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Abstract
Network latency is a significant source of inefficiency in interactive protocols. This work con-
tributes towards the possibility of reducing the round complexity and communication complex-
ity of secure computation protocols to a minimum. We introduce the concept of secure non-
interactive simulation of joint distributions.

Two parties begin with multiple independent samples from a correlated randomness source.
Next, our objective is to investigate what forms of joint distributions can Alice and Bob securely
simulate without any further communication. This offline preprocessing step fits perfectly within
the offline-online paradigm of secure computation, which enables general secure computation
even against parties with unbounded computational power.

One may interpret this concept as imbuing the notion of non-interactive simulation of joint dis-
tributions, which initiated from the seminal works of Gács and Körner (1972), and Wyner (1975),
in information theory with cryptographic security. This concept is stronger than merely a se-
cure version of non-interactive correlation distillation as introduced by Mossel, O’Donnell, Regev,
Steif, and Sudakov (2004) because secure private keys alone do not suffice to facilitate general
secure computation. Alternatively, secure non-interactive simulation is a natural restriction of
performing cryptography with one-way communication introduced by Garg, Ishai, Kushilevitz,
Ostrovsky, and Sahai (2015), which also serves as a naturally arising base case for inductively
building cryptographic primitives with minimum communication complexity.

In this work, we study samples from (1) BSS(ε), that is the joint distribution (X,Y ), where
X is a uniform random bit and Y is correlated bit such that X 6= Y with probability ε ∈ (0, 1/2),
and (2) BES(ε), that is the joint distribution (X,Y ), where X is a uniform random bit, and
Y = X with probability (1− ε); otherwise Y =⊥, where ε ∈ (0, 1).

Note that the reverse hypercontractivity and hardness of cryptography with one-way messages
both rule out the possibility of realizing any BES sample from BSS samples. This impossibility
result carries over to our secure non-interactive simulation as well. Furthermore, we prove that
it is also impossible to securely and non-interactively simulate samples of BSS from BES samples
as well. Note that this impossibility result both in the setting of non-interactive simulation and
cryptography with one-way communication remains open.

Next, we prove that we can simulate a sample of BES(ε′) from multiple samples of BES(ε) if
and only if (1−ε′) = (1−ε)k, for some k ∈ N. We proceed by proving that all secure constructions
must be linear, and, after that, the rate of the simulation is at most 1/k.

Finally, we show the existence of securely and non-interactively simulating a sample of BSS(ε′)
from BSS(ε) if and only if (1− 2ε′) = (1− 2ε)k, for some k ∈ N. Interestingly, there are linear as
well as (comparatively inefficient) non-linear constructions.
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1 Introduction

Network latency is a significant source of inefficiency in interactive protocols (https://
gist.github.com/hellerbarde/2843375). Towards minimizing the impact of network latency
on secure computation protocols, there is an increased investigation of the possibility of
reducing the round complexity and the communication complexity of secure computation
protocols [GMW87, BMR90, KOS03, KO04, Pas04, PW10, Wee10, Goy11, GMPP16, ACJ17,
BHP17, COSV17b, COSV17a, BGJ+18, HHPV18]. This work, continuing this general
line of investigation, studies secure non-interactive simulation of joint distributions against
information-theoretic adversaries. For motivation, consider the following representative
application where this concept has promising potential for impact.

Representative Motivating Application. Frequently, one comes across signals arising
from cataclysmic celestial events or their aftereffects that are well beyond human influence.
For example, just from the recent past, we witnessed events like (1) Mysterious fast radio
bursts that repeat every sixteen days, (2) Sudden and unexpected dimming of Betelgeuse
indicating that it may go supernova, and (3) Gravitational waves originating from the
merger of two neutron stars. Such signals, when observed from multiple observatories spread
across the globe, yield large quantities of noisy correlated observations. Local atmospheric
or electromagnetic noise perturb these observations. One does not have control over the
exact noise introduced to the observations at these different locations, even when there are
well-established models for these noises.

Unlike the prominent objective in information reconciliation of removing noise by leverag-
ing multiple correlated observations, in cryptography, noise that is beyond the adversarial
control is, surprisingly, a facilitator for non-trivial cryptographic tasks, like, key-agreement,
and secure computation [CK90, Kil91, Kil00, IPS08, IKO+11, KMPS14].1 There has been
extensive research into the feasibility and efficiency of founding secure computation on such
sources of noise. Within this ambit of research, out of efficiency concerns, the following
natural question arises.

“How to efficiently build an infrastructure for non-trivial cryptography
from correlated samples

without any additional interaction between the observatories?”

In particular, the offline-online paradigm of secure computation [MNPS04, BNP08,
DPSZ12, NNOB12] typically relies on an offline phase to generate samples from a correlated
randomness source and, later, uses these samples to perform a particular secure computation
task during the fast online phase. One may securely realize the offline phase using computa-
tionally secure protocols (for example, using homomorphic encryption [Gen09] or somewhat
homomorphic encryption [BGV12]). However, an increase in computational power due to
shifts in computing paradigms or an improvement in the efficiency of adversarial attacks
owing to recent mathematical advances may potentially render these protocols insecure. On

1 This is the most appropriate opportunity to quote the following paragraphs from Crépeau and Kil-
ian [CK90]. “Noisy channels have been extensively studied in the field of coding theory, and it is
interesting to see how our perspective differs from the more traditional one. Coding theory adopts the
viewpoint that noise is a bad thing, to be eliminated as efficiently as possible. Given a noisy channel, a
coding theorist tries to simulate a pristine, noiseless communication line.
From our point of view (following Wyner [Wyn75]), an ideal communication line is a sterile, cryptograph-
ically uninteresting entity. Noise, on the other hand, breeds disorder, uncertainty, and confusion. Thus,
it is the cryptographer’s natural ally. The question we consider is whether this primordial uncertainty
can be sculpted into the more sophisticated uncertainty found in secure two-party protocols.”

https://gist.github.com/hellerbarde/2843375
https://gist.github.com/hellerbarde/2843375
https://arstechnica.com/science/2018/01/whatever-causes-fast-radio-bursts-is-sitting-in-an-intense-magnetic-field/
https://arstechnica.com/science/2018/01/whatever-causes-fast-radio-bursts-is-sitting-in-an-intense-magnetic-field/
https://arstechnica.com/science/2020/02/new-image-shows-betelgeuse-isnt-dimming-evenly/
https://arstechnica.com/science/2020/02/new-image-shows-betelgeuse-isnt-dimming-evenly/
https://arstechnica.com/science/2017/10/colliding-neutron-stars-decapitate-zombie-theory-of-gravity/
https://arstechnica.com/science/2017/10/colliding-neutron-stars-decapitate-zombie-theory-of-gravity/
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the other hand, correlated randomness from noisy sources enables secure computation even
against adversaries with unbounded (classical/quantum) computational power. Therefore,
the motivating example above has the potential of generating highly efficient infrastructure
for secure computation that never forfeits its security. Furthermore, the online phase may
prefer to use samples from a noise source that has a particular parameter due to efficiency
considerations (for example, this choice may arise from the particular multiplication friendly
error-correcting code being used in the online protocol). Although the celestial source’s noise
parameter is beyond our control, it would be preferable if the parties can non-interactively
simulate samples of a noise source with the more preferred parameter.

Positioning of our Research. In information theory, non-interactive simulation of
joint distributions is the focus of intense curiosity and generates highly influential research
(refer to the comprehensive survey [STW19]). Our study adds the additional feature of
security to this direction of inquiry. As a consequence, for instance, randomized simulations
or simulations where a party erases information from her view are ruled out in our secure
simulation setting. Since shared private key is not sufficient for general secure computation,
secure non-interactive simulation is not a straightforward generalization of non-interactive
correlation distillation [MOR+06] with the cryptographic notion of security.

On the other hand, there has also been research in cryptography to perform secure
computation using only one-way messages [GIK+15]. Our problem setting is even further
restrictive; parties do not communicate with each other at all. However, looking ahead, our
results demonstrate that several feasibility results in the one-way communication setting
carry over to our non-interactive setting. In fact, the non-interactive simulation allows the
parties to specify the infrastructure itself well after the correlated samples have been stored.

Furthermore, our research provides bounds on the efficiency of such computations, a.k.a.,
upper bounds on the rate of secure simulation of some fundamental joint distributions.
Additionally, in the long run, our research forms the base case of building communication-
efficient infrastructure for secure computation. For example, one can inductively build more
sophisticated k-bit protocols from (comparatively) less expressive (k − 1)-bit protocols; with
the base case being k = 0, which is our research focus in this paper.

In this work, we primarily consider statistical security. However, a fine-grained security
analysis, where one characterizes the minimum insecurity achievable for secure non-interactive
simulation of arbitrary joint distributions has potential applications in cryptography as
well. As indicated by the work of Ishai, Kushilevitz, Ostrovsky, Prabhakaran, Sahai,
Wullschleger [IKO+11], any construction of noise samples with appropriately small constant
insecurity suffices to perform general secure computation.

1.1 Our Contribution
We introduce some intuitive terminology to present our results informally. Section 4 and
Section 5 present the formal results and their proofs. Let (X,Y ) is a joint distribution over
the sample space (X ,Y), and (U, V ) be a joint distribution over the sample space (U ,V).
Sample (xn, yn) $←− (X,Y )⊗n (that is, one draws n independent samples from the distribution
(X,Y )). Alice gets xn ∈ Xn and Bob gets yn ∈ Yn. Suppose fn : Xn → U and gn : Yn → V
be the reduction functions for Alice and Bob, respectively. Alice computes u′ = fn(xn) and
Bob computes v′ = gn(yn).

We say that (U, V ) reduces to (X,Y )⊗n via reduction functions fn, gn with insecurity
ν(n) (represented by, (U, V ) vν(n)

fn,gn
(X,Y )⊗n) if the following three conditions are satisfied.

1. Correctness: The distribution of the samples (u′, v′) is ν(n)-close to the distribution
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(U, V ) in statistical distance.
2. Security against corrupt Alice: Consider any (u, v) in the support of the distribution

(U, V ). The distribution of xn conditioned on the fact that u′ = u and v′ = v is
independent of v.

