}λ

2 : c1 ← F (k1, r)⊕ x
3 : c2 ← G(k2, (r, x))
4 : return r‖c1‖c2

SymDeck1‖k2
(r‖c1‖c2) :

1 : x← c1 ⊕ F (k1, r)
2 : c′2 ← G(k2, (r, x))
3 : if c2 6= c′2 then
4 : return ⊥
5 : return x

Lemma 9 ([BZ13b, Theorem 4.10]). The encryption scheme SE in Con-
struction 1 is IND-qCCA2 secure.

To show the qIND-qCPA insecurity of this scheme, we establish the following
quantum computation. Let UOTP be the unitary implementing the one-time pad
encryption, but using the same classical randomness r (which is uniformly chosen
beforehand) in superposition. For fixed x0, x1 ∈ {0, 1}m, we prepare the following
state:

|ψ1〉 = 1√
2

(|x0〉+ |x1〉) |0m〉 .

Applying UOTP yields:

|ψ2〉 = 1√
2

∑
b∈{0,1}

|xb, xb ⊕ r〉 .
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Then we apply a Hadamard transform to 2m qubits in all the registers. This
yields the state:

|ψ3〉 = 2−
2m+1

2
∑
b

∑
u∈{0,1}m

(−1)xb·u |u〉
∑

v∈{0,1}m
(−1)(xb⊕r)·v |v〉

= 2−
2m−1

2
∑
u,v

δu·(x0⊕x1),v·(x0⊕x1)(−1)x0·u⊕(x0⊕r)·v |u, v〉 .

If we measure |ψ3〉, with probability 1, we get a random pair (u, v) such that

u · (x0 ⊕ x1) = v · (x0 ⊕ x1). (1)

If we apply a random permutation π to the first registers xb of |ψ1〉 before
applying UOTP and then un-compute it, we get the following state:

|ψ3〉 = 2−
2m−1

2
∑
u,v

δu·(x0⊕x1),v·(π(x0)⊕π(x1))(−1)x0·u⊕(π(x0)⊕r)·v |u, v〉 .

Measuring |ψ′3〉 yields a random pair (u, v) such that u · (x0 ⊕ x1) = v · (π(x0)⊕
π(x1)) where π(xb) are random m-bit strings. Thus, Equation (1) satisfies with
probability at most 1

2 . It is now easy to see that:

Lemma 10. SE is qIND-qCPA insecure.

Proof. In the challenge phase, the adversary A chooses two fixed messages x0, x1,
and prepares the following state as its challenge:

|ψ〉 = 1√
2

∑
b

|xb〉 |0〉R |0〉F |+〉G .

The challenge ciphertext state will be:

|ψ0〉 = 1√
2

∑
b

|xb〉 |r〉F |xb ⊕ F (k1, r)〉F |+〉G if b = 0,

or

|ψ1〉 = 1√
2

∑
b

|xb〉 |r〉R |π(xb)⊕ F (k1, r)〉F |+〉G if b = 1.

Since r is a classical value, A can discard two registers R andG, which are separate
from the others. A then applies the Fourier sampling (i.e., Hadamard transform
followed by a measurement as described above), and outputs 1 if Equation (1) is
satisfied, otherwise it outputs 0. We have Pr

[
Exptqind-qcpa−1

SE (λ,A) = 1
]

= 1 and

Pr
[

Exptqind-qcpa−0
SE (λ,A) = 1

]
≤ 1

2 , thus Advqind-qcpa
A,SE (λ) ≥ 1

2 , which is certainly
not negligible.
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4.3 Quantum CCA2 Security of Encrypt-then-MAC

The classical Encrypt-then-MAC paradigm [BN08] shows that an IND-CPA secure
symmetric encryption scheme can be made IND-CCA2 secure if combined with an
EUF-CMA MAC scheme. We prove here that this result also holds for the security
notions defined above. We first recall the Encrypt-then-MAC construction and
proceed with its security proof.

Construction 2. Let SE = (KSE ,SymEnc,SymDec) be a symmetric encryption
scheme and MA = (KMA,MAC,Ver) be a MAC scheme. The Encrypt-then-
MAC composition of base schemes SE and MA is the symmetric encryption
scheme SE ′ = (K′,SymEnc′,SymDec′) whose constituent algorithms are defined
as follows.

K′(λ) :

1 : k1
$← KSE()

2 : k2
$← KMA()

3 : return k1 ‖ k2

SymEnc′k1‖k2
(x) :

1 : c← SymEnck1
(x)

2 : τ ← MACk2 (c)
3 : return c ‖ τ

SymDec′k1‖k2
(c ‖ τ) :

1 : if Verk2 (c, τ) = 0 then
2 : return ⊥
3 : x← SymDeck1

(c)

4 : return x

Theorem 3. Let SE be an qIND-qCPA secure symmetric encryption scheme. Let
MA be an EUF-qCMA secure message authentication code. Then the encryption
scheme SE ′ defined in Construction 2 is qIND-qCCA2 secure. In particular, for
any QPT adversary A making at most qd decryption queries, there exist QPT
adversaries B, C such that

Advqind-qcca2
A,SE′ (λ) ≤ Advqind-qcpa

B,SE (λ) +O(qd) · Adveuf-qcma
C,MA (λ).

Remark 1. As demonstrated by Boneh and Zhandry [BZ13a], EUF-qCMA MACs
can be constructed from quantum-secure pseudorandom functions. For qIND-qCPA
security, it is not difficult to prove that the encryption scheme from [GHS16,
Construction 6.6], which is based on quantum-secure pseudorandom permutations,
is also secure in our notions.

Proof. We proceed using hybrid games. For the sake of clarity, these games are
also described in Figure 4.

Let A be a QPT adversary. For any game Gindex, we denote by Pr[Gindex ] :=
|Pr[Gindex(A) = 1 | b = 1]− Pr[Gindex(A) = 1 | b = 0]|. Also, by event Gindex(A),
we mean the output of the experiments (defined as in Definition 2) in game Gindex
when interacting with A.

Game G0: This is the standard attack game. In what follows, let k := k1‖k2 ←
K′().

Game G1: This is identical to G0, except that
– The encryption oracle is implemented as CStO|r〉SymEnc′k

, which purifies the
randomness r of SymEnc.
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– The challenge oracle (in the real-world experiment b = 1) is also implemented
as CStO|r〉SymEnc′k

.

– The decryption oracle is implemented as CInvOSymDec′k .
In particular, let D be the database of both the encryption oracle and the
challenge oracle. The decryption oracle CInvOSymDec′k can be written as:

CInvO1 |y, z〉 |D〉 =
{
|y, z ⊕ SymDec′k(y)〉 |D〉 if FindImage(y,D) = (0, 0),
|y, z ⊕ w〉 |D〉 if FindImage(y,D) = (1, w),

where FindImage parses its input component y as y = c ‖ τ .

Claim 3.1. Pr[G1 ] = Pr[G0 ].

Proof. Since the encryption is perfectly correct, by Lemma 8, we have Pr[G1 ] =
Pr[G0 ].

Game G2: This is identical to G1, except that we change the decryption oracle
CInvOSymDec′k to:

CInvO2 |y, z〉 |D〉 =
{
|y, z ⊕⊥〉 |D〉 if FindImage(y,D) = (0, 0)5,

|y, z ⊕ w〉 |D〉 if FindImage(y,D) = (1, w).

Claim 3.2. |Pr[G2 ]− Pr[G1 ]| ≤ qd · Adveuf-qcma
A,MA (λ).

Proof. Intuitively, if the adversary could distinguish the two games, it must be
able to procedure a ciphertext (c‖τ) /∈ D such that SymDec′k(c‖τ) 6= ⊥. Since
the decryption of the underlying encryption SE never outputs ⊥, it means that
Verk2(c, τ) = 1. But since (c‖τ) /∈ D, this (c, τ) pair must be a forge ofMA.

Formally, we construct a QPT adversary C from A that makes only q quantum
queries to the oracle MAC, and successfully outputs q + 1 valid, distinct mes-
sage/tag pairs. C runs A as its subroutine: it samples a random key k1

$← KSE for
SE and simulates the encryption oracle for A by implementing CStO|r〉f [x 7→ c‖τ ]
where f = SymEnc′ and r is the randomness of SE . For the i-th encryption query
(including the challenge queries), after computing a ciphertext ci = SymEnck1

(xi),
it sends ci to the MAC oracle and receives back a tag τi for ci, and forwards
(ci‖τi) to A. For the sake of completeness, a quantum circuit of this unitary is
given in Figure 5. Let D be the database kept by C, which is a collection of q
pairs {(xi, (ci‖τi))}i∈[q], where q is the total number of encryption and challenge
queries. C randomly measures one of A’s decryption queries, and then it also
measures its database.
5 Here we use the same definition for z ⊕ ⊥ as in [BZ13b]. More precisely, we take
⊥ to be some bit string that lies outside of the message space X , and z ⊕⊥ to be
bitwise XOR.
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Let Forge2 be the event that A puts a non-negligible weight to a pair (c̃‖τ̃)
in its decryption queries such that (c̃‖τ̃) /∈ D and SymDec′(c̃‖τ̃) 6= ⊥. A could
distinguish the two games if and only if Pr[Forge2 ] is non-negligible.

Now we argue that measuring the database D gives C q valid, distinct pairs
(ci, τi) with overwhelming probability.

