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ABSTRACT

Homomorphic encryption primitives have the potential to be the main enabler of privacy preserving
computation delegation to cloud environments. One of the avenues which has been explored to
reduce their significant computational overhead with respect to cleartext computation is the one
of the so-called noise-free homomorphic encryption schemes. In this work, we present an attack
against fully homomorphic encryption primitives where a distinguisher for a single plaintext value
exists. We employ two noise-free homomorphic encryption schemes where such a property holds
as our case studies, providing detailed attack procedure against them. We validate the effectiveness
and performance of our attacks on prototype implementations of the said schemes, and suggest two
countermeasures to our attack tailored to the schemes at hand.

Keywords Linearly decryptable cryptoscheme - Noise-Free Schemes - Plaintext Recovery Attack - Comparison-based
Attack - FHE

1 Introduction

Outsourcing computation and reliable storage of large amounts of data to third parties allows significant saving on
infrastructure and maintenance costs whenever an internal site reliability engineering team is not available. However,
such an outsourcing comes with the main drawback of the potential disclosure of sensitive data unless appropriate
measures are taken. Such a drawback can be overcome in an effective and elegant way if a cryptographic primitive
which allows to perform computations on encrypted data, retaining the correctness of the decrypted result, is available.
Such a primitive goes by the name of Fully Homomorphic Encryption (FHE), and was proposed as a pioneering
idea by Rivest in 1978 under the name of Privacy Homomorphisms [22]. The design of an effective and efficient
FHE primitive remained unsolved for more than thirty years, during which only Partially Homomorphic Encryption
(PHE) scheme, which allow to perform an arbitrary number of instances of a single operation (e.g., addition), or a
SomeWhat Homomorphic Encryption (SWHE) schemes, which allow to perform a limited number of additions and
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multiplications, were proposed. Then, the work by Gentry [11] in 2009 proposed the first FHE scheme, which allows
to perform an unbounded number of additions and multiplications.

Since Gentry’s seminal work, several schemes achieving better performance were proposed [7, 10, 13, 8], as well as
new techniques to speed up homomorphic computations, such as batching [12, 24]. With this technique, a single ci-
phertext can contain multiple plaintext values and when an homomorphic operation is applied between two ciphertexts,
the same operation is applied on the plaintext values in a Single Instruction Multiple Data (SIMD) fashion. Despite
these significant improvements, FHE schemes still have two practical concerns to be solved before wide adoption
is possible: i) the ciphertext expansion and ii) the computational overhead imposed on homomorphic operations to
preserve the correctness of the decrypted result. Indeed, the ciphertext space of SWHE/FHE schemes is consistently
larger than the plaintext one, therefore even a single operation on ciphertexts is quite time consuming. The preservation
of the correctness of the decrypted result needs to cope with a certain amount of randomness, typically called noise,
that is added to the ciphertext when processing it. The amount of noise cannot be too high, lest a decryption failure
occurs. Unfortunately, each homomorphic operation, especially multiplication, increases the amount of noise in the
ciphertexts. In order to reduce the noise growth after each homomorphic operation, SWHE/FHE schemes generally
perform some additional computations, significantly increasing the overhead of each homomorphic operation. Even
with this noise management techniques, after a limited number of homomorphic operations, either the computation
is halted (as in SWHE schemes), or a procedure to refresh the ciphertext, i.e., decrease the noise without decrypting
it, must be run. Such a procedure, introduced by Gentry in his original scheme [11], is called bootstrapping and it
allows to transform a SWHE scheme, satisfying certain constraints, in a FHE one. However, this procedure is quite
cumbersome, and needs to be periodically performed, slowing down the overall computation. To overcome this bur-
den, alternative noise management techniques have been proposed, such as modulus switching [6] and scale-invariant
schemes [3, 4].

A different direction in coping with the noise in FHE ciphertexts is represented by noise-free schemes. A ciphertext in
a noise-free scheme has no noise, thus an unbounded number of homomorphic operations can be performed without
any costly noise management technique being involved. Nevertheless, while common noisy SWHE/FHE schemes are
based on well-known and scrutinized mathematical problems, such as the Learning With Errors problem [18], noise-
free schemes usually rely on less common algebraic trapdoors, which do not have widely scrutinized reductions to
hard problems.

