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Abstract. In CRYPTO 2018, Russell et al. introduced the notion of
crooked indifferentiability to analyze the security of a hash function when
the underlying primitive is subverted. They showed that the n-bit to n-
bit function implemented using enveloped XOR construction (EXor) with
3n+ 1 many n-bit functions and 3n2- bit random initial vectors (iv) can
be proven secure asymptotically in the crooked indifferentiability setting.

– We identify several major issues and gaps in the proof by Russel
et al. We show that their proof does not work when the adversary
makes queries related to multiple messages or in the case of intricate
function dependent subversion.

– We formalize new technique to prove crooked indifferentiability for
multiple messages. Our technique can handle function dependent
subversion. We apply our technique to provide a concrete proof for
the EXor construction.

– We analyze crooked indifferentiability of the classical sponge con-
struction. We show, using a simple proof idea, the sponge construc-
tion is a crooked-indifferentiable hash function using only n-bit ran-
dom iv.

1 Introduction

Blackbox Reduction and Kleptographic attack. Many of the modern
cryptographic constructions are analyzed in a modular and inherently black-
box manner. The schemes or protocols are built on underlying primitives only
exploiting the functionality of the primitives. While analyzing the security, one
shows a reduction saying, a successful attack on the construction will lead to an
attack against the underlying primitive. Unfortunately, this approach completely
leaves out the implementation aspects. While the underlying primitive may be
well studied, a malicious implementation may embed trapdoor or other sensitive
information that can be used for the attack. Moreover, such implementation
may well be indistinguishable from a faithful implementation [17]. These type
attacks fall in the realm of Kleptography, introduced by Young and Young[17].
While the cryptographic community did not consider kleptography as a real
threat, the scenario has changed in the past few years. Kleptographic attack has
been a real possibility in the post-Snowden world. A line of work has appeared
aiming to formalize and provide security against kleptographic attack [2,8,14,15].



Specifically, in [2], Bellare, Paterson, and Rogaway showed that it is possible to
mount algorithm substitution attack against almost all known symmetric key
encryption scheme to the extent that the attacker learns the secret key.

Random Oracle and Indifferentiability. The Random Oracle methodol-
ogy is a very popular platform for proving the security of cryptographic con-
structions in the black-box fashion. In this model, all the parties, including the
adversary, is given access to a common truly random function. One proves the
security of a protocol assuming the existence of such a random function. Dur-
ing the implementation of the protocol, the random function is replaced by a
hash function H. The Indifferentiability framework and the composition theo-
rem [10] assert that if the hash function H is based on an ideal primitive f ,
and Indifferentiable from a random function, then the instantiated protocol is
as secure as the protocol in the random oracle model (assuming the security of
the ideal primitive f). Indifferentiability from Random Oracle has been one of
the mainstream security criteria of cryptographic hash functions. Starting from
the work of Coron et al. [7], a plethora of results [6,4,5,9,1,12,11,13] have been
proven, showing indifferentiability of different constructions based on different
ideal primitives.

Crooked Indifferentiability. In CRYPTO 2018, Russel et al.[16] intro-
duced the notion of crooked indifferentiability as a security notion for hash func-
tions in the kleptographic setting. In this setting, the distinguisher can substitute
the ideal primitive f by a subverted implementation which “crooks” the function
on ε fraction of the inputs, producing a crooked primitive f̃ . In order to prove
crooked-indifferentiability of a construction Cf , one constructs a simulator S

such that (C f̃ (., R), f) and (F , Sf̃ (R)) are indistinguishable.

Enveloped Xor Construction and its crooked-indifferentiability.
We recall the Enveloped XOR construction. We fix two positive integers n and l.
LetD := {0, 1, . . . , l}×{0, 1}n. Let H be the class of all functions h : D → {0, 1}n.
For every x ∈ {0, 1}n and an initial value R := (r1, . . . , rl) ∈ ({0, 1}n)l, we define

gR(x) =

l⊕
i=1

h(i, x⊕ ri) and EXor(R, x) = h(0, gR(x)).

In [16], Russel et al proved crooked-indifferentiability of the enveloped-xor con-
struction. Their analysis is based on an interesting rejection sampling argument.

Even though, the notion of crooked indifferentiability is extremely important
in the post-Snowden cryptographic arena, not much is known except the above
results. Specifically, it is unknown whether the popular modes of operations used
in cryptographic hash functions can be proven secure under this notion. The hash
functions are often used to instantiate random oracles, and it is imperative that
a strong hash function design can resist subversion. In addition, the efficiency of
the enveloped xor Construction, proved secure in [16], is far from optimal. It uses
3n+ 1 independent hash functions (one call to each) and 3n2 bits of randomness
in order to construct an n-bit to n-bit subversion resilient function! When we
instantiate that to construct practical hash functions, then this cost will amplify
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and we end up with somewhat impractical construction. In fact, the problem of
constructing an efficient crooked-indifferentiable hash function was left open as
the central question by [16].

1.1 Our Contribution

In this paper, we introduce new techniques to prove crooked-indifferentiability
of domain extension techniques and prove security of practical constructions.

Another Look at Russel et al proof. We start from the observation that the
techniques of [16], while novel and interesting, are limited in their capability.
The proof works perfectly fine when the adversary makes queries related to a
single message. So, a natural question to ask is, Do the techniques of [16] work
in general with multiple messages or somewhat involved crooking algorithm. We
answer the question in negative. We identify several aspects of their technique
that can not be reasoned for events related to multiple queries.

Crooked-indifferentiability for multiple messages and application to
Enveloped XOR. We develop techniques to prove crooked indifferentiability
against adversaries making queries related to multiple messages. Interestingly,
our technique do not involve heavy machinery. Rather, we identify core domain
points related to functions, and use simple tools like Markov inequality.
We apply our technique to prove security of Enveloped XOR construction.

Crooked-indifferentiability Sponge construction.
We prove crooked-indifferentiability of sponge construction with randomized ini-
tialization vector. We assume the underlying primitive to be a random function.
The construction uses only n-bit randomness and even with the most conserva-
tive parameter choices, makes at most 2n many calls to the underlying primitive
to construct an n-bit to n-bit function. The result is applicable to general hash
function as well and is not limited to produce length preserving ones.

1.2 Overview of Our Technique.

Challenges for multiple messages. Why can’t the technique of Russel et al
[16] achieve security against multiple messages. Let us revisit the main idea of
the proof. It is to argue that for every message there exists an index i ∈ {1, · · · , l}
for which the evaluation of h(i,m ⊕ ri) is unsubverted. Moreover, for no other
index j, h̃(j,m⊕rj), the subverted evaluation of jth function queries h(i,m⊕ri).
In such a situation, if resampled, h̃(i,m⊕ ri), is uniform over {0, 1}n and most
importantly, independent from other query/responses . As there are at most
ε fraction of crooked domain points of h(0, ·), the probability that g̃R(m), the
possibly subverted evaluation of gR(m), becomes one of the crooked point, is
negligible.

Unfortunately, the situation changes for multiple messages. Consider an im-
plementation, where for every i, x,h̃(i, x) queries the values of h(i, x) as well
as h(x ⊕ 1n). Now, for any message m, computation of g̃R(m ⊕ 1n), involves
evaluation of both h(i,m ⊕ ri) and h(i,m ⊕ 1n ⊕ ri). Imagine, the adversary
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making queries related to m⊕ 1n followed by m. In such a situation, there is no
index i, that is not queried by other points. If we resample at some point, the
g̃R(m ⊕ 1n) will change. As a result we get into a cycle. Hence, the argument
hits a roadblock.

We stress that the computation of g̃R(m) is a joint distribution of the output
of several h(i, x) queries. Thus the probability distribution of g̃R(m) ∈ E and
g̃R(m′) ∈ E for any event E can be related.

We identify many more issues with the proof of [16]. They require more
technical setup for explanation. A technical analysis is given in Section 3.

New Statistical Tool. We start with a counting approach. We say a point
α ∈ {0, 1}n is bad, if the probability (over h) of h̃(α) being subverted is high.
A point is good if it is not bad. A point is vulnerable if either it is bad or it is
(with significant probability over h) queried by a bad point during the subverted
evaluation. A non vulnerable point is dangerous if it is queried by too many good
points. By averaging argument, we show that the size of the union of vulnerable
or dangerous set is small. Hence, for overwhelming fraction of candidate h, R,
for every message m, there will exist an index i such that m ⊕ ri is neither
vulnerable nor dangerous.

