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Abstract. To maintain the availability of industrial control systems (ICS), it is important to
robustly detect malware infection that spreads within the ICS network. In ICS, a host often
communicates with the determined hosts; for instance, a supervisory control host observes
and controls the same devices routinely via the network. Therefore, a communication request
to the unused internet protocol (IP) address space, i.e. darknet, in the ICS network is likely to
be caused by malware in the compromised host in the network. That is, darknet monitoring
may enable us to detect malware that tries to spread indiscriminately within the network.
On the other hand, advanced malware, such as malware determining target hosts of infection
with reference to host lists in the networks, infects the confined hosts in the networks, and
consequently evades detection by security sensors or honeypots. In this paper, we propose
novel deception techniques that lure such malware to our sensor, by embedding the sensor
information continuously in the lists of hosts in the ICS networks. In addition, the feasibility
of the proposed deception techniques is shown through our simplified implementation by
using actual malware samples: WannaCry and Conficker.

Keywords: Industrial Control System (ICS), Malware Detection, Darknet Monitoring, Hon-
eypot, Server Message Block (SMB), Address Resolution Protocol (ARP)

1 Introduction

1.1 Background and Motivation

Recently, security incidents related to malware infections have been occurring at manufacturing fac-
tories, e.g. automotive and semiconductor factories. These infections often hinder daily operations
at the factories and cause monetary losses for the companies. The targeted attacks using malware
on critical infrastructures have also occurred, destroying equipment and stopping systems [11].
The most important thing about industrial control systems (ICS), including for manufacturing
factories and critical infrastructures, is that these systems must be available 24 hours a day, every
day. Namely, we must maintain the availability of the control systems, including human machine
interfaces (HMI), programmable logic controllers (PLC) and networks connecting these hosts in
ICS.

It was believed that ICS networks related to supervisory control were not susceptible to malware
since they are often not connected to enterprise networks and the Internet, i.e. there are air gaps
between ICS networks and these networks. It is, however, difficult to completely prevent malware
intruding into ICS networks because there are malware entry routes that can bypass the air gaps1:

– A personal universal serial bus (USB) can be connected to the hosts in ICS networks.
– An employee can connect their personal smartphone to the hosts for the sake of recharging.
– A digital camera for recording a situation on the factory production line also can be connected.
– A vendor connects a computer to the network for maintenance of ICS devices.

If these devices are infected with malware, it can intrude into the ICS networks via the entry routes.
Furthermore, malware can spread easily after the intrusion into the ICS networks. That is because
the hosts in ICS networks are based on legacy operating systems (OS) such as expired Windows
XP2; therefore, malware can exploit the known vulnerabilities remaining in the legacy OS. Once

1 The main reason why malware would bypass the air gaps is that ICS networks are sometimes not
managed compared to enterprise networks; therefore, the following entry routes can be opened.

2 The reason why ICS hosts are equipped with legacy OS is that the life cycle of these devices is generally
long term and the devices do not support the latest OS.
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malware infection spreads to most of the host in ICS, the hosts would not work and the ICS would
be stopped, i.e. its availability is decreased. Consequently, malware activity related to the spread
of infection should be robustly detected, which is the preparation for the respond and recover
phases mentioned in the National Institute of Standards and Technology (NIST) Cybersecurity
Framework [6].

A host on ICS networks often receives and sends almost the same messages from and to the
same hosts regularly on the ICS networks. For instance, a supervisory control host such as an
HMI receives the monitoring traffic from and sends the control commands to the determined hosts
such as PLCs. Therefore, it is known that whitelist-based anomaly detection is effective in ICS,
which identifies anomalous communications whose characteristics such as sources and destinations,
payload formats and intervals are not configured in the whitelists. Many researchers have discussed
the ICS whitelist using not only these network characteristics [10] but also physical process features
of ICS devices by directly measuring process variables, e.g. sensor reading and actuator states [8,
9]. Although high accuracy can be expected in whitelist detection, it is difficult to define and
update the whitelist because it varies depending on environments and by time of day. In this
paper, we focus on darknet-monitoring-based (blacklist-based and network-based) detection that
can be performed with comparatively simple operations and would be effective to some extent.

Darknet monitoring is basically for surveying malware trends [5, 12, 7] in the Internet and
is based on the assumption that traffic directed toward an unused internet protocol (IP) address,
darknet, would be generated by malware. One or multiple darknet addresses are allocated to a decoy
server, and the traffic whose destination is the decoy server is aggregated and analyzed. Otherwise,
traffic whose destination is a part of the darknet addresses is aggregated from the mirror ports of
network switches or from routers with altered forwarding rules. For getting additional intelligence of
threats, a honeypot for deceiving attackers is deployed as a decoy server. Many researchers discuss
honeypot techniques not only on general networks such as enterprise networks but also on ICS
networks [1, 13, 18]. The authors of [1] designed a virtual machine (VM)-based high-interaction
honeypot that represents a water treatment plant based on Ethernet and transmission control
protocol (TCP). The authors of [13] developed a full system simulator where realistic reactions
could be observed on HMI exposed to the Internet by reference to a real system. The authors of [18]
also focused on ICS that could be accessed from the Internet, and their honeypot returned response
packets based on TCP-based S7 communications protocol, a dedicated protocol of Simence PLC.