Ind particular, Liu in [17] introduced a noise-free FHE scheme, based on the approximate greatest common divisor
problem; nonetheless, this scheme was subsequently proven to be insecure in [26]. Kipnis in [15] proposed a FHE
scheme based on commutative rings, whose trapdoor is based on integer factorization. This scheme is provably secure
against ciphertext-only attacks, however knowing two plaintext-ciphertext pairs was proven to be sufficient to break
the scheme [25].

Liin [16] proposed to employ non commutative rings to build FHE schemes, while Nuida [20] introduced a framework
to construct FHE schemes based on group presentations obfuscated by Tietze transformations. The open challenge
with schemes in [16, 20] resides in the definition of a mapping between integer plaintext values and elements of the
mentioned algebraic structures, preserving security guarantees and homomorphic capabilities.

Lastly, Wang in [26] introduced two noise-free octonion-based FHE schemes (called OctoM and JordanM) with trap-
doors based on the problem of solving quadratic modular equations over a ring Z,, (with n being a composite integer),
a problem which is as hard as factoring n. Wang proved the security of these schemes in a ciphertext-only scenario.
Thus, they are, to the best of our knowledge, the only noise-free FHE schemes suitable for practical usage.

While the homomorphic capabilities of a cryptosystem do not weaken the security guarantees per se, they may increase
the adversarial power, if combined with other vulnerabilities. The advantages provided by homomorphic capabilities
to the attackers were discussed in [5], focusing on the so-called linearly decryptable schemes, i.e., cryptosystems
whose decryption function can be expressed as a dot product between key and ciphertext values, represented in a
multi-dimensional vector space (e.g., the ones in [26]).
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Linearly decryptable schemes usually employ a significant amount of noise to hinder Known Plaintext Attacks (KPAs).
Nevertheless, in [5] the authors showed that if the scheme can homomorphically evaluate the majority function, then
a KPA becomes practically viable. Moreover, in [26] the authors introduced, for linearly decryptable schemes, an
algorithm to determine if the plaintext corresponding to a given ciphertext is equal to the integer value 1. We remark
that the noise-free OctoM and JordanM FHE schemes proposed by Wang in [26] are linearly decryptable, and thus
affected by the aforementioned issues.

Contributions. In this work, we present a plaintext recovery attack, against FHE schemes having plaintexts in Z,,,
with n > 2, and where it is possible to devise an efficient algorithm able to determine if a generic ciphertext under a
given key £ is the encryption of a fixed plaintext m.

Although, to the best of our knowledge, such a distinguisher has been proposed for linearly decryptable schemes
only, our attack is applicable to any FHE scheme for which such a distinguisher can be found. Our attack, which is
performed in a ciphertext-only scenario, leverages the capability to homomorphically compare two encrypted integer
values, and it exhibits a computational complexity which is linear in the plaintext integer value being recovered, which
is an improvement by a significant constant factor over an exhaustive search strategy.

In order to to practically validate the feasibility of our attack, we choose two linearly decryptable noise-free octonion-
based cryptosystems [26] (namely, OctoM and JordanM), which were claimed to be computationally secure in a
ciphertext-only attack scenario.

During the analysis of such cryptosystems, we discovered that one of the two is not fully homomorphic in the form
which was presented in [26]: we report in this work all the modifications required to obtain a fully homomorphic
scheme.

Furthermore, since these schemes are linerarly decryptable, by applying our attack we can retrieve enough plaintexts
so that mounting a KPA to recover the key becomes viable. We evaluate our attack by providing practical figures
obtained from a prototype implementation of both schemes. Finally, we propose a countermeasure for both OctoM and
JordanM schemes, mitigating our attack.

2 Preliminaries

Definition 1 (Negligible Function). A function € : N — R is negligible if, for every univariate positive polynomial,

poly(zx) € Rlz), there exists an integer ¢ > 0 such thatV x > ¢, |e(z)| < m

Definition 2 (Indicator Function). Given a set S and a subset A C S, the indicator function of the elements of A over
the ones included in S is defined as: 14 : S — {0,1}, where 1 4(x) = 1 ifx € A, 0 otherwise.