What do we gain by this? Now, we can say that even though h(i,m ⊕ ri)
was queried by other points, they are non-vulnerable. Hence, we can argue that,
if we resample at (i,m ⊕ ri) the values of those non-vulnerable points will not
change. Hence, the issue with the previous approach gets taken care of.

Now, we could find a rejection resampling lemma on two or more points,
and argue the uniformity of g̃R(m). However, we simplify things further. We
observe that the with high probability over the output values of h(i,m⊕ ri), the
transcript of the previous internal queries remain unchanged. Hence, we consider
the conditional probabilities by conditioning on all possible transcripts, and take
union bound to show near uniformity of g̃R(m). In Section 4 we state the things
in detail.

Proof with Elementary Technique: Avoid Subversion via Randomness.
In case of classical indifferentiability, the distinguisher aims to distinguish be-
tween (Cf , f) and (F , Sf ). In crooked-indifferentiability, C has oracle access
to the (subverted) implementation f̃ . In order to gain any advantage from the
subversion, the distinguisher must produce some message M such that at least
one of the f queries made during the computation of Cf (M) becomes sub-
verted. In case of Enveloped XOR construction, the adversary can choose a mes-
sage forcing this. All the heavy technical machineries developed and deployed in
the last section, to handle such scenarios, showing indifferentiability even when
some f queries are subverted. But what about a construction, where the adver-
sary cannot force the subversion. Specifically, consider the sponge construction
with random initialization vector. Our construction takes (padded) messages of
length `r bit and produces output of hr many bits. By the definition of crooked-
indifferentiability, probability that f̃(R) is subverted, for a randomly chosen R,
is ε. By union bound, the probability that for some m0 ∈ {0, 1}r, f̃ (R⊕ (m‖0c))
is not equal to f (R⊕ (m‖0c)) is at most ε2r. Conditioned on the input being
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“non-subverted”, the output of f̃ is independently and uniformly distributed.
Hence, we get a uniform random chaining value. Repeating the argument,and
taking union bound, we get the following. For any message M , probability that
one of the h+` many queries made by Cf is subverted, is at most (h+`)ε2r. Tak-
ing union bound over all the queries made by the distinguisher, the probability
becomes bounded by q(h+ `)ε2r.

2 Notations and Preliminaries

Notations. For any tuples of pairs τ = ((x1, y1), . . . , (xs, ys)) we write D(τ)

(called domain of τ) to denote the set {xi : 1 ≤ i ≤ s}. We write x
$←− S

to denote the process of choosing x uniformly at random from a set S and
independently from all other random variables defined so far.

Class of Functions. Let l be a positive integer. We use (l] to denote the set
of first l natural numbers. We also use [l] is used to denote the set of whole
numbers up to l, i.e. {0, 1, . . . , l}.

The positive integer n is our security parameter. Let D := [l] × {0, 1}n.
Let H and F denote the set of all n-bit valued functions from D and {0, 1}n
respectively. For any z := ((a1, b1), . . . , (aq1 , bq1)) with b1, . . . , bq1 ∈ {0, 1}n and
distinct a1, . . . , aq1 ∈ D, we write h ` z if h(ai) = bi for all i ∈ (q1]. We denote
the set of all functions h such that h ` z as H|z.
Distinguishing Advantage. In this paper, we measure the efficiency of algo-
rithms by the number of queries it make. An oracle algorithm A having access of
one oracle is called q-query algorithm if it makes at most q queries to its oracle.
Similarly, an oracle algorithm having access of two oracles is called (q1, q2)-query
algorithm if it makes at most q1 and q2 queries to its first and second oracles re-
spectively. We use the short-hand notation Xt to denote the tuple (X1, . . . , Xt).

Definition 1 (Distinguishing Advantage). Let F a := (F1, F2, · · · , Fa) and
Ga := (G1, G2, · · · , Ga) be tuple of some probabilistic oracle algorithms for some
positive integer a. We define advantage of an adversary A at distinguishing F a

from Ga as

∆A(F a ; Ga) =
∣∣Pr[AF1,F2,··· ,Fa = 1]− Pr[AG1,G2,··· ,Ga = 1]

∣∣ .
2.1 Classical Indifferentiability

IV-based oracle construction CO(·, ·) first fixes an initial value R (chosen ran-
domly from an initial value space). Afterwards, on input M , it interacts with
the oracle O and finally it returns an output, denoted as CO(R,M). When the
initial value space is singleton (i.e., degenerated), we simply call C an oracle con-
struction. An (initial value based) oracle construction C is called F-compatible
if the domains and ranges of C and F (an ideal primitive) are same. Now we
state the definition of indifferentiability of an oracle construction as stated in
[7,10] in our terminologies.
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Definition 2 (Indifferentiability). Let F be an ideal primitive and CP be a
F-compatible oracle construction. C is said to be ((qP , qC , qsim), ε) indifferen-
tiable from an ideal primitive F if there exists a qsim-query algorithm SF (called
simulator) such that for any (qP , qC)-query algorithm A, it holds that

∆A
(
(P,CP (·)) ; (SF (·),F)

)
< ε.

In the above definition one may include the complexity (time, query etc.) of the
adversary and simulator. However, for information theoretic security analysis,
we may ignore the time complexity of the simulator as well as the adversary.3

A popular indifferentiability treatment for hash function considers F to be a
n-bit random oracle which returns independent and uniform n-bit strings for
every distinct queries. However, the hash function CP can be defined through
different types of primitives P (a random oracle, or a random permutation πn,
chosen uniformly from the set of all permutations over {0, 1}n).

P C S F

A

Fig. 1. The distinguishing game of A in the indifferentiability security game.

2.2 Crooked Indifferentiability

We recall the related terms and notations introduced in [16] in our terminologies.

Subverted Implementor. Let AO1 (r) be a q-query probabilistic algorithm (r
denotes its random coin) and z (advise string) denote tuple of query-responses.
Suppose A1 returns H := Hz,r which is also a code of an oracle algorithm. Note
that the oracle for H need not be same as that of A1. If the both oracles are
same and chosen from a collection of functions H, we call A1 a (q, τ) subverted
implementor for H. Note that a correct implementation should output H so that
for all h ∈ H and for all x ∈ D(h), h̃(x) := Hh

z,r(x) = h(x). However, we are

3 One can easily extend the concrete setup to an asymptotic setup. Let 〈Fn, Pn〉n∈N
be a sequence of primitives and C(n) be a polynomial time Fn-compatible oracle
algorithm. CPn(n) is said to be (computationally) indifferentiable from Fn if there
exists a polynomial time simulator SFn such that for all polynomial time oracle
algorithm A, ∆A

(
(Pn, C

Pn(n)) ; (SFn ,Fn)
)

= negl(n).
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concerned on those adversarial implementation in which some incorrect outputs
can be present.

Convention on Subverted Implementor. Without loss of generality, we will
make the following reasonable assumptions on the subverted implementation H.

1. H makes exactly τ queries (as it can always make some additional queries).

2. Let x̃i := Qhi (x) denote the ith query during the execution of Hh
z,r(x). We

assume that
– x̃1 = x and
– x̃i’s are distinct and different from D(z) (i.e. not queried by subverted

implementor A1).

Query Notations. Let Qh(α) denote the set of all queries during the compu-
tation of Hh(α). We use α �h α

′ to denote that h̃(α) queries h(α′). Similarly,
α 6�h α

′, denotes that h̃(α) does not query h(α′). Qhj (α) (alternatively α̃j when

the function is clear from the context) denotes the jth query made by h̃(α).

Definition 3. A (q, τ) subverted implementor A1 for H is called ε-crooked if for

every h ∈ H and for all 0 ≤ i ≤ l, Prα(h̃(i, α) 6= h(i, α)) ≤ ε where α
$←− {0, 1}n.

Detection Algorithm. Given an implementation one may check the correct-
ness of the algorithm by comparing the outputs of the implementation with a

known correct algorithm. More precisely, we sample α1, . . . , αt
$←− {0, 1}m and

then for all 0 ≤ i ≤ l, we check whether h̃(i, α) = h(i, α) holds. If it does not
hold, the implementation would not be used. It is easy to see that for ε-crooked
implementation the subversion would not be detected with probability at least
(1 − ε)t. So for negligible ε this probability would be still close to one for all
polynomial function t and so the implementation can be survived for further
use.

Crooked Distinguisher. Now we define a two stage adversary. The first stage
is a subverted implementor and the second stage is a distinguisher.