Although darknet monitoring, for example, using a honeypot is often demonstrated in the
Internet as mentioned above, some research is on local area networks (LAN) for detecting lateral
movement of malware. The authors of [4] reported that darknet monitoring in LAN is effective for
identifying the infected hosts, i.e. detecting malware, which can be found in Section 2.2 in detail.
We believe that darknet-monitoring-based malware detection in LAN of ICS is effective compared
to general networks and the Internet since normal communications on ICS networks are static
compared to general networks. In this paper, we install a sensor, low-interaction honeypot, that
has a darknet address of the ICS networks and generates an alert when detecting access to itself
in the ICS networks.

Since previous vulnerabilities that are overcome in the latest OS remain in ICS due to legacy
OS as mentioned above, there is a serious risk that prevalent and widely distributed malware
will infect the ICS. Therefore, we believe that previous malware with well-known and TCP-based
infection strategies should be detected first in ICS networks. The previous malware often spreads
indiscriminately within networks, and it can be detected with high probability since the sensor
also become a target of infection by the malware. In contrast, there is advanced malware that tries
to evade detection by sensors and is difficult to detect. For instance, malware can limit the target
host by using a browse list, where the names of in-service servers in the networks are described,
and by using an address resolution protocol (ARP) table where used IP addresses in the networks
are described on the infected host. Note that conventional honeypots such as [1, 13, 18] can not
detect these malware, which is discussed in Section 6.

1.2 Our Contributions

– We propose novel deception techniques based on darknet monitoring that lure the advanced
malware to our sensor. The sensor information including host name and IP address is em-
bedded in host lists, i.e. browse list and ARP table, respectively. A small amount of traffic
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for embedding the information is sent actively and continuously to the ICS networks by the
sensor. That is because, in ICS, it is often not acceptable to install agent software embedding
the information passively in ICS hosts since it might prevent the availability of the hosts.

– Our first evaluation based on the simplified implementation of the proposed deception tech-
niques clarifies that they are feasible and can detect an actual malware sample, Conficker, that
uses browse lists for discovering targets for infection.

1.3 Organization of This Paper

The organization of this paper is as follows. Section 2 mentions well-known reference models of
ICS and previous work on malware detection based on darknet-monitoring in LAN. In Section 3,
we introduce taxonomies of malware for the spread of infection and clarify the positioning of our
detection targets. In Section 4, our proposed deception techniques are explained in detail. Section 5
gives the first evaluations of the proposed techniques. In Section 6, we discuss the difference between
our techniques and conventional honeypots. Finally, the conclusion and future work are presented
in Section 7.

2 Related Work

2.1 Reference Model on ICS

The “Purdue Enterprise Reference Architecture” (Purdue Model) [17], which was put forward by
T. J. Williams from Purdue University in 1992, has been often used as a reference model for ICS.
Another model based on the Purdue Model was accepted as the international standard related
to enterprise control systems: International Society of Automation (ISA)95 [2]. The international
standard related to ICS security, ISA99 [3], was developed using ISA95. According to ISA99, an
ICS consists of five layers, from Level 0 to Level 4.

Level 4 Enterprise Systems (Business Planning & Logistics) including financial systems

Level 3 Operations Management including production scheduling systems

Level 2 Supervisory Control including HMI and historians

Level 1 Local or Basic Control including PLC, distributed control systems (DCS) and remote
terminal units (RTU)

Level 0 Process (Equipment under Control) including sensors and actuators

Firewalls are put in the boundaries between Level 2 and Level 3, and/or Level 3 and Level 4.
In some situations, demilitarized zones (DMZ) that prevent direct communication among them
are also set up. We focus on IP-based networks between Level 1 and Level 2. That is because
most previous malware has targeted IP-based networks and Level 0, which is the most important
component of ICS, cannot work if its networks are infected with malware.

2.2 Darknet-Monitoring-Based Malware Detection on LAN

The authors of [4] demonstrated darknet monitoring in LAN. Unused IP addresses in their campus
networks were defined as darknet. They monitored and analyzed traffic whose destination was the
darknet by forwarding it to their server via routers with altered forwarding rules. The research only
focused on traffic whose destination ports corresponded to TCP 445, i.e. related to server message
block (SMB), and that was related to internet control message protocol (ICMP). As the result of
the monitoring over a month, they clarified that thirty-one hosts were suspected to be infected
with malware and four Windows XP hosts out of the thirty-one hosts were actually infected with
malware. As just described, this shows that darknet monitoring in LAN is effective for detecting
malware.
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3 Malware Strategies For Spread of Infection

In this section, we introduce taxonomies of worm malware that self-propagates in networks, which
is based on previous research. The worm strategies for spread of infection are organized in order
to clarify the positioning of our detection targets.