2.1 Homomorphic Encryption Algorithms

Our definition of Fully Homomorphic Encryption follows the one introduced in [8], without constraining the encryp-
tion function to deal with a single bit at a time. An homomorphic encryption (HE) scheme specifies three sets: M, C
and F.

The set of plaintexts M usually coincides with the set of integer values ranging from 0 to n—1, with n>2, and
assumed to be the representatives of the residue classes modulo n, i.e., (Z,,, +, X ), where Z,, = Z/nZ. The ciphertext
space C includes elements with an algebraic representation that depends on the specific HE scheme at hand. The set of
polynomials F C Z,[x1, %2, ..., %4), with a > 1 and degree greater or equal to zero, defines the functions that the HE
scheme at hand allows to be evaluated. That is, each of these polynomials computes a function f : M* = M, a > 1
over the plaintexts, and is referred to as an arithmetic circuit composed by gates performing modular multiplications
(x) and modular additions (+) in Z,,.

We provide the definition of an HE scheme starting from an asymmetric HE scheme, and describe a symmetric one by
difference.
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Definition 3. (Public-key Homomorphic Encryption Scheme).
A public-key Homomorphic Encryption scheme is defined as a tuple of four polynomial time algorithms
(KeyGen, Enc,Dec,Eval):

e Key Generation.
(sk, pk, evk) < KeyGen(1*) is a probabilistic algorithm that, given the security parameter ), generates the
secret key sk, the public key pk and the public evaluation key evk.

e Encryption.
¢ < Enc(pk, m) is a probabilistic algorithm that, given a message m € M and the public key pk, computes
a ciphertext c € C.

e Decryption.
m < Dec(sk, ¢) is a deterministic algorithm that, given a ciphertext ¢ € C and the secret key sk, outputs a
message m € M.

e Evaluation.
¢ + Eval(evk, f,c1,ca,. .., ¢q) is a probabilistic algorithm computing a ciphertext ¢ € C, using an arith-
metic circuit f € F with a > 1 inputs, the ciphertexts c1,Ca, . .., cq, and the evaluation key evk.

The following properties must hold:

e Decryption Correctness.
V'm € M : Dec (sk,Enc(pk,m)) = m.

e Evaluation Correctness.
Ymy,...,mq € M,f € F: Pr(Dec(sk,c) = f(my,...,mq)) = 1 — €(\), where ¢ =
Eval(evk, f,c1,...,¢q), ¢c1 = Enc(pk,m1),...,cq = Enc(pk,m,) and €(\) is a negligible function of
the security parameter of the scheme.

o Compactness.
VfeF c,...,cp €C: |Eval(evk, f,c1,...,ck)| < poly(\), where | - | denotes the bit length of a
ciphertext, while poly(-) denotes a positive univariate polynomial.

The requirement on the evaluation correctness trivially states that by decrypting the output of the Eval algorithm we
obtain the correct result of the computation homomorphically performed by Eval on the ciphertexts. In particular,
the Eval algorithm evaluates a polynomial, defined over the plaintext space, in the sequence of input ciphertexts by
replacing the modular additions and multiplications of the polynomial with, respectively, the homomorphic operations
Add and Mul, that are, in turn, two probabilistic polynomial time algorithms defined over the ciphertext space C:

o Homomorphic Addition.
¢ « Add(evk, c1, c2) computes a ciphertext ¢ € C such that Dec(sk, ¢) = Dec(sk, ¢1) + Dec(sk, c2).

o Homomorphic Multiplication.
¢ < Mul(evk, c1, c2) computes a ciphertext ¢ € C such that Dec(sk, ¢) = Dec(sk, ¢1) x Dec(sk, ca).

When defining a symmetric-key homomorphic encryption scheme, the only difference is the key generation algorithm
KeyGen (1) outputting a tuple k = (sk, pk, evk) with sk = pk.

Lastly, We recall the categorization of HE schemes depending on the specific choice of the set of functions F which
can be evaluated.