Definition 4 (crooked distinguisher). We say that a pair A := (A1,A2) of
probabilistic algorithms ((q1, τ, ε), q2)-crooked distinguisher if

(i) A1(r) is a ε-crooked (q1, τ) subverted implementor for H and
(ii) A2(r, z, ·) is a q2-query distinguisher where z is an advise string (tran-

script of A1 with its oracle).
Note that A1 and A2 can also be viewed as one stateful probabilistic algorithm

A and the internal state and the advise string would be implicitly conveyed from
one stage to the other.

Crooked Indifferentiability. Now we state H-crooked indifferentiable se-
curity definition (as introduced in [16]) in our notation and terminology.

Definition 5 (H-crooked indifferentiability [16]). Let F be an ideal prim-
itive and C be an initial value based F-compatible oracle construction. The con-
struction C is said to be
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((q1, τ), (q2, qsim), ε, δ)-H-crooked indifferentiable from F
if there is a qsim-query algorithm S (called simulator) such that for all ((ε, q1, τ), q2)-
crooked distinguisher (A1(r), A2(r, ·, ·)), we have

∆A2(r,z,R)

(
(h,C h̃(R, ·)) ; (SF (Hz,r, z, R),F)

)
≤ δ (1)

where z is the advise string of Ah1 and R is the random initial value of the
construction sampled after subverted implementation is set.

Two-Stage Distinguishing Game. Now we explain the distinguishing game.
In the first stage a crooked distinguisher determines a code of an oracle algorithm
H := Hz,r after interacting with a random oracle h. Then, a random initial value
R of the hash construction C is sampled. In the real world, A2 interacts with

the same h of the firsts stage and the hash function C h̃(R, ·) (based on the
subverted implementation using the initial value R). In ideal world, there exists
a simulator S which gets the advise string z, the initial value R and the code of
the subverted implementation H as inputs,4 and gets oracle access of a random

oracle F . Simulator is aimed to simulate h so that behavior of (h,C h̃) is as close
as (S,F) to the distinguisher A2. If so, the hash function, even with the help of
subverted implementation, behaves like a random oracle.

Convention on Crooked Distinguishers: Note that there is no loss to as-
sume that both A1 and A2 are deterministic (so we skip the notation r) when we
consider computational unbounded adversary5. We also assume that A2 makes
all distinct queries and distinct from the queries made by A1. We sometimes
skip the notation z as an input of A2 as it is conveyed implicitly.

2.3 Markov Inequality

Lemma 6. Let X be a non-negative random variable and a > 0 be a real num-
ber. Then it holds that

Pr[X ≥ a] ≤ Ex(X)

a

A simple application of Markov inequality (which is used repeatedly in this
paper) is the following. Consider a joint distribution of random variables X
and Y . Suppose E is an event for which Pr((X,Y ) ∈ E) ≤ ε. Let f(x) :=
Pr((X,Y ) ∈ E|X = x) and E1 := {x : f(x) ≥ δ}. It follows from the definition
that Ex(f(X)) = Pr(E). Now, we use Markov’s inequality

Pr(E1) = Pr(f(X) ≥ δ)
≤ Ex(f(X))/δ

= ε/δ.

Note that when X and Y are independent, f(x) = Pr((x, Y ) ∈ E)

4 If an algorithm S take a code of an oracle algorithm H as an input, it can compute
H(x) by running the code of H and responding the oracle queries of H.

5 A1 can fix the best random coin for which the distinguishing advantage of A2 is
maximum.
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C(R, ·)h̃h S(z,R) F

Hz

A2(R)

Fig. 2. The crooked indifferentiability notion. In the first phase of real world, A1

interacts with f and returns an oracle algorithm f̃ (which would be accessed by the
construction C in the second phase). In the second phase the random initial value R
will be sampled and given it to the construction C and also to A2. In ideal world,
simulator SF gets the advise string of the first phase, subverted implementation Hz

and the initial value R.

3 Limitations of Techniques in [16]

In this section we revisit the crooked indifferentiability security analysis of EXor
given in [16] and discuss the issues in it.

Enveloped XOR Construction or EXor: We fix two positive integers n and
l. Let D := [l]× {0, 1}n. Let H be the class of all functions h : D → {0, 1}n. For
every x ∈ {0, 1}n and an initial value R := (r1, . . . , rl) ∈ ({0, 1}n)l, we define

gR(x) =

l⊕
i=1

h(i, x⊕ ri) and EXor(R, x) = h(0, gR(x)).

(Theorem 3 from [16]). Let l ≥ 3n + 1 and h
$←− H. Then, the enveloped

XOR construction is ((q1, τ), (q2, qsim), ε, ε′)-H-crooked indifferentiable from n-
bit random oracle F where q1, τ, qsim, q2 are polynomial function of n and ε, ε′

are negligible function of n.

Convention on Second Stage Adversary. We assume the following for the
second stage adversary A2.

1. (Batch query): It makes queries h(i, x) for i > 0, it also makes queries h(j, x⊕
ri ⊕ rj) for all j > 0 simultaneously. In other words, it makes a batch query
of the form (h(j,m⊕ rj))1≤j≤l for some m ∈ {0, 1}n. We simply say that A2

queries m to gR and obtains responses (h(j,m⊕ rj))1≤j≤l.

2. There is no loss to assume that it queries m to F before it queries to gR
oracle.

We fix any z := ((a1, b1), . . . , (aq1 , bq1)) with b1, . . . , bq1 ∈ {0, 1}n and distinct
a1, . . . , aq1 ∈ D. Throughout this paper, we only consider function h from H|z
and hence notation for the advise string z would be mostly skipped.
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3.1 Description of Simulator

We now describe the simulator defined in [16]. We would like to note that the we
consider the same simulator in our proof and so we reuse the notations developed
here in the subsequent sections. We define

g̃R(m) :=

l⊕
i=1

h̃(i,m⊕ ri) and ẼXor(R, x) = h̃(0, g̃R(x)).

In other words, if we express EXor(R, x) as EXorh(R, x) then ẼXor(R, x) rep-

resents EXorh̃(R, x) which is one of the oracle in the real world for crooked
indistinguishable game.

Simulator: We first quickly recall how the simulator SF (H, z,R, ·) is defined.

Note that main goal of the simulator is to simulate h
$←− H as honestly6 as possible

such that ẼXor(R,m) = F(m) for all queried m. The simulator maintains a list L
of pairs (α, β) to record h(α) = β for α ∈ D and β ∈ {0, 1}n. It also maintains a
sublist LA of L consisting of all those pairs which are known to the distinguisher.
Both lists are initialized to z (the advise string in the first stage which we fix to
any tuple of q1 pairs). Now we describe how the simulator responds.

1. (Type-1 Query): All queries of the form h(0, w) returned honestly and up-
dates the list L and LA.

2. (Type-2 Query): For a query gR(m) (i.e. batch query) it computes h̃(αj)
for all j, one by one by executing the subverted implementation H, where
αj = (j,m⊕ Rj). During this execution, simulator responds honestly to all
queries made by the subverted implementation and updates the L-list by
incorporating all query responses of h. However, it updates LA list only with
(αj , h(αj)) for all j. Let g̃ :=

⊕
j h̃(αj).

Definition 7. We say that the simulator aborts if (0, g̃) ∈ D(L).

If simulator does not abort, it makes a query F(m) and adds ((0, g̃),F(m))
into the both lists L and LA.

Note that behavior of S is exactly same as random oracle possibly except
those queries h(0, w) made by A2 where w = g̃R(m) for some previous query m
to gR. In this case, it is answered as F(m).

Cautionary Note. Even though F is a random oracle, we cannot say that
probability distribution of the response of (0, g̃) in the ideal world is uniform.
Note that adversary can choose m after making several consultation with F . In
other words, m can be dependent on F . For example, adversary can choose m for

6 By honestly, we mean that if the responses is already in the list it returns that value,
otherwise it samples a fresh random response and includes the input and output pairs
in the lists.
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which the last bit of F(m) is zero and so the response for the query (0, w) always
has zero as the last bit (which clearly diverts from the uniform distribution).

Transcript: Now we describe what is the transcript to the distinguisher and for
the simulator in more details.

1. Let LF denote the set of all pairs (m′, z̃) of query response of F by A2.

2. Let Lg denote the set of all pairs (m,βl) of query response of gR oracle
(batch query) made by A2 to the simulator where βl := (β1, . . . , βl) and
βj = h(j,m⊕Rj) for all j. According to our convention all these m must be
queried to F beforehand.

