
Blinder – MPC Based Scalable and Robust
Anonymous Committed Broadcast

Ittai Abraham1, Benny Pinkas1,2, and Avishay Yanai∗1

1VMware Research, Israel
2Bar-Ilan University, Israel

February 24, 2020

Abstract

Anonymous Committed Broadcast is a functionality that extends DC-nets and
allows a set of clients to privately commit a message to set of servers, which can
then simultaneously open all committed messages in a random ordering. Anonymity
holds since no one can learn the ordering or the content of the client’s committed
message.
We present Blinder, the first system that provides a scalable and fully robust solution
for anonymous committed broadcast. Blinder maintains both properties of security
(anonymity) and robustness (aka. ‘guaranteed output delivery’ or ‘availability’) in
the face of a global active (malicious) adversary. Moreover, Blinder is censorship
resistant, meaning that a honest client cannot be blocked from participating.
Blinder obtains its security and scalability by carefully combining classical and
state-of-the-art techniques from the fields of anonymous communication and secure
multiparty computation (MPC). In order to demonstrate scalability, we evaluate
Blinder with up to 1 million clients, up to 100 servers and a message size of up
to 10 kilobytes. In addition, we show that it is a perfect fit to be implemented on
a GPU. A GPU based implementation of Blinder with 5 servers, which accepts
1 million clients, incurs a latency of less than 8 minutes; faster by a factor of
> 100 than the 3-servers Riposte protocol (SOSP ’15), which is not robust and not
censorship resistant; we get an even larger factor when comparing to AsynchroMix
and PowerMix (CCS ’19), which are the only constructions that guarantee fairness
(or robustness in the online phase).

1 Introduction
In the 80s Chaum [Cha88] introduced a breakthrough protocol that enables a set of
parties to communicate in an anonymous manner. Chaum presented it as the Dining

∗Part of the work was done while in Bar-Ilan University.

1

Cryptographers problem and subsequent solutions are then called DC-networks (or a
DC-net in short).

Cast in modern terms, a DC-net protocol is an instance of a secure multi-party
computation protocol. The ideal functionality of a DC-net protocol is to collect inputs
from all parties such that all inputs are empty messages except one, which contains a
meaningful value. The functionality then broadcasts that message (with the meaningful
value). Anonymity holds since the identity of the sender of the meaningful value
is unknown and can potentially be any one of the participating parties. The set of
participating parties is often called an anonymity set. Obviously, the larger the anonymity
set the stronger the anonymity of the participating clients.

Systems like Dissent [WCFJ12], Verdict [GWF13] and Riposte [CBM15] have
extended the DC-nets architecture in several important ways:

1. To increase scalability, they adopt the client-server paradigm, where there are
N clients that form the anonymity set and submit messages, but only n � N
servers implement the functionality. This is a major step since a direct DC-net
(with a full graph between clients) incurs an overall communication complexity
of O(N2) whereas servers-aided solution reduces this to roughly O(n ·N).

2. Instead of dealing with a single meaningful message at each round, they allow
multiple clients to send meaningful messages, such that at the end of a round the
servers output those messages in a random unknown order. Anonymity holds
since the mapping between clients and messages is kept secret.

3. Those works devise mechanisms to detect and mask malicious clients that try to
disrupt the system (e.g. DoS attacks).

4. Newer solutions (like Riposte [CBM15] and Express [ECZB19]) use techniques
from function secret sharing (FSS) [BGI16] to reduce client to server and server
to server communication down to O(logN) and O(1) resp. per client, which
enables a lighter client side and a faster verification of a client’s message.

The protocol we present in this work implements an ideal functionality (Definition
2.1) for anonymous committed broadcast (ACB) and guarantees security via the simulation
paradigm. Let us highlight important properties that the functionality captures: We
want the protocol to be correct, meaning that the messages submitted by the client will
eventually be broadcast; we want it to be secure, which in our context means that the
system preserves the anonymity of the clients, so the mapping between the clients and
the messages output by the protocol must be kept secret; and finally, we want it to be
robust1, meaning that the protocol makes progress thwarting any disruption attempt of
the adversary. This includes an adversary that corrupts clients, servers, network or any
combination of these. We give more details on the power of the adversary in Definition
2.1.

Another important property is censorship resistance, i.e. a corrupted server must
not be able to block honest clients from submitting their message. Of course, if

1A property also known as ‘guaranteed output delivery’ or ‘availability’ and hereafter referred to by
‘robustness’.

2

the network adversary is so powerful that it can spawn as many clients as it wishes
and block any honest client that it wishes, then the effective anonymity set of any
solution can be shrunk to only single client – by having the adversary spawn N − 1
malicious clients and block all honest clients except for one targeted honest client. This
attack completely de-anonymizes that single targeted honest client. That attack is well
recongnized in the setting of such a strong adversary [SDS02]. To allow a non-trivial
anonymity set (circumvent this attack), in this work we assume a slightly weaker
adversary. We assume there are at least ρN, ρ ∈ (0, 1), honest clients submitting their
message, granting the network adversary the power to spawn ‘only’ (1− ρ)N clients.
The adversary can inspect, but cannot block, all network channels (a global adversary).
We stress that even in this weaker model, it is necessary to prevent a corrupted server
from blocking honest clients, otherwise, the same deanonymization attack is possible
(i.e. even though the adversary could not block honest clients from the network, it can
still do so via a corrupted server). Indeed, protocols like [CBM15, ECZB19] suffer
from that type of an attack. On the other hand, Blinder has a mechanism for preventing
this, which allows preserving an anonymity set of size ρN .

Limitations of previous work. Previous work on anonymous committed broadcast
in the client to server DC-net model suffer from at least one of the following limitations:

1. Non Robust: the protocol is resilient to clients’ disruption attempt, but (even a
single) corrupted server may halt the system. A corrupted server may choose to
halt the execution adaptively, namely, even at the very last step of the protocol,
after observing the output messages (in case it wishes some message will not go
public).

2. Suspectable to Censorship: a corrupted server could arbitrarily block messages
from honest clients, dropping the effective anonymity set size to only one. This
holds even in the weaker model mentioned above (in which the adversary may
corrupt at most (1− ρ) clients).

3. Non Scalable: the protocols can only be run by a few servers or can accept
a relatively small number of clients. Removing these limitation is important
for security as increasing the number of servers typically increases trust in the
system and accepting more clients fortifies their anonymity.

The aforementioned works, Dissent [WCFJ12], Verdict [GWF13] and Riposte [CBM15]
all suffer from the first two limitations, that is, even a single server may halt their
execution and may arbitrarily block honest clients from submitting their messages
(leading to an anonymity set of size only one). With regard to generic MPC based
works, in MxMix [AKTZ17] the n servers run the shuffling protocol of Hamada et al.
[HKI+12] that is only secure against a semi-honest adversary and works with n = 3
servers only, On the other hand AsynchroMix and PowerMix [LYK+19] suggest two
generic ways for shuffling the N messages submitted to the servers via secret sharing.
Those protocols achieve fairness (or ‘robustness in the online phase’) and can run
over may servers, however, having the servers running a generic shuffling protocol
requires either O(N3) computation overhead or O(log2N) communication rounds,
which considerably limit their ability of handling more than few thousands of clients.

3

1.1 Our Contributions.
We present Blinder, the first system that provides a scalable and robust solution for
anonymous committed broadcast. Blinder maintains security (anonymity) , robustness
and censorship resistance in the face of a global malicious adversary, over a synchronous
network (all messages are delivered within some bounded time). In more detail,

1. Robustness: it keeps operating correctly and securely even in the presence of an
adversary who controls the entire network, controls t < n/4 of the servers and
may spawns (1− ρ)N malicious clients.

To achieve a robust construction, we make sure that all the building blocks
of the protocol are robust, however, we find that this is a necessary but not
sufficient condition. Interestingly, having each client sharing its message using a
Shamir sharing does not lead to a robust protocol, even when all servers behave
honestly. We discuss that observation and other robust sub-protocols.

2. Censorship resistance: if there are ρN honest clients then the effective anonymity
set is of size ρN , in contrast to previous work in which anonymity set size drops
to one.

3. Scalability: Blinder can be deployed with any number of servers and can support
an anonymity set size in the millions, with a relatively low latency, outperforming
even systems with weaker security guarantees.

We observe that the arithmetic circuit to be securely evaluated by the servers can
significantly benefit from a GPU deployment, which makes the system practical
even for anonymity sets of millions of clients. This makes our protocol unique
in the field of anonymous communication, in which protocols almost always
rely on either symmetric or asymmetric cryptographic primitives that could only
marginally benefit from a GPU (see discussion in Appendix B). We implemented
Blinder on both CPU and GPU and extensively evaluated it over varying number
of servers n ∈ [100] varying number of clients N ∈ [2 · 106] and varying
message size L ∈ {32 bytes, . . . , 10 kilobytes} (32 bytes messages is the only
case reported by AsynchroMix and PowerMix, which may be useful for e.g.,
publishing secret keys. 160 byte messages correspond to anonymous micro-blogging
application, e.g. anonymous Twitter. Larger message size may be applicable to
anonymously transacting cryptocurrencies as well as whistleblowing small files).
Let us present some examples of Blinder’s performance:

• The CPU variant with n = 100 servers could handle and process N =
10, 000 clients in 11 seconds. In comparison, AsynchroMix and PowerMix
[LYK+19] was evaluated with up to 4096 clients (which took more than 2
minutes). Blinder is 20× faster than [LYK+19] on a comparable setting.
Of course, Blinder can handle many more clients with a reasonable latency.
E.g., it takes about 7 minutes to serve 100, 000 clients.

• Blinder’s GPU variant can serve 1 million clients with 160 byte messages
in less than 8 minutes. This is more than 100× faster than the non robust

4

system, Riposte, under similar setting. Also, this is the first robust system
that can scale to such number of clients.

The source code of Blinder can be found in github.com/cryptobiu/MPCAnonymousBloging

1.2 Overview of our techniques
Blinder is heavily based on Shamir’s threshold secret sharing [Sha79] and on advances
in secure computation [DN07, BH08, CGH+18] on shared secrets.

There already exist secret sharing based constructions for anonymous communication
[AKTZ17, LYK+19] in which the clients first share their message toward the servers,
which then run a secure shuffle protocol of the messages, such that the mapping between
initial and final locations of each message remains secret. These solutions do not
scale well since secure shuffling incurs either a large computation overhead (as in
PowerMix) or a large number communication rounds (as in McMix and AsynchroMix).
Alternatively, Blinder adapts a different approach inspired by Riposte [CBM15], which
in turn is based on distributed point functions2 (DPF) [GI14, BGI16]. In that approach
we offload some of the computation and communication burden from the servers to the
clients, by which we completely remove the need for a secure shuffle protocol.

Using a DPF-like technique, the servers maintain a (initially empty) table and the
clients themselves randomly and obliviously choose the final location of their message
in that table. Namely, the servers do not know the chosen location. This requires a
client to essentially write to every location in the table. So clients write their ‘real’
message to the chosen location and an empty message (or zero) to the rest of the table.
As ‘writing’ is done by secret sharing, the servers could not tell which location contains
the message and which contains zero. The homomorphism properties of Shamir’s
sharing allow the servers to aggregate submissions of many clients, resulting a single
table with many messages, one from each client. This however, requires each client to
deal O(N) sharings, which rapidly becomes the bottleneck. To solve this problem we
extend a DPF-based techniques to work efficiently with Shamir’s sharing.

Informally, in a DPF scheme [GI14] there are two servers S1,S2 that maintain a
table T , of size O(N), additively shared between them; so S1 (resp S2) has T1 (resp
T2) such that T = T1 + T2 (entry-wise). To read a single entry at location i from T ,
a client interacts with both servers and submits a query q1 to S1 and query q2 to S2.
The servers locally process the queries and respond with x1 and x2 to the client, that
combines these answers to obtain x = x1 + x2 = T [i]. A DPF scheme is oblivious,
i.e. the servers do not learn anything about the index i. While the original DPF scheme
allows reading from T , the construction in [CBM15, ECZB19] allows also writing, a
necessary condition for anonymous communication. On the other hand, those systems
in [CBM15, ECZB19] inherit the limit of DPF constructions and can work efficiently
with two servers only.

The main benefit of relying on DPF is that the size of the queries q1 and q2 can
be made sub-linear in T , even though when processing the queries the servers have
to ‘touch’ every entry of T . Specifically, it is possible to compress the query up to

2A distributed point function (DPF) is related to private information storage [OS97] and 2-server private
information retrieval (PIR) [CG97].

5

github.com/cryptobiu/MPCAnonymousBloging

size O(log T). Applications like anonymous communication set the table size, T , be
proportional to the number of clients, N and prefer that to be as large as possible (to
increase the anonymity set size). Thus, compressing the query size has a huge impact
on the communication complexity.

In Blinder, we further extend the notion and construction of DPF (1) to support
many servers, (2) to obtain robustness while preserving (3) the low communication
complexity between servers.

The first two improvement achieved by using Shamir sharing instead of additive
sharing. This modification allows using very efficient techniques for securely computing
on shared secrets, which is required in order to decompress a client’s write query, to
verify that a query is well formed and to aggregate queries of many clients to a single
final table.