The authors of [14] dissected the worm mechanism into the following five components, which
was originally based on [15].

Reconnaissance Component, which discovers new targets that can be compromised with known
vulnerabilities in the network, e.g. by active scanning.

Intelligence Component, which inspects the infected host and gets its location and capability
such as a host name, an IP address and a file list for smoothly communicating with other
infected hosts or a central server.

Communication Component, which communicates the information about vulnerabilities ob-
tained by the reconnaissance component and about location and capability obtained by the
intelligence component with other infected hosts or a central server.

Command Component, which executes OS commands.
Attack Component, which launches attacks using vulnerabilities, e.g. direct hosting of SMB,

and duplicates itself to the targeted hosts.

Simply put, new targets identified by the reconnaissance component are attacked by the attack
component; therefore, worms are basically discussed in terms of these two components. Meanwhile,
a sensor not identified as a new target by the reconnaissance component is not attacked by the
attack component. Even in this situation, the sensor can sometimes notice the worm by scanning
traffic of the reconnaissance component. However, the reconnaissance components of some worms
discover new targets stealthily, i.e. these worms can evade detection by the sensor. Therefore, we
focus on the reconnaissance component.

The authors of [16] also dissected the worm mechanism into five factors: target discovery, carrier,
activation, payloads, and attackers. The target discovery factor, corresponding to the reconnais-
sance component in [14], was further broken down into the following five strategies.

Scanning: Worms probe a set of addresses for identifying new targets to infect. The scanning is
often performed sequentially or randomly, i.e. a set of hosts that have an ordered addresses
or have randomly chosen addresses are scanned. They scan not only global addresses but also
local addresses. The bandwidth or speed of scanning is sometimes limited in order to evade
detection.

Pre-generated Target Lists: Worms have target lists in advance.
Externally Generated Target Lists: Worms get target lists from command and control (C&C)

servers dynamically.
Internal Target Lists: Worms obtain lists of hosts that have been used in the networks from lo-

cal information, e.g. the network information service (NIS) that manages system configurations
such as user and host names distributed in multiple Linux-based hosts in LAN.

Passive: Worms wait until hosts in the networks access them, or passively observe the behaviors
of legitimate users. Although the speed of infection with this strategy is potentially slow, it
can be performed stealthily since additional traffic to the networks is not generated.

Worms with an internal target list can get a set of operating hosts in the networks without
sending traffic to all or almost all hosts in the networks. Therefore, they would evade detection
by sensors since the attack component launches attacks only to the listed hosts. That is, worms
with an internal target list can potentially infect new hosts with both high stealth and high speed,
whereas passive worms are only high stealth. Since these worms not only rapidly prevent the
availability of ICS but are also undetected by sensors, they are serious threats to ICS and need to
be detected. Another example of local information for internal target lists is an ARP table that
provides a list describing pairs of an IP address and a media access control (MAC) address of hosts
that have been communicated in the networks. Worms can also obtain host names of in-service
servers in networks as local information by acquiring browse lists. The details of target discovery
using browse lists can be found in Section 3.1. In addition, some worms get and use a list of IP
addresses leased by a dynamic host configuration protocol (DHCP) server.
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Fig. 1. Computer browser service

Fig. 2. Limited spread of malware based on target discovery using browse list

3.1 Target Discovery Using Browse List

In networks where hosts are mainly based on Windows OS, the computer browser service manages
a list of host names of in-service servers in the networks without users being aware of it. As shown in
Figure 1, in-service servers broadcast host announcement automatically and continuously. A master
browser elected from among the servers according to certain criteria receives the announcements
and manages their host names as a browse list. The browse list is provided with users that send
request commands such as net view. Note that authentication is not performed when providing the
list, i.e. anyone in the networks can obtain the browse list. Consequently, malware such as worms
that infect a host in a network can easily get the list. This enables malware to prevent non-essential
access to hosts that are not usually used in the network, e.g. sensors, as shown in Figure 2.

4 Novel Deception Techniques for Detecting Malware on ICS

In this section, we propose novel deception techniques that enable a sensor to detect the advanced
types of malware mentioned in Section 3 on ICS. One or multiple unused IP addresses in an
ICS network are allocated to our sensor. When the sensor detects TCP-based or user datagram
protocol (UDP)-based traffic whose destination is itself, the allocated address, it generates an
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alert3 with the source IP address of the traffic as an IP address of an infected host. If malware that
infects a host in the ICS network uses the scanning strategy, which probes hosts in the network
indiscriminately for target discovery, the sensor can detect the scanning traffic4. That is, the sensor
can detect malware with high probability since it can be one of the scanning targets. In contrast,
malware using the internal target list strategy for target discovery cannot be detected by the sensor
since it infects the limited hosts that have been used in the network, as discussed in Section 3.
Although there are various types of local information that can be used in the internal target list
strategy, this paper focuses on the following two types over the others for the described reasons.