3. Security against corrupt Bob: Consider any (u, v) in the support of the distribution (U, V ).
The distribution of yn conditioned on the fact that u′ = u and v′ = v is independent of u.

We remark that, since we consider non-interactive protocols without private inputs, semi-
honest and malicious security are identical. So, for the simplicity of presentation, we assume
that we consider security against semi-honest adversaries, that is, parties follow the protocol
but are curious to find more information. Section 3 provides a formal simulation-based
security definition.

In this paper, we consider samples from two fundamental distributions.

1. Binary symmetric source. X and Y are uniformly random bits such that X 6= Y with
probability ε ∈ (0, 1/2). We represent this joint distribution by BSS(ε).

2. Binary erasure source. X is a uniformly random bit, and Y = X with probability (1− ε),
where ε ∈ (0, 1); otherwise, Y =⊥. We represent this joint distribution by BES(ε).

Before we begin, note that the non-interactive simulation of joint distributions and cryptog-
raphy with one-way communication are relaxations of secure non-interactive simulation of
joint distributions, which we consider in this work. So, the impossibility results in either of
these two settings automatically imply an impossibility in our context.

For example, it is impossible for BES(ε′) to reduce to BSS(ε)⊗n, for infinitely many n ∈ N,
with insecurity ν(n) = negl(n),2 for any ε ∈ (0, 1/2), and ε′ ∈ (0, 1) [KA16, KA12, GIK+15].
On the other hand, it is not known whether BSS(ε′) reduces to BES(ε) with negl(n) insecurity
via either non-interactive simulations or one-way communication. We resolve this problem
for secure non-interactive simulations.
I Informal Theorem 1 (Binary Symmetric Sample from Binary Erasure Samples). Fix ε′ ∈ (0, 1/2)
and ε ∈ (0, 1). For every infinite family of reduction functions {fn, gn}n∈N, insecurity bound
ν(n) = negl(n), and sufficiently large n, we have

BSS(ε′) 6vν(n)
fn,gn

BES(ε)⊗n.

Next, we consider the interconversion among binary erasure sources with different erasure
probabilities.
I Informal Theorem 2 (Binary Erasure Samples: Feasibility & Rate). Fix any erasure probabilities
ε′, ε ∈ (0, 1). Suppose, there exists an infinite family of reduction functions {fn, gn}n∈N and
insecurity bound ν(n) = negl(n) such that, for infinitely many n ∈ N satisfying

BES(ε′) vν(n)
fn,gn

BES(ε)⊗n.

Then, there exists n∗ ∈ N and an infinite family of functions {f∗n, g∗n}n∈N such that
BES(ε′) v0

f∗n,g
∗
n

BES(ε)⊗n, for all n ≥ n∗. Furthermore, there exists k ∈ {1, 2, . . . , n∗}
such that (1− ε′) = (1− ε)k, f∗n(x) = g∗n(x), for all x ∈ {0, 1}n, and either f∗n or −f∗n is the
parity of some k input bits.

Moreover, if there exists an infinite family of functions {fn, gn}n∈N and insecurity bound
ν(n) = negl(n) such that, for infinitely many n ∈ N, we have BES(ε′)⊗m(n) vν(n)

fn,gn
BES(ε)⊗n.

Then, we have m(n) ≤ n/k.

2 The function f(n) is negligible in n if it becomes smaller than any inverse-polynomial in n, for sufficiently
large n ∈ N.
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In the context of cryptography using one-way communication one can achieve ε′ that is lower
or higher than ε. On the other hand, in this work, we show that ε′ ≥ ε is necessary for secure
non-interactive simulation to exist.

Typically, the impossibility results in the non-interactive simulation of joint distributions
literature relies on leveraging the reverse Hypercontractivity theorem [KA12, KA16, NW17].
However, for samples from the binary erasure channel, this approach encounters a major
hurdle [KA12]. The addition of the security constraint in our setting helps us circumvent
this hurdle. Essentially, we show that the only secure non-interactive simulation reduction
among samples of the erasure channel is the following. Alice outputs a parity of her input
xn, and Bob outputs the parity of yn ∈ {0, 1}n; otherwise Bob outputs ⊥. Interestingly, this
protocol is identical in spirit to the cryptography with one-way communication protocol as
presented in [GIK+15] when (1 − ε′) ∈ {(1 − ε), (1 − ε)2, . . . .}. However, all other ε′ are
feasible only with one-way communication [GIK+15].

Finally, we consider the interconversion among binary symmetric samples with different
flipping probabilities.
I Informal Theorem 3 (Binary Symmetric Samples: Feasibility). Fix any bit-flipping probabilities
ε′, ε ∈ (0, 1/2). Suppose, there exists an infinite family of reduction functions {fn, gn}n∈N
and insecurity bound ν(n) = negl(n) such that, for infinitely many n ∈ N, we have

BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n.

Then, there exists n∗ ∈ N and an infinite family of functions {f∗n, g∗n}n∈N such that
BSS(ε′) v0

f∗n,g
∗
n

BSS(ε)⊗n, for all n ≥ n∗. Furthermore, there exists k ∈ {1, 2, . . . , n∗}
such that (1− 2ε′) = (1− 2ε)k, f∗n = g∗n, and either f∗n or −f∗n is the parity of some k input
bits.
Note that one cannot increase the reliability of the binary symmetric channel, which is
identical to the result in [GIK+15]. Furthermore, unlike [GIK+15], we also rule out the
possibility of secure non-interactive simulation for any (1− 2ε′) 6∈

{
(1− 2ε), (1− 2ε)2, . . .

}
.

For such ε′, any non-interactive simulation is constant insecure.
At the outset, this theorem looks similar to the theorem for binary erasure channels;

however, there are exciting subtleties involved. The theorem above states that one can
securely non-interactively simulate samples of the binary symmetric channel as follows.
Alice outputs the parity of her input xn, and bob also outputs the parity of his input yn.
Interestingly, we prove that there are (non-trivial) non-linear reduction functions as well;
however, they are inefficient for generating one sample. That is, for every non-linear reduction,
there exists a more efficient linear reduction.

Consider the following example when (1− 2ε′) = (1− 2ε)2. So, when n = 2, the linear
reduction functions f2(x2) = x2

1 ⊕ x2
2, and g2 = f2 suffice.3 However, interestingly, there

exists non-linear reduction functions fn = gn for n = 4. For example, consider the reduction
function below.

f4(x4) = 2− (−1)x4
1+x4

3 − (−1)x4
2+x4

3 − (−1)x4
1+x4

4 + (−1)x4
2+x4

4

4 .

Although it is clear that the rate is upper bounded by m(n) ≤ n/2 when linear reductions
produce every output sample, it is not evident that the non-linear reductions cannot surpass
this rate. We leave this question as an exciting open research direction.

3 The symbol xni represents the i-th bit in the n-bit string xn ∈ {0, 1}n.
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We remark that secure non-interactive simulation of shared private randomness (a.k.a.,
the secure version of non-interactive correlation distillation) is also impossible starting from
multiple samples of BSS or BES because of the informal theorems above.

1.2 Prior Related Works
In this section, we discuss some of the closely related concepts in information theory and
cryptography. It is impossible to do justice to these vast fields by providing every perspective
into their respective research in this one section. Consequently, we cite and discuss only the
most relevant literature to these concepts.

Non-interactive simulation. Information theory studies the possibility of simulating
a sample from a joint distribution (U, V ) given multiples samples from the joint distribution
(X,Y ). This concept is referred to as non-interactive simulation of joint distributions. This
line of research starts from the seminal works of Gács and Körner [GK73] and Wyner [Wyn75].
The primary difference of this concept from our object of study is clearly the omission of
security. For example, it is permissible for parties to erase information from their views in
this setting. On the other hand, in our setting, since we consider semi-honest and malicious
security, erasure of information gives rise to insecurity. Let us consider an illustrative
example highlighting this difference. Consider simulating one sample of BSS(ε/2) from
multiple samples of BES(ε). Alice outputs the bit of her first sample. If Bob also received the
bit in his first sample, then he outputs the bit; otherwise, if he received ⊥ as his first sample,
he outputs a uniformly random bit.4 Note that this non-interactive simulation is not secure.5
Even the decision version of the problem where one has to determine whether samples from
one joint distribution may be non-interactively simulated from the samples of another joint
distribution, in its full generality, is a difficult problem [GKS16, DMN18]. Technically, reverse
hypercontractivity [AG76, Bor82, MOR+06, MOS13, KA16, DMN18, BG15, MO05a] and
maximal correlation [Hir35, Wit75, AG76, Rén59, AGKN13] are few of the most prominent
techniques employed to prove the impossibility of non-interactive simulations. We refer the
interested reader to an exceptional survey by Sudan, Tyagi, and Watanabe [STW19] for a
thorough introduction to this field.

There is a related notion of non-interactive correlation distillation, where the target joint
distribution is the distribution of uniformly random private keys [MOR+06, Yan04, MO05b].

Joint Distributions useful for Secure Computation. Not all joint distribution
(U, V ) are useful for general secure computation. If the mutual information of (U, V ) is 0,
then clearly this distribution does not suffice for key agreement, let alone secure computation,
which is more complex to realize than key agreement. Even if the mutual information of
(U, V ) is > 0, then this joint distribution might enable key agreement, but not support
general secure computation. Kilian [Kil00] exactly characterized all joint distributions that
enable general secure computation. Samples from, for example, BSS and BES satisfy this
characterization. The benefit of securely computation based on samples of joint distributions

4 Bob can simulate a uniformly random bit from multiple samples of the BES(ε) joint distribution.
5 Consider the following case analysis when Bob is corrupt. Consider Alice’s output being 0 and Bob’s

output being 0. The simulation strategy for Bob has to output ⊥ with probability (close to) ε/2
(1−ε)+ε/2

as the first simulated sample from BES(ε), and output 0 with probability (close to) 1−ε
(1−ε)+ε/2 as the

first simulated sample from BES(ε); otherwise, the simulation is insecure. Now consider the case when
Alice’s output is 1 and Bob’s output is 0. In this case, with probability (close to) 1−ε

(1−ε)+ε/2 , Bob’s
simulated first sample of BES(ε) is inconsistent with Alice’s output. Therefore, no secure simulation
strategy for Bob exists.
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is that these protocols are secure even against adversaries with unbounded computational
power.

