
CONFISCA : an SIMD-based CONcurrent FI and SCA
countermeasure with switchable performance and security modes

Abstract. CONFISCA is the first SIMD-based cipher implementation
methodology which can concurrently resist against Side Channel At-
tack (SCA) and Fault Injection (FI). Its promising strength is present-
ed in a PRESENT cipher case study. It has a considerably less perfor-
mance and memory overhead in comparison to the previous concur-
rent countermeasures. By having one instance of the cipher,
CONFISCA can on-the-fly switch between its two modes of operation:
The High-Performance and High-Security. This gives us the flexibility
to trade performance/power with security, based on the actual needs.
Keywords: Hardware security; Side channel attacks; Fault Injection;
Countermeasure, SIMD, NEON;

I. INTRODUCTION

Side-Channel Attack (SCA) and Fault Injection (FI) are
two separate categories of attacks which are aimed to reveal
secret information being stored or computed in sensitive
digital devices (e.g: secret keys from cryptographic devic-
es). SCA exploits the device’s side channel leakage (e.g.
power consumption) along with statistical approaches such
as Differential or Correlation Power Analysis (DPA & CPA)
to find the secret key [1]. FI can expose the secret infor-
mation by injecting faults during the computation and ob-
serving the erroneous outputs [2].

Countermeasures against SCA generally try to de-
correlate the device’s side channel from the value of the
sensitive data, either by masking, hiding or misaligning the
computation in time [1]. Countermeasures against FI try to
detect any faults in the computation and mostly apply com-
putation duplication, data redundancy or coding [2].

Applying separate countermeasures against SCA and FI
imposes large overheads and complexity which make it
unusable for embedded constraint applications. More im-
portant, FI countermeasures have adverse effect on SCA
protection because they increase the side-channel leakage
due to their data/computation duplication [3, 4]. Therefore,
we found few published concurrent (or combined) counter-
measures that can resist both SCA and FI.

In this paper, we propose CONFISCA, the first secure
software implementation methodology against SCA and FI
based on Single Instruction Multiple Data (SIMD) parallel
computation in modern processors. The hiding effect is
consistent and effective throughout the cipher and for all its
intermediate values. Unlike the masking countermeasures,
higher-order SCA does not concern this hiding counter-
measure [5]. We have evaluated its considerable strength
against Electro-Magnetic (EM) CPA using two measure-
ment setups.

The CONFISCA approach has two on-the-fly switchable
modes of operation by only one instance of the cipher: The
High-Performance and High-Security. The device can
switch the modes based on the performance (or energy) and
security requirements with no modification. The proposed
method is generic and could be applied to a vast variety of
cipher structures. It has significantly less performance over-
head, in comparison to the previous work.

II. RELATED WORK
Recently, we published a paper on a concurrent counter-

measure for processors without SIMD feature [6]. That

work utilized wide data-words in modern processors to per-
form several byte-wise operations in parallel. We provided a
case study on the AES SubByte calculations on a 32-bit
processor. The four byte-wise parallel computations enci-
pher the data with the true key and a fake key. The fake key
hides the true key due to its covering effect. The results
showed satisfactory protection. Our previous work cannot
secure the whole cipher building blocks because it does not
apply to all types of operations (e.g. look-up, addition, mul-
tiplication). In contrast, the current work has wider applica-
bility since theoretically all one-to-one functions can be
implemented using the CONFISCA approach, as we will
show in our case study. Finally, aside from the protection
against bit-flip FI, it also protects against the faults on the
control flow (e.g: instruction skip faults), which was missing
in the previous work.

Two main other threads of the concurrent software coun-
termeasures against SCA and FI are DPL-based and Encod-
ing-based methods. The both categories severely suffer from
code size explosion and performance degradation. An ex-
planation and comparison on their overheads have been
provided in [6]. The DPL-based group employs the software
equivalent of Dual-rail with Pre-charge Logic (DPL) [7]. A
dual bit with the opposite Boolean value is always stored
and processed to neutralize the leakage of the original bit on
the power consumption. The software implementation was
first proposed in [8] and followed by [9]. Since the DPL-
based approached can compute only 1 bit per iteration, their
proposed approach is extremely expensive both on perfor-
mance and code size. The Encoding-based concurrent coun-
termeasures use specific encoding with constant Hamming
weight to theoretically eliminate the secret leakage. The
reference [10] proposes an Encoding-based concurrent
countermeasure based on the work in [11]. Encoding the
inputs, then performing the computation using exponentially
larger look-up tables and finally decoding is a long process;
Hence the encoding approaches (like DPL-based) suffer
from huge performance and memory overheads.