Browse List: The computer browser service is based on SMB version 1 (SMBv1) that is enabled
in legacy OS, e.g. Windows XP, by default. Malware using browse lists for target discovery
remains a serious threat in ICS networks with the legacy OS, whereas the latest OS disables
SMBv1 by default.

ARP Table: An ARP table is commonly used even in a simple network that is sometimes em-
ployed in ICS, e.g. no DHCP or domain name service (DNS) server.

In this paper, we propose two novel techniques that enable a sensor to detect malware using browse
lists and ARPs table for target discovery by embedding the sensor information in browse lists and
ARP tables.

4.1 Proposal 1: Deception Technique for Detecting Malware Using Browse List

In this section, our deception technique that enables our sensor to detect malware using browse
lists (Proposal 1) is introduced.

Our sensor with a straightforward solution, corresponding to simple implementation of Pro-
posal 1, only sends a host announcement5 with its host name or dummy name continuously, e.g.
every twelve minutes. As a result, the name of the sensor also appears on the browse list managed
by a master browser in the network, as shown in Figure 3. The spread of malware that infects a
host in the network is as follows.

1. The malware identifies the master browser by using browser protocol.
2. The browse list is obtained from the master browser.

Fig. 3. Simple implementation of Proposal 1

3 Another criteria for generating an alert is signature matching based on communications between the
sensor and a suspected host. Although a sensor with signature matching can detect malware with low
false positives, it cannot detect various other types of malware compared to our criteria.

4 Our sensor can only not detect the timing when the scanning is based on ARP request or ICMP request.
However, because our sensor sends replies to the requests, as mentioned in Section 5, it can finally detect
malware whose attack component launches an attack based on TCP or UDP.

5 There is no need to perform a server service for joining the browser service, which leads to an increase
in attack surface on the sensor.
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3. The malware resolves the host names described in the list, i.e. gets IP addresses of the hosts
including the sensor.

4. Its attack component launches attacks to the hosts and duplicates itself in them.

The sensor can detect traffic generated by the attack component since it is usually based on TCP
or UDP. Consequently, an alert is generated that identifies the IP addresses of the host infected
with the malware.

Meanwhile, we discuss false positives of the simple implementation of Proposal 1. Host names in
a network are displayed with graphical user interface (GUI) by the Windows Explorer application,
i.e. the host name of our sensor is also provided. Since users of a host not infected with malware can
see them easily, they might click the sensor name. This results in a false positive based on the access
from the host. The full implementation of Proposal 1 provides low false positives. Suppose that
the number of accesses by legitimate users with legitimate purposes, including the aforementioned
Windows Explorer, is low within a defined period of time. Proposal 1 forces malware to perform
multiple accesses to our sensor so that it can distinguish the accesses of malware from those of the
legitimate users.

For the preliminary introduction of Proposal 1, the behaviors of computer browser service with
multiple Windows domains or workgroups and of malware under the environment are introduced in
this paragraph. As shown in Figure 4, each master browser manages each browser list that describes
each set of hosts in each domain or workgroup even in the same network. A master browser writes
the host name of a host announcement in its browse list when the domain or workgroup field in the
host announcement corresponds to the workgroup or domain of the master browser. Each master
browser also manages the names of domains or workgroups in the network. Malware obtains all
the browse lists by the following procedure for widely spreading infection. Actually, we confirmed
such malware samples, as mentioned in Section 5.

1. The malware that infects a host in the network obtains all the names of domains or workgroups
by requesting to the master browser that belongs to an identical domain or workgroup to that
of the infected host.

2. The requests for acquiring the host names of master browsers in the domains or the workgroups
are broadcast using browser protocol.

3. The malware resolves each host name of the master browser, and requests each browse list.

Proposal 1 utilizes the aforementioned behavior of malware in the environment with multiple
domains or workgroups since its environment is general in ICS networks as well as enterprise
networks. The sensor in Proposal 1 duplicates the host announcement and alters the domain
or workgroup name in the duplicated announcement to other domain or workgroup name in the
network. As shown in Figure 5, the duplicated and altered announcement is broadcast continuously.
As a result, the sensor name is written in multiple browse lists in the same network. When malware
obtains them and tries to attack them sequentially, multiple accesses to the sensor are generated
as shown in Figure 5.

Proposal 1 specifically runs in the following five steps, which reduces additional traffic that
could prevent the availability of ICS networks.

Fig. 4. Browser service with multiple domains or workgroups
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Fig. 5. Proposal 1 for detecting malware using browse list

Step 1: The sensor obtains names of domains or workgroups6 in the network by measuring broad-
cast packets such as host announcement.

Step 2: The host announcement is duplicated and the domain or workgroup name described in
the duplicated announcement is altered to the name obtained in Step 1.

