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Abstract. Designing an efficient public-key cryptosystem supporting
additive homomorphism is not an easy job. At Eurocrypt 2013, Joye
and Libert proposed a method for generalizing the Goldwasser-Micali
cryptosystem. Their work basically addressed the issue of the ciphertext
expansion, which is quite large in the Goldwasser-Micali cryptosystem.
In this paper, we generalize the quadratic residue theory to the cases
of higher-power residue. We also provide some new efficient methods
for computing a type of higher-power residue symbols, which gives a
generic tool for constructing practical cryptographic schemes, protocols
and systems. To illustrate this point, we utilize it to generalize and im-
prove the Joye-Libert cryptosystem. We also generalize some well-known
results on quadratic residue and use them to instantiate the subgroup
indistinguishability assumption, which can be utilized to construct key-
dependent security and auxiliary-input security schemes.

Keywords: higher-power residue · Goldwasser-Micali cryptosystem ·
Joye-Libert cryptosystem · homomorphic encryption.

1 Introduction
In cryptology, the term homomorphism was firstly introduced by Rivest et al. [31]
as a method to compute without revealing the hiding information. Homomorphic
encryptions are malleable schemes, which means that decryption after certain
computable functions on the encrypted messages will contribute to foreseeable
and homomorphic results of the original messages. Usually, being malleable is not
good, but it is very practical and useful in real-world applications. All existing
homomorphic encryption schemes can be divided into three types of schemes
based on the number of operations allowed to conduct on ciphers:
(1) Partially Homomorphic Encryption (PHE) schemes support functions with

only one type of operation, such as addition [18,3,25,27,28,12,20] or multi-
plication [32,15] with no limit on usage times.
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(2) Somewhat Homomorphic Encryption (SWHE) schemes [13] support only a
limited number of operations on encrypted data or certain circuits (e.g.,
branching programs).

(3) Fully Homomorphic Encryption (FHE) schemes [17] support arbitrary func-
tions (e.g., searching, sorting, max, min, etc.) with no bound on usage times.

Among the three types of schemes, more efficient PHE schemes and SWHE
schemes are deployed in secure electronic voting protocols [10], private informa-
tion retrieval [22], privacy-preserving data aggregation schemes in smart grid [24]
or other IoT systems and the signal processing applications [2] with no require-
ments of complex functions. Besides, efficient homomorphic encryptions, such as
Paillier cryptosystem, are incorporated into generic multi-party computation to
develop customized more efficient protocols for particular tasks. FHE can be de-
ployed in wider application prospects in cloud computing, artificial intelligence
and so on, for the flexibility on arbitrary functions (e.g., searching, sorting, max,
min, etc.), whereas expensive overheads block extensive applications of FHE.

Goldwasser and Micali constructed the first probabilistic and PHE scheme at
STOC 1982 [18]. It is quite simple and efficient in term of both encryption and
decryption. However, it is inefficient in bandwidth utilization, which is a major
concern for real-world applications. After then several proposals were made to
address this issue.

One intuitive approach to improve the bandwidth utilization is by intro-
ducing higher-power residue symbols as the Goldwasser-Micali cryptosystem is
presented based on the quadratic residue theory. For example, from 1988 to
1990, Cao [7] proposed two types of extensions of the Goldwasser-Micali cryp-
tosystem. One scheme with faster decryption is based on the cubic residue in
the ring Z[ω]. The other is based on the kth-power residues and enables the seg-
ment encryption instead of encrypting bit-by-bit. Four years later, Benaloh and
Fischer [3,10] put forward a more bandwidth-wise scheme using a k-bit prime r
such that r|p− 1, r2 - p− 1 and r - q− 1. However, the decryption is demanding
and k is limited to 40, which means that the ciphertext expansion is still large.
In 1998, Naccache and Stern [25] observed that the decryption of the Benaloh-
Fischer scheme can be made even faster by considering a smooth and square-free
integer R =

∏
i ri such that ri | φ(N) but r2i - φ(N) for each prime ri. In 2013,

Joye and Libert [20] revisited the Goldwasser-Micali cryptosystem using 2k-th
power residue symbols. Their proposed cryptosystems inherit the homomorphic
property of the original cryptosystem and are efficient in both bandwidth and
speed. Subsequently, Cao [8] demonstrated that the work of Joye and Libert can
be extended more generally. However, their security analysis is quite complicated
and opaque since it closely follows the analysis of the Joye-Libert cryptosystem.

