
New Assumptions and Efficient Cryptosystems
from the e-th Power Residue Symbol

Xiaopeng Zhao1, Zhenfu Cao1 ⋆⋆, Xiaolei Dong1, Jun Shao2, Licheng Wang3,
and Zhusen Liu1

1 School of Software Engineering, East China Normal University, Shanghai, China
52164500025@stu.ecnu.edu.cn,52184501023@stu.ecnu.edu.cn

zfcao@sei.ecnu.edu.cn,dongxiaolei@sei.ecnu.edu.cn
2 School of Computer and Information Engineering, Zhejiang Gongshang University,

Hangzhou, China
jshao@zjgsu.edu.cn

3 State Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing 100876, China

wanglc@bupt.edu.cn

Abstract. The e-th power residue symbol
(

α
p

)
e

is a useful mathemat-
ical tool in cryptography, where α is an integer, p is a prime ideal in
the prime factorization of pZ[ζe] with a large prime p, and ζe is an e-th
primitive root of unity. One famous use case of the e-th power symbol
is the first semantic secure public key cryptosystem due to Goldwasser
and Micali (at STOC 1982). In this paper, we revisit the e-th power
residue symbol and its applications. In particular, we prove that comput-
ing the e-th power residue symbol is equivalent to solving the discrete
logarithm problem. By this result, we give a natural extension of the
Goldwasser-Micali cryptosystem, where e is a number only containing
small prime factors. Compared to another extension of the Goldwasser-
Micali cryptosystem due to Joye and Libert (at EUROCRYPT 2013),
our proposal is more efficient in terms of bandwidth utilization and de-
cryption cost. With a new complexity assumption naturally extended
from the one used in the Goldwasser-Micali cryptosystem, our proposal
is provable IND-CPA secure. Furthermore, we show that our result on
the e-th power residue symbol can also be used to construct lossy trap-
door functions and circular and leakage resilient public key encryptions
with more efficiency and better bandwidth utilization.

Keywords: power residue symbols · Goldwasser-Micali cryptosystem
· Joye-Libert cryptosystem · lossy trapdoor functions · leakage re-
silient public key encryption.

1 Introduction

We have witnessed the critical role of the power residue symbol in the his-
tory of public key encryption. Based on the quadratic residuosity assumption,
⋆⋆ Corresponding author

Goldwasser and Micali [16] proposed the first public key encryption (named GM)
scheme with semantic security and additive homomorphism. This scheme is revo-
lutionary but inefficient in terms of bandwidth, which hinders its use in practice.
Following the light of the GM scheme, many attempts [4,12,3,8,1,9,22,24,25,2,10]
have been made to address this issue.

Recall the encryption in the GM scheme. A message m ∈ {0, 1} in the GM

scheme is encrypted by c = ymr2 mod N , where
(

y
N

)
=
(

y
p

)
×
(

y
q

)
= −1×−1 =

1, r is a random element from ZN , N = p · q, and p and q are big primes. It
is easy to see that the value of logr(r2 mod N) determines the message space.
Hence, one intuitive approach to improve the bandwidth utilization in the GM

scheme is to enlarge logr(r
e mod N). At STOC 1994, Benaloh and Tuinstra

[1,12] set e as a special prime instead of 2. In particular, e is a prime, e|p − 1,
e2 - p − 1, and e - q − 1. The corresponding decryption requires to locate m in
[0, e) by a brute-force method. Hence, e is limited to 40 bits. At ACM CCS 1998,
Naccache and Stern [22] improved Benaloh and Tuinstra’s method by setting e
as a smooth and square-free integer e =

∏
pi such that pi|φ(N) but p2i - φ(N)

for each prime pi. The message m in this scheme is recovered from m = mi

(mod pi) using the Chinese Remainder Theorem, and each mi is computed by a
brute-force method. Nevertheless, the constraint p2i - φ(N) limits the possibility
for enlarging the message space dramatically. At EUROCRYPT 2013, based on
the 2k-th power residue symbol, Joye and Libert [2] enlarged e to 2k to obtain a
nice and natural extension (named JL) of the GM scheme with better bandwidth
utilization than previous schemes. Later on, Cao et al. [10] demonstrated that the
JL scheme could be further improved by setting e as a product of small primes.
As shown in [10], the resulting scheme (named CDWS) is more efficient than the
JL scheme in terms of bandwidth utilization and decryption cost. Nonetheless,
the corresponding security proof is complicated and hard to follow.

Due to the use in cryptography, algorithms for computing the e-th power
residue symbol have also attracted many researchers [11,28,14,18,19,6]. Several
efficient algorithms for the cases of e ∈ {2, 3, 4, 5, 7, 8, 11, 13} have been proposed.
However, as we know, these algorithms cannot be used for improving the GM-type
schemes in [2,10] due to the small value of e. The general case of computing
the e-th power residue symbol was tackled by Squirrel [28] and Boer [14], but
the resulting algorithms are probabilistic and inefficient. Hence, their results
cannot be applied in improving the GM scheme either. Although Freeman et al.
[15] conducted that a “compatibility” identity can be used to compute the e-th
power residue symbol, this identity could be useless in the case of prime power e.
As a result, we cannot use Freeman et al.’s algorithm to improve the GM scheme.

In order to solve the above problems, in this paper, we revisit the problem
of computing the e-th power residue symbol, and obtain an efficient algorithm
that can be applied in the GM-type scheme and other cryptographic primitives.
Our contributions in this paper can be summarized as follows.

– New algorithm for computing e-th power residue symbol: We prove
that computing the e-th power residue symbol is equivalent to solving the

2

discrete logarithm problem, if the parameters in the e-th power residue sym-
bol

(
α
p

)
e

satisfy the following properties.
• α is an integer.
• p is a prime ideal in the prime factorization of pZ[ζe], and ζe is an e-th

primitive root of unity.
• p is a large prime number.

As we know, there exist several efficient algorithms for solving the dis-
crete logarithm problem when the corresponding order is a product of small
primes. Hence, we obtain an efficient algorithm for computing e-th power
residue symbol when the above conditions are satisfied.

– New extension of the GM scheme: We demonstrate that we can obtain a
natural extension of the GM scheme based on the e-th power residue symbol.
Compared to the JL scheme, our extension enjoys better bandwidth utiliza-
tion and higher decryption speed. While compared to the CDWS scheme, our
extension has a simpler security proof.

– New lossy trapdoor function: As in [2,10], our GM extension can also
be used to construct an efficient lossy trapdoor function, which inherits the
advantages of our GM extension.

– New circular and leakage resilient encryption: We also give an in-
stantiation of the subgroup indistinguishability (SG) assumption by using
the e-th power residue symbol. At CRYPTO 2010, Brakerski and Gold-
wasser [5] gave a generic construction of circular and leakage resilient public
key encryption based the SG assumption. Hence, we obtain a new circular
and leakage resilient encryption scheme. Compared to the scheme in [5],
our scheme is more efficient in terms of bandwidth utilization and decryp-
tion speed, due to the use of the e-th residue symbol instead of the Jacobi
symbol.

The rest of this paper is organized as follows. In Section 2, we introduce some
definitions and preliminaries about the e-th power residue symbol. In what fol-
lows, we show how to compute the e-th power residue symbol defined in Section
2 efficiently. Some properties and a complexity assumption related to the e-th
power residue symbol are also analyzed and discussed in this section. After that,
we give our extension of the GM scheme and its security and performance analysis
in Section 4. In Section 5, we give two applications of our results on the e-th
power residue symbol following the methods used in [2,5].

2 Notations and Basic Definitions

2.1 Notations

For simplicity, we would like to introduce the notations used in this paper in
Table 1.

3

Table 1. Notations used in this paper.

Notation Description
K a number field
OK the ring of integers in a number field K
letters in mathfrak ideals in OK

#X the cardinality of X
⟨X⟩ the group generated by a set X
a = b (mod D) the relation a− b ∈ D, where elements a, b ∈ OK

⊗ the direct product of two algebraic structures
φ the Euler’s totient function
log the binary logarithm
ζe an e-th primitive root of unity, i.e., ζe =exp(2πi/e)
p, q prime numbers
N N = p · q
ep, eq ep|p− 1 and eq|q − 1

2.2 Power Residue Symbols

We say a prime ideal A in OK is prime to an integer e(≥ 1) if A - eOK . It
is easy to deduce that the corresponding necessary and sufficient condition is
gcd(Norm(A), e) = 1, where Norm(A) = # (OK/A). Then, we have

αNorm(A)−1 = 1 (mod A) (for α ∈ OK , α /∈ A).

Furthermore, if we have an additional condition that ζe ∈ K, then we have
that the order of group 〈ζe/A〉 generated in (OK/A)

× is e, and hence e|Norm(A)−
1. Now, we can define the e-th power residue symbol

(
α
A

)
e

as follows: if α ∈ A,
then

(
α
A

)
e
= 0; otherwise,

(
α
A

)
e

is the unique e-th root of unity such that(α
A

)
e
= α

Norm(A)−1
e (mod A)

The definition can be naturally extended to the case that A is not a prime
ideal, such that A =

∏
i Bi and gcd(Norm(Bi), e) = 1. In particular, we define(α

A

)
e
=
∏
i

(
α

Bi

)
e

.

In the rest of this paper, we simply consider the case of K = Q(ζe), since we
have OK = Z[ζe] in this case. We suggest interested readers to refer to [17,21,23]
for more details about the e-th power residue symbol.

2.3 Security Definitions

A public key encryption is composed of three algorithms: the key generation
algorithm KeyGen, the encryption algorithm Enc, and the decryption algorithm
Dec. The IND-CPA security for a public key encryption is defined as follows.

4

Definition 1 (IND-CPA Security). The public key encryption scheme PKE =
(KeyGen,Enc,Dec) is said to be IND-CPA secure if for any probabilistic polynomial
time (PPT) distinguisher given the public key pk generated by KeyGen, and
any pair of messages m0, m1 of equal length, the advantage for distinguishing
C0 = Enc (pk,m0) and C1 = Enc (pk,m1) is negligible.

3 Computation and Properties of the Power Residue
Symbol

In this section, we show how to compute the power residue symbols in some
circumstance and investigate some relative properties that we will used in this
paper later.

3.1 Computing Power Residue Symbols

In this subsection, we show that computing the power residue symbol is equiv-
alent to solving the discrete logarithm problem if some specific conditions are
satisfied.

Before giving the proof, we would like to introduce the concept of the non-
degenerate primitive (ep, eq)-th root of unity modulo N . Specifically, we say an
integer µ is a non-degenerate primitive (ep, eq)-th root of unity modulo N if both
the following two congruences hold.

µ = µ
p−1
ep

α

p (mod p) (α ∈ Z∗
ep), µ = µ

q−1
eq

β

q (mod q) (β ∈ Z∗
eq).

According to the result in [23] (Proposition I.8.3), we have that

pZ[ζep] =
∏

i∈Z∗
ep

pi, Norm(pi) = p (i ∈ Z∗
ep), and

qZ[ζeq] =
∏

j∈Z∗
eq

qj , Norm(qj) = q (j ∈ Z∗
eq),

where pi = pZ[ζep] + (ζep − µi)Z[ζep] and qj = qZ[ζeq] + (ζeq − µj)Z[ζeq].
With the the primitive root µ, we can give Theorem 1 which shows that

computing
(

α
p1

)
ep

is equivalent to solving the discrete logarithm in the group

〈µ〉 with order ep. Similarly, we can get the same result for the case of
(

α
q1

)
eq

.

Theorem 1.
(

α
p1

)
ep

= ζxep (mod p1)⇐⇒ µx = α
p−1
ep (mod p).

Proof. We give the proof in two parts as follows.

5

=⇒: From the definition of the power residue symbol and Norm(p1) = p, we
have that

(
α
p1

)
ep

= α
Norm(p1)−1

ep = α
p−1
ep (mod p1). Together with

(
α
p1

)
ep

=

ζxep(mod p1), we obtain that ζxep = α
p−1
ep (mod p1). Furthermore, from the

definition of p1, we have µ = ζep (mod p1). Then, µx = ζxep = α
p−1
ep (mod p1)

is deduced. At last, due to µx = α
p−1
ep (mod p1) and (µx, α

p−1
ep) ∈ Z2, we

can finally get µx = α
p−1
ep (mod p).

⇐=: From µx = α
p−1
ep (mod p), we have that µx = α

p−1
ep (mod p1). Further-

more, we have that
(

α
p1

)
ep

= α
p−1
ep (mod p1) and ζep = µ (mod p1) as in

the previous case. Hence, we have that
(

α
p1

)
ep

= α
p−1
ep = µx = ζxep (mod p1).

As a result, we obtain this theorem. ut

It is well-known that the discrete logarithm problem is intractable in general
but quite easy in some special cases. For instance, when the order of the underly-
ing group is smooth (it only contains small prime factors), the discrete logarithm
problem can be easily solved by the Pohlig-Hellman algorithm [27]. In our case,
if ep is chosen with appropriate prime factors, the ep-th power reside symbol can
be computed by using the Pohlig-Hellman algorithm. For the completeness, we
give it in Algorithm 1.

Algorithm 1 Pohlig-Hellman algorithm for prime powers
Input: (g, y, p, sk), where p and s are primes, sk|p− 1, and the order of g in Z∗

p is sk.
Output: x = (xk−1, . . . , x0)s, where gx = y (mod p), x =

∑k−1
i=0 xi · si, and xi ∈

[0, s− 1] for i ∈ [0, k − 1].
1: y0 ← y

2: Find x0 ∈ Zs such that
(
gs

k−1
)x0

= ysk−1

0 (mod p).
3: for 1 ≤ i ≤ k − 1 do
4: yi ←− yi−1

(
g−si−1

)xi−1

(mod p)

5: Find xi ∈ Zs such that
(
gs

k−1
)xi

= ysk−i−1

i (mod p).
6: end for
7: return x = (xk−1, . . . , x0)s

Remark 1 (Hints for Optimization). From line 2 and line 5 in Algorithm 1, we
can see that values of

(
gs

k−1
)i

(mod p) for i ∈ [0, s − 1] are used repeated.
Hence, we can save the computational cost by pre-computing and storing these
values. Similar method can be also applied to g−si (mod p) for i ∈ [0, k − 1] to
save more computational cost.

6

Furthermore, according to line 4 in Algorithm 1, we have that

ys
k−i−1

i =
(
yi−1

(
g−si−1

)xi−1
)sk−i−1

= ys
k−i−1

i−1

(
g−sk−2

)xi−1

(mod p).

We can save the cost of computing ys
k−i−1

i if we have the value of ys
k−i−1

i−1 ,
which can be recorded during the computing process of ys

k−(i−1)−1

i−1 . However,
this optimization cannot be applied for every yi (i ∈ [0, k − 1]). It is because
that once the computation of ysk−i−1

i is based on the value of ysk−(i−1)−1

i−1 , there
is no ys

k−i−2

i for computing ys
k−i−2

i+1 . As a result, this optimization can only be
applied on the odd indices.

3.2 A New Assumption from Power Residue Symbols

In this subsection, we would like to give a new assumption named (ep, eq)-th
power residue (denoted as (ep, eq)-PR) assumption which will be used in our
proposed public key encryption in Section 4 and lossy trapdoor functions in
Section 5.1.

We set that ERe
N = {x | ∃y, ye = x (mod N)} and

NR(ep,eq)
N =

{
x | x ∈ Z∗

N ,

(
x

a1

)
t

= 1,

(
x

p1

)
ep

and
(

x

q1

)
eq

are primitive
}
,

where N , ep, eq, a1, p1, and q1 are the same as that in Section 3.1, and t =
gcd(p− 1, q − 1). We give the (ep, eq)-PR assumption as follows.

Definition 2 ((ep, eq)-th Power Residue Assumption). Given N, (ep, eq), µ, x

and a security parameter κ, it is hard to decide that x is from ERlcm(ep,eq)
N or

NR(ep,eq)
N if x is chosen from ERlcm(ep,eq)

N and NR(ep,eq)
N randomly. Formally, the

advantage Adv
(ep,eq)-PR
A (κ) defined as∣∣∣Pr (A (N, lcm(ep, eq), µ, x) = 1

∣∣∣ x $← ERlcm(ep,eq)
N

)
−

Pr
(
A (N, lcm(ep, eq), µ, x) = 1

∣∣∣ x $← NR(ep,eq)
N

)∣∣∣
is negligible for any PPT adversary A; the probabilities are taken over the exper-
iment of generating (N, (ep, eq), µ) and choosing at random x from ERlcm(ep,eq)

N

and NR(ep,eq)
N .

Remark 2. It is easy to see that if we set t = 2, ep = 2 and eq = 1, the (ep, eq)-
PR assumption becomes the standard QR assumption. Furthermore, if we set
t = 2, ep = 2k and eq = 1, the (ep, eq)-PR assumption becomes the Gap-2k-Res
assumption used in [2].

7

3.3 Some Properties of Power Residue Symbols

In this subsection, we present some properties of power residue symbols that
will be used in the design of circular and leakage resilient public key encryption
(especially for the instantiation of subgroup indistinguishability assumption) in
Section 5.2. Note that only in this subsection and Section 5.1, we need eq = ep =
e.

If eq = ep = e, according to the result in [15], we have that

ai = piqi, Norm(ai) = N, and NZ[ζe] =
∏
i∈Z∗

e

ai,

where pZ[ζe] =
∏

i∈Z∗
e
pi, Norm(pi) = p, qZ[ζe] =

∏
i∈Z∗

e
qi, Norm(qi) = q, and

ai = NZ[ζe] + (ζe − µi)Z[ζe] for i ∈ Z∗
e.

Let ERe
∆ = {x | ∃y, ye = x (mod ∆);x ∈ Z∗

N}, JeN = {x |
(

x
a1

)
e
= 1, x ∈

Z∗
N}, and U =

{
x | ζie, i ∈ [0, e− 1]

}
, where ∆ ∈ {p, q,N}. We have the follow-

ing theorems.

Theorem 2. Z∗
p/ER

e
p
∼= U ∼= Z∗

q/ER
e
q.

Proof. We would like to prove Z∗
p/ER

e
p
∼= U at first. Consider the homomor-

phism θ : Z∗
p → U defined by x 7→

(
x
p1

)
e
. Since the number of roots of the

polynomial f(x) = x
p−1
e − 1 over the field Z[ζe]/p1 is at most p−1

e and the
cardinality of ERe

p is exactly p−1
e , we have that the integer z ∈ Z∗

p satisfying(
z
p1

)
e
= 1 must be in ERe

p. Hence, we have that the kernel of θ is ERe
p, i.e., the

homomorphism τ : Z∗
p/ER

e
p → U induced by θ is a monomorphism. Further-

more, we know the cardinality of Z∗
p/ER

e
p equals to p−1

p−1
e

, which is also the value
of the cardinality of U . As a result, Z∗

p/ER
e
p
∼= U .

Similarly, we can get Z∗
q/ER

e
q
∼= U . Hence, we obtain the theorem. ut

Theorem 3. If gcd(p−1
e , e) = gcd(q−1

e , e) = 1 holds, then there exists an integer
ν satisfying the following properties.

– ν is a non-degenerate primitive (e, e)-th root of unity modulo N .
–
(

ν
ai

)
e
= 1 for i ∈ Z∗

e.
– JeN = 〈ν〉 ⊗ ERe

N .

Proof. We give the proof one by one.

– The condition gcd(p−1
e , e) = gcd(q−1

e , e) = 1 implies that there exist integers
sp ∈ Z∗

e, tp, sq ∈ Z∗
e, tq such that sp · p−1

e + tp · e = sq · q−1
e + tq · e = 1. Let

µp = µ (mod p) and µq = µ (mod q). We can compute a non-degenerate
primitive (e, e)-th root of unity modulo N by the following congruences.{

ν = µ
sp
p (mod p)

ν = µ
−sq
q (mod q)

8

– When ν is generated as above, we have that(
ν

p1

)
e

=

(
µ
sp
p

p1

)
e

=

(
ζ
sp
e

p1

)
e

= ζ
p−1
e sp

e

and (
ν

q1

)
e

=

(
µ
−sq
q

q1

)
e

=

(
ζ
−sq
e

q1

)
e

= ζ
− q−1

e sq
e

Hence, we have that(
ν

a1

)
e

=

(
ν

p1

)
e

(
ν

q1

)
e

= ζ
(sp p−1

e −sq
q−1
e)

e = 1

Since ν ∈ Z, the result
(

ν
ai

)
e
= 1 (i ∈ Z∗

e) follows from the Galois equiva-
lence.

– To prove the last property we only need to prove that every element of JeN
can be written as a product of two elements in 〈ν〉 and ERe

N respectively
as 〈ν〉 ∩ ERe

N = {1}. For any x ∈ JeN , since there exists j ∈ Z∗
e such that(

νj

p1

)
=
(

x
p1

)
and

(
νj

q1

)
=
(

x
q1

)
, we have x = νjye (mod p) and x = νjze

(mod q) for some x ∈ Z∗
p and y ∈ Z∗

q from Theorem 3. Take w = y (mod p)

and w = z (mod q), then we have x = νjwe (mod N), as desired.

As a result, we obtain this theorem. ut

Remark 3. According to Theorem 3, when e = 2, we have the well-known result:
JN ∼= {±1} ⊗ QRN , where N is a Blum integer, JN =

{
x |
(

x
N

)
2
= 1, x ∈ Z∗

N

}
,

and QRN =
{
x | ∃y, x = y2 (mod N);x ∈ Z∗

N

}
.

4 A New Homomorphic Public Key Cryptosystem

In this section, we present a natural extension of the GM scheme [16] by using
the power residue symbols.

4.1 Description

KeyGen (1κ): Given a security parameter κ, it outputs the public and private
key pair as follows.

pk = {N, lcm(ep, eq), y} , sk = {p, q, ep, eq, µ} ,

where N = pq, ep|p−1, eq|q−1, p and q are big primes, ep and eq are smooth
numbers, y is chosen randomly from NR(ep,eq)

N , and µ is a non-degenerate
primitive (ep, eq)-th root of unity modulo N . Note that µ is generated by
Theorem 3.

9

Enc (pk,m): To encrypt a message m ∈ Zlcm(ep,eq), Enc picks a random r ∈ Z∗
N

and returns the ciphertext

c = ymrlcm(ep,eq) (mod N).

Dec (sk, c): Given the ciphertext c and the private key sk = {p, q, ep, eq, µ}, Dec
first computes zp and zq satisfying

(
c
p1

)
ep

= ζ
zp
ep and

(
c
q1

)
eq

= ζ
zq
eq by means

of Theorem 1. Then, it recovers the message m ∈ Zlcm(ep,eq) from

m = zpk
−1
p (mod ep) and m = zqk

−1
q (mod eq) (1)

by using the Chinese Remainder Theorem with non-pairwise coprime mod-
uli, where (kp, kq) satisfying

(
y
p1

)
ep

= ζ
kp
ep and

(
y
q1

)
eq

= ζ
kq
eq can be pre-

computed.

Correctness The correctness and additive homomorphism of the above public
key encryption can be easily obtained by the following.

ζzpep =

(
c

p1

)
ep

=

(
ymrlcm(ep,eq)

p1

)
ep

=

(
y

p1

)m

ep

= ζmkp
ep

ζzqeq =

(
c

q1

)
eq

=

(
ymrlcm(ep,eq)

q1

)
eq

=

(
y

q1

)m

eq

= ζmkq
eq

Thus, we derive the formula (1). Since every message m ∈ Zlcm(ep,eq) corre-
sponds to the unique pair (α, β) ∈ Zep × Zeq such that m = α (mod ep) and
m = β (mod eq), the decryption algorithm recovers the unique m ∈ Zlcm(ep,eq)

from the formula (1). Furthermore, the scheme is homomorphic for the addi-
tion modulo e = lcm(ep, eq): if c0 = ym0re0 (mod N) and c1 = ym1re1 (mod N)
are the ciphertexts of two arbitrary messages m0 and m1 respectively, then
c0 · c1 = ym0+m1(r0r1)

e (mod N) is a ciphertext of m0 +m1 (mod e).

4.2 Security analysis

The security of the above public key encryption scheme can be obtained by the
similar security analysis as for the GM scheme.

Theorem 4. Our proposed public key encryption is IND-CPA secure under the
(ep, eq)-PR assumption.

Proof. Consider changing the distribution of the public key. Under the (ep, eq)-
PR assumption, we may choose y uniformly in ERlcm(ep,eq)

N instead of choosing
it from NR(ep,eq)

N , while this is done without noticing the adversary. In this case,
the ciphertext carries no information about the message and hence our proposed
public key encrypiton is IND-CPA secure. ut

10

4.3 Parameter Selection

As described in KeyGen, p and q are big primes, p = 1 (mod ep), q = 1 (mod eq),
and both ep and eq only contain small prime factors. In practice, we choose
0 ≤ log ep < log p

2 , 0 ≤ log eq < log q
2 , and generate p and q by the similar way [2]

(Section 5.1). The major difference is that the size of log ep + log eq is bounded
by 1

2 logN . The reason is provided by the following proposition [Lemma 8, [29]]
related to Coppersmith’s method for finding small roots of bivariate modular
equations.

Proposition 1. Let p and q be equally sized primes and N = pq. Let d be a
divisor of φ(N) = (p − 1)(q − 1). If there exists a positive constant c such that
d > N

1
2+c holds, then there exists a PPT algorithm that given N and d, it

factorizes N .

Note that taking 1
4 logN < log ep + log eq < 1

2 logN does not contradict the
setting of Φ-Hiding Assumption [7] as the prime factors of φ(N) are very small.
However, log ep + log eq shall not be close to 1

2 logN because we don’t know
whether there exists an attack of mixing together Coppersmith’s attack and
exhaustive searches. In particular, if we take ep = 2k, eq = 1 and k > 1

4 logN ,
the low-order 1

4 logN bits of p is revealed to an adversary, and hence it can
factorize N by implementing Coppersmith’s attack [13]. Therefore, if we choose
ep and eq not to be a power of 2 and to be coprime, we may handle messages
at least twice as long as the JL scheme does. The key generation also requires a
random integer y ∈ Z∗

N in NR(ep,eq)
N . We can use Theorem 2 and the following

fact for uniformly sampling integers in NR(ep,eq)
N . A random integer modulo N

has a probability of exactly φ(ep)φ(eq)
epeq

of being in the set of all x ∈ Z∗
N such that(

x
p1

)
ep

and
(

x
q1

)
eq

are primitive. Let t = gcd(p − 1, q − 1). We first randomly

choose an element x ∈ Z∗
N such that

(
x
p1

)
t
= ζαt and

(
x
q1

)
t
= ζβt are primitive

after several trials. Then, we obtain a suitable y ∈ {y |
(

y
a1

)
t
= 1, y ∈ Z∗

N} from

the relations y = x−(α−1 (mod t))βzt (mod p) and y = x (mod q), where z is a
random value from Z∗

p. If y ∈ NR(ep,eq)
N , we have done; otherwise, we repeat the

above steps until y is in NR(ep,eq)
N .

4.4 Performance and Comparisons

The prominent operation in the JL scheme and our proposal is the modular mul-
tiplications over Z∗

p, if the time for searching an item in a table is negligible. For
decrypting a 128-bit message, the JL scheme, according to the remark following
[Algorithm 1, [2]], roughly needs

log p− 128 +
128(128− 1)

4
+

128

2
= log p+ 4000

11

modular multiplications on average. On the contrary, our proposal (specially
Algorithm 1 with optimization) only needs

log p− 128 +

12∑
k=0

k is even

log(929k) + 128 ≈ log p+ 414

modular multiplications on average, when we set ep = 92913 > 2128 and eq = 1.
If N is taken as 2048 bits, the decryption of our proposal is approximately 3.5
times faster than that of the JL scheme.

On the other hand, our proposal has the similar computational cost with
the CDWS scheme in algorithms Enc and Dec. The main difference between these
two schemes is the choice of y. In particular, in the CDWS scheme, y is from
{y|∃(x, x′), y

p−1
ep = x (mod p), y

q−1
eq = x′ (mod q), y ∈ Z∗

N}, which is contained
by NR(ep,eq)

N . This means that we can obtain y more efficiently than the CDWS

scheme does. Furthermore, our security proof is much easier to follow due to the
choice of y.

5 More Cryptographic Designs Based on the Power
Residue Symbol

5.1 Lossy Trapdoor Functions

Lossy trapdoor functions (LTDFs) were introduced by Peikert and Waters [26]
and since then numerous applications emerge in cryptography. Informally speak-
ing, the LTDFs consist of two families of functions. The functions in one family
are injective trapdoor functions, while functions in the other family are lossy,
that is, the image size is smaller than the domain size. It also requires that the
functions sampled from the first and the second family are computationally indis-
tinguishable. Using the constructions in [26], one can obtain CCA-secure public
key encryptions. So far, the LTDFs are mainly constructed from assumptions
such as DDH [26], LWE [26], QR [15], DCR [15], and Φ-Hiding [20].

Joye and Libert constructed a LTDF with short outputs and keys based on
the k-QR, k-SJS and DDH assumptions in [2]. Of course, it is an easy matter to
generalize their constructions, using our techniques based on the power residue
symbols. Hence, we only propose a new generic construction of the LTDF and
the corresponding conclusions. We follow the definition of the LTDF in [2] and
omit the security analysis since it proceeds in exactly the same way in [2].

InjGen(1κ): Given a security parameter κ, let ℓN , k and n (n is a multiple of
k) be parameters determined by κ. InjGen defines m = n

k and performs the
following steps.
1. Select smooth integers ep and eq such that k < log ep + log eq < ℓN

2 .
Generate an ℓN -bit RSA modulus N = pq such that p−1 = epp

′, q−1 =

eqq
′ and 0 ≤ log ep < log p

2 , 0 ≤ log eq < log q
2 for large primes p, q, p′, q′.

12

Pick at random µ a non-degenerate primitive (ep, eq)-th root of unity
modulo N and y

$← NR(ep,eq)
N .

2. For each i ∈ {1, . . . ,m}, pick hi in ERlcm(ep,eq)
N at random.

3. Choose r1, . . . , rm
$← Zp′q′ and compute a m×m matrix Z = (Zi,j) with

Zi,j =

{
y · hri

j mod N, if i = j;
hri
j mod N, otherwise.

Output the evaluation key ek = {N,Z} and the secret key sk = {p, q, ep, eq, µ, y}.
LossyGen(1κ): The process of LossyGen is identical to the process of InjGen, ex-

cept that
– Set Zi,j = hri

j mod N for each 1 ≤ i, j ≤ m.
– LossyGen does not output the secret key sk.

Evaluation(ek, x): Given ek =
{
N,Z = (Zi,j)i,j∈{1,...,m}

}
and a message x ∈

{0, 1}n, Evaluation parses x as a k-adic string x = (x1, . . . , xm) with xi ∈ Z2k

for each i. Then, it computes and returns y = (y1, . . . , ym) ∈ Zm
N with

yj =
∏m

i=1 Z
xi
i,j mod N .