The third improvement is achieved by integrating the MPC protocol by Chida et
al.: A basic sub-protocol in secure computation is a multiplication of shared secrets.
Specifically, given sharings of secrets x and y from a finite field F, the servers can
obtain a sharing of x · y without revealing x or y. This requires a communication
of O(|F|) bits per server. In our protocol, decompression of a query incurs O(N)
multiplication of secrets, leading to a protocol with communication overhead ofO(N2|F|)
bits, which is impractical whenN is large. Fortunately, a recent observation [CGH+18]
suggests a new type of arithmetic gate, namely, the sum of products gate. That is, given
sharings of secrets x1, . . . , x` and y1, . . . , y` from F, the servers can obtain a sharing of∑`

i=1 xi · yi without revealing any of the intermediate values. Surprisingly, this incurs
the same communication overhead as if they perform only one secure multiplication,
that is, onlyO(|F|) bits per server. This drastically reduces server to server communication
overhead and makes our construction highly competitive.

Furthermore, as we will show, the entire computation can be represented as an
instance of matrix multiplication, which is a perfect task for a GPU.

1.3 Applications
Apart from an application to fearless whistle-blowing of fraud or incompetence to the
public [WCFJ12, Bal04, Kre01, TFKL99, Vol99, Wal19], a system for anonymous
committed broadcast has other interesting applications:

Differential privacy. Recent results in differential privacy analyzed the shuffle
model, where users anonymously submit their private inputs to a server. This setup is a
trust model which sits between the classical curator model (where a server knows the
inputs of all clients and adds noise to answers to queries) and the local privacy model
(where each client adds noise to its input). It was shown that the shuffle model provides
substantially better tradeoffs between privacy and accuracy when aiming to achieve
differential privacy [BEM+17, EFM+19, CSU+19, BBGN19]. However, current works
analyze the advantages of this model without describing how it can be implemented.
Our work essentially implements the anonymous channel that is assumed by the shuffle
model. To support that, Blinder has to serve thousands to million clients with relatively
short messages (e.g. telemetry) (representing their personal noisy data) of tens to
hundreds of bytes.

6

P2P payments and front-running prevention. While Bitcoin’s transactions are fully
public, there exist peer-to-peer payment systems, like Zcash [BCG+14] and Monero
[vS13], that preserve the privacy of their users (allowing payer, payee and amount
privacy). However, in those systems privacy is only preserved in the application layer
but not in the network layer. That is, having an access to the ledgers reveals nothing
about ‘shielded’ transactions (except from the fact that they happened). However, being
able to inspect the network could lead to their deanonymization by simply tracking the
IP address of the transaction’s sender. Currently, users of those systems are instructed
to use Tor [Fou19] in order to hide their identity over the network layer, which is known
to be insufficient [HVC10, MD05, MZ07, Ray00]. Instead, Zcash/Monero users could
potentially use Blinder to broadcast their transactions and be fully protected also over
the network layer. To be useful for systems like Zcash and Monero, Blinder has to
support relatively large messages of length> 1KB. A standard shielded transaction in
Zcash is of length 1− 2KB [BCG+14] and the system currently processes 6 shielded
transactions per second [Bit20].

A related problem is front-running in decentralized exchanges (DEX). DEXs typically
execute trades over smart contracts, avoiding a trusted party that might steal funds.
Using smart contracts means that the entire order book is pubic and transparent, which
implies a fundamental weakness of front-running, or “dependency of trade orders”
[KMS+16, LCO+16, DGK+19], referring to the practice of entering into a trade to
capitalize on advanced knowledge of pending transactions. Users can front-run orders
by observing past and most recent orders and placing their own orders with higher fees
to ensure they are mined first. Blinder can circumvent that problem as all messages
are committed and opened only after all trade orders are submitted, removing the
aforementioned dependency. We remark that current DEX constructions are not anonymized,
hence, using Blinder only for simultaneous opening of trade orders would be an overkill.
Yet, research is striving for anonymized solution for DEX, for which Blinder is a
perfect fit to serve as the communication medium.

1.4 Related Work
In this section we present a detailed comparison to client-server based DC-net constructions,
as this is the model that Blinder follows. Moreover, to match our simulation based
security definition we focus only on simulatable constructions. This is to exclude
ones that rely on other notions of privacy like differential privacy (DP) in which some
controlled, but not trivial, amount of information is leaked to the adversary. Further
comparison to a broader set of existing solutions is deferred to Appendix A.

The leading works on anonymous broadcast in the client-server DC-net model
are Riposte3 [CBM15], AsynchroMix, PowerMix [LYK+19] and McMix [AKTZ17].
While McMix, AsynchroMix and PowerMix all implement a secure shuffling, Riposte
takes another approach (that Blinder follows as well), in which the task of hiding the
mapping between clients and messages is offloaded to the clients via an extension to
the DPF construction.

3A concurrent and independent work, Express [ECZB19], improves Riposte both in performance and in
its trust assumption.

7

Riposte [CBM15] demonstrates a system with a high throughput and which scales
to millions of clients. It is run by two database servers (that process the clients’ DPF
queries) and an additional audit server (that verifies that messages are well-formed),
assuming no collusion between them (i.e. the adversary may corrupt only a single
server). Riposte also presents a multi-server construction. However, that construction
is very inefficient and not fully implemented, therefore, in our experiments we run only
Riposte’s 3-servers version whereas analytical comparison to the multi-server version
appears in Table 1.

Building on the DPF construction of [GI14, BGI16] allows Riposte to heavily
rely on modern processors’ intrinsics for computing AES. However, the they do not
scale efficiently to more than 2 database servers, are not robust and not censorship
resistant, i.e. a malicious server not only can halt the execution whenever it wishes, it
could also arbitrarily block messages of honest clients. Even in Riposte’s multi server
construction, a single malicious server is sufficient to mount those attacks. In contrast,
Blinder runs efficiently with any number of servers, and is both robust and censorship
resistant.

McMix [AKTZ17] and AsynchroMix/PowerMix [LYK+19] rely on generic MPC
protocols assuming an honest majority. McMix implements the secure shuffling by
Hamada et al. [HKI+12], which works efficiently only for 3 semi-honest (passive)
servers. That protocol, as well, could not efficiently extend to more than 3 servers.

Asynchromix and PowerMix scale beyond the 3 servers limit, are actively secure
and assume that less than a third of the servers collude, an assumption that enables them
to achieve both censorship resistance and fairness (or robustness in the online phase,
see Section 2). The aim of Blinder is to achieve full-robustness, that is, also in the
offline phase. We remark that, by aligning their collusion assumption to that of Blinder
(i.e. t < n/4 instead of t < n/3), those protocols could achieve full-robustness as
well. The drawback of Asynchromix and PowerMix is that they do not scale to more
than a few thousands of clients. This is due to the fact that AsynchroMix has a high
round complexity of O(log2N) and PowerMix runs a O(N3) computation for solving
power equations. In contrast, Blinder scales to millions of clients.

We refer to another recent concurrent and independent work, Talek [CSM+20],
since it is also utilizes a GPU. Talek aims to specifically solve group messaging via
information theoretic PIR and explicitly redirects to solutions tailored for broadcast if
that is the required application. Talek may scale in both number of clients and servers,
however it has several limitations: it is not robust and not censorship resistant; any user
in a trusted group can block writes to that groups log. Similarly, a faulty server can
impact availability.

We present a qualitative comparison in Table 1 (we recommend to read notations
in Section 2 first).

1.5 Paper Organization
Notation and definitions are presented in Section 2. We present a basic (impractical)
construction of Blinder in Section 3 and an optimized, highly efficient version in
Section 4. These versions rely on the fact that the preprocessing of Blinder is robust;

8

work
client

comp.?
server

comp.?
client-server

comm.?
server-server

comm.?
server-server

rounds
collusion;

adversary type
cryptographic
assumptions fair robust

censorship
resist. Nh

McMix [AKTZ17]
3 servers O(1) O(N logN) O(1) O(N logN) O(logN)

n = 3; t = 1
semi-honest??

information
theoretic – – 3 ρN

Riposte [CBM15]
2 servers + audit O(

√
N) O(N2) O(

√
N) O(N ·

√
N) O(1)

n = 3; t = 1
malicious

computational
(OWF) 7 7 7 1

Riposte [CBM15]
n servers O(n ·

√
N) O(N2) O(

√
N) O(N) O(1)

t < n
malicious

computational
(DDH) 7 7 7 1

AsynchroMix [LYK+19]
switching network O(n) O(n ·N · log2N) O(1) O(n ·N · log2N) O(log2N)

t < n/3
malicious

information
theoretic 3 7 3 ρN

PowerMix [LYK+19] O(n) O(N3) O(1) O(N2) O(1)
t < n/3
malicious

information
theoretic 3 7 3 ρN

Blinder
this work O(n ·

√
N) O(N2) O(

√
N) O(N) O(1)

t < n/4
malicious

information
theoretic 3 3 3 ρN

Table 1: Qualitative comparison of Blinder to leading client-server DC-net constructions
with simulation based definition. OWF refers to the existence of one-way functions and
DDH refers to the existence of a group under which the decisional Diffie-Helman problem is
hard. ‘client-server‘ refer to the message size between a client to a single server, the overall
communication should be multiplied by n; ?All values in this column are multiplied by L (the
message length). ?? This relates to their implementation. Theoretically McMix stands against
a malicious adversary as well.

to this end we show how to obtain a robust preprocessing in Section 5.1. We present
an evaluation and comparison of Blinder in Section 6 and discuss our conclusion in
Section 7.

2 Notation and Problem Definition
Denote by [x] the set {1, . . . , x}. Indexes begin at 1. λ is the statistical security
parameter. A function µ : N→ R is negligible if for every positive polynomial poly(·)
there exists an integer Npoly s.t. for every x > Npoly it holds that |µ(x)| < 1/poly(x).
We refer to a negligible probability as µ(x) for some security parameter x, in addition,
an overwhelming probability is 1− µ(x).

Blinder runs on a set of n servers S1, . . . ,Sn, of which t < n/4 may be actively
(maliciously) corrupted and colluding. The servers emulate a trusted party that runs
the anonymous committed broadcast (ACB) functionality defined below.

Definition 2.1 (ACB Functionality) The functionality:

1. interacts with N clients C1, . . . , CN of which ρN are honest and (1 − ρ)N are
controlled by the adversary.

2. interacts with n servers, S1, . . . ,Sn, of which t < n/4 are controlled by the
adversary.

3. maintains a table, A, of c1 ·N entries for a constant c1 > 1.

4. waits for a message mk from each client Ck and appends mk to a uniformly
random entry in A. All messages are of a fixed length of L bytes.

9

5. after receiving a message from all clients, the functionality outputs to all servers
and the adversary the messages of every entry with at most c2 messages, for a
constant c2 ≥ 1. If an entry has more than one message, they are output in a
random order.

Note that in the ACB functionality there is no interaction between the servers or
between the clients. The servers simply obtain a permuted list of messages that were
submitted by the clients. However, in an implementation of that functionality the
servers may interact with each other and with the clients. In that respect, we assume a
global adversary (who may inspect all network channels) and assume they are secure,
which could be achieved in practice by setup of a public key infrastructure (PKI).

Let us describe some interesting properties that are reflected by a protocol that
securely computes the ACB functionality. First, it has properties of a standard commitment
scheme:

• Hiding: before the output step (5), the adversary has no knowledge on the messages
of the honest clients.

• Binding: a client cannot modify its message after submission in step (4).

Then, there is the anonymity set property:

• Anonymity set: the adversary learns nothing about the mapping between the
ρN honest clients and the messages of honest clients that are output by the
functionality.

Obviously, for a given ρ, the larger the number of clients, N , supported by the
functionality, the better anonymity provided to them. Observe that in the ACB functionality
the adversary cannot block a message from an honest client, therefore, the effective
anonymity set size, denoted Nh, equals the number of honest clients, ρN . Finally, we
are interested in the robustness property:

• Robustness: also known as ‘availability’ or ‘guaranteed output delivery’, means
that no matter what the adversary does, it cannot make the system halt without
producing output to all servers. This is stronger than the fairness property,
achieved by [LYK+19], in which the system produces outputs to the adversary
only if it also produces outputs to the honest participants.

• Robustness also covers the case of a malicious client. Obviously, by the definition,
it is impossible for a client to break correctness or security of the functionality.

Although we list some interesting properties for such a system, we remark that the
security of Blinder follows a simulation based definition [Gol04]. This is straightforward
for Blinder as it uses only standard simulatable building blocks in a black-box manner.

For readability reasons, the building blocks used by Blinder are presented in the
context of each section.

We stress that the security guarantees claimed by Blinder are limited to a stand-alone
execution, which we call an ‘epoch’. For a continuous execution of Blinder across
many epochs, a standard heuristic is to have every client ever interacted with the system

10

submitting a ‘cover’ (empty) blinded message on every epoch. We leave it out of the
scope of the paper.

In the next section we present an implementation of the ACB functionality with
c1 = 2.7 and c2 = 2 (constants inherited from [CBM15])).

3 The Basic Blinder
As a starting point, we present a basic construction, which includes all aspects of the
system. In particular, this basic construction is already resilient to malicious clients/servers.