Another different approach is by enlarging moduli, which was proposed by
Okamoto and Uchiyama [27]. They suggested using moduli of the form N = p2q.
Later, this work was improved by Paillier [28] with the setting of N = p2q2,
which reduces the ciphertext expansion by one-third. An interesting question is
whether the two methods described above can be combined or unified.
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Recently, higher-power residue has attracted the attention of some cryp-
tographic researchers. For example, Clear and McGoldrick [9] constructed an
identity-based encryption scheme supporting homomorphic addition modulo a
polynomial-sized prime e. Brier et al. [5] introduced new prq-based one-way
functions and companion signature schemes by means of replacing the Jacobi
symbol with the higher-power residue symbol.

Our Contributions

Higher-power Residue Symbols Quadratic residue (QR) has been a fun-
damental tool in a wide range of cryptographic applications. However, in some
applications such as public-key encryption and digital signature, the bandwidth
is wasteful if the scheme is constructed based on the QR theory. In this paper, we
basically addressed this issue by introducing the theory of higher-power residues,
which is an important branch of algebraic number theory. Interestingly, we find
that computing a type of higher-power residue symbols is closely related to solv-
ing the discrete logarithm problem in a specific cyclic group if the factorization
of the modulus is already known. This discovery will make the higher-power
residue tools more practical.

More Efficient Homomorphic Encryption Based on the technique above,
we find a simple attack on the Joye-Libert cryptosystem [20] and propose a
new reliable assumption from higher-power residue symbols. We improve the
Joye-Libert cryptosystem in terms of both ciphertext expansion and decryption
speed under the new assumption. Naturally, the lossiness and the efficiency of
the Joye-Libert LTDF are improved in the same way.

Besides, we instantiate the subgroup indistinguishability (SG) assumption in-
troduced by Brakerski and Goldwasser [4] under a newly designed assumption,
namely, the higher-power residue assumption. This assumption is supported by a
newly proved theorem which generalizes the following well-known theorem from
quadratic residues

Proposition 1. If N is a Blum integer and QRN =
{
x2 | x ∈ Z∗

N

}
and JN ={(

x
N

)
= 1 | x ∈ Z∗

N

}
, then JN ∼= {±1} ⊗QRN .

Brakerski and Goldwasser gave a generic construction of schemes achieving key-
dependent security and auxiliary-input security based on the SG assumption, of
which DCR and QR are special cases. Hence, the scheme based on our new as-
sumption is more bandwidth-wise then the scheme based on the QR assumption
in [4].

1.1 Notations

If X is a finite set, the notation #X means the cardinality of X, writing x
$← X

to indicate that x is an element sampled from the uniform distribution over X.
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If A is an algorithm, then we write x ← A(y) to mean: “run A on input y and
the output is assigned to x”. PPT is short for “probabilistic polynomial time”.

For a group G, the subgroup of G generated by the set X is denoted by 〈X〉.
If R is a ring, a, b ∈ R and I is an ideal of R, the relation a − b ∈ I is written
a ≡ b (I). ⊗ represents the direct product of two algebraic structures. log stands
for the binary logarithm.

( ·
·
)

stands for Jacobi symbol. φ denotes the Euler’s
totient function.

1.2 Higher-power Residue Symbols

Let K be a number field, and OK be the ring of integers in K, and e ≥ 1 be
an integer. We say a prime ideal p in OK is relatively prime to e if p - eOK . It
is easy to see that p is relatively prime to e if and only if gcd(q, e) = 1, where
q = pf = Norm(p) for some f ∈ N. Notably, for every α ∈ OK , α /∈ p, we have

αq−1 ≡ 1 (p).

Let ζe = exp(2πi/e) be an e-th root of unity. If ζe ∈ K and p is relatively prime
to e, the order of the subgroup of (OK/p)

× generated by ζe mod p is e. This
indicates that e divides q−1, hence we can define the e-th power residue symbol(

α
p

)
e

as follows: if α ∈ p, then
(

α
p

)
e
= 0; otherwise,

(
α
p

)
e

is the unique e-th
root of unity such that

α
Norm(p)−1

e ≡
(
α

p

)
e

(p) .

Next, we extend the symbol multiplicatively to all ideals. Suppose a ⊂ OK is
an ideal prime to e. Let a = p1p2 · · · pm be the prime decomposition of a. For
α ∈ OK define

(
α
a

)
e
=
∏m

i=1

(
α
pi

)
e
. If β ∈ OK and β is prime to e, we define(

α
β

)
e
=
(

α
(β)

)
e
. Since it is well-known that OK = Z[ζe], we simply consider the

case K = Q(ζe) from here on. We suggest interested readers to refer to [19,23,26]
for more details about e-th power residue symbols.