Finally, some masking concurrent works were published
recently [12,13] which combine a masking approach with an
error detecting or data duplication methods to protect SCA
and FI on hardware. These methods are vulnerable to high-
er-order SCA as all of the masking methods. Most im-
portantly, these masking countermeasures necessitates to
compute cipher constant values (e.g: S-Box table) on each
computation (instead of looking them up in a table). There-
fore, they have intrinsically large performance overhead on
software. As their results are on hardware (FPGA), we do
not compare them against CONFISCA.

III. CONFISCA: PROPOSED COUNTERMEASURE

SIMD is aimed to boost the performance by parallel
computation. There are plenty of SIMD instructions availa-
ble in modern CPUs [14]. Among them, we chose parallel
memory lookup functionality which accepts a vector of
indexes (addresses) pointing to the values stored in a table,

Ehsan AerabiӾ, Cyril BreschᲰ, David HélyᲰ, Athanasios PapadimitriouᲰ, Mahdi Fazeli Ӿ

ehsan.aerabi@lcis.grenoble-inp.fr
ᲰUniv. Grenoble Alpes, Grenoble INP

LCIS
Valence, France.

Ӿ Iran University of Science and Technology
Department of Computer Science

Tehran, Iran.

and simultaneously retrieves the values as a vector. The
parallel lookup gives us the possibility to have protection
against FI and SCA as we describe below:

Assume that we have an SIMD two parallel look-ups. It
accepts a vector like (X1 ,X2) and returns (T[X1], T[X2]), in
which, T[X] represents the corresponding value in the table
T by index of X. We denote the operation like:
LUSIMD(X1 ,X2) = (T[X1], T[X2]) (1)

Let think the cipher Ω is a sequence of k distinct func-
tions Fi (i from 1 to k) which all in turn process the plaintext
P to have the cipher-text C (e.g: Sub-Bytes, Mix-Column,
Shift-Rows & Add-Round-Key in AES). We can write Ω as:

Ω(P)= Fk(Fk-1(… F1(P)..)) = C (2)

To implement Fi, we fill up the look-up table with all the
output values of Fi and their complements. If Fi is an n-bit
function, its output values would range from 0 to 2n. In or-
der to fit the original output values and their corresponding
complements in a look-up table, we need 22n =2n+1 entries
in the table. The look-up table has two (Fig 1). The first half
(blue area) has the original outputs of the Fi and the second
half (red area) has the corresponding complementary out-
puts. The indexes of the table are n+1 bits long. Then on
each execution (look-up), we submit input X along with its
complements �� as a vector, in a way that the output value
T[��] has the logical complement value of T[X]. In brief:

��
����(� , ��) = (�[�], �[�])������� = (��(�), ��(�)�������) (3)

Obviously the output vector has a constant Hamming
weight, which theoretically is SCA resistant. Holding the
property (5) throughout the cipher, the output of Fi which is

(��(�), ��(�)�������) could be used directly as the input vector for
the next function Fi+1, without any modification and subse-
quently, we prevent any leakage for the intermediate values.
The problem is how to arrange the values to have the prop-
erty (5) for all values of X and ��.

Fig 1 - Memory structure for the protected look-up

Let represent the n-bit input X of Fi by xnxn-1…x1 then in
address of 0|X or 0xnxn-1…x1 which is located in the first
half part of the table, we store ��(�) along with a zero on its
Most Significant Bit (MSB), like 0|��(�). Then in the se-
cond half part of the table in address 1|�� or 1�̅��̅��� … �̅�,

we store 1|��(�)�������. Finally, if we look-up 0|� we would have

0|��(�) and if we loo-up 1|�� we would have 1|��(�)�������:
��

����(0|� ,1|��) = ������(0|� ,1|��) = (�[0|�], �[1|��])