3. As we described we also have two lists, namely L and its sublist LA, keeping
the query responses of h oracle.

Now we define the transcript and partial transcript as the queries of the
distinguishers going on. We note that q1 is the number of queries in the first stage
and A2 is a (qF , q2)-query algorithm. For any 1 ≤ i ≤ q = q2 + qF ), we define
partial transcripts of A and simulator as τAi := (LFi , L

A
i ) and τSi := (Li, L

g
i )

respectively, where LFi , L
A
i , Li, L

g
i denote the contents of the corresponding lists

just before making ith query of the distinguisher. So when, i = 1, LA1 = L1 = z
and the rest are empty and when i = q+1, these are the final lists of transcripts.
Let τi := (τAi , τ

S
i ) and τ := (τA, τS) denote the joint transcript on ith query or

after completion respectively. As the adversary is deterministic, simulator is also
deterministic for a given h and F , and we have fixed z, a (partial) transcript
is completely determined by the choice of R, h and F (in the ideal world). We
write (R,F, h) ` τSi if the transcript τSi is obtained when the initial value is
R, the random oracles are F and h. We similarly define (R,F, h) ` τAi and
(R,F, h) ` τi.
Bad Event. Let badi denote the event that ith query is m to gR oracle and
either simulator aborts (as defined in Definition 7) or (0, g̃R(m)) is a crooked
point for h. Let bad = ∨ibadi.

Observation 8 Given that bad does not hold, for all queries m we have

ẼXor(R,m) = F(m).

3.2 Revisiting the Proof of [16]

For every query number i, we define a set Ei := D(Li) ∪ Ch where Ch is the set
of all crooked elements for h. It is easy to see from the definition that badi holds
if and only if (0, g̃R(mi)) ∈ Ei where mi denotes the ith query of A (made to gR
oracle of the simulator). So, the crooked indifferentiable advantage is bounded
by
∑q2
i=1 Pr(g̃R(mi) ∈ Ei). From the definition it is clear that |D(Li)| ≤ q1 + i.

Moreover, |Ch|/2n is negligible for every fixed function h as A can crook at most
negligible fraction of inputs. Motivated from the above, the authors wanted to
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show that the distribution of g̃R(mi) is almost uniform and hence the following
core result was proved.

(Theorem 5 from [16]). Let h
$←− H|z. With overwhelming probability (i.e.,

one minus a negligible amount) there exists a set Rz ⊆ ({0, 1}n)l and for every
i, a set of transcripts T Ai (before ith query) such that for all R ∈ Rz, τi :=
(LFi , L

A
i ) ∈ T Ai , and m 6∈ D(Lgi ),

Pr
h

((0, g̃R(m)) ∈ Ei | (R,F , h) ` τi) ≤ poly(n)
√
|Ei|+ negl(n).

Theorem 3 of [16] can be derived from the above theorem. Now we describe the
main steps of proving the above theorem. In the first step authors assumes i = 1
and later with a very sketchy argument justifies how it works for general i. Note

that τ1 basically contains only the information of z. As we sample h
$←− H|z,

we can ignore the conditional event and we can simply focus to bound the
probability of the event (0, g̃R(m)) ∈ D(z) ∪ Ch for any m. To prove that we
show that g̃R(m) behaves close to the uniform distribution over {0, 1}n and so
the above probability is negligible as q1/2

n and |Ch|/2n is negligible. Before we
do so, we develop some notations. Let us define

d(α, h) =

{
1, if h̃(α) 6= h(α) or α ∈ D(z)

0, otherwise

In other words, d sets value one for an element z 6∈ D if it is crooked.7 For every
α ∈ D, β ∈ {0, 1}n, we define a function hα→β which agrees with h on all points
possibly except at α at which the function hα→β maps to β. Note that if h(α) =
β then hα→β = h. Let D1(α, h) = Exβ(d(α, hα→β)) where the expectation is

computed under β
$←− {0, 1}n. By using Markov inequality, authors are able to

identify a set of overwhelming amount of pairs (R, h), called unpredictable, such
that for any unpredictable (R, h) and for all m, there exists an index i such that

1. D1(αi, h) is negligible and
2. αj 6�h αi for all j 6= i, where αj = m⊕Ri.

Thus, if we resample β = h(αi) then with overwhelming probability h̃αi→β(α) =
hαi→β(α) (i.e. not crooked and returned a random value) and all corresponding
values for indices j different from i will remain same. So, g̃R(m) = β +A where
A does not depend on choice of β. Thus, the modified distribution is close to
uniform (as almost all values of β will be good). In particular the authors made
the following claim:

Claim 9 Under the modified distribution (i.e. after resampling), Pr(g̃R(m) ∈
E1) ≤ q1/2

n + ε+ pn where pn denotes the probability that a random pair (R, h)
is not unpredictable.

7 Note that α ∈ D(z) was not considered in [16]. However, it will be later clear that
we need this simple modification.
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As the choice of i depends on the function h and so rejection resampling lemma
(introduced in the same paper) is used to bound the probability of the event
under the original distribution (i.e. before resampling).

Lemma 10 (Rejection Resampling [16]). Let X := (X1, . . . , Xk) be a ran-
dom variable uniform on Ω = Ω1 × Ω2 × · · · × Ωk. Let A : Ω → (k] and define
Z = (Z1, . . . , Zk) where Zi = Ai except at j = A(Xk) for which Zj is sampled
uniformly and independently of remaining random variables. Then for any event
S ⊆ Ω, it holds that

|S|/|Ω| ≤
√
kPr(Z ∈ S)

With this rejection resampling result and the above claim, we can conclude the
following under original distribution: Pr(g̃R(x) ∈ E1) ≤

√
l · (q1/2n + ε+ pn).

3.3 Issues with the approach

Now we are ready to describe the issues and the limitations of the techniques
in [16]. To prove the general case (i.e. for any query), authors provides a very
sketchy argument. It seems that authors argued that with an overwhelming
probability of realizable transcript T and for all τ ∈ T , Pr(g̃R(mi) ∈ Ei | τ) is
negligible.

The bad event Ei depends on the function h. Recall that the rejection
resampling helps to bound

Pr
h∗

(g̃R(x) ∈ E1) ≤
√
l · Pr

resampled h
(g̃R(x) ∈ E1).

Moreover, authors show that Prresampled h
(g̃R(x) ∈ E1) is small as g̃R(x) is

uniformly distributed under resampling distribution of h and size of E1 is neg-
ligibly small. But, the crooked set of h may depend on the function family h
and so we cannot bound the probability of the event g̃R(x) ∈ E1 as |E1|/2n as
E1 is not independent of g̃R(x). In other words, the Claim 9 need not be true.
This is one of the crucial observation which actually makes the crooked security
analysis a bit complex.

Controlling query dependencies for the same index. Recall that the re-
sampling is done on an index i, that is honest (h̃(i,m ⊕ ri) = h(i,m ⊕ ri).
Moreover, h(i,m ⊕ ri) is not queried by any other h̃(j,m ⊕ rj). The authors
proved that with high probability over R, h, for every message x such an index
i will exist. Unfortunately, this condition (no query to an index i) does not hold
if the adversary can check consistency for multiple messages.

Consider a (q, τ) subverted implementation h̃ that is ε-crooked. We construct

a (q, τ+1) subverted implementation ĥ as follows. For every possible input (i, x),

ĥ simulates h̃. After the τ many queries made by h̃, ĥ makes an additional query
on h(i, x⊕ 1n), if not already made. Finally ĥ outputs what h̃ outputs. Clearly,

ĥ is ε-crooked. The distinguisher makes queries, first for message m ⊕ 1n, and
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then for m. In case of message m, all the h(i,m ⊕ 1n) has been queried by the
simulator when computing g̃R(m). Thus one can not find an index i such that
h(i, x⊕ 1n) has never been queried.

The gap in the technique. The reason, these issues have not cropped up
in the proof is the fact, that the authors did not prove the simulator to be
consistent. In particular, they did not show that the bad events they considered,
are complete. In order to prove indifferentiability, it is required that conditioned
on not Bad, the real and the ideal games are indistinguishable. While there
are several techniques (like H-coefficient technique, or game playing technique),
there is no formal argument on why Theorem 4 proves crooked indifferentiability.

The number of queries to F is essential. We give an example why their
proof is incomplete as it does not consider the F queries of the distinguisher.
The bound is almost vanishing if q1 = 0 and q2 = 2 and has no crooked point.
However, a distinguishers search for m 6= m′ such that F(m) = F(m′) and hence
gR(m) = gR(m′) holds with probability about 1/2. However, for the honest
simulation of all h values, g value will collide with very low probability. Thus,
the the number of queries to F oracle should be involved in the bound.

4 Basic Tools for Crooked Analysis

We follow the notations developed in the previous sections. For 1 ≤ j ≤ τ ,
let Dj(α, h) = Exβ(d(α, hα̃j→β)) (average number of crooked point after we
resample the output of the jth query made by the subverted implementation).