Specifically, in a PHE scheme only functions f € F defined via an arithmetic circuit including a single type of gate
(an additive one or a multiplicative one) can be evaluated. In a SWHE scheme, only functions f € F defined via an
arithmetic circuit with a depth no higher than a fixed (scheme-dependent) threshold can be evaluated A FHE scheme
allows to evaluate functions f € F defined via an unconstrained arithmetic circuit.
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2.2 Threat Model

We now specify the threat model we assume for our attack. The adversary can perform the attack by relying only on
publicly-available information. In particular, our attack is performed in a ciphertext-only scenario, which means that
the attacker employs only cipheretexts and public portion of the key material (that is, evaluation key and the public
key, if the scheme is asymmetric). Nevertheless, the ciphertext-only scenario generally embodies additional public
information that can be inferred from the applicative domain where the HE scheme is employed. Indeed, since the
ciphertexts are involved in a known computation, the corresponding plaintext values are generally the input values
for this computation. Therefore, we assume that the attacker knows the domain of these input values, which may be
extremely smaller than the plaintext domain (e.g., in a power metering application, the input values may be as big
as 10%, while the plaintext domain of an HE scheme is the integer ring Z,,, where n may be a much bigger number).
Throughout the paper, we denote the domain of the input values as the interval Dy = {—s+1,...,5+1}, where s is an
integer representing an upper bound for the majority of the input values (e.g., 10° for a power metering application).
We remark that, in this definition, there may be input values that do not belong to D,, what it is relevant for our
purposes is that a large portion of input values belong to this set.

2.3 Homomorphic Comparisons

One of the requirements to apply our attack is the existence of an algorithm able to determine if a generic ciphertext is
a possible encryption of a fixed plaintext m. Therefore, we now provide a formal definition for this algorithm, which
we refer to as m-distinguisher.

Definition 4 (m-distinguisher). Let the four-tuple (KeyGen,Enc,Dec,Eval) be a homomorphic encryption scheme
with security margin A, and let M, C be the plaintext and ciphertext spaces, related by the generated key
k={(sk, pk, evk). Let Aj* C C, be the set of ciphertexts corresponding to the encryption of a plaintext m € M,
i.e.: AJ* = {c € Cs.t.Dec(sk,c) = m}.

Given a plaintext m € M, an m-distinguisher is a deterministic polynomial time algorithm A,, taking as input a
ciphertext ¢ € C and the public portion of k (i.e., kpwn = (pk,evk) for public-key schemes and kpy, = (evk) for
symmetric ones), and computing the indicator function of the elements of A} over the set of ciphertexts, namely
Lam 2 C — {0,1}, in such a way that

{c € Cs.t. A (¢, kpun) = Lap (0)}]
C|

where €(\) is a negligible function of the security margin of the system.

> 1- 6()\)7

Given the existence of this m-distinguisher, our attack leverages the capability to homomorphically compare two en-
crypted integers. Therefore, we now present the main methods proposed in the literature to compute this functionality,
including the one used in our attack.

First of all, performing comparisons requires to homomorphically evaluate the greater-than function on a chosen
interval of plaintext integer values.

Definition 5 (Greater-than Function). Given a positive integer b and an interval of integers D, = {0,1,...,t—1},
with t > 2, the greater-than function GTy, : Dy x Dy — {b—1, b} is defined as:

b ifx >y,

GTt,b(x7y) = {

b—1 otherwise

To the extent of evaluating this function with an HE scheme, we need to find a polynomial f, € F C Zj|[x,y], such
that fge(z,y) = GT;p(x,y), with2 < ¢t <n,1 < b < n, and z, y being the representatives of residue classes modulo
n, (i.e., x,y € Z,) considered as integers less than ¢. Such a polynomial can be easily found if the plaintext space
is Zo: indeed, additions and multiplications become xor and and gates, while the input variables are the single-bit
values in the binary encodings of  and y, and thus there are many circuits computing the GT; (-, -) function.
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Considering a plaintext ring M = Z,, with n > 2, which is the case targeted in our work, finding an efficiently
computable polynomial for the GT; (-, -) function is a challenging task. Cetin in [9] reports two methods to compute
the GT} (-, ) function which do not require interaction between the secret key owner and the party who performs
homomorphic evaluation. However, both of these methods are not suitable for our attack: indeed, the first one is not
applicable to a composite module n; the second method computes an approximation of GT} (-, -), while our attack
needs an exact computation of this function.