Inversion(sk,y) Given sk = {p, q, ep, eq, µ, y} and y = (y1, . . . , ym) ∈ Zm
N , Inversion

applies the decryption algorithm Dec(sk, yj) of the Π for each yj to recover
xj for j = 1 to m. It recovers and outputs the input x ∈ {0, 1}n from the
resulting vector x = (x1, . . . , xm) ∈ Zm

2k .

Proposition 2. Let ℓ = n− log(p′q′). The above construction is a (n, ℓ)-LTDF
if the (ep, eq)-th power residue assumption holds and the DDH assumption holds
in the subgroup ERlcm(ep,eq)

N .

Clearly, our new proposed LTDF outperforms that in [2] in terms of the
decryption cost and ciphertext expansion. Our LTDF has ℓ = n − log(p′q′) >
(n− ℓN) + log ep + log eq bits of lossiness. Therefore, the lossiness may also be
improved as there are no known attacks against the factorization of N when
ℓN
4 < log ep + log eq < ℓN

2 and 0 ≤ log ep < log p
2 , 0 ≤ log eq < log q

2 .

5.2 Circular and Leakage Resilient public key Encryption

Brakerski and Goldwasser introduced the notion of subgroup indistinguishabil-
ity (SG) assumption in [Section 3.1, [5]]. They instantiated the SG assumption
based on the QR and the DCR assumptions and proposed a generic construction
of schemes which achieved key-dependent security and auxiliary-input security
based on the SG assumption. However, the scheme based on the QR assumption
can only encrypt a 1-bit message at a time. In this section, we will show how to
instantiate the SG assumption under another new hardness assumption named
e-th power residue assumption. In this way, the scheme becomes much more
efficient in bandwidth exploitation.

13

Definition 3 (Subgroup Indistinguishability Assumption [5]). Given a
security parameter κ, and three commutative multiplicative groups (indexed by κ)
GU , GM and GL such that GU is a direct product of GM (of order M) and GL (of
order L) where GM is cyclic and gcd(M,L) = 1. We require that the generator h
for GM is efficiently computable from the description of GU . We further requires
that there exists a PPT algorithm that outputs IGU

= (OPGU
, SGM

, SGL
, h, T) an

instance of GU , where OPGU
is an efficient algorithm performs group operations

in GU , SGM
, SGL

are efficient algorithms sample a random element from GM ,GL

respectively and T is a known upper bound such that T ≥M ·L. For any adversary
A we denote the subgroup distinguishing advantage of A by

SGAdv[A] =
∣∣∣Pr (A(1κ, x) ∣∣ x $← GU

)
− Pr

(
A(1κ, x)

∣∣ x $← GL

)∣∣∣
The subgroup indistinguishability assumption is that for any PPT adversary A
it holds that for a properly sampled instance IGU

, we have that SGAdv[A] is
negligible.

Now, we instantiate the SG assumption from the e-th power residue symbols.
Let e be a smooth integer. We sample a random RSA modulus N = pq such
that e = gcd(p − 1, q − 1) and gcd(p−1

e , e) = gcd(q−1
e , e) = 1. Let ERe

N and
JeN be as in Section 3.3, then there exists a ν ∈ JeN \ ERe

N such that JeN =

〈ν〉 ⊗ ERe
N from Theorem 3. The groups JeN , 〈ν〉 and ERe

N have orders φ(N)
e , e

and φ(N)
e2 respectively and we denote φ(N)

e by N ′. The condition gcd(p−1
e , e) =

gcd(q−1
e , e) = 1 implicates that gcd(e, φ(N)

e2) = 1. We define the e-th power
residue (e-PR) assumption which is similar to the (ep, eq)-PR assumption defined
previously.

Definition 4 (e-th Power Residue Assumption). Given a security param-
eter κ. A PPT algorithm RSAgen (κ) generates a smooth integer e and a ran-
dom RSA modulus N = pq such that e = gcd(p − 1, q − 1) and gcd(p−1

e , e) =

gcd(q−1
e , e) = 1, and chooses at random µ a non-degenerate primitive (e, e)-th

root of unity modulo N . The e-PR assumption with respect to RSAgen (κ) asserts
that the advantage Adve-PR

A,RSAgen (κ) defined as∣∣∣Pr (A (N, x, e) = 1
∣∣ x $← ERe

N

)
− Pr

(
A (N, x, e) = 1

∣∣ x $← JeN
)∣∣∣

is negligible for any PPT adversary A; the probabilities are taken over the ex-
periment of running (N, e, µ) ← RSAgen (κ) and choosing at random x ∈ ERe

N

and x ∈ JeN .

Since there exist efficient sampling algorithms that sample a random element
from ERe

N and JeN according to Theorem 2 and Theorem 3, the e-PR assumption
leads immediately to the instantiation of the SG assumption by setting GU = JeN ,
GM = 〈ν〉, GL = ERe

N , h = ν, and T = N ≥ eN ′. The corresponding encryption
scheme is presented in Appendix A.

14

References

1. Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale
University, New Haven, CT, USA, 1987.

2. Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benoît Libert. Efficient
cryptosystems from 2k-th power residue symbols. J. Cryptology, 30(2):519–549,
2017.

3. Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-
random number generator. SIAM Journal on computing, 15(2):364–383, 1986.

4. Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryp-
tion scheme which hides all partial information. In Workshop on the Theory and
Application of Cryptographic Techniques, pages 289–299. Springer, 1984.

5. Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key
encryption under subgroup indistinguishability - (or: Quadratic residuosity strikes
back). In Advances in Cryptology - CRYPTO 2010, volume 6223 of LNCS, pages
1–20. Springer, 2010.

6. Eric Brier and David Naccache. The thirteenth power residue symbol. IACR
Cryptology ePrint Archive, 2019:1176, 2019.

7. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private
information retrieval with polylogarithmic communication. In Advances in Cryp-
tology - EUROCRYPT 1999, volume 1592 of LNCS, pages 402–414. Springer, 1999.

8. Zhenfu Cao. A type of public key cryptosystem based on Eisenstein ring Z[ω].
Proceedings of the 3rd Chinese Conference of Source Coding, Channel Coding and
Cryptography, pages 178–186, 1988.

9. Zhenfu Cao. A new public-key cryptosystem based on kth-power residues (full
version). Journal of the China Institute of Communications, 11(2):80–83, 1990.

10. Zhenfu Cao, Xiaolei Dong, Licheng Wang, and Jun Shao. More efficient cryp-
tosystems from k-th power residues. IACR Cryptology ePrint Archive, 2013:569,
2013.

11. Perlas C. Caranay and Renate Scheidler. An efficient seventh power residue symbol
algorithm. International Journal of Number Theory, 6(08):1831–1853, 2010.

12. Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically
secure election scheme (extended abstract). In 26th Annual Symposium on Foun-
dations of Computer Science, pages 372–382. IEEE Computer Society, 1985.

13. Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. Journal of cryptology, 10(4):233–260, 1997.

14. Koen de Boer. Computing the power residue symbol. Master’s thesis. Nijmegen,
Radboud University. www.koendeboer.com, 2016.

15. David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and Gil Segev.
More constructions of lossy and correlation-secure trapdoor functions. Journal of
cryptology, 26(1):39–74, 2013.

16. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

17. Kenneth Ireland and Michael Rosen. A classical introduction to modern number
theory, volume 84. Springer Science & Business Media, 2013.

18. Marc Joye. Evaluating octic residue symbols. IACR Cryptology ePrint Archive,
2019:1196, 2019.

19. Marc Joye, Oleksandra Lapiha, Ky Nguyen, and David Naccache. The eleventh
power residue symbol. IACR Cryptology ePrint Archive, 2019:870, 2019.

15

www.koendeboer.com

20. Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of RSA-OAEP under
chosen-plaintext attack. Journal of Cryptology, 30(3):889–919, 2017.

21. Franz Lemmermeyer. Reciprocity laws: from Euler to Eisenstein. Springer Science
& Business Media, 2013.

22. David Naccache and Jacques Stern. A new public key cryptosystem based on
higher residues. In CCS 1998, pages 59–66. ACM, 1998.

23. Jürgen Neukirch. Algebraic number theory, volume 322. Springer Science & Busi-
ness Media, 2013.

24. Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as
secure as factoring. In Advances in Cryptology - EUROCRYPT 1998, volume 1403
of LNCS, pages 308–318. Springer, 1998.

25. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in Cryptology - EUROCRYPT 1999, volume 1592 of LNCS,
pages 223–238. Springer, 1999.

26. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications.
SIAM Journal on Computing, 40(6):1803–1844, 2011.

27. Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Trans. Information
Theory, 24(1):106–110, 1978.

28. Douglas Squirrel. Computing reciprocity symbols in number fields, 1997. Under-
graduate thesis, Reed College.

29. Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka, and Noboru Kunihiro.
Adversary-dependent lossy trapdoor function from hardness of factoring semi-
smooth RSA subgroup moduli. In Advances in Cryptology - CRYPTO 2016, volume
9815 of LNCS, pages 3–32. Springer, 2016.

A Circular and Leakage Public Key Encryption based on
the e-th Power Residue Symbol

KeyGen (1κ): Given a security parameter κ, KeyGen selects a smooth integer e
and samples a random RSA modulus N = pq such that e = gcd(p− 1, q− 1)
and gcd(p−1

e , e) = gcd(q−1
e , e) = 1. KeyGen selects ν as in Theorem 3 and

ℓ ∈ N which is polynomial in κ. It also samples s $← (Ze)
ℓ and sets the secret

key sk = s. It then samples g
$← (ERe

N)
ℓ and sets

g0 =

 ∏
1≤i≤ℓ

gi
si

−1

mod N.

The public key is set to be pk = {N, g0, g}.
Enc (pk,m): On inputs a public key pk = {N, g0, g} and a message m ∈ 〈ν〉, Enc

samples r from the set
{
1, 2, . . . , N2

}
and computes c = gr and c0 = m · gr0.

It returns the ciphertext (c0, c).
Dec (sk, c): On inputs the secret key sk = s and a ciphertext {c0, c}, Dec com-

putes and returns m = c0 ·
∏

1≤i≤ℓ c
si
i .

16

	New Assumptions and Efficient Cryptosystems from the e-th Power Residue Symbol