Lemma 11. Let α
$←− D, h

$←− H|z. For any ε-crooked implementation Hz, for
all 1 ≤ j ≤ `

Exα,h
(
Dj(α, h)

)
≤ ε1 := (ε+ q12−n) (2)

Proof. For any ε-crooked implementation H and every h ∈ H|z, 0 ≤ i ≤ l, we

have Prx(h̃(i, x) 6= h(i, x)) ≤ ε where x
$←− {0, 1}n. So, for α

$←− D,

Exα(d(α, h)) = Pr
α

(h̃(α) 6= h(α) ∨ α ∈ D(z))

≤ ε+ q12−n.

Now, we fix any α := (i, x) and 1 ≤ j ≤ τ . For any function g ∈ H|z, let
Sα,g := {(f, β) ∈ Hz × {0, 1}n : f |Qfj (α)→β = g}.

Claim 12 For a function g, we have |{(f, β) : f |Qfj (α)→β = g}| = N .

Proof of Claim. Suppose j = 1 and so Qfj (α) = α. Now, the function f agrees
with g except that the output of f at α can be any n-bit string, which should
be β. Now assume j > 1. So, f(Qfk(α)) = g(Qfk(α)) for all k < j. For k = j,
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f(Qfj (α)) = β (for any choice of β ∈ {0, 1}n). For all other inputs, f agrees with
g. So the claim follows.

Back to proving Lemma 11Now for each j ∈ {1, 2, · · · , `},

Exα,hD
j(α, h) = Exα,hExβ

(
d(α, h|α̃j→β)

)
=
∑
α,h,β

Pr(h) Pr(α) Pr(β) · d(α, h|α̃j→β)

= 2−n
∑

(h,β)∈Sα,g

∑
α,g

Pr(g) Pr(α) · d(α, g)

=
∑
α,g

Pr(g) Pr(α) · d(α, g)

= Exα,gd(α, g)

≤ Exg(ε+ q12−n)

≤ (ε+ q12−n) ut

Definition 13. We call a pair (α′, h) good if

1. For all α�h α
′, we have d(α, h) = 0 and Dj(α, h) ≤ ε1/21 , where α′ was the

jth query of h̃(α).

2. the number of α which queries α′ is at most 1/ε
1/4
1 .

We call the pair (α′, h) bad, if it is not good. Let G be the collection of all such
good pairs. For any function h, let Gh := {α′ : (α′, h) ∈ G} and Bh := {α′ :
(α′, h) 6∈ G}.

In what follows we use α, α′
$←− D and h

$←− H|z whenever these are used as
random variables to compute probabilities. Otherwise, these are considered to
be fixed elements from their respective domains.

Lemma 14. Prα′,h((α′, h) is bad) ≤ ε2 := 3τε
1/4
1

Proof. A pair can be bad in two ways and we bound each case separately. We

first bound that for a random α and h, either d(α, h) = 1 or Dj(α, h) > ε
1/2
1 . The

probability of the first event is clearly bounded by ε and whereas the probability

of the second event is bounded by ε
1/4
1 (Applying Markov inequality and the

Lemma 11). So a random α′ is queried by some α satisfying the above event

holds with probability at most τ(ε+ ε
1/4
1 ) ≤ 2τε1/4.

By using simple averaging argument, average number of α′ for which the

number of α that queries α′ is at least 1/ε1/4 is at most τε
1/4
1 . By adding this

two cases we complete our proof. ut

A function h is said to be good if Prα′(α′ ∈ Bh) ≤ ε1/22 , otherwise it is called
bad. A simple application of Markov inequality proves that

Pr
h

(h is bad) ≤ ε1/22 (3)
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Our next step is to construct a collection of good pairs (R, h). We construct
a set G∗ where a pair (R, h) ∈ G∗ if

1. h is good.
2. for every m there exists i so that

(a) (αi := (i,m⊕Ri), h) is good.
(b) ∀ j < i, αj 6� αi.
We call the smallest index i that satisfies the above two condition, “index of
interest” for (m,R, h).

Lemma 15. Let ε2 ≤ 1/16 and ` ≥ n. It holds that

Pr
R,h

((R, h) 6∈ G∗) ≤ p1 := ε
1/2
2 + 2−n

Proof. We know that Prh(h is not good) ≤ ε1/22 . Now, fix a good h. Then

Pr
R

((R, h) 6∈ G∗) ≤
∑

m∈{0,1}n

l∏
i=1

Pr
Ri

(((i,m⊕Ri), h) is not good)

≤ 2n × εl/22

≤ 1/2n.

Hence, we have

Pr
R,h

((R, h) 6∈ G∗) ≤ Pr
h

(h is not good) + Pr
R

((R, h) 6∈ G∗|h is good)

≤ ε1/22 + 1/2n. ut

Now we quickly summarize what we have proved so far. We have identified a
set G∗ from which the pair of initial value R and the random oracle h is sampled
with overwhelming probability satisfying the following nice condition:

For every fixed (R, h) ∈ G∗ and for every m there exists the index of interest,
i such that (αi, h) is good where αi = (i,m⊕Ri).

Resampling. Our objective is to show that a transcript remains unchanged
when h(αi) is resampled. For that, our next step is to show the following. We
can identify a set S (of size close to 2n) such that for all β ∈ S and hβ := hαi→β ,

we have h̃(x) = h̃β(x) for all x 6= αi. We define S = {β : d(α, hα̃j→β) =
0∀ j,∀ α ∈ Qh�αi} where Qh�αi := {α : α� αi}.
Lower Bounding the size of S. As αi is good, the size of the set Qh→αi is

at most 1/ε1/4. For every such α, from the definition of good (α, h), we have

d(α, h) = 0 and D̃(α, h) ≤ ε
1/2
1 (and so there are at most 2n × ε1/21 many β for

which there exists some j with d(α, hα̃j→β) = 1). From the above discussion and
using union bound for all α that queries αi, the size of the set {0, 1}n \ S is at

most
2nε

1/2
1

ε
1/4
1

= 2n · ε1/41 .
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Observation 16 h̃(x) = h̃β(x) ∀x 6= αi.

Clearly, h̃β(x) can be different from h̃(x), only if x � αi. However, for all
such αi and for all β ∈ S, we have shown that both d(α, h) = d(α, hβ) = 0.

Hence, h̃β(α) = hβ(α) = h(α) = h̃(x).

So from Eq.16, it is easy to see that (1) for all m′ 6= m, g̃hR(m′) = g̃
hβ
R (m′)

and (2) d((0, g), h) = d((0, g), hβ) (i.e. the crooked set of hβ for zero index is
same for h for all such β).

Uniformity conditioned on transcript. The last step is to ensure that the
point of resampling is independent of β. In other words, we need to show that
the index of interest is also independent of β. Thus, for every message m, we can

identify an index i such that g̃
hβ
R (m) = β ⊕ g̃hR(m) ⊕ h(αi) holds for the fixed

transcript.
Index of Interest is independent of β. Fix a good (R, h). Fix a message m.
Let i be the index of interest. In this section, we show that i is also the index of
interest for (R, hβ) and message m. Let αi = (i,m⊕Ri). We need to show three
things.

1. αi /∈ Bhβ .
2. for all j < i, αj 6� αi where αj = (j,m⊕Rj).
3. i is minimum index that satisfies the above two condition for (R, hβ) and m.

We start with the following observation.

Observation 17

Qh�αi = Q
hβ
�αi

Proof. Let α′ �h αi. Suppose αi is the jth query in the computation of h̃(α′).
Clearly, jth query in the computation of h̃(α′) depends on the query and re-
sponses of first j − 1 queries made by h̃(α′). Let α̃1, · · · , α̃j−1 be those queries.
As αi /∈ {α̃1, · · · , α̃j−1}, we get h(α̃k) = hβ(α̃k). As all the previous query re-
sponses are same, α′ �hβ αi. ut

We are now ready to prove the required three statements. Assume that i is
the index of interest for (R, h) and m. by definition αi /∈ Bh.

Claim 18 αi /∈ Bhβ if and only if αi /∈ Bh.

Proof. As β ∈ S, d(αi, hβ) = d(αi, h). By Observation 17,Qh�αi = Q
hβ
�αi . So,

only things that require proofs are the following. First, for each k it should
hold that, αi is the kth query of h̃(α) if and only if αi is also the kth query of
h̃β(α). Moreover, it needs to hold that Dk(α, h) = Dk(α, hβ). The first statement
follows from the following observation. As all the previous k− 1 query responses
are same in both cases, the kth query made by the implementation on α will be

17



same. Hence αi is the kth query of h̃(α), if and only if αi is also the kth query
of h̃β(α). The second statement follows from the definition.