Without loss of generality, we assume that the adversary A never sends a
query

∑
x αx |x,+〉 to the compressed oracles (since it is equivalent to not making

any query at all), and C only needs to make a query to the MAC oracle when A
does so6. Thus, we have |D| = q which is also the number of legitimate queries to
the MAC oracle. Since each ciphertext (ci‖τi) ∈ D is generated with a random,
fresh coin, the probability that there exists a collision among any of the ci is
at most q2/ |C| where C is SE ’s ciphertext space. This quantity is negligible,
so C gets q distinct pairs except with negligible probability after measuring its
database. All these pairs are legitimately computed by the MAC oracle, hence
they are valid.
C then outputs its q pairs from the database measurement, and another pair

from its decryption queries measurement. With probability Pr[Forge2 ] /qd, it
gets a valid pair (c̃‖τ̃) /∈ D, which is distinct from the other q pairs. Overall,
C output q + 1 distinct, valid pairs with non-negligible probability when Forge2
happens with non-negligible probability. The claim follows from the security of
MA.

Game G3: This is identical to G2, except that for each encryption query, the
encryption algorithm now samples a random, independent key k∗2 to compute
the MAC, instead of using the legitimate key k2.

Claim 3.3. |Pr[G3 ]− Pr[G2 ]| ≤ qd · Adveuf-qcma
A,MA (λ).

Proof. Let q be the total number of encryption and challenge queries. We
construct a QPT adversary C as in the previous Claim 3.2.

Let Forge3 be the event that A puts a non-negligible weight to a pair (c̃‖τ̃)
in its decryption queries such that (c̃‖τ̃) /∈ D and SymDec′k1‖k2

(c̃‖τ̃) 6= ⊥ (using
the legitimate key). A could distinguish the two games if and only if Pr[Forge3 ]
is non-negligible.

We first prove for q = 1. Notice that in game G3, C makes no queries to the
MAC oracle. By randomly measuring a decryption query from A, with probability
Pr[Forge3 ] /qd, it gets a valid pair (c̃‖τ̃) /∈ D. C then outputs this pair which
is a forge with non-negligible probability if Forge3 happens with non-negligible
probability. By the security ofMA, the proof for q = 1 follows.

We then use the standard hybrid argument to prove for a general case q =
poly(λ): all the queries to the compressed oracles except the last one are answered
by querying to the MAC oracle (as in G2), and the last one is answered with
the modified encryption oracle as in G3. A could trivially distinguish the two
6 Recall that the compressed oracle only computes the function f if the adversary’s
response registers is not |0〉 in the Fourier basis, which is equivalent to |+〉 in the
computational basis (see Figure 1).
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games, if there is a ciphertext (ci‖τi) ∈ D such that i < q and ci = cq. However,
analogously to the argument in the previous Claim 3.2, this happens with
negligible probability. Thus, C can measure its database to get q − 1 distinct,
valid pairs, alongside a pair (c̃, τ̃) it gets from measuring A’s decryption queries.
With probability Pr[Forge3 ] /qd, C output q distinct, valid pairs while making
only q − 1 queries to the MAC oracle. The claim then follows from the security
ofMA.

Game G4: This is identical to G3, except that we change the implementation
of the compressed oracles from CStO|r〉f [x 7→ c‖τ ] to CStO|k

∗
2〉

f [x 7→ c‖τ ], where
k∗2 is a random key sampled for each query. Since the two oracle variations are
equivalent, this change does not affect the adversary’s success probability. We
thus have Pr[G4 ] = Pr[G3 ].

Furthermore, the advantage of A in this final game can be reduced to its
advantage against SE .
Claim 3.4. Pr[G4 ] ≤ Advqind-qcpa

A,SE (λ).

Proof. To see that, we construct a QPT adversary B from A as follows: B runs
A as its subroutine. For each encryption or challenge query, B implements the
compressed oracle which is a purification over the random key k∗2 of the MAC. It
first sends the plaintext registers to its challenger and receives back a ciphertext,
it then tags the received ciphertext with the MAC and forwards them to A. A
quantum circuit of this unitary is given in Figure 5.

Notice in this game, B can always answer decryption queries, without needing
to query to SE decryption oracle, by using its own database. The advantage of B
against SE is exactly the advantage of A in this game, thus proving the claim.

Putting everything together, we finish the proof of the theorem.

5 Quantum-Secure Public-key Encryption

5.1 Definition of Security

In this section, we consider the quantum security of public-key cryptosystems,
namely indistinguishability and non-malleability. We start by giving the definition
for these notions in the quantum world, and then discuss their relative strengths,
following classical works [BDPR98].
Indistinguishability Security. The indistinguishability notions can be defined
analogously to the ones given in Section 4. In what follows, let Π be a family
of random permutations over X , we define a real-or-random oracle allowing
quantum queries as follows.

RR(b) =
{

Encpk if b = 1,
CStO|r〉Encpk◦π if b = 0,where π $← Π.

Similarly, we overload the notation of CInvODeck to denote both the standard
oracle ODeck in the real-world (when there is no database D) and the actual
CInvODeck oracle in the random-world.
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Definition 3 (qIND-qCPA, qIND-qCCA1, qIND-qCCA2).
Let E = (KeyGen,Enc,Dec) be a public-key encryption scheme and let A =
(A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the
following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptqind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |Φ〉 ← AO1
1 (pk)

3 : b′ ← ARR(b),O2
2 (|Φ〉)

4 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
ODecsk

ODecsk

Oracle O2

∅
∅
CInvODecsk

We define A’s advantage by

Advqind-qatk
A,E (λ) :=

∣∣∣Pr
[

Exptqind-qatk−1
E (λ,A) = 1

]
− Pr

[
Exptqind-qatk−0

E (λ,A) = 1
]∣∣∣ .

We say E is secure in the sense of qIND-qatk if A being QPT implies that
Advqind-qatk

A,E (λ) is negligible.

Similarly as in Section 4, our definitions, restricted to classical challenge
queries, are equivalent to Boneh-Zhandry’s notions (IND-qatk). Furthermore,
the following theorem shows that our notions are closed under composition.

Theorem 4. An encryption scheme E is many-message qIND-qatk secure iff it
is single-message qIND-qatk secure.

The proof is similar to that of Theorem 1; we give it in Appendix D.1.

Non-Malleability Security. Intuitively, the classical definitions [BDPR98,BS06]
involve having an adversary play a challenge-response game. In the challenge
phase, the adversary is given an encryption y of a message x it produced itself.
It must then output a vector of ciphertexts y (whose components can be y -
in this case, the decryption returns ⊥) called adversarial ciphertexts, together
with an arbitrary string. The security definitions require that the distribution
of the adversary’s output and the decryptions of the adversarial ciphertexts is
indistinguishable from the distribution when the adversary receives an encryption
of some random message x̃ instead of x. The non-malleability property can be
established by saying that when an encryption of x given to the adversary is
replaced with an encryption of a random x̃, even the contents of encryption mes-
sages that the adversary sends cannot change in any computationally noticeable
way.

A closer look at the adversarial ciphertexts distribution gives us different
classical definitions, which leads to different composability properties. As pointed
out by Pass, shelat and Vaikuntanathan [PsV07], indistinguishability-based defi-
nitions of encryption may or may not compose in the context of non-malleability,
depending on how we treat an “invalid adversary” that outputs invalid ciphertexts
as part of its adversarial output. In the quantum setting, the adversary can
output a superposition of adversarial ciphertexts, which might include invalid
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ciphertexts, even if it is “hard” to generate invalid ciphertexts. This leaves
us no choice but to incorporate invalid adversaries into the definitions. The
definitions given here are syntactically close to the classical definitions of [BS06,
Definition 4.1].

Definition 4 (qNME-qCPA, qNME-qCCA1, qNME-qCCA2).
Let E = (KeyGen,Enc,Dec) be an public-key encryption scheme and let A =
(A1,A2,A3) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2] and r ∈ N,
we define the following game, where the oracles O1,O2 are defined according to
qatk:

Experiment Exptqnme-qatk−bE (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |Ψ1〉 ← AO1
1 (pk)

3 : |Ψ2〉 :=
∑

y,zαy,z |y, z〉 |φy,z〉 ← ARR(b),O2
2 (|Ψ1〉)

where |y| = |z| = r

4 : |Ψ3〉 ← CInvODecsk |Ψ2〉

5 : b′ ← AO2
3 (|Ψ3〉)

6 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
ODecsk

ODecsk

Oracle O2

∅
∅
CInvODecsk

We define A’s advantage by

Advqnme-qatkA,E (λ) :=
∣∣∣Pr
[

Exptqnme-qatk−1
E (λ,A) = 1

]
− Pr

[
Exptqnme-qatk−0

E (λ,A) = 1
]∣∣∣ .

We say E is secure in the sense of qNME-qatk if A being QPT implies that
Advqnme-qatkA,E (λ) is negligible.

The following theorem shows that our notions are closed under composition.

Theorem 5. An encryption scheme E is many-message qNME-qatk secure iff
it is single-message qNME-qatk secure.

The proof is similar to that of Theorem 4; we omit the details.

Relating Indistinguishability and Non-Malleability. A full characteriza-
tion of fully-quantum indistinguishability and non-malleability notions is summa-
rized in Figure 2. These results are identical as in the classical setting [BDPR98].
We use slightly modified constructions of [BDPR98] in the proofs: the attacks
carry in the classical manner, only the security proofs need to be adapted.