Let ep, eq be positive integers and N = pq be a product of two distinct primes
satisfying p ≡ 1 (mod ep), q ≡ 1 (mod eq), then both p and q split completely in
Q(ζep) and Q(ζeq ) respectively. We define the non-degenerate primitive (ep, eq)-
th root of unity modulo N as an integer in Z∗

N which is a primitive ep-th and
eq-th root of unity modulo p and q respectively. For example, if rp and rq are
primitive roots modulo p and q respectively and an integer µ ∈ Z∗

N satisfies

µ ≡ r
p−1
ep

p mod p and µ ≡ r
q−1
eq

q mod q,

then µ is a non-degenerate primitive (ep, eq)-th root of unity modulo N . The
following lemma might be crucial for instantiations of assumptions and schemes
with respect to the higher-power residue.
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Lemma 1 (Freeman et al. [16]). Let ep, eq be positive integers, N = pq be
a product of two distinct primes p, q with p ≡ 1 (mod ep) and q ≡ 1 (mod eq).
Let µ ∈ Z∗

N be a non-degenerate primitive (ep, eq)-th root of unity modulo N .
For each i ∈ Z∗

ep and j ∈ Z∗
eq , let pi = pZ[ζep ] + (ζep − µi)Z[ζep ] and qj =

qZ[ζeq ] + (ζeq − µj)Z[ζeq ], then we have Norm(pi) = p, pZ[ζep ] =
∏

i∈Z∗
ep

pi and
Norm(qj) = q, qZ[ζeq ] =

∏
j∈Z∗

eq
qj. In particular, if ep = eq = e, we may define

ai = NZ[ζe] + (ζe − µi)Z[ζe] and we furthermore have Norm(ai) = N, ai = piqi
for each i ∈ Z∗

e and NOK =
∏

i∈Z∗
e
ai.

Notations. In the rest of this paper, we will frequently use the notations as
declared in Lemma 1. The ideals p1 and q1 are mainly considered in the following
discussion. As a matter of convenience, we denote p1, q1 and a1 by p, q and a
respectively.

2 Computation and Properties of Higher-power Residue
Symbols

In this section, we show how to compute the higher-power residue symbols with
respect to p1 and q1 efficiently, together with the factorization of N known. We
also investigate more properties about higher-power residue symbols.

2.1 Computing Higher-power Residue Symbols

For a general integer e and an ideal in Z[ζe], it is really tough to design an efficient
and deterministic algorithm to compute e-th power residue symbols with respect
to them since we can hardly find a deterministic way to decrease the norm of
ideals. In fact, efficient and deterministic algorithms are only known in the case of
e ∈ {2, 3, 4, 5, 7, 8, 11, 13} so far [6]. The general case is tackled probabilistically
by Squirrel [34] and Boer [14]. However, their algorithms are not quite efficient
and no rigorous proof has been found that they run in polynomial time. For
a composite e, Freeman et al. [16] constructed the following “compatibility”
identity 3 to decrease the size of the power e so as to reduce the amount of
computation.

Proposition 2. With notations as in Lemma 1. Let f be integers with f | ep
and x ∈ Z[ζep ]. Then (

x

p ∩ Z[ζf ]

)
f

=

(
x

p

) ep
f

ep

.

3 Freeman et al. claimed that the identity holds for all ideals in Z[ζe]. But this is not
correct, e.g., If U is a prime ideal in Z[ζe] and B = U∩Z[ζf ] is a prime ideal in Z[ζf ]
where f | e, the argument NormZ[ζe](U) = NormZ[ζf ](B) is not always true. In fact,
when B is singular, the local-global principle ensures the identity held. See Chapter
1 in [14]. However, note that in the case of NormZ[ζe](U) = p − 1, the identity also
holds due to the inclusion map ι : Z[ζe]/U 7→ Z[ζf ]/B.
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It follows readily that

p ∩ Z[ζf ] = pZ[ζf ] + (ζf − µ
ep
f )Z[ζf ]

due to the fact that µ
ep
f is a non-degenerate primitive (f, 1)-th root of unity

modulo N . Therefore, we are able to learn the value of
(

x
p

)
ep

by computing(
x

p∩Z[ζf ]

)
f

for each coprime factor of ep and applying the Chinese remainder
theorem.

Quadratic and higher-power residue are useful building-blocks of many cryp-
tographic applications. In most applications, the factorization of N is transpar-
ent to participants who want to get the values of higher power residue symbols.
Therefore, we don’t necessarily consider the computation in the general case. We
can actually do better with the ideal p and q with the factorization of N . The
following simple theorem demonstrates that computing

(
·
p

)
ep

(and hence also(
·
q

)
eq

) is closely related to solving the discrete logarithm problem in a specific
cyclic group. Recall the discrete logarithm problem (DLP) is defined as: given a
finite cyclic group G of order n with a generator α and an element β ∈ G, find
the integer x ∈ Zn such that αx = β.

Theorem 1. With notations as in Lemma 1, we deduce that
(

y
p

)
ep

= ζxep if and

only if µx = y
p−1
ep in Z∗

p. Therefore, the solution to the DLP in the finite cyclic
subgroup 〈µ〉 of order ep allows the computation of

(
·
p

)
ep

.