Dk(α, h) = Exβ′(d(α, hαi→β′)) = Dk(α, hβ)

ut

The next claim proves the second statement

Claim 19 For all j < i, αj 6�hβ αi where αj = (j,m⊕Rj).

Proof. Fix a j < i. We know αj 6�h αi. This implies αj /∈ Qh→αi . By Observation

17, αj /∈ Qhβ→αi . Hence, αj 6�hβ αi. ut

The final step is to prove that i is the minimum such index even for (R, hβ)
that satisfies first two points. For that we prove the following,

Claim 20 If there exists and index i′ < i such that αi′ /∈ Bhβ and ∀ j <
i′αj 6�hβ αi′ , then it holds that αi′ /∈ Bh and ∀ j < i′,αj 6�h αi′

Proof. Using Claim 18, we get

αi′ /∈ Bhβ =⇒ αi′ /∈ Bh

For the second part, we show the contrapositive. Suppose for some j < i′,
αj �h αi′ . Hence αj ∈ Qh→αi′ . Moreover from assumption αj 6�h αi. All the

queries made by h̃(αj) and the responses remain same in h̃β(αj). This implies
αj �hβ αi′ . ut

Finally, we are ready to state the main proposition

Proposition 21. For any partial transcript for adversary τj := (LF , LA), let
(R, h, F ) ` τj such that (R, h) ∈ G∗. For every m 6∈ D(Lg), there is a set

S of size at least 2n(1 − ε
1/2
1 ) such that for all β ∈ S, (R, hβ , F ) ` τj and

g̃
hβ
R (m) = β ⊕ g̃hR(m) ⊕ h(αi), where i is the index of interest of (m,R, h).

Moreover, C
hβ
0 = Ch0 (the crooked set are same).

Assuming ε
1/2
1 ≤ 1/2, and for all (R, h, F ) ` τ with (R, h) ∈ G∗, we have

Pr
β

((0, g̃
hβ
R (m)) ∈ D(L0) ∪ Chβ ∧ (R, hβ , F ) ` τ) ≤ 2ε+ 2(q1 + i)/2n

Proof. We let Bj denote the event of the choice of h(αi) such that (0, g̃
hβ
R (m)) ∈

D(L0) ∪ Chβ ∧ (R, hβ , F ) ` τ holds.

|Bj | ≤ ε2n + (q1 + i).
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Fix a function h. Ej = τj∧i is the index of interest for (m,R, h)∧{hαi→β}β∈S}.
As there are |S| many choices of h(αi) in Ej , for all y ∈ S

Pr[h(αi) = y|Ej ] ≤
1

|S|
Hence

Pr[Bj |Ej ] ≤
|Bj |
|S| ≤

2|Bj |
2n

≤ 2ε+
2(q1 + i)

2n

In the second inequality we use that |S| ≥ (1− ε1/21 )2n > 2n−1. Taking sum
over all candidate h and thus all choice of i, we get the proposition. ut

5 Crooked Indifferentiability Security Proof of EXor

Our simulator is same as before. However, we assume that distinguisher makes
all F(m) queries to gR(m) in case it is not queried. However, it would be done
after all queries are done. There is no loss to release all these m values after the
original distinguisher finishes the queries. Now we recall the bad event (with this
convention, the bad event now involves the F query transcript, which was not
done before).

5.1 Game Transitions

Our crooked-indifferentiability proof relies on three intermediate game, denoted

by G0, G1, and G2. We start with the real game G0 := (h,C h̃). There are two
public interfaces for the adversary to query. The first one is Oh, which can be
used to interact with the function Hl. The other one is OC , which can be used

to compute C h̃. For ease of explanation, we add two internal subroutines, one
for computing g̃R and the other for evaluating h̃(0, ·).
Game G0. In this game, we modify the Oh subroutine. For every (j, x) query we
recover the message m = x⊕rj , and precompute the response of all the (i,m⊕ri)
queries. Further, we compute the value of z̃ = h̃(g̃R(m)). These precomputations
do not change the output for any of the query. Hence

Pr[Ah,Ch̃ = 1] = Pr[AG0 = 1]

Game G1. In this game, we introduce two lists Lf and Lc. The entries in both
the lists are of the form (m,x, z, z̃). We also introduce two Bad events in the
code of Oh as well as in the code of OC . Notice that, both the subroutine com-
putes h̃(0, g̃R(m)).
The first bad event (Bad1) happens if h(0, g̃R(m)) has been set already. This
can happen in two ways. The first one is during a previous h(0, g̃R(m′)) com-
putation for a different m′. In that case there is a collision in the output of g̃R.
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Game (h,Ch̃)

Oh(i, x) (i ∈ [`])

1 : return h(i, x)

h̃0(x)

1 : for all queries (i, α) made by h̃

2 : Feed h(i, α)

3 : z = h̃(0, x)

4 : return z

OC(m)

1 : Sm = g̃R(m)

2 : z = h̃(0, Sm)

3 : return z

g̃R(m)

1 : Sum = 0n

2 : for j = 1 to ` do

3 : Run h̃(j,m⊕Rj)

4 : for all queries(i, α) made by h̃

5 : Feed h(i, α)

6 : uj = h̃(j,m⊕Rj)

7 : Sum = Sum⊕ uj

8 : endfor

9 : return Sum

Fig. 3. Game Real

Game G0

Oh(j, x) (j ∈ [`])

1 : if (j, x, y) ∈ L return y

2 : if j > 0

3 : m = x⊕Rj

4 : Sm = g̃R(m)

5 : z̃ = h̃(0, Sm)

6 : (j, x, y)← L

7 : return y

8 : if j = 0

9 : return h(0, x)

h̃0(x)

1 : for all queries (i, α) made by h̃

2 : Feed h(i, α)

3 : z̃ = h̃(0, x)

4 : return z̃

OC(m)

1 : Sm = g̃R(m)

2 : z = h̃(0, Sm)

3 : return z

g̃R(m)

1 : Sum = 0n

2 : for j = 1 to ` do

3 : Run h̃(j,m⊕Rj)

4 : for all queries(i, α) made by h̃

5 : Feed h(i, α)

6 : uj = h̃(j,m⊕Rj)

7 : Sum = Sum⊕ uj

8 : endfor

9 : return Sum

Fig. 4. Game G0

The second way is via a Oh(0, x) query (by the distinguisher or the subverted
implementations). When queried, such an x was not related to a message.
The second bad event happens (Bad2) if h̃(0, g̃R(m)) 6= h(0, g̃R(m)). In other
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words, g̃R(m) is a subverted point for h̃(0, .). The final change is in the intro-
duction of the random oracle F . Our intention in this game is to program the
h(0, x) as F(m) if x = g̃R(m). Hence after the compuation of g̃R(m), if we find
h(0, g̃R(m)) is not already set (Bad1 did not happen), we set h(0, g̃R(m)) =
F(m). As we are not changing the previously set values, the transcript is con-
sistent. Thus, the distinguisher’s view remains unchanged. Thus we get,

Pr[AG0 = 1] = Pr[AG1 = 1]

Before moving to the next game, we state the significance of Bad2. Looking
ahead, in such a situation, the simulator will not be able to “program” the output
of h̃(0, g̃R(m)) as F(m), and thus loosing the consistency with the random oracle.

Game G2. In this game, we introduce the changes in the computation. First,
we (re)program h(0, g̃R(m)) = F(m) even if it was previously set. Moreover,
we set z̃, the output of Oc(m) query to always be same as h(0, g̃R(m)). These
modifications create changes in the output in two places. The first one is in
the case of Bad1. The second is in the case of Bad2, g̃R(m) is a subverted
point for h̃(0, .). The rest of the game remains unchanged. As the two games are
identical until one of the bad event happens, using the fundamental lemma of
game playing proofs,∣∣Pr[AG1 = 1] = Pr[AG2 = 1]

∣∣ ≤ Pr[Bad1 ∪Bad2].

Game (SF ,F). It is also easy to see that the output distribution of the game
G2 is identical to the game (SF ,F).

Pr[AG2 = 1] = Pr[A(SF ,F) = 1]

Finally, collecting all the probabilities, we get,

∆A2(r,z,R)

(
(h,C h̃(R, ·)) ; (SF (Hz,r, z, R),F)

)
≤ Pr[Bad1 ∪Bad2].