Step 3: The duplicated host announcement is broadcast continuously, e.g. every twelve minutes7.
The sending intervals are managed for every domain or workgroup.

Step 4: When the sensor receives a name resolution request related to the sensor name, it sends
a reply with its IP address to the source address of the request. The alert is generated when
multiple accesses from the same source address within a short period are detected.

Step 5: If the packets related to the domain or the workgroup that is known by the sensor are not
observed for a certain period, e.g. thirty-six minutes8, the sensor determines that the domain
or the workgroup has been removed and stops the Step 3 broadcasting to reduce unnecessary
traffic.

4.2 Proposal 2: Deception Technique for Detecting Malware Using ARP Table

This section introduces the deception technique that enables our sensor to detect malware using
an ARP table (Proposal 2).

In a Proposal 2 scenario, a pair of an IP address and MAC address of the sensor needs to be
embedded in ARP tables of all hosts in the ICS network, whereas the sensor name is embedded in
one or several browse lists in the Proposal 1 scenario. Since agent software often cannot be installed
in hosts in ICS networks as discussed in Section 1, the sensor in Proposal 2 accesses all the hosts
in the network as shown in Figure 6. When the hosts used in ICS networks are managed, e.g. there
is an IP address list of hosts used in ICS networks, the sensor sends a packet such as ping only
to the IP addresses of the managed hosts to reduce additional traffic. However, hosts in ICS are
sometimes not managed. Proposal 2 can also be used in environments where the IP addresses and
OS of hosts are unknown.

Since ARP cache is cleared after a certain period of time, the sensor accesses the hosts contin-
uously. The default cache expirations are different depending on the OS.

– Windows: between 15 seconds and 45 seconds or 2 minutes

– Linux: 1 second

– Network Equipment: 20 minutes or more (depending on model and vendor)

We define two metrics related to continuous access for discussion of Proposal 2.

6 If there is a single domain or workgroup in the network, Proposal 1 cannot be used. However, the
improved version of Proposal 1 that writes multiple dummy names in a single browse list can be used.

7 The browser service specification defines the interval time for sending a host announcement as twelve
minutes.

8 The browser service specification defines the expiration time for keeping a host name in a browse list as
thirty-six minutes.
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Fig. 6. Simple implementation of Proposal 2

Coverage: Regardless of the type of OS running in hosts, the periods where the IP address of
our sensor is not cached in the ARP tables of the hosts need to be reduced, i.e. the next access
should be performed by cache expirations. That is because, if the advanced malware using ARP
tables infects a host when the sensor address is not cached in the ARP table, the malware can
evade access to the sensor, i.e. the sensor cannot detect the malware.

Additional Traffic: The additional traffic that is produced by continuous accesses needs to be
reduced as much as possible. That is because it would prevent the availability of ICS networks,
e.g. a huge amount of additional traffic would lead to network congestion that prevents normal
communication in the ICS network and would increase computer loads that induce a false
operation.

The straightforward implementation that keeps high coverage accesses all the hosts every one
second, which is the minimum expiration, as shown in Figure 6, since the sensor does not know the
kinds of OS of the host in the network or its IP address. However, this produces a huge amount
of additional traffic. In contrast, the full implementation of Proposal 2 keeps high coverage along
with adequate additional traffic by optimal accesses not only whose interval is dynamically defined
but also whose protocol is dynamically defined.

Proposal 2 utilizes a combination of an ICMP echo request (ping) that can be used for OS
fingerprinting and an ARP request that is lightweight, which can embed an entry to a target ARP
table. A value of time to live (TTL) contained in an ICMP echo reply enables us to identify the
type of OS in the host.

– Windows: 128
– Linux: 64
– Network Equipment: 255

The sensor in Proposal 2 accesses each host in the network using an ICMP echo request and an
ARP request depending on the previous reply from each host and the state of each host. Each host
is managed in four states by the sensor, as shown in Table 1. Depending on the previous reply from
a host, its state is transited. The optimal state is State 3 where the host is accessed at an optimal

Table 1. States used in Proposal 2

MAC Address OS

State 0 (Initial state) Unknown Unknown
State 1 Unknown Unknown
State 2 known Unknown
State 3 known known



10 T. Machida et al.

interval for the host using a lightweight ARP request. The sensor makes each host State 3 at the
earliest opportunity through the actions listed below that are defined for every state.

The sensor has a table for managing the states along with MAC addresses and OS for every IP
addresses in the network, i.e. an IP address associated with no host is also managed, as shown in
Figure 7.

State 0: This state is an initial state associated with all IP addresses in the network, e.g. from
192.168.10.1 to 192.168.10.254, in the management table when the sensor in Proposal 2 is
booted, as shown in Figure 7 (a). The booted sensor sends ARP requests to all the IP addresses.
If a host with an IP address returns an ARP reply, its MAC address is extracted from the ARP
reply and written in the MAC address entry corresponding to its IP address in the table, and
the state entry is rewritten to State 2, as also shown in Figure 7 (a). Since an IP address
with no reply is an unused address, the state entry corresponding to the unused IP address is
rewritten to State 1 for preparing when the IP address is allocated to a new host.