 = (0|��(�),1|��(�)�������) (4)

The term �0|��(�), 1|��(�)�������� as the SIMD output has con-
stant Hamming weight (n+1) and can be used directly as the
input for the next function of the cipher Ω which is Fi+1.
Hence, we simply cascade all k functions of cipher Ω with-

out any modification on the intermediate values. The SCA
secure cipher ΩSecure will be:

ΩSecure(P)= ��
����(����

����(… ��
����1(0|P, 1|��)..)) = (0|C, 1|�̅) (5)

Which indicates that 0|P and 1|�� go directly through k
look-up tables, on each of which, the Hamming weight of
the intermediate values are constant and SCA secure.

FI detection is achievable by comparing the original and
complementary data as we will explain later in Sections V.
CONFISCA’s methodology is generic, simple and extreme-
ly effective based on the results in the next sections. How-
ever, large input functions necessitate large tables. In this
case, either we break the function into smaller sub-functions
then apply CONFISCA or use another protection methods.

IV. A PRESENT CASE STUDY
In this section, we demonstrate the SIMD protection idea

in a case study on the PRESENT cipher [17]. PRESENT has
three functions: AddRoundKey, S-BoxLayer and pLayer
which are repeated 31 times to produce the cipher. We
chose to secure the two first functions as a proof of concept
and also because they need smaller tables. It is feasible to
break pLayer into some sub-functions [15] and secure them
using CONFISCA. We left it as a future work for this re-
search. A quite similar implementation (with different table
values) can be used for other ciphers with AddRoundKey
and SBoxLayer like AES. Since AES S-BOX is a 8-bit
function, we need an SIMD table two times bigger than
PRESENT.

A) PRESENT S-box Layer & AddRoundKey.
S-Box in PRESENT is a 4-bit function. The original s-

box table has 16 entries: {12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15,
8, 4, 7, 1, 2}. For the first entry: �����(0) = �[0] = 12 =
1100. Following the CONFISCA method, we have:

�����
����(0|0000, 1|1111) = (�[0|0000], �[1|1111])

=(�[0], �[31]) = (0|1100,1|0011) = (12,19) (6)

This implies that in the addresses of 0 and 32 we have to
store 12 and 19, respectively. AddRoundKey is simply a 4-
bit XOR operation between the input and the key. The com-
plete AddRoundKey look-up table is shown in Table 2 for
the key value of 1010.

There are two security concerns associated with the se-
cure key: 1) as the usual crypto key storage, the same stor-
age memory protection should be applied (only) to the Ad-
dRoundKey table. The only difference is between their siz-
es. For this case, the PRESENT key is 80 bits and the Ad-
dRoundKey table is 325 = 160 bits for each round. 2)
online key renovation can leak the table values, but since it
is done once per a new key, the amount of leakage is not
enough to reveal the key by SCA.

We have implemented the CONFISCA countermeasure
on a Xilinx Zybo Zynq-7000 ARM/FPGA SoC board. This
SoC board is built around a Xilinx 7-series field program-
mable gate array (FPGA) and an ARM Cortex-A9 working
on 650 MHz. The embedded ARM Cortex-A9 processor
provides us with NEON. Neon is an advanced SIMD archi-
tecture extension and presents several SIMD operations on
vectors and matrices [14].

Table 1 - PRESENT S-box Layer protected memory content
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

01100 00101 00110 01011 01001 00000 01010 01101 00011 01110 01111 01000 00100 00111 00001 00010

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11101 11110 11000 11011 10111 10000 10001 11100 10010 10101 11111 10110 10100 11001 11010 10011

Table 2 - PRESENT AddRoundKey protected memory content
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

01010 01011 01000 01001 01110 01111 01100 01101 00010 00011 00000 00001 00110 00111 00100 00101

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

11010 11011 11000 11001 11110 11111 11100 11101 10010 10011 10000 10001 10110 10111 10100 10101

(A) High-Performance (Unprotected) Mode. 8 bytes computation in parallel

(B) High-Security (Protected) Mode.4 parallel computations with their complements

Fig - 2 – Data configuration in SIMD table look-up

Fig 3 - SCA against the conventional (no SIMD) PRESENT cipher

The Unprotected version: NEON extension for table
look-up includes 8 parallel look-up operations from a 32
bytes table. First to have an unprotected cipher, we utilized
the extension and developed a vectorized version of Ad-
dRoundKey and SBox of the PRESENT cipher which exe-
cutes 8 parallel instances of the cipher algorithm. Fig 2-A
illustrates the 8 look-up registers which contain 8 different
data from 8 different instances of the cipher.

The Protected version: We can apply the CONFISCA
method on 4 pairs of the NEON SIMD look-up. Fig 2-B
shows the structure. Each pair is shown in different color.
Each instance of the data is accompanied by its complemen-
tary value shown with over-bar (e.g ���� & ����1��������) and
explains that the CONFISCA method is applied to them.
Therefore in the Protected Mode we have 4 instances of the
cipher.

V. COUNTERMEASURE EVALUATION

In this part, we cover the SCA and FI analysis of the
CONFISCA methods. The analysis will be on AddRound-
Key and sBox layers of PRESENT cipher.

SCA analysis: Due to the noise from the switching power
supply of Xilinx Zybo Zynq-7000 board, our preliminary
trial for power SCA needed extremely large number of
power acquisitions. Therefore we decided to conduct elec-
tromagnetic SCA (EM-SCA) against the proposed method.
The EM traces from the device acquired on 5 GS/Sec. In
order to have higher level of accuracy we utilized two EM
amplifiers: one from HackMyMCU board, and another from
ChipWhisperer[16]. HackMyMCU is a SCA analysis tool
developed in our laboratory, LCIS. It is designed for low-
noise capture of electromagnetic or power traces, high-
accuracy quantization of the captured signals and fast SCA
analysis. We performed an Electromagnetic Attack against
the implemented design using two amplifiers: AD8000 from
Analog Devices installed on HackMyMCU and BGA2801
from NXP installed on ChipWhisperer. The attack tries to
guess the correct 4-bit key on each look-up table operation
of the PRESENT cipher.

First, we implemented a conventional (no SIMD) version
of the unprotected cipher implemented using simple XOR
(in AddRoundKey) and look-up table (in sBox). The
PRESENT cipher is broken after 2000 traces, when the cor-
rect key stands out among the other key hypothesis as
shown in Fig-3. This number forms a basis for our compari-
son later on these series of experiments. The attacks to
SIMD implementation are shown from Fig 4-A to Fig4-H.
Fig 4-A & B illustrate SCA on NEON implementation
without the CONFISCA countermeasure, for HackMyMCU
and ChipWhisperer, respectively. Moving from convention-
al implementation to NEON, we can observe that SCA
needs around 3000 to 4000 traces to break the cipher.

A) Attack to the unprotected SIMD PRESENT using HackMuMCU (AD8000)

B) Attack to the unprotected SIMD using ChipWhisperer (BGA2801)

C) Attack to the protected SIMD using HackMuMCU (AD8000)

D) Attack to the protected SIMD using ChipWhisperer (BGA2801)

E) SCA to the unprotected SIMD using HackMuMCU (AD8000) using averaging

F) SCA to the unprotected SIMD using ChipWhisperer (BGA2801) using averaging

G) SCA to the protected SIMD using HackMuMCU (AD8000) using averaging
*we continued to 4000 averaged traces to see the ultimate strength of the protection

H) SCA to the protected SIMD using ChipWhisperer (BGA2801) using averaging

Fig 4 – SCA attack to the unprotected and protected designs

Fig 4-C & D show SCA against the countermeasure on
both devices. After acquiring 40K traces we were not able to
find the key. Therefore, we decided to mount stronger and
faster attacks using averaging feature on our oscilloscope.

We set the oscilloscope to average the last 2048 traces in
order to reduce the capturing noise. Fig 4-E & F shows the
SCA against the unprotected NEON implementation. Obvi-
ously the correlation coefficients are higher (between 0.3 to
0.7) than normal acquisition (around 0.1).The key stands out
after the first 10 or 20 acquisitions (2048 averaged traces
each). HackMyMCU performs slightly better on these fig-
ures. Using the same averaging approach, Fig 4-G & H il-
lustrate the SCA against the protected mode. It should be
noted that in Fig 4-G, we let the SCA continue until
4K×2048≈ 8M traces on 5 GS/s to see the ultimate strength
of CONFISCA. But the correct key is well hidden among
the other keys and does not seem to stands out upon this
order of magnitude of the number of traces.