5.2 Bounding Probability of Bad Events

We describe the bad events in terms of transcript notations as we did before.
Following the transcript notation in Section 3, let badi denote the event that
ith query is m to gR oracle for which (0, g̃R(m)) ∈ D(Li) (same as Bad1) or
(0, g̃R(m)) ∈ Ch (a crooked point for h and the vent is same as Bad2). Let
bad = ∨ibadi. Thus, the distinguishing advantage is bounded by Pr(∨ibadi).
We need to compute the probability given the randomness of R, h F such that
(R, h, F ) ` τAi (transcript of the adversary). We first bound Pr(bad ∧ (R, h) ∈
G∗). By using Proposition 21, for every i, Pr(badi|(R, h, F ) ` τi, (R, h) ∈ G∗) ≤
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Game G1

Oh(0, x)

1 : if (∗, x, z, ∗) ∈ Lf

2 : return z

3 : z = h(0, x)

4 : Add the entry(−, x, z,−)→ Lf

g̃R(m)

1 : Sum = 0n

2 : for j = 1 to ` do

3 : Run h̃(j,m⊕Rj)

4 : for all queries (0, α) made by h̃

5 : z = Oh(0, α)

6 : for all queries(i > 0, α) made by h̃

7 : Feed h(i, α)

8 : uj = h̃(j,m⊕Rj)

9 : Sum = Sum⊕ uj

10 : endfor

11 : return Sum

h̃0(x)

1 : for all queries (0, α) made by h̃

2 : z = Oh(0, α)

3 : for all queries (i, α) made by h̃

4 : Feed h(i, α)

5 : z̃ = h̃(0, x)

6 : return z̃

Oh(j, x) (j > 0)

1 : if (j, x, y) ∈ L return y

2 : m = x⊕Rj

3 : for i = 1 to `

4 : Add (i,m⊕Ri, f(i,m⊕Ri)) to L

5 : endfor

6 : Sm = g̃R(m)

7 : if (∗, Sm, z, ∗) ∈ Lf for any z

8 : Bad1 = 1

9 : z̃ = h̃(0, Sm) z̃ = F(m)

10 : Add the entry(m,Sm, z, z̃)→ Lf

11 : else

12 : z̃ = z = F(m)

13 : Add the entry(m,Sm, z, z̃)→ Lf

14 : z̃′ = h̃(0, Sm)

15 : if z̃ 6= z̃′

16 : Bad2 = 1

17 : z̃ = z̃′ Do nothing

18 : endif

19 : Overwrite the entry(m,Sm, z, z̃)→ Lf

20 : endif

21 : (j, x, y)← L

22 : return y

Fig. 5. Game G1, G2. The boxed entries are executed in G1 whereas the highlighted
entries are executed in G2.

2ε+2(q1 +i)/2n. Hence by summing over all i and using the bound of probability
of not realizing G∗, we get

Pr(bad) ≤ 2εq2 + 2q2(q1 + q2)/2n + p1

= 2εq2 + 2q2(q1 + q2)/2n +

√
3τ
(
ε+

q1

2n

) 1

4
+

1

2n

Note that q2 denotes the total number of queries of A2 made to both the
simulator and F (in our convention adversary makes all F queries to gR of the
simulator).
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6 Crooked-Indifferentiability of Sponge Construction
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· · ·

m`

f

z0

f

z1

f

z2

Fig. 6. Sponge Based Construction

6.1 Sponge Construction

We recall the sponge-construction [3]. Fix positive integers r, c, and let n = r+c.
Let f : {0, 1}n → {0, 1}n be a function. The sponge construction Cf maps binary
strings of length ` bits to binary strings of h bits using Figure 7.

Procedure Sponge

1 : x = (xa, xc) = (0r, 0c) x = R

2 : for i = 0 to

⌈
`

r

⌉
− 1 do

3 : (xa, xc) = f(xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to

⌈
h

r

⌉
− 1 do

6 : Append xa to output

7 : (xa, xc) = f(xa, xc)

8 : endfor

Fig. 7. The Sponge Construction Cf . Boxed Statement is executed in the subversion
resistant implementation
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6.2 Crooked Indifferentiable Sponge Construction

In order to handle subversion, we randomize the sponge construction by setting
the IV to be equal to the random string R. In other words in Step 1, we set
x = R. The rest of the construction is unchanged.

Theorem 22. Let f : {0, 1}n → {0, 1}n be a random function and Cf : {0, 1}` →
{0, 1}h be the sponge construction. Let r be the rate part and c be the capacity part
of the chain. Then there exists a simulator S such that for all (κ, τ, ε) crooked
distinguisher A = (A1,A2)

Advcrooked-indiff
A,(C,f) ≤ q2τ2 + qκ

2c
+ 2rεq

where q is the total number of queries made by A.

The Simulator Our simulator emulates the simulator of Bertoni et al [4]. For
completeness, we recall the simulator below. Specifically, we recall the following
objects used in the proof.

The Simulator Graph The simulator maintains a graph G for recording the
interactions for f . The vertex set of the graph is V (G) ⊆ {0, 1}r × {0, 1}c.
We represent a v ∈ V (G) by an ordered pair (vr, vc) where vr ∈ {0, 1}r and
vc ∈ {0, 1}c. The (directed) edge set of the graph is represented by E(G). The
simulator also keeps a list L ⊆ {0, 1}c. L is used to ensure that the c-part of all
the responses of the simulators are unique.

NewNode Algorithm. The algorithm Newnode samples a node randomly in
the simulator graph.

Findpath Algorithm The Findpath algorithms finds a message m ∈ {0, 1}≤`
such that evaluating C with the random string R as IV, message m and simula-
tor’s responses so far will generate x as a query to f . In other words, x will be
a chaining value in the computation of CfR(m).

Simulating f in Stage I We denote our simulator using Ŝ. In the first stage,
Ŝ simulates f honestly. Ŝ starts with a local copy of the simulator graph with all
the nodes, but no edges (E(G) = ∅) and an empty list L. When queried with a

new input x, the simulator generates yc
$←− {0, 1}c \ L and yr

$←− {0, 1}r, creates
node (yr, yc), and adds an edge (x, (yr, yc)) to E(G). Ŝ updates L by including
yc to the list.
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Procedure Ŝ1(x) // Stage I

1 : if ∃(x, y) ∈ E(G′) return y

2 : else

3 : yc
$←− {0, 1}c \ L

4 : yr
$←− {0, 1}r

5 : y = (yr, yc)

6 : E(G′) = E(G′) ∪ (x, y)

7 : L = L ∪ yc
8 : return y

9 : endif

Procedure Ŝ2(R, x) // Stage II with fixed random string R

1 : if ∃(x, y) ∈ E(G) return y

2 : if x = R mark x

3 : if x is marked

4 : Runf̃(x)

5 : for every query xj made by f̃

6 : Feed y = Sim(xj)

7 : endfor

8 : ỹ = f̃(x)

9 : if ỹ 6= Sim(x)

10 : Bad = 1

11 : return ⊥
12 : endif

13 : endif

14 : return Sim(x)

Fig. 8. Simulator for Sponge Construction. S2 is initialized with z,R and f̃ .

Simulating f in Stage II The simulator gets the implementation f̃ , along with
the advice string z. In addition, the simulator receives the random string R ∈
{0, 1}n. S initializes by marking the node R in the simulator graph. Following
the simulator of [4], the idea of marking a node x is to declare that there is a
path in the simulator graph from the root R to x.

Now, the simulator invokes f̃ on input x. For each query xi made by f̃ ,
Ŝ forwards the query to the simulator Sim as a query and upon receiving an
answer, forwards it to the distinguisher. Finally when f̃(x) returns a value, Ŝ
checks whether f̃(x) = Sim(x). If the check fails, the simulator raises the flag
Bad0 and aborts. Otherwise, it returns Sim(x).

Proving the Crooked Indifferentiability. The detail of the games and tran-
sitional probabilities are described in Section8.1. We present a proof sketch here.
The crooked indifferentiability is proved via the following lemma.