State 1: This state is for observing the IP addresses that are confirmed as unused in State 0 or
State 3. The sensor sends ARP requests to the IP addresses continuously with a long interval.
When an ARP reply is returned from an IP address of the unused IP addresses, i.e. the IP
address is allocated to a new host, the MAC address and the state entries are written in the
same way as State 0, as shown in Figure 7 (b).

State 2: This state is for OS fingerprinting of hosts whose presence is confirmed in State 0 or
State 1. The sensor sends an ICMP echo request to the host and identifies the OS from the
TTL value contained in the ICMP echo reply. The identified OS is written in the OS entry
corresponding to the IP address in the management table, and the state entry is rewritten to
State 3, as shown in Figure 7 (c). An OS entry corresponding to an IP address allocated to a
host with no reply, i.e. OS in the host cannot be identified, is filled with Linux OS as it has
the fastest ARP cache expiration of all the OS and the sensor gives priority to coverage over
additional traffic.

State 3: This state is for sending a lightweight ARP request with the optimal interval for the
OS identified in State 2, as shown in Figure 8. At the same time, the MAC address extracted
from the ARP reply is compared to that in the MAC address entry of the table. If they do not
match, the state entry corresponding to the IP address is rewritten to State 2 since the host
with the IP address is presumably exchanged to a new host. In the case of no ARP reply, the
state entry is rewritten to State 1 since the IP address has become unused.

(a) State 0 (b) State 1

(c) State 2 (d) State 3

Fig. 7. Example of state transition in Proposal 2
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Fig. 8. Proposal 2 for detecting malware using ARP table

5 First Evaluation of Our Deception Techniques

This section provides the first evaluation of our sensor with the proposed techniques. For the
preliminary experiment, we confirmed that darknet-monitoring-based detection, which was an es-
sential part of our sensor, worked by using an actual sample of ransomware, WannaCry, that spread
indiscriminately within a network. After the experiment, we verified the effectiveness of the simple
implementation of Proposal 1 (Figure 3) by using actual samples of the worm malware Conficker
that might use browse lists for target discovery. Furthermore, the fundamental part of Proposal 1,
as shown in Figure 5, was implemented and its feasibility was examined. The evaluation of Pro-
posal 2 is future work because we were not able to obtain an actual sample using ARP tables for
target discovery. However, we also implemented the fundamental part of Proposal 2 and confirmed
its feasibility.

5.1 Experimental Environment

The block diagram of our experimental environment is shown in Figure 9. The experimental factory
network was created using multiple VMs based on Windows XP OS that was often used in the
actual factory networks, which was the isolated LAN with 192.168.10.0/24. The specification of
our physical server where these VMs were launched is shown in Table 2. We analyzed traffic using
an open-source packet analyzer on a VM that was also connected to our factory network and was
based on Windows 7 OS, which was confirmed not to be infected with WannaCry and Conficker
in advance. The size of allocated memory for each VM is shown in Table 3. The sensor program
based on Python was implemented in a Linux-based single-board computer. The alerts that the
sensor program generated were stored in the local file system, and we checked them directly in
the experiment. The sensor did not return TCP SYN ACK against TCP SYN, and returned ARP
reply and ICMP echo reply against ARP request and ICMP echo request, respectively.

5.2 Preliminary Evaluation Using WannaCry

The experiment that confirmed the effectiveness of darknet-monitoring-based detection was demon-
strated with three Windows XP VMs, one Windows 7 VM, and the sensor whose IP addresses were
192.168.10.3, 192.168.10.4, 192.168.10.5, 192.168.10.13, and 192.168.10.50, respectively, as shown
in Figure 9. Their host names were XP-1, XP-2, XP-3, Win7, and SENSOR, respectively.
We executed a WannaCry sample in XP-1. The WannaCry performed sequential ARP scanning
in ascending order in the network, i.e. from 192.168.10.2 to 192.168.10.254. Subsequently, it tried
to infect the hosts that returned an ARP reply. As a result, our sensor detected the first packet,
TCP SYN, of the infection procedure, i.e. our sensor based on darknet monitoring was able to
detect WannaCry that spread indiscriminately. Since the sensor did not return TCP SYN ACK,
the infection procedure was not completed and the sensor was not infected with WannaCry. XP-2
and XP-3 were infected with WannaCry, and Win7 was not infected.
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Fig. 9. Experimental Environment

Table 2. Sever Specification

Hardware Fujitsu Server PRIMERGY RX2530 M1
Hypervisor VMware vSphere 6.5.0

CPU Intel Xeon Processor E5-2460 v3
(2.60 GHz, 8 Cores)

RAM 128GB
Storage 24TB

Table 3. Size of Memory Allocated for VMs

RAM Storage

Windows XP VMs 2GB 8GB
Windows 7 VM 4GB 16GB

5.3 Proposal 1 Evaluation Using Conficker

A variant of Conficker is known to use browse lists for target discovery. We obtained three samples
that were identified as Conficker by several antivirus software in recent days and were based on a
portable executable (PE) format. Accordingly, all the samples used browse lists for target discovery,
which was based on a similar method as Section 3.1.