5.2 A Separation Example

Here we show a separation example of our setting from the classical challenge
queries setting of [BZ13b]. The idea is to install a backdoor that only a quantum
adversary can use, by doing some quantum computation. We need to ensure
that the backdoor is useless even if the adversary has quantum access to the
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©

©

©

©

©

©

qCPA qCCA1 qCCA2

qIND

qNME

Fig. 2. An arrow is an implication. There is a path from A to B if and only if A
implies B. The hatched arrows and the dashed arrow represent non-trivial separations
we actually prove in Appendix D.2.

decryption oracle in the learning phases. Our construction follows the hybrid
encryption paradigm combining a CCA2-secure public-key encryption and a one-
time CCA2-secure symmetric encryption [CS03]. The attack is similar in spirit
to that for symmetric encryption.

Theorem 6. If there exists an encryption scheme E which is IND-qCCA2 secure
against QPT adversaries, then there exists an encryption scheme E ′ which is also
IND-qCCA2 secure, but qIND-qCPA insecure.

Proof Sketch. We construct the new encryption scheme E ′ by encrypting each
plaintext with a one-time symmetric encryption which is secure against classical
adaptive chosen-ciphertext attacks and encrypting the key using an IND-qCCA2
secure public-key encryption scheme E .

Each challenge query is encrypted under a random, independent symmetric
key. If all challenge queries are classical, the security of the scheme can be easily
reduced to the security of the one-time symmetric encryption. Here we only
need the symmetric encryption to be secure against classical chosen-ciphertext
attacks, because the adversary cannot make quantum queries to the symmetric
encryption oracle.

A one-time symmetric encryption that achieves security against adaptive
chosen-ciphertext attack can be built from one-time encryption whose ciphertext
is attached with its one-time MAC. However, the adversary can use the attack
described in Section 4.2, if the symmetric encryption is instantiated in the
stream cipher-like style. We give a concrete construction and its proofs in
Appendix D.3.

5.3 A Lifting Theorem: From IND-qCCA2 to qIND-qCCA2

We present a compiler transforming IND-qatk security to qIND-qatk security.
Our compiler follows the classical hybrid encryption paradigm. The message is
encrypted under a random symmetric key each time, and the key is encrypted
by the public-key encryption scheme. Since the same randomness is used for
each query in superposition, we can use the same random symmetric key in
superposition each time. This means that the adversary never has quantum
access to the encryption algorithm of the public-key scheme, only the symmetric
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encryption needs to be secure against quantum queries, which we know how to
construct from one-way functions.

Construction 3. Let E = (KeyGen,Enc,Dec) be a public-key encryption scheme
which is IND-qatk secure and δ-correct. Let SE = (SymEnc,SymDec) be a one-
time secure symmetric-key encryption scheme (as defined in Appendix C.1). If
qatk = qCCA2, SE needs to be OT-qCCA2 secure. Otherwise, SE is OT secure.
We construct a new public-key encryption scheme E ′ = (KeyGen′,Enc′,Dec′) as
follows.

KeyGen′(λ) :

1 : (pk, sk) $← KeyGen (λ)
2 : return (pk, sk)

Enc′pk(x) :

1 : k $← K()
2 : c1 ← Encpk(k)
3 : c2 ← SymEnck(x)
4 : return c1‖c2

Dec′sk(c1‖c2) :

1 : k← Decsk(c1)
2 : x← SymDeck(c2)
3 : return x

Remark 2. In this construction, we make no extra assumptions. We know that
the existence of IND-qatk secure encryption implies the existence of quantum-
secure one-way functions, which in turn implies the existence of quantum-secure
pseudorandom permutations [Zha16]. In Appendix C.2, we give concrete con-
structions achieving one-time security notions defined in Appendix C.1 from
quantum-secure pseudorandom permutations. IND-qatk secure public-key en-
cryption can be constructed based on quantum-resistant assumptions (e.g., the
Learning With Errors problem) [BZ13b].

We give the security proof for adaptive chosen-ciphertext security in Ap-
pendix D.5, the other cases can be treated similarly.

Theorem 7. The encryption scheme E ′ defined in Construction 3 is qIND-qCCA2
secure. In particular, for any QPT adversary A, there exist QPT adversaries
B, C such that

Advqind-qcca2
A,E′ (λ) ≤ q ·

(
O(qd · δ) + Advind-qcca2

B,E (λ) + Advot-qcca2
C,SE (λ)

)
,

where q is the number of oracle calls to the real-or-random oracle and qd is the
number of decryption queries in the second phase.

Remark 3. The q factor comes from the fact that in our IND-qCCA2 definition,
the adversary can only make a single challenge query. If we consider the same
many-challenge setting, there would be no factor q.
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Supplementary Material

A Security Definitions

A.1 Pseudorandom Functions

Definition 5. A quantum-secure pseudorandom function (qPRF) is a family
of efficient classical functions PRF : {0, 1}λ × {0, 1}m → {0, 1}n such that the
following holds. For any polynomially bounded m = m(λ) and n = n(λ), and
any QPT adversary A, A cannot distinguish PRF(k, ·) for a random k

$← {0, 1}λ
from a truly random function H : {0, 1}m → {0, 1}n. That is, there exists a
negligible negl(λ) such that∣∣∣Pr

[
APRF(k,·)(λ) = 1 | k $← {0, 1}λ

]
− Pr

[
AH(·)(λ) = 1

]∣∣∣ ≤ negl(λ) .

A.2 Pseudorandom Permutations

Definition 6. A (strongly) quantum-secure pseudorandom permutation (qPRP)
is a family of efficient classical function pairs PRP : {0, 1}λ × {0, 1}m → {0, 1}m
and PRP−1 : {0, 1}λ × {0, 1}m → {0, 1}m such that the following holds. First,
for every key k and m ∈ N, the functions PRP and PRP−1 are inverses of each
other. That is, PRP−1(PRP(k, x)) = x for any k, x,m. This implies that PRP is
a permutation.

Second, for any polynomially bounded m = m(λ), and any QPT adversary A,
A cannot distinguish PRP(k, ·) for a random k

$← {0, 1}λ from a truly random
permutation P : {0, 1}m → {0, 1}m. That is, there exists a negligible negl(λ)
such that∣∣∣Pr
[
APRP(k,·),PRP−1(k,·)(λ) = 1 | k $← {0, 1}λ

]
− Pr

[
AP (·),P−1(·)(λ) = 1

]∣∣∣ ≤ negl(λ) .

A.3 Symmetric-key Encryption

A symmetric-key cryptosystem SE = (K,SymEnc, SymDec) consists of three PPT
algorithms.

• K() is a probabilistic key generation algorithm which takes no input and
outputs a secret key k.

• SymEnck(x; r) is a probabilistic encryption algorithm which takes as input
a secret key k, a plaintext x ∈ X (where X is some fixed message space),
samples a random coin on each invocation r ∈ R (where R is the randomness
space), and outputs a ciphertext y. We sometimes omit the random coin and
write SymEnck(x).
• SymDeck(y) is a deterministic decryption algorithm which takes as input a

secret key k and a ciphertext y, and outputs a message x ∈ X ∪ {⊥}, where
⊥ is a distinguished symbol indicating decryption failure.
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Security Definitions. In the following, we let the string qatk be instantiated
by any of the formal symbols qcpa, qcca1, qcca2, while qatk is the corresponding
formal symbol from qCPA, qCCA1, qCCA2. When we say Oi = ∅ where i ∈ {1, 2},
we mean Oi is the function which, on any input, returns ⊥.

Definition 7 (IND-qCPA, IND-qCCA1, IND-qCCA2 [BZ13b]).
Let SE = (K,SymEnc,SymDec) be a symmetric encryption scheme and let A =
(A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the
following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptind-qatk−b
SE (λ,A):

1 : k $← K()

2 : |x0, x1〉 |φ〉 ← A
OSymEnck ,O1
1 (λ)

3 : if |x0| 6= |x1| then return 0
4 : y∗ ← OSymEnck (xb)

5 : b′ ← A
OSymEnck ,O2
2 (|y∗〉 |φ〉)

6 : return b′

qatk

qcpa

qcca1
qcca2

Oracle O1

∅
SymDeck(·)
SymDeck(·)

Oracle O2

∅
∅
SymDeck(·) with · 6= y∗

We define A’s advantage by

Advind-qatk
A,SE (λ) :=

∣∣∣Pr
[

Exptind-qatk−1
SE (λ,A) = 1

]
− Pr

[
Exptind-qatk−0

SE (λ,A) = 1
]∣∣∣ .

We say SE is secure in the sense of IND-qatk if A being QPT implies that
Advind-qatk

A,SE (λ) is negligible.

A.4 Public-key Encryption

A public-key cryptosystem E = (KeyGen,Enc,Dec) consists of three PPT algo-
rithms.

• KeyGen(λ) is a probabilistic key generation algorithm which takes as input
the security parameter λ and outputs a pair (pk, sk) of matching public and
secret keys.

• Encpk(x; r) is a probabilistic encryption algorithm which takes as input a
public key pk, a plaintext x ∈ X (where X is some fixed message space),
samples a random coin on each invocation r ∈ R (where R is the randomness
space), and outputs a ciphertext y. We sometimes omit the random coin and
write Encpk(x).
• Decsk(y) is a deterministic decryption algorithm which takes as input a secret
key sk and a ciphertext y, and outputs a message x ∈ X ∪ {⊥}, where ⊥ is
a distinguished symbol indicating decryption failure.
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Security Definitions. For any subset D of the ciphertext space C, we define
the “punctured” decryption oracle D̃ec

D

sk(y) which returns Decsk(y) if y /∈ D, else
it returns ⊥.