A more effective solution is proposed in [19]: the greater-than function is computed as GT} ,(x,y) = SIGN; p(x—y),
where SIG Ny () is a function defined over D; C Z = {—t+1,...,0,...,t—1} such that:

b if z>0,

SIGN; p(2) =
to(2) {b—l otherwise

The homomorphic evaluation of the function STGN,;(-) requires a polynomial fgign € F C Zy[z] fulfilling
Jsign(zmod n) = SIGNyp(z), with2 <t < 5,1 < b < mnandz € D;. In [19], the polynomial fsign 18
computed applying the Lagrange interpolation formula to 2¢ — 1 points having coordinates ( z, SIGN; p(z) ), with
z € D;, and considering a prime modulus, i.e., n = p.

As we are considering as a plaintext space the ring Z,, with a generic modulus n > 2, we introduce an additional
constraint on the integer ¢, formalized in Lemma 1, to extend the applicability of the aforementioned method to a
generic ring Z,,:

Lemma 1. Given an integert > 2, and a set Dy = {—t +1,...,0,...,t — 1}, the polynomial f(z) € Zy,|z], with
n > 2, interpolating 2t — 1 points (z, f(z)) having the z-coordinate ranging over all values in Dy exists if t < %,
where q is the smallest prime factor of n.

Proof. Considering the set of 2t — 1 points {(z1,y1), ..., (22t—1,Y2t—1)} in Zy, X Zy, the interpolating polynomial
f € Z,[z], with degree at most 2t — 2, can be computed by the Lagrange interpolation formula:
21 2¢—1

F@=3u I G-2)—2)"

=1 j=1j#i

The existence of the multiplicative inverses (in Z,,) required in this formula is ensured if all the values z; — z; are
co-prime with n. Assuming the z-coordinates to be mutually distinct and in Dy, the constraint ¢ < 4 implies that
—q < =2t +2 < 2z — 2z < 2t—2 < g. Since ¢ is the smallest prime factor of n, then all the elements in
Zn \ {0} N {—g+1,...,¢q — 1} are co-prime with n, therefore all the values z; — z; are co-prime with n, and thus

invertible, allowing f(z) to be interpolated by the Lagrange formula. O

In conclusion, by Lagrange interpolation we can obtain a polynomial fsign € F C Zjy[2] which computes the function
SIGN,4(2),Vz € Dy, and then a polynomial fet € F C Zp|x,y], computing the function GT ,(x,y), Yo,y € Dy,
as fgt(x» y) = fsign(‘r - y)

Since fgx € JF, it can be homomoprhically evaluated by the Eval algorithm of the HE scheme at hand, by replac-
ing addition and multiplications of the polynomial with the corresponding homomorphic operations (Add and Mul),
whose inputs are ciphertexts in C. In the following, we denote the algorithm Eval(evk, i1, ¢z, fgr) by HGT: p(c1, ¢2),
which takes as input two ciphertexts with corresponding plaintext values mj,mo € D,, and outputs an encryption
of GTp(m1,mso). In particular, since GT;, is defined over the interval D;={0,...,t — 1}, t < 1, with q be-
ing the smallest prime factor of n, then ¢1, ca € C; = {c¢ € C s.t. Dec(sk,c) < t} is a sufficient condition for
Dec(sk, HGT; y(c1,¢2)) = GT;p(ma, mz2). The computational complexity required to interpolate 2¢ — 1 points by
applying the Lagrange formula is O(¢?) operations in Z,,; while the evaluation of the polynomial fsign € Zy,[2], whose
degree is at most 2t — 2, has a computational complexity O(t). Therefore, the computational cost of the HGT} (-, -)
algorithm is O(t).

We note that, while there are no current algorithms to compute HGT} 5 (-, -) in less than O(t), research efforts driven by
the usefulness of a homomorphic comparison may lead to an improvement in this sense. Since our methodology relies
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on the computation of HGT} (-, -) as an atomic component, such improvements will positively affect the efficiency
of our attack.