Secure Computation with Low Interaction and Communication. Alice and Bob,
beginning from samples of any joint distribution that is useful for secure computation, may
perform general secure computation in a constant number of rounds [IK00, IK02, AIK04,
IPS08]. In fact, one can also perform secure computation at a constant rate6 [IKO+11].
Recently, Garg, Ishai, Kushilevitz, Ostrovsky, and Sahai [GIK+15] explore the potential of
secure computation using noisy channels and one-way communication. In their setting, they
leave open several feasibility/infeasibility problems related to binary symmetric and binary
erasure channels. The proposed notion of secure non-interactive secure simulation in this
work, permits no communication between the parties.

2 Preliminaries

2.1 Notations
We denote [n] as the set {1, 2, . . . n}, and N = 2n. The distribution U{0,1}n is the uniform
distribution over the set {0, 1}n. For two functions f, g defined on the same domain, we
use f = g when the value of f and g are equal for each element of their domain. We use
script letters X ,Y, . . . to denote finite sets, and µ usually denotes a probability distribution.
(X ,Y) is a joint probability space. We use X,Y to denote random variables. For xn ∈ Xn,
we represent xni ∈ X as the i-th coordinate of xn.

Statistical Distance. The statistical distance between two distributions P and Q over
a (discrete) sample space Ω is defined as the following.

SD (P,Q) = 1
2
∑
x∈Ω
|P (x)−Q(x)| .

2.2 Correlated Random Sources and Noise Operator
Binary Symmetric Source. A binary symmetric source with flipping probability ε ∈ (0, 1),
denoted as BSS(ε), is a joint distribution over the sample space {0, 1} × {0, 1} such that if
(X,Y ) $←− BSS(ε), then Pr[X = 0, Y = 1] = Pr[X = 1, Y = 0] = ε/2, and Pr[X = 0, Y = 0] =
Pr[X = 1, Y = 1] = (1− ε)/2.

Binary Erasure Source. A binary erasure source with erasure probability ε ∈ (0, 1),
denoted as BES(ε), is a joint distribution over the sample space {0, 1} × {0, 1,⊥} such
that if (X,Y ) $←− BES(ε), then Pr[X = 0, Y = 0] = Pr[X = 1, Y = 1] = (1 − ε)/2, and
Pr[X = 0, Y = ⊥] = Pr[X = 1, Y = ⊥] = ε/2.

Noise Operator. Let ρ ∈ [0, 1] be the parameter determining the noise. For each fixed
bit string xn ∈ {0, 1}n, we write yn $←− Nρ(xn) to denote that the random string yn is drawn
as follows: for each i ∈ [n], independently, yni is equal to xni with probability ρ and it is
uniformly random with probability 1− ρ. The noise operator with parameter ρ ∈ [0, 1] is the
linear operator Tρ on function f : {0, 1}n → R defined as Tρf(xn) = Eyn∼Nρ(xn)[f(yn)]. We
say that yn is ρ-correlated to xn.
Note that if (Xn, Y n) $←− BSS(ε), then Y n is ρ-correlated to Xn with parameter ρ = 1− 2ε.

6 One can equivalently interpret constant rate as spending a constant number of samples to perform one
multiplication/AND-gate secure in an ammortized sense.
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2.3 Fourier Analysis for Boolean Functions: Preliminaries
We recall some background in Fourier analysis that will be useful for our analysis (see [O’D14]
for more details). Let f, g : {0, 1}n → R be two real-valued Boolean functions. We define the
inner product as following.

〈f, g〉 = 1
N

∑
x∈{0,1}n

f(x) · g(x) = E
x

[f(x) · g(x)]

For each S ⊆ [n], the characteristic function χS(x) = (−1)S·x = (−1)
∑

i∈S
xi is a linear

function that computes the parity (that is, the exclusive-or) of of the bits (xi)i∈S . The set
all χS forms an orthonormal basis for the space of all real-valued functions on {0, 1}n. For
any S ⊆ [n], the Fourier coefficient of f at S is defined as f̂(S) = 〈f, χS〉. Any function f
can be uniquely expressed as f =

∑
S∈[n] f̂(S)χS , called Fourier expansion of f . The Fourier

weight of f on a set S ⊆ [n] is defined to be f̂(S)2, and the Fourier weight of f at degree k
is Wk[f ] =

∑
S:|S|=k f̂(S)2.

Next we summarize the basic Fourier analysis on Boolean function with restriction on
the sub-cubes. Let J and J̄ be a partition of the set [n]. Let fJ|z : {0, 1}J → R denote
the restriction of f to J when the coordinates in J̄ are fixed to z ∈ {0, 1}J̄ . Let f̂J|z(S)
be the Fourier coefficient of the function fJ|z corresponding to the set S. Then, when we
assume that z ∈ {0, 1}J̄ is chosen uniformly at random, we have Ez[f̂J|z(S)] = f̂(S), and
Ez[f̂J|z(S)2] =

∑
T⊆J̄ f̂(S ∪ T )2.

3 Secure Non-Interactive Simulation: Definition

In this section, we define the notion of secure non-interactive simulation of joint distributions
using a simulation-based security definition [Can00b, Can00a, Can01]. Suppose (X,Y ) is a
joint distribution over the sample space X × Y, and (U, V ) be a joint distribution over the
sample space U × V. For n ∈ N, suppose fn : Xn → U and gn : Yn → V be two reduction
functions.

We clarify that it is standard in the literature to assume that the sample spaces X ,Y,U ,
and V are constant sized (i.e., does not depend on n). All the probabilities Pr[(X,Y ) = (x, y)]
and Pr[(U, V ) = (u, v)] are either 0 or at least a constant (i.e., for example, these probabilities
do not tend to 0 as a function of n).

We shall define simulation-based security for secure non-interactive reductions. In the
real world, we have the following experiment.

1. A trusted third party samples (xn, yn) $←− (X,Y )⊗n, and delivers xn ∈ Xn to Alice and
yn ∈ Yn to Bob.

2. Alice outputs u′ = fn(xn), and Bob outputs v′ = gn(yn).

For inputless functionalities and non-interactive computation, semi-honest and malicious
adversaries are identical. Furthermore, static and adaptive corruption are also identical for
this setting. So, for simplicity, one can always consider semi-honest static corruption to
interpret the security definitions. All forms of adversary mentioned above shall turn out to
be equivalent in our setting.

1. The case of no corruption. Suppose the environment does not corrupt any party. So,
it receives (U, V ) as output from the two parties in the ideal world. In the real world,
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the simulator receives (fn(Xn), gn(Y n) as output. If this reduction has at most ν(n)
insecurity, then the following must hold.

SD ( (U, V ) , (fn(Xn), gn(Y n)) ) ≤ ν(n).

2. The case of Corrupt Alice. Suppose the environment statically corrupt Alice. In
the real world, the simulator receives (Xn, fn(Xn), gn(Y n)). In the ideal world, we
have a simulator SimA : U → Xn that receives u from the ideal functionality, and
outputs (SimA(u), u) to the environment. The environment’s view is the random variable
(SimA(U), U, V ). If this reduction has at most ν(n) insecurity, then the following must
hold.

SD ( (SimA(U), U, V ) , (Xn, fn(Xn), gn(Y n)) ) ≤ ν(n).

3. The case of Corrupt Bob. Analogously, there exists a simulator for Bob SimB : V →
Yn and the following must hold if this reduction has at most ν(n) insecurity.

SD ( (U, V, SimB(V )) , (fn(Xn), gn(Y n), Y n) ) ≤ ν(n).

If there exists reductions functions fn, gn such that the insecurity is at most ν(n) as
defined above then we say that (U, V ) reduces to (X,Y )⊗n via reduction functions fn, gn
with insecurity at most ν(n). In our presentation, all secure reductions admit computationally
efficient simulators SimA and SimB. Moreover, all our impossibility results even rule out
simulators with unbounded computational power. We say that ν(n) is negligible in n if it
decays faster than any inverse-polynomial in n for sufficiently large values of n.

To make our paper accessible to a wider audience, we add a discussion on some conse-
quences of the definition of secure non-interactive simulation presented above.

1. The security definition above may be reinterpreted using averaging over (u, v) $←− (U, V )
as follows.

Alice corruption: E
(u,v)

$←−(U,V )

SD ( SimA(u) , (Xn|fn(Xn) = u, gn(Y n) = v) ) ≤ ν(n)

Bob corruption: E
(u,v)

$←−(U,V )

SD ( SimB(v) , (Y n|fn(Xn) = u, gn(Y n) = v) ) ≤ ν(n)

Intuitively, the first constraint states that (on average) the conditional distribution
(Xn|fn(Xn) = u, gn(Y n) = v) is independent of v, and the second constraint states that
the conditional distribution (Y n|fn(Xn) = u, gn(Y n) = v) is independent of u.

2. Consider a secure non-interactive simulation via reduction functions {fn, gn}n∈N that has
negligible insecurity, i.e., ν(n) = negl(n). Then, using the fact that Pr[(U, V ) = (u, v)]
is either 0 or at least a constant, the security definition implies the following for every
(u, v) ∈ Supp(U, V ).

SD ( SimA(u) , (Xn|fn(Xn) = u, gn(Y n) = v) ) ≤ negl(n)
SD ( SimB(v) , (Y n|fn(Xn) = u, gn(Y n) = v) ) ≤ negl(n)

3. Consider the non-interactive simulation of BES(ε′) from BES(ε)⊗2, where (1−ε′) = (1−ε)2,
with 0 insecurity. In this case we use the reduction function f2(x2) = x2

1⊕x2
2 and g2(y2) =⊥

if y2
1 =⊥, or y2

2 =⊥; otherwise, g2(y2) = y2
1 ⊕ y2

2 . Let us first visualize the entire joint
distribution in Table 1. We illustrate the consequences of the security definition using
the tables below. Consider the case of corrupt Alice in Table 2 and the case of corrupt
Bob in Table 3.
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v = 0 v =⊥ v = 1
00 11 0 ⊥ ⊥ 0 1 ⊥ ⊥ 1 ⊥⊥ 01 10

u = 0 00 (1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

ε2

4

11 (1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

ε2

4

u = 1 01 (1−ε)ε
4

ε(1−ε)
4

ε2

4
(1−ε)2

4

10 ε(1−ε)
4

(1−ε)ε
4

ε2

4
(1−ε)2

4

Table 1 Joint distribution induced by the reduction of BES(ε′) to BES(ε)⊗2. Rows have elements
in X 2 = {0, 1}2, and columns have elements in Y2 = {0, 1,⊥}2. The (x2, y2)-th entry in this matrix
represents the probability Pr

[
(X,Y )⊗2 = (x2, y2)

]
, and no-entry implies that the probability is 0.

v = 0 v =⊥ v = 1

u = 0 00 (1−ε)2
4

2ε−ε2
4

11 (1−ε)2
4

2ε−ε2
4

u = 1 01 2ε−ε2
4

(1−ε)2
4

10 2ε−ε2
4

(1−ε)2
4

Table 2 The case of corrupt Alice for the reduction of BES(ε′) to BES(ε)⊗2. The table illustrates
the joint distribution of (X2, V ). It suffices to let SimA(0) be the uniform distribution over {00, 11},
and SimA(1) be the uniform distribution over {01, 10}.

v = 0 v =⊥ v = 1
00 11 0 ⊥ ⊥ 0 1 ⊥ ⊥ 1 ⊥⊥ 01 10

u = 0 (1−ε)2
4

(1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

(1−ε)ε
4

ε(1−ε)
4

2ε2
4

u = 1 (1−ε)ε
4

ε(1−ε)
4

(1−ε)ε
4

ε(1−ε)
4

2ε2
4

(1−ε)2
4

(1−ε)2
4

Table 3 The case of corrupt Bob for the reduction of BES(ε′) to BES(ε)⊗2. The table illustrates
the joint distribution of (U, Y 2). It suffices to let SimB(0) be the uniform distribution over {00, 11},
SimB(1) be the uniform distribution over {01, 10}, and SimB(⊥) be the distribution that outputs
0 ⊥, 1 ⊥, ⊥ 0, and ⊥ 1 (each) with probability ε(1− ε)/(4ε− 2ε2), and outputs ⊥⊥ with probability
2ε2/(4ε− 2ε2).

3.1 Composition
In this section, we shall prove the sequential and parallel composition theorems for secure
non-interactive joint simulations.

As a first step, we introduce a few notations. Suppose P,Q are joint distributions
(X,Y ) and (X ′, Y ′) on sample spaces X × Y and X ′ × Y ′, respectively. The notation (P‖Q)
represents a joint distribution over the sample space (X × X ′) × (Y × Y ′) defined by the
following procedure. Sample (x, y) $←− (X,Y ), sample (x′, y′) $←− (X ′, Y ′), give the sample
(x, x′) to Alice and (y, y′) to Bob.

For reduction functions, we shall need the following notation. Suppose fn : Ω1 → Ω2, and
f ′n : Ω′1 → Ω′2. The function fn‖f ′n is a function Ω1 × Ω′1 → Ω2 × Ω′2 defined by the following
mapping (x, x′) 7→ (fn(x), f ′n(x′)).

We remark that, in the composition theorems below, the distribution P, P ′Q,Q′, and R
may depend on n itself.

I Theorem 1 (Parallel Composition). For joint distributions P, P ′, Q, and Q′, suppose we
have

P vν(n)
fn,gn

Q and P ′ vν
′(n)
f ′n,g

′
n
Q′.
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Then, the following holds.
(P‖P ′) vν(n)+ν′(n)

fn‖f ′n,gn‖g′n
(Q‖Q′).

Proof. Suppose the environment does not corrupt any party. Then, the bound follows from
a hybrid argument.

Suppose the environment corrupts Alice. Let SimA and Sim′A be the simulators for corrupt
Alice for P vν(n)

fn,gn
Q and P ′ vν

′(n)
f ′n,g

′
n
Q′, respectively. We consider the simulator SimA‖Sim′A

for (P‖P ′) vν(n)+ν′(n)
fn‖f ′n,gn‖g′n

(Q‖Q′). The result is immediate from a hybrid argument.
Similarly, when the environment corrupts Bob, the simulator SimB‖Sim′B serves as a the

simulator for the composed reduction, where SimB and Sim′B are simulators for corrupt Bob
in the reductions P vν(n)

fn,gn
Q and P ′ vν

′(n)
f ′n,g

′
n
Q′, respectively. J

We need one more notation for the sequential composition. Suppose fn : Ω → Ω′,
and f ′n : Ω′ → Ω′′. The function f ′n ◦ fn is a function Ω → Ω′′ defined by the mapping
x 7→ f ′n(fn(x)).

I Theorem 2 (Sequential Composition). For joint distribution P,Q, and R, suppose we have

P vν(n)
fn,gn

Q, and Q vν
′(n)
f ′n,g

′
n
R.

Then, the following holds.
P vν(n)+ν′(n)

fn◦f ′n,gn◦g′n
R.

Proof. The only non-trivial case is when the environment corrupts one of the parties, say,
Alice. Suppose SimA and Sim′A be the simulators when Alice is corrupted by the environment
in the reduction P vν(n)

fn,gn
Q and Q vν

′(n)
f ′n,g

′
n
R. Then, the simulator Sim′A ◦ SimA suffices to

prove the security of the reduction P vν(n)+ν′(n)
fn◦f ′n,gn◦g′n

R using a hybrid argument. J

4 Secure Non-interactive Simulation from Binary Erasure Source

4.1 Impossibility of Simulating Binary Symmetric Source from Binary
Erasure Source

We begin with a relatively simple proof that rules out the possibility of securely non-
interactively simulating samples of BSS(ε) from BES(ε)⊗n. We emphasize that this reduction
is not ruled out by (insecure) non-interactive simulation literature and cryptography with
one-way messages for any choice of ε, ε′ parameters. This result highlights the crucial role
that the notion of “security” plays in the proofs.

We begin by restating the Informal Theorem 1.

I Theorem 3. Let ε′ ∈ (0, 1/2), and ε ∈ (0, 1). For every infinite family of reduction
functions {fn, gn}n∈N, insecurity bound ν(n) = o(n−3/2), and sufficiently large n, we have

BSS(ε′) 6vν(n)
fn,gn

BES(ε)⊗n.

Proof. First, we shall rule our all ε′ 6= ε/2. Let S0 ⊆ {0, 1}n be the set of all xn ∈ {0, 1}n

such that fn(xn) = 0. Similarly, S1 = {0, 1}n \ S0 be the set of all xn ∈ {0, 1}n such that
fn(xn) = 1. Let ∂S0 ⊆ S0 be the elements whose neighbors on the boolean hypercube lie in
S1. Intuitively, ∂S0 is the outermost shell of S0 when embedded in the boolean hypercube.
Analogously, define ∂S1.
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Without loss of generality, assume that |∂S0| ≤ |∂S1| . By the isoperimetric inequality
on the boolean hypercube, we know that |∂S0| ≥ Θ(2n/

√
n) , because |S0| is close to 2n−1.

Greedily match elements in ∂S0 with elements in ∂S1 such that the matched elements are
neighbors in the boolean hypercube; there may be elements in ∂S1 that are left unmatched.
The matching is of size at least Θ

(
2n/n3/2) because every vertex in the hypercube has

degree n.
Consider any an ∈ ∂S0 and its matched neighbor bn ∈ ∂S1. Note that an and bn differ

in exactly one position. Consider any yn ∈ {0, 1,⊥}n. We say that an ` yn. (read, an is
consistent with yn) if for all 1 ≤ i ≤ n we have yni =⊥ or yni = ani . Intuitively, an ` yn if it
is possible to obtain yn by passing an through an erasure channel.

Define the following sets.

T0 = {yn : yn ∈ {0, 1,⊥}n, an ` yn, bn 6` yn}
T1 = {yn : yn ∈ {0, 1,⊥}n, an 6` yn, bn ` yn}

Tboth = {yn : yn ∈ {0, 1,⊥}n, an ` yn, bn ` yn}

Note that T0 is the set of all yn such that the index where an and bn differed survived,
and it agrees with the entry in an. Similarly, the set T1 is the set of all yn such that the
index where an and bn differed survived, and it agrees with the entry in bn. Finally, the set
Tboth is the set of all yn such that the index where an and bn differed was erased. Therefore,
we conclude that Pr[Y n ∈ T0|Xn = an ] = (1 − ε), Pr[Y n ∈ T1|Xn = bn ] = (1 − ε), and
Pr[Y n ∈ Tboth|Xn = an ] = Pr[Y n ∈ Tboth|Xn = bn ] = ε.

LetW0 ⊆ {0, 1,⊥}n is the set of all entries yn ∈ {0, 1,⊥}n such that gn(yn) = 0. Similarly
define W1 = {0, 1,⊥}n \W0. Our objective is to partition T0, Tboth, and T1 and allocate the
elements to W0 and W1 such that the following constraints hold simultaneously.

1. Pr[Y n ∈W0|Xn = an ] ≈ (1− ε′), and Pr[Y n ∈W1|Xn = an ] ≈ ε′.
2. Pr[Y n ∈W1|Xn = bn ] ≈ (1− ε′), and Pr[Y n ∈W0|Xn = bn ] ≈ ε′.

Any deviation from these probabilities contribute to simulation error for corrupt Alice.
Note that the simulation error (for corrupt Alice) shall be at least 1

2
∣∣ε′ − ε

2
∣∣ conditioned

on Xn ∈ {an, bn}. Therefore, the simulation error when Xn ∈ ∂S0 ∪ ∂S1 is at least
1
2
∣∣ε′ − ε

2
∣∣ · Pr[Xn ∈ ∂S0 ] ≥ Θ

(
|ε− 2ε′| /n3/2) = Θ

(
n−3/2). Therefore, it is impossible to

have ν(n) = o(n−3/2) insecurity.
At this point, we have ruled out secure non-interactive reduction for all ε′ 6= ε/2. If

possible let there exists a secure non-interactive simulation

BSS(ε/2) vν(n)
fn,gn

BES(ε)⊗n.

Then, by parallel composition, we have

BSS(ε/2)⊗2 v2ν(n)
fn‖fn,gn‖gn BES(ε)⊗2n

.

We know that BSS(ε− ε2/2) v0
parity2,parity2

BSS(ε/2)⊗2 using the parity reductions (refer to
the results in Section 5). By sequential composition, we have

BSS(ε− ε2/2) v2ν(n)
fn⊕fn,gn⊕gn BES(ε)⊗2n

.

Note that ε−ε2/2 6= ε/2, for all ε ∈ (0, 1). Therefore, we have shown the secure non-interactive
simulation of BSS(ε′), for some ε′ 6= ε/2, from samples of BES(ε), which contradicts the first
part of the proof. Consequently, our initial assumption that BSS(ε/2) vν(n)

fn,gn
BES(ε)⊗n must

be false.
This argument completes the proof ruling out all ε′ ∈ (0, 1/2). J
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We emphasize that the case of corrupt Alice suffices to rule out all secure non-interactive
simulation of a BSS(ε′) sample, where ε′ 6= ε/2.

4.2 Binary Erasure Source: Feasibility and Rate
We start with restating the Informal Theorem 2 as follows.

I Theorem 4 (Binary Erasure Channel: Feasibility & Rate). Let ε′, ε ∈ (0, 1). Suppose
there exists an infinite family of reduction functions fn : {0, 1}n → {−1, 1}, gn : {0, 1,⊥}n →
{−1, 0, 1}, and insecurity bound ν(n) = o(1) such that BES(ε′) vν(n)

fn,gn
BES(ε)⊗n for infinitely

many n ∈ N. Then, the following holds:

1. There exists n∗ ∈ N and an infinite family of reduction functions f∗n : {0, 1}n → {−1, 1},
g∗n : {0, 1,⊥}n → {−1, 0, 1} such that BES(ε′) v0

f∗n,g
∗
n

BES(ε)⊗n for all n ≥ n∗.
2. Furthermore, there exists k ∈ [n∗] such that (1 − ε′) = (1 − ε)k, f∗n(x) = g∗n(x), for all

x ∈ {0, 1}n, and either f∗n or −f∗n is the parity of a set of k input bits.
3. Moreover, if there exists an infinite family of functions {fn, gn}n∈N and insecurity bound

ν(n) = o(1) such that, for infinitely many n ∈ N, we have BES(ε′)⊗m(n) vν(n)
fn,gn

BES(ε)⊗n.
Then, we have m(n) ≤ n/k.

Before proving Theorem 4, we introduce some new notations that we will use in this section.
Let A ⊆ [n], then define ynA ∈ {0, 1,⊥}n as a string achieved from yn ∈ {0, 1,⊥}n

by erasing all bits ynj for j ∈ A and keeping all bits ynj for j 6∈ A. For example, if
y6 = (0, 1,⊥, 1,⊥, 0) then y6

{1,4,5} = (⊥, 1,⊥,⊥,⊥, 0). We call ynA as an erased version of ynA
and yn as a refined version of ynA. Moreover, we say that zn is a complete refined version of
yn if zn ∈ {0, 1}n and it is a refined version of yn. For example, if y5 = (0,⊥, 1, 1,⊥), then
the set of all refined versions of y5 is the following set:

{(0, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1), (0, 1, 1, 1, 1),
(0,⊥, 1, 1, 0), (0,⊥, 1, 1, 1), (0, 0, 1, 1,⊥), (0, 1, 1, 1,⊥)}

while the set of all complete refined versions of y5 is the following set:

{(0, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1), (0, 1, 1, 1, 1)}

We call the set of all complete refined versions of yn as the span of yn and we denote
it by Sp(yn). More formally, Sp(yn) = {an ∈ {0, 1}n : an ` yn}. For instance, if y5 =
(0,⊥, 1, 1,⊥), then

Sp(y5) = {(0, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1), (0, 1, 1, 1, 1)}

Suppose (Xn, Y n) ∼ BES(ε)⊗n ( Y n denotes the distribution of the output of the channel
BES(ε)⊗n when the input string is chosen uniformly at random i.e. Xn ∼ U{0,1}n). For
each yn ∈ {0, 1,⊥}n, we define M(yn) as the uniform distribution over Sp(yn) (the set of all
an ∈ {0, 1}n such that an is consistent with yn i.e. an ` yn ).

For example, when n = 4 and y4 = 01⊥⊥, M(y4) denotes the uniform distribution over
the set Sp(y4) = {0100, 0101, 0110, 0111}. For each xn ∈ {0, 1}n, let Qε(xn) denotes the
conditional distribution over {0, 1,⊥}n when the input is xn. We also use Pε to denote the
marginal distribution of Y n over {0, 1,⊥}n.

Note that we choose the range of reduction function fn to be {−1, 1} and the range of gn to
be {−1, 0, 1}, so we can rewrite the three conditions of the definition of secure non-interactive
simulation, mentioned in Section 3, for BES as the following algebraic constraints.
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From our discussion in Section 3, it follows from BES(ε′) vν(n)
fn,gn

BES(ε)⊗n the following
three conditions:

1. Correctness: Assuming (Xn, Y n) ∼ BES(ε)⊗n, we have:

SD ((fn(Xn), gn(Y n)), (U, V )) ≤ ν(n)

which imply Exn∼U{0,1}n [fn(xn)] ≤ ν(n), and Eyn∼Pε [gn(yn)] ≤ ν(n).
2. Bob security: Exn∼U{0,1}n

∣∣Eyn∼Qε(xn)gn(yn)− (1− ε′)fn(xn)
∣∣ ≤ ν(n).

3. Alice security: Eyn∼Pε
∣∣Exn∼M(yn) fn(xn)− gn(yn)

∣∣ ≤ ν(n).

Intuitively, the correctness implies that Alice can partition the set {0, 1}n into two sets
S0, S1 of (roughly) equal size such that whenever she gets xn ∈ Si, she outputs i for i ∈ {0, 1},
and Bob can partition the set {0, 1,⊥}n into 3 sets T0, T1, T⊥ such that Pr[yn ∈ T0 ], and
Pr[yn ∈ T1 ] are almost equal and whenever he gets yn ∈ Tj , he outputs j. Alice security
implies that if Bob receives some yn ∈ Ti for i ∈ {0, 1}, then most of xn consistent with yn
must belong to Si, and if yn ∈ T⊥, (roughly) half of them must belong to S0 and the other
half must belong to S1.

We show in Lemma 1 that when we have perfect security (the case that ν(n) = 0), Alice’s
reduction function fn must be a linear function and there exists some k ∈ [n] such that
1− ε′ = (1− ε)k.

I Lemma 1. Let n be a positive integer. Suppose BES(ε′) v0
fn,gn

BES(ε)⊗n for some
functions fn : {0, 1}n → {−1, 1} and gn : {0, 1,⊥}n → {−1, 0, 1}. Then, there exists S ⊆ [n]
such that fn(xn) = χS(xn) for all xn ∈ {0, 1}n. Moreover, gn(yn) = χS(yn) if yni 6= ⊥ for
all i ∈ S, otherwise if there exists at least j ∈ S such that ynj = ⊥, then gn(yn) = 0. Finally,
we have (1− ε′) = (1− ε)k where |S| = k.

We shall present two proofs for this lemma. The first one is a combinatorial proof while
the second one is a proof in which Fourier analysis is used. We use Claim 1 to prove Lemma 1.
We define Si = {xn ∈ {0, 1}n : fn(xn) = i} for i ∈ {−1, 1} and Tj = {yn ∈ {0, 1,⊥}n :
gn(yn) = j} for j ∈ {−1, 0, 1}.

I Claim 1. Suppose BES(ε′) v0
fn,gn

BES(ε)⊗n for ε ≤ 1
2 , then S0 ⊆ T+1 and S1 ⊆ T−1.

Proof. Based on definition of security, we have

E
yn∼Pε

∣∣∣∣ E
xn∼M(yn)

fn(xn)− gn(yn)
∣∣∣∣ ≤ ν(n).

Fix yn ∈ {0, 1}n, then Exn∼M(yn) fn(Xn) = fn(yn) because for yn ∈ {0, 1}n, we know
that Pr[Xn = yn|Y n = yn ] = 1 according to the distribution of BES(ε)⊗n. This implies
that Eyn∼Pε [|fn(yn)− gn(yn)| |yn ∈ {0, 1}n] ≤ ν(n)

Pr[yn∈{0,1}n ] = ν(n)
2n×(1−ε)n ≤ ν(n). In case of

perfect secrecy ν(n) = 0 which implies that fn(yn) = gn(yn) for any yn ∈ {0, 1}n. This
completes the proof. J

Now, we start proving Lemma 1:
Perfect security implies linearity of fn. Recall from Subsection 2.3 that fJyn |zyn :

{0, 1}|Jyn | → R denotes the restriction of fn to Jyn when the coordinates in J̄yn are fixed
to be equal to the non erased bits of yn, denoted by the string zyn . More precisely, for
each yn ∈ {0, 1,⊥}, we define Jyn = {i ∈ [n] : yni = ⊥}n and zyn is the concatenation of
all non-bot (non erased) symbols in yn. For example, when y4 = 01⊥⊥, Jy4 = {3, 4} and
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zy4 = 01. Since Jyn and zyn are well defined for any yn ∈ {0, 1,⊥}n, we use fyn instead of
fJyn |zyn .

The condition on Bob security implies that f̂yn(∅) = Exn∼M(yn) fn(xn) must agree with
gn(yn) on every input yn ∈ {0, 1,⊥}n. This implies that f̂yn(∅) is always 0, 1, or −1 for any
yn. Note that for yn = ⊥⊥ . . .⊥, we have f̂yn(∅) = Exn∼U{0,1}n fn(xn) = 0 due to correctness
and for any yn ∈ {0, 1}n, f̂yn(∅) ∈ {−1, 1} based on Claim 1 (refer to Observation 1).