Definition 8 (IND-qCPA, IND-qCCA1, IND-qCCA2 [BZ13b]).
Let E = (KeyGen,Enc,Dec) be an public-key encryption scheme and let A =
(A1,A2) be a quantum adversary. For qatk ∈ [qcpa, qcca1, qcca2], we define the
following game, where the oracles O1,O2 are defined according to qatk:

Experiment Exptind-qatk−b
E (λ,A):

1 : (pk, sk)← KeyGen(λ)

2 : |x0, x1〉 |φ〉 ← AO1
1 (pk)

3 : if |x0| 6= |x1| then return 0
4 : y∗ ← Encpk(xb)

5 : b′ ← AO2
2 (|y∗〉 |φ〉)

6 : return b′

qatk

qcpa

qcca1

qcca2

Oracle O1

∅
Decsk(·)

Decsk(·)

Oracle O2

∅
∅

D̃ec
D

sk(·) with D = {y∗}

We define A’s advantage by

Advind-qatk
A,E (λ) :=

∣∣∣Pr
[

Exptind-qatk−1
E (λ,A) = 1

]
− Pr

[
Exptind-qatk−0

E (λ,A) = 1
]∣∣∣ .

We say E is secure in the sense of IND-qatk if A being QPT implies that
Advind-qatk

A,E (λ) is negligible.

A.5 Quantum-secure MAC

A message authentication code MA = (K,MAC,Ver) consists of three PPT
algorithms.

• K() is a probabilistic key generation algorithm which takes no input and
outputs a secret key k.

• MACk(x) is a deterministic tagging algorithm which takes as input a key
k ∈ K, a message x ∈ X (where X is some fixed message space), and outputs
a tag τ .

• Verk(x, τ) is a deterministic decryption algorithm which takes as input a key
k, a message x, and a candidate tag τ for x, and outputs a bit b.

We require that Verk(x, τ) = 1 if and only if τ = MACk(x), for all x ∈ X and
for all k ← K(). We also require that for all k ← K() and for all τ , we have
Verk(x, τ) = 0 if x = ⊥.

Security Definitions. Boneh and Zhandry define unforgeability (against quan-
tum queries) for classical MACs as follows [BZ13a]. They also show that random
functions satisfy this notion.

Definition 9 (EUF-qCMA). LetMA = (K,MAC,Ver) be a MAC with message
set X . Consider the following experiment with a QPT adversary A:
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1. Generate a random key k $← K.
2. A receives quantum oracle for MACk, makes q queries and outputs a string s.
3. A wins if s contains q + 1 distinct valid classical message/tag pairs.

We say that MA is existentially unforgeable under quantum chosen message
attacks (EUF-qCMA) if no QPT adversary can succeed at the above experiment
with better than negligible probability in λ.

B Additional Details on Quantum Oracles

B.1 Proof of Lemma 2

We do detailed calculation of equalities claimed in the proof of Lemma 2. A
similar calculation is presented in [Zha19,CMSZ19].

Let X,Y denote the adversary’s registers, and R,F denote the oracle’s regis-
ters.

We start with the standard oracle StOf , which acts on the computational
basis. The initial oracle state of StOf is 1√

2`
∑
r |r〉 |f(0; r)‖ · · · ‖f(2m − 1; r)〉.

We write |r〉 |f(0; r)‖ . . . ‖f(2m − 1; r)〉 as |r〉 |Dr〉. Dr can be seen as the truth
table of f , where Dr(x) := f(x; r). StOf is a unitary defined (on the adversary’s
basis states) as:

StOf |x, y〉 ⊗
1√
2`
∑
r

|r〉 |Dr〉 7→
1√
2`
∑
r

|x, y ⊕Dr(x)〉 |r〉 |Dr〉

= 1√
2`
∑
r

|x, y ⊕ f(x; r)〉 |r〉 |Dr〉

Next, we consider the well-known phase oracle PhsOf . It is obtained from StOf

by applying QFT operations to the adversary’s response registers before and after
the query, that is PhsOf := QFT†Y ◦ StOf ◦ QFTY . The initial oracle state of
PhsOf is also 1√

2`
∑
r |r〉 |Dr〉. On the adversary’s basis state, it performs the

map:

PhsOf |x, z〉 ⊗
1√
2`
∑
r

|r〉 |Dr〉 7→
1√
2`
∑
r

(−1)z·f(x;r) |x, z〉 |r〉 |Dr〉 .

The Fourier oracle is obtained from PhsOf by applying QFT operations to the
oracle registers before and after the query, that is FourierOf := QFT†F ◦ PhsOf ◦
QFTF . The initial state of FourierOf is:

1√
2`
∑
r

|r〉QFTF |Dr〉 = 1√
2`
∑
r

|r〉 1√
2n2m

∑
E

(−1)E·Dr |E〉 .
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We do the computation on the basis state as:

|x, z〉 ⊗ |r〉 |E〉 QFTF−−−−→ 1√
2n2m

∑
F

(−1)E·F |x, z〉 |r〉 |F 〉

PhsOf−−−−→ 1√
2n2m

∑
F

(−1)E·F+z·F (x) |x, z〉 |r〉 |F 〉

(∗)= 1√
2n2m

∑
F

(−1)(E⊕Px,z)·F |x, z〉 |r〉 |F 〉

QFT†F−−−−→ |x, z〉 |r〉 |E ⊕ Px,z〉 ,

where we write F (x) to denote the x-th row of the truth table F , and Px,z is
the point function that outputs z on x and 0 everywhere else. E ⊕ Px,z is the
function (E ⊕ Px,z)(x′) := E(x′) ⊕ Px,z(x′). The equality (∗) holds because
z · F (x) = (0‖ · · · ‖z‖ · · · ‖0) · F = Px,z · F .

From this computation, the unitary FourierOf can be defined (on the adver-
sary’s basis state) as:

FourierOf |x, z〉 ⊗
1√
2`

1√
2n2m

∑
r

|r〉
∑
E

(−1)E·Dr |E〉

7→ 1√
2`

1√
2n2m

∑
r

∑
E

(−1)E·Dr |x, z〉 |r〉 |E ⊕ Px,z〉 .

Overall, we have shown that QFT†Y F ◦StOf ◦QFTY F = FourierOf . The other
equality follows directly.

B.2 Proof of Lemma 3

We consider the oracle operation handling a single query. In this setting, the
database D will be a single triple (r, x, y) where y = f(x; r). In the following, we
denote X,Y the adversary’s registers, and DX , DR, DY to denote the oracle’s
registers.

With this notation, we describe some local procedures acting on the database.
First, let Updatex be the following unitary operation:

Updatex (|r〉 |x, z〉) = |r〉 |x, z〉 for z 6= 0,
Updatex (|r〉 |x, 0〉) = |r〉 |⊥, 0〉 ,
Updatex (|r〉 |⊥, 0〉) = |r〉 |x, 0〉 .

This operations is actually an involution, as Updatex ◦ Updatex = 1.
Let Uf be the unitary implementing f , that is Uf acts on three registers:

Uf |r, x, u〉 = |r, x, u⊕ f(x; r)〉. Let Decompx be the following unitary operation:

Decompx := QFTD
Y

◦ Uf ◦ Updatex.
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Decomp is then defined as the related unitary acting on the quantum system over
x, z,D states in superposition as follows.

Decomp |x, z〉 ⊗ |D〉 = |x, z〉 ⊗ Decompx |D〉 .

Let Increase be the procedure that initializes a new register |0,⊥, 0〉. That
is, Increase |x, z〉 = |x, z〉 ⊗ |(0,⊥, 0)〉. Let FourierO′ be unitary defined on the
adversary’s basis states as:

FourierO′ |x, z〉 ⊗ |D〉 = FourierO′ |x, z〉 ⊗ 1√
2`

1√
2n
∑
r

∑
u

(−1)u·f(x;r) |r, x, u〉

= |x, z〉 ⊗ 1√
2`

1√
2n
∑
r

∑
u

(−1)u·f(x;r) |r, x, u⊕ z〉 .

Finally, we define the CFourierO′f oracle:

CFourierO′f := Decomp† ◦ FourierO′ ◦ Decomp ◦ QFTD
R

◦ Increase.

We now prove the equivalence between CFourierO′f and FourierOf .

Proposition 1. Let A be any 1-query quantum oracle algorithm. Then,

Pr
[
AFourierOf () = 1

]
= Pr

[
ACFourierO′f () = 1

]
.

Proof. We prove through a sequence of games, which works almost the same
as the proof of [Zha19, Lemma 4]. In what follows, we ambiguously denote
QFT |f(x; r)〉 by |ηx〉 for each x ∈ {0, 1}m.

Game G0: In this game, the adversary interacts with the Fourier oracle FourierOf ,
whose initial state is 1√

2`
1√

2n2m

∑
r |r〉DR |η0‖ · · · ‖η2m−1〉DY .

Game G1: In this game, we represent the oracle as a complete database |D〉 =∑
r |r〉DR |(0, η0)‖ · · · ‖(2m − 1, η2m−1)〉DY . The update procedure for a query

is then simply FourierO′. G1 is identical to G0, since we have inserted the
input points 0, . . . , 2m − 1 into the oracle’s state, which is independent from the
adversary’s state.