The experiment that verified the effectiveness of the simple implementation of Proposal 1 was
demonstrated with the same setup with Section 5.2. All VMs belonged to a workgroup WORK-
GROUP. Firstly, the sensor without the simple implementation of Proposal 1 was connected to
our factory network. That is, although the sensor could detect TCP-based accesses from the hosts
within the network, it did not broadcast a host announcement with its host name. Win7 also did
not broadcast a host announcement by default. Therefore, after a certain period of time since the
sensor was connected and the VMs were launched, the browse list managed by the master browser,
XP-2 in this case, described XP-1, XP-2, and XP-3. Subsequently, we executed the Conficker
sample in XP-1. The spreading procedure that was measured on Win7 is as follows.

1. Conficker obtained the browse list from the master browser.
2. One of the host names described in the browse list was resolved by using NetBIOS name service

protocol.
3. Conficker sent an ARP request whose destination was the resolved IP address.
4. ICMP echo requests were sent to the IP address.
5. Conficker tried to infect the host with the IP address.
6. The steps (2) to (5) were performed on all hosts whose names were described in the browse

list alphabetically.
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As a result, the steps (2) to (5) were performed on XP-2 and XP-39, and SENSOR and Win7 did
not receive any packets, i.e. the sensor without the simple implementation of Proposal 1 was not
able to detect Conficker.

Secondly, the sensor with the simple implementation of Proposal 1 was connected to the net-
work, after the environment was returned to its original state, i.e. the state before launching
Conficker. The sensor broadcast a host announcement with its name SENSOR every twelve min-
utes. When receiving name resolution requests related to the sensor name, the sensor returned its
IP address as a name resolution reply. In this situation, the browse list of the master browser,
XP-2 in this case too, described XP-1, XP-2, XP-3, and SENSOR. When the Conficker sample
was executed in XP-1, the steps (2) to (5) were performed on SENSOR as well as XP-2 and XP-3.
The sensor detected the first packet, TCP SYN, of the steps (5)10. Consequently, we clarified that
the sensor with the simple implementation of Proposal 1 was able to detect the infection spread of
Conficker that used browse lists, whereas the sensor without it was not able to detect.

Finally, we examined the feasibility of Proposal 1. This experiment was demonstrated with
six Windows XP VMs whose host names were XP-1, XP-2, XP-3, XP-4, XP-5, and XP-6,
along with Windows 7 VM Win7 and the sensor SENSOR. XP-1, XP-2, and XP-3 belonged
to workgroup WORKGROUP1. XP-4, XP-5, and XP-6 belonged to WORKGROUP2. We
implemented only the function that sent host announcements with the host name SENSOR and
the workgroup names WORKGROUP1 and WORKGROUP2, i.e. Step 2, Step 3 and Step 4 of
Proposal 1 shown in Section 4.1, as the fundamental part of Proposal 1. After a certain period of
time since the sensor with the function was connected and the VMs were launched, we observed
that the browse lists managed by the master browsers of WORKGROUP1 and WORKGROUP2,
XP-2 and XP-5 in this case, described XP-1, XP-2, XP-3 and SENSOR, and XP-4, XP-5, XP-6
and SENSOR, respectively. The spreading procedure of the Conficker sample that was executed in
XP-1 is as follows.

1. Conficker obtained names of the workgroups in the network from the master browser of the
workgroup of the infected host, i.e. WORKGROUP1.

2. Conficker obtained the browse list managed by the master browser of one of the workgroups
included in the obtained workgroup names.

3. One of the host names described in the browse list was resolved.
4. Conficker sent an ARP request whose destination was the resolved IP address.
5. ICMP echo requests were sent to the IP address.
6. Conficker tried to infect the host with the IP address.
7. The steps (3) to (6) were performed on all hosts whose names were described in the browse

list alphabetically.
8. The steps (2) to (6) were performed on all workgroups obtained in the step (1) alphabetically.

As a result, the steps (3) to (6) were performed on SENSOR twice, whereas they were performed
on XP-2, XP-3, XP-4, XP-5 and XP-6 once. Therefore, twice as many TCP SYN packets as those
to XP VMs were detected by the sensor. Consequently, we clarified that Proposal 1 forced the
Conficker sample to perform multiple accesses to the sensor.