3 Attack Strategy

In the following we detail a plaintext recovery attack which takes as input a ciphertext and the publicly available
evaluation key, evk, of the HE scheme at hand (which can be either a FHE, or a SWHE capable of computing H GTy p,).

Throughout the attack, the adversary needs to obtain encryptions of known values: that is, given an integer h € Z,,
the attacker needs to compute a ciphertext ¢, such that Dec(sk, ¢;) = h. In case the HE scheme is asymmetric, ¢;, can
be directly obtained by employing the public key encryption algorithm of the scheme, while, in case the HE scheme
is a symmetric one, ¢;, can be computed from a single encryption of /i = 1 hinging upon homomorphic properties.
Indeed, given a ciphertext ¢ such that Dec(sk, ¢) = i = 1, the ciphertext ¢;, can be computed in O(log(h)) steps by a
double-and-add method, which works exactly as the well known square-and-multiply method where squaring
operations are replaced by doubling ones, while multiplications are replaced by additions. We remark that a doubling
operation on a ciphertext ¢ € C can be homomorphically performed as Add(evk, ¢, ¢).

From now on we will assume that, in case our attack is applied to an HE scheme, an encryption ¢ of a unitary plaintext
value is available to the attacker (i.e., Dec(sk, ¢) = 1), enabling him to obtain encryptions ¢, of known values required
throughout the attack; at the end of this section, we will show how ¢;, can be obtained by the adversary.

Comparison-based Attack. The core idea of our attack is to perform a homomorphic binary search over the possible
candidates for the value of the plaintext corresponding to the ciphertext at hand. To this end, a comparison function
C'M P, taking two ciphertexts as inputs and yielding an outcome in cleartext, is computed leveraging the homomorphic
greater-than function H G}, and the m-distinguisher (see Section 2). In particular, since the result of the HGTy
function is either an encryption of b or an encryption of b — 1, by choosing b = m the attacker can employ the
m-distinguisher to determine the actual (plaintext) value of HG1T; ., (without employing the secret key sk).

Definition 6 (Comparison Function). Consider a FHE scheme with plaintext space M = Z,,, withn > 2, an integer t
such that 2 < t < %, where q is the smallest prime factor of n, and the set of ciphertexts C; = {c € Cs.t.Dec(sk,c) <
t}. Given the ciphertexts c1,co € C, and the algorithm Ay, (c, kpyp) computing the m-distinguisher, where m is
a fixed plaintext value, ¢ € C and kp,;, is the public portion of the key material of the FHE scheme, the function
CMP : Cy x Cy — {1,0, —1} is defined as:

1 if’Ul:l/\’UQ#l,
CMP(Cl,CQ) =<0 ifvy =1Avy =1,

—1 otherwise

with v1 = A (HGT} mm(c1, ¢2), Kpub), V2 = Ay (€1 — €2 + i, Rpun ), Where ¢y, is an encryption of the plaintext value
m computed by the attacker.

The C M P function allows the attacker to learn the order relation between the underlying plaintext values of two
ciphertexts c1, c2 € C;: indeed, denoting as m.,, m., € D; the corresponding plaintext values of, respectively, ¢; and
co, CM P(c1,cq) outputs 1 if m., > m,,, 0 if m., = m,., and —1 otherwise, as v; = 1 if and only if m., > me,
and vy = 1 if and only if m., = m.,.

Denoting with Tyistinguisher the computational complexity of the m-distinguisher, we have that the time complexity
of CMP, Teap, is Tomp = O(t + 2T4istinguisher), s its execution involves at most two computations of the
m-distinguisher plus one computation of the HGT; ,,, function, which has complexity O(¢). Leveraging the function
C M P, the binary search strategy locates the value of the actual plaintext in the range Dy, which is ¢ elements wide,
with a computational cost of O(Tcarp-log(t)) = O((t + 2T aistinguisner) l0g(t)).