Game G2: In this game, the oracle starts out as the empty database:∑
r

|r〉DR |(⊥, 0)‖ · · · ‖(⊥, 0)〉DY ,

which can be prepared by applying QFT to the all-zero register DR. Then a query
is implemented as Decomp′† ◦FourierO′ ◦Decomp′, where Decomp′ is a procedure
applying Decompx for all x in the message space, once at a time from 0 to 2m− 1.
At the beginning, Decomp′ is applied to the empty database, which maps it to
the complete database

∑
r |r〉 |(0, η0)‖ · · · ‖(2m − 1, η2m−1)〉. Note that Decomp′

only affects the oracle’s registers and thus commutes with any computation on
the adversary’s side. Therefore, G2 is perfectly indistinguishable from G1.
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Game G3: In this final game, we use the compressed oracle CFourierO′f . We
note that FourierO′ and Decompx′ commute for any query containing x 6= x′.
Thus, for any x′ 6= x, we can move the computation of Decompx′ to come after
FourierO′, thus, its applications will be cancel out. We are left with a database D
whose support has at most 1 defined point after the query in G2. The remaining
≥ 2m − 1 points are all (⊥, 0). Therefore we can discard all but the pair on the
queried point, without affecting the adversary’s state. We then have:

Decomp′† ◦ FourierO′ ◦ Decomp′(|x, z〉 ⊗ |D〉) = Decompx† ◦ FourierO′ ◦ Decompx(|x, z〉 ⊗ |D〉)
= Decomp† ◦ FourierO′ ◦ Decomp(|x, z〉 ⊗ |D〉).

This shows that G3 and G2 are identical.

The oracle CFourierOf is obtained from CFourierO′f by simply decompressing
the database D once more time, that is CFourierOf := QFT∗D

Y

◦Uf ◦CFourierO′f ,
where QFT∗ is controlled by the DY registers: if DY is 0, QFT∗ is identity, and
QFT otherwise. These computations only act on the oracle’s registers, thus
CFourierOf is also perfectly indistinguishable from FourierOf .

Now we give concrete computations for the quantum circuit (given in Figure 1).
The intermediate states of the circuit are depicted in Figure 3.

|x〉 |x〉

|z〉
Test Test

|z〉O
racle’s

registers
|0〉 |0〉

|0〉

Uf

|x〉

|0〉 QFT |r〉

|0〉 QFT |u⊕ z〉

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉

Fig. 3. Quantum circuit for CFourierOf oracle.

Let us follow the states through this circuit. We denote the oracle registers as
Db, DX , DR, DY (in the order from top to bottom). The Test operation writes
its output to Db, which acts as a control bit for later computations. Recall that
Test is the unitary defined as Test |0〉 |b〉 7→ |0〉 |b〉 and Test |φ〉 |b〉 7→ |φ〉 |b⊕ 1〉
for any |φ〉 orthogonal to |0〉 and b ∈ {0, 1}. The input state is

|ψ0〉 = |x, z〉 ⊗ |0〉Db |0〉DX |0〉DR |0〉DY . (2)

Now let us first consider the case |z〉 = |0〉. We have

|ψ1〉 = |x, z〉 ⊗ |0〉Db |0〉DX |0〉DR |0〉DY .



41

In this case, since the control bit is 0, all the controlled operations (except the
last one) are just identity. We have

|ψ2〉 = |x, z〉 ⊗ |0〉Db |0〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |0〉DY ,

|ψ3〉 = |x, z〉 ⊗ |0〉Db |0〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |0〉DY ,

|ψ4〉 = |x, z〉 ⊗ |0〉Db |0〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |0〉DY ,

|ψ5〉 = |x, z〉 ⊗ |0〉Db |0〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |0〉DY .

For the last operation, since |z〉 = |0〉, it does not change the value of the
register DY , that is

|ψ6〉 = |x, z〉 ⊗ |0〉Db |0〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |0〉DY . (3)

At this step, we can discard Db, DX , DY registers without affecting the joint
system.

Now we consider the case |z〉 is orthogonal to |0〉. The input state is still the
same as of Equation (2). We have

|ψ1〉 = |x, z〉 ⊗ |1〉Db |0〉DX |0〉DR |0〉DY ,

|ψ2〉 = |x, z〉 ⊗ |1〉Db |x〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |0〉DY .

Next, the function f is evaluated using Uf acting on DX , DR, DY , giving

|ψ3〉 = |x, z〉 ⊗ |1〉Db |x〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR |f(x; r)〉DY .

After the application of QFT on the register DY , we have

|ψ4〉 = |x, z〉 ⊗ |1〉Db |x〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR
1√
2n

∑
u∈{0,1}n

(−1)u·f(x;r) |u〉DY .

The second application of Test would un-compute it and return Db back to 0,
thus we have

|ψ5〉 = |x, z〉 ⊗ |0〉Db |x〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR
1√
2n

∑
u∈{0,1}n

(−1)u·f(x;r) |u〉DY .
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Finally, we have

|ψ6〉 = |x, z〉 ⊗ |0〉Db |x〉DX
1√
2`

∑
r∈{0,1}`

|r〉DR
1√
2n

∑
u∈{0,1}n

(−1)u·f(x;r) |u⊕ z〉DY

= |x, z〉 ⊗ |0〉Db
1√
2`
∑
r

∑
u

(−1)u·f(x;r) |x, r, u⊕ z〉DXDRDY . (4)

Now we can discard the register Db.
From Equation (3) and Equation (4), we obtain the same state as stated in

Lemma 3. The correctness of the circuit follows immediately.

C One-time Symmetric-key Encryption

C.1 Definition of Security

We define two notions of quantum security for a one-time symmetric-key en-
cryption scheme: security against passive attacks (which is one-time CPA and
CCA1 security), and security against adaptive chosen ciphertext attacks (which
is one-time CCA2 security).

For passive security, we define a one-time real-or-random oracle allowing at
most one quantum query as follows.

RR(b) =
{

SymEnck if b = 1,
SymEnck ◦ π if b = 0,where π $← Π.

Definition 10 (OT). We define A’s advantage by

AdvOTA,SE(λ) :=
∣∣∣Pr
[

ExptOT−1
SE (λ,A) = 1

]
− Pr

[
ExptOT−0

SE (λ,A) = 1
]∣∣∣ ,

where ExptOT−bSE (λ,A) is the following experiment:

Experiment ExptOT−bSE (λ,A):

k $← K()

b′ ← ARR(b)(λ)
return b′

We say SE is one-time passively (OT) secure if A being QPT implies that
AdvOTA,SE(λ) is negligible.

An adaptive chosen-ciphertext attack is identical to a passive attack, except
that after receiving the challenge ciphertext, A may query a decryption oracle
any number of times. At the first sight, it seems not trivial to define one-time
CCA2 security, for a simple reason that the encryption may be deterministic.
In that case, our compressed technique does not work anymore. Fortunately,
in one-time security, the adversary does not get to “see the secret key” until
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it makes a challenge query. This means that, the key need not be explicitly
defined beforehand, and it can be sampled “on-the-fly”. This observation allows
us to consider the key as the randomness, which can be purified in the oracle’s
implementation. However, now the key, which is needed to answer subsequent
decryption queries, is in superposition and certainly not a classical value. Thus,
we will use the compressed-then-measure variation to implement the challenge
query in the definition for one-time CCA2 security.

Definition 11 (OT-qCCA2). We define A’s advantage by

AdvOT -qCCA2
A,SE (λ) :=

∣∣∣Pr
[

ExptOT -qCCA2−1
SE (λ,A) = 1

]
− Pr

[
ExptOT -qCCA2−0

SE (λ,A) = 1
]∣∣∣ ,

where ExptOT -qCCA2−b
SE (λ,A) are the following experiments:

ExptOT -qCCA2−b
SE (λ,A): // b = 1 b = 0

k $← K()

|Φ1〉 =
∑
x,y

αx,y |x, y, φx,y〉 ← A1(λ)

|Φ2〉 ← OSymEnck |Φ1〉 k, |Φ2〉 ← CtMStO|k〉SymEnc |Φ1〉

b′ ← A
CInvOSymDeck
2 (|Φ2〉)

return b′

We say SE is one-time CCA2 (OT-qCCA2) secure if A being QPT implies
that AdvOT -qCCA2

A,SE (λ) is negligible.

C.2 Instantiation

Construction 4. Let qPRP be a family of efficient classical permutations (qPRP, qPRP−1)
over a message space X with key space K. We construct the following encryption
scheme SE = (SymEnc,SymDec) where:

SymEnck(x) := qPRPk(x)
SymDeck(y) := qPRP−1

k (y)

For security, we require qPRP to be quantum secure, i.e., secure against queries
on a superposition of inputs. Zhandry [Zha16] shows how to constructs such
pseudorandom permutations relying only on the existence of one-way functions.

Theorem 8. If qPRP is a family of quantum-secure pseudorandom permutations,
then the encryption given in Construction 4 is one-time passively secure.

Proof Sketch. The security of the construction follows directly from the security of
qPRP: we have that qPRPk is indistinguishable from a truly random permutation
σ. Therefore, the adversary cannot distinguish an encryption of x from an
encryption of π(x).
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To build a symmetric key encryption scheme that achieves one-time security
against adaptive chosen ciphertext attacks, we follow the Encrypt-then-MAC
paradigm whose security follows directly from our proof in Section 4.3.

Boneh and Zhandry [BZ13a] show how to construct such one-time MACs from
a family of 3-universal hash functions. A hash family {hk}k is a 3-universal hash
family if for all distinct x1, x2, x3, the distribution of (hk(x1), hk(x2), hk(x3)) for
a randomly chosen k is uniform.

The construction is as follows.

Construction 5. Let SE be a one-time passively secure symmetric encryption,
andMA be a one-time quantum-secure message authentication code scheme. We
construct the following encryption scheme SE ′ = (SymEnc′,SymDec′) where:

SymEnc′k1‖k2
(x) :

1 : c← SymEnck1
(x)

2 : τ ← MACk2 (c)
3 : return c‖τ

SymDeck1‖k2
(c‖τ) :

1 : if Verk2 (c, τ) = 0 then
2 : return ⊥
3 : x← SymDeck1

(c)

4 : return x

D Missing Proofs

D.1 Composability of Our Definitions

Symmetric-key Encryption.