Lemma 23. If Bad does not happen then ε ≤ q2τ2

2c . Moreover,

Pr[Bad] ≤ qε · 2r

Proof of Lemma 23. If Bad does not happen, then our simulator emulates the
simulator of [4] perfectly. Note, the Newnode subroutine does not sample any xc
such that for some xr, (xr, xc) ∈ z. Moreover, none of the marked nodes in the
tree is subverted. Hence, in that case, the classical indifferentiability simulator
perfectly simulates f maintaining consistency with the random oracle F . By
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Procedure Newnode

1 : if |L| = 2creturn ⊥

2 : yc
$←− {0, 1}c \ L

3 : yr
$←− {0, 1}r

4 : L = L ∪ yc
5 : return y = (yc, yr)

Procedure Findpath(R, x)

1 : p = λ

2 : if x = r return p

3 : else

4 : Parse x = (xr, xc)

5 : Find x̂r such that

((t, (x̂r, xc)) ∈ E(G)) ∧ t is marked

6 : m′ = xr ⊕ x̂r
7 : p′ = Findpath(r, t)

8 : p = p′||m′

9 : return p

Procedure Sim(x) // Bertoni etal simulator [4]

1 : if ∃(x, y) ∈ E(G) return y

2 : L = L ∪ {xc}
3 : if x is marked

4 : m = Findpath(R, x)

5 : if |m| < `

6 : y = Newnode()

7 : E(G) = E(G) ∪ (x, y)

8 : Mark all node (∗, yc)
9 : return y

10 : else // |m| = `

11 : z = F(m)

12 : Break z = z1||z2|| · · · ||zt// tr = h

13 : y(0) = x

14 : for i = 1 to t do

15 : yc
$←− {0, 1}c \ L

16 : yr = zi

17 : y(j) = (yr, yc)

18 : E(G) = E(G) ∪ (y(j−1), y(j))

19 : L = L ∪ {yc}
20 : endfor

21 : return y(1)

22 : endif

23 : else // x is unmarked

24 : y = Newnode()

25 : E(G) = E(G) ∪ (x, y)

26 : return y

27 : endif

Fig. 9. Bertoni et al Simulator for Classical indifferentiability of Sponge
Construction.[4]

the classical indifferentiability theorem of [4], ε ≤ q2τ2

2c . Here τ is the number of
queries made by the implementation.

Recall that the event Bad happens if for some marked node x in the graph,
x is subverted; f̃(x) 6= f(x). Let A makes q1 queries in the first stage and
q2 queries to the second stage. We say a simulator query to be safe if it is
unsubverted.Observe that for each safe query x, f(x) is uniformly distributed.

Let Ei denote the event that ith query made by A to the simulator, the input
xi is marked and xi is not safe. . xi = xr||xc. If xi is marked, then for some
marked xj , j < i, and for some mi ∈ {0, 1}r, xi = m||0c ⊕ f̃(xj). Conditioned

on xj is safe, f̃(xj) = f(xj) is uniformly distributed. Hence, xc is independently
distributed. By definition of worst case subversion, and taking union bound over
all possible xr, the probability f̃(xi) is bounded by ε · 2r.
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Pr[Bad] ≤
q∑
i=1

Pr[Ei| ∧i−1
j=1 Ej ]

≤
q∑
i=1

(ε · 2r)

= qε · 2r

7 Conclusion

In this paper, we revisited the recently introduced crooked indifferentiability no-
tion. We showed that the proof of crooked indifferentiability of enveloped XOR
construction in [16] is incomplete. We developed new technique to prove crooked
indifferentiability of the same construction. We also show that the sponge con-
struction with randomized initial value is also crooked indifferentiable secure
hash function.
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Appendix

8 Leftout proofs for sponge construction

8.1 Game Transitions

Our crooked-indifferentiability proof relies on four intermediate game, denoted

by G0,G1,G1, and G2. We start with the real game (h,C h̃). There are two
public interfaces for the adversary to query. The first one is Of , which can be
used to interact with the function f . The other one is OC , which can be used to

compute C f̃ . In the intermediate games we shall use additional subroutine G.
Game G0. In this game, we introduce the subroutine G which acts as a common
interface to f, f̃ . We modify the Oh and OC subroutine. For queries to f , G is
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Game (f, C f̃ )

Of (x)

1 : return f(x)

OC(m)

1 : x = (xa, xc) = (R0, R1)

2 : for i = 0 to

⌈
`

r

⌉
− 1 do

3 : (xa, xc) = f̃(xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to

⌈
h

r

⌉
− 1 do

6 : Append xa to output

7 : (xa, xc) = f̃(xa, xc)

8 : endfor

Game (G0)

Of (x) (i ∈ [`])

1 : return G(1, x)

OC(m)

1 : x = (xa, xc) = (R0, R1)

2 : for i = 0 to

⌈
`

r

⌉
− 1 do

3 : (xa, xc) = G(0, xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to

⌈
h

r

⌉
− 1 do

6 : Append xa to output

7 : (xa, xc) = G(0, xa, xc)

8 : endfor

G(i, x)

1 : y = ỹ = f(x)

2 : if i = 1 return y

3 : else

4 : Runf̃(x)

5 : for every query xj made by f̃

6 : Feed y = f(xj)

7 : endfor

8 : ỹ = f̃(x)

9 : return ỹ

10 : endif

Fig. 10. Game Real and Game G0

called with parameter f whereas for f̃ the parameter value is set to be 0. These
changes are ornamental and do not change the output for any of the query. Hence

Pr[Ah,Ch̃ = 1] = Pr[AG0 = 1]

Game G1. In this game, we modify the subroutine G. When queried with (0, x)
for intended value of f̃(x), G checks whether f̃(x) = f(x). If the equality does
not hold G sets the Bad flag. However, it still returns f̃(x). As the output of
any query does not change,

Pr[AG0 = 1] = Pr[AG1 = 1]
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Game G1. In this game, when Bad flag is set, f(x) is returned. Everything else
remain unchanged. Using the fundamental lemma of game playing proof,∣∣Pr[AG1 = 1]− Pr[AG2 = 1]

∣∣ ≤ Pr[Bad]

Game G2. We note that in game G1, all the G(x) queries made by Oc is
answered with f(x). Hence, in Game G2, we give Oc direct access to f . Output
distribution of the game remains exactly same after this change. Hence,

Pr[AG1 = 1] = Pr[AG2 = 1]

Game G3. We replace the oracles (f, Cf ) by (S,FS) where S is the simulator
of Bertoni et al [4]. By the results in [4],

∣∣Pr[AG2 = 1]− Pr[AG3 = 1]
∣∣ ≤ q2τ2

2c
.

Note that the numerator in the right hand side is the square of total number
of queries made to the simulator, which in Game G3, qτ as the implementation
makes τ many queries for each invocation.

Finally, we observe that G works identically with the second stage simulator
of Figure8. So As we initialize the simulator of [4] with L from the stage I, the
two games are identical. Hence we get,

Pr[AG3 = 1] = Pr[A(SF ,F) = 1]

Collecting all the probabilities, we get

∆A2(r,z,R)

(
(f, C f̃ (R, ·)) ; (SF (Hz,r, z, R),F)

)
≤ Pr[Bad] +

q2τ2

2c

≤ q2τ2

2c
+ qε2r.
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Game (G1)

Of (x)

1 : return G(1, x)

OC(m)

1 : x = (xa, xc) = (R0, R1)

2 : for i = 0 to

⌈
`

r

⌉
− 1 do

3 : (xa, xc) = G(0, xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to

⌈
h

r

⌉
− 1 do

6 : Append xa to output

7 : (xa, xc) = G(0, xa, xc)

8 : endfor

G(i, x)

1 : y = ỹ = f(x)

2 : if i = 1 return y

3 : Runf̃(x)

4 : for every query xj made by f̃

5 : Feed y = f(xj)

6 : endfor

7 : if f̃(x) 6= f(x)

8 : Bad = 1

9 : ỹ = f̃(x) ỹ = f(x)

10 : return ỹ

11 : endif

Game (G2)

Of (x)

1 : return G(1, x)

OC(m)

1 : x = (xa, xc) = (R0, R1)

2 : for i = 0 to

⌈
`

r

⌉
− 1 do

3 : (xa, xc) = f(, xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to

⌈
h

r

⌉
− 1 do

6 : Append xa to output

7 : (xa, xc) = f(xa, xc)

8 : endfor

G(i, x)

1 : y = ỹ = f(x)

2 : if i = 1 return y

3 : Runf̃(x)

4 : for every query xj made by f̃

5 : Feed y = f(xj)

6 : endfor

7 : if f̃(x) 6= f(x)

8 : Bad = 1

9 : ỹ = f(x)

10 : return ỹ

11 : endif

Fig. 11. Game G1,G2
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Game (G3)

Of (x)

1 : return G(1, x)

OC(m)

1 : return F(m)

G(i, x)

1 : y = ỹ = f(x)

2 : if i = 1 return y

3 : Runf̃(x)

4 : for every query xj made by f̃

5 : Feed y = Sim(xj)

6 : endfor

7 : if f̃(x) 6= Sim(x)

8 : Bad = 1

9 : ỹ = Sim(x)

10 : return ỹ

11 : endif

Fig. 12. Game G3
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