Starting from the strategy which has just been described, we improve its effectiveness extending the range of the
recoverable plaintexts.
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Algorithm 1: Plaintext Recovery Attack

Input: ciphertext ¢ € Cs, where Cs = {c € C s.t. Dec(sk, c) < s}
Output: plaintext m. = Dec(sk, ¢), mc € Zn,
begin
for i <— 1too do
cgt — HGT; m (¢,Enc(pk, (i — 1)t))
if A(m) (Cgt,kpub) = 1 then
cgt—HGT, m (¢.Enc(pk, it)) +Enc(pk, 1)
if Ay (cgt,kpw) = 1 then
me<—BinSearch(c—Enc(pk, (i—1)t))
if m. # | then
return m. + (i — 1)t

To this end, we split the set of recoverable plaintexts into | D¢| = ¢ sized chunks, find into which chunk the plaintext is
likely to be contained, and proceed to retrieve it employing the binary search approach. We denote with Dy the set of
recoverable plaintexts (Ds={0,1,...,s—1}, s < n), and with C, the set of ciphertexts obtained encrypting plaintexts
in Dy, i.e.: Cs = {c¢ € C s.t. Dec(sk,c) < s}. The recoverable message space Dy is split into o chunks containing
numerically consecutive plaintexts, with o:fﬂ: for instance, the i-th chunk, 1 < ¢ < ¢, contains plaintexts values
{(i = 1)-¢,...,it — 1}, while the last one contains values {i-¢,...,s — 1}.

Algorithm 1 shows how our improved attack is performed. It iterates over all the o chunks, testing, for each one of
it, if the plaintext m., corresponding to the input ciphertext ¢, may be contained in the chunk being scanned (lines
2-9). To this end, the algorithm starts by testing if m. may be in a chunk {(i — 1)-¢,...,i-t — 1} by verifying if
GT,,m(me, (i — 1)-t) = m (lines 3—4). In case this test succeeds (line 4, case of the if being taken), Algorithm 1
proceeds to test also if m,, is smaller than the upper bound i-¢ of the chunk at hand, by verifying that GT;, ,, (me, i-t) =
m — 1 with an analogous approach (lines 5—6). If the tests at lines 3 — 6 succeed, then the current chunk may contain
the plaintext m., and so Algorithm 1 attempts a plaintext recovery employing the binary search approach described
in precedence over the current chunk (line 7). However, the binary search is effective only under the assumption that
the sought plaintext is in Dy, thus Algorithm 1 (line 7) exploits the homomorphic operations to subtract the value of
the lower bound of the current chunk from m., working on its corresponding ciphertext ¢, to compute the value of
m. mod t, which can be retrieved by the binary search strategy.

Nevertheless, we note that the answer of the tests in lines 3—6 are subject to potential false positives. Indeed, if
me & {(i —1)t,...,it — 1}, thenm, — (i — 1)t ¢ D; V m, — (i-t — 1) ¢ Dy: thus, it means that the polynomial
fsign(2) € Zy[2], obtained by interpolating points whose z-coordinates range over Dy, is evaluated on a point z ¢ D,
hence yielding an outcome which is either outside the set {m — 1,m} or (by coincidence) inside it. Therefore, it
may happen that fg (me, (i — 1)-t)=fsign(me — (i — 1)-t)=m and fge(me,i-t — 1)=fsign(me — i-t)=m—1 even if
me & {(i —1)t,...,it — 1}. In this case, the interval {(¢ —1)-¢,...,i-t — 1} is identified as a false positive. However,
these false positive are filtered out later in the algorithm. Indeed, if m. ¢ {(¢ — 1)-t,...,i-t — 1}, then Algorithm 1
(line 7) computes a ciphertext whose corresponding plaintext value (that is, m. — (i — 1)-t) is not in the interval D;.
Since the binary search strategy is effective only under the assumption that the sought plaintext is in D,, then the
binary search will return a result (line 8) only if m, € {(i — 1)-¢,...,i-t — 1}, i.e., when the current chunk is not
a false positive. In this case, the actual value of m.. is reconstructed by adding back the lower bound of the current
chunk to the value retrieved by the binary search (line 9).