FI Detection Analysis: To theoretically evaluate the fault
detection capabilities, we make the assumption that faults
are injected in the data-path and will end up registered in the

traces

traces

traces

traces

traces

traces

traces

traces

state register. Moreover we assume that any fault combina-
tion for each 32-bit word, has the same probability. Under
the assumptions above, the only way to inject an undetected
multiple faults is to inject the exact same bit-flip faults in
the two duplicates of the computation. The total amount of
possible faults is 232-1. On the other hand the undetectable

fault scenarios are ∑ ��
�
��

��� = 24-1 faults for each four com-

putations Data1, Data2, Data3 and Data4. Therefore, the
condition to inject an undetected fault is when four, three,
two or one pairs of the computations have at least one (pairs
of) fault. Then the probability to not detect a fault is:

(2� − 1)� + ��
�
�(2� − 1)� + ��

�
�(2� − 1)� + ��

�
�(2� − 1)

2��

=
�����

���
 ≈ 2��� ≈ 1.5259 × 10�� = 0,00001525 (7)

It is also possible to add capability to detect faults on the
control flow (e.g: instruction skip faults). To this aim, one
pair of the SIMD operations is devoted for computing a
constant encryption (fixed plain-text). By comparing the
corresponding output with the expected value we can detect
instruction-skip FI. Fig 5 illustrates the constant computa-
tion for the protected mode.
Overheads: Comparing the protected and unprotected
modes in Fig-2, they use the same code and only their data
configurations are different. Therefore, there is no code size
overhead over the unprotected mode. Comparing SIMD and
conventional implementations, applying countermeasure
needs twice memory to have the complementary outputs
(Fig-1).

On the performance, Table 3 shows the source codes and
performances for both NEON and conventional PRESENT.
In the NEON part, lines 1 and 4 are packing and unpacking
the inputs into the NEON vectors. Lines 3 and 4 compute
eight parallel AddRoundKey and Sbox sub-functions. The
whole process takes 406 cycles. For the conventional code,
an 8-iteration loop performs the serial computations and the
whole process takes 608 cycles to produce the same amount
of data. Therefore, the unprotected NEON is about %33
faster than conventional implementation. As for the unpro-
tected mode, half of the data used for protection, the pro-
tected mode is about %33 slower than the conventional
implementation. Obviously, the unprotected mode is two
times faster than the protected mode.

Finally Table 4 provides a comparison between the over-
heads of DPL, encoding and CONFISCA approaches. There
is an explanation on the overheads of the related work in
[15]. Aside from the lower overheads of CONFISCA, about
the strength of the related woks: DPL in [9] implementation
was 34 times more resistant (broken after 4800 traces) and
for encoding in [11] about 100 times more resistant (bro-
ken around 10K); While CONFISCA was not broken after
8M averaging traces.

VI. CONCLUSION

We presented CONFISCA, a concurrent countermeasure
against SCA and FI based on SIMD look-up table. On a case
study on ARM Cortex-A9 and its NEON SIMD feature, we
secured PRESENT cipher. The SCA protection was evaluat-
ed by 8 million EM averaged traces while the secret key was
still hidden. We discussed its strength against data-path FI
and instruction skip. The CONFISCA overheads are rela-
tively lower than the related works. The proposed method
could be deployed for AES with the same respects but with
two times bigger tables.

Fig 5- Protected Mode#2 with instruction skip resistance

Table 3 – Performance of the NEON and conventional PRESENT
Duration Code

32
171
171
32

1
2
3
4

Vectors = vld1_u8(input);
Vectors = vld4_u8(ARK_Table,Vectors);
Vectors = vld4_u8(SBOX_Table,Vectors);
vst1_u8(vectors,N_output);

NEON

608

total

1
2
3
4

for(int i=0; i <8;i++){
 buffer[i]=key[i]^input[i];
 output[i] = SBOXTable[buffer[i]];
 }

CONVENTIONAL

Table-4 – Comparison of the overheads

Method Ref. Cipher
Overheads

Perfor-
mance Memory Code

DPL [8] PRESENT %800 %200
DPL [9] PRESENT %200 %20 %188

 Encoding [11] Prince %767 %1966 %235
CONFISCA PRESENT %33 %100 -

References
[1] Peeters, E., 2013. Advanced DPA theory and practice: towards the security

limits of secure embedded circuits. Springer Science & Business Media.

[2] . Joye, M. and Tunstall, M. eds., 2012. Fault analysis in cryptography (Vol.

147). Heidelberg: Springer.

[3] Pahlevanzadeh, H., Dofe, J. and Yu, Q., 2016, January. Assessing CPA

resistance of AES with different fault tolerance mechanisms. In Design

Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific (pp.

661-666). IEEE.

[4] Luo, P., Fei, Y., Zhang, L. and Ding, A.A., 2014, December. Side-channel

power analysis of different protection schemes against fault attacks on AES. In

ReConFigurable Computing and FPGAs (ReConFig), 2014 International

Conference on (pp. 1-6). IEEE.

[5] Wanderley, E., Vaslin, R., Crenne, J., Cotret, P., Gogniat, G., Diguet, J.P.,

Danger, J.L., Maurine, P., Fischer, V., Badrignans, B. and Barthe, L., 2011.

Security fpga analysis. In Security Trends for FPGAS (pp. 7-46). Springer,

Dordrecht.

[6] Aerabi, E., Papadimitriou, A. and Hely, D., 2019, July. On a Side Channel and

Fault Attack Concurrent Countermeasure Methodology for MCU-based Byte-

sliced Cipher Implementations. In 2019 IEEE 25th International Symposium on

On-Line Testing and Robust System Design (IOLTS) (pp. 103-108). IEEE.

[7] Danger, J.L., Guilley, S., Bhasin, S. and Nassar, M., 2009, November. Overview

of dual rail with precharge logic styles to thwart implementation-level attacks on

hardware cryptoprocessors. In 2009 3rd International Conference on Signals,

Circuits and Systems (SCS) (pp. 1-8). IEEE.

[8] Hoogvorst, P., Duc, G. and Danger, J.L., 2011. Software implementation of

dualrail representation. COSADE, February, pp.24-25.

[9] Rauzy, P., Guilley, S. and Najm, Z., 2016. Formally proved security of

assembly code against power analysis. Journal of Cryptographic Engineering,

6(3), pp.201-216.

[10] Breier, J., Jap, D. and Bhasin, S., 2016, May. The other side of the coin:

Analyzing software encoding schemes against fault injection attacks. In

Hardware Oriented Security and Trust (HOST), 2016 IEEE International

Symposium on (pp. 209-216). IEEE.

[11] Chen, C., Eisenbarth, T., Shahverdi, A. and Ye, X., 2014, November. Balanced

encoding to mitigate power analysis: a case study. In International Conference

on Smart Card Research and Advanced Applications (pp. 49-63). Springer,

Cham.

[12] Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V. and

Smart, N., 2018, August. CAPA: the spirit of beaver against physical attacks. In

Annual International Cryptology Conference (pp. 121-151). Springer, Cham.

[13] De Meyer, L., Arribas, V., Nikova, S., Nikov, V. and Rijmen, V., 2019. M&M:

Masks and Macs against physical attacks. IACR Transactions on Cryptographic

Hardware and Embedded Systems, pp.25-50.

[14] https://developer.arm.com/architectures/instruction-sets/simd-isas/

neon/intrinsics

[15] Franchetti, F. and Püschel, M., 2008, March. Generating SIMD vectorized

permutations. In International Conference on Compiler Construction (pp. 116-

131). Springer, Berlin, Heidelberg.

[16] O’Flynn, C. and Chen, Z.D., 2014, April. Chipwhisperer: An open-source

platform for hardware embedded security research. In International Workshop

on Constructive Side-Channel Analysis and Secure Design (pp. 243-260).

Springer, Cham.

[17] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,

M.J., Seurin, Y. and Vikkelsoe, C., 2007, September. PRESENT: An ultra-

lightweight block cipher. In International workshop on cryptographic hardware

and embedded systems (pp. 450-466). Springer, Berlin, Heidelberg.