This implies that there exists some S ⊆ [n] and zn ∈ {0, 1,⊥}n such that Jzn = S and
f̂zn(∅) 6= 0 but f̂yn(∅) = 0 for any yn ∈ {0, 1,⊥}n such that S ( Jyn .

For each permutation π of (1, 2, . . . , n), we construct a complete binary tree of height n
inductively as follows. We call this tree Tπ.

1. Let f̂⊥⊥...⊥(∅) = f̂(∅) be the root.
2. For each node f̂yn at level i, create two children f̂y(l)(∅) and f̂y(r)(∅), where y(l)

j = y
(r)
j = ynj

for every j 6= π(i+ 1), and y(l)
π(i+1) = 0, and y(r)

π(i+1) = 1.

In Figure 1, an example of the complete binary tree corresponding to the permutation
π(i) = i for every i ∈ [n], has been provided. Note that there are exactly n! of such binary
trees corresponding to n! different permutations.

I Observation 1. For each leaf y ∈ {0, 1}n in any tree Tπ, we have f̂y(∅) ∈ {1,−1}.

Proof. This is true according to Claim 1. J

I Observation 2. For each π, each internal node in Tπ is the average of its children, so Tπ
corresponds to a martingale.

Proof. This is can be seen by applying the law of total expectation:

f̂yn(∅) = E
xn∼M(yn)

fn(xn) = 1
2 × E

xn∼M(y(l))
fn(xn) + 1

2 × E
xn∼M(y(r))

fn(xn)

J

I Observation 3. For any y ∈ {0, 1,⊥}n, the value f̂y(∅) appears in exactly k!(n− k)! trees,
where k is the number of non-erased bits in y.

In the perfect security case, for every yn ∈ {0, 1,⊥}n, we have f̂yn(∅) = g(yn). This together
with Observation 1, imply that there exists yn ∈ {0, 1,⊥}n such that f̂y(∅) = g(y) = 1 or −1.
Let yn ∈ {0, 1,⊥}n be an string with the minimum number of non-erased bits such that
f̂yn(∅) 6= 0. Without loss of generality, we can assume that g(yn) = f̂yn(∅) = 1 and let k be
the number of non-erased bits of such yn. Recall that Jyn = {i ∈ [n] : yni = ⊥} and zyn is
the concatenation of all non-bot symbols in yn.

I Claim 2. Let yn ∈ {0, 1,⊥}n be a string with the minimum number of non-erased bits such
that f̂yn(∅) 6= 0. For every zn ∈ {0, 1,⊥}n such that Jzn = Jyn it holds that f̂zn(∅) ∈ {1,−1}.

Proof. Suppose that |J̄yn | = k. Let Ayn denote the set of all zn ∈ {0, 1,⊥}n such that
Jyn = Jzn . We assign each string in Ayn to some node of the sub-cube Qk such that there
is an edge between two nodes in Qk if and only if the Hamming distance between the
corresponding two strings is exactly 1. We know that Qk has a Hamiltonian cycle and so it
has a Hamiltonian path starting from node yn. Let y(1), y(2), . . . , y(2k) (to make our notation
simpler, we drop n from y(j)’s) be that Hamiltonian path where y(1) = yn. Note that for
each j, y(j) and y(j+1) are different in exactly one element and there exists at least one tree
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f̂(∅)

f̂0⊥...⊥(∅) f̂1⊥...⊥(∅)

̂f00⊥...⊥(∅) ̂f01⊥...⊥(∅) ̂f10⊥...⊥(∅) ̂f11⊥...⊥(∅)

Figure 1 The first two levels of the tree corresponding to the permutation 1, 2, 3, . . . , n

Tπ such that these two nodes are siblings at level k, so if zn denotes the parent of these
two nodes in Tπ, we have 1

2 × f̂y(j)(∅) + 1
2 × f̂y(j+1)(∅) = f̂zn(∅), but since |Jzn | = k − 1,

f̂zn(∅) = 0 which implies that f̂y(j)(∅) = −f̂y(j+1)(∅) for each j. Since f̂y(1)(∅) = f̂yn(∅) = 1
it follows that f̂zn(∅) ∈ {1,−1} for any zn ∈ Ayn . J

We can use combinatorial argument or Fourier analysis to complete the proof of Lemma 1.
Combinatorial argument for perfect security: In the last step of the proof of

Claim 2, we are assigning +1 and −1 to all nodes in the same level of the trees Tπ such that
the values assigned to any two neighbour nodes on the sub-cube Qk, must be different(one of
them is +1 and the other is −1). We know that Qk is a bipartite graph and has a Hamiltonian
cycle. Neighbours on this cycle belong to different two parts of this bipartite graph. This
means that the parity of weight of (the number of bits 1 of) the nodes on this cycle are
different. According to the proof of Claim 2, perfect security implies that there exists a level
k such that the values of g for the nodes yn at this level are +1 or −1 and for all nodes (or
strings) with the same parity the value of g is the same. In perfect security, whenever the
value of a node on a tree Tπ is +1 or −1, then all the descendants of that node are +1 or −1
respectively. This implies that g is a linear function of the k bits in the set J̄yn such that

gn(zn) = (−1)
∑

j∈J̄yn
znj for each zn ∈ {0, 1,⊥}n that znj 6= ⊥ for j ∈ J̄yn and gn(zn) = 0 if

there exists at least an index j ∈ J̄yn such that znj = ⊥. This means that in the simulated
source a simulated bit is not erased if and only if all the bits with indices in the set J̄yn are
not erased; this happens with probability (1− ε)|J̄yn | = (1− ε)k, so 1− ε′ = (1− ε)k.

Since in perfect security for each string yn ∈ {0, 1}n, f(yn) = g(yn) (refer to Claim 1), it
implies that f is linear on its domain.

Proof of perfect security by Fourier analysis: By using Claim 2 and equation
Ez[f̂J|z(S)2] =

∑
T⊆J̄ f̂(S ∪ T )2, we have∑

T⊆J̄yn

f̂(T )2 = E f̂yn(∅)2 = 1. (1)

By the way that we choose yn, it must be the case that f̂zn(∅) = 0 for every zn ∈ {0, 1,⊥}n
such that |Jzn | > |Jyn | = n− k. Again applying the same equation, for all previous levels
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1, 2, . . . , k − 1 of the k!× (n− k)! different trees, we get the following:∑
T⊆S

f̂(T )2 = E f̂y′(∅)2 = 0 for every S ( J̄yn .

This implies that f̂(S) = 0 for every S ( J̄yn . Now, from equation 1, we can conclude that
f̂(J̄yn)2 = 1, which means that f is a linear function.

So far, we have given a necessary condition for perfectly secure non-interactive simulation
of BES(ε′) from BES(ε). In Lemma 2, we present a perfectly secure protocol which realizes
the necessary conditions.

I Lemma 2. Let ε ∈ (0, 1) and k be some positive integer. Let n be a positive integer
such that n ≥ k. Let fn = χS be a linear function, where S ⊆ [n] and |S| = k. We define
gn : {0, 1,⊥}n → {−1, 0, 1} as following.

gn(yn) =
{

0 if ∃i ∈ S such that yni = ⊥
χS(yn) otherwise.

Then, we have BES(ε′) v0
fn,gn

BES(ε)⊗n, where ρ′ = 1− ε′ = (1− ε)k = ρk.

Proof. The value gn(yn) is equal to 0 if and only if there exists at least an index i such that
yni = ⊥. So, we have the following:

Pr[gn(yn) = 0] = Pr[∃i ∈ S such that yni = ⊥] = 1− Pr[∀i ∈ S, yni 6= ⊥]

= 1−
∏
i∈S

Pr[yni 6= ⊥] = 1−
∏
i∈S

(1− Pr[yni = ⊥])

= 1− (1− ε)|S| = 1− (1− ε)k

Since whenever gn(yn) 6= ⊥, we have gn(yn) = fn(yn), we conclude that the given construction
simulates BES(ε′) where ε′ = Pr[gn(yn) = 0] = 1 − (1 − ε)k. We need to prove that it is
perfectly secure. For each xn,

E
yn∼Qε(xn)

gn(yn) = (1− ε)k × fn(xn) + (1− (1− ε)k)× 0 = (1− ε′)fn(xn)

and for each yn ∈ {0, 1,⊥}n such that for each i ∈ S, yni 6= ⊥,

E
xn∼M(yn)

fn(xn) = fn(yn) = gn(yn)

and for each yn ∈ {0, 1,⊥}n such that for at least an index i ∈ S, yni = ⊥, we have:

E
xn∼M(yn)

fn(xn) = E
xn∼M(yn)

χS(xn) = 0.

This completes the proof. J

We shall first prove some useful claims and then complete the proof of Theorem 4.

I Claim 3. We have

E
xn∼U{0,1}n

∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

fn(zn)− (1− ε′)fn(xn)
∣∣∣∣ ≤ 2ν(n).
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Proof. By triangle inequality we have

E
xn∼U{0,1}n

∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

fn(zn)− (1− ε′)fn(xn)
∣∣∣∣

(i)
≤ E

xn∼U{0,1}n

∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

fn(zn)− E
yn∼Qε(xn)

gn(yn)
∣∣∣∣+

E
xn∼U{0,1}n

∣∣∣∣ E
yn∼Qε(xn)

gn(yn)− (1− ε′)fn(xn)
∣∣∣∣

(ii)
≤ E

xn∼U{0,1}n

∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

fn(zn)− E
yn∼Qε(xn)

gn(yn)
∣∣∣∣+ ν(n)

(iii)
≤ E

xn∼U{0,1}n
E

yn∼Qε(xn)

∣∣∣∣ E
zn∼M(yn)

fn(zn)− gn(yn)
∣∣∣∣+ ν(n)

(iv)
= E

yn∼Pε

∣∣∣∣ E
zn∼M(yn)

fn(zn)− gn(yn)
∣∣∣∣+ ν(n)

(v)
≤ ν(n) + ν(n)
= 2ν(n)

In above, inequalities (i) and (iii) are true due to triangle inequality. Inequalities (ii) and
(v) are implied by Bob security and Alice security respectively. Equality (iv) is due to
the definitions of distributions Pε and Qε: drawing yn from marginal distribution Pε of
the distribution (xn, yn) ∼ BES(ε)⊗n is equivalent to drawing xn uniformly at random and
then drawing yn from conditional distribution Qε(ε) induced by the distribution (xn, yn) ∼
BES(ε)⊗n. J

Recall that the noise operator is defined as Tρ(fn)(xn) = Eyn∼Nρ(xn) fn(yn).

I Claim 4. Let ρ = 1− ε, then we have

E
yn∼Qε(xn)

E
zn∼M(yn)

fn(zn) = Tρ(fn)(xn).

Proof. Fix xn ∈ {0, 1}n. Drawing yn from the distribution Qε(xn) and then drawing zn
from the distribution M(yn) is equivalent to the following experiment: Erase each bit xni
with probability ε and do not erase it with probability 1− ε to get yni . Now, if yni 6= ⊥ (which
means that yni = xni ), then zni = yni (so zni = xni ), otherwise zni = 0 with probability 1

2 . This
means that for each xni , we have

Pr[zni = xni ] = Pr[zni = xni |yni = xni ] Pr[yni = xni ] + Pr[zni = xni |yni = ⊥] Pr[yni = ⊥]

= 1× (1− ε) + 1
2 × ε = 1− ε

2
And so Pr[zni = 1− xni ] = ε

2 . This completes the proof. J

I Claim 5. Let fn : {0, 1}n → {−1, 1}. Suppose that

E
xn∼U{0,1}n

|Tρ(fn)(xn)− ρ′fn(xn)| ≤ 2ν(n).

Then, there exists k(n) ∈ [n] such that
∣∣ρ′ − ρk(n)

∣∣ ≤ (50 · ν(n))1/4.

Proof. This claim can be easily verified by using Claim 8 for δ = 2ν(n). We will prove
Claim 8 in the next section. J



20 Secure Non-interactive Simulation

Proof of Theorem 4: It follows from Lemma 5 (proved in the next section) and Claim 5
that ρ′ = ρk for some integer k. This completes the proof of the second part of Theorem 4.
So we know that there exists integer k such that ρ′ = ρk. Moreover, we have shown a
perfectly secure construction in Lemma 2 such that ρ′ = ρk and we also proved that if we
have perfect security, then the only construction is parity. This completes the proof of the
first part. Finally, we present a proof for the third part of Theorem 4 in the following.

Upper bound on the rate. Observe that for any n, if BES(ε′)⊗m(n) vν(n)
fn,gn

BES(ε)⊗n,
there exists reduction functions f∗n, g∗n such that BES(ε′)⊗s(n) vν(n)

fn,gn
BES(ε)⊗n for any

s(n) ≤ m(n). In particular for s(n) = 1, if we just look at the first bit of the m(n)
bits a1, . . . , am(n) output by function f∗n, we realize that BES(ε′) vν(n)

fn,gn
BES(ε)⊗n. Now,

according to the first part and second part of Theorem 4, for sufficiently large n, there
exists some k ∈ [n∗] such that (1 − ε′) = (1 − ε)k and also a subset of size k of the n bits
x1, . . . , xn whose parity determines the first bit simulated by Alice a1. This is also true for
each bit ai. Now, suppose m(n) ≥ n/k, there exists at least two subsets of size k of the n
bits given to Alice whose intersection is not empty. Without loss of generality, assume that
x1, . . . , xk determines the first bit a1 and xk+1, . . . , x2k determines the second bit a2. Notice
that whenever xk is ⊥, both a1 and a2 are ⊥. This implies that the distribution of a1 and
a2 is not independent which is a contradiction.

5 Simulation of BSS from BSS

In this section, we shall present our results for secure non-interactive simulation from binary
symmetric source, including both feasibility and rate results as in the Informal Theorem 3.
We begin with restating it formally as follows.

I Theorem 5 (Binary Symmetric Source to Binary Symmetric Source). Let ε, ε′ ∈ (0, 1/2).
Suppose there exists a family of reduction functions fn, gn : {0, 1}n → {−1, 1} for infinitely
many n ∈ N and security bound ν(n) such that BSS(ε′) vν(n)

fn,gn
BSS(ε)⊗n and limn→∞ ν(n) =

0. Then, the following holds:

1. There exists n∗ ∈ N and an infinite family of functions {f∗n, g∗n}n such that BSS(ε′) v0
f∗n,g

∗
n

BSS(ε)⊗n for all n ≥ n∗.
2. Furthermore, there exists S ⊆ [n] such that for every n ≥ n∗, f∗n = g∗n = χS, where χS is

the characteristic function. Moreover, ρ′ = ρk where k = |S|.

We begin with some notations and terminology that will use in this section. We denote
ρ = 1 − 2ε and ρ′ = 1 − 2ε′. We say that two functions are close if they agree on most of
the inputs, more concretely, for functions with the range over {−1, 1}, they are close if their
inner product is close to 1. Recall that Tρ is the linear noise operator. It takes as input a
function, for example f : {0, 1}n → {−1, 1}, and returns a function Tρ(f) : {0, 1}n → R. We
state and prove all the lemmas that are needed for the proof of Theorem 5.

First the three conditions for secure non-interactive simulation BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n

can be algebraized as follows.

I Lemma 3. Let n be any positive integer, and let ε′, ε ∈ (0, 1/2). Suppose BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n for some functions fn, gn : {0, 1}n → {−1, 1} and ν(n) ≥ 0. Then, the following
holds

1. Correctness: E[fn(xn)] ≤ ν(n), E[gn(xn)] ≤ ν(n), and |E [fn(xn) · gn(yn)]− ρ′| ≤ ν(n),
where (xn, yn) $←− BSS(ε)⊗n.
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2. Alice security: Eyn∼U{0,1}n |Tρ(fn)(yn)− ρ′ · gn(yn)| ≤ ν(n).
3. Bob security: Exn∼U{0,1}n |Tρ(gn)(xn)− ρ′ · fn(xn)| ≤ ν(n).

Proof. Basically, this lemma follows from the discussions as mentioned in Section 3. We
describe some intuition here. Recall that for binary symmetric source BSS(ε) each bit is
flipped with probability ε, in other words, for each sample (x, y) $←− BSS(ε), the bits x and
y are ρ-correlated. By choosing the range of the two functions fn, gn appropriately, that
is {−1, 1}, we can rewrite the three conditions for the secure non-interactive simulation
BSS(ε′) vν(n)

fn,gn
BSS(ε)⊗n nicely. More concretely, the condition for the no corruption case,

that is,
SD ((fn(Xn), gn(Y n)), (U, V )) ≤ ν(n)

implies that E[fn] ≤ ν(n), E[gn] ≤ ν(n), and |E[fn(Xn) · gn(Y n)− ρ′| ≤ ν(n)] by simple
applications of triangle inequalities. Next, the condition for corrupt Alice

E
(u,v)

$←−BSS(ε′)

SD ( SimA(u) , (Xn|fn(Xn) = u, gn(Y n) = v) ) ≤ ν(n),

implies that on average the conditional distribution (Xn|fn(Xn) = u, gn(Y n) = v) is inde-
pendent of v. Let S0 be the set of all entries xn ∈ {0, 1}n such that fn(xn) = 1 and S1 be
the set of all entries xn ∈ {0, 1}n such that fn(yn) = −1. We define T0 and T1 similarly for
gn. Then, we have

Pr[Y n ∈ T0|Xn = xn] ≈ 1− ε′ andPr[Y n ∈ T1|Xn = xn] ≈ ε′ for every xn ∈ S0.

This implies that

Pr[Y n ∈ T0|Xn = xn]− Pr[Y n ∈ T1|Xn = xn] ≈ 1− 2ε′ for every xn ∈ S0,

or equivalently, Tρ(gn)(xn) ≈ ρ′fn(xn) for every xn ∈ S0. Similarly, we have Tρ(gn)(xn) ≈
ρ′fn(xn) for every xn ∈ S1. Therefore, we have

E
xn∼U{0,1}n

|Tρ(gn)(xn)− ρ′ · fn(xn)| ≤ ν(n).

Analogously, the other security condition also holds. J

Next, we state and prove our main technical lemma of this section. Briefly, using the
fact that the function Tρ(fn) is close to ρ′gn and that the function Tρ(gn) is close to ρ′fn, it
must be the case that the two functions fn and gn are also close. This together with the fact
that fn is {−1, 1}-valued function imply that the function Tρ(fn) is close to the function
ρ′fn that allows us to conclude that ρ′ is close to ρk(n) for some k(n) ∈ [n].

I Lemma 4. Let n be any positive integer, and let ε′, ε ∈ (0, 1/2). Suppose BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n for some functions fn, gn : {0, 1}n → {−1, 1} and ν(n) ≥ 0. Then, fn and gn agree
on most of the inputs xn ∈ {0, 1}n, that is, 〈fn, gn〉 ≥ 1− 5

√
ν(n)

2ρ′ . Furthermore, there exists
k(n) ∈ [n] such that ∣∣∣ρ′ − ρk(n)

∣∣∣ ≤ √5
(
ν(n) + 5

√
ν(n)

)1/4
.

We prove the following claims that are needed for the proof of Lemma 4.

I Claim 6. For any functions f, g : {0, 1}n → R, and any ρ > 0, the following holds

〈f,Tρf〉+ 〈g,Tρg〉
2 ≥ |〈f,Tρg〉| = |〈g,Tρf〉|
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Proof. Recall that T̂ρf(S) = ρ|S|f̂(S) for every S ⊆ [n]. So we have the following equations

〈f,Tρg〉 = 〈g,Tρf〉 =
∑
S

ρ|S|f̂(S)ĝ(S),

〈f,Tρf〉 =
∑
S

ρ|S|f̂(S)2,

〈g,Tρg〉 =
∑
S

ρ|S|ĝ(S)2.

Using term-wise AM-GM, we have
〈f,Tρf〉+ 〈g,Tρg〉

2 ≥ |〈f,Tρg〉| = |〈g,Tρf〉|,

which give us the inequality as desired. J

I Claim 7. Let n be any positive integer, and let ε′, ε ∈ (0, 1/2). Suppose BSS(ε′) vδf,g
BSS(ε)⊗n for some functions f, g : {0, 1}n → {−1, 1} and δ ≥ 0. Then, f and g agree on
most of the inputs x ∈ {0, 1}n, that is, 〈f, g〉 ≥ 1− 5

√
δ

2ρ′ .
Furthermore, we have

E
x
|Tρf(x)− ρ′f(x)| ≤ δ + 5

√
δ.

Proof. Let a = |A|/N , and A = {x ∈ {0, 1}n : f(x) = g(x)}. Note that 〈f, g〉 = 2a− 1. We
shall show that a is close to 1. By Claim 6 we have

〈f,Tρf〉+ 〈g,Tρg〉
2 ≥ |〈f,Tρg〉| = |〈g,Tρf〉| (2)

The main idea is that we will upper bound the left hand side and lower bound the right
hand side of the inequality above to get an inequality constraint for a, from which we can
conclude that a is close to 1.
Upper bound for the left hand side. By the security requirement, we have

E
x∼U{0,1}n

|Tρg(x)− ρ′f(x)| ≤ δ,

which is equivalent to
E

x∼U{0,1}n
|f(x)Tρg(x)− ρ′| ≤ δ.

By an averaging argument, there exists a least 1 −
√
δ fraction of x ∈ {0, 1}n such that

|f(x)Tρg(x)− ρ′| ≤
√
δ, and at most

√
δ fraction such that |f(x)Tρg(x)− ρ′| >

√
δ. Clearly

|f(x)Tρg(x)− ρ′| ≤ 1. Therefore

〈f,Tρf〉 = E
x∈{0,1}n

f(x)Tρf(x)

= 1
N

 ∑
x:f(x)=g(x)

f(x)Tρf(x) +
∑

x:f(x)=−g(x)

f(x)Tρf(x)


= 1
N

∑
x∈A

f(x)Tρg(x)−
∑
x6∈A

f(x)Tρg(x)


≤ 1
N

∑
x∈A

(ρ′ +
√
δ) +

∑
x 6∈A

(−ρ′ −
√
δ)

+
√
δ · 1

= (2a− 1)ρ′ +
√
δ +
√
δ

= (2a− 1)ρ′ + 2
√
δ
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Similarly, we get 〈g,Tρg〉 ≤ (2a− 1)ρ′ + 2
√
δ.

Lower bound for the right hand side.

|〈f,Tρg〉| ≥ (1−
√
δ)(ρ′ −

√
δ) +

√
δ · (−1) = ρ′ +

√
δ −√ρ(ρ′ −

√
δ + 1) ≥ ρ′ − 3

√
δ

Putting things together. Therefore, we have (2a− 1)ρ′ + 2
√
δ ≥ ρ′ − 3

√
δ, which implies

that a ≥ 1− 5
√
δ

2ρ′ . Next, by triangle inequality,

E
x
|Tρf(x)− ρ′f(x)| ≤ E

x
|Tρf(x)− ρ′g(x)|+ ρ′ E

x
|g(x)− f(x)| ≤ δ + 2ρ′ 5

√
δ

2ρ′ = δ + 5
√
δ,

which completes our proof of Claim 7. J

I Claim 8. Let f : {0, 1}n → {−1, 1}. Suppose that Ex |Tρf(x)− ρ′f(x)| ≤ δ. Then there
exists k ∈ [n] such that

∣∣ρ′ − ρk∣∣ ≤ √5 · δ1/4.

Proof. By an averaging argument, we have

E
x

(Tρf(x)− ρ′f(x))2 ≤ (1−
√
δ)δ +

√
δ · 22 ≤ 5

√
δ

By Parseval’s identity,

E
x

(Tρf(x)− ρ′f(x))2 =
∑
S⊆[n]

̂Tρf − ρ′ · f(S)2 =
∑
S

(
T̂ρf(S)− ρ′f̂(S)

)2
=
∑
S

(ρ|S| − ρ′)2f̂(S)2

Let γ = mink∈[n]
∣∣ρ′ − ρk∣∣, then∑

S

(ρ|S| − ρ′)2f̂(S)2 ≥
∑
S

γ2f̂(S)2 = γ

So it must be the case that γ2 ≤ 5
√
δ, which implies that

∣∣ρ′ − ρk∣∣ ≤ √5 · δ1/4. J

Now, we are ready to prove Lemma 4.

Proof of Lemma 4 . Applying Claim 7 for f = fn, g = gn, δ = ν(n), we have the following

〈fn, gn〉 ≥ 1−
5
√
ν(n)

2ρ′

Furthermore,
E
xn
|Tρ(fn)(xn)− ρ′fn(xn)| ≤ ν(n) + 5

√
ν(n).

Applying Claim 8 for f = fn, g = gn and δ = ν(n) + 5
√
ν(n), there exists k(n) ∈ [n] such

that ∣∣∣ρ′ − ρk(n)
∣∣∣ ≤ √5

(
ν(n) + 5

√
ν(n)

)1/4
,

which completes our proof. J

I Lemma 5. Let {k(n)}n∈I be a sequence of positive integers and {νn}n∈I be a sequence of
positive real numbers such that limn→∞ ν(n) = 0, where I is a subset of N with infinitely
many elements. Let ρ, ρ′ ∈ (0, 1) be fixed constants. Suppose that

∣∣ρ′ − ρk(n)
∣∣ ≤ ν(n) for

every n ∈ I. Then there exists k ∈ N such that ρ′ = ρk.
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Proof. Let {k(n)}n∈I be a sequence of positive integers and {νn}n∈I be a sequence of positive
real numbers such that limn→∞ ν(n) = 0, where I is a subset of N with infinitely many
elements. Let ρ, ρ′ ∈ (0, 1) be fixed constants. Suppose that

∣∣ρ′ − ρk(n)
∣∣ ≤ ν(n) for every

n ∈ I. Then, there exists k ∈ N such that ρ′ = ρk. J

I Lemma 6. Let ε ∈ (0, 1/2) and k be some positive integer. For any positive integer n ≥ k,
for any functions fn = gn in the set of linear function {χS : S ⊆ [n], |S| = k}, we have
BSS(ε′) v0

fn,gn
BSS(ε)⊗n, where ρ′ = 1− 2ε′ = (1− 2ε)k = ρk.

Proof. Suppose fn = gn = χS for some S ⊆ [n] with |S| = k. We shall show that all there
algebraic conditions are satisfied, namely,

1. Correctness: E[fn(xn)] = E[gn(xn)] = 0, and |E [fn(xn) · gn(yn)]− ρ′| = 0.
2. Alice security: Eyn∼U{0,1}n |Tρ(fn)(yn)− ρ′ · gn(yn)| = 0.
3. Bob security: Exn∼U{0,1}n |Tρ(gn)(xn)− ρ′ · fn(xn)| = 0.

It is clear that χS is a balanced function, therefore

E[fn] = E[gn] = E[χS ] = 0.

Now, by basic Fourier analysis, we have

Tρ(fn) = Tρ(gn) = Tρ(χS) = ρkχS = ρ′χS = ρ′fn = ρ′gn.

From these equations, it is straightforward to see that all three conditions are satisfied,
which implies BSS(ε′) v0

fn,gn
BSS(ε)⊗n as desired. J

We are ready to describe the proof of Theorem 5 as follows. We emphasis that the
security requirements of Alice and Bob are crucial to our proof.

Proof of Theorem 5 . First we show that ρ′ = ρk. For each n such that BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n, by Lemma 4, we have∣∣∣ρ′ − ρk(n)
∣∣∣ ≤ √5

(
ν(n) + 5

√
ν(n)

)1/4
.

It is clear that limn→∞
√

5
(
ν(n) + 5

√
ν(n)

)1/4
= 0 since limn→∞ ν(n) = 0. Using the fact

that BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n holds for infinitely many n ∈ N, we can apply Lemma 5 to
conclude that ρ′ = ρk for some positive integer k.

Next, when ρ′ = ρk, for each n ≥ k, we define f∗n = g∗n = χS , where S is some subset if
size k of [n]. By Lemma 6, we have BSS(ε′) v0

f∗n,g
∗
n

BSS(ε)⊗n. Thus, there exists a family of
infinitely many functions {f∗n, g∗n} as desired. J

Remarks. In fact, in the perfect secure reduction BSS(ε′) v0
fn,gn

BSS(ε)⊗n, we can
characterize the set of all possible reduction functions fn, gn and the set of all possible values
of ε′ for any fixed value n as follows.

I Lemma 7. Let n be a positive integer and ε′, ε ∈ (0, 1/2). Suppose that BSS(ε′) v0
f,g

BSS(ε)⊗n for some functions f, g : {0, 1}n → {−1, 1}. Then f = g and there exists some
positive integer k such that ρ′ = ρk. Furthermore, the two functions f and g have the Fourier
weights at the degree k only, that is, Wk[f ] = Wk[g] = 1.
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Proof. Apply Claim 7 for δ = 0, we have

〈f, g〉 ≥ 1− 0 = 1,

which means that f = g. This implies that Tρf = ρ′f . We have the following equations

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x)

ρ′f(x) = ρ′
∑
S⊆[n]

f̂(S)χS(x) =
∑
S⊆[n]

ρ′f̂(S)χS(x)

Now by the uniqueness of Fourier expansion, we must have ρ|S|f̂(S) = ρ′f̂(S) for every
S ⊆ [n]. Since

∑
S⊆[n] f̂(S)2 = 1, there exists some S∗ ⊆ [n] such that f̂(S∗) 6= 0. Let

k = |S∗|, then ρkf̂(S∗) = ρ′f̂(S∗), which implies that ρ′ = ρk. Furthermore, when |S| 6= k,
it must be the case that f̂(S) = 0. Therefore, Wk[f ] = Wk[g] = 1, which completes the
proof. J

We notice that there are non-linear functions f such that it puts all Fourier weights at one
degree k of f (see the example in the introduction).
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