6 Discussion

What is the difference between the proposed techniques and conventional honey-
pots?: Suppose that a malware selects a server as its infection target, and it initially accesses
the server (initial access), for example, by ARP request and TCP SYN. In this case, the malware
might notice that the server is decoy, e.g. a honeypot, by inspecting responses to the initial access
from the server and might stop the infection. That is, we can not obtain the additional information
related to the malware since the honeypot can not capture the packets from the malware between
the initial access and the final access when the spread of infection is completed. Conventional
high-interaction honeypot techniques such as [1, 13, 18] resolve the problem by generating realistic

9 The infection of the step (5) to XP-2 and XP-3 was not completed and the infection trial was repeated
as denial of service (DOS). The reason why the trials had failed was not able to be specified.

10 Since the sensor did not return TCP SYN ACK, not only was the step (5) not completed but also the
infection trial was not repeated, whereas it was repeated to XP-2 and XP-3.
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responses so that the malware misidentifies as a real server in order to get the spread of infec-
tion to be completed. On the other hand, we discuss how to lure an initial access to our sensor
from advanced malware that evades non-essential initial access, e.g. by using browse list, whereas
conventional honeypots that only focus on after initial access can not lure, i.e. can not detect the
advanced malware. This paper does not discuss techniques for generating realistic responses, and
our sensor is based on low-interaction honeypot for simplifying its implementation. Conventional
honeypot techniques can be combined with our sensor, which is future work.

7 Conclusion and Future Work

In this paper, we proposed novel deception techniques that enable our sensor to detect advanced
malware using browse list and ARP table for discovery of infection targets. The host name and
IP address of the sensor were embedded in browse lists and ARP tables, respectively, by actively
sending appropriate packets at appropriate intervals from the sensor. Our techniques produced
only a small amount of additional traffic to maintain the availability of ICS networks. Our first
evaluation based on the simplified implementation of the proposed techniques clarified that they
were feasible and were able to detect an actual malware sample, Conficker, that used browse lists.

The future work is to implement the full version of Proposal 1 and Proposal 2 and to evaluate
them. We also evaluate the false positives of our sensor on a real ICS environment.

References

1. Antonioli, D., Agrawal, A., Tippenhauer, N.O.: Towards High-Interaction Virtual ICS Honeypots-in-
a-Box. In: 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy (CPS-SPC@CCS
2016). pp. 13–22 (2016)

2. of Automation, I.S.: ANSI/ISA-95.00.01-2000, Enterprise-Control System Integration, Part 1: Models
and Terminology (2000)

3. of Automation, I.S.: ANSI/ISA-99.00.01-2007, Security for Industrial Automation and Control Sys-
tems, Part 1: Terminology, Concepts, and Models (2007)

4. Azrina, R., Othman, R., Aziz, N.A., ZulHazmi, M., Khazin, M., Dewakunjari, J.: Network Foren-
sics: Detection and Mitigation of Botnet Malicious Code via Darknet. In: Trustworthy Ubiquitous
Computing, pp. 65–78. Atlantis Press (2012)

5. Bailey, M., Cooke, E., Jahanian, F., Nazario, J.: The Internet Motion Sensor - A Distributed Blackhole
Monitoring System. In: Network and Distributed System Security Symposium 2015 (NDSS 2005)
(2005)

6. Barrett, M.P.: Framework for Improving Critical Infrastructure Cybersecurity. Tech. Rep. Version 1.1,
National Institute of Standards and Technology (2018)

7. Bou-Harb, E., Debbabi, M., Assi, C.: A Time Series Approach for Inferring Orchestrated Probing
Campaigns by Analyzing Darknet Traffic. In: 10th International Conference on Availability, Reliability
and Security (ARES 2015). pp. 180–185 (2015)

8. Chen, Y., Poskitt, C.M., Sun, J.: Learning from Mutants: Using Code Mutation to Learn and Monitor
Invariants of a Cyber-Physical System. In: 2018 IEEE Symposium on Security and Privacy (S&P
2018). pp. 648–660 (2018)

9. Feng, C., Palleti, V.R., Mathur, A., Chana, D.: A Systematic Framework to Generate Invariants for
Anomaly Detection in Industrial Control Systems. In: 26th Annual Network and Distributed System
Security Symposium (NDSS 2019) (2019)

10. Formby, D., Srinivasan, P., Leonard, A., Rogers, J., Beyah, R.A.: Who’s in Control of Your Control
System? Device Fingerprinting for Cyber-Physical Systems. In: 23rd Annual Network and Distributed
System Security Symposium (NDSS 2016) (2016)

11. ICS-CERT: Alert (IR-ALERT-H-16-056-01), Cyber-Attack Against Ukrainian Critical Infrastructure
(2016), https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01 (Accessed February 10, 2020)

12. Inoue, D., Suzuki, M., Eto, M., Yoshioka, K., Nakao, K.: DAEDALUS: Novel Application of Large-
Scale Darknet Monitoring for Practical Protection of Live Networks. In: 12th International Symposium
on Recent Advances in Intrusion Detection (RAID 2009). pp. 381–382 (2009)
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