Proof (of Theorem 1). The forward implication follows directly. For the reverse
direction, we use the standard hybrid argument that uses an adversary A =
(A1,A2) with advantage ε to construct a new adversary B = (B1,B2) which
breaks the single-message security with advantage ε/q2.

Define a sequence of games G0, . . . , Gq in which B runs A and returns A’s
output as follows: For any game Gi,

1. B1 simulates A’s i− 1 first challenge queries as learning queries, that is, B
just forwards A’s directly to its encryption oracle.

2. B uses A’s i-th challenge query as its challenge query.
3. For all A’s other queries, B2 first applies a random permutation π to the

plaintext registers, sends it to its encryption oracle as a learning query and
applies π−1 to the plaintext registers before sending it back to A.

In the case of CCA2 security, B2 needs to be able to record A’s (i+1, . . . , q)-th
challenge queries, since it needs to simulate the decryption correctly. Though B2
has no control over the randomness of the encryption, it can purify the random
permutation for each query, allowing it to record A’s queries using the compressed
oracle. Formally, B2 simulates A’s (i+ 1, . . . , q)-th queries using the compressed
encryption oracle CStO|π〉f [x 7→ y] with f = SymEnc ◦ π where π is a random
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permutation over the message space X , and SymEnc is the unitary implemented
by B2’s encryption oracle. B2 also uses a slightly different decryption oracle in the
second phase as follows. Let CInvO′SymDec be the decryption oracle of B2, D be
its database for the challenge query, and CInvOSymDec be B2 simulated decryption
oracle for A. Then

CInvOSymDec |y, z〉 |D〉 =
{

CInvO′SymDec |y, z〉 |D〉 if FindImage(y,D) = (0, 0m),
|y, z ⊕ w〉 |D〉 if FindImage(y,D) = (1, w).

This oracle can be implemented identically as described in Section 3.2, except
that instead of applying Uf−1 , it sends a decryption query on the y, z registers
to CInvO′SymDec.

Note that G0 = Exptqind-qatk−1
SE (λ,A) and Gq = Exptqind-qatk−0

SE (λ,A). Be-
cause A is able to distinguish Exptqind-qatk−1

SE from Exptqind-qatk−0
SE , there exists

some g ∈ [1, q] such that A distinguishes Gg from Gg+1 with advantage at least
ε/q. B can guess g correctly with probability 1/q, thus B’s overall advantage in
breaking the single-message security is ε/q2.

Public-key Encryption.

Proof (of Theorem 4). The forward implication follows directly. For the reverse
direction, we use the standard hybrid argument that uses an adversary A =
(A1,A2) with advantage ε to construct a new adversary B = (B1,B2) which
breaks the single-message security with advantage ε/q2.

Define a sequence of games G0, . . . , Gq in which B runs A and returns A’s
output as follows: For any game Gi,

1. B1 simulates A’s i− 1 first challenge queries on its own, as in the experiment
Exptqind-qatk−1

E .
2. B uses A’s i-th challenge query as its challenge query.
3. B2 simulates all A’s other queries on its own using the compressed encryption

oracle, as in the experiment Exptqind-qatk−0
E .

In the case of CCA2 security, B2 uses a slightly different decryption oracle in
the second phase as follows. Let CInvO′Decsk

be the decryption oracle of B2, D be
its database for the challenge query, and CInvODec be B2 simulated decryption
oracle for A. Then

CInvODec |y, z〉 |D〉 =
{

(CInvO′Decsk
|y, z〉) |D〉 if FindImage(y,D) = (0, 0m),

|y, z ⊕ w〉 |D〉 if FindImage(y,D) = (1, w).

Note that G0 = Exptqind-qatk−1
E (λ,A) and Gq = Exptqind-qatk−0

E (λ,A). Be-
cause A is able to distinguish Exptqind-qatk−1

E from Exptqind-qatk−0
E , there exists

some g ∈ [1, q] such that A distinguishes Gg from Gg+1 with advantage at least
ε/q. B can guess g correctly with probability 1/q, thus B’s overall advantage in
breaking the single-message security is ε/q2.
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D.2 Relating Indistinguishability and Non-Malleability

Theorem 9 (qIND-qCCA1 ; qNME-qCPA). If there exists an encryption scheme
E that is qIND-qCCA1 secure, then there exists an encryption scheme E ′ that is
qIND-qCCA1 secure but qNME-qCPA insecure.

Proof. Assume there exists some qIND-qCCA1 secure encryption scheme E =
(KeyGen,Enc,Dec). The new encryption scheme E ′ = (KeyGen′,Enc′,Dec′) is
defined as follows.

KeyGen′(λ) :

1 : (pk, sk) $← KeyGen (λ)
2 : return (pk, sk)

Enc′pk(x) :

1 : b
$← {0, 1}

2 : y ← Encpk(x)
3 : return y‖b

Dec′sk(y‖b) :

1 : x← Decsk(y)
2 : return x

Claim 9.1. E ′ is qNME-qCPA insecure.

Proof Sketch. The scheme is malleable because given a ciphertext y‖b of a plain-
text x, it is trivial to create another ciphertext of x by just outputting y‖b.

Claim 9.2. E ′ is qIND-qCCA1 secure.

Proof Sketch. It is easy to see that any adversary A against E ′ can be used to
construct an adversary B that attacks E as follows. B runs A using its own oracle
O1, and uses A’s challenge queries as its own challenge queries. Whenever B
receives a challenge ciphertext, it samples a random bit b and appends it to the
challenge ciphertext before forwarding it to A. B outputs whatever A outputs.
One can verify that AdvB,E(λ) = AdvA,E′(λ). Thus, the security of E ′ follows
from the security of E .

Theorem 10 (qNME-qCPA ; qIND-qCCA1). If there exists an encryption
scheme E that is qNME-qCPA secure, then there exists an encryption scheme E ′
that is qNME-qCPA secure but qIND-qCCA1 insecure.

Proof. Assume there exists some qNME-qCPA secure encryption scheme E =
(KeyGen,Enc,Dec). Fix a family qPRP = {qPRPk : {0, 1}` → {0, 1}`} of
quantum-secure pseudorandom permutations. The new encryption scheme
E ′ = (KeyGen′,Enc′,Dec′) is defined as follows.

KeyGen′(λ) :

1 : (pk, sk) $← KeyGen (λ)

2 : k $← {0, 1}λ

3 : sk′ ← sk‖k
4 : return (pk, sk′)

Enc′pk(x) :

1 : y ← Encpk(x)
2 : return 0‖y

Dec′sk‖k(b‖y) :

1 : if b = 0 :
2 : return Decsk(y)
3 : else if y = qPRPk(0) :
4 : return sk

5 : else return qPRPk(y)
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Claim 10.1. E ′ is qIND-qCCA1 insecure.

Proof Sketch. The adversary queries Dec′sk‖k(·) at 1‖0 to get v = qPRPk(0), and
then queries it at the point 1‖v to get sk. At this point, the adversary can
obviously break the security of E ′.

Claim 10.2. E ′ is qNME-qCPA secure.

Proof. Fix A and λ. We prove security through a sequence of games.

Game G0: This is the standard attack game.

Game G1: Replace qPRP with a truly random function H.
Since qPRP is a quantum-secure pseudorandom permutation, A cannot dis-

tinguish G1 from G0, except with negligible probability.

Game G2: This is identical to G1. The only change is to the decryption al-
gorithm, in which instead of returning sk when y = H(0), it returns H(H(0))
which is a random value independent from the secret key sk.

Games G1 and G2 proceed identically unless A successfully outputs H(H(0))
with a single query. To bound the distinguishing probability, we invoke the
following lemma.

Lemma 11 ([Unr15, Theorem 6.6]). Let A be any quantum oracle algorithm
making a single query to a random function H, with r inputs in the query. Then

Pr
[
x = H(H(0)) : H $← ({0, 1}` → {0, 1}`), x← AH()

]
≤ 2−Ω(`)O(r).

This probability is negligible for polynomially-bounded r (number of inputs
per query, which corresponds to the number of adversarial ciphertexts in a qNME
security game).

Finally, we design an adversary B = (B1,B2,B3) attacking E in the qNME-qCPA
sense from the adversary A = (A1,A2,A3) in this last game. B runs A as its
subroutine and simulates a random oracle H itself. B1 and B3 output whatever
A1 and A3 output, respectively. The algorithm B2 is defined as follows. B2
receives a vector (in superposition) of adversarial ciphertexts from A2.
– If the basis state is |1‖y, z, φy,z〉, then it maps this basis state to |Enc(H(y)), z, 1‖φ′y,z〉

by allocating new ancilla registers (with proper padding), computing Enc(H(y))
and then swapping these newly created registers with the y registers. The y
registers are now included in the auxiliary registers |φ′y,z〉.

– Otherwise, it keeps the basis state the same, re-organizes the state to
|y, z〉 |0‖φy,z〉.

B2 then outputs the resulting state as its adversarial ciphertexts.
Let D be the database of B’s challenge queries. Consider B2’s adversarial

ciphertexts state, let Dup be the event that this state has a non-negligible
weight on ciphertexts Enc(H(y)) such that Enc(H(y)) ∈ D. The simulation is
indistinguishable if this happens with non-negligible probability. To see that,
imagine that in the real-world experiment, A3 would receive exactly H(y). In the
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random-world experiment, Enc(H(y)) ∈ D means that H(y) is a random message
obtained by apply a random permutation π. A3 would receive π−1(H(y)) (by
the definition of the qNME decryption oracle).