We now consider the time complexity of Algorithm 1 as a function of the value of the plaintext to be retrieved m,.
Algorithm 1 is expected to perform [“<] iterations of the outer loop. Each one of the iterations, save for the last
one, will fail the membership tests with very high probability (false positives are unlikely), thus resulting in O(t +
Tdistinguisher) computational effort at each iteration. However, we now compute the overall complexity T, (m.) of

the improved plaintext recovery attack, in the worst case where a false positive is found at each iteration:
m
Ta (mc) =0 (’VTC—I (t + Tdis‘ting;uisher + TBinSearch))

=0 (log(t)(mc + [%-‘ Tdistinguisher))

(D
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Therefore, our attack has a time complexity which is linear in the plaintext value being recovered. This is the main
reason why our attack is able to practically recover only ciphertexts whose corresponding plaintext is not too big.
However, by setting ¢+ = 22° (an upper bound imposed by the O(t?) computational cost of Lagrange interpolation),
we see that, unless Tyispinguisher > 225, recovering plaintexts as big as 232 still retains a computational complexity
T,(m.) < 2%, Since many typical FHE scenarios involve computations on relatively small values (e.g., power
consumption statistics from smart meters), we deem this plaintext recover capability effective enough to be worth
considering.

To conclude the description of our attack, we now show the speed-up obtained by Algorithm 1 over an exhaustive
search strategy leveraging only the m-distinguisher. This latter attack tries all plaintext values m. € Z, in increasing
order, with the recovered plaintext being the first m,. such that A, (Enc(pk, m.) — ¢ + Enc(pk, m))=1.

Denoting the value of the recovered plaintext as m., with this strategy we employ the m-distinguisher m, times,
therefore the complexity of this approach is O(chdistinguisher)~ The speed-up of our attack over this simple strategy
can be computed as:

chdistinguisher o chdistinguisher
Ta (mc) IOg(t) (mc + [%1 Tdistinguisher) (2)
tTdisting‘uisher

B log(t) (t + Tdistinguisher) ’
This calculation shows that our attack improves the exhaustive search strategy by a constant factor, thus without
changing its asymptotic complexity. In particular, the speed-up depends on the values of ¢, chosen by the attacker, and
Taistinguisher» given by the target scheme.

Although this improvement may seem negligible, we will show in Section 6, for the FHE schemes targeted by our
attack, that the magnitude of the speed-up is significant, as it largely increases the number of recoverable plaintexts.

Relaxing the Assumptions for Comparison-Based Attack. In order to perform our attack, the adversary needs to
compute encryptions of known values (e.g., the attacker needs encryptions of the candidate plaintext values while per-
forming the binary search). As already discussed at the beginning of this section, in case the HE scheme is symmetric,
such encryptions can be easily computed if a ciphertext ¢, whose corresponding plaintext value is /2 = 1, is available
to the adversary.

We now show how an attacker can easily obtain ¢ hinging upon the m-distinguisher and the homomorphic operations.
The key observation is that the adversary, given only a generic ciphertext ¢ € C, can homomorphically evaluate
any polynomial f(z) € Z,[z] with no constant term. Indeed, evaluating a polynomial f(2) = hqi 2%t + - +
hiz € 7Z,]z] requires mainly three operations: exponentiations to compute the powers z¢, multiplications between
these powers z* and the coefficients h;, and the addition of all these terms. In particular, exponentiation can be
performed by homomorphic evaluation of the square-and-multiply algorithm, which, given a ciphertext ¢ € C with
corresponding plaintext m,. € Z,, and an integer i, computes a ciphertext ce,;, such that Dec(sk, cezp) = m’ mod n.

Similarly, the multiplication between a power z’ and a coefficient h; can be performed by homomorphic evaluation
of the double-and-add algorithm, which, given a ciphertext ¢ € C with corresponding plaintext m. € Z,, and an
integer h, computes a ciphertext ¢,,,,; such that Dec(sk, ¢;nu;) = me X h mod n. Lastly, the additions of all the terms
of the polynomial involve only ciphertexts computed by the previous operations, hence the homomorphic addition can
be employed. In conclusion, the attacker can homomorphically evaluate a polynomial f(z) € Z,[z] with no constant
term.

We remark that, for a polynomial with no constant term, f(0) = 0 necessarily holds: