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Abstract

Random samples from noisy channels, like binary erasure and binary symmetric channels,
enable general secure computation. A key objective is to realize these secure computation tasks
using the minimum number of samples from the noise source. However, even for elementary
tasks, like converting one form of noisy channel samples into samples from another noisy channel,
the precise characterization of achievable efficiency is not well-understood.

Motivated by secure two-party sampling and applications to building robust infrastructure
for secure computation, this work introduces the concept of secure non-interactive simulation of
joint distributions (SNIS). Parties receive samples from a noise source, and they, without any
interaction, securely convert them into samples from another noise distribution. This primitive
is a stronger version of (1) non-interactive simulation of joint distributions (NIS) in information
theory, (2) non-interactive correlation distillation, and (3) one-way secure computation (OWSC).
Our work algebraizes the simulation-based security definition of SNIS, making it more amenable
to the Fourier analysis. After that, we study the feasibility and rate of SNIS.

This work studies random samples from the binary symmetric channel with noise parameter
ε, represented by BSS(ε), and the binary erasure channel with erasure probability ε, represented
by BES(ε).

Our work completely resolves the feasibility and rate of SNIS between these families of joint
distributions. Realizing any BES sample from BSS samples is impossible in NIS and OWSC,
which extends to SNIS. Furthermore, we prove the impossibility of a SNIS of any BSS sample
from any BES samples, an open problem in NIS and OWSC.

Next, we prove that a SNIS of a BES(ε′) sample from BES(ε) samples is feasible if and
only if (1 − ε′) = (1 − ε)k, for some k ∈ N. Additionally, in this context, we prove that
all SNIS constructions must be linear. Furthermore, if (1 − ε′) = (1 − ε)k, then the rate of
simulating multiple independent BES(ε′) samples from BES(ε) samples is at most 1/k, which is
also achievable using (block) linear constructions.

Finally, we show that a SNIS of a BSS(ε′) sample from BSS(ε) samples is feasible if and
only if (1− 2ε′) = (1− 2ε)k, for some k ∈ N. Interestingly, there are linear as well as (compar-
atively inefficient) non-linear SNIS constructions. However, if (1 − 2ε′) = (1 − 2ε)k, then the
rate of simulating multiple BSS(ε′) samples is at most 1/k (irrespective of linear or non-linear
constructions), and this rate is achievable using (block) linear constructions.

Our technical innovation is the use of Fourier analytic tools to study feasibility and rate
characterization problems in cryptographic protocols, explicitly incorporating the security con-
straint. The technical results rely on a new concentration of the Fourier spectrum unique
to secure constructions. The authors believe that specifically developing new general analysis
methodologies respecting security is of independent and broader interest.
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1 Introduction

General secure computation [96, 44] is an exceptionally powerful cryptographic primitive that allows
mutually distrusting parties to securely perform arbitrary computation over their private data,
revealing only the respective outputs of each party, even if all adversarial parties are colluding.
It is impossible to realize this cryptographic primitive solely from independent randomness and
common shared randomness in the information-theoretic model [41, 64, 65]. On the other hand,
noisy, albeit correlated, information is an incredible facilitator of cryptography. Rabin [81, 82] and
Crépeau [30] demonstrated that erasure channels, referred to as Rabin Oblivious Transfer, enable
performing general secure computation. In 1988, Crépeau and Kilian [31, 32] proved that noisy
channels, particularly the binary symmetric channels, suffice for general secure computation. After
that, a significant body of highly influential research demonstrated the feasibility of realizing general
secure computation from diverse and unreliable noise sources [57, 58, 34, 59, 33, 92, 93, 56, 24]. In
particular, random samples from these noisy channels suffice for general secure computation while
incurring an slight increase in round and communication complexity [90].
Representative motivating example. Consider secure two-party sampling [78, 79, 80], i.e., the
secure evaluation of an inputless randomized functionality. This cryptographic task enables Alice
and Bob to generate private samples u and v, respectively, such that the joint distribution of their
samples is (U, V ). In the information-theoretic setting, even when parties have access to unbounded
independent private randomness and common shared randomness, one can securely sample only
cryptographically rudimentary joint distributions (U, V ) (refer to the excellent thesis [91] for a
survey of relevant works in this field). In particular, it is impossible to securely sample noisy
correlations, for example, samples from binary erasure and symmetric source. On the other hand,
given a setup that initializes Alice and Bob with correlated samples xn and yn, respectively, from
(a different) joint distribution (X,Y )⊗n, they can interactively sample from any joint distribution
(U, V ) securely [96, 44, 59]. However, given a setup, the necessity of interaction for secure sampling
is not apparent. In particular, which (U, V ) can be securely sampled given which setup (X,Y )⊗n

without any communication (i.e., non-interactively) is unknown (as this work and the followup
work [55] shows, this question turns out to be incredibly challenging with a significant potential
for future research). Furthermore, if such a non-interactive secure simulation is feasible, the most
efficient constructions’ characterization is unknown.

Our work introduces the notion of secure non-interaction simulation (SNIS) to study the feasi-
bility and rate of secure sampling without any communication between the parties.
Application of SNIS. Similar to the seminal works of Maurer [68, 69, 70], and Ahlswede and
Csisźar [2, 3], who introduced the concept of building an infrastructure for shared private randomness
using sources of noise, SNIS has applications to building a robust infrastructure for the offline-online
paradigm of secure computation [67, 14, 35, 76]. In the offline-online paradigm, parties generate
correlated private randomness in an offline phase and consume these samples during a fast online
phase protocol, which is information-theoretically secure conditioned on the security of the offline
phase. This model has resulted in several success stories in practical secure computation solutions,
for example, private set intersection.

Consider an off-the-shelf MPC (online) protocol in the offline-online paradigm that uses multiple
samples of (U, V ) during its online phase. Alice and Bob are interested in using this MPC solution;
however, they do not have access to samples from the exact noise distribution (U, V ). Instead, Alice
and Bob have access to multiple (independent) samples from a different noise source (X,Y ), or,
more generally, a sample from the distribution (X1, Y1) ⊗ (X2, Y2) ⊗· · · ⊗ (Xn, Yn). Ideally, Alice
and Bob would like to securely convert the samples of their available noise source into samples of
(U, V ) without any interaction, i.e., silently (see, for example, [19, 18] for the motivation for silent
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computation). If this conversion is feasible, they can run the off-the-shelf MPC protocol using the
available noise sources. Section 5 further elaborates this application.

1.1 Definition: Secure Non-Interactive Simulation
Let (X,Y ) be a joint distribution over the sample space (X ,Y), and (U, V ) be a joint distribution

over the sample space (U ,V).1 The intuitive definition of secure non-interactive simulation of joint
distributions (SNIS) closely follows the presentation in Figure 1 (with parameter m = 1). Sample
(xn, yn)

$←− (X,Y )⊗n, i.e., draw n independent samples from the distribution (X,Y ). Alice gets
xn ∈ X n, and Bob gets yn ∈ Yn. Alice has private randomness rA

$←− RA and Bob has, independent,
private randomness rB

$←− RB, where RA, RB are random variables over the sample spaces RA and
RB, respectively. Suppose fn : X n×RA → U and gn : Yn×RB → V are the (possibly randomized)
reduction functions for Alice and Bob, respectively. Alice computes u′ = fn(xn, rA) and Bob
computes v′ = gn(yn, rB).

(xn, yn)
$←− (X,Y )⊗n

Alice

xn

um = fn(x
n, rA)

rA
$←− RA Bob

yn

vm = gn(y
n, rB)

rB
$←− RB

Figure 1: Our Model.

Let us gain some intuition regarding
the definition of SNIS. For the ease of pre-
sentation, this section only considers de-
terministic reduction functions, i.e., there
is no RA and RB. However, this choice for
simplification in presentation does not in-
cur any loss of generality. Looking ahead,
Theorem 5 shall prove a derandomization
result proving that one can assume reduc-
tion functions in SNIS to be deterministic, without loss of generality. However, such a derandom-
ization result for the rate characterization is extremely subtle and depends on the proof strategy
(paragraph “Subtlety” in Section 2.2 addresses this aspect of our work).

We say that (U, V ) reduces to (X,Y )⊗n via reduction functions fn, gn with insecurity ν(n)

(represented by, (U, V ) vν(n)
fn,gn

(X,Y )⊗n) if the following three conditions are satisfied.

1. Correctness. The distribution of the samples (u′, v′) is ν(n)-close to the distribution (U, V ) in
the statistical distance.

2. Security against corrupt Alice. Consider any (u, v) in the support of the distribution (U, V ). The
distribution of xn, conditioned on u′ = u and v′ = v, is ν(n)-close to being independent of v.2

3. Security against corrupt Bob. Consider any (u, v) in the support of the distribution (U, V ).
The distribution of yn, conditioned on the fact that u′ = u and v′ = v, is ν(n)-close to being
independent of u.

To discuss rate, consider SNIS of the form (U, V )⊗m(n) vν(n)
fn,gn

(U, V )⊗n. Here, the reduction func-
tions output m(n)-independent samples from the distribution (U, V ). Fixing (X,Y ) and (U, V ),
our objective is to characterize the maximum achievable production rate m(n)/n over all possible
reductions (a standard single-letter characterization).

Remark 1. Since we consider non-interactive protocols without private inputs, semi-honest and
malicious security (with abort) are equivalent. So, for the simplicity, the presentation considers
(statistical) security against semi-honest adversaries, that is, parties follow the protocol but are
curious to find more information. Section 7 provides a formal (composable) simulation-based security

1As is typical in this line of work in cryptography and information theory, the joint distributions (U, V ) and (X,Y )
assign probabilities to samples that are either 0 or at least a positive constant.

2The joint distribution (A|B = b) is ν-close to being independent of b if there exists a distribution A∗ such that
(A|B = b) is ν-close to A∗ in the statistical distance, for all b ∈ Supp(B).
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Input Joint Output Joint Feasible set of ε′

Distribution Distribution OWSC [39] SNIS (Our Work) NIS [97]

BES(ε)
BES(ε′) (0, 1)

{
1− (1− ε)k : k ∈ N

}
[ε, 1)

BSS(ε′) ⊇ ∅ ∅ ⊇ [ε/2, 1/2)

⊆
[
1−
√
1−ε

2
, 1/2

)
BSS(ε)

BES(ε′) ∅ ∅ ∅
BSS(ε′) ⊇

{
1−(1−2ε)k

2
: k ∈ N

} {
1−(1−2ε)k

2
: k ∈ N

}
[ε, 1/2)

Table 1: Comparison of feasible parameters for OWSC, SNIS, and NIS involving reductions between
BES and BSS families. A “⊇ S” entry indicates that the feasible set is a superset of the set S.
Therefore, a “⊇ ∅” entry indicates that no characterization of the feasible set is known. Similarly,
a “⊆ S” entry indicates that the feasible set is a subset of the set S.

definition, sequential and parallel composition theorems, and the security of the projection operation.

1.2 Summary of our Results
Rabin and Crépeau [81, 82, 30] and Crépeau and Kilian [31, 32], respectively, proved that erasure

and binary symmetric channels suffice for general secure computation. These elegant sources of noise
provide an uncluttered access to abstracting the primary hurdles in achieving security. In a similar
vein, to study the rate and capacity of SNIS, this paper considers samples from the following two
families of distributions.

1. Binary symmetric source. X and Y are uniformly random bits such that X 6= Y with probability
ε ∈ (0, 1/2). We represent this joint distribution by BSS(ε).

2. Binary erasure source. X is a uniformly random bit, and Y = X with probability (1− ε), where
ε ∈ (0, 1); otherwise, Y =⊥. We represent this joint distribution by BES(ε).

Comparison models. In information theory, non-interactive simulation of joint distributions
(NIS) is a similar notion of simulating joint distributions [38, 94, 88, 52, 53, 43, 36, 42]. However,
NIS only considers correctness (not security). Consequently, parties can generate independent
private randomness, if rate is not a concern. Therefore, the NIS literature considers deterministic
reductions when studying feasibility/infeasibility of reductions, without loss of generality. On the
other hand, there is also research on performing secure computation using only one-way messages,
a.k.a., one-way secure computation (OWSC) [39, 1]. This model considers secure protocols where
only one party sends messages to the other party.

It is instructive to consider an example of SNIS, and an example of NIS that is insecure. Section 8
presents these examples for interested readers.

Remark 2. Non-interactive correlation distillation [72, 71, 95, 15, 25] is a special case of SNIS
where (U, V ) is restricted to shared coin, i.e., BSS(0) or BES(0) samples. This model has very strong
impossibility results, so comparison with this model is not insightful.

Technical Contribution: Concentration of Fourier Spectrum. Our work translates security
into a “rank-one constraint” on an appropriate matrix (Theorem 6 and Theorem 7), and algebraizes
the security definition of SNIS (Section 9.2, Section 10.1). These steps make the feasibility and rate
characterization problem of SNIS amenable to an analytical approach.3 Using this analytic formu-
lation, our work identifies a concentration of the Fourier spectrum for the reduction functions for

3The inspiration stems from the fact that, at a high-level, the existing probabilistic, combinatorial, and extremal
techniques employed to study characterization problems in cryptography are naturally generalized and unified by
Fourier analytic techniques. The use of analytical techniques to study similar problems is commonplace in other
fields of theoretical computer science and information theory (refer to Section 4); however, this analytical treatment
is new to secure computation as per the authors’ knowledge
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SNIS (Theorem 1, Lemma 1). This phenomenon of secure reductions suffices to exclude insecure NIS
constructions (see Section 8.2 for examples), and obtain tight feasibility and rate characterizations.
Feasibility results. Observe that the NIS and OWSC are relaxations of SNIS. Therefore, the
impossibility results in either NIS or OWSC automatically imply an impossibility for SNIS. For
example, in NIS, BES(ε′) does not reduce to BSS(ε)⊗n with insecurity ν(n) = negl(n)4 for any
ε ∈ (0, 1/2), and ε′ ∈ (0, 1) [53, 52, 39]. This impossibility result carries over to SNIS.

On the other hand, it is not known whether BSS(ε′) reduces to BES(ε)⊗n with negl(n) insecurity
via either NIS or OWSC. We resolve this problem for SNIS.5 Table 1 summarizes our feasibility
results (refer to Informal Theorem 1, Informal Theorem 2, Informal Theorem 3) and it positions
them relative to the known results in NIS and OWSC. Additionally, for the perfect-SNIS case, our
work characterizes the set of all possible secure reduction functions. This characterization results
in the identification of exciting new reductions, which were not known earlier (see Equation 1 for
such a reduction function).

Remark 3. In fact, our feasibility results even hold for any o(1) insecurity bound. Consequently,
any BES–BES or BSS–BSS reduction is either (1) perfectly secure or (2) has constant insecurity. In
particular, it is impossible to use more samples to achieve o(1) insecurity in SNIS if perfect security
is not achievable (which is possible in randomness extraction and interactive MPC).

Rate results. The research in OWSC has not emphasized on characterizing the rate/capacity
of these secure constructions. The authors are not aware of any rate/capacity results for NIS as
well. For SNIS, we prove that if BES(ε′) reduces to BES(ε), where (1 − ε′) = (1 − ε)k, for some
k ∈ N, then the rate of any secure construction is 6 1/k. Similarly, if BSS(ε′) reduces to BSS(ε),
where (1 − 2ε′) = (1 − 2ε)k, for some k ∈ N, then the rate of any secure construction is 6 1/k.
We present protocols demonstrating the tightness of these bounds (refer to Informal Theorem 2,
Informal Theorem 3).

Tight rate/capacity results in secure computation are extremely rare [9, 37, 12, 85, 87, 78,
79, 80, 11]. Although the problem, in its full generality, seems insurmountable, there is a large
body of highly influential research characterizing the feasibility of securely realizing functionalities
given access to (ideal implementations of) other functionalities [57, 28, 63, 8, 26, 27, 13, 59, 66,
62, 61]. Surprisingly, even for (seemingly) analytically-manageable models like randomized poly-
nomials/encoding [47, 7, 48, 50, 6] and cryptography using one-way communication [39, 1], just
characterizing the feasibility of secure computation protocols is far from resolved. More generally,
the current state-of-the-art has not made significant inroads into characterizing the rate/capacity
of general secure computations. For instance, regarding the efficiency in using the noisy samples,
referred to as the sample complexity, the current state-of-the-art constructs general secure computa-
tion from noisy channels at a (small) positive rate (as a consequence of [59, 90, 51, 49]), i.e., securely
computing a functionality represented by a size-s circuit requires O(s) random samples from a noisy
channel. Consequently, the next logical frontier is the characterization of rate/capacity of general
secure computation.

Remark 4. Observe that independent coin samples are equivalent to BSS(1/2) samples. There is
a NIS of independent coin from BES(ε), for any ε ∈ (0, 1), using average min-entropy extraction
techniques from a fixed source. However, we prove that a SNIS of independent coin from BES(ε) is
impossible (see Informal Theorem 1).

4The function f(n) is negligible in n if it becomes smaller than all inverse-polynomials in n, for sufficiently large
n ∈ N.

5The informal theorems in this section use ν(n) = negl(n) only for ease of presentation. However, our results
are significantly stronger. The actual theorem statements rule out any ν(n) that decays faster than an appropriate
decreasing function in n. The interested readers are referred to the respective full theorems for the exact results.
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Remark 5. There is a NIS of independent coin from BSS(ε), for any ε ∈ (0, 1/2), that achieves
rate-1/2 (Alice outputs her first sample, and Bob outputs his second sample). Refer to Table 5 for
the joint distribution table and Table 7 for the correctness of this NIS. Although the Fourier spectrum
of each reduction is concentrated, the reduction functions have a lot of mismatches (vis-à-vis their
input-output behavior). Therefore, Theorem 1 implies that this NIS cannot be secure (Table 6 violates
the rank-one constraint). Furthermore, we can prove that any constant-rate SNIS of independent
coins from BSS(ε) is impossible, where ε ∈ (0, 1/2).

Remark 6. Overall, our constructions and hardness of computation results are the strongest pos-
sible in the following sense. All our constructions are perfectly secure (even against malicious
adversaries), that is, they realize SNIS with zero insecurity. Furthermore, the constructions admit
computationally efficient simulators. Moreover, all our feasibility and rate-achieving constructions
hold whenever the number of input samples is sufficiently large (not just for infinitely-many values).
On the other hand, our hardness of computation results extend to infinite families of reductions
where (infinitely often) the insecurity falls faster than some appropriate inverse-polynomial of the
number of input samples. Consequently, our results encompass the typical cryptographic contexts
where the insecurity decays faster than all inverse-polynomials. Lastly, all our impossibility results
hold against semi-honest adversaries and extend to the weaker game-based security definitions.

2 Our Contribution: Technical Results

We introduce some intuitive terminology to present our results informally. A ν(n)-SNIS of (U, V )
from (X,Y ) represents a family of SNIS, indexed by n ∈ N, such that the insecurity of the construc-
tion is (at most) ν(n).6 Finally, R( (U, V ), (X,Y ) ) represents the maximum achievable m(n)/n, as
n→∞, when considering all SNIS of (U, V ) from (X,Y ) as illustrated in Figure 1.

2.1 SNIS Composition and Projection
Section 7 provides the simulation-based definition of SNIS and proves the following composition

and projection results, where the reduction functions may be randomized (the main difference is
that the simulation-based definition requires an efficient simulator, while the game-based definition
does not).

1. Parallel Composition (Theorem 2). Let P, P ′, Q, and Q′ be joint distributions. If ν-SNIS of P
from Q and ν ′-SNIS of P ′ from Q′ exist, then a (ν+ν ′)-SNIS of (P‖P ′) from (Q‖Q′) exists. The
distribution (P‖P ′) generates samples from both the joint distributions P and P ′, and (Q‖Q′)
generates samples from both the joint distributions Q and Q′.

2. Sequential Composition (Theorem 3). Let P,Q, and R be joint distributions. If ν-SNIS of P
from Q and ν ′-SNIS of Q from R exist, then a (ν + ν ′)-SNIS of P from R exists.

3. Projection (Theorem 4). Let P,Q, and R be joint distributions. If a ν-SNIS of (P‖Q) from R
exists, then a ν-SNIS of P from R also exists.

These composition and projection theorems shall assist in proving our feasibility and rate results.

2.2 Derandomization
Recall that our definition of SNIS allows the reduction functions to use private randomness

drawn from arbitrary distributions as well (refer to Figure 1). However, for cryptographic notions
6We highlight a subtlety in this notation. When we state a positive result that ν(n)-SNIS of (U, V ) from (X,Y )

exists, then we imply that the reduction exists for all sufficiently large n. On the other hand, when we state a negative
result that ν(n)-SNIS of (U, V ) from (X,Y ) is impossible, then we imply that the reduction does not exist even for
infinitely many n.
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of security, we prove that if there exists a ν-SNIS of P from Q⊗n using randomized reduction
functions, then there exists a ν1/9-SNIS of P from Q⊗n using deterministic reduction functions that
is sample preserving (refer to Theorem 5). If the original reduction uses n samples of Q to generate
the sample of P , then the deterministic reduction functions also use (a subset of) these n samples
to generate the sample of P . Furthermore, observe that for cryptographic notion of security, the
insecurity ν is a negligible function of n, represented as ν = negl(n). When ν = negl(n), note
that ν1/9 = negl(n) as well. Consequently, henceforth, we consider the reduction functions to be
deterministic, without loss of generality for feasility characterization problems. However, there are
subtleties involved for the rate characterization problem, which we discuss them in the paragraph
below.

Remark 7. This sample-preserving derandomization crucially relies on the security of the reduc-
tion. Insecure NIS need not admit a sample-preserving derandomization. For example, consider the
example in Section 8.2.

Remark 8. Observe that the argument above also works for the receiver in the OWSC model. Con-
sequently, without loss of generality, in the feasibility results of OWSC, the receiver is deterministic.

Subtlety: Rate Characterization Problems. The derandomization above holds only for
constant-size P ; however, the result does not depend on the number of samples of Q. Let us
consider an example to appreciate this subtlety, followed by a discussion on how our technical
contributions uses this derandomization result.

Consider (U, V ) and (X,Y ) that are constant-size joint distributions. When considering a fea-
sibility result where we consider SNIS of (U, V ) from (X,Y )⊗n, we can use the derandomization
result and assume that the reduction functions are deterministic, without loss of generality.

However, we cannot directly apply the derandomization result to the SNIS of (U, V )⊗m(n) from
(X,Y )⊗n when considering a rate result. To circumvent this hurdle, as will be evident in our technical
approach, we never consider m independent samples of (U, V ) simultaneously in our analysis. We
follow the following proof-strategy instead.

1. Suppose there is a SNIS of (U, V )⊗m(n) from (X,Y )⊗n using (possibly randomized) reduction
functions.

2. We use the projection operator, which is secure even for randomized reductions, to argue that
considering only the samples i and j of the output is secure, where i, j ∈ {1, . . . ,m(n)}.

3. Now, we consider this projected SNIS of (U, V )⊗2 from (X,Y ). Here, (U, V )⊗2 has constant size;
therefore, this projected SNIS admits derandomization.

4. We apply our “feasibility technical results” to this derandomized projected SNIS, and draw con-
clusions about this derandomized project SNIS, which is also sample preserving.

For brevity, we shall refer to these four-step arguments in our proof as “assuming that the SNIS of
(U, V )⊗m(n) from (X,Y ) is deterministic, without loss of generality.”

2.3 BSS from BES Samples
Recall that it is impossible to have a SNIS of BES(ε′) from any number of BSS(ε) samples, for

any n ∈ N, ε ∈ (0, 1/2), and ε′ ∈ (0, 1), because this reduction is already impossible in NIS and
OWSC. Here we consider the other direction.

Informal Theorem 1 (Impossibility of BSS from BES). There is an universal constant c such that
c/
√
n-SNIS of BSS(ε′) from BES(ε) does not exist, for any ε′ ∈ (0, 1/2) and ε ∈ (0, 1).

Refer to Theorem 8 for a formal statement. We prove this result using a combinatorial technique
and an isoperimetric inequality on the Boolean hypercube (refer to Section 6.3 for an overview and
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Section 9.1 for the proof). Our proof also works for the SNIS of shared common randomness from
BES(ε), which provides an alternate combinatorial proof for this result proved using analytical
techniques in [95].

2.4 BES from BES Samples
Next, we consider the inter-conversion among binary erasure sources with different erasure prob-

abilities.

Informal Theorem 2 (BES Samples: Feasibility & Rate). Fix erasure probabilities ε, ε′ ∈ (0, 1).
Feasibility characterization. The following statements are equivalent.

1. There is a o(1)-SNIS of BES(ε′) from BES(ε).
2. There is a 0-SNIS of BES(ε′) from BES(ε) (a perfectly secure SNIS).
3. There exists k ∈ N satisfying (1− ε′) = (1− ε)k.
Rate characterization. Fix any erasure probabilities ε, ε′ ∈ (0, 1), such that (1 − ε′) = (1 − ε)k
and k ∈ N. If a o

(
1/n36+9k/2

)
-SNIS of BES(ε′)⊗m(n) from BES(ε)⊗n exists, then m(n)/n 6 1/k

and the production rate R( BES(ε′),BES(ε) ) = 1/k.

In fact, we prove an extension of Informal Theorem 2 in Appendix A where the target can be
BES(ε1)⊗ BES(ε2)⊗· · · ⊗ BES(εm) instead of BES(ε′)⊗m.

The results above are for an infinite family of reductions {fn, gn}n∈N. However, if there is even
one reduction pair with perfect security, then we can directly conclude that (1− ε′) = (1− ε)k and
characterize the reduction functions precisely (see Theorem 10).

In the context of OWSC, one can achieve erasure probability ε′ that is either lower or higher
than the erasure probability ε. On the other hand, for SNIS, we show that ε′ > ε is necessary.

Typically, NIS literature’s impossibility results rely on leveraging the reverse hypercontractivity
theorem [52, 53, 74]. However, this approach encounters a significant hurdle for samples from the
binary erasure channel [52]. The addition of the security constraint in our setting helps overcome
this hurdle. Essentially, we show that the only secure non-interactive simulation reduction among
samples of the erasure channel is the following linear reduction. Alice outputs the parity of the first
k-bits of her input xn, and Bob outputs the parity of the first k-bits of yn ∈ {0, 1}k × {0, 1,⊥}n−k;
otherwise Bob outputs ⊥. This protocol is a perfect SNIS of BES(ε′) from BES(ε), where (1− ε′) =
(1− ε)k. Interestingly, this protocol is identical in spirit to the OWSC protocol, as presented in [39]
when (1−ε′) ∈ {(1−ε), (1−ε)2, . . . }. However, all other values of ε′ are feasible only for OWSC [39].

This linear construction achieves the optimal rate as well. To obtain multiple output samples,
one treats each consecutive k input samples as a block and extracts one BES(ε′) sample from each
block using the linear reduction function above.

Remark 9. Informal Theorem 2 implies that if there is a statistically secure SNIS then there is
also a perfectly secure SNIS. This type of results have also been discovered previously in the con-
text of various other characterization problems in cryptography. For example, [63, 8] characterized
all two-party symmetric deterministic function evaluations that have a perfectly secure protocol in
the information-theoretic model. Incidentally, this characterization also extends to the statistical
security case [66, 62]. However, a general result showing the equivalence of “perfect security” and
“statistical security” is not known.

2.5 BSS from BSS Samples
Finally, we consider the inter-conversion among binary symmetric samples with different noise

characteristics.
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Informal Theorem 3 (BSS Samples: Feasibility & Rate). Fix noise parameters ε, ε′ ∈ (0, 1/2).
Feasibility characterization. The following statements are equivalent.

1. There is a o(1)-SNIS of BSS(ε′) from BSS(ε).
2. There is a 0-SNIS of BSS(ε′) from BSS(ε) (a perfectly secure SNIS).
3. There exists k ∈ N satisfying (1− 2ε′) = (1− 2ε)k.

Rate characterization. Fix any noise parameters ε, ε′ ∈ (0, 1/2), such that (1− 2ε′) = (1− 2ε)k

and k ∈ N. If a o
(
1/n36+9k/2

)
-SNIS of BSS(ε′)⊗m(n) from BSS(ε)⊗n exists, then m(n)/n 6 1/k

and the production rate R( BSS(ε′),BSS(ε) ) = 1/k.

In fact, we prove an extension of Informal Theorem 3 in Appendix A where the target can be
BSS(ε1)⊗ BSS(ε2)⊗· · · ⊗ BSS(εm) instead of BSS(ε′)⊗m.

We prove that if there is one pair of reduction functions that is perfectly secure then the con-
clusion above hold as well (see Theorem 1).

Note that one cannot increase the reliability of the binary symmetric channel, which is identical
to the result in [39]. However, unlike [39], we also rule out the possibility of secure non-interactive
simulation for any (1− 2ε′) 6∈

{
(1− 2ε), (1− 2ε)2, . . .

}
. For such ε′, any non-interactive simulation

is constant-insecure.
At the outset, this theorem looks similar to the theorem for binary erasure channels; how-

ever, there are exciting subtleties involved. The theorem above states that one can securely non-
interactively simulate samples of the binary symmetric channel as follows. Alice outputs the parity
of the first k-bits of her input xn, and Bob also outputs the parity of the first k-bits of his input yn.
Interestingly, we prove that there are (non-trivial) non-linear reduction functions as well; however,
they are inefficient for generating one sample. That is, for every non-linear reduction, there exists
a more efficient linear reduction.

Consider the following example when (1−2ε′) = (1−2ε)2. So, when n = 2, the linear reduction
functions f2(x2) = x2

1 ⊕ x2
2, and g2 = f2 suffice.7 However, interestingly, there exists non-linear

reduction functions fn = gn for n = 4. For example, consider the reduction function below.

Function definition: f4(x4) =
2− (−1)x

4
1+x43 − (−1)x

4
2+x43 − (−1)x

4
1+x44 + (−1)x

4
2+x44

4
(1)

The preimage of 0: f−1
4 (0) = {0000, 0001, 1000, 0110, 1001, 1011, 1110, 1111}

The preimage of 1: f−1
4 (1) = {0010, 1000, 0011, 0101, 1010, 1100, 0111, 1101} .

However, even using non-linear reductions, we prove that the rate cannot surpass 1/k, when
(1−2ε′) = (1−2ε)k. Similar to the case for the reduction among BES samples, the natural protocol
that treats each consecutive k input samples as a block and extracts one BSS(ε′) sample from each
block using the parity reduction function achieves the optimal rate.

2.6 Technical Contribution: Fourier Spectrum Concentration
For the presentation in this section, consider SNIS of BSS(ε′) from BSS(ε). We prove the

following technical result that captures an essential property of SNIS. Our feasibility result, and, in
turn, our rate results rely on similar Fourier spectrum concentration bounds.

Theorem 1 (Fourier Spectrum Concentration). For any constants ε′, ε ∈ (0, 1/2), and for any fixed
n ∈ N, the following two statements are equivalent.

1. There exist reduction functions f, g : {0, 1}n → {−1, 1}, such that BSS(ε′) v0
f,g BSS(ε)⊗n.

2. There is a constant k ∈ [n] such that (1−2ε′) = (1−2ε)k, (a) f = g, and (b) Wk[f ] = Wk[g] = 1.
7The symbol xni represents the i-th bit in the n-bit string xn ∈ {0, 1}n.
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Observe that this result is an equivalent characterization of perfect-SNIS using Fourier analytic
properties of Boolean functions. Perfect-SNIS is equivalent to the Fourier spectrum being concen-
trated at one degree k ∈ N. Consequently, if there is a pair of Boolean reduction functions f, g
satisfying condition (2) above, then it shall define a secure SNIS. We emphasize that the Fourier
concentration is not necessarily on one function, it is on functions of identical weight (refer to the
reduction function in Equation 1).

Furthermore, extending the result of Theorem 1 to any insecurity ν(n) > 0, we show a necessary
condition on the Fourier spectrum concentration of reduction functions. That is, if there are reduc-
tion functions f, g : {0, 1}n → {−1, 1} satisfying BSS(ε′) vν(n)

f,g BSS(ε)⊗n, then there is a constant
k ∈ [n] such that (1) (1 − 2ε′) is δ-close to (1 − 2ε)k, (2) the outputs of f and g agree at (1 − δ)
fraction of inputs, (3) Wk[f ] > 1− δ, and (4) Wk[g] > 1− δ, where δ = Θ(poly(ν(n))) (see Lemma 4
and Lemma 1 for the formal results).

For SNIS of BES(ε′) from BES(ε), a similar analysis applies to Alice’s reduction function f . After
that, we capture the properties of Bob’s reduction function, which has domain {−1, 0,+1} repre-
senting {1,⊥, 0}, respectively, using restrictions of f on sub-cubes (refer to Theorem 10, Lemma 2,
Lemma 1).

3 Technical Overview

In this section we provide the intuition underlying our proof techniques.

3.1 Derandomization
Suppose (U, V ) vfn,gn (X,Y )⊗n, such that the reduction functions fn and gn are randomized.

For the ease of presentation, assume that there is no insecurity in this reduction. Fix Y n = yn

such that yn ∈ Supp(Y n). Consider the distribution D = (fn(Xn, RA) | Y n = yn). Note that the
distribution D has to be identical to some conditional distribution (U |V = v), where v ∈ Supp(V ).
Otherwise, the statistical distance of D from each of the conditional distributions (U |V = v), where
v ∈ Supp(V ), is a constant. In which case, for Y n = yn, the reduction incurs a constant insecurity.

Assume that D = (U |V = v∗). Observe that for all Bob randomness rB such that gn(yn, rB) 6=
v∗, the reduction again incurs constant insecurity. Consequently, one assumes that the function
gn(yn, rB) does not depend on rB. Therefore, the deterministic function g′n(yn) = v∗ is a faithful
simulation of the random variable gn(yn, RB).

The actual proof, proceeds by averaging arguments, a.k.a., the Markov inequality. Theorem 5
presents the actual statement and Appendix C presents the full proof. Henceforth, we assume that
all reduction functions are deterministic, without loss of generality (refer to the “Subtlety” paragraph
in Section 2.2 regarding this assumption for rate characterization problems).

3.2 Impossibility of SNIS of BSS from BES
Theorem 8 states our exact theorem statement, and Section 9.1 provides the full proof. Fix

constant ε ∈ (0, 1) and ε′ ∈ (0, 1/2). If possible let, there exists BSS(ε′) vν(n)
fn,gn

BES(ε)⊗n. So, our
reduction functions fn : {0, 1}n → {0, 1} and gn : {0, 1,⊥}n → {0, 1}. Our argument proceeds along
the following high-level intuition.
Part 1. We focus on elements an ∈ {0, 1}n and bn ∈ {0, 1}n such that they differ exactly in one
coordinate (i.e., they are neighbors in the Boolean hypercube), fn(an) = 0, but fn(bn) = 1. We say
that an is consistent with yn ∈ {0, 1,⊥}n, represented by an ` yn, if one can obtain yn by passing
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an through an erasure channel. We define three disjoint subsets T0, T1, Tboth ⊆ {0, 1,⊥}n below.

T0 = {yn : yn ∈ {0, 1,⊥}n, an ` yn, bn 6` yn}
T1 = {yn : yn ∈ {0, 1,⊥}n, an 6` yn, bn ` yn}

Tboth = {yn : yn ∈ {0, 1,⊥}n, an ` yn, bn ` yn}

One can argue that

Pr[Y n ∈ T0|Xn = an] = Pr[Y n ∈ T1|Xn = bn] = (1− ε)
Pr[Y n ∈ Tboth|Xn = an] = Pr[Y n ∈ Tboth|Xn = bn] = ε

Consider the partition W0 = g−1
n (0) and W1 = g−1

n (1). When one passes an through the erasure
channel, it should generate elements in W0 with probability (1 − ε′), and elements in W1 with
probability ε′. Similarly, one passes bn through the erasure channel, it should generate elements in
W1 with probability (1− ε′) and elements in W0 with probability ε′. Roughly, this can be achieved
by setting T0 ⊆ W0, T1 ⊆ W1 and equally partitioning Tboth across W0 and W1, when ε′ = ε/2.
However, when ε′ 6= ε/2, any partition strategy shall contribute to the insecurity of the reduction,
which is proportional to |ε′ − ε/2|. Consequently, for every pair of witness (an, bn), any ε′ 6= ε/2
shall account for a “constant insecurity.”

We rely on an isoperimetric-type inequality on the Boolean hypercube to argue that there are
(approximately) 2n/

√
n pairs of points (an, bn) that satisfy the above-mentioned property [16].8

Therefore, with 1/
√
n probability, one encounters the event of incurring constant insecurity. Con-

sequently, all ε′ 6= ε/2 are outrightly insecure.
Part 2. Next, our objective is to rule out the isolated case of ε′ = ε/2 that survived the previous
argument. We shall use the parallel composition of the original SNIS to obtain two samples of
BSS(ε′). That is,

BSS(ε′)⊗2 v2ν(n) BES(ε)⊗2n.

We know that the parity reduction functions realizes the following perfectly secure SNIS.

BSS(ε′′) v0 BSS(ε′),

where (1 − 2ε′′) = (1 − 2ε′)2 = (1 − ε)2. That is, we have ε′′ = ε − ε2/2. By the sequential
composition of these two SNIS, we obtain

BSS(ε− ε2/2) v2ν(n) BES(ε)⊗2n.

Now, since ε− ε2/2 6= ε/2, for all ε ∈ (0, 1), the final SNIS contradicts the result in the first part of
the proof, which ruled out all constant ε′ 6= ε/2.

3.3 Characterization of SNIS feasibility and rate for BES from BES
Let us begin by considering some SNIS construction in this context. Suppose (1−ε′) = (1−ε)k,

for some k ∈ N. The input samples are over the sample space (X ,Y) = ({0, 1}, {0, 1,⊥}) and the
output sample space is (U ,V) = ({1,−1}, {1,−1, 0}).9 For n > k, define the reduction function
f∗n : {0, 1}n → {1,−1} and g∗n : {0, 1,⊥}n → {1,−1, 0} as follows.

f∗n(xn) = (−1)x
n
1 +xn2 +···+xnk

g∗n(yn) =

{
(−1)y

n
1 +yn2 +···+ynk , if yn ∈ {0, 1}k × {0, 1,⊥}n−k

0, otherwise.

8A naïve application of (vertex) isoperimetric inequality over the Boolean hypercube [45] yields 1/n3/2 probability
instead of 1/n1/2, slightly worsening the upper-bound on ν(n).

9The output samples use the multiplicative notation. Intuitively, the bit 0 is mapped to (−1)0 = 1, the bit 1 is
mapped to (−1)1 = −1, and one defines (−1)⊥ to be 0.

10



One observes that BES(ε′) v0
f∗n,g

∗
n

BES(ε)⊗n. The simulators for these reduction functions are
computationally efficient because the reduction functions are linear. We shall prove that these
k-term (multi-)linear reduction functions are the only reductions possible when (1− ε′) = (1− ε)k.

Next, let us move on to proving the feasibility and rate results. Theorem 9 provides the formal
theorem statement, and Section 9.2 provides the full proof. In the following, suppose BES(ε′) vν(n)

fn,gn

BES(ε)⊗n for fixed constants ε, ε′ ∈ (0, 1).
Feasibility Characterization. This proof proceeds by Fourier analysis. We provide a very high-
level intuition for the sequence of arguments that we use. The first step is to algebraize the notion of
security and obtain a non-trivial restriction on the Boolean reduction function fn. Define ρ := (1−ε)
and ρ′ := (1− ε′). For a SNIS reduction between BES samples, relying on insecurity being ν(n) =
o(1), we show that the following quantity is also o(1).

E
xn∼U{0,1}n

∣∣(Tρfn) (xn)− ρ′ · fn(xn)
∣∣.

That is, the ρ-noisy version of fn is (close to) the ρ′ scaling of fn itself in the L1-norm. We refer
to this technical constraint as the “rank-one constraint” for brevity. Then, we apply the following
main technical lemma.

Lemma 1. Let ρ, ρ′ ∈ (0, 1), and let fn : {0, 1}n → {−1, 1} be a Boolean function. Suppose that

E
xn∼U{0,1}n

∣∣(Tρfn) (xn)− ρ′ · fn(xn)
∣∣ 6 δ.

Then, there is k ∈ [n] such that
∣∣ρ′ − ρk∣∣ 6√(1 + ρ′)δ. Furthermore, the following bound holds.

Wk[fn] :=
∑
|S|=k

f̂n(S)2 > 1− (1 + ρ′)

(1− ρ)2ρ′2
· δ.

This lemma proves that if the “rank-one constraint” holds for a Boolean function fn, then ρ′

is close to ρk for some k ∈ N. Furthermore, the spectral weight of the Boolean function fn is
primarily concentrated on size-k (multi-)linear terms. After that, an analysis specific to SNIS for
inter-converting BES samples proves that the function fn must have most of its spectral weight on
one single size-k (multi-)linear term. Then, one obtains the characterization of the function gn from
the security definition.
Rate Characterization. At the outset we remind the readers that there is a subtlety of using
the derandomization result for rate characterization problems (refer to the paragraph “Subtlety” in
Section 2.2). Our actual proof outline will follow the steps outlined in that section. For simplicity,
in the presentation below, we assume that the reduction functions are deterministic. Suppose
(1− ε′) = (1− ε)k and we have BES(ε′)⊗m(n) vν(n)

fn,gn
BES(ε)⊗n.

Incorrect “proof.” Let us begin the technical overview with an incorrect “proof” to highlight
additional subtleties. We know that using the linear reduction functions, the following SNIS holds.

BES(ε′′) v0 BES(ε′)⊗m(n),

where (1− ε′′) = (1− ε′)m(n) = (1− ε)k·m(n). By the sequential composition of these two SNIS, we
obtain that

BES(ε′′) vν(n) BES(ε)⊗n.

Therefore, we must have k ·m(n) 6 n =⇒ m(n) 6 bn/kc.
There is a major flaw in this argument. The parameter ε′′ is not a constant in (0, 1). In fact, we

have (1 − ε′′) = (1 − ε)k·m(n), which is negligible in n. The feasibility argument mentioned above
does not apply to this ε′′.
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Correct proof. Now, let us proceed with the outline of the correct proof. Let f (i)
n , g

(i)
n be the

projections of fn, gn, respectively, that output only the i-th output samples, where 1 6 i 6 m(n).
Similarly, for 1 6 i < j 6 m(n), f (i,j)

n , g
(i,j)
n be the projections of fn, gn, respectively, that output

only the i-th and the j-th output samples. By the projection of the SNIS, one concludes the following
three SNIS holds for all 1 6 i < j 6 m(n).

(i) BES(ε′) vν(n)

f
(i)
n ,g

(i)
n

BES(ε)⊗n,

(ii) BES(ε′) vν(n)

f
(j)
n ,g

(j)
n

BES(ε)⊗n, and

(iii) BES(ε′)⊗2 vν(n)

f
(i,j)
n ,g

(i,j)
n

BES(ε)⊗n.

We know that BES(ε′′) v0 BES(ε′)⊗2 using the linear reduction functions, where (1−ε′′) = (1−ε′)2 =

(1 − ε)2k. We shall represent the reductions functions for this SNIS as f (i)
n · f (j)

n and g
(i)
n · g(j)

n .
Therefore, the sequential composition with SNIS (iii) above yields the following SNIS

(iv) BES(ε′′) vν(n)

f
(i)
n ·f

(j)
n ,g

(i)
n ·g

(j)
n

BES(ε)⊗n.

Now, let us consider the SNIS (i), (ii), and (iv). SNIS (i) implies that the Fourier spectrum
of f (i)

n is concentrated on k-term (multi-)linear functions. Similarly, SNIS (ii) implies that the
Fourier spectrum of f (j)

n is concentrated on k-term (multi-)linear functions. Finally, the spectrum
of f (i)

n · f (j)
n is the convolution of the Fourier spectrum of f (i)

n and f
(j)
n , which, by SNIS (iv) is

concentrated on 2k-term (multi-)linear functions. These observations imply that the k-term linear
functions in the Fourier spectrum of f (i)

n are essentially disjoint from the k-term linear functions in
the Fourier spectrum of f (j)

n ; otherwise, the Fourier spectrum of f (i)
n · f (j)

n would have observable
weight on (< 2k)-term (multi-)linear functions.

Once, we have this conclusion for every pair of 1 6 i < j 6 m(n), using union bound, one shows
that fn must have k ·m(n) inputs, which implies m(n) 6 bn/kc.
3.4 Characterization of SNIS feasibility and rate for BSS from BSS

First, we begin by considering some SNIS constructions. Suppose (1−2ε′) = (1−2ε)k, for some
k ∈ N. The input samples are from the sample space (X ,Y) = ({0, 1}, {0, 1}), and the output sample
space is (U ,V) = ({1,−1}, {1,−1}). For n > k, define the reduction function f∗n : {0, 1}n → {1,−1}
and g∗n : {0, 1}n → {1,−1}, as follows.

f∗n(xn) = (−1)x
n
1 +xn2 +···+xnk , g∗n = f∗n.

Note that BSS(ε′) v0
f∗n,g

∗
n
BSS(ε)⊗n. These k-term (multi-)linear reduction functions are the most

efficient reductions possible when (1 − ε′) = (1 − ε)k. Similar to the previous case, the simulators
for these linear reductions are efficient as well.

For every k, there are additional feasible SNIS reductions, however, they need more than k input
samples to generate one output sample. Equation 1 presents one such example. Computationally
efficient simulators for these reductions can rely on rejection sampling (because ε′ is a constant) to
achieve statistical security (not, perfect security).

Theorem 11 provides the formal theorem statement, and Section 10 provides the full proof. In
this case, the only change is that ρ := (1 − 2ε) and ρ′ := (1 − 2ε′). The rest of the proof intuition
essentially remains identical to the SNIS involving BES case. Except that, for SNIS for inter-
converting BSS samples, the Boolean reduction function fn need not be linear. After that, one
obtains the characterization that gn = fn using the security definition.
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4 Related Works

In this section, we discuss some of the closely related concepts in information theory and cryptog-
raphy. It is impossible to do justice to these vast fields by providing every perspective in this one
section. Consequently, we cite and discuss only the most relevant literature on these concepts.

Non-interactive simulation. Information theory studies the possibility of simulating a sample
from a joint distribution (U, V ) given multiples samples from the joint distribution (X,Y ), namely,
non-interactive simulation of joint distributions (NIS). This line of research starts with the seminal
works of Gács and Körner [38], Witsenhausen [88], and Wyner [94]. The primary difference of this
concept from our object of study is the omission of security. For example, it is permissible for parties
to erase information from their views in this setting. On the other hand, in our setting, since we
consider semi-honest and malicious security, erasure of information may be insecure. Let us consider
an illustrative example highlighting this difference. Consider simulating one sample of BSS(ε/2)
from multiple samples of BES(ε). Alice outputs the bit of her first sample. If Bob also received the bit
in his first sample, then he outputs the bit; otherwise, if he received⊥ as his first sample, he outputs a
uniformly random bit.10 Note that this non-interactive simulation is not secure.11 Even the decision
version of the problem where one has to determine whether samples from one joint distribution may
be non-interactively simulated from the samples of another joint distribution, in its full generality, is
a difficult problem [43, 36]. Technically, reverse hypercontractivity [4, 17, 72, 73, 53, 36, 10, 71], and
maximal correlation [46, 88, 4, 84, 5] are few of the most prominent techniques employed to prove
the impossibility of non-interactive simulations. We refer the interested reader to an exceptional
survey by Sudan, Tyagi, and Watanabe [86] for a thorough introduction to this field.

There is a related notion of non-interactive correlation distillation, where the target joint distri-
bution is the distribution of uniformly random private keys [72, 71, 95, 15, 25].

Joint distributions useful for secure computation. Not all joint distribution (U, V ) are
useful for general secure computation. If the mutual information of (U, V ) is 0, then clearly, this
distribution does not suffice for key agreement, let alone secure computation, which is more complex
to realize than key agreement. Even if the mutual information of (U, V ) is > 0, then this joint
distribution might enable key agreement, but not support general secure computation. However,
random samples from noisy channels like binary erasure channels [81, 82, 30], and binary symmetric
channels [31] suffice for general secure computation [96, 44, 90] (relying on interactive protocols).
Kilian [59] exactly characterized all joint distributions that enable general secure computation. The
benefit of secure computation based on samples of joint distributions is that these protocols are
secure even against adversaries with unbounded computational power.

Secure computation with low interaction and communication. Alice and Bob, begin-
ning from samples of any joint distribution useful for secure computation, may perform general
secure computation in a constant number of rounds [47, 48, 7, 51]. In fact, one can also perform
secure computation at a constant rate12 [49]. Recently, Garg, Ishai, Kushilevitz, Ostrovsky, and
Sahai [39] explore the potential of secure computation using noisy channels and one-way communi-
cation. In their setting, they leave open several feasibility/infeasibility problems related to binary

10Bob can simulate a uniformly random bit from multiple samples of the BES(ε) joint distribution.
11Consider the following case analysis when Bob is corrupt. Consider Alice’s output being 0 and Bob’s output

being 0. The simulation strategy for Bob has to output ⊥ with probability (close to) ε/2
(1−ε)+ε/2 as the first simulated

sample from BES(ε), and output 0 with probability (close to) 1−ε
(1−ε)+ε/2 as the first simulated sample from BES(ε);

otherwise, the simulation is insecure. Now consider the case when Alice’s output is 1 and Bob’s output is 0. In this
case, with probability (close to) 1−ε

(1−ε)+ε/2 , Bob’s simulated first sample of BES(ε) is inconsistent with Alice’s output.
Therefore, no secure simulation strategy for Bob exists.

12One can equivalently interpret constant rate as spending a constant number of samples to perform one
multiplication/AND-gate secure in an ammortized sense.
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symmetric and binary erasure channels. Agrawal et al. [1] prove the completeness of finite channels
(with inverse polynomial error) by realizing string-ROT from bit-OT. To complement this result,
they also show that no finite channel is complete with negligible error. The proposed notion of SNIS
in our work permits no communication between the parties. Recently, Narayanan, Prabhakaran,
and Prabhakaran [75] introduced a new primitive called Zero-communication Reduction (ZCR) that
is different from SNIS. In ZCR, each party is given an independent input and has access to a corre-
lation. Their goal is to locally produce an output candidate along with an input to a predicate. The
correctness requires that when the predicate outputs “acccepts”, the output candidates produced
by the two parties must be correct, and correctness is not guaranteed when the predicate outputs
“rejects”. Moreover, a typically exponentially small lower bound on the probability of acceptance
is required. They defined three variants corresponding to different levels of security. The primi-
tive ZCR is an extension of zero-communication protocols used for studying communication and
information complexity (see [54]).

Bounding efficiency of secure constructions. There has been work on lower-bounding the
efficiency of secure computations via interactive protocols, for example, the monotones of [89], and
assisted common information [78, 79, 80, 83].

5 Application: Versatile Offline Phase for Secure Computation

This section presents the problem of deploying off-the-shelf secure computation solutions using
diverse noise sources, which SNIS can enable without additional communication.

Representative motivating scenario. Frequently, one comes across signals arising from
cataclysmic celestial events or their aftereffects that are well beyond human influence. For example,
we witnessed events like (1) Mysterious fast radio bursts that repeat every sixteen days, (2) Sudden
and unexpected dimming of Betelgeuse indicating that it may go supernova, and (3) Gravitational
waves originating from the merger of two neutron stars. Such signals, when observed from multiple
observatories spread across the globe, yield large quantities of noisy correlated observations. Local
atmospheric or electromagnetic noise perturb these observations. One does not have control over
the exact noise introduced to the observations at these different locations, even when there are
well-established models for these noises.

Unlike the prominent objective in information reconciliation of removing noise by leveraging
multiple correlated observations, in cryptography, noise that is beyond the adversarial control is,
surprisingly, a facilitator for non-trivial cryptographic tasks, like, key-agreement, and (more gen-
erally) secure computation [32, 58, 59, 51, 49, 60].13 There has been extensive research into the
feasibility and efficiency of founding secure computation on such noise sources. Within this research,
out of efficiency concerns, the following natural question arises.

“How to efficiently build a versatile infrastructure for cryptography
from correlated samples

without any additional interaction between the observatories?”
13This is the most appropriate opportunity to quote the following paragraphs from Crépeau and Kilian [32]. “Noisy

channels have been extensively studied in the field of coding theory, and it is interesting to see how our perspective
differs from the more traditional one. Coding theory adopts the viewpoint that noise is a bad thing, to be eliminated
as efficiently as possible. Given a noisy channel, a coding theorist tries to simulate a pristine, noiseless communication
line.
From our point of view (following Wyner [94]), an ideal communication line is a sterile, cryptographically uninteresting
entity. Noise, on the other hand, breeds disorder, uncertainty, and confusion. Thus, it is the cryptographer’s natural
ally. The question we consider is whether this primordial uncertainty can be sculpted into the more sophisticated
uncertainty found in secure two-party protocols.”
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The seminal works of Maurer [68, 69, 70], and Ahlswede and Csisźar [2, 3] introduced the concept
of building an infrastructure for shared private randomness using sources of noise. Our emphasis is
on enabling general secure computation, which is a strictly stronger cryptographic primitive [41, 65].

Offline-online paradigm. The offline-online paradigm of secure computation [67, 14, 35, 76]
typically relies on an offline phase to generate samples from a correlated randomness source and,
later, uses these samples to perform a particular secure computation task during the fast online
phase. One may securely realize the offline phase using computationally secure protocols (for exam-
ple, using homomorphic encryption [40] or somewhat homomorphic encryption [20]). However, an
increase in computational power due to shifts in computing paradigms or an improvement in adver-
sarial attacks’ efficiency due to new mathematical advances may potentially render these protocols
insecure. On the other hand, correlated randomness from noisy sources enables secure computation
even against adversaries with unbounded (classical/quantum) computational power. Therefore, the
motivating scenario above can generate highly efficient infrastructure for secure computation that
never forfeits its security.

Application. In fact, the non-interactive simulation allows the parties to specify the infras-
tructure (say, the noise characteristics) well after the correlated samples have been observed. Fur-
thermore, the online phase may prefer to use samples from a noise source with a particular noise
characteristic due to efficiency considerations. For example, this choice may be guided by the par-
ticular multiplication friendly error-correcting code being used [29] in the online protocol, or the
probability of including servers on the watchlist [51]. Although the celestial source’s noise parameter
is beyond our control, it would be desirable if the parties can non-interactively simulate samples of
an alternate noise source with a noise characteristics that the online protocol prefers. Enabling this
non-interactive conversion, allows parties to deploy off-the-shelf secure computation solutions using
samples from diverse noise sources without any increase in round or communication complexity.

6 Preliminaries

6.1 Notation
We denote [n] as the set {1, 2, . . . n}, and N as 2n. The distribution U{0,1}n is the uniform

distribution over the set {0, 1}n. For two functions f, g defined on the same domain, we write f = g
to denote that the value of f and g are equal for each element of their domain. We use script letters
X ,Y, . . . to denote finite sets and (X ,Y) to denote a joint probability space. We use capital letters
X,Y, . . . to denote random variables. For xn ∈ X n, xni ∈ X represents the i-th coordinate of xn.

For a function f : D → Rm, the function f (i) : D → R, where i ∈ [m], denotes the mapping that
on input x ∈ D returns the ith coordinate of f(x) ∈ Rm. The function f (i) is called the projection
of f on the i-th coordinate.

Statistical Distance. The statistical distance between two distributions P and Q over a
(discrete) sample space Ω is defined as the following.

SD (P,Q) :=
1

2

∑
x∈Ω

|P (x)−Q(x)|.

6.2 Correlated Random Sources and Noise Operator
Binary Symmetric Source. A binary symmetric source with flipping probability ε ∈ (0, 1),

denoted as BSS(ε), is a joint distribution over the sample space {−1, 1} × {−1, 1} such that if
(X,Y )

$←− BSS(ε), then Pr[X = 1, Y = −1] = Pr[X = −1, Y = 1] = ε/2, and Pr[X = 1, Y = 1] =
Pr[X = −1, Y = −1] = (1− ε)/2. We write ρ to denote the correlation of the source BES(ε). Note
that ρ = 1− 2ε.
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Binary Erasure Source. A binary erasure source with erasure probability ε ∈ (0, 1), denoted
as BES(ε), is a joint distribution over the sample space {0, 1} × {0, 1,⊥} such that if (X,Y )

$←−
BES(ε), then Pr[X = 0, Y = 0] = Pr[X = 1, Y = 1] = (1− ε)/2, and Pr[X = 0, Y = ⊥] = Pr[X =
1, Y = ⊥] = ε/2.

Noise Operator. Let ρ ∈ [0, 1] be the parameter determining the noise. For each fixed bit
string xn ∈ {0, 1}n, we write yn $←− Nρ(x

n) to denote that the random string yn is drawn as
follows: for each i ∈ [n], independently, yni is equal to xni with probability ρ and it is chosen
uniformly at random with probability 1 − ρ. We say that yn is ρ-correlated to xn. The noise
operator with parameter ρ ∈ [0, 1] is the linear operator Tρ on function f : {0, 1}n → R defined as
Tρf(xn) = Eyn∼Nρ(xn)[f(yn)].

Note that if (Xn, Y n)
$←− BSS(ε), then Y n is ρ-correlated to Xn with parameter ρ = 1− 2ε.

6.3 Fourier Analysis for Boolean Functions: Preliminaries
We recall some background in Fourier analysis that will be useful for our analysis (see [77] for

more details). Let f, g : {0, 1}n → R be two real-valued Boolean functions. We define the inner
product as following.

〈f, g〉 =
1

N

∑
xn∈{0,1}n

f(xn) · g(xn) = E
xn

[f(xn) · g(xn)]

For each S ⊆ [n], the characteristic function χS(xn) = (−1)S·x
n

= (−1)
∑
i∈S xi is a linear function

that computes the parity (that is, the exclusive-or) of the bits (xi)i∈S . The set of all χS forms an
orthonormal basis for the space of all real-valued functions on {0, 1}n. For any S ⊆ [n], the Fourier
coefficient of f at S is defined as f̂(S) = 〈f, χS〉. Any function f can be uniquely expressed as
f =

∑
S⊆[n] f̂(S)χS which is called Fourier expansion of f . The Fourier weight of f on a set S ⊆ [n]

is defined to be f̂(S)2, and the Fourier weight of f at degree k is Wk[f ] =
∑

S:|S|=k f̂(S)2. We
denote the set of all possible size-k subsets of the set {1, 2, . . . , n} by Wk. Parseval’s Identity says
that ‖f‖22 = Exn∼U{0,1}n f(xn)2 =

∑
S⊆[n] f̂(S)2 where U{0,1}n denotes uniform distribution over

{0, 1}n.
Next we summarize the basic Fourier analysis on Boolean function with restriction on the sub-

cubes. Let J and J̄ be a partition of the set [n]. Let fJ |z : {0, 1}J → R denote the restriction of

f to J when the coordinates in J̄ are fixed to z ∈ {0, 1}|J̄|. Let f̂J |z(S) be the Fourier coefficient

of the function fJ |z corresponding to the set S ⊆ J . Then, when we assume that z ∈ {0, 1}|J̄| is
chosen uniformly at random, we have

E
z
[f̂J |z(S)] = f̂(S) (2)

E
z
[f̂J |z(S)2] =

∑
T⊆J̄

f̂(S ∪ T )2 (3)

Definition 1 (Spectral Sample). For each function f : {0, 1}n → R, the spectral sample for f ,
denoted as S(f), is the probability distribution on subsets of [n] in which the set S has probability
f̂(S)2/

∑
T⊆[n] f̂(T )2. In particular, if f : {0, 1}n → {−1, 1} is a boolean function then its associated

spectral sample S(f) is the distribution where the probability of sampling any set S ⊆ [n] is given
by f̂(S)2.
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7 Secure Non-Interactive Simulation: Simulation-based Definition

In this section, we define the notion of secure non-interactive simulation of joint distributions using
a simulation-based security definition [22, 21, 23]. Suppose (X,Y ) is a joint distribution over the
sample space X × Y, and (U, V ) be a joint distribution over the sample space U × V. For n ∈ N,
suppose f : X n × RA → U and g : Yn × RB → V be two reduction functions where RA and RB
denote respectively the space of private random used by Alice and Bob.

We clarify that it is standard in the literature to assume that the sample spaces X ,Y,U , and
V are constant sized (i.e., does not depend on n). All the probabilities Pr[(X,Y ) = (x, y)] and
Pr[(U, V ) = (u, v)] are either 0 or at least a constant (i.e., for example, these probabilities do not
tend to 0 as a function of n).

We shall define simulation-based security for secure non-interactive reductions. In the real world,
we have the following experiment.

1. A trusted third party samples (xn, yn)
$←− (X,Y )⊗n, and delivers xn ∈ X n to Alice and yn ∈ Yn

to Bob.
2. Alice samples private randomness rA from RA and outputs u′ = f(xn, rA).
3. Bob samples private randomness rB from RB and outputs v′ = g(yn, rB).

For inputless functionalities and non-interactive computation, semi-honest and malicious adver-
saries are identical. Furthermore, static and adaptive corruption are also identical for this setting.
So, for simplicity, one can always consider semi-honest static corruption to interpret the security
definitions. All forms of adversary mentioned above shall turn out to be equivalent in our setting.

1. The case of no corruption. Suppose the environment does not corrupt any party. So, it
receives (U, V ) as output from the two parties in the ideal world. In the real world, the simulator
receives (fn(Xn, RA), gn(Y n, RB)) as output. If this reduction has at most ν(n) insecurity, then
the following must hold.

SD ( (U, V ) , (f(Xn, RA), g(Y n, RB)) ) 6 ν(n).

2. The case of Corrupt Alice. Suppose the environment statically corrupt Alice. In the real
world, the simulator receives ((Xn, RA), f(Xn, RA), g(Y n, RB)). In the ideal world, we have
a simulator SimA : U → X n × RA that receives u from the ideal functionality, and outputs
(SimA(u), u) to the environment. The environment’s view is the random variable (SimA(U), U, V ).
If this reduction has at most ν(n) insecurity, then the following must hold.

SD ( (SimA(U), U, V ) , ((Xn, RA), f(Xn, RA), g(Y n, RB)) ) 6 ν(n).

3. The case of Corrupt Bob. Analogously, there exists a simulator for Bob SimB : V → Yn×RB
and the following must hold if this reduction has at most ν(n) insecurity.

SD ( (U, V, SimB(V )) , (f(Xn, RA), g(Y n, RB), (Y n, RB)) ) 6 ν(n).

If there exists reductions functions f, g such that the insecurity is at most ν(n) as defined
above then we say that (U, V ) reduces to (X,Y )⊗n via reduction functions fn, gn with insecurity
at most ν(n). In our presentation, all secure reductions admit computationally efficient simulators
SimA and SimB. Moreover, all our impossibility results even rule out simulators with unbounded
computational power. We say that ν(n) is negligible in n if it decays faster than any inverse-
polynomial in n for sufficiently large values of n.
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7.1 Composition
In this section, we shall prove the sequential and parallel composition theorems, and the security

of projection operation for SNIS.
As a first step, we introduce a few notations. Suppose P,Q are joint distributions (X,Y ) and

(X ′, Y ′) on sample spaces X ×Y and X ′ ×Y ′, respectively. The notation (P‖Q) represents a joint
distribution over the sample space (X ×X ′)× (Y ×Y ′) defined by the following procedure. Sample
(x, y)

$←− (X,Y ), sample (x′, y′)
$←− (X ′, Y ′), give the sample (x, x′) to Alice and (y, y′) to Bob.

For reduction functions, we shall need the following notation. Suppose fn : Ω1 → Ω2, and
f ′n : Ω′1 → Ω′2. The function fn‖f ′n is a function Ω1 × Ω′1 → Ω2 × Ω′2 defined by the following
mapping (x, x′) 7→ (fn(x), f ′n(x′)).

We remark that, in the composition theorems below, the distribution P, P ′, Q,Q′, and R may
depend on n itself.

Theorem 2 (Parallel Composition). For joint distributions P, P ′, Q, and Q′, suppose we have

P vν(n)
fn,gn

Q and P ′ vν
′(n)
f ′n,g

′
n
Q′.

Then, the following holds.
(P‖P ′) vν(n)+ν′(n)

fn‖f ′n,gn‖g′n
(Q‖Q′).

Proof. Suppose the environment does not corrupt any party. Then, the bound follows from a hybrid
argument.

Suppose the environment corrupts Alice. Let SimA and Sim′A be the simulators for corrupt
Alice for P vν(n)

fn,gn
Q and P ′ vν

′(n)
f ′n,g

′
n
Q′, respectively. We consider the simulator SimA‖Sim′A for

(P‖P ′) vν(n)+ν′(n)
fn‖f ′n,gn‖g′n

(Q‖Q′). The result is immediate from a hybrid argument.
Similarly, when the environment corrupts Bob, the simulator SimB‖Sim′B serves as a the sim-

ulator for the composed reduction, where SimB and Sim′B are simulators for corrupt Bob in the
reductions P vν(n)

fn,gn
Q and P ′ vν

′(n)
f ′n,g

′
n
Q′, respectively.

We need one more notation for the sequential composition. Suppose fn : Ω→ Ω′, and f ′n : Ω′ →
Ω′′. The function f ′n ◦ fn is a function Ω→ Ω′′ defined by the mapping x 7→ f ′n(fn(x)).

Theorem 3 (Sequential Composition). For joint distribution P,Q, and R, suppose we have

P vν(n)
fn,gn

Q, and Q vν
′(n)
f ′n,g

′
n
R.

Then, the following holds.
P vν(n)+ν′(n)

fn◦f ′n,gn◦g′n
R.

Proof. The only non-trivial case is when the environment corrupts one of the parties, say, Alice.
Suppose SimA and Sim′A be the simulators when Alice is corrupted by the environment in the
reduction P vν(n)

fn,gn
Q and Q vν

′(n)
f ′n,g

′
n
R. Then, the simulator Sim′A ◦ SimA suffices to prove the

security of the reduction P vν(n)+ν′(n)
fn◦f ′n,gn◦g′n

R using a hybrid argument.

Suppose fn : Ω→ Ω′×Ω′′, then the projection function f (1)
n : Ω→ Ω′ is defined by the mapping

x 7→ y if fn(x) = (y, z), for some z ∈ Ω′′. Next, we formally state that projections preserve security.
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Theorem 4 (Projection). For joint distribution P,Q, and R, suppose we have

(P‖Q) vν(n)
fn,gn

R.

Then, the following holds.
P vν(n)

f
(1)
n ,g

(1)
n

R.

Proof. The proof is a corollary of statistical distance satisfying the triangle inequality.

7.2 Derandomization of Reductions
In this section, we state the drandomization of reduction functions formally as follows. We

provide the proof in Appendix C.

Theorem 5 (Rate-preserving Derandomization of Reduction Functions). Let (U, V ) and (X,Y ) be
two joint distributions. Let n ∈ N and ν(n) > 0. Suppose there exist randomized reduction functions
f : X n × RA → V, and g : Yn × RB → U such that (U, V ) vν(n)

f,g (X,Y )⊗n. Then, there exists a
constant γ(which depends on the target distribution (U, V )), and (deterministic) reduction functions
f ′ : X n → U , and g′ : Yn → V such that (U, V ) vγν(n)1/9

f ′,g′ (X,Y )⊗n.

Intuitively, Theorem 5 says that if there exists a ν-SNIS of (U, V ) from (X,Y ) using randomized
reduction functions, then there exists a Θ(ν1/9)-SNIS of (U, V ) from (X,Y ) using deterministic
reduction functions that uses the same number of samples.

7.3 Rank-characterization of Security
Suppose there exist n ∈ N, f : X n → U , and g : Yn → V such that (U, V ) vν(n)

f,g (X,Y )⊗n. LetM
denote the matrix that represents the probability mass function of the joint distribution (X,Y )⊗n

i.e.M has |X |n rows and |Y|n columns and each row inM is indexed by a unique xn ∈ X n and each
column in M is indexed by a unique yn ∈ Yn and M(xn, yn), the element at row xn and column yn,
is equal to Pr[Xn = xn, Y n = yn] (refer to Table 2). For u ∈ U , let Af (u) := {xn ∈ X n|f(xn) = u}
and for v ∈ V let Bg(v) := {yn ∈ Yn|g(yn) = v}. Let MA denote the matrix of size |U| × |Y|n
achieved by collapsing all the rows whose indices are mapped by f to the same element in U i.e. for
u ∈ U and yn ∈ Yn, MA(u, yn) =

∑
xn∈Af (u)M(xn, yn) (refer to Table 4). Similarly, we define MB

as the matrix of size |X |n × |V| achieved by collapsing all the columns whose indices are mapped
by g to the same element in V i.e. for v ∈ V and xn ∈ X n, MB(xn, v) =

∑
yn∈Bg(v)M(xn, yn) (refer

to Table 3).
Let Mv

A denote the submatrix of MA achieved by selecting those columns of MA whose indices
belong to Bg(v). Note that the size of Mv

A is |U| × |Bg(v)|. Similarly, let Mu
B denote the submatrix

of MB achieved by selecting those rows of MB whose indices belong to Af (u). Note that the size
of Mu

B is |Af (u)| × |V|.
For two matrices P and Q of size r × t, define

SD (P,Q) :=
1

2

∑
i∈[r]

∑
j∈[t]

|P (i, j)−Q(i, j)|.

Notice that if both matrices P and Q are representing joint distributions over [r]×[t], then SD (P,Q)
is in fact the statistical distance of the two corresponding distributions.

Theorem 6 and Theorem 7 prove that one can express the security of SNIS as an appropriate
rank-one constraint. Appendix B proves these theorems.
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Theorem 6. Suppose there exist n ∈ N, f : X n → U , and g : Yn → V such that f(U, V ) vν(n)
f,g

(X,Y )⊗n, then the two following conditions hold together:

• For each v ∈ V, there exists a rank one matrix T v of size |U| × |Bg(v)| such that SD (T v,Mv
A) 6

ν(n) and for each u ∈ U ,
∑

yn∈Bg(v) T
v(u, yn) = Pr[U = u, V = v].

• For each u ∈ U , there exists a rank one matrix T u of size |Af (u)| × |V| such that SD (T u,Mu
B) 6

ν(n) and for each v ∈ V,
∑

xn∈Af (u) T
u(xn, v) = Pr[U = u, V = v].

Theorem 7. Suppose there exist n ∈ N, f : X n → U , and g : Yn → V such that the two following
conditions hold together:

• For each v ∈ V, there exists a rank one matrix T v of size |U| × |Bg(v)| such that SD (T v,Mv
A) 6

ν(n) and for each u ∈ U , we have
∑

yn∈Bg(v) T
v(u, yn) = Pr[U = u, V = v].

• For each u ∈ U , there exists a rank one matrix T u of size |Af (u)| × |V| such that SD (T u,Mu
B) 6

ν(n) and for each v ∈ V, we have
∑

xn∈Af (u) T
u(xn, v) = Pr[U = u, V = v].

then, (U, V ) vd×ν(n)
f,g (X,Y )⊗n where d = max(|U|, |V|).

8 Examples

This section presents an example of SNIS and an insecure NIS. Section 8.1 presents a SNIS of
BES(ε′) from BES(ε), where (1 − ε′) = (1 − ε)2. Section 8.2 presents a NIS of BES(ε/2) from
BES(ε), where ε ∈ (0, 1). However, this NIS is insecure. The reason underlying its insecurity
highlights the additional constraints needed to ensure security.

8.1 SNIS Example
Consider the secure non-interactive simulation of BES(ε′) from BES(ε)⊗2, where (1 − ε′) =

(1 − ε)2, with 0 insecurity. For notation, we use xni to represent the coordinate i of a length-n
vector. In this case we use the reduction functions f2(x2) = x2

1 ⊕ x2
2 and g2(y2) =⊥ if y2

1 =⊥, or
y2

2 =⊥; otherwise, g2(y2) = y2
1 ⊕ y2

2. Let us first visualize the entire joint distribution in Table 2.
v = 0 v =⊥ v = 1

00 11 0 ⊥ ⊥ 0 1 ⊥ ⊥ 1 ⊥⊥ 01 10

u = 0
00 (1−ε)2

4
(1−ε)ε

4
ε(1−ε)

4
ε2

4

11 (1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

ε2

4

u = 1
01 (1−ε)ε

4
ε(1−ε)

4
ε2

4
(1−ε)2

4

10 ε(1−ε)
4

(1−ε)ε
4

ε2

4
(1−ε)2

4

Table 2: Joint distribution induced by SNIS of BES(ε′) from BES(ε)⊗2. Rows have elements in
X 2 = {0, 1}2, and columns have elements in Y2 = {0, 1,⊥}2. The (x2, y2)-th entry in this matrix
represents the probability Pr

[
(X,Y )⊗2 = (x2, y2)

]
, and no-entry implies that the probability is 0.

Consider a corrupt Alice (refer to Table 3). The security constraint states that the condi-
tional distribution (Xn|fn(Xn) = u, gn(Y n) = v) is independent of v, Bob’s output. Similarly, when
Bob is corrupt (refer to Table 4). The security constraint states that the conditional distribution
(Y n|fn(Xn) = u, gn(Y n) = v) is independent of u. Theorem 6 and Theorem 7 abstract these security
constraints as equivalent “rank-one constraints” on an appropriate matrix.

8.2 Insecure NIS Example
Consider the non-interactive simulation of BSS(ε′) from BES(ε), where ε′ = ε/2 and ε ∈ (0, 1).

Alice’s reduction function is u = f1(x1) = x1
1. The reduction function for Bob is randomized (it
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v = 0 v =⊥ v = 1

u = 0
00 (1−ε)2

4
2ε−ε2

4

11 (1−ε)2
4

2ε−ε2
4

u = 1
01 2ε−ε2

4
(1−ε)2

4

10 2ε−ε2
4

(1−ε)2
4

Table 3: The case of corrupt Alice for SNIS of BES(ε′) from BES(ε)⊗2. The table illustrates the
joint distribution of (X2, V ). It suffices to let SimA(0) be the uniform distribution over {00, 11},
and SimA(1) be the uniform distribution over {01, 10}.

v = 0 v =⊥ v = 1
00 11 0 ⊥ ⊥ 0 1 ⊥ ⊥ 1 ⊥⊥ 01 10

u = 0 (1−ε)2
4

(1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

(1−ε)ε
4

ε(1−ε)
4

2ε2

4

u = 1 (1−ε)ε
4

ε(1−ε)
4

(1−ε)ε
4

ε(1−ε)
4

2ε2

4
(1−ε)2

4
(1−ε)2

4

Table 4: The case of corrupt Bob for the reduction of BES(ε′) to BES(ε)⊗2. The table illustrates
the joint distribution of (U, Y 2). It suffices to let SimB(0) be the uniform distribution over {00, 11},
SimB(1) be the uniform distribution over {01, 10}, and SimB(⊥) be the distribution that outputs
0 ⊥, 1 ⊥, ⊥ 0, and ⊥ 1 (each) with probability ε(1−ε)/(4ε−2ε2), and outputs ⊥⊥ with probability
2ε2/(4ε− 2ε2).

takes one additional random bit as input). Bob’s reduction function is g1(y1, rB) is defined as
follows, where rB ∈ {0, 1}. If y1

1 ∈ {0, 1}, then v = y1
1, and, if y1

1 =⊥, then v = rA. Observe that
u 6= v with probability ε/2. However, this NIS is insecure when Bob is corrupt (this reduction is
secure against a corrupt Alice).

Fix Bob’s output v. Conditioned on this output, with probability (1 − ε), Bob knows Alice’s
output exactly. With the remaining ε probability, Bob has no advantage is predicting Alice’s output.
A secure BSS(ε/2) sample needs to ensure that conditioned on Bob’s entire view, the probability
of Alice output being u = v is (1 − ε/2) always. To summarize, NIS allows reduction functions to
erase information, which is not allowed by SNIS.

Remark 10. Note that the NIS above is randomized. One cannot derandomize this while preserving
the rate of the reduction. For example, for example Bob can use additional BES(ε) samples as input
to simulate the bit rA. However, the rate worsens. We shall prove that SNIS, on the other hand,
admits a sample-preserving derandomization.

9 SNIS from Binary Erasure Source Samples

In this section we consider reductions to BES.

9.1 Impossibility of Simulating Binary Symmetric Source from Binary Erasure
Source

We begin with a relatively simple proof that rules out the possibility of securely non-interactively
simulating samples of BSS(ε′) from BES(ε)⊗n. We emphasize that this reduction is not ruled out
by (insecure) non-interactive simulation literature and cryptography with one-way messages for any
choice of ε, ε′ parameters. This result highlights the crucial role that the notion of “security” plays
in the proofs.

21



v = 0 v = 1
00 10 01 11

u = 0
00 a b b c
01 b c a b

u = 1
10 b a c b
11 c b b a

Table 5: The joint distribution induced by the reduction f(x1, x2) = x1, g(y1, y2) = y2 which is used
to simulate BSS(1/2) from BSS(ε)⊗2. Note that a = (1−ε)2

4 , b = ε(1−ε)
4 , c = ε2

4 where ε ∈ (0, 1
2).

This reduction is perfectly correct (refer to Table 7) but not perfectly secure (refer to Table 6).
Note that the Fourier spectrum of both functions f and g are concentrated on degree one but not
the same support (see Theorem 1).

v = 0 v = 1
00 10 01 11

u = 0 α 1
4 − α α 1

4 − α
u = 1 1

4 − α α 1
4 − α α

Table 6: The joint distribution achieved after collapsing the rows of the matrix of Table 5. Note
that α = a+ b = 1−ε

4 , where ε ∈ (0, 1
2), a = (1− ε)/4, and b = ε(1− ε)/4. The submatrix restricted

to v = 0 has rank 2. Therefore, according to Theorem 6, this reduction is not perfectly secure
against a corrupt Bob.

We begin by restating the Informal Theorem 1.

Theorem 8. Let ε′ ∈ (0, 1/2), and ε ∈ (0, 1). There exists a constant c such that, for any n ∈ N,
for any reduction functions fn, gn satisfying BSS(ε′) vν(n)

fn,gn
BES(ε)⊗n, it holds that ν(n) > c/

√
n.

Proof. First, we shall rule out all ε′ 6= ε/2. Let S0 ⊆ {0, 1}n be the set of all xn ∈ {0, 1}n such
that fn(xn) = 0. Similarly, S1 = {0, 1}n \ S0 be the set of all xn ∈ {0, 1}n such that fn(xn) = 1.
Let ∂S0 ⊆ S0 be the elements whose one of their neighbors on the boolean hypercube lies in S1.
Intuitively, ∂S0 is the outermost shell of S0 when embedded in the boolean hypercube. Analogously,
define ∂S1. Our objective is to find a large matching such that every edge has one endpoint in ∂S0

and another endpoint in ∂S1. Since min{|S0|, |S1|} > 2n−1(1− o(1)), the size of such a matching is
> Θ(2n/

√
n) [16].

Consider any an ∈ ∂S0 and its matched neighbor bn ∈ ∂S1. Note that an and bn differ in exactly
one position. Consider any yn ∈ {0, 1,⊥}n. We say that an ` yn. (read, an is consistent with yn)
if for all 1 6 i 6 n we have yni =⊥ or yni = ani . Intuitively, an ` yn if it is possible to obtain yn by
passing an through an erasure channel.

Define the following sets.

T0 = {yn : yn ∈ {0, 1,⊥}n, an ` yn, bn 6` yn}
T1 = {yn : yn ∈ {0, 1,⊥}n, an 6` yn, bn ` yn}

Tboth = {yn : yn ∈ {0, 1,⊥}n, an ` yn, bn ` yn}

Note that T0 is the set of all yn such that the index where an and bn differed survived, and
it agrees with the entry in an. Similarly, the set T1 is the set of all yn such that the index where
an and bn differed survived, and it agrees with the entry in bn. Finally, the set Tboth is the set
of all yn such that the index where an and bn differed was erased. Therefore, we conclude that
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v = 0 v = 1

u = 0 1
4

1
4

u = 1 1
4

1
4

Table 7: The joint distribution achieved after collapsing the rows and columns of the matrix of
Table 5. This table shows that the reduction introduced in Table 5 is perfectly correct.

Pr[Y n ∈ T0|Xn = an] = (1 − ε), Pr[Y n ∈ T1|Xn = bn] = (1 − ε), and Pr[Y n ∈ Tboth|Xn = an] =
Pr[Y n ∈ Tboth|Xn = bn] = ε.

Let W0 ⊆ {0, 1,⊥}n be the set of all entries yn ∈ {0, 1,⊥}n such that gn(yn) = 0. Similarly
defineW1 = {0, 1,⊥}n\W0. Our objective is to partition T0, Tboth, and T1 and allocate the elements
to W0 and W1 such that the following constraints hold simultaneously.

1. Pr[Y n ∈W0|Xn = an] ≈ (1− ε′), and Pr[Y n ∈W1|Xn = an] ≈ ε′.
2. Pr[Y n ∈W1|Xn = bn] ≈ (1− ε′), and Pr[Y n ∈W0|Xn = bn] ≈ ε′.
Any deviation from these probabilities contribute to simulation error for corrupt Alice. Note that
the simulation error (for corrupt Alice) shall be at least 1

2

∣∣ε′ − ε
2

∣∣ conditioned on Xn ∈ {an, bn}.
Therefore, the simulation error when Xn ∈ ∂S0 ∪ ∂S1 is at least 1

2

∣∣ε′ − ε
2

∣∣ · Pr[Xn ∈ ∂S0] >
Θ
(
|ε− 2ε′|/n1/2

)
= Θ

(
n−1/2

)
. Therefore, it is impossible to have ν(n) = o(n−1/2) insecurity.

At this point, we have ruled out secure non-interactive reduction for all ε′ 6= ε/2. If possible let
there exists a secure non-interactive simulation

BSS(ε/2) vν(n)
fn,gn

BES(ε)⊗n.

Then, by parallel composition, we have

BSS(ε/2)⊗2 v2ν(n)
fn‖fn,gn‖gn BES(ε)⊗2n.

We know that BSS(ε − ε2/2) v0
parity2,parity2

BSS(ε/2)⊗2 using the parity reductions (refer to the
results in Section 10). By sequential composition, we have

BSS(ε− ε2/2) v2ν(n)
fn⊕fn,gn⊕gn BES(ε)⊗2n.

Note that ε − ε2/2 6= ε/2, for all ε ∈ (0, 1). Therefore, we have shown the secure non-interactive
simulation of BSS(ε′), for some ε′ 6= ε/2, from samples of BES(ε), which contradicts the first part
of the proof. Consequently, our initial assumption that BSS(ε/2) vν(n)

fn,gn
BES(ε)⊗n must be false.

This argument completes the proof ruling out all ε′ ∈ (0, 1/2).

We emphasize that the case of corrupt Alice suffices to rule out all secure non-interactive simu-
lation of a BSS(ε′) sample, where ε′ 6= ε/2.

9.2 Binary Erasure Source: Feasibility and Rate
We start by restating the Informal Theorem 2 as follows.

Theorem 9 (Binary Erasure Channel: Feasibility & Rate). For constant ε′, ε ∈ (0, 1), the following
results hold.

1. Feasibility characterization. The following two statements are equivalent.

(a) There exists a family of reduction functions fn : {0, 1}n → {−1, 1}, gn : {0, 1,⊥}n → {−1, 0, 1}
and insecurity bound ν(n) = o(1) such that BES(ε′) vν(n)

fn,gn
BES(ε)⊗n for infinitely many

n ∈ N.
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(b) There exists a constant k ∈ N, such that (1− ε′) = (1− ε)k.
In particular, when (1 − ε′) = (1 − ε)k, the following linear reduction functions f∗n, g∗n realize
BES(ε′) v0

f∗n,g
∗
n
BES(ε) for all n > k.

f∗n(xn) := (−1)x
n
1 +xn2 +···+xnk

g∗n(yn) :=

{
(−1)y

n
1 +yn2 +···+ynk , if yn ∈ {0, 1}k × {0, 1,⊥}n−k

0, otherwise.

2. Rate characterization: Suppose (1 − ε′) = (1 − ε)k for some constant k ∈ N. There exists a
positive constant c such that the first statement implies the second statement below.

(a) There exists an infinite family of functions fn : {0, 1}n → {−1, 1}m(n), gn : {0, 1,⊥}n →
{−1, 0, 1}m(n) such that BES(ε′)⊗m(n) vν(n)

fn,gn
BES(ε)⊗n, where ν(n) = o(1/n36+9k/2).

(b) The production is bounded by m(n) 6 bn/kc, for large enough n ∈ N.

Furthermore, the production of m(n) = bn/kc with ν(n) = 0 is achievable using block linear
reduction functions for all n ∈ N.14

Our theorem gives the full characterization of the feasible region of secure non-interactive simu-
lation of a binary erasure source from another one. That is, o(1)-secure non-interactive simulation
of BES(ε′) from BES(ε) is possible if and only if the erasure probabilities ε and ε′ satisfy that
(1− ε′) is a power of (1− ε). Furthermore, when the erasure probabilities are in the feasible region,
in other words, (1 − ε′) = (1 − ε)k for some constant k ∈ N, the rate of reduction is at most 1

k .
Conversely, this rate is achievable for infinitely many n that are multiples of k by using block-wise
linear constructions.

9.2.1 Algebraic Definition
In this subsection, we algebraize the definition of security of secure non-interactive simulation

of a BES source from another BES source. Moreover, we introduce some new notations that we will
use in this subsection.

Suppose (Xn, Y n) ∼ BES(ε)⊗n, then Pε denotes the marginal distribution of Y n, and Qε(xn)
denotes the conditional distribution (Y n|Xn = xn), andM(yn) denotes the conditional distribution
(Xn|Y n = yn) . Note that we choose the range of reduction function fn to be {−1, 1} and the range
of gn to be {−1, 0, 1}. We can rewrite the three conditions of the definition of secure non-interactive
simulation, mentioned in Section 7, for BES, as the following.

From our discussion in Section 7, it follows from BES(ε′) vν(n)
fn,gn

BES(ε)⊗n, where fn : {0, 1}n →
{−1, 1}, gn : {0, 1,⊥}n → {−1, 0, 1}, the following algebraic constraints:

1. Correctness: Assuming (Xn, Y n) ∼ BES(ε)⊗n, we have:

SD ((fn(Xn), gn(Y n)), (U, V )) 6 ν(n)

which implies that Exn∼U{0,1}n [fn(xn)] 6 ν(n), and Eyn∼Pε [gn(yn)] 6 ν(n).
2. Bob security:

E
xn∼U{0,1}n

∣∣∣∣∣ E
yn∼Qε(xn)

gn(yn)− (1− ε′)fn(xn)

∣∣∣∣∣ 6 ν(n).

14A block linear reduction partitions the input samples into size-k bn/kc blocks, and applies the linear reduction
functions f∗k , g

∗
k mentioned above on each block to produce an output sample.
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3. Alice security:

E
yn∼Pε

∣∣∣∣∣ E
xn∼M(yn)

fn(xn)− gn(yn)

∣∣∣∣∣ 6 ν(n).

Intuitively, the correctness implies that Alice can partition the set {0, 1}n into two sets S0, S1 of
(roughly) equal size such that whenever she gets xn ∈ Si, she outputs i for i ∈ {0, 1}, and Bob can
partition the set {0, 1,⊥}n into 3 sets T0, T1, T⊥ such that Pr[yn ∈ T0], and Pr[yn ∈ T1] are almost
equal and whenever he gets yn ∈ Tj , he outputs j. Alice security condition says that if Bob receives
some yn ∈ Ti for i ∈ {0, 1}, then most of xn that are consistent with yn must belong to Si, and
if yn ∈ T⊥, (roughly) half of them must belong to S0 and the other half must belong to S1. Bob
security condition says that if Alice has some input xn ∈ Si, then (1 − ε′) fraction of yn that are
consistent with xn is in Ti and ε′ fraction of them is in T⊥.

9.2.2 Proof of Feasibility Characterization
In this subsection, we shall prove the feasibility result in Theorem 9. First, we state all the

lemmas that are needed for the proof. We provide the proofs of these lemmas in Appendix D.1.

Lemma 2. Let n be a positive integer. Suppose that there exist reduction functions f : {0, 1}n →
{−1, 1}, g : {0, 1,⊥}n → {−1, 0, 1}, and insecurity bound δ such that BES(ε′) vδf,g BES(ε)⊗n. Then,
the following inequality holds.

E
xn∼U{0,1}n

∣∣(Tρf)(xn)− ρ′f(xn)
∣∣ 6 2δ.

Lemma 3. Let {k(n)}n∈I be a sequence of positive integers and {νn}n∈I be a sequence of positive
real numbers such that limn→∞ ν(n) = 0, where I is a subset of N with infinitely many elements.
Let ρ, ρ′ ∈ (0, 1) be fixed constants. Suppose that

∣∣ρ′ − ρk(n)
∣∣ 6 ν(n) for every n ∈ I. Then there

exists k ∈ N such that ρ′ = ρk.

Proof of feasibility result in Theorem 9. First we prove that statement (a) implies statement (b).
For each n, applying Lemma 2 for f = fn, g = gn and δ = ν(n), we have

E
xn∼U{0,1}n

∣∣(Tρfn)(xn)− ρ′fn(xn)
∣∣ 6 2ν(n).

This allows us to invoke Lemma 1. So there exists k(n) ∈ [n] such that∣∣∣ρ′ − ρk(n)
∣∣∣ 6√2(1 + ρ′)ν(n).

It is clear that limn→∞
√

2(1 + ρ′)ν(n) = 0 since limn→∞ ν(n) = 0. Using the fact that BES(ε′) vν(n)
fn,gn

BES(ε)⊗n holds for infinitely many n ∈ N, we can apply Lemma 3 to conclude that ρ′ = ρk for some
positive integer k.

We can also verify that (b) implies (a) as a corollary of Theorem 10 which we shall prove in the
next subsection.

We present the proof of the rate result in Section 11.

9.2.3 Feasibility Characterization for Perfect Security Case
In the case of perfect security (when ν(n) = 0), we can further characterize the set of all possible

reduction functions fn and gn for any fixed n. More precisely, on input xn ∈ {0, 1}n Alice’s reduction
function fn outputs the XOR of all the bits in xnS

15 for some S ⊆ [n], and on input yn ∈ {0, 1,⊥}n

15xnS denotes the string obtained from xn by concatenating of all the bits xni such that i ∈ S.

25



Bob’s reduction function gn outputs the XOR of all the bits in ynS if ynS does not contain any bot
symbols, otherwise it outputs zero. We state it formally as follow.

Theorem 10. For constants ε′, ε ∈ (0, 1), and for any fixed n ∈ N, the following two statements
are equivalent.

1. There exist reduction functions f : {0, 1}n → {−1, 1}, g : {0, 1,⊥}n → {−1, 0, 1} such that
BES(ε′) v0

f,g BES(ε)⊗n.
2. There exists a constant k ∈ [n] such that (1− ε′) = (1− ε)k, and there exists some size-k subset

S of [n] such that

f(xn) := (−1)
∑
i∈S x

n
i

g(yn) :=

{
(−1)

∑
i∈S y

n
i , if ynS ∈ {0, 1}

k

0, otherwise.

We provide the proof of Theorem 10 in Appendix D.1.

10 SNIS of BSS from BSS: Feasibility & Rate

In this section, we shall present our results for secure non-interactive simulation from binary sym-
metric source, including both feasibility and rate results as in the Informal Theorem 3. We begin
with restating it formally as follows.

Theorem 11 (Binary Symmetric Source to Binary Symmetric Source). For constants ε, ε′ ∈
(0, 1/2), the following results hold.

1. Feasibility characterization. The following two statements are equivalent.

(a) There exists a family of reduction functions fn, gn : {0, 1}n → {−1, 1} and insecurity bound
ν(n) = o(1) such that BSS(ε′) vν(n)

fn,gn
BSS(ε)⊗n for infinitely many n ∈ N.

(b) There exists a constant k ∈ N, such that (1− 2ε′) = (1− 2ε)k.

In particular, when (1 − 2ε′) = (1 − 2ε)k, the following linear reduction functions f∗n, g∗n realize
BSS(ε′) v0

f∗n,g
∗
n
BSS(ε) for all n > k.

f∗n(xn) := (−1)x
n
1 +xn2 +···+xnk , and g∗n = f∗n.

2. Rate characterization: Suppose (1 − 2ε′) = (1 − 2ε)k for some constant k ∈ N. There exists
a positive constant c such that the first statement implies the second statement below.

(a) There exists an infinite family of functions fn, gn : {0, 1}n → {−1, 1}m(n),
such that BSS(ε′)⊗m(n) vν(n)

fn,gn
BSS(ε)⊗n, where ν(n) = o(1/n36+9k/2).

(b) The production is bounded by m(n) 6 bn/kc, for large enough n ∈ N.

Furthermore, the production of m(n) = bn/kc with ν(n) = 0 is achievable using block linear
reduction functions for all n ∈ N.

Our theorem gives the full characterization of the feasible region of secure non-interactive simu-
lation between binary symmetric sources. That is, o(1)-secure non-interactive simulation of BSS(ε′)
from BSS(ε) is possible if and only if the erasure probabilities ε and ε′ satisfy that (1−2ε′) = (1−2ε)k

for some constant k ∈ N. Furthermore, when the erasure probabilities are in the feasible region,
in other words, (1 − 2ε′) = (1 − 2ε)k for some constant k ∈ N, the rate of reduction is at most 1

k .
Conversely, this rate is achievable for infinitely many n that are multiples of k by using block-wise
linear constructions.
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10.1 Algebraic Definition
First we algebraize the definition of secure non-interactive simulation of BSS(ε′) from BSS(ε)⊗n.

We denote ρ = 1− 2ε and ρ′ = 1− 2ε′. Recall that Tρ is the linear noise operator. It takes as input
a function, for example f : {0, 1}n → {−1, 1}, and returns a function Tρ(f) : {0, 1}n → R.

The three conditions for SNIS of BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n, where fn, gn : {0, 1}n → {−1, 1},
implies the following algebraic constraints.

1. Correctness: Assuming (Xn, Y n) ∼ BSS(ε)⊗n, we have:

SD ((fn(Xn), gn(Y n)), (U, V )) 6 ν(n)

which implies that Exn∼U{0,1}n [fn(xn)] 6 ν(n), and Eyn∼U{0,1}n [gn(yn)] 6 ν(n).
2. Alice security:

E
yn∼U{0,1}n

∣∣(Tρfn)(yn)− ρ′ · gn(yn)
∣∣ 6 ν(n).

3. Bob security:
E

xn∼U{0,1}n

∣∣(Tρgn)(xn)− ρ′ · fn(xn)
∣∣ 6 ν(n).

We describe some intuition here. Recall that for binary symmetric source BSS(ε) each bit is
flipped with probability ε, in other words, for each sample (x, y)

$←− BSS(ε), the bits x and y are
ρ-correlated. By choosing the range of the two functions fn, gn appropriately, that is {−1, 1}, we
can rewrite the three conditions for the secure non-interactive simulation BSS(ε′) vν(n)

fn,gn
BSS(ε)⊗n

nicely. The condition for corrupt Alice

E
(u,v)

$←−BSS(ε′)

SD ( SimA(u) , (Xn|fn(Xn) = u, gn(Y n) = v) ) 6 ν(n),

implies that on average the conditional distribution (Xn|fn(Xn) = u, gn(Y n) = v) is independent
of v. Let S0 be the set of all entries xn ∈ {0, 1}n such that fn(xn) = 1 and S1 be the set of all
entries xn ∈ {0, 1}n such that fn(yn) = −1. We define T0 and T1 similarly for gn. Then, we have

Pr[Y n ∈ T0|Xn = xn] ≈ 1− ε′ andPr[Y n ∈ T1|Xn = xn] ≈ ε′ for every xn ∈ S0.

This implies that

Pr[Y n ∈ T0|Xn = xn]− Pr[Y n ∈ T1|Xn = xn] ≈ 1− 2ε′ for every xn ∈ S0,

or equivalently, Tρ(gn)(xn) ≈ ρ′fn(xn) for every xn ∈ S0. Similarly, we have Tρ(gn)(xn) ≈ ρ′fn(xn)
for every xn ∈ S1. Therefore, we have

E
xn∼U{0,1}n

∣∣Tρ(gn)(xn)− ρ′ · fn(xn)
∣∣ 6 ν(n).

Analogously, the other security condition also holds.

10.2 Proof of the Feasibility Result
In this subsection, we shall prove the feasibility result in Theorem 9. First, we state all the

lemmas that are needed for the proof. We provide the proofs of these lemmas in Appendix D.2.

Lemma 4. Let n be any positive integer, and let ε′, ε ∈ (0, 1/2). Suppose BSS(ε′) vδf,g BSS(ε)⊗n

for some functions f, g : {0, 1}n → {−1, 1} and δ > 0. Then, f and g agree on most of the inputs
x ∈ {0, 1}n, that is, 〈f, g〉 > 1− 5

√
δ

2ρ′ .
Furthermore, we have

E
x

∣∣Tρf(x)− ρ′f(x)
∣∣ 6 δ + 5

√
δ.
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At a high level idea, using the fact that the function Tρ(fn) is close to ρ′gn and that the function
Tρ(gn) is close to ρ′fn, it must be the case that the two functions fn and gn are also close. This
together with the fact that fn is a {−1, 1}-valued function imply that the function Tρ(fn) is close
to the function ρ′fn.

We are ready to describe the proof of feasibility result in Theorem 11 as follows. We emphasis
that the security requirements of Alice and Bob are crucial to our proof. Moreover, we present the
proof of rate result in Theorem 11 in Section 11.

Proof of the Feasibility Result in Theorem 11. First we prove the forward direction by showing that
if BSS(ε′) vν(n)

fn,gn
BSS(ε)⊗n holds for infinitely many n ∈ N, then ρ′ = ρk. For each n, applying

Lemma 4 for f = fn, g = gn, δ = ν(n), we have the following

〈fn, gn〉 > 1−
5
√
ν(n)

2ρ′

Furthermore, we have
E
xn

∣∣Tρ(fn)(xn)− ρ′fn(xn)
∣∣ 6 ν(n) + 5

√
ν(n).

Applying Lemma 1 for f = fn, g = gn and δ = ν(n) + 5
√
ν(n), there exists k(n) ∈ [n] such that∣∣∣ρ′ − ρk(n)

∣∣∣ 6√(1 + ρ′)(ν(n) + 5
√
ν(n))

It is clear that limn→∞

√
(1 + ρ′)(ν(n) + 5

√
ν(n)) = 0 since limn→∞ ν(n) = 0. Using the fact

that BSS(ε′) vν(n)
fn,gn

BSS(ε)⊗n holds for infinitely many n ∈ N, we can apply Lemma 3 to conclude
that ρ′ = ρk for some positive integer k.

Conversely, when ρ′ = ρk, for each n > k, we define f∗n = g∗n = χS , where S is some subset
of size k of [n]. By Lemma 9, we have BSS(ε′) v0

f∗n,g
∗
n
BSS(ε)⊗n. Thus, there exists a family of

infinitely many functions {f∗n, g∗n} as desired.

Feasibility Characterization for Perfect Secuirty Case. In the case of perfect security,
we can further characterize the set of all possible reduction functions fn and gn for any fixed n.
More precisely, on input xn ∈ {0, 1}n Alice’s reduction function fn outputs the XOR of all the bits
in xnS for some S ⊆ [n], and on input yn ∈ {0, 1}n Bob’s reduction function gn outputs the XOR of
all the bits in ynS . We provide the proof of Theorem 1 in Appendix D.2.

11 Proof of the Rate Results

First, we state all the claims that are needed for the proof of the rate results for both BES and BSS
as stated in Theorem 9 and Theorem 11. We provide their proofs in Appendix D.3.

Lemma 5. Let f (1), f (2) : {0, 1}n → {−1, 1} be two Boolean functions satisfying∑
S 6∈Wk

f̂ (i)(S)2 6 δ,

for both i ∈ {1, 2}, and for some positive integer 1 6 k 6 n. We define the truncated version of f (i)

as following.
h(i)(x) =

∑
S∈Wk

f̂ (i)(S)χS(x)
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Let f (1,2) : {0, 1}n → {−1, 1} be the product of the two functions f (1) and f (2), and let h(1,2) : {0, 1}n →
R be the product of the two functions h(1) and h(2). Suppose that the following bound holds on the
spectral mass of the function f (1,2). ∑

S 6∈W2k

f̂ (1,2)(S)2 6 δ′

Then, the following probability bound holds.

Pr
S∼S(h(1))

T∼S(h(2))

[S, T ∈ Wk, S ∩ T = ∅] > 1− δ

(
3 +

√(
n

k

))
− δ′.

Intuitively, the claim states the following result in a quantitative fashion. Let f (1) and f (2) be
Boolean functions such that the spectral mass of f (1) and f (2) are essentially concentrated on the
subsets in Wk. Let h(1) and h(2) be the truncated version of f (1) and f (2), respectively, so that all
the Fourier spectrum of them are entirely concentrated on Wk. Suppose the product of the two
functions, represented by f (1,2), is a Boolean function whose most spectral mass concentrated on
W2k. Let h(1,2) be the product of h(1) and h(2), then h(1,2) is close to f (1,2), which implies that
the spectral mass of h(1,2) is concentrated on W2k. The claim concludes that two samples drawn
(independently) from the distributions S(h(1)) and S(h(2)) lie in Wk, and are disjoint with high
probability.

Corollary 1. Let f (i) be the i-th projection of the reduction function f : {0, 1}n → {−1, 1}m (m 6
n), for 1 6 i 6 m. Let f (i,j) be the product of f (i) and f (j), where 1 6 i < j 6 m. Suppose for each
1 6 i 6 m, ∑

S 6∈Wk

f̂ (i)(S)2 6 δ

and for each 1 6 i < j 6 m, ∑
S 6∈W2k

f̂ (i,j)(S)2 6 δ′.

Let h(i)(x) =
∑

S∈Wk
f̂ (i)(S)χS(x) and let h(i,j) = h(i) · h(j). Then, the following bound holds.

Pr
(S(1),S(2),...,S(m))∼

⊗m
i=1 S(h(i))

[∣∣∣∣∣
m⋃
i=1

S(i)

∣∣∣∣∣ > mk

]
> 1−

(
m

2

)(
δ

(
3 +

√(
n

k

))
+ δ′

)
.

In particular, if δ and δ′ are such that
(
m
2

) (
δ
(

3 +
√(

n
k

))
+ δ′

)
< 1, then it follows that n > mk.

Proof of the Rate Result in Theorem 11. Suppose BSS(ε′)⊗m(n) vν(n)
fn,gn

BSS(ε)⊗n for an infinite fam-

ily of functions {fn, gn}n∈N. Let ε′′ such that 1 − 2ε′′ = (1 − 2ε′)2. Let f (i)
n and g

(i)
n be respec-

tively the i-th projection of the function fn : {0, 1}n → {−1, 1}m(n) and gn : {0, 1}n → {−1, 1}m(n)

(m(n) 6 n), for 1 6 i 6 m(n). For each i, we have

BSS(ε′) vν(n)

fn
(i),gn(i)

BSS(ε)⊗n.
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Therefore, according to Lemma 4, the following inequality holds,

E
xn

[∣∣∣(Tρf (i)
n )(xn)− ρ′ · f (i)

n (xn)
∣∣∣] 6 ν ′(n) (4)

where ν ′ = ν(n) + 5
√
ν(n) and ρ′ = 1− 2ε′. Now, by applying Lemma 1, we conclude that:∑

S 6∈Wk

f̂n
(i)(S)2 6 δ(n) ∀i ∈ [m(n)]. (5)

where δ(n) = (1+ρ′)ν′(n)

(1−ρ)2ρ′2
and k is an integer such that ρ′ = ρk.

Define pm(n)
(i,j) : {−1, 1}m(n) → {−1, 1} as a function that maps (u1, u2, . . . , um(n)) ∈ {−1, 1}m(n)

to ui·uj . It is easy to verify that BSS(ε′′) v0
pm(n)

(i,j),pm(n)
(i,j) BSS(ε′)⊗m(n) for each 1 6 i < j 6 m(n).

Sequential composition (Theorem 3), implies that

BSS(ε′′) vν(n)

fn
(i,j),gn(i,j)

BSS(ε)⊗n

for each i, j, where fn(i,j) = pm(n)
(i,j) ◦ fn and gn(i,j) = pm(n)

(i,j) ◦ gn. Note that fn(i,j) = fn
(i) · fn(j)

and gn(i,j) = gn
(i) · gn(j). According to Lemma 4, the following inequality holds for each n,

E
xn

[∣∣∣(Tρfn(i,j))(xn)− ρ′′ · fn(i,j)(xn)
∣∣∣] 6 ν ′(n) (6)

where ρ′′ = (1− 2ε′′) = ρ′2 = ρ2k. Again, by applying Lemma 1, we have:∑
S 6∈W2k

f̂n
(i,j)(S)2 6 δ′(n) ∀ 1 6 i < j 6 m(n). (7)

where δ′(n) = (1+ρ′′)ν′(n)

(1−ρ)2ρ′′2
. Now, by applying Corollary 1, we conclude that if we choose ν(n) such

that
(
n
2

) (
δ(n)

(
3 +

√(
n
k

))
+ δ′(n)

)
< 1, then m(n)

n 6 1
k . Since

(
n
k

)
= O(nk), when ν(n) = o( 1

nc ) for
the choice of c = 4 + k/2 for deterministic reduction functions and c = 36 + 9k/2 for randomized
ones, we observe that m(n)

n 6 1
k for large enough n.

Proof of the Rate Result in Theorem 9. The proof of rate result in Theorem 9 is very similar to the
proof of rate result in Theorem 11. This is due to the fact that the proof of Theorem 11 is based on
Lemma 4. Now, by the use of Lemma 2 which is similar to Lemma 4, we can prove the rate result
in Theorem 9.
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A Extension to Multiple Channel Parameters

Our proof techniques for Informal Theorem 2 and Informal Theorem 3 yield the following extensions
as well. For Informal Theorem 2, we prove that BES(ε1)⊗· · · ⊗ BES(εm) vν(n)

fn,gn
BES(ε)⊗n holds if

and only if (1 − εi) = (1 − ε)ki , where ki ∈ N, and 1 6 i 6 m. Moreover, the rate is bounded by
k1 + · · · + km 6 n. Here, ε1, . . . , εm, ε ∈ (0, 1) are constants. Analogously, we prove for Informal
Theorem 3 that BSS(ε1)⊗· · ·⊗BSS(εm) vν(n)

fn,gn
BSS(ε)⊗n holds if and only if (1− 2εi) = (1− 2ε)ki ,

where ki ∈ N and 1 6 i 6 m, and k1 +· · · + km 6 n. Here, ε1, . . . , εm, ε ∈ (0, 1/2) are constants.
For ease of the presentation, we present the simpler form of our result. From the technical overview
section, the extension of our results in this form is natural.

B Rank One Characterization of SNIS

B.1 Proof of Theorem 6
Suppose (U, V ) vν(n)

f,g (X,Y )⊗n, then we shall prove the first condition. The proof of the second
condition is similar. Our assumption implies that there exists simulator SimB : V → Yn such that

SD ( (U, V, SimB(V )) , (f(Xn), g(Y n), Y n) ) 6 ν(n)

which in turn implies the following for each v∗ ∈ V.

SD ( (U, V = v∗, SimB(V )) , (f(Xn), g(Y n) = v∗, Y n) ) 6 ν(n)16 (8)

Now, notice that for each u ∈ U , and yn ∈ Yn,

Pr[U = u, V = v∗, SimB(V ) = yn] = Pr[U = u, V = v∗,SimB(v∗) = yn] (9)
= Pr[U = u, V = v∗]× Pr[SimB(v∗) = yn] (10)

We define the matrix T v∗ of size |U| × |Bg(v∗)| as follows:
For yn ∈ Bg(v∗) and u ∈ U , define T v∗(u, yn) (the element at row u and column yn) as Pr[U =

u, V = v∗]× Pr[SimB(v∗) = yn].
The rank of T v∗ is one because each column of it, is a scale (with scale value Pr[SimB(v∗) = yn]

for column indexed by yn) of a column vector of size |U| whose element at row indexed by u, is
Pr[U = u, V = v∗].

Moreover, it follows from (8) and (9) that SD
(
T v
∗
,Mv∗

A

)
6 ν(n). Finally,∑

yn∈Bg(v∗)

T v
∗
(u, yn) =

∑
yn∈Bg(v∗)

Pr[U = u, V = v∗]× Pr[SimB(v∗) = yn] (11)

= Pr[U = u, V = v∗]
∑

yn∈Bg(v∗)

Pr[SimB(v∗) = yn] (12)

= Pr[U = u, V = v∗] (13)

Note that in (12), we assume without loss of generality that simulator SimB on input v∗ outputs
some yn in the set Bg(v∗)17. This completes the proof of first condition. The proof of second
condition is similar.

17This assumption is true because otherwise we can modify simulator to get a new simulator which has this property
and its insecurity is still at most ν(n).
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B.2 Proof of Theorem 7
We need to define simulators SimA and SimB such that satisfy the definitions of security. Define

random function SimB : V → Yn such that

Pr[SimB(v) = yn] =
T v(u, yn)

Pr[U = u, V = v]
× 1{yn∈Bg(v)}

where 1{yn∈Bg(v)} = 1 when yn ∈ Bg(v) and 1{yn∈Bg(v)} = 0 when yn 6∈ Bg(v). Note that the
condition

∑
yn∈Bg(v) T

v(u, yn) = Pr[U = u, V = v] guarantees that
∑

yn∈Bg(v) Pr[SimB(v) = yn] =

1. Moreover, the condition SD (T v,Mv
A) 6 ν(n) implies that for v ∈ V,

1

2

∑
u∈U ,yn∈Bg(v)

|T v(u, yn)−Mv
A(u, yn)| 6 ν(n)

⇐⇒ 1

2

∑
u∈U ,yn∈Bg(v)

|Pr[U = u, V = v] Pr[SimB(v) = yn]− Pr[f(Xn) = u, Y n = yn]| 6 ν(n)

⇐⇒ 1

2

∑
u∈U ,yn∈Bg(v)

|Pr[U = u, V = v,SimB(V ) = yn]− Pr[f(Xn) = u, Y n = yn]| 6 ν(n)

⇐⇒ 1

2

∑
u∈U ,yn∈Y n

|Pr[U = u, V = v,SimB(V ) = yn]− Pr[f(Xn) = u, g(Y n) = v, Y n = yn]| 6 ν(n)

which implies the following:

1

2

∑
u∈U ,v∈V,yn∈Y n

|Pr[U = u, V = v,SimB(V ) = yn]− Pr[f(Xn) = u, g(Y n) = v, Y n = yn]| 6 |V|ν(n)

⇐⇒ SD ((U, V, SimB(V )), f(Xn), g(Y n), Y n) 6 |V|ν(n)

Similarly, we can define SimA satisfying the following:

SD ( (U, V, SimA(U)) , (f(Xn), g(Y n), Xn) ) 6 |U|ν(n)

So, the insecurity is at most max(|U|, |V|)× ν(n).

C Deterministic Protocols from Randomized Protocols

In this section, we will show that, without loss of generality, one can assume the reduction functions
in SNIS are deterministic, in other words, parties do not use any private randomness by proving
Theorem 5.

of Theorem 5. Suppose there exist n ∈ N and two functions f : X n×RA → U , and g : Yn×RB → V
such that (U, V ) vνf,g (X,Y )⊗n. Define the function g′ : Yn → V as the following:

g′(yn) := argmin
v∈V

SD
(
(f(Xn, RA)|g(Y n, RB) = v, (Y n = yn, RB)),

(
U |V = v,SimB(V ) = (yn, R′B)

))
where SimB is the simulator used to simulate the view of corrupt Bob in the definition. Note that
we have:

g′(yn) = argmin
v∈ V

SD ( f(Xn, RA) | Y n = yn , U | V = v )
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due to the fact that the random variable f(Xn, RA) condition of Y n, is independent of RB and
g(Y n, RB) (Markov chain f(Xn, RA)↔ Y n ↔ (Y n, RB)↔ g(Y n, RB)) and the other fact that the
random variable U condition on V is independent of SimB(V ) (Markov chain U ↔ V ↔ g(Y n, RB)).

Note that |V| and |U| are constant and they do not depend on n. Therefore, it must be the
case that SD ( (U |V = v1) , (U |V = v2) ) is a constant value (does not depend on ε) for any two
different v1, v2 ∈ V .

We can assume that for any v1, v2 ∈ U , SD ( (U |V = v1) , (U |V = v2) ) 6= 0 18. Therefore, there
exists a constant α such that for any two different elements v1, v2 ∈ U , the following inequality
holds.

SD ( (U |V = v1) , (U |V = v2) ) > α.

For any two different elements v1, v2 ∈ V, we have

SD ( (U |V = v1,SimB(V )) , (U |V = v2,SimB(V )) )

= SD ( (U |V = v1) , (U |V = v2) )

> α

Suppose g′(yn) = v∗, then according to the definition of g′, we have,

SD
(

(f(Xn, RA) | g(yn, RB) = v, (yn, RB)) ,
(
U | V = v,SimB(V ) = (yn, R′B)

))
>

SD
(

(f(Xn, RA) | g(yn, RB) = v∗, (yn, RB)) ,
(
U | V = v∗, SimB(V ) = (yn, R′B)

))
then we claim that for any v 6= v∗,

SD
(

(f(Xn, RA) | g(yn, RB) = v, (yn, RB)) ,
(
U | V = v,SimB(V ) = (yn, R′B)

))
>
α

2

because otherwise, by triangle inequality, we have,

SD ( (U |V = v) , (U |V = v∗) )

= SD
( (
U | V = v,SimB(V ) = (yn, R′B)

)
,
(
U | V = v∗, SimB(V ) = (yn, R′B)

))
6 SD

(
(f(Xn, RA) | Y n = yn)) ,

(
U | V = v,SimB(V ) = (yn, R′B)

))
+ SD

(
(f(Xn, RA) | Y n = yn)) ,

(
U | V = v∗,SimB(V ) = (yn, R′B)

))
= SD

(
(f(Xn, RA) | g(yn, RB) = v, (yn, RB)) ,

(
U | V = v,SimB(V ) = (yn, R′B)

))
+ SD

(
(f(Xn, RA) | g(yn, RB) = v∗, (yn, RB)) ,

(
U | V = v∗, SimB(V ) = (yn, R′B)

))
6 2SD

(
(f(Xn, RA) | g(yn, RB) = v, (yn, RB)) ,

(
U | V = v,SimB(V ) = (yn, R′B)

))
6 α

which is a contradiction. We say that yn is bad if Pr[g(yn, RB) 6= g′(yn)] > δ = ν2/3 (note that the
probability is over randomness RB). It follows from average argument that for any bad yn, there
exists vyn ∈ V such that vyn 6= g′(yn) and Pr[g(yn, RB) = vyn ] > ν2/3

|V| . Let BAD ⊆ Yn denote the
subset of all bad strings yn. Define ρ := Pr[Y n ∈ BAD].

Therefore, the insecurity of simulating (U, V ) by using functions f : X n×RA → U , and g : Yn×
18Otherwise v1 and v2 can be combined together and considered as one element.
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RB → V is at least ρ× ν2/3

|V| ×
α
2 . Therefore, we should have ρ 6 2|V|ν1/3

α . Now, we have

Pr[g(Y n, RB) 6= g′(Y n)] = Pr[g(Y n, RB) 6= g′(Y n)|Y n ∈ BAD]× Pr[Y n ∈ BAD]

+ Pr[g(Y n, RB) 6= g′(Y n)|Y n 6∈ BAD]× Pr[Y n 6∈ BAD]

6 1× 2|V|ν1/3

α
+ ν2/3 × 1

6 ν1/3 × (1 +
2|V|
α

)

By the way that we defined function g′, the new scheme defined by the simulation functions f, g′ is
more secure than the scheme f, g (with respect to a corrupt Bob); however, it guarantees correctness
with a looser bound. So far, we have shown that given two functions f : X n × RA → U , and
g : Yn ×RB → V such that (U, V ) vνf,g (X,Y )⊗n, there exists g′ : Yn → V and constant β (which

depends on distribution (U, V )) such that (U, V ) vβν
1/3

f,g′ (X,Y )⊗n. Now, we can use a similar

argument to show that there exists a function f ′ : X n → U and constant γ such that (U, V ) vγν
1/9

f ′,g′

(X,Y )⊗n. This completes the proof.

D Omitted Proofs

D.1 Omitted Proofs in Section 9
D.1.1 Proof of Lemma 2
Proof. First we show that

E
xn∼U{0,1}n

∣∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

f(zn)− (1− ε′)f(xn)

∣∣∣∣∣ 6 2δ. (14)

By triangle inequality we have

E
xn∼U{0,1}n

∣∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

f(zn)− (1− ε′)f(xn)

∣∣∣∣∣
(i)
6 E

xn∼U{0,1}n

∣∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

f(zn)− E
yn∼Qε(xn)

g(yn)

∣∣∣∣∣+
E

xn∼U{0,1}n

∣∣∣∣∣ E
yn∼Qε(xn)

g(yn)− (1− ε′)f(xn)

∣∣∣∣∣
(ii)
6 E

xn∼U{0,1}n

∣∣∣∣∣ E
yn∼Qε(xn)

E
zn∼M(yn)

f(zn)− E
yn∼Qε(xn)

g(yn)

∣∣∣∣∣+ ν(n)

(iii)
6 E

xn∼U{0,1}n
E

yn∼Qε(xn)

∣∣∣∣∣ E
zn∼M(yn)

f(zn)− g(yn)

∣∣∣∣∣+ δ

(iv)
= E

yn∼Pε

∣∣∣∣∣ E
zn∼M(yn)

f(zn)− g(yn)

∣∣∣∣∣+ δ

(v)
6 δ + δ

= 2δ
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In above, inequalities (i) and (iii) are true due to triangle inequality. Inequalities (ii) and (v) are
implied by Bob security and Alice security respectively. Equality (iv) is due to the definitions of
distributions Pε and Qε: drawing yn from marginal distribution Pε of the distribution (xn, yn) ∼
BES(ε)⊗n is equivalent to drawing xn uniformly at random and then drawing yn from conditional
distribution Qε(ε) induced by the distribution (xn, yn) ∼ BES(ε)⊗n.

Next, recall that the noise operator is defined as (Tρf)(xn) = Eyn∼Nρ(xn) f(yn). We shall show
that

E
yn∼Qε(xn)

E
zn∼M(yn)

f(zn) = Tρ(f)(xn). (15)

Fix xn ∈ {0, 1}n. Drawing yn from the distribution Qε(xn) and then drawing zn from the distri-
bution M(yn) is equivalent to the following experiment: Erase each bit xni with probability ε and
do not erase it with probability 1− ε to get yni . Now, if y

n
i 6= ⊥ (which means that yni = xni ), then

zni = yni (so zni = xni ), otherwise z
n
i = 0 with probability 1

2 . This means that for each xni , we have

Pr[zni = xni ] = Pr[zni = xni |yni = xni ] Pr[yni = xni ] + Pr[zni = xni |yni = ⊥] Pr[yni = ⊥]

= 1× (1− ε) +
1

2
× ε = 1− ε

2

And so Pr[zni = 1 − xni ] = ε
2 . This completes the proof of equation(15). Finally, substituting

equation (15) in to inequality (14) gives the desired inequality.

D.1.2 Proof of Lemma 1
Proof. Since |(Tρf)(xn)| 6 1 and f(xn) ∈ {−1, 1} for every xn, we have∣∣(Tρf)(xn)− ρ′ · f(xn)

∣∣ 6 1 + ρ′ for every xn.

It implies that

E
xn

[
(Tρf)(xn)− ρ′ · f(xn)

]2
6 E

xn

[
(1 + ρ′)

∣∣(Tρf)(xn)− ρ′ · f(xn)
∣∣]

= (1 + ρ′) E
xn

∣∣(Tρf)(xn)− ρ′ · f(xn)
∣∣

6 (1 + ρ′) · δ

We use the Parseval’s identity to evaluate the left hand side of this expression in another fashion.

E
xn

[
(Tρf)(xn)− ρ′ · f(xn)

]2
=
∑
S⊆[n]

̂(Tρf − ρ′ · f)(S)2 =
∑
S⊆[n]

(
T̂ρf(S)− ρ′f̂(S)

)2

=
∑
S⊆[n]

(ρ|S| − ρ′)2f̂(S)2

Let γ := mink∈[n]

∣∣ρ′ − ρk∣∣. Recall that we already know that Exn [(Tρf)(xn)− ρ′ · f(xn)]2 6 (1 +
ρ′)δ. Consequently, we have:

(1 + ρ′)δ >
∑
S

(ρ|S| − ρ′)2f̂(S)2 >
∑
S

γ2f̂(S)2 = γ2, because
∑
S

f̂(S)2 = 1.

So it must be the case that γ2 6 (1+ρ′)δ, which implies that mink∈[n]

∣∣ρ′ − ρk∣∣ 6√(1 + ρ′)δ. Next,
we have∑

S 6∈Wk

(ρ|S| − ρk)2f̂(S)2 6
∑
S⊆[n]

(ρ|S| − ρk)2f̂(S)2 = E
xn

[
(Tρf)(xn)− ρk · f(xn)

]2
6 (1 + ρ′)δ.

Since 0 < ρ < 1, we have (ρ|S| − ρk)2 > ρ2k(1 − ρ)2 = ρ′2(1 − ρ)2 for each S 6∈ Wk. Therefore, we
have

∑
S 6∈Wk

f̂(S)2 6 (1+ρ′)δ

(1−ρ)2ρ′2
.
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D.1.3 Proof of Lemma 3
Proof. The sequence

∣∣ρ′ − ρk(n)
∣∣ are bounded below by 0 and bounded above by ν(n), which also

converges to 0. By squeeze theorem, the sequence ρ′ − ρk(n) also converges to 0. Now, since k(n)
is an integer for any n ∈ I, the sequence k(n) must converge. Therefore, there exists some positive
number k sucht that ρ′ = ρk as desired.

D.1.4 Proof of Theorem 10
Lemma 6. In Theorem 10, statement (1) implies statement (2).

The proof of this lemma crucially relies on the Alice security condition and the fact that f is
a balanced function. We use the Fourier analysis to prove this. For convenience, we omit n from
fn, gn in this subsection.

Proof. For each yn ∈ {0, 1,⊥}n, we define J(yn) := {i ∈ [n] : yni = ⊥}, J(yn) = [n]\J(yn), and z(yn)
as the concatenation of all non-bot symbols in yn. For example, when y4 = 0⊥1⊥, J(y4) = {2, 4},
J(y4) = {1, 3}, and z(y4) = 01. For xn, yn ∈ {0, 1,⊥}n, we say that they are neighbor (sibling) of
each other if J(xn) = J(yn), and z(xn), z(yn) are different at exactly one coordinate (their Hamming
distance is one). Suppose z(xn) and z(yn) differ at coordinate j. We define the parent of xn, yn

is the vector obtained by replacing the coordinate j of xn by the bot symbol. For instance, 00⊥⊥
is a neighbor of 01⊥⊥, and their parent is 0⊥⊥⊥. Recall the definition of restriction of function
to sub-cubes from Section 6.3 that the function fJ(yn)|z(yn) : {0, 1}|J(yn)| → {−1, 1} denotes the
restriction of f to J(yn) when the coordinates in J(yn) is fixed to z(yn). For ease of presentation,
we denote fJ(yn)|z(yn) as fyn . When ν(n) = 0, Alice security condition implies that

E
xn∼M(yn)

f(xn) = g(yn) for every yn ∈ {0, 1,⊥}n.

Note that the left side is the expectation of the restriction function of f to J(yn) using z(yn), so
Exn∼M(yn) f(xn) = f̂yn . Therefore, we have f̂yn(∅) = g(yn) for every yn ∈ {0, 1,⊥}n. Since the
range of function g is {−1, 0, 1}, the value f̂yn(∅) is also in {−1, 0, 1} for every yn ∈ {0, 1,⊥}n.

When yn = ⊥⊥ · · ·⊥, we have f̂yn(∅) = f̂(∅) = 0 since f is a balanced function. Clearly, f̂yn(∅)
cannot be zero for every yn. This together with the fact that f̂yn(∅) ∈ {−1, 0, 1} implies that there
exists a yn ∈ {0, 1,⊥}n such that

∣∣∣f̂yn(∅)
∣∣∣ = 1. Let yn∗ be a such one with minimum number of bot

symbols, more precisely,
yn∗ = argmin

yn:
∣∣∣f̂yn (∅)

∣∣∣=1

|J(yn)|.

To prove that f is a linear function, it suffices to show that f̂(S∗)2 = 1, where S∗ = J(yn∗ ). By the
choice of yn∗ , we have f̂yn(∅) = 0 for every yn ∈ {0, 1,⊥}n such that |J(yn)| < |J(yn∗ )|. For each
S ⊆ [n], let V(S) = {yn ∈ {0, 1,⊥}n : J(yn) = S}, and let k = |S∗|. We shall show that

∣∣∣f̂yn(∅)
∣∣∣ = 1

for every yn ∈ V(S∗). Observe that the set {z(yn) : yn ∈ V(S∗)} is a sub-cube of {0, 1}n. We know
that this sub-cube has a Hamiltonian cycle. This implies that there is a Hamiltonian path starting
from yn∗ , says (yn∗ = y(1), y(2), . . . , y(2k)), in which every two consecutive vertices y(i) and y(i+1) are
neighbor of each other. Now, by the the basic Fourier property (2) we have

1

2
f̂y(i)(∅) +

1

2
f̂y(i+1)(∅) = f̂p(∅) for every i = 1, . . . 2k,
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where p is the parent of y(i) and y(i+1). We know that f̂p(∅) = 0, so f̂y(i)(∅) = −f̂y(i+1)(∅). Now

applying this argument iteratively for i = 1, 2, . . . , 2k, we can conclude that
∣∣∣f̂yn(∅)

∣∣∣ = 1 for every
yn ∈ V(S∗). Applying equation (3), we have∑

S⊆S∗
f̂(S)2 = E

yn∈V(S∗)
f̂yn(∅)2 = 1

∑
S⊆T

f̂(S)2 = E
yn∈V(T )

f̂yn(∅)2 = 0 for every T ( S∗

These equations imply that f̂(S∗)2 = 1. Next, observe that if f̂yn(∅) = ±1, then f̂xn(∅) = f̂yn(∅)
for every xn ∈ {0, 1,⊥}n such that xn ` yn. Using this fact together with the equations (2) and
(3), and the fact that g(yn) = f̂yn(∅) , we can verify that

g(yn) :=

{
(−1)

∑
i∈S∗ y

n
i , if ynS∗ ∈ {0, 1}

k

0, otherwise.

Finally, by a simple calculation, we can conclude that (1− ε′) = (1− ε)k.

Lemma 7. In Theorem 10, statement (2) implies statement (1).

Proof. The value gn(yn) is equal to 0 if and only if there exists at least an index i such that yni = ⊥.
So, we have the following:

Pr[gn(yn) = 0] = Pr[∃i ∈ S such that yni = ⊥] = 1− Pr[∀i ∈ S, yni 6= ⊥]

= 1−
∏
i∈S

Pr[yni 6= ⊥] = 1−
∏
i∈S

(1− Pr[yni = ⊥])

= 1− (1− ε)|S| = 1− (1− ε)k

Since whenever gn(yn) 6= ⊥, we have gn(yn) = fn(yn), we conclude that the given construction
simulates BES(ε′) where ε′ = Pr[gn(yn) = 0] = 1 − (1 − ε)k. We need to prove that it is perfectly
secure. For each xn,

E
yn∼Qε(xn)

gn(yn) = (1− ε)k × fn(xn) + (1− (1− ε)k)× 0 = (1− ε′)fn(xn)

and for each yn ∈ {0, 1,⊥}n such that for each i ∈ S, yni 6= ⊥,

E
xn∼M(yn)

fn(xn) = fn(yn) = gn(yn)

and for each yn ∈ {0, 1,⊥}n such that for at least an index i ∈ S, yni = ⊥, we have:

E
xn∼M(yn)

fn(xn) = E
xn∼M(yn)

χS(xn) = 0.

This completes the feasibility of the proof of Theorem 9 when ν(n) = 0.
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D.2 Omitted Proofs in Section 10
D.2.1 Proof of Lemma 4
Proof. Let a = |A|/N , and A = {x ∈ {0, 1}n : f(x) = g(x)}. Note that 〈f, g〉 = 2a − 1. We shall
show that a is close to 1. By Claim 1 we have

〈f,Tρf〉+ 〈g,Tρg〉
2

> |〈f,Tρg〉| = |〈g,Tρf〉| (16)

The main idea is that we will upper bound the left hand side and lower bound the right hand side
of the inequality above to get an inequality constraint for a, from which we can conclude that a is
close to 1.
Upper bound for the left hand side. By the security requirement, we have

E
x∼U{0,1}n

∣∣Tρg(x)− ρ′f(x)
∣∣ 6 δ,

which is equivalent to
E

x∼U{0,1}n

∣∣f(x)Tρg(x)− ρ′
∣∣ 6 δ.

By an averaging argument, there exists a least 1−
√
δ fraction of x ∈ {0, 1}n such that |f(x)Tρg(x)− ρ′| 6√

δ, and at most
√
δ fraction such that |f(x)Tρg(x)− ρ′| >

√
δ. Clearly |f(x)Tρg(x)− ρ′| 6 1.

Therefore

〈f,Tρf〉 = E
x∈{0,1}n

f(x)Tρf(x)

=
1

N

 ∑
x:f(x)=g(x)

f(x)Tρf(x) +
∑

x:f(x)=−g(x)

f(x)Tρf(x)


=

1

N

∑
x∈A

f(x)Tρg(x)−
∑
x 6∈A

f(x)Tρg(x)


6

1

N

∑
x∈A

(ρ′ +
√
δ) +

∑
x 6∈A

(−ρ′ −
√
δ)

+
√
δ · 1

= (2a− 1)ρ′ +
√
δ +
√
δ

= (2a− 1)ρ′ + 2
√
δ

Similarly, we get 〈g,Tρg〉 6 (2a− 1)ρ′ + 2
√
δ.

Lower bound for the right hand side.

|〈f,Tρg〉| > (1−
√
δ)(ρ′ −

√
δ) +

√
δ · (−1) = ρ′ +

√
δ −√ρ(ρ′ −

√
δ + 1) > ρ′ − 3

√
δ

Putting things together. Therefore, we have (2a − 1)ρ′ + 2
√
δ > ρ′ − 3

√
δ, which implies that

a > 1− 5
√
δ

2ρ′ . Next, by triangle inequality,

E
x

∣∣Tρf(x)− ρ′f(x)
∣∣ 6 E

x

∣∣Tρf(x)− ρ′g(x)
∣∣+ ρ′ E

x
|g(x)− f(x)|

6 δ + 2ρ′
5
√
δ

2ρ′
= δ + 5

√
δ,

which completes our proof of Lemma 4.
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Claim 1. For any functions f, g : {0, 1}n → R, and any ρ > 0, the following holds

〈f,Tρf〉+ 〈g,Tρg〉
2

> |〈f,Tρg〉| = |〈g,Tρf〉|

Proof. Recall that T̂ρf(S) = ρ|S|f̂(S) for every S ⊆ [n]. So we have the following equations

〈f,Tρg〉 = 〈g,Tρf〉 =
∑
S

ρ|S|f̂(S)ĝ(S),

〈f,Tρf〉 =
∑
S

ρ|S|f̂(S)2,

〈g,Tρg〉 =
∑
S

ρ|S|ĝ(S)2.

Using term-wise AM-GM, we have

〈f,Tρf〉+ 〈g,Tρg〉
2

> |〈f,Tρg〉| = |〈g,Tρf〉|,

which give us the inequality as desired.

D.2.2 Proof of Theorem 1
Lemma 8. In Theorem 1, statement (1) implies statement (2).

Proof. Apply Lemma 4 for δ = 0, we have

〈f, g〉 > 1− 0 = 1,

which means that f = g. This implies that Tρf = ρ′f . We have the following equations

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)χS(x)

ρ′f(x) = ρ′
∑
S⊆[n]

f̂(S)χS(x) =
∑
S⊆[n]

ρ′f̂(S)χS(x)

Now by the uniqueness of Fourier expansion, we must have ρ|S|f̂(S) = ρ′f̂(S) for every S ⊆ [n].
Since

∑
S⊆[n] f̂(S)2 = 1, there exists some S∗ ⊆ [n] such that f̂(S∗) 6= 0. Let k = |S∗|, then

ρkf̂(S∗) = ρ′f̂(S∗), which implies that ρ′ = ρk. Furthermore, when |S| 6= k, it must be the case
that f̂(S) = 0. Therefore, Wk[f ] = Wk[g] = 1, which completes the proof.

We emphasis that there are non-linear functions f such that it puts all Fourier weights at one
degree k of f (see the example in the introduction).

Lemma 9. In Theorem 1, statement (2) implies statement (1).

Proof. Note that

Tρf(xn) =
∑
S⊆[n]

ρ|S|f̂(S)χS(xn) = ρk
∑
S∈Wk

f̂(S)χS(xn) = ρkf(xn) = ρ′g(xn).

We shall show that all the algebraic conditions are satisfied, namely,
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1. Correctness: E[f(xn)] = E[g(xn)] = 0, according to the assumption. Moreover,∣∣E [f(xn) · g(yn)]− ρ′
∣∣ =

∣∣(fTρg)(xn)− ρ′
∣∣ =

∣∣fTρf − ρ′∣∣ = 0,

which implies that
SD ((fn(Xn), gn(Y n)), (U, V )) 6 ν(n).

2. Alice security: Similarly, we have Eyn∼U{0,1}n |Tρ(f)(yn)− ρ′ · g(yn)| = 0.
3. Bob security: Similarly, we have Exn∼U{0,1}n |Tρ(g)(xn)− ρ′ · f(xn)| = 0.

It is clear that χS is a balanced function, and when |S| = k satisfies the mentioned constraints.

E[fn] = E[gn] = E[χS ] = 0.

From these equations, it is straightforward to see that all three conditions are satisfied, which
implies BSS(ε′) v0

fn,gn
BSS(ε)⊗n as desired.

D.3 Omitted Proofs in Section 11
D.3.1 Proof of Lemma 5
Proof. First we prove that the L-infinity norm of h(2) is bounded above. For every x ∈ {0, 1}n, by
Cauchy-Schwartz we have

h(2)(x)2 =

 ∑
S∈Wk

f̂ (2)(S)χS(x)

2

6

 ∑
S∈Wk

f̂ (2)(S)2

 ∑
S∈Wk

χS(x)2

 =

(
n

k

)

since
∑

S∈Wk
f̂ (2)(S)2 6 1 and χS(x)2 = 1. It implies that

∥∥h(2)
∥∥
∞ 6

√(
n
k

)
. Second, we show that

f (1,2) is close to h(1,2). Let ‖f‖2 denote the L-2 norm of function f . By triangle inequality, we have∥∥∥f (1,2) − h(1,2)
∥∥∥

2
=
∥∥∥f (1)f (2) − h(1)h(2)

∥∥∥
2

6
∥∥∥f (1)f (2) − f (1)h(2)

∥∥∥
2

+
∥∥∥f (1)h(2) − h(1)h(2)

∥∥∥
2

=
∥∥∥f (1)(f (2) − h(2))

∥∥∥
2

+
∥∥∥h(2)(f (1) − h(1))

∥∥∥
2

=
∥∥∥f (2) − h(2)

∥∥∥
2

+
∥∥∥h(2)(f (1) − h(1))

∥∥∥
2

6 δ +
∥∥∥h(2)

∥∥∥
∞
·
∥∥∥f (1) − h(1)

∥∥∥
2

6 δ
(

1 +
∥∥∥h(2)

∥∥∥
∞

)
6 δ

(
1 +

√(
n

k

))

This together with the fact that the Fourier spectral of f (1,2) are mostly concentrated on the set
W2k implies that ∑

S 6∈W2k

ĥ(1,2)(S)2 6 δ′ + δ

(
1 +

√(
n

k

))
.
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Note that the event S, T ∈ Wk, S ∩ T = ∅ is equivalent to the event S, T ∈ Wk, |S4T | = 2k.
Therefore, by union bound we have

Pr
S∼S(h(1))

T∼S(h(2))

[S, T ∈ Wk, S ∩ T = ∅]

> 1− Pr
S∼S(h(1))

[S 6∈ Wk]− Pr
T∼S(h(2))

[T 6∈ Wk]− Pr
S∼S(h(1))

T∼S(h(2))

[S ∩ T 6= ∅, S, T ∈ Wk]

> 1− δ − δ − δ′ − δ

(
1 +

√(
n

k

))
= 1− δ

(
3 +

√(
n

k

))
− δ′

D.3.2 Proof of Corollary 1
Proof. Note that the event S(i) ∩ S(j) = ∅ ∀ 1 6 i < j 6 m,

∣∣S(i)
∣∣ = k ∀i ∈ [m] implies the event∣∣⋃m

i=1 S
(i)
∣∣ > mk. Now, according to Lemma 5, and by using union bound, the following bound

holds.

Pr
(S(1),S(2),...,S(m))∼

⊗m
i=1 S(h(i))

[∣∣∣∣∣
m⋃
i=1

S(i)

∣∣∣∣∣ > mk

]
> Pr

(S(1),S(2),...,S(m))∼
⊗m
i=1 S(h(i))

[
S(i) ∩ S(j) = ∅ ∀i, j,

∣∣∣S(i)
∣∣∣ = k ∀i

]
> 1−

(
m

2

)(
δ

(
3 +

√(
n

k

))
+ δ′

)

When
(
m
2

) (
δ
(

3 +
√(

n
k

))
+ δ′

)
< 1, there exists at least m subsets S(1), S(2), . . . , S(m) ⊆ [n] such

that
∣∣S(1) ∪ S(2) ∪ · · · ∪ S(n)

∣∣ > mk. This implies that n > mk.
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