However, we show that Pr[Dup] must be negligible, otherwise it would violate
the security of E even in the qIND-qCPA. This is a standard argument, we omit
the details. The security of E ′ now follows by the security of E .

Theorem 11 (qNME-qCCA1 ; qNME-qCCA2). If there exists an encryption
scheme E that is qNME-qCCA1 secure, then there exists an encryption scheme
E ′ that is qNME-qCCA1 secure but qNME-qCCA2 insecure.

Proof. Assume there exists some qNME-qCCA1 secure encryption scheme E =
(KeyGen,Enc,Dec). Fix a family qPRF = {qPRFk} of quantum-secure pseudoran-
dom functions. The new encryption scheme E ′ = (KeyGen′,Enc′,Dec′) is defined
as follows.

KeyGen′(λ) :

1 : (pk, sk) $← KeyGen (λ)

2 : k $← {0, 1}λ

3 : sk′ ← sk‖k
4 : return (pk, sk′)

Enc′pk(x) :

1 : y ← Encpk(x)
2 : return 0‖y‖0

Dec′sk‖k(b‖y‖z) :

1 : if b = 0 ∧ z = 0 :
2 : return Decsk(y)
3 : else if b = 1 :
4 : return qPRFk(y)
5 : else if b = 2 ∧ z = qPRFk(y) :
6 : return Decsk(y)
7 : else return ⊥

Claim 11.1. E ′ is qNME-qCCA2 insecure.

Proof Sketch. Let 0‖y‖0 be the classical challenge ciphertext. The adversary
first queries Dec′sk‖k(·) at 1‖y‖0 (which is not the challenge ciphertext) to get
v = qPRFk(y), and then queries it at the point 2‖y‖v to get the decryption of
y, which is exactly the decryption of the challenge ciphertext. This helps the
adversary to break the indistinguishability in the sense of qNME-qCCA2.

Claim 11.2. E ′ is qNME-qCCA1 secure.

Proof. The proof is similar to that of Claim 10.2: first the pseudorandom function
qPRF is replaced by a truly random function H, and for any decryption query of
the form 2‖y‖z, we return ⊥ where y is the challenge ciphertext.

The extra step is that we need to consider the case in which the adversary
happens to query to the random function involving the challenge ciphertext.
However, such event is unlikely since otherwise the scheme E would not be secure
even in the sense of qIND-qCCA1. We formally prove the security through a
sequence of games. Fix A and λ.
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Game G0: This is the standard attack game.

Game G1: Replace qPRF with a truly random function H.
Since qPRF is a quantum-secure pseudorandom function, A cannot distinguish

G1 from G0, except with negligible probability.

Game G2: This is identical to G1, except that now we will consider the encryp-
tion oracle and the decryption oracle where the random function H is involved
as being implemented in the compressed oracle. Since these are equivalent to the
standard oracles, these changes do not affect the adversary’s success probability.
We have Pr[G2 ] = Pr[G1 ].

Game G3: This is identical to G2. Let D be the database of the challenge
queries. The only change is to the decryption algorithm which is used in the last
phase after the adversary has output its adversarial ciphertexts: if the ciphertext
is 2‖y‖H(y) where y ∈ D (in the form of 0‖y‖0), then it returns ⊥.

The intuition is that the adversary cannot make such a query (i.e., to put a
non-negligible weight on inputs 2‖y‖H(y) where y ∈ D), except with negligible
probability. Thus, the change is undetectable by the adversary. We formally
bound the distinguishing probability between G2 and G3 by considering the two
following events.
– Let ForgeOffline be the event that A1 (in the first phase) has a non-negligible

query weight on inputs containing some y ∈ D in its queries to H. A result of
Zhandry [Zha19, Lemma 5] shows that the success probability of a quantum
adversary in an standard oracle game is close to its success probability in
the corresponding compressed oracle game.
Lemma 12 ([Zha19, Lemma 5]). Let p be the probability that an ad-
versary making queries to a random oracle H : {0, 1}m ← {0, 1}n and
outputting a tuple (a,b, c) such that |a| = |b| = k and H(ai) = bi for each
i ∈ [k]. Let R be a collection of such tuples. Now consider running the
adversary with the compressed oracle, and we measure the database D af-
ter the adversary procedures its output. Let p′ be the probability that there
exists a tuple (a′,b′, c′) ∈ R such that D(a′i) = b′i for each i ∈ [k]. Then√
p ≤
√
p′ +

√
k/2n.

We now show that if ForgeOffline happens with non-negligible probability, we
could design an adversary B that break E in the sense of qIND-qCCA1.
• In the first stage, B implements a compressed random oracle and provides
a simulation of the decryption oracle of A using its decryption oracle.
Let DH is the database kept by B.

• When A outputs its challenge, B measures its database DH and gets
many pairs DH = {(y,H(y))}. B then submits these y values to its
decryption oracle, which are legitimately counted as decryption in the
first phase, and gets back their plaintexts x. Only at this point, B
outputs A’s challenge as its challenge. After receiving back the challenge
ciphertexts, B measures its challenge query, and checks if there is any
value in DH . If it does then it outputs a bit b depending on whether their
plaintexts are the same, otherwise it decides by flipping a coin. Observe
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that the success of B is exponentially close to one half the probability of
ForgeOffline (by Lemma 12 and the standard argument).

Thus, we have Pr[ForgeOffline ] must be negligible.

– Let ForgeOnline be the event that the adversary correctly computes H(H(y))
for some y ∈ D using only a single query to H in the last phase. By a similar
argument to Lemma 11, we have that Pr[ForgeOnline ] is negligible.

Therefore, we have that

|Pr[G3 ]− Pr[G2 ]| ≤ Pr[ForgeOffline ] + Pr[ForgeOnline ] ,

which is negligible.
Finally, we construct an adversary B = (B1,B2,B3) that attacks E in the

sense of qNME-qCCA1 from any adversary A = (A1,A2,A3) of this last game.
This can be argued analogously to the argument in Claim 10.2. We omit the
details.

D.3 A Separation Example for Public-key Encryption

Proof (of Theorem 6). Assume there exists some IND-qCCA2 secure encryption
scheme E = (KeyGen,Enc,Dec). Let H = {hk}k be a family of pairwise in-
dependent hash functions with the key space K. The new encryption scheme
E ′ = (KeyGen′,Enc′,Dec′) is defined as follows.

KeyGen′(λ) :

1 : (pk, sk) $← KeyGen (λ)
2 : return (pk, sk)

Enc′pk(x) :

1 : r
$← X , k $← K

2 : c1 ← Encpk(r‖k)
3 : c2 ← x⊕ r
4 : σ ← hk(c2)
5 : return c1‖c2‖σ

Dec′sk(c1‖c2‖σ) :

1 : r‖k ← Decsk(c1)
2 : if hk(c2) 6= σ then
3 : return ⊥
4 : x← c2 ⊕ r
5 : return x

The proof is completed by establishing that E ′ is IND-qCCA2 secure but
vulnerable to a qIND-qCPA attack.

Lemma 13. E ′ is IND-qCCA2 secure.

Proof. Fix the adversary A and λ. For the purpose of this separation, it is
sufficient to assume that E is perfectly correct. We prove security through a
sequence of games. Let Pr[Gi ] be the probability the adversary wins game Gi.

Game G0: This is the standard attack game. Let the challenge ciphertext be
(c∗1, c∗2, σ∗), and K∗ = (r∗, k∗) be the randomness used during the encryption
process. Then, the decryption oracle in the second phase can be written as
D̃ec

D0(·) with D0 = {(c∗1, c∗2, σ∗)}.
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Game G1: This is identical to G0, except that whenever a ciphertext (c∗1, ·, ·) ∈
D0 is submitted to the decryption oracle in the second phase, the decryption
oracle does not apply Decsk(c∗1), but instead uses K∗ produced in the challenge
phase to perform steps 2− 5.

This change is just conceptual, since we assume that E is perfectly correct.
Thus, Pr[G1 ] = Pr[G0 ].

Game G2: This is identical to G1, but now the challenger computes c∗1 by
encrypting a completely random value K+ = (r+, k+) instead of K∗. That is,
c∗1 = Encpk(r+‖k+), but c∗2 = x⊕ r∗ and σ∗ = hk∗(c∗2).

Notice that in games G1 and G2, the ciphertext c∗1 need not be submitted
for decryption. We show how to turn any distinguisher A of games G1 and G2
into an adversary A′ against the security of the underlying scheme E : A′ runs A
using its oracles to answer A, outputs (K∗,K+) as its challenge pair. Finally,
A′ outputs whatever A outputs. It is easy to see that we have:

|Pr[G2 ]− Pr[G1 ]| ≤ Advind-qcca2
A′,E (λ).

Game G3: We further modify G2 and now change the oracle D̃ec
D0(·) to be

D̃ec
D1(·) with D1 = {(c∗1, ·, ·)}. In other words, it rejects any ciphertext (c1, c2, σ)

such that c1 = c∗1.
Let Forge be the event that some ciphertext is rejected in game G3, but would

not have been rejected in the game G2. Since games G2 and G3 are identical
until event Forge, we have |Pr[G3 ]− Pr[G2 ]| ≤ Pr[Forge ].

Notice that in the construction of E ′, the use of pairwise independent hash
functions acts as a one-time secure message authentication code, thus Pr[Forge ] =
0.

In this final game, the component c∗2 is one-time padded of the message
x∗b using a random string r∗ chosen uniformly and independently of all other
variables, including b. Thus, Pr[G3 ] = 0.