Proof. If µx = y
p−1
ep in Z∗

p, then y
p−1
ep − ζxe = µx − ζxep ∈ p. It follows that(

y
p

)
ep

= ζxep . Conversely, If
(

y
p

)
ep

= ζxep for some x ∈ Zep , that is y
p−1
ep −ζxep ∈ p.

Since the order of y
p−1
ep divides ep, it can be expressed as µz for z ∈ Zep , which

implies µx − µz ∈ p and hence µx = µz. The fact that the order of µ is ep forces
x = z. �

Although the DLP is considered in general to be intractable, it can be easily
solved in a few particular cases, e.g., if the order of G is smooth, the Pohlig-
Hellman algorithm[30] turns out to be quite efficient. In other words, if ep is
chosen with appropriate prime factors and the factorization of N is known,
we can get the value of

(
·
p

)
ep

by using only the Pohlig-Hellman algorithm. In
practice, ep is usually set to be a prime power.
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Algorithm 1 Pohlig-Hellman algorithm for prime powers
Input: an integer µ ∈ Zp of order ek where e and p are primes with ek | p− 1

and x ∈ 〈µ〉
Output: y = (yk−1, . . . , y0)e such that µy ≡ x (mod p)

1: Compute the values µek−1i for each 0 ≤ i < e and store them in a lookup table
2: Compute the values µ−ei for each 0 ≤ i < k and store them in a lookup table
3: x0 ←− x
4: Call the hash algorithm to find y0 ∈ Ze such that µek−1y0 ≡ xek−1

0 mod p
5: for 1 ≤ i ≤ k − 1 do
6: xi ←− xi−1µ

−yi−1e
i−1 mod p

7: Call the hash algorithm to find yi ∈ Ze such that µek−1yi ≡ xek−i−1

i mod p
8: end for
9: return y = (yk−1, . . . , y0)e

Remark 1. The above algorithm can be made a little faster. In each loop it-
eration, we must compute xek−i−1

i mod p. According to the step 6 above, we
have

xek−i−1

i ≡ xek−i−1

i−1 µ−yi−1e
k−2

mod p

Thus, if we know the value of xek−i−1

i−1 in advance, we can cut down the number
of operations of computing xek−i−1

i , and this can be done by evaluating

xek−i−1

i−1 and xek−(i−1)−1

i−1 ≡
(
xek−i−1

i−1

)e
mod p

successively in the previous step. So the way to optimize the algorithm is: we
record the values of xek−i−1

i−1 for odd indices i, then the number of operations of
computing each even part is highly reduced.

2.2 Some Properties of Higher-power Residue Symbols

In this section, we assume ep = eq = e. For an arbitrary k ≥ 2, we say an
integer x ∈ Z∗

N is a k-th residue modulo N if there exists an integer y ∈ Z∗
N

such that yk ≡ x (mod N). Note that if x is an e-th residue modulo N , then
we have

(
x
pi

)
e
=
(

x
qi

)
e
= 1 for each i ∈ Z∗

e. Just as for quadratic residue,
we denote the set of all e-th residues in Z∗

N by ERe
N . Correspondingly, the set{

x ∈ Z∗
N

∣∣ (x
a

)
e
= 1
}

is denoted by JeN .

Theorem 2. With notations as in Lemma 1, assume that ep = eq = e and let
ERe

m =
{
xe mod m

∣∣ x ∈ Z∗
m

}
denote the set of all e-th residues in Z∗

m and
let U =

{
1, ζe, . . . , ζ

e−1
e

}
denote the multiplicative subgroup of roots of unity in

Z[ζe], then

(1) Z∗
p/ER

e
p
∼= U (and hence also Z∗

q/ER
e
q
∼= U )
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(2) If we require that gcd(p−1
e , e) = gcd( q−1

e , e) = 1, then there is an integer ν
such that

• ν is a non-degenerate primitive (e, e)-th root of unity modulo N .

•
(

ν
ai

)
e
= 1 for every ideal ai ⊂ Z[ζe].

Furthermore, we have
JeN = 〈ν〉 ⊗ ERe

N

Proof.