Blinder heavily relies on Shamir Secret Sharing (SSS) [Sha79] and on state-of-the-art
MPC components on top of it. We detail SSS here and each required component before
using it.

3.1 Shamir Secret Sharing (SSS)
Let us fix a finite field F over which subsequent computations will be done. Concretely,
think of a prime field Fp with a prime p > n such that server Sq , for q ∈ [n], is
identified with integer q ∈ Fp.

By a d-polynomial we mean a polynomial f(X) ∈ F[X] of degree at most d. To
share a secret x ∈ F with degree d, a uniformly random d-polynomial f(X) ∈ F[X]
with f(0) = x is chosen, and Sq is given the share xq = f(q). We denote such
a procedure by Shared(x). It is well known that such a d-polynomial information
theoretically hides x from any subset of at most d share holders.

In the following we call a vector ~x = (x1, . . . , xn) a consistent d-sharing of s if
there exist coefficients a1, . . . , ad such that the polynomial f(X) = s +

∑d
i=1 ai ·

Xi evaluates f(q) = xq for all honest servers Sq . For q ∈ [n], we say that the
polynomial f(X) ‘agrees with xq’ if f(q) = xq . To reconstruct a secret x that is
shared by at least d + 1 honest servers Sq1 , . . . ,Sqd+1

, the servers run the procedure
Reconstruct({qi, xqi}i∈[d+1]), in which they broadcast their shares xq1 , . . . , xqd+1

,
which form the d+1 points (q1, xq1), . . . , (qd+1, xqd+1

). Then each server interpolates
the d-polynomial f(X) with f(qi) = xqi for all i ∈ [d + 1] and outputs the secret
x = f(0).

In the rest of the paper we use [x] to denote a consistent d-sharing of x if d = t (i.e.
when d equals the maximum number of corrupted servers t) and we use 〈x〉 if d = 2t.

3.1.1 Robust reconstruction.

The description of Reconstruct() above assumes that only honest parties participate
and so a set of d + 1 points can reconstruct a single d-polynomial, hence, a single
possible secret to output. However, in practice, we do not know which servers are
honest and which are not, thus, Reconstruct has to take into account the shares of
all servers, even those of corrupted servers. Given n shares with at most t of them
being malformed, Reconstruct should output a single d-polynomial that ‘agrees’ with
n − t = 3t + 1 of them. Of course, it is possible to iterate over all subsets of 3t + 1
servers, interpolate a polynomial from their shares (which define points) and check

11

whether the result is a d-polynomial. However, it would be too costly, as there are(
n

3t+1

)
such subsets. Fortunately, when n ≥ 4t+ 1 it is possible to construct a unique

polynomial of degree d, as long as d ≤ 2t. Specifically, given 4t+1 points, of which at
most t are malformed, the Berlekamp-Welch algorithm outputs a d-polynomial passing
through at least 3t + 1 of the points, in Õ(n3) time (based on Gaussian elimination)4.
We re-define Reconstruct({xq}q∈[n]) to take shares from all servers and find a unique
polynomial that agrees with at least 3t+ 1 servers.

In Blinder, there might be cases in which Reconstruct returns a polynomial that
disagrees with some servers, then, we have to decide what to do. As we show below,
in some cases we conclude that those servers cheated and so they are ignored in further
computation while in other cases such a conclusion would be a mistake and so other
action is taken.

3.1.2 Computation on sharings.

We introduce a shorthand to specifying computations on shares. By [x(1)], . . . , [x(`)]

we mean that server Sq holds shares x(1)q , . . . , x
(`)
q . Consider any function f : F` →

Fm. By ([y(1)], . . . , [y(m)]) ← f([x(1)], . . . , [x(`)]) we mean that each server Sq
locally computes (y

(1)
q , . . . , y

(m)
q) ← f(x

(1)
q , . . . , x

(`)
q), thus, for all k ∈ [m] that

defines shares [y(k)] = (y
(k)
1 , . . . , y

(k)
n). It is well known that if f is an affine function

and the [x(l)] for l ∈ [`] are consistent d-sharings, then [y(k)] for k ∈ [m] are consistent
d-sharings of (y(1), . . . , y(m)) ← f(x(1), . . . , x(`)). Furthermore, if [x1] and [x2] are
consistent d-sharings, then [x1] · [x2] is a consistent 2d-sharing of y = x1 · x2. This is
due to the fact that the parties implicitly multiply two polynomials of degree t, which
result in a polynomial of degree 2t. When d = t we therefore write 〈y〉 = [x1][x2].

3.2 Basic Construction of Blinder
We are ready to describe the basic protocol. LetN be the number of messages submitted
to the system in a given epoch (i.e. the number of clients). The servers distributively
maintain a matrixAwith rows rows and cols columns such that rows×cols ≥ N (i.e. it
has sufficient room for all messages). Denote the entry in the i-th row and j-th column
by A(i,j). Specifically, for every i, j the servers maintain the sharing [A(i,j)], meaning
that Sq holds A(i,j),q . We denote by Aq the whole matrix of shares held by Sq .

For simplicity, in the following we assume that messages consist of a single field
element, i.e. L = 1 and later discuss how to extend to any L > 1.

3.2.1 Submitting a message.

In this basic scheme, the communication of each client is O(N). We show later in
Section 4 how to reduce the communication overhead to O(

√
N). To submit message

m ∈ F, a client C picks random indices i? ∈ [rows] and j? ∈ [cols] and prepares a

4Õ hides a poly-logarithmic complexity. A robust reconstruction could be done using the more efficient
FFT-based algorithm of Soro and Lacan [SL09] in time Õ(n).

12

matrix M of size rows× cols such that:

M(i,j) =

{
m if (i, j) = (i?, j?)

0 otherwise
(1)

Then, C calls Sharet(M(i,j)) for every (i, j) by which server Sq obtains M(i,j),q . We
callM the ‘blinded’ version ofm as any subset of at most t servers learn nothing about
neither the message m nor the indices i?, j? from the sharings [M(i,j)].

During submission time,N clients prepare blinded messages, so that client Ck with
message mk prepares a matrix Mk as its blinded message and shares it entry-wise
toward all servers. Denote Sq’s share of the (i, j)-entry by Mk

(i,j),q and denote by Mk
q

the entire matrix of shares that Sq received from Ck.

3.2.2 Processing and revealing all messages.

Once all messages are submitted, the servers reveal only the aggregation of all of them.
Given shares of blinded messagesM1

q , . . . ,M
N
q from allN clients, server Sq computes

the sum of the shares. Namely, for every (i, j)

A(i,j),q =

N∑
k=1

Mk
(i,j),q (2)

Note that for every (i, j), A(i,j),q is a share of the sum of values that all clients put in
the (i, j) entry of their blinded message. In other words, the servers compute the linear
function [A(i,j)] =

∑N
k=1[M

k
(i,j)] for every (i, j). Indeed, following 3.1.2, the sharing

of A(i,j) is a t sharing.
Then, the servers run A(i,j) ← Reconstruct({A(i,j),q}q∈[n]) for every (i, j) and

output matrix A = {A(i,j)}i∈rows,j∈cols, which contains all clients’ messages.

3.2.3 Handling collisions.

Suppose that only one client Ck picked some entry (i?, j?) for its message mk, then it
follows that Mk

(i?,j?) = mk and Mk′

(i?,j?) = 0 for every k′ 6= k. Thus, according to
Eq.(2), the value A(i?,j?) reconstructed by the servers equals mk, and the message of
Ck is broadcast successfully. On the other hand, if two or more clients, Ck1 , . . . , Ckc

picked (i?, j?) then A(i?,j?) = mk1 + . . . + mkc , a case denoted as a ‘collision’.
To deal with collisions we apply the following technique borrowed from [CBM15].
Instead of only one matrix, each client C prepares two matrices: M as before, and a
new matrix M̂ such that M(i?,j?) = m, M̂(i?,j?) = m2 and M(i,j) = M̂(i,j) = 0 for
all (i, j) 6= (i?, j?). The servers now distributively maintain two matrices: the matrix
A that aggregates blinded messages Mk and the matrix Â that aggregates blinded
messages M̂k. Now, if there are two clients Ck1 , Ck2 who picked the same entry (i?, j?)
then we have A(i?,j?) = mk1 +mk2 and Â(i?,j?) = (mk1)2 + (mk2)2. Using those
two equations it is easily possible to find mk1 and mk2 : In a prime field Fp when p
mod 4 = 3, for a given b ∈ Fp we can solve b = x2 by computing x1 = b(p+1)/4 and

13

x2 = −x1. This incurs a cost of log p− 2 finite field multiplications, by computing the
repeated powers of b, i.e. b, b2, b4, . . . , b(p+1)/4.

This technique works as long as at most two clients wrote to the same entry and
fails for three or more. Note that the probability that 3 or more clients picked the same
entry (i?, j?) is sufficiently small for our application. Specifically, [CBM15] shows
that when fixing rows × cols ≥ 2.7N , the probability that 3 or more clients picked
(i?, j?) is less than 0.05, so at least 95% of the messages will be successfully broadcast.
Of course, one can increase the success rate by increasing the blinded messages size,
for instance, with each client submit blinded messages for m,m2 and m3 and then
having the servers solve a cubic equation for an entry with a collision of three messages.
Success rate reaches probability 1 when the clients send N messages m,m2, . . . ,mN

and having the servers solving equations of degree N . A similar extreme approach is
taken by PowerMix [LYK+19] and incurs a very expensive computation overhead of
O(N3); hence, it is practical to relatively small N ’s.

3.2.4 Formal description

Let us describe formally the full Blinder protocol. Note that the protocol refers to some
sub-protocols that are presented in later sections.

Protocol BlinderProtocol()
The protocol runs by n servers S1, . . . ,Sn and N clients C1, . . . , CN . The servers
initialize distributed matrices A and Â with c2 · N entries each. That is, for each
(i, j) we have Ai,j = Âi,j = 0 and the servers maintain the sharings [Ai,j] and
[Âi,j]. Initialize the counter Cq = 0 for every server Sq . Initialize the counter
AcceptedClients = 0

Preprocess The servers run protocol Preprocess() from Section 5.1. This phase output
sufficiently many random double sharings of the form ([r], 〈r〉) for a uniformly
random r ∈ F.

Private inputs The servers have no input. Client Ck has input mk ∈ F.

Blind message Client Ck prepares two matrices M and M̂ with N ′ =
√
c1 ·N rows

and columns as follows:

1. Uniformly sample i?, j? ∈ [N ′]

2. Set Mk
i?,j? = m and Mk

i,j = 0 for all (i, j) 6= (i?, j?).

3. Set M̂k
i?,j? = m2 and M̂k

i,j = 0 for all (i, j) 6= (i?, j?).

Optimistic input 1. For each (i, j) ∈ [N ′]2, Ck runs Sharet(M
k
i,j) and Sharet(M̂

k
i,j).

2. Given the sharings [Mk
i,j] and [M̂k

i,j] from Ck, the servers run (out, S̃) ←
FormatVerification(M, M̂) (Section 3.4). If out = ”Accept” then increment
AcceptedClients and if AcceptedClients = N go to Processing. Otherwise,
if out = ”Reject”, then increment Cq for every Sq ∈ S̃. If Cq > 2(1−ρ)N
for some Sq then eliminate Sq from the rest of the execution.

14

Robust input 1. For each (i, j) ∈ [N ′]2, Ck and the servers run RobustInput(Mk
i,j)

and RobustInput(M̂k
i,j).

2. Given the sharings [Mk
i,j] and [M̂k

i,j] from Ck, the servers run (out, S̃) ←
FormatVerification(M, M̂) (Section 3.4). If out = ”Accept” then increment
AcceptedClients and if AcceptedClients = N go to Processing. Otherwise,
if out = ”Reject”, then for every Sq ∈ S̃ eliminate Sq from the rest of the
execution.

Processing The servers compute [A(i,j)] =
∑N

k=1[M
k
(i,j)] for every (i, j).

Output 1. The servers run A(i,j) ← Reconstruct({A(i,j),q}q∈[n]) and A(i,j) ←
Reconstruct({Â(i,j),q}q∈[n]) for every (i, j) and output matrices A and Â.

2. For each (i, j) if (Ai,j)
2 6= Âi,j then solve the system m1 +m2 = Ai,j ;

(m1)
2 + (m2)

2 = Âi,j . If there is a solution then output m1 and m2.

Remark 1. Even though the robust input sub-protocol is more expensive than simply
sharing the blind message (M,M̂), a robust input will be run for at most 2(1 − ρ)N
times by adding the following rule to the protocol: Store a counter Cq for each server
Sq; whenever a reconstruction is not perfect, increment Ci for all those servers Si
who do not agree with the reconstructed polynomial; when Ci exceeds (1− ρ)N then
eliminate server Si and ignore it for the reset of the execution. Note that the adversary
who controls (1− ρ)N clients and t servers cannot cause Ci > (1− ρ)N for a honest
Si since only corrupted clients may cause Ci to increment. In contrast whenever a
corrupted server uses a bad share its counter is incremented. Thus, there are at most
(1−ρ)N times in which the adversary may ‘blame’ honest parties, in which case we do
not want to eliminate the servers. Then, there are additional (1 − ρ)N times in which
the corrupted servers may cheat without being eliminated.