By the security of the underlying building blocks, we have the security of
E ′.

Lemma 14. E ′ is qIND-qCPA insecure.

Proof. In the challenge phase, the adversary A chooses two fixed messages x0, x1,
and prepares the following state as its challenge:

|ψ〉 = 1√
2

∑
b

|xb〉 |+〉 |0〉 |+〉 .

The challenge ciphertext state will be:

|ψ0〉 = 1√
2

∑
b

|xb〉 |+〉 |xb ⊕ r〉 |+〉 if b = 0,

or
|ψ1〉 = 1√

2

∑
b

|xb〉 |+〉 |π(xb)⊕ r〉 |+〉 if b = 1.
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A then applies the Fourier sampling (as described in Section 4.2) and breaks the
security of E ′ with non-negligible probability.

D.4 Quantum CCA2 Security of Encrypt-then-MAC
Figure 4 describes the hybrid games in the proof of Theorem 3.

Experiment Exptqind-qcca2−b
SE′ in G0 , G1, G2, G3, G4

Define E = SymEnc′k CStOSymEnc′

D = SymDec′k CInvOSymDec′

RR(b) =

{
SymEnc′k CStOSymEnc′ if b = 1,
CStOSymEnc′◦π if b = 0,where π $← Π.

k = k1 ‖ k2
$← K′()

|φ〉 ← AE,D1 (λ)

b′ ← A
RR(b),E,CInvOSymDec′
2 (|φ〉)

return b′

SymEnc′k1‖k2
(x) : // G0, G1, G2 G3, G4

k∗2
$← KMA()

c← SymEnck1
(x)

τ ← MACk2 (c) MACk∗2
(c)

return c ‖ τ

CStOSymEnc′ // G0, G1, G2, G3 G4

Implemented as

CStO
|r〉 |k∗2〉
SymEnc′ [x 7→ c‖τ ]

SymDec′k1‖k2
(c ‖ τ) :

if Verk2 (c, τ) = ⊥ then
return ⊥

x← SymDeck1
(c)

return x

CInvOSymDec′ |c‖τ, z,D〉 // G0, G1 G2, G3, G4

if FindImage(c‖τ,D) = (1, w) then
return |y, z ⊕ w〉 ⊗ |D〉

return |y, z ⊕ SymDec′k(y) ⊥〉 ⊗ |D〉

Fig. 4. Games for the proof of Theorem 3. In each procedure, the components inside a
gray (solid) frame are only present in the games marked by a gray (solid) frame.

Quantum circuits of the unitary Uf implemented by the reduction algorithms
of Claim 3.2 and Claim 3.4 (Theorem 3) are given in Figure 5. This unitary acts
on three registers: the input registers, the purification registers, and the output
registers.
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|x〉
USymEnck1

|x〉

|r〉 |r〉

|0〉

UMAC

|c〉

|k2〉

|0〉 |τ〉

Uf

|x〉

USymEnc

|x〉

|r〉

|0〉

UMAC

|c〉

|k2〉 |k2〉

|0〉 |τ〉

Uf

Fig. 5. Implementations of quantum circuit for the reduction algorithms of Claim 3.2
(left) and Claim 3.4 (right) in the proof of Theorem 3. The dotted box is the unitary
implemented by some oracle (i.e., the challenger in the reduction algorithms), who
controls all registers inside that box.

D.5 From IND-qCCA2 to qIND-qCCA2

Experiment Exptqind-qcca2−b
E′ in G0 , G1, G2, G3, G4

Define RR(b) =

{
Enc′pk CStOEnc′ if b = 1,
CStOEnc′◦π if b = 0,where π $← Π.

(pk, sk) $← KeyGen′(λ)

|φ〉 ← ADec′sk
1 (λ)

b′ ← ARR(b),CInvODec′
2 (|φ〉)

return b′

Enc′pk(x) : // G0, G1, G2, G3 G4

k∗ $← K, k+ $← K

c1 ← Encpk(k∗) Encpk(k+)
c2 ← SymEnck∗(x)
return c1‖c2

CStOEnc′ // G0, G1, G2 G3, G4

Implemented as

CStO|r〉Enc′ [x 7→ c1‖c2]

CtMStO|r〉Enc′ [x 7→ c1‖c2]

Dec′sk(c1‖c2) :

k← Decsk(c1)
x← SymDeck(c2)
return x

CInvODec′ |c1‖c2, z,D〉 // G0, G1 G2, G3, G4

if FindImage(c1‖c2, D) = (1, w) then

return |y, z ⊕ w SymDeck∗(c2) 〉 ⊗ |D〉

return |y, z ⊕ Dec′sk(c1‖c2)〉 ⊗ |D〉

Fig. 6. Games for the proof of Theorem 7. In each procedure, the components inside a
gray (solid) frame are only present in the games marked by a gray (solid) frame.
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Proof (of Theorem 7). We prove using hybrid games, described in Figure 6. Since
our definitions are closed under composition, it is sufficient to prove for the single-
message security.

Let A be a QPT adversary. For any game Gindex, we denote by Pr[Gindex ] :=
|Pr[Gindex(A) = 1 | b = 1]− Pr[Gindex(A) = 1 | b = 0]|. Also, by event Gindex(A),
we mean the output of the experiments (defined as in Definition 3) in game Gindex
when interacting with A.

Game G0: This is the standard attack game. Let k∗ denote the symmetric key
used during the encryption process within the oracle.

Game G1: This is identical to G0, except that now the real-or-random oracle
RR(b) will be implemented as a compressed oracle (in both cases b = 1 and
b = 0). Let D be the database of the encryption oracle. Then the decryption
oracle in the second phase can be written as

CInvO1
Dec′ |y, z〉 |D〉 =

{
|y, z ⊕ Dec′sk(y)〉 |D〉 if FindImage(y,D) = (0, 0),
|y, z ⊕ w〉 |D〉 if FindImage(y,D) = (1, w),

where FindImage parses its input component y as y = (c1, c2).
Since SE is perfectly correct (by definition), any decryption failure of E ′ is

a decryption failure of E . Thus E ′ is also δ-correct. By Lemma 8, we have
|Pr[G1 ] = Pr[G0 ]| ≤ O(qd · δ).

Game G2: We define FindImage′ that takes as input a tuple (c1, ·, D) and returns
(1, w) if there is any pair (c1, ·) in D, ignoring the second component, and (0, 0)
otherwise. This is identical to G1, except that we change the decryption oracle
in the second phase to

CInvO2
Dec′ |y, z〉 |D〉 =

{
|y, z ⊕ Dec′sk(y)〉 |D〉 if FindImage′(y,D) = (0, 0),
|y, z ⊕ SymDeck∗(c2)〉 |D〉 if FindImage′(y,D) = (1, w),

where FindImage′ parses its input component y as y = (c1, c2).
Let DecFail be the event that Dec′sk(Enc′pk(x))) = x′ 6= x. Unless this event

occurs, G2 and G1 proceed identically. We thus have

|Pr[G2 ]− Pr[G1 ]| ≤ Pr[DecFail ] ≤ δ,

where the last inequality follows from the definition of correctness.

Game G3: This is identical to G2, except that we change the implementation of
the compressed oracle from CStO|r〉[x 7→ c1‖c2] to CtMStO|r〉[x 7→ c1‖c2]. That
is, we measure the purification registers (which is the randomness used in E ’s
encryption) after the query.

Since the two oracle variations are equivalent, this change does not affect the
adversary’s success probability. We thus have Pr[G3 ] = Pr[G2 ].

Notice that the same symmetric key k∗ sampled during the encryption process
within the challenger’s oracle is used for all classical states of the superposition,
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the ciphertext state of the challenge query would be:∑
x,y

αx,y |x, y〉 → |Encpk(k∗)〉
∑
x,y

αx,y |x, y ⊕ SymEnck∗(xb)〉 , (5)

where xb denotes the actual encrypted plaintext, depending on whether it is the
real-world (b = 1) or the random-world (b = 0) (but the key k is independent of
b). Notice that the first component c1 of the ciphertext is a classical value.

Game G4: This is identical to G3, except that in the real-or-random oracle, we
encrypt a complete random value k+ in place of the symmetric key k∗, that is
we compute c1 = Encpk(k+), but we still use k∗ for symmetric encryption and
decryption.

It is straightforward to see that any adversary A that distinguishes games
G4 from G3 can be turned to an adversary B attacking the underlying scheme E ,
whose running time is essentially the same as that of A. The adversary B just
runs the adversary A, and uses (k∗, k+) as its challenge pair. Note that in both
games, the challenge ciphertext of B is c1, which is classical, as argued above,
and that B never query to the decryption oracle on the challenge ciphertext, but
instead uses its database to answer the query. We have

|Pr[G4 ]− Pr[G3 ]| ≤ Advind-qcca2
B,E (λ).

Furthermore, notice the fact that in this final game, the symmetric key k∗ is
independent of the adversary’s view and b, we now turn any distinguisher A of in
this game to an adversary C that breaks the one-time security of SE . C runs A,
when it receives the challenge query from A, it first generates a random string k+

and encrypt it with the public key pk to get c1, and sends A’s challenge query
directly to its challenger. After receiving the answer back, C appends |c1〉 to the
result and forwards it to A. In the second phase, for any decryption query that
contains c1 (from its database), C just forwards the query to its challenger (which
can be implemented similarly as the inverse oracle described in Section 3.2).

By the security of SE we have |Pr[G4 ]− Pr[G3 ]| ≤ Advot-qcca2
C,SE (λ).

Putting everything together, by the security of the underlying building blocks,
we have the security of E ′.
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