(1) Consider the homomorphism θ : Z∗
p → U defined by x 7→

(
x
p

)
e
. Since the

number of roots of the polynomial f(x) = x
p−1
e − 1 over the field Z[ζe]/p is

at most p−1
e and the cardinality of ERe

p is exactly p−1
e , an integer z ∈ Z∗

p

satisfying
(

z
p

)
e
= 1 must be in ERe

p. Hence the kernel of θ is ERe
p and we

have the desired isomorphism due to the fact that the cardinality of left
hand side is equal to the cardinality of right hand side. Of course, elements
in different cosets of ERe

p in Z∗
p have different e-th power residue symbols,

and there is a one to one correspondence between the cosets of ERe
p in Z∗

p

and the e-th roots of unity via the e-th power residue symbols.
(2) The condition gcd(p−1

e , e) = gcd( q−1
e , e) = 1 implies that there exist integers

sp ∈ Z∗
e, tp, sq ∈ Z∗

e, tq such that sp
p−1
e + tpe = sq

q−1
e + tqe = 1. Let µp be

µ mod p and µq be µ mod q. Observe that every primitive e-th root of unity
in Zp has the form µi

p for some i ∈ Z∗
e. It follows that(

µ
sp
p

p

)
e

=

(
ζ
sp
e

p

)
e

= ζ
p−1
e sp

e

Similarly, (
µ
−sq
q

q

)
e

=

(
ζ
−sq
e

q

)
e

= ζ
− q−1

e sq
e

Hence, letting ν be the integer congruent to µ
sp
p modulo p and µ

−sq
q modulo

q. Then, (ν
a

)
e
=

(
ν

p

)
e

(
ν

q

)
e

= ζ
(sp p−1

e −sq
q−1
e )

e = 1

Since ν ∈ Z, the result
(

ν
ai

)
e
= 1 follows from the Galois equivalence. To

prove the last statement we only need to prove that every element of JeN
can be written as a product of two elements in 〈ν〉 and ERe

N respectively
as 〈ν〉 ∩ ERe

N = ∅. For any x ∈ JeN , since there exists j ∈ Ze such that(
νj

p

)
=
(

x
p

)
and

(
νj

q

)
=
(

x
q

)
, we have x ≡ νjye mod p and x ≡ νjze mod q

for some x ∈ Z∗
p and y ∈ Z∗

q from (1). Take w ≡ y mod p and w ≡ z mod q,
then we have x ≡ νjwe mod N , as desired. �
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Remark 2. In particular, if e = 2, then we deduce from Theorem 2 the well-
known theorem which says that JN ∼= {±1} ⊗QRN where N is a Blum integer
and QRN =

{
x2 | x ∈ Z∗

N

}
and JN =

{(
x
N

)
= 1 | x ∈ Z∗

N

}
.

3 A Simple Attack on the Joye-Libert Cryptosystem

The IND-CPA secure of the Joye-Libert cryptosystem is equivalent to the Gap-2k-
Res assumption [Section 4.1, [20]], which was considered in [1] by Abdalla, Ben
Hamouda and Pointcheval. However, the hardness of this assumption depends
on the choice of q in fact (recall that p ≡ 1 mod 2k). In detail, if 2ℓ (2 ≤ ℓ ≤ k)
is a common divisor of p − 1 and q − 1, the symbol

(
x

NZ[ζ
2ℓ

]

)
2ℓ

must be equal

to 1 for each x ∈ ER2ℓ

N , but it certainly is incorrect when x is chosen from
JN \ QRN . In this case, the generic algorithms introduced in the first paragraph
of Section 2.1 can be used to break this assumption. Even if ℓ = 2, the Joye-
Libert cryptosystem may leak 1-bit information of a plaintext. One way to resist
this attack is to add more restrictions on the choice of x. We will generalize and
improve this assumption in the next section.

4 A New Homomorphic Public-Key Cryptosystem

We generalize the Goldwasser-Micali cryptosystem as well as the Joye-Libert
cryptosystem. Our new homomorphic cryptosystem can efficiently encrypt larger
messages than both of them and the decryption is much faster than that of the
Joye-Libert cryptosystem.

4.1 A New Assumption from Higher-power Residue

In this section, we shall give a formal definition of the assumption our cryptosys-
tem relies on. We start with the following definition of a set which is contrary
to ERlcm(ep,eq)

N . Note that ep and eq are usually taken to be prime powers in
practice. Let e denote gcd(p− 1, q − 1) we define

J (ep,eq)
N =

{
x ∈ Z∗

N

∣∣∣ (x
a

)
e
= 1,

(
x

p

)
ep

and
(
x

q

)
eq

are primitive
}
.

Note that the condition
(
x
a

)
e
= 1 ensures that

(
x
ai

)
e
= 1 for each i ∈ Z∗

e by the

Galois equivalence, hence
(

x
NZ[ζe]

)
e
= 1.

Definition 1 ((ep, eq)-th Residue ((ep, eq)-ER) Assumption). Given a secu-
rity parameter κ. A PPT algorithm RSAgen (κ) generates two integers ep and eq
and a random RSA modulus N = pq such that p ≡ 1 mod ep and q ≡ 1 mod eq,
and chooses at random µ ∈ Z∗

N a non-degenerate primitive (ep, eq)-th root of
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unity modulo N . The (ep, eq)-ER assumption with respect to RSAgen (κ) asserts
that the advantage Adv

(ep,eq)-ER
A,RSAgen (κ) defined as

∣∣∣Pr (A (N, x, lcm(ep, eq)) = 1
∣∣∣ x $← ERlcm(ep,eq)

N

)
−

Pr
(
A (N, x, lcm(ep, eq)) = 1

∣∣∣ x $← J (ep,eq)
N

)∣∣∣
is negligible for any PPT adversary A; the probabilities are taken over the
experiment of running (N, (ep, eq), µ) ← RSAgen (κ) and choosing at random
x ∈ ERlcm(ep,eq)

N and x ∈ J (ep,eq)
N .

Remark 3. The (2, 1)-ER assumption is equivalent to the standard QR assump-
tion. The (2k, 1) − ER assumption is equivalent to the Gap-2k-Res assumption
with q ≡ 3 (mod 4) defined in [Definition 4, [20]] because x ∈ JN \ QRN if and
only if x ∈ JN and

(
x
p

)
2k

is primitive (for an arbitrary µ).

4.2 Description

The setting of our new cryptosystem (denoted by Π) is essentially the same
as for the Goldwasser-Micali cryptosystem and the Joye-Libert cryptosystem.
More precisely, the setting ep = eq = 2 corresponds to the Goldwasser-Micali
cryptosystem and the setting ep = 2k, eq = 1 corresponds to the Joye-Libert
cryptosystem.

KeyGen (1κ) Given a security parameter κ. KeyGen selects smooth integers
ep and eq, then generates an RSA modulus N = pq a product of two large
and equally sized primes p and q such that ep | p− 1, eq | q − 1 and picks at
random µ ∈ Z∗

N a non-degenerate primitive (ep, eq)-th root of unity modulo
N and y

$← J (ep,eq)
N . The public and private keys are pk = {N, lcm(ep, eq), y}

and sk = {p, q, ep, eq, µ}.
Enc (pk,m) To encrypt a message m ∈ Zlcm(ep,eq), Enc picks a random r ∈ Z∗

N

and returns the ciphertext

c = ymrlcm(ep,eq) mod N.

Dec (sk, c) Given the ciphertext c and the private key sk = {p, q, ep, eq, µ},
Dec first computes

(
c
p

)
ep

= ζ
zp
ep and

(
c
q

)
eq

= ζ
zq
eq by means of Theorem 1.

Then, it recovers the message m ∈ Zlcm(ep,eq) from

m ≡ zpk
−1
p mod ep and m ≡ zqk

−1
q mod eq

by using the Chinese Remainder Theorem with non-pairwise coprime moduli,
where

(
y
p

)
ep

= ζ
kp
ep and

(
y
q

)
eq

= ζ
kq
eq are pre-computed.
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4.3 Security analysis
The cryptosystem Π also has the similar security analysis as for the Goldwasser-
Micali cryptosystem.
Theorem 3. The cryptosystem Π is IND-CPA secure under the (ep, eq)-ER as-
sumption.
Proof. Consider changing the distribution of the public key. Under the (ep, eq)-
ER assumption, we may choose y uniformly in ERlcm(ep,eq)

N instead of choosing it
from J (ep,eq)

N , while this is done without noticing the adversary. In this case, the
ciphertext carries no information about the message and hence Π is IND-CPA
secure.

4.4 Parameter Selection
The key generation requires two primes p and q such that ep | p − 1 and eq |
p− 1, where ep and eq are better to be chosen so that they are powers of small
primes in practice. The algorithm to produce p and q is similar in spirit to the
algorithm described in [Section 5.1, [20]]. The major difference is that the size
of log ep + log eq is bounded by 1

2 logN . The reason is provided by the following
proposition [Lemma 8, [35]] related to Coppersmith’s method for finding small
roots of bivariate modular equations.
Proposition 3. Let p and q be equally sized primes and N = pq. Let e be
a divisor of φ(N) = (p − 1)(q − 1). If there exists a positive constant c such
that e > N

1
2+c holds, then there exists a PPT algorithm that given N and e, it

factorizes N .
Note that taking log ep + log eq to be 1

2 logN does not contradict the setting
of Φ-Hiding Assumption as the prime factors of φ(N) are very small. However,
log ep + log eq shall not be close to 1

2 logN because we don’t know whether
there exists an attack of mixing together Coppersmith’s attack and exhaustive
searches. In particular, if we take ep = 2k, eq = 2 and k > 1

4 logN , the low-
order 1

4 logN bits of p is revealed to an adversary, and hence it can find the
factorization of N by implementing Coppersmith’s attack [11]. Therefore, if we
choose ep and eq not to be a power of 2 and to be coprime, we may handle
messages at least twice as long as the Joye-Libert cryptosystem does. The key
generation also requires a random integer y ∈ Z∗

N in J (ep,eq)
N . We can use (2) in

Theorem 2 for uniformly sampling integers in Jgcd(p−1,q−1)
N . A random integer

modulo N has a probability of exactly φ(ep)φ(eq)
epeq

of being in the set{
x ∈ Z∗

N

∣∣∣ (x

p

)
ep

and
(
x

q

)
eq

are primitive
}
.

If we take ep = ef11 and eq = ef22 where e1 and e2 are distinct primes, the above
probability is equal to (e1−1)(e2−1)

e1e2
. Therefore, a suitable y ∈ J (ep,eq)

N is likely to
be obtained after several trials.
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4.5 Performance and Comparisons

Now, we investigate the performance of our cryptosystem and make comparisons
with the Paillier cryptosystem [28] and the Joye-Libert cryptosystem [20], two
famous schemes in the literature on homomorphic encryption.

All the three cryptosystems require the generation of two large suitable
primes. Though both the cryptosystem Π and Joye-Libert cryptosystem need to
select other elements, it altogether takes a negligible amount of time compared
with the selection of the primes.

It is easy to see that the Paillier cryptosystem takes about four times as
long as the Π or the Joye-Libert cryptosystem to encrypt messages or perform
homomorphic operations because the modular multiplications are computed over
Z∗
N2 .

One major drawback of the Joye-Libert cryptosystem is that its decryption
[Algorithm 1, [20]] is slow. When decrypting a 128-bit message, it needs roughly

log p− 128 +
128(128− 1)

4
+

128

2
= log p+ 4000

modular multiplications over Z∗
p on average according to the remark following

[Algorithm 1, [20]]. However, if we take ep = 92913 > 2128 and eq = 1, the major
time consuming part of Π’s decryption is performing the Pohlig-Hellman algo-
rithm to compute

(
·
p

)
ep

. If the storage is enough, in order to speed up, we may

pre-evaluate the quantities µ92913k mod p for k = 0, 1, . . . , 928 and µ−929j mod p
for j = 0, 1, . . . , 12 in a lookup table. If we ignore the constant time which it
spends on the hash algorithm, then the decryption only requires

log p− 128 +

12∑
k=0

k is even

log(929k) + 128 ≈ log p+ 414

modular multiplications over Z∗
p on average according to the remark following

Algorithm 2.1. If N is taken as 1024 bits, the decryption of Π is approximately 5
times faster than that of the Joye-Libert cryptosystem. Also, it is easy to see that
the larger the ep is, the faster Π’s encryption is and the larger the storage space
Π will require. Even though we do not use the lookup table, Π’s decryption still
runs faster than that of Joye-Libert cryptosystem.

Comparatively, the advantage of the Paillier cryptosystem is that the ci-
phertext expansion is small and it supports homomorphic operations over larger
messages. The Π and the Joye-Libert cryptosystem have better performance of
performing smaller or specifically sized messages. For example, as mentioned in
[20], they can be used to encrypt a 128- or 256-bit symmetric key in a KEM/DEM
construction [33].
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5 Applications

5.1 Circular and Leakage Resilient Public-Key Encryption

Brakerski and Goldwasser introduced the notion of subgroup indistinguishabil-
ity (SG) assumption in [Section 3.1, [4]]. They instantiated the SG assumption
based on the QR and the DCR assumptions and proposed a generic construction
of schemes which achieved key-dependent security and auxiliary-input security
based on the SG assumption. However, the scheme based on the QR assump-
tion can only encrypt a 1-bit message at a time. In this section, we will show
how to instantiate the SG assumption under the new hardness assumption called
higher-power residue assumption. In this way, the scheme becomes much more
bandwidth-wise.

Subgroup Indistinguishability Assumption Under the Higher-power
Residue Assumption Let e be an integer with small prime factors. We sample
a random RSA modulus N = pq such that e | p− 1, e | q − 1 and gcd(p−1

e , e) =

gcd( q−1
e , e) = 1. Let ERe

N and JeN be as in Section 2.2, then we have shown
there exists a ν ∈ JeN \ ER

e
N such that JeN = 〈ν〉 ⊗ ERe

N from (2) in Theorem
2. The groups JeN , 〈ν〉 and ERe

N have orders φ(N)
e , e and φ(N)

e2 respectively and
we denote φ(N)

e by N ′. The condition gcd(p−1
e , e) = gcd( q−1

e , e) = 1 implicates
that gcd(e, φ(N)

e2 ) = 1. We define the following higher-power residue assumption
which is similar to the (ep, eq)-ER assumption defined previously.
Definition 2 (Higher-power Residue (HPR) Assumption). Given a se-
curity parameter κ. A PPT algorithm RSAgen (κ) generates an integer e with
small prime factors and a random RSA modulus N = pq such that e | p − 1,
e | q − 1 and gcd(p−1

e , e) = gcd( q−1
e , e) = 1, and chooses at random µ ∈ Z∗

N a
non-degenerate primitive (e, e)-th root of unity modulo N . The HPR assumption
with respect to RSAgen (κ) asserts that the advantage AdvHPRA,RSAgen (κ) defined as∣∣∣Pr (A (N, x, e) = 1

∣∣∣ x $← ERe
N

)
− Pr

(
A (N, x, e) = 1

∣∣∣ x $← JeN
)∣∣∣

is negligible for any PPT adversary A; the probabilities are taken over the ex-
periment of running (N, e, µ) ← RSAgen (κ) and choosing at random x ∈ ERe

N

and x ∈ JeN .
Since there exist efficient sampling algorithms that sample a random element
from ERe

N and JeN according to Theorem 2, the HPR assumption leads immedi-
ately to the instantiation of the SG assumption by setting GU = JeN , GM = 〈ν〉,
GL = ERe

N , h = ν, and T = N ≥ eN ′.

5.2 Constructing Lossy Trapdoor Functions from the (ep, eq)-th
Residue Assumption

Lossy Trapdoor Functions Lossy trapdoor functions (LTDF) were introduced
by Peikert and Waters [29] and have since then numerous and rich applications
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in cryptography. Informally speaking, LTDF consist of two families of functions.
The functions in one family are injective trapdoor functions, while functions in
the other family are lossy, that is, the image size is smaller than the domain size.
It also requires that the functions sampled from the first and the second family
are computationally indistinguishable. Using the constructions in [29], one can
obtain CCA-secure public-key encryptions. So far, LTDF are mainly constructed
from assumptions such as DDH [29], LWE [29], QR [16], DCR [16], Φ-Hiding [21],
etc.

Joye and Libert constructed a LTDF with short outputs and keys based on
the k-QR, k-SJS and DDH assumptions in [20]. Of course, it is an easy matter to
generalize their constructions, using our techniques based on the higher-power
residue symbols. Hence, we only propose a new generic construction of the LTDF
and the corresponding conclusions. We follow the definition of the LTDF in [20]
and omit the security analysis since it proceeds in exactly the same way as for
that in [20].

InjGen(1κ) Given a security parameter κ, let ℓN , k and n (n is a multiple of
k) be parameters determined by κ. InjGen defines m = n

k and performs the
following steps.
1. Select smooth integers ep and eq such that k < log(ep) + log(eq) <

ℓN
2 .

Generate an ℓN -bit RSA modulus N = pq such that p−1 = epp
′, q−1 =

eqq
′ for large primes p, q, p′, q′. Pick at random µ ∈ Z∗

N a non-degenerate
primitive (ep, eq)-th root of unity modulo N and y

$← J (ep,eq)
N .

2. For each i ∈ {1, . . . ,m}, pick hi in ERlcm(ep,eq)
N at random.

3. Choose r1, . . . , rm
$← Zp′q′ and compute a m×m matrix Z = (Zi,j) with

Zi,j =

{
y · hri

j mod N, if i = j;
hri
j mod N, otherwise.

Output the evaluation key ek = {N,Z} and the secret key sk = {p, q, ep, eq, µ, y}.
LossyGen(1κ) The process of LossyGen is identical to the process of InjGen,

except that
– Set Zi,j = hri

j mod N for each 1 ≤ i, j ≤ m.
– LossyGen does not output the secret key sk.

Evaluation(ek, x) Given ek =
{
N,Z = (Zi,j)i,j∈{1,...,m}

}
and a message x ∈

{0, 1}n, Evaluation parses x as a k-adic string x = (x1, . . . , xm) with xi ∈ Z2k

for each i. Then, it computes and returns y = (y1, . . . , ym) ∈ Zm
N with

yj =
∏m

i=1 Z
xi
i,j mod N .

Inversion(sk,y) Given sk = {p, q, ep, eq, µ, y} and y = (y1, . . . , ym) ∈ Zm
N ,

Inversion applies the decryption algorithm Dec(sk, yj) of the Π for each yj
to recover xj for j = 1 to m. It recovers and outputs the input x ∈ {0, 1}n
from the resulting vector x = (x1, . . . , xm) ∈ Zm

2k .
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Proposition 4. Let ℓ = n− log(p′q′). The above construction is a (n, ℓ)-LTDF
if the (ep, eq)-th residue assumption holds and the DDH assumption holds in the
subgroup ERlcm(ep,eq)

N .

Clearly, our new proposed LTDF outperforms the Joye-Libert LTDF in terms
of its fast decryption and small ciphertext expansion. The lossiness may also be
improved as there are no known attacks against the factorization of N when
log(ep) + log(eq) >

ℓN
4 .
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