Remark 2. After the execution of a robust input (RobustInput), the servers perform
the verification check again, but this time, whenever a reconstruction is not perfect we
know immediately that the server who do not agree with the polynomial were cheating
and we eliminate them for the rest of the execution.

3.3 Format Verification: Preliminaries
A malicious client, or a coalition of malicious clients, might try to disrupt the operation
of Blinder in various ways, by sending a malformed message or using a different
distribution for the indices than required in 3.2.1. For example:

• A coalition of clients can pick the same (i?, j?) for their messages, which might
damage the reconstruction success rate analysis mentioned in 3.2.3.

• A malicious client might fill two or more entries, instead of one, in its blinded
message M , and hope that since the servers do not actually learn the content of

15

the blinded message they would not detect it. In the extreme case, two malicious
clients who blow up the entire matrix with messages might cause a DoS attack on
Blinder since our implementation successfully reconstructs up to two messages per
entry (thus, all ‘honest’ messages are un-reconstructible).

• Even a single client who writes to a single entry may damage the matrix and decrease
reconstruction success rate by writing m to A(i?,j?) and m′ 6= m2 to Â(i?,j?). This
actually fills entry (i?, j?) with 2 messages so a message of a honest client who
writes to (i?, j?) will not be extracted. This way, the adversary essentially doubles
its power.

• Finally, a client may deal inconsistent shares to the servers such that when trying
to reconstruct a message in some entry, even robust reconstruction will fail (e.g. if
there are 2t shares that disagree with the polynomial).

To this end, before the servers aggregate a blinded messageMk from client Ck, they
perform a format verification sub-protocol that detects any kind of deviation from the
message format dictated in 3.2.1.Before we describe the format verification protocol
let us first present the relevant building blocks.

3.3.1 Coin flip.

We want the servers to collaboratively draw a value r ∈ F uniformly at random, which
will be public and known to everyone5. We use a sub-protocol RandomPublic() for
sampling a random value from F. This can be done via a verifiable secret sharing
(VSS)(e.g. [BGW88]): each Sq picks a uniformly random rq and deals rq among
the parties using a VSS. Then, all parties reconstruct each ri and output the value
r =

∑n
q=1 rq . When a large number of public random values is needed, the servers

may generate a few and use them as a seed to a pseudorandom generator (PRG) in
order to locally produce many more.

3.3.2 Random sharing.

In 3.1 we described how one can share a known value (secret) toward the servers.
However, in some cases, it is required that the servers maintain a sharing [r] where
r is a uniformly random value from F and is kept secret from all servers. This can
be achieved by having each server Sq picking a uniformly random secret rq ∈ F and
sharing rq toward all servers, so the servers maintain [rq] for every q ∈ [n]. Then,
the servers can locally compute [r] =

∑n
q=1[rq]. Note that even if only one server is

honest, the final sharing [r] is uniformly random and secret from all servers. An issue
with that protocol is that the resulting sharing might not be consistent, hence, it is futile
to use it in further computation. That is, a malicious server Sq may cheat by choosing
a polynomial of a greater degree t′ > t, which leads to the sharing (r

(1)
q , . . . , r

(n)
q)

on a polynomial of degree t′. If there are more than t shares that disagree with any
polynomial of degree t then rq could not be reconstructed, even by t+1 honest servers.

5In fact, it will be immediately known to all servers. A client who wish to learn the result of a coin flip
has to query at least t+ 1 of the servers.

16

Similarly, the value r =
∑n

q=1 rq could not be reconstructed. To solve that, the servers
have to verify that the sharings dealt by each server are of degree at most t, without
revealing the shared values. In Section 5.1 we describe a protocol that does exactly that
and obtain random sharings [r] that are perfectly consistent, that is, all parties’ shares
reside on a unique polynomial of degree t that hides r. We refer to such a protocol
by [r] ← RandomSecret(). So far we mentioned a t-sharing, however, the discussion
above completely holds also to the case of generating a 2t sharing, which is denoted
by 〈r〉 ← RandomSecret().

In the rest of this section and in the next section we assume that outputs of RandomSecret()
are sharings of degree at most t (or 2t, depending on the context) as required.

3.3.3 Degree reduction and Output.

As mentioned in 3.1.2, the servers can locally apply any linear function to the sharings
and obtain a valid share of the same degree. In addition, given two t-sharings [x1] and
[x2] the servers can locally compute 〈y〉 = [x1] · [x2] to obtain a sharing of degree 2t.
This raises two problems: (1) if the servers want to keep computing on the value y while
y is secret. For example, multiplying y by another 2t-shared secret z (i.e. 〈z〉) resulting
in a 4t-sharing of y · z. But now, as discussed in 3.1.1, a robust reconstruction of y · z
is no longer possible, even in case that only t servers cheat; (2) suppose y should be
output to the servers; having the servers naively reconstruct 〈y〉 by having each server
Sq broadcasting its share yq would not be secure, as it might leak information on the
multiplicands x1 and x2.

One approach for solving these problems proposed by Beaver [Bea91]. The idea is
to preprocess a ‘multiplication triple’ ([a], [b], [c]) with c = ab, such that, to multiply
[x] and [y] the servers essentially do operations on t-sharings only. Specifically, the
servers (locally) compute [d] = [x] + [a] and [e] = [y] + [b] and reconstruct the
t-sharings d and e. Then, they locally compute [x · y] = [c] + e · [y] + d · [x] − ed.
However, this ‘pushes’ the dealing with 2t sharing to the offline (preprocessing) phase
of the protocol, in order to obtain the sharing [c] = [a · b]. Due to this reason, such
a solution is sufficient for achieving fairness, since cheating in the preprocessing can
be detected, which leads to an abort of the protocol. This way no input/output learnt
by the adversary. On the other hand, if there is no cheat in the preprocessing then it
is guaranteed that both the adversary and the honest parties will obtain the output of
the computation. This is the approach taken by a recent AsynchroMix and PowerMix
[LYK+19].

Nevertheless, in this work we aim to achieve robustness. So causing the protocol to
abort, even in the preprocessing phase where the adversary learns nothing, is unacceptable.
This forces us to use stronger techniques, rather than the above multiplication triples,
that are resilient to cheats even when dealing with 2t-sharings. Furthermore, using the
multiplication triplets approach does not allow for a faster MPC that Blinder relies on,
as described in Section 4.

Our approach. We follow a protocol proposed by Damgard and Nielsen [DN07].
Specifically, [DN07] suggests using a simpler preprocessing, in which the servers
generate double random sharings. A double random sharing allows re-randomization
and reducing the degree of the polynomial that hides y = x1 · x2 from 2t to t.

17

Multiplication of [x1] and [x2] using the double random sharing technique works as
follows: In the preprocessing phase the servers generate tuples of the form ([r], 〈r〉).
Namely, a t and 2t-sharings of the same secret random value r ∈ F. Then, in the online
phase, in order to obtain [x1 ·x2] the servers first locally compute 〈y〉 = [x1] · [x2], they
reconstruct e = 〈y〉 − 〈r〉 and then locally compute e+ [r] = [y − r + r] = [x1 · x2].
This technique solves both the problems described above as it produces a t-sharing of
the product x1 · x2 using a polynomial with fresh randomness. As show in Section 4,
this technique enables a dramatic optimization to the operation of Blinder. We denote
the above protocol by [y]← Mult([x1], [x2]). In Section 5.1 we show how the servers
robustly generate tuples of the form ([r], 〈r〉).

Finally, we note that when the product 〈y〉 = [x1] · [x2] is to be output rather than
being part of further computation, then there is no need for degree reduction, but only
for randomization. To this end, we require the servers to generate random 2t-sharings
of the value 0 (zero). Then, instead of reconstruct 〈y〉 directly, the servers reconstruct
〈y〉+ 〈0〉. We denote that protocol by y ← open(〈y〉).

3.4 Format Verification Protocol
To ease the presentation we treat M and M̂ as vectors rather than matrices, e.g. we
write [M1], . . . , [MN] to refer to the entries ofM and write i? to refer the index chosen
by the client (instead of (i?, j?)). Upon receiving a sharing of a blinded message
(M, M̂) (see 3.2.1-3.2.3) the servers verify that the following holds.

1. Random index of message. We want the index of the message (m, m̂) hidden in
(M,M̂) be uniformly random, in order to avoid complex success rate analysis (see
3.2.3).

2. Consistent sharing. The sharings of entries inM and M̂ must be perfectly consistent
(all shares reside on a single polynomial of degree t).

3. Single non-zero entry. The entries of M and M̂ must be all zero, except one entry
that contains the message m and m2 in M and M̂ , respectively.

4. Non-zero in the same entry. The non-zero entries inM and M̂ must be at the same
index i?.

5. Squared message. If Mi? = m then M̂i? = m2. This is necessary for being able
to recover from a collision (see 3.2.3).

We now turn to describe how the servers perform the above checks without revealing
anything about the client’s message, m, or its position, i?:

1. Instead of verifying item (1) we enforce it, that is, the servers make sure that
the index of m within M is uniformly random, without actually knowing what
is that index. Specifically, sample a public random value r ∈ [N] and shift-left
the vectors by r positions s.t. M ← [Mr+1], . . . , [MN], [M1], . . . , [Mr] and
M̂ ← [M̂r+1], . . . , [M̂N], [M̂1], . . . , [M̂r]. We stress that the servers do not
know the final index of m even though they know r since the initial index of m
secretly chosen by the client. We denote this operation by ShiftLeft(M,M̂, r).

18

2. In order to check consistency of sharings of M1, . . . ,MN (and similarly for
M̂1, . . . , M̂N) in item (2), one can simply apply a random linear combination
on the sharings and attempt reconstructing the result. Specifically, the servers
sample public random values r1, . . . , rN and a random secret value [r̃]. They
compute

[α] = [r̃] +

N∑
i=0

ri · [Mi]

and reconstruct α. There are two cases:

• Reconstruction is perfect, i.e. all shares reside on the same t-polynomial,
then we conclude that all sharings of M1, . . . ,MN are of degree t with
probability 1 − 1/|F|. Otherwise, if at least one sharing was of degree
greater than t′ > t, then the coefficient of xt

′
in the polynomial of that

sharing was non-zero. This result in a uniformly random coefficient of xt
′

in the polynomial obtain when reconstructing r̃ +
∑N

i=0 ri ·Mi, which is
zero with probability at most 1/|F|.

• Reconstruction is not perfect. This may be caused by either a malicious
client or a malicious server, however, it is impossible to tell which one.
The servers inform the client that its submission was rejected and the client
turn to submit its message again using a robust input, described in 5.2.

3. To verify item (3), Boyle et. al. [BGI16, BBC+20] present a linear sketch for
the language of vectors of hamming weight one and the non-zero coordinate
is from F. That is, that is an equation that holds only if a given vector w =

(w1, . . . , w`) has at most one non-zero entry6. The equation is (
∑`

i=1 wi ·ri)2−
m(
∑`

i=1 wi · r2i) = 0 where wi are the vector’s entries, ri are public random
values generated independently of w and m is the value in the single non-zero
entry. In [BGI16, BBC+20] (followed by Express [ECZB19]) the client has to
input m along with the vector, however we observe that in our case the servers
can simply obtain it by computing m =

∑`
i=1 wi. So, given [w1], . . . , [wn]

(where [wi] = [Mi]), the servers locally compute [m] =
∑N

i=1[wi] and

〈β〉 = (

N∑
i=1

[wi] · ri)2 − [m](

N∑
i=1

[wi] · r2i)

Finally, they reconstruct β and verify it equals zero. Note that β is shared via a
2t-sharing because in the right side of the equation there are multiplications of
two t-sharings.

4. To verify item (4), we combine M and M̂ in a random fashion to a single
vector and perform the above check on the combined one. Specifically, sample
r1, . . . , rN and r̂1, . . . , r̂N and set [wi] ← ri · [Mi] + r̂i · [M̂i] for all i ∈ [N].
Then, send [w1], . . . , [wN] to the verification in the above item. Clearly, this

6In fact, the equation might hold even if the vector has more than one non-zero entry, but this occurs
with probability at most 1/|F|

19

verifies that there is only one entry in M and M̂ that is non-zero and that those
entries are at the same index. Suppose to the contrary, then for each index of
a non-zero entry in M and M̂ , we get a non-zero entry in w with probability
1− 1/|F|. By a union bound, the probability to pass that verification is 2/|F |.

5. Finally, to verify item (5), i.e. that (Mi?)
2 = M̂i? , the servers can compute

〈γ〉 = 〈(Mi?)
2 − M̂i?〉 = (

N∑
i=1

[Mi])
2 − (

N∑
i=1

[M̂i])

reconstruct γ and check it equals zero. Obviously, ifM and M̂ are guaranteed to
have at most one non-zero entry then passing this check indeed guarantees that
(Mi?)

2 = M̂i? .

The formal description of the format verification protocol follows:

Protocol FormatVerification(M, M̂)

1. Run r ← RandomPublic() and ShiftLeft(M, M̂, r).

2. Run ri ← RandomPublic() for i ∈ [N] and [r] ← RandomSecret(). Then the
servers locally compute [α] = [r̃] +

∑N
i=1 ri · [Mi] and α ← Reconstruct([α]).

Do the same with shares of M̂ to obtain α̂. Reconstructα and α̂. If reconstruction
is perfect (all shares reside on a single polynomial) then continue, otherwise,
output ”Reject” and the set of servers S̃ ⊂ {S1, . . . ,Sn} that do not agree with
the polynomial.

3. For i ∈ [N] do as follows: Run ri ← RandomPublic() and r̂i ← RandomPublic().
Then compute [wi] = ri · [Mi]+ r̂i ·[M̂i]. In addition, compute [m] =

∑N
i=1[wi].

4. Run ri ← RandomPublic() for i ∈ [N]. Compute 〈β〉 = (
∑N

i=1[wi] · ri)2 −
[m](

∑N
i=1[wi]·r2i) and reconstruct β. If reconstruction is perfect and β = 0 then

continue, otherwise, output ”Reject” and the set of servers S̃ ⊂ {S1, . . . ,Sn}
that do not agree with the polynomial.

5. Compute [m] =
∑N

i=1[Mi] and [m̂] =
∑N

i=1[M̂i]. Then, compute 〈γ〉 = [m] ·
[m]−[m̂] and reconstruct γ. If reconstruction is perfect and γ = 0 then continue,
otherwise, output ”Reject” and the set of servers S̃ ⊂ {S1, . . . ,Sn} that do not
agree with the polynomial.

6. Output ”Accept” and ∅.

Remark. So far we consideredL = 1, however, handling larger messages is straightforward:
Given M and M̂ , each of size N · L field elements, the verification procedure first
‘compress’ those to vectors of sizeN and perform the same protocol FormatVerification
on the compressed versions. Specifically, for the ith block of L field elements of M ,
i.e. sharings [Mi·L+1], . . . , [M(i+1)L] computeQi ←

∑L
j=1 rj ·[Mi·L+j] and similarly

20

Q̂i ←
∑L

j=1 rj · [M̂i·L+j] where r1, . . . , rL are generated using RandomPublic().
Then use vectors Q and Q̂ in the FormatVerification protocol.

3.5 Efficiency
Let us consider the efficiency of the basic construction. Each client deals two matrices,
M and M̂ , of O(N) secrets, leading to a total of O(N2) client-server communication
overhead. Then the format verification protocol incurs a O(N) multiplications by
constants and three reconstructions per client of values α, β and γ. Revealing all
messages in A and Â incurs O(N) reconstructions as well. In total this is O(N2)
of computational overhead and O(N) of server-server communication.

Of course, the bottleneck in that protocol is theO(N2) client-server communication
overhead, which makes the protocol impractical for a large number of clients (hundreds
of thousands to millions). We significantly improve this in Section 4.

3.6 Security
Our protocol can be described as an enhanced arithmetic circuit with 2 · N · L inputs
from F. By ‘enhanced’ we mean that, in addition to addition and multiplication gates, it
contains also random gates, input gates and output gates. Addition gates are performed
locally. As for multiplication, random, input and output gates, those are defined by
the sub-functionalities Fmult,Frand,Finput and Freconst in previous works [DN07,
CGH+18]. The security of Blinder builds upon the existence of a simulator for those
functionalities (gates). We prove the following theorem:

Theorem 3.1 Protocol BlinderProtocol (Section 3.2.4) securely computes the ACB
functionality (Definition 2.1) in the (Fmult,Frand,Finput,Freconst)- hybrid model.

Proof 3.1 For correctness, consider a setting with honest servers and clients, since
the message submitted by each client is destined to a uniformly random entry in the
table (A, Â), the distribution of the outputs after running the protocol is identical to
the distribution described in the functionality.

All protocols, for functionalities (Fmult,Frand,Finput,Freconst have a secure and
robust implementation, thus, since we describe Blinder’s protocol solely based on them,
it implies the existence of a simulator. However, in contrast to [DN07, CGH+18] in
which the servers themselves are also the clients, in Blinder, there is a distinction
between those roles, which adds complication to the robustness and censorship resistance
arguments.

In the protocol, the robustness property is required every time the servers are trying
to reconstruct a shared value. Those cases appear in the construction of values α, β, γ
for every client as well as at the very end of the protocol in which the servers reconstruct
each entry of A and Â. In the former, corrupted servers might cause a message of a
honest client to get discarded, but then that client uses a robust input sub-protocol, by
which it could not get discarded and any cheating is identified, followed by elimination
of the cheating servers, thus, this could not happen more than t times. In addition, as
discussed above, the adversary may indeed slow down the execution by ‘forcing’ honest

21

clients to use a robust input rather than simple secret sharing, but this could happen
for at most 2(1 − ρ)N times. Finally, providing a bad share when reconstructing the
entries of A and Â immediately identify the cheating servers, who are eliminated as
before. Of course, this argument relies on the fact that the preprocessing (generating
random double sharings) and the input sub protocols are robust as well. We present
those sub protocols in Section 5.

We note that an honest client may cause the reconstruction of α and β to fail, by
submitting inconsistent sharings in the first place. But in this case the worst that can
happen is having the servers rightfully discard that client’s message so it cause no
harm to the aggregation process. Similarly, servers discard a submission for which the
verification result with non-zero α and β as it does not adhere to the blinded message
format.

4 Scaling Blinder
In this section we make use of a property observed in the work on general secure
computation by Chida et. al. [CGH+18]. Namely, when we have vectors of shares a =

([a1], . . . , [a`]) and b = ([b1], . . . , [b`]), the naive way to compute [c] =
∑`

i=1[ai][bi]
would be to perform [ci] ← Mult([ai], [bi]) (by the sub-protocol described in 3.3.3)
and then sum up [c] = [c1] + . . . , [c`]. This approach incurs the call to Mult for `
times, where each such a call costs O(|F|) communication per server. Alternatively, it
is observed that locally multiplying [ai][bi] results in 〈ci〉, a 2t-sharing of ci = ai · bi.
Thus, we can sum up 〈c〉 = 〈c1〉 + . . . , 〈c`〉 already in the higher degree and then
call the degree reduction on 〈c〉 only once, which costs O(|F|) communication for the
entire operation. This ‘sum of product’ operation is used in [CGH+18] to make MPC
protocols over small fields secure, but we adapt it to improve the efficiency of our
protocol even when using a large field F.

In addition, we utilize another technique from the PIR context. Namely, ‘compressing’
the blind message size of a client from O(N) to O(

√
N). Then, the servers can

de-compress the blind message by using the multiplication sub-protocol. Overall,
we reduce the client-server communication to O(

√
N) without introducing any other

communication between the servers (i.e. it remains O(N)).
Finally, we improve the communication complexity of the format verification protocol

from O(1) per client to O(1) for all clients in the optimistic case (assuming honest
clients) and to O(c · logN) where c = (1− ρ)N in the pessimistic case.

4.1 Efficient construction of Blinder
We revise the protocol described in Section 3.2. For simplicity, suppose that N is a
perfect square and rows = cols =

√
N .

4.1.1 Submitting a Message.

Instead a full matrixM of sizeO(N), the blind message can be only two short vectors:
a row vector r and a column vector c, each of size

√
N , with elements from F. Denote

22

by ri, ci the ith coordinate of r and c, respectively.
A client C with a message m randomly picks (i?, j?) and assigns ci? = 1 ,and

ci = 0 for every i 6= i?; likewise, rj? = m, and rj = 0 for every j 6= j?. Observe that
c×r is exactly the matrixM from Eq.(1). Similarly, C prepares vectors r̂ and ĉ instead
of the matrix M̂ , where ĉi? = 1, and ĉi = 0 for every i 6= i?; likewise r̂j? = m2,
and r̂j = 0 for every j 6= j?. Vectors (r, c) and (r̂, ĉ) constitute the new blinded
message. Notice that c = ĉ, so the client sends only 3 vectors r, r̂ and c, which are
used to compute both M = c× r and M̂ = c× r̂. Nevertheless, in the following we
still consider 4 vectors in order to make their purpose explicit. C shares those vectors
toward all servers. Denote the share of the i-th coordinate of vector x sent to server Sq
by xi,q , or use xk

i,q to indicate that client Ck sends that share. To refer to Sq’s share of
the entire vector we simply write xq .

4.1.2 Processing and revealing all messages.

Given the shares rkq , c
k
q and r̂kq , ĉ

k
q from client Ck, server Sq first computes Mk

(i,j),q =

cki · rkj and M̂k
(i,j),q = ĉki · r̂kj for every i, j, obtaining the matrices Mk

q and M̂k
q for

all k ∈ [N]. This means that the servers have a 2t-shares for every entry (i, j) of
the matrices Mk and M̂k for every client Ck, these are denoted 〈Mk

(i,j)〉 and 〈M̂k
(i,j)〉.

Note, however, that the servers do not need to reduce the degree of the sharing for each
client individually (something that would lead to O(N2) communication overhead).
As mentioned above, the severs can reduce the degree only after summing up the
2t-sharings of all clients. That is, for each (i, j) the servers compute 〈A(i,j)〉 ←∑N

k=1 〈Mk
(i,j)〉 and 〈Â(i,j)〉 ←

∑N
k=1 〈M̂k

(i,j)〉. Finally, the servers reconstruct the

sharings 〈A(i,j)〉 and 〈Â(i,j)〉 at each entry (i, j) to reveal the message(s) and their
squares at A(i,j) and Â(i,j) respectively.

4.1.3 Format verification.

Naively, the servers can de-compress the blind messageM and M̂ and then perform the
same format verification protocol described in 3.4. However, we observe that the exact
same check, at the same security guarantees, could be performed, more efficiently,
before de-compression. Specifically, to force a random index of the message the servers
can shift left each of the shorter vectors r, r̂ by a random value and the vectors c, ĉ
by another independent random value, this completely re-randomizes the index of the
message. In addition, note that the same verification check that is described in 3.4
should be taken here. That is, servers have to verify that the shares are consistent, that
there is at most one non-zero entry in r, r̂, c and ĉ, that the non-zero entry in r and
r̂ has the same index (likewise for c and ĉ) and that the non-zero entry at r̂ is square
of the non-zero entry in r. Thus, it is sufficient to call FormatVerification(r, r̂) and
FormatVerification(c, ĉ) to complete the verification.

23

4.1.4 Efficiency.

There is a trade-off between computation and communication. That is, in Section 3.2
the servers received the complete matrices M and M̂ from each client and all they had
to do is to verify their format and then sum them all up. That approach requiredO(N2)
client-server communication. In contrast, here we need only O(N1.5) communication,
but the servers have to perform O(N) field multiplications to de-compress a client’s
blind message (M, M̂) and O(N2) multiplications overall. Although the finite field
arithmetic is fast, when number of clients is large (hundreds of thousands to millions)
this becomes the bottleneck of Blinder.

4.2 Batching Format Verification
Using the same technique, the servers can perform the format verification for all clients
in one shot (in an optimistic case). Recall that in the format verification the servers
produce [α], 〈β〉 and 〈γ〉. They reconstruct all of them and verify that all shares of
each of them reside on a single polynomial (i.e. perfect reconstruction). In addition,
they verify that β and γ equal zero. The reconstructions are the operations that cost in
communication, therefore, the servers can delay it and verify all clients. Specifically,
let [αk], 〈βk〉 and 〈γk〉 be the sharings obtained by performing the verification for client
Ck. The servers aggregate all α’s and reconstruct only [

∑N
k=1 αk]. In addition, they

aggregate all β’s and γ’s and reconstruct [
∑N

k=1 βk + γk] and verify the result equals
zero. The probability that the result equals zero if there are c malformed messages is
at most 1/|F|c since each βk and γk for a corrupted client will be zero with probability
1/|F| and there are c of them.

Notice that even a single client can cause the result to be different than zero or
cause the reconstruction fail or be imperfect, which leads to a verification failure.
In that case the servers can perform a binary search to find k for which αk, βk, γk
led to a verification failure. Finding k requires O(logN) communication (i.e. a
reconstruction of a branch in a tree with N leaves). Thus, for c corrupted clients
the overall communication will be O(c · logN). In addition, finding all malformed
messages incurs logN rounds.

4.3 Utilizing a GPU
In the above, we showed how to reduce serve to server communication from O(N2)
to O(N), which shifts the bottleneck of Blinder from communication to computation,
since computation remains O(N2). In this section, we argue that the computation that
Blinder performs can be accelerated by using a GPU.

The rational of using GPU in Blinder is that the O(N2) computational bottleneck
consists of simple arithmetic (addition and multiplication) operations in a finite field.
For such tasks, GPU’s demonstrate a much higher throughput, i.e. integer operations
per second. For instance, a benchmark in [WWB19], compares a 16 core Skylake
CPU with 120GB memory with NVIDIA V100 GPU that contains 8 V100 packages
(SXM2) and finds that the CPU is capable of 2 TFLOPS whereas the GPU is capable

24

of 125 TFLOPS. A theoretical improvement of more than 50×; in practice this factor
becomes even larger due to memory and threads management on a CPU.

The main bottleneck when working with a GPU is the capacity of the channel
between the CPU and GPU. We characterize applications that fit a GPU deployment as
follows: (1) The input size to the algorithm it has to run should be relatively small; (2)
The algorithm itself has to be highly parallelizable, since a GPU has up to thousands
of independent cores, each of which can perform some simple task; and (3) the output
size should be small as well.

Consider for example the task of computing the cartesian product ofN pairs (ci, ri)
of vectors and receiving back the matrices ci×ri for all i. It is quite easy to deploy this
task to a GPU. Each core is given a single pair of vectors, and instructed to compute
the matrix ci×ri and hand it back to the CPU. This however, only addresses points (1)
and (2), but not (3), as the output size is N · |ci|2, which becomes a bottleneck when
|ci|2 is large. In contrast, in Blinder we are not interested in the individual result of
ci × ri, but only in the sum of all the resulting matrices, which fits to point (3) as well.

We observe the following: Let C = (c1, . . . , cN) be a matrix with ck being its
kth column and R be a matrix with rk being its kth row, s.t. ck, rk are part of client
Ck’s blind message. Then Blinder essentially computes matrix multiplication! We have
that:

A = C ×R>

Where A is the matrix from 4.1.2. To efficiently divide that task across many cores,
Blinder hands vectors C ′ = ci, . . . , cj and R′ = rk, . . . , r` to one GPU core, then that
core computes a small matrix multiplication that produce the final entries in matrix A
at positions (i, k), . . . , (j, `). Thus, the GPU hands back exactly (j− i) · (`−k) entries
to the CPU. This way, the overall output handed back from the GPU to the CPU is only
of size |ci| × |ri| (rather than N · |ci| × |ri|) and so point (3) becomes a non-issue.
Fortunately, there is a highly optimized code base for solving matrix multiplication
over GPU, which makes Blinder a perfect fit for that hardware.

5 Robust Preprocessing and Input

5.1 Robust Preprocessing
As discussed in 3.3.2-3.3.3, the servers need to generate random double sharings in
the preprocessing phase. A double random sharing is a pair ([r], 〈r〉) where r is
sampled randomly from F and is unknown to any server. One way to generate those
is by having each server Sq choosing random rq ∈ F and dealing [rq] and 〈rq〉.
Then all servers conclude with the tuple ([r], 〈r〉) = (

∑n
q=1[rq],

∑n
q=1 〈rq〉) that

is a combination of the randomness from all servers. We denote that procedure by
Combine([r1], 〈r1〉, . . . , [rn], 〈rn〉). We remark that the above procedure produces a
single random double sharing from the n sharings contributed by the servers; there
exists a more efficient method, using a hyper-invertible matrix [DN07, BH08], to
generate n − t random sharings out of those n contributed by the server. Although,
we leave that abstract under the Combine() procedure and proceed by focusing on how
to ensure that the sharings that the servers contribute are consistent.

25

We have to ensure that the sharings that each server contributes are consistent
and also that both secrets are the same rq . Furthermore, as our aim is to guarantee
robustness, the production of those sharings must be completed successfully. This is in
contrast to other protocols like [BHKL18, CGH+18, LYK+19] (and others) that strive
for fairness only or for an even weaker guarantee – MPC with abort. While those
protocols simply abort if any cheating in the random sharing generation is detected,
Blinder has to recover from such a scenario. Indeed, [DN07, BH08] recover from
a cheating. Specifically, [DN07] does so by applying a complex accounting on the
number of ‘disputes’ each server is involved in, and [BH08] does so by a complex,
t-rounds, ‘player elimination’ technique [BH08].

In this section we suggest a simpler recovering protocol that guarantees that all
random sharings are perfectly consistent. That is, if ([r], 〈r〉) is a double random
sharing produced by the protocol than it is guaranteed that the shares of all servers
reside on the same t or 2t-polynomial. This is in contrast to the online phase in which
we may be tolerant to cases where up to t shares do not reside on that polynomial.

Suppose that in the online phase the servers need ` random double sharings. Our
protocol, as previous ones, first instruct each server to choose and deal ([ri], 〈ri〉)
for i = 1, . . . , ` + 1. Then, the servers run RandomPublic() to produce ` public
random values s1, . . . , s` and locally obtain the sharings [a] =

∑`+1
i=1 si · [ri] and

〈b〉 =
∑`+1

i=1 si · 〈ri〉. The servers reconstruct the secrets a and b to verify that a = b
and both sharings are perfectly consistent.

Now, our protocol relies on the following observation: in the reconstruction, server
Sq opens its shares aq and bq and then the servers run the reconstruction algorithm to
find a and b, that is, a single polynomial that ‘agrees’ with at least 2t+1 shares. There
are the following cases:

• Perfect reconstruction – all shares are on the same polynomial. This is the best
case, the servers continue the protocol.

• Reconstruction succeeds – but at most t shares disagree with the polynomial.
In this case there are two options: (1) the dealer was corrupted and dealt t bad
shares; (2) the dealer was honest and at most t servers reported bad shares.

• Reconstruction fails – more than t shares are out of polynomial. This is also a
good case, because such a case is not possible without a corrupted dealer.

In the first and third cases above the situation is clear. In the first case all servers
behave honestly so the servers can continue the protocol while in the third case it is
clear that (at least) the dealer is cheating, in which case we eliminate the dealer and
continue the protocol without it.

In the second case we cannot tell whether the dealer or the servers with bad shares
were cheating, but we are sure that t out of those t + 1 servers (dealer plus at most
t servers that disagree with the polynomial) are corrupted. We treat that case by
eliminating both the dealer and one of the servers with bad shares, this means that
we eliminate two parties, knowing that at least one of them is corrupted. This action
does not harm the robustness capabilities of the rest of the protocol. Suppose that in the
preprocessing phase we eliminate 2k servers due to the second case. Then we remain

26

with 4t + 1 − 2k = 2t + 1 + 2k′ servers, for some k′ = t − k. This means that we
are still able to run the algorithm for robust reconstruction. That is, given 2t+ 1+ 2k′

shares of a 2t- (or t) polynomial, of which up to k′ are ‘bad‘, the robust reconstruction
algorithm discussed in 3.1.1 still works.

A formal description of the protocol follows:

Protocol Preprocess(`)

1. Initialize S = [n], the set of servers that will remain to the online phase of the
protocol.

2. For q ∈ [n] do (in parallel):

(a) Sq chooses r1, . . . , r` and deals sharings [r1], . . . , [r`+1] and 〈r1〉, . . . , 〈r`+1〉.
(b) All servers run RandomPublic() to generate s1, . . . , s`+1.
(c) The servers (locally) compute [a] =

∑`+1
i=1 si · [ri] and 〈b〉 =

∑`+1
i=1 si ·〈ri〉.

(d) Server Sq broadcasts aq and bq and the servers attempt to reconstruct a and
b. There are 3 cases:

• Reconstruction succeeds – all ai (and resp. bi) reside on the same
polynomial. If a = b then continue the protocol, otherwise, if a 6= b,
remove q from S.

• Reconstruction succeeds – but k ≤ t shares disagree with the polynomial
that hides a and b. If a 6= b then remove q from s. Otherwise, if
a = b, denote the set of indices of disagreeing servers by C ⊂ [n].
The servers randomly pick c ∈ C (possibly using RandomPublic())
and remove c and q from S and continue.

• Reconstruction fails – meaning k > t shares do not reside on the
polynomial that hides a and b (the polynomial actually could not be
found). Then remove q from S and continue.

(e) For each q ∈ S, let [rq,1], . . . , [rq,`] and 〈rq,1〉, . . . , 〈rq,`〉 be the first `
sharings that Sq dealt.

(f) Let n′ = |S| = 2t+ 1 + 2k′. Denote the indices in S by q1, . . . , qn′ .
(g) For each i ∈ [`] the servers output

Combine([rq1,i], 〈rq1,i〉, . . . , [rqn′ ,i], 〈rqn′ ,i〉)

5.2 Robust Input
Recall that in the FormatVerification protocol (Section 3.4) the servers output ”Accept”
only if reconstruction of α, β and γ is perfect. That is, all shares of α reside on the same
polynomial (and similarly for β and γ). We note that the ‘optimistic input’ step raises
issues that prevent it from being robust. When the sharings are ‘just’ consistent (but not
perfectly consistent) then it is impossible to tell who cheated; it could be the client who
dealt incorrect shares to the servers or the servers who indeed received correct shares,
but used incorrect shares in the protocol. This leads to the following attack: Two
malicious clients could cause Blinder to halt: the first client deals incorrect shares to a
set of t servers and the second client deals incorrect shares to a disjoint set of t servers.
Since there are at most t incorrect shares in the verification of each client, the resulting

27

sharings [α], 〈b〉 and 〈γ〉 are indeed consistent and both messages are accepted. When
aggregating sharings, as prescribed in the Processing step of BlinderProtocol, the
resulting sharings are no longer inconsistent, because there will be 2t incorrect shares,
which means that the sharings are non-reconstructible any more. An alternative would
be to reject the client’s message for the reason of 〈α〉 and 〈β〉 not being perfectly
consistent. But this, in turn may lead to a censorship attack, i.e., malicious servers can
cheat in the shares they use in the verification check, by that they block a client. As
discussed in the introduction, this is not desired.

To solve that dilemma, we use a standard technique for robust input [DN07, BH08].
In order to input a value x the client does not actually share x, rather, it obtains shares
of a random value, [r], from the servers, reconstruct it to obtain r in the clear and then
broadcast x′ = x − r to all servers. By seeing x′ the servers know nothing about x
because it is masked by a random value. Then the servers use the value [r] + x′ =
[r + x′] = [r + x− r] = [x] as the client’s shared input.

6 Implementation & Evaluation
We have developed the networking, offline and online phases of Blinder including
the generation of random double sharing, the format verification check, processing of
blinded messages and final message openings (along with solving quadratic equations
over finite field, which is required for extracting colliding messages from the matrices).
Our implementation is written mainly in C++, while the generation of blinded messages
and client-server networking are written in Go.

We implemented and measured two variants: a variant that is based on CPU only
and a variant based on GPU. Both variants use only commodity machines. For our
CPU version we used m5.12xlarge machines with with 192GiB, up to 3.1 GHz Intel
Xeon Platinum 8175 processors and AVX-512; all CPU experiments were performed
with either 1,4 or 8 threads. For our GPU version we used p3.16xlarge machines with
488GiB, Intel Xeon E5 processor. The machines are equipped with three NVIDIA
Tesla V100 GPU that has 5120 Cuda cores that support an overall of up to 7.8 TFLOPS
of double precision. The GPU code is based on the Cuda library and NVIDIA’s cutlass
[cut14]. We note that the benefits of a GPU do not necessarily translate to other
solutions, in particular, we find a low potential to improve Riposte via a GPU, see
note in Appendix B.

The high-level architecture of Blinder divides time to ‘epochs’ such that N clients
interact with Blinder in each epoch. In the T th epoch the servers run a ‘server’ process
that waits for N clients to submit their blinded messages. The servers store each
client’s submission in a separate file (using a unique UUID chosen by the client). In
the meantime, the servers perform the de-compression of the matrices, as described in
Sections 4.1.2-4.1.3, for all messages submitted in the T − 1-th epoch, by reading the
relevant files from storage, ordering them by the UUID so that servers will be synced
on the identity of blinded message they are working on.

We extensively measured the performance of Blinder. In our experiments we were
mainly concerned with the latency and the cost. By latency we refer to the time a
client has to wait from the moment of submitting a blind message to the moment of

28

publication of its message. We measure latency using either CPU or GPU. In addition
we are interested in measuring parallelism by using a varying number of threads and
on varying network settings of LAN and WAN. Our experiments involve a varying
number of servers (n from 5 to 100), clients (N from 103 to 106) and message length
(L from 32B to 10KB) in order to suit the applications presented in the introduction.
By cost we refer to the monetary cost over a cloud computing service. The interesting
number is the cost of Blinder per server per epoch, divided by N in order to normalize
the result.

In addition to an extensive evaluation, we also present a comparison to leading
works on anonymous broadcast: Riposte [CBM15] – a system that guarantees neither
fairness nor robustness and does not offer a mechanism for resisting censorship by
a malicious server; and {Power,Asynchro}Mix [LYK+19] that guarantees fairness
(robustness in the online phase) and is censorship resistant.

Field type. The underlying field Fp we chose is the Mersenne field modulo the prime
p = 231−1. We use this field since modular multiplication does not require performing
divisions, even when the product is greater than the prime. We pick the field to be 31
bits as it best fits registers of both the CPU and GPU.

Matrix dimensions. The blinded message matrixM , as well as the aggregated matrix
A are each of size 2.7 ·N · L. Note however, that the size of the vectors of the blinded
message affects the overall blinded messages size, which forms the client to server
communication complexity that we want to minimize. When both rows and cols are of
size
√
2.7 ·N · L this is minimized.

Microbenchmark. Our aim is to break down the overall latency of Blinder across
varying message sizes and number of clients, to the high level sub-tasks. In particular,
we measure the times for (1) performing the ShiftLeft procedure in FormatVerification,
(2) obtaining α, β, γ in FormatVerification, (3) de-compressing the blind messages,
(4) reconstructing all entries and finding the quadratic equations and (5) solving those
equations. In addition, we measure the time it takes for N clients to submit their
messages to n servers. The times are presented in Fig. 1. It is important to note that
in Fig. 1 the y-axis is log scaled, in order to be able to express even short sub-tasks, so
the lower parts of the bars are actually much shorter than the upper ones.

Measurements were taken in a setting with 5 servers, all in the AWS N.Virginia
data center. Since the messages received at the servers at the T − 1-th epoch are used
in the T -th epoch, it is preferable that the time it takes for all clients to submit their
messages is less than the time it takes to perform all other tasks. As shown in the
figure, this is indeed what happens, meaning that our write request submission phase is
fast enough. We highlight two sub-tasks in the figure: the format verification time and
the write query de-compression time. The de-compression time involves O(L · N2)
multiplications where L is the message size (number of field elements). Thus, it is
expected to take a significant part of the overall time. Indeed, in the CPU-only version
it takes more than 70% of the time. However, when this task is performed by the GPU

29

Figure 1: A breakdown of wall clock time of Blinder’s sub-tasks.

in parallel to the format verification sub-task, it is no longer the bottleneck and takes
only about 7− 22% of the time – a dramatic improvement.

Evaluation and comparison. We now present an evaluation of Blinder along with
comparison to Riposte [CBM15], AsynchroMix and PowerMix [LYK+19]. We ran
Riposte on the same machines and network settings as Blinder. As for AsynchroMix
and PowerMix, we used times reported in their paper, since their recommended setup
is over Docker, which would not constitute a fair comparison to ours anyway, since we
run Blinder and Riposte directly on the machines.

Scalability. We separate the scalability evaluation to two. First, we show that
Blinder can scale to large number of servers, n, and large number of clients, N . To
do so, we execute it over up to 100 servers, and configure the servers to accept up to
1 million messages. Second, we show that Blinder can scale to support large message
size. This is necessary for anonymous P2P payment systems like Zcash and Monero
(as mentioned in the Introduction). To this end, we configure the system to accept
messages with length ranging from 32 bytes up to 10 kilobytes.

We start by showing the scalability of the number of clients and servers. The
resulting latencies are presented in Fig. 2, note that the figure is log-scaled in both
axes.We recognize the fact that AsynchroMix and PowerMix are benchmarked under
weaker machines than those we used for Blinder and Riposte, yet we estimate their
performance to improve by no more than one order of magnitude.

30

Figure 2: Latency of Blinder (CPU and GPU versions), Riposte, AsynchroMix and PowerMix
when scaling number of clients and servers.

Fig. 2 can be clustered to three parts: the top-left part includes plots of AsynchroMix
and PowerMix, which cannot support a large number of clients, and therefore are
evaluated with up to 4096 clients. On the other hand, these protocols scale well with
the number of servers and we managed to run with up to 100 servers. The center part
of the figure shows plots of the CPU implementation of Blinder and Riposte, showing
that extending the DPF approach to more than 2 servers is indeed practical, and in some
cases even faster than the 2-servers setting of Riposte (e.g. running Blinder-CPU with
5 and 10 servers is faster than Riposte). Furthermore, just like [LYK+19], Blinder can
run efficiently by up to 100 servers. Finally, the right-most part of the figure shows
Blinder-GPU version with 5 and 10 servers, respectively. The figure shows that with
105 clients, Blinder-GPU is 36× faster, and with 106 clients it is more than 100×
faster than Riposte (we remark that due to time limitation we did not run Riposte
with 106 clients, and the comparison is based on what reported in [KCDF17], i.e. that
it takes more than 11 hours).

Let us turn to discuss the scalability of the message length. AsynchroMix and
PowerMix were not implemented with messages larger than 32 bytes and therefore

31

these are omitted from the following comparison. We evaluate Blinder and Riposte
with messages of length up to 10 and 5 kilobytes, respectively. The resulting latencies
are found in Fig. 3. Let us examine the suitability of Blinder to a system like Zcash.

Figure 3: Latency of Blinder (CPU and GPU versions) and Riposte with varying message sizes.

The block rate is 2.5 minutes and the rate of shielded transactions is 6 per second
[Bit20], or 150 per block. A standard shielded transaction (including a zk SNARK)
is of 1-2 kilobytes [BCG+14] and the current number of users is much less than
10 thousands. The figure shows that supporting 10 thousands users within a block
rate is possible already with the CPU variant, whereas the GPU variant can support
even hundreds of thousands of users in that rate. Furthermore, considering more
complex and heavyweight transactions, the GPU variant can support transactions of
size 10 kilobytes in the required rate. In contrast, Riposte could support 2 kilobytes
transactions with that rate, but for up to 10 thousands users.

Multi-core utilization. To evaluate how well the CPU-based Blinder with 5 servers
in N.Virginia, and Riposte with 3 servers utilize hardware, we ran them with different
numbers of clients, N , and different message lengths, L. We ran both of them with
1 and 8 threads (and Blinder also with 4 threads). The run times appear in Table 2.
The aim is to present the speedup of those systems when deployed with multi-core
machines. As shown in the table, the third row of Riposte and second row of Blinder
(in bold) have exactly the same setting (N = 105 and L = 160B), their speed ups
when run with 8 threads are close (4.6x for Riposte vs 4.17x for Blinder), however
Blinder is 1.51-1.67x faster. We note that utilizing X threads typically does not speed
up a software by factor X , as there are management overheads and idle times when
waiting for the slowest thread.

32

number of threads
N L 1 4 speed up 8 speed up

Riposte
10K 160B 69 - - 17 4.05x
50K 160B 896 - - 200 4.48x

100K 160B 3162 - - 686 4.60x

Blinder
100K 32B 295 115 2.56x 82 3.59x
100K 160B 1887 589 3.20x 452 4.17x

Table 2: Multi core utilization of Blinder and Riposte.

Effect of bandwidth. In this experiment we evaluate how Blinder scales over different
network settings: LAN, WAN1 and WAN2. Our hypothesis is that since the bottleneck
of the protocol is the task of de-compressing the blind messages, then ‘slowing down’
the network would not have much impact. In the LAN setting all machines are deployed
at N.Virginia,US, with 0.287 RTT and a bandwidth of 4.97Gb/sec. In the WAN1
setting machines are separated between N.Virginia,US and Oregon,US, with 75.9
RTT and a bandwith of 171 Mbits/sec. In the WAN2 setting machines are separated
between N.Virginia,US and Sydney,Australia, with 203.54 RTT and a bandwith of
58.1 Mbits/sec. We measured Blinder’s CPU version with N = 105 clients. The
number of servers increases from 5 to 10 to 20. The lower part of the figure shows the
latency when the message length L = 32B, and the upper part of the figures shows
this when L = 160B. The figure proves that our hypothesis is correct. Over a fast
network (LAN) and L = 32B the difference in latency is minimal, i.e. increasing n
from 5 to 10 and from 10 to 20 increases latency by only 3% and 1.2% respectively.
Over a slower network (WAN2), on the other hand, this increases latency by 55% and
32%, respectively. We also plot the latency of Riposte with 3 servers, L = 160B, over
LAN. Riposte’s latency over WAN is out of the border of this figure, due to the fact
that their protocol requires much more communication in order to verify the format of
the messages.

Figure 4: Latency of Blinder (CPU and GPU versions) and Riposte over LAN, WAN1 and WAN2
settings (described in text).

33

Monetary cost. Fig. 5 presents the estimated monetary cost, in US cents, over
Amazon AWS, for both CPU- and GPU-based Blinder, supporting message size of
32B and 160B. This is calculated according to the CPU and GPU machine cost per
hour, which are 2.304$ and 24.48$, respectively. The figure shows the cost per a single
epoch, single server and divided by the anonymity set size (hence, the cost per client).
To obtain the total epoch price, one has to multiply the reported cost by n ·N .

We note that, counter-intuitively, the cost per client when the anonymity set size is
N = 105 is lower than when the anonymity set size is N = 104. This is because our
GPU-based implementation is optimized for larger workloads (e.g. for N ≥ 105).

Figure 5: Monetary cost of Blinder.

7 Conclusions
This work addresses the question of whether we can design a system for anonymous
committed broadcast over a synchronous network, which is resilient to a malicious
adversary controlling servers and clients, prevents a malicious server from censoring
honest clients, and is scalable in all metrics: the number of servers, number of clients
and the message size. We answer this question in the affirmative and present the first
system, called Blinder, that has all these properties. Blinder confirms our hypothesis
that an information theoretically secure protocol performs better than a protocol that
relies on computational assumptions. We come to this conclusion since the ‘amount’
of work in Blinder and in Riposte [CBM15] is very close, whereas the type of work
that is done in both systems is different: in Blinder the work is dominated by simple
finite field arithmetic, and in Riposte the work is dominated by AES. Even though AES
is implemented in Riposte by a hardware instruction, Blinder performs much better in
both the CPU and GPU versions.

Acknowledgements. This work has been partially funded by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel

34

National Cyber Bureau in the Prime Ministers Office, and by a grant from the Israel
Science Foundation. We thank Udi Wieder, Meital Levi, Moriya Farbstein, Lior Koskas,
Shahar Zadok, Assi Barak and Oren Tropp for valuable discussion and their contribution
to the implementation and the experiments.

References
[ADFM17] Ahmed A. Abdelrahman, Hisham Dahshan, Mohamed M. Fouad, and

Ahmed M. Mousa. High performance cuda aes implementation: A
quantitative performance analysis approach. In Computing Conference,
page 1, 2017.

[AKTZ17] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas
Zacharias. Mcmix: Anonymous messaging via secure multiparty
computation. In USENIX, pages 1217–1234, 2017.

[AS16] Sebastian Angel and Srinath T. V. Setty. Unobservable communication
over fully untrusted infrastructure. In USENIX, pages 551–569, 2016.

[Bal04] J.M. Balkin. Digital speech and democratic culture: A theory of freedom
of expression for the information society. New York University Law
Review, 79:1–58, 04 2004.

[BBC+20] Dan Boneh, Elette Boyle, Henry Corrigan Gibbs, Niv Gilboa, and Yuval
Ishai. Private communication. 2020.

[BBGN19] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy
blanket of the shuffle model. In Advances in Cryptology - CRYPTO
2019, Part II, pages 638–667, 2019.

[BCC+15] Stevens Le Blond, David R. Choffnes, William Caldwell, Peter
Druschel, and Nicholas Merritt. Herd: A scalable, traffic
analysis resistant anonymity network for voip systems. Computer
Communication Review, 45(5):639–652, 2015.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In IEEE SP, pages 459–474, 2014.

[BCZ+13] Stevens Le Blond, David R. Choffnes, Wenxuan Zhou, Peter Druschel,
Hitesh Ballani, and Paul Francis. Towards efficient traffic-analysis
resistant anonymity networks. In ACM SIGCOMM, pages 303–314,
2013.

[BDG15] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A private
presence service. PoPETs, 2015(2):4–24, 2015.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, pages 420–432, 1991.

35

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien
Tinnés, and Bernhard Seefeld. Prochlo: Strong privacy for analytics
in the crowd. In SOSP, pages 441–459, 2017.

[BFK00] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web mixes: A
system for anonymous and unobservable internet access. In Workshop on
Design Issues in Anonymity and Unobservability, Berkeley, July 25-26,
2000, Proceedings, pages 115–129, 2000.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
Improvements and extensions. In CCS, pages 1292–1303, 2016.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In STOC, pages 1–10, 1988.

[BH08] Zuzana Beerliová-Trubı́niová and Martin Hirt. Perfectly-secure MPC
with linear communication complexity. In TCC, pages 213–230, 2008.

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell.
An end-to-end system for large scale P2P mpc-as-a-service and
low-bandwidth MPC for weak participants. In CCS, pages 695–712,
2018.

[Bit20] BitDegree. Zcash vs. Monero, 2020.

[BL] Oliver Berthold and Heinrich Langos. Dummy traffic against long term
intersection attacks. In PET.

[CB95] David A. Cooper and Kenneth P. Birman. Preserving privacy in a
network of mobile computers. In S&P, pages 26–38, 1995.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An
anonymous messaging system handling millions of users. In SOSP,
pages 321–338, 2015.

[CF10] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable
anonymous group messaging. In ACMCCS, pages 340–350, 2010.

[CG97] Benny Chor and Niv Gilboa. Computationally private information
retrieval (extended abstract). In ACM STOC, pages 304–313, 1997.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. In CRYPTO, pages 34–64, 2018.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

36

[Cha88] David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. J. Cryptology, 1(1):65–75, 1988.

[CJK+16] David Chaum, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
de Ruiter, and Alan T. Sherman. cmix: Anonymization
byhigh-performance scalable mixing. ePrint, 2016:8, 2016.

[CSM+20] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang,
Vipul Goyal, Thomas E. Anderson, Arvind Krishnamurthy, and Bryan
Parno. Talek: Private group messaging with hidden access patterns.
CoRR, abs/2001.08250, 2020.

[CSU+19] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and
Maxim Zhilyaev. Distributed differential privacy via shuffling. In
Advances in Cryptology - EUROCRYPT 2019, Part I, pages 375–403,
2019.

[cut14] cutlass. Cuda templates for linear algebra subroutines. https://github.
com/NVIDIA/cutlass, 2014.

[CZJJ12] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching
from a distance: website fingerprinting attacks and defenses. In
ACMCCS, pages 605–616, 2012.

[DDM] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion:
Design of a type III anonymous remailer protocol. In (S&P.

[DGK+19] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan
Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys
2.0: Frontrunning, transaction reordering, and consensus instability in
decentralized exchanges. CoRR, abs/1904.05234, 2019.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In USENIX, pages 303–320, 2004.

[DN07] Ivan Damgard and Jesper Buus Nielsen. Scalable and unconditionally
secure multiparty computation. In CRYPTO, pages 572–590, 2007.

[ECZB19] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan
Boneh. Express: Lowering the cost of metadata-hiding communication
with cryptographic privacy. CoRR, abs/1911.09215, 2019.

[EFM+19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity. In SODA, pages
2468–2479, 2019.

[Fou19] Zcash Foundation. Zcash Privacy and Security Recommendation, 2019.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their
applications. In EUROCRYPT, pages 640–658, 2014.

37

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2004.

[GT96] Ceki Gülcü and Gene Tsudik. Mixing email with babel. In 1996
Symposium on Network and Distributed System Security, (S)NDSS ’96,
San Diego, CA, USA, February 22-23, 1996, pages 2–16, 1996.

[GWF13] Henry Corrigan Gibbs, David Isaac Wolinsky, and Bryan Ford.
Proactively accountable anonymous messaging in verdict. In USENIX,
pages 147–162, 2013.

[HKI+12] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji, and KatsuChidami
Takahashi. Practically efficient multi-party sorting protocols from
comparison sort algorithms. In ICISC, pages 202–216, 2012.

[HVC10] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much
anonymity does network latency leak? ACM Trans. Inf. Syst. Secur.,
13(2):13:1–13:28, 2010.

[KAL+15] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas
Devadas. Circuit fingerprinting attacks: Passive deanonymization of tor
hidden services. In USENIX, pages 287–302, 2015.

[KAPR06] Dogan Kesdogan, Dakshi Agrawal, Dang Vinh Pham, and Dieter
Rautenbach. Fundamental limits on the anonymity provided by the MIX
technique. In S&P, pages 86–99, 2006.

[KCDF17] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford.
Atom: Horizontally scaling strong anonymity. In SOSP, pages 406–422,
2017.

[KEB98] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go-mixes
providing probabilistic anonymity in an open system. In Information
Hiding, pages 83–98, 1998.

[KLDF16] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle:
An efficient communication system with strong anonymity. PoPETs,
2016(2):115–134, 2016.

[KMS+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and
Charalampos Papamanthou. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In S&P, pages
839–858, 2016.

[KOR+04] Lea Kissner, Alina Oprea, Michael K. Reiter, Dawn Xiaodong Song,
and Ke Yang. Private keyword-based push and pull with applications to
anonymous communication. In ACNS, pages 16–30, 2004.

[Kre01] Seth Kreimer. Technologies of protest: Insurgent social movements and
the first amendment in the era of the internet. University of Pennsylvania
Law Review, 150:119, 11 2001.

38

[LCO+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In ACMCCS, pages 254–269,
2016.

[LRWW04] Brian Neil Levine, Michael K. Reiter, Chenxi Wang, and Matthew K.
Wright. Timing attacks in low-latency mix systems (extended abstract).
In Financial Cryptography, pages 251–265, 2004.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind,
Rahul Mahadev, Aniket Kate, and Andrew Miller. Honeybadgermpc
and asynchromix: Practical asynchronousmpc and its application to
anonymous communication. eprint archive Report 2019/883, 2019.

[LZ16] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure
communication without leaking metadata. In USENIX, pages 571–586,
2016.

[MD04] Nick Mathewson and Roger Dingledine. Practical traffic analysis:
Extending and resisting statistical disclosure. In PET, pages 17–34,
2004.

[MD05] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of tor.
In IEEE (S&P 2005), pages 183–195, 2005.

[MOT+11] Prateek Mittal, Femi G. Olumofin, Carmela Troncoso, Nikita Borisov,
and Ian Goldberg. Pir-tor: Scalable anonymous communication using
private information retrieval. In USENIX, 2011.

[MWB13] Prateek Mittal, Matthew K. Wright, and Nikita Borisov. Pisces:
Anonymous communication using social networks. In NDSS, pages
1–18, 2013.

[MZ07] Steven J. Murdoch and Piotr Zielinski. Sampled traffic analysis by
internet-exchange-level adversaries. In PET, pages 167–183, 2007.

[NS03] Lan Nguyen and Reihaneh Safavi-Naini. Breaking and mending resilient
mix-nets. In PET, pages 66–80, 2003.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage
(extended abstract). In Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997, pages 294–303, 1997.

[Pfi94] Birgit Pfitzmann. Breaking efficient anonymous channel. In
EUROCRYPT, pages 332–340, 1994.

[PHE+17] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. The loopix anonymity system. In USENIX Security,
pages 1199–1216, 2017.

39

[PNZE11] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In ACMWPES, pages 103–114, 2011.

[PP89] Birgit Pfitzmann and Andreas Pfitzmann. How to break the direct
rsa-implementation of mixes. In EUROCRYPT, pages 373–381, 1989.

[Ray00] Jean-Francois Raymond. Traffic analysis: Protocols, attacks, design
issues, and open problems. In PET, pages 10–29, 2000.

[RSG98] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag.
Anonymous connections and onion routing. IEEE Journal on Selected
Areas in Communications, 16(4):482–494, 1998.

[SAKD17] Fatemeh Shirazi, Elena Andreeva, Markulf Kohlweiss, and Claudia
Dı́az. Multiparty routing: Secure routing for mixnets. CoRR,
abs/1708.03387, 2017.

[SCM05] Len Sassaman, Bram Cohen, and Nick Mathewson. The pynchon gate:
a secure method of pseudonymous mail retrieval. In WPES, pages 1–9,
2005.

[SDS02] Andrei Serjantov, Roger Dingledine, and Paul F. Syverson. From a
trickle to a flood: Active attacks on several mix types. In Information
Hiding,, pages 36–52, 2002.

[SGRE04] Emin Gün Sirer, Sharad Goel, Mark Robson, and Dogan Engin. Eluding
carnivores: file sharing with strong anonymity. In Proceedings of the
11st ACM SIGOPS European Workshop, Leuven, Belgium, September
19-22, 2004, page 19, 2004.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[SL09] Alexandre Soro and Jérôme Lacan. Fnt-based reed-solomon erasure
codes. CoRR, abs/0907.1788, 2009.

[SW06] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency
mix networks: Attacks and defenses. In ESORICS, pages 18–33, 2006.

[TFKL99] Al Teich, Mark Frankel, Rob Kling, and Ya-Ching Lee. Anonymous
communication policies for the internet: Results and recommendations
of the aaas conference. Inf. Soc., 15:71–77, 04 1999.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai
Zeldovich. Vuvuzela: scalable private messaging resistant to traffic
analysis. In SOSP, pages 137–152, 2015.

[Vol99] Eugene Volokh. Freedom of speech, information privacy, and the
troubling implications of a right to stop people from speaking about you.
New York University Law Review, 1999.

40

[vS13] Nicolas van Saberhagen. Monero, 2013.

[Wal19] Jonathan Wallac. Nameless in cyberspac e anonymity on the internet.
Cato Institute, 09 2019.

[WCFJ12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. Dissent in numbers: Making strong anonymity scale. In
USENIX OSDI, pages 179–182, 2012.

[WG13] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor. In
ACMWPES, pages 201–212, 2013.

[Wik03] Douglas Wikström. Five practical attacks for ”optimistic mixing for
exit-polls”. In Selected Areas in Cryptography Workshop, SAC, pages
160–175, 2003.

[WWB19] Yu Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu,
and CPU platforms for deep learning. CoRR, abs/1907.10701, 2019.

A Related Work
Since Chaum’s breakthrough in the ’80s there was a huge body of work on anonymous
communication of all forms (dialing, messaging and broadcasting) The earliest proposals
were mix networks [BFK00, BL, CJK+16, Cha81, DDM, GT96, KEB98, BCC+15,
BCZ+13] with the leading ones being Loopix [PHE+17] and Multiparty Routing [SAKD17],
and dining cryptographers (DC) network [Cha88, WCFJ12, SGRE04]. Mix networks
rely on a set of servers (called mixes) to shuffle messages before delivering them to
recipients. This shuffling is often accompanied by encryption, batching, and chaffing
(the addition of dummy traffic) to prevent traffic analysis. Since all operations are
relatively lightweight, these systems enjoy lower latency and higher throughput than
many other works in the literature – including our work. However, such systems are
susceptible to replay, duplicate or drop message attacks by malicious mixes [KAPR06,
LRWW04, MD04, NS03, Pfi94, PP89, Ray00, SW06, Wik03].

On the other hand DC networks provide stronger security guarantees, with the
price of being peer-to-peer (full graph of communication between clients) and are
based on all-to-all broadcast of messages, which results in high costs. Consequently,
these systems typically accommodate only dozens of users. Verdict [GWF13], Dissent
[CF10, WCFJ12], Riposte [CBM15] and PowerMix [LYK+19] make great strides to
reduce these costs and support thousands of users with a reasonable latency, in the price
of putting a limited trust on the infrastructure, e.g. assuming some of the servers are
honest. Yet, scaling those system to support large anonymity-sets (tens of thousands to
millions) incurs a huge, impractical latency. For instance, supporting a anonymity-set
of a million clients with 160B messages in Riposte [CBM15] incurs a latency of more
than 11 hours; in Atom [KCDF17] this can take about half an hour, but since they aim
for horizontal scalability (similar to a mix net, in which it is not necessary for every
server to ‘touch’ every message) they require at least 1024 servers to support that (thus,
we consider Atom’s setting to be different than our interest in this paper).

41

Onion routing [DMS04, MOT+11, MWB13, RSG98], and Tor [DMS04] in particular,
is widely adopted due to their relative low latency and ability to support millions of
users. However, these systems are unable to resist traffic analysis attacks [HVC10,
MD05, MZ07, Ray00], even those performed by local adversaries [CZJJ12, KAL+15,
PNZE11, WG13].

Finally, there are mailbox-based systems [BDG15, CB95, KOR+04, KLDF16, SCM05,
vdHLZZ15, LZ16, AS16] for anonymous ‘dialing‘ and messaging, in which clients
retrieve messages from a ‘mailbox’ (or a ‘dead drop’) kept secret by a third party
servers. Those systems are mainly designed for peer-to-peer communication rather
than broadcasting.

B A Note on the Suitability of GPU to Riposte
The Nvidia v100 GPU we use is equivalent to GTX1080 in its integer operations
throughput, which can potentially perform up to 2840 Giga int32 operations per second
(GIOPS). GTX1080 can execute AES operations on a stream of data with a rate of
50-250 Gigabit per second, equivalent to 6-40 GB/s [ADFM17]. The GPU, as mentioned
supports more than 300× than the CPU (i.e. 2840 × 32/250). However, Blinder
requires arithmetics over a finite field, rather than merely int32 operations. In our
implementation we use Mersenne31 as our finite field (where field elements are represented
using 31 bits), such that operations over the field are almost equivalent to about three
int32 operations. This renders the potential of GPU to accelerate Blinder to be∼ 100×
higher than its potential to accelerate Riposte. In fact, we find in our experiments that
the GPU version of Blinder is about 100× faster than Riposte, meaning that a GPU
version of Riposte would not accelerate it.

C Notation
We present here a compilation of the various notations we use throughout the paper.
Note that notation in the appendix may be different and even collide.

42

[1, x] the set {1, . . . , x}
Ck the k-th client
Sq the q-th server
N number of supported messages/clients
ρ the assumed fraction on number of honest clients
n number of servers
t number of corrupted servers
q iterator for servers
k iterator for clients

[s]
a sharing of secret s, meaning that server Sq holds the
share sq for q ∈ [1, n].

A(i,j) entry at row i and column j in the bulletin board
rows× cols dimensions of A: rows rows and cols columns

Mk
(·,·)

the blinded message prepared by Ck in the naive
implementation of Blinder.

Mk
(·,·),q the shares of Mk

(·,·) held by Sq
r a row vector (of size cols)
c a column vector (of size rows)
DoS Denial of Service

43

	Introduction
	Our Contributions.
	Overview of our techniques
	Applications
	Related Work
	Paper Organization

	Notation and Problem Definition
	The Basic Blinder
	Shamir Secret Sharing (SSS)
	Robust reconstruction.
	Computation on sharings.

	Basic Construction of Blinder
	Submitting a message.
	Processing and revealing all messages.
	Handling collisions.
	Formal description

	Format Verification: Preliminaries
	Coin flip.
	Random sharing.
	Degree reduction and Output.

	Format Verification Protocol
	Efficiency
	Security

	Scaling Blinder
	Efficient construction of Blinder
	Submitting a Message.
	Processing and revealing all messages.
	Format verification.
	Efficiency.

	Batching Format Verification
	Utilizing a GPU

	Robust Preprocessing and Input
	Robust Preprocessing
	Robust Input

	Implementation & Evaluation
	Conclusions
	Related Work
	A Note on the Suitability of GPU to Riposte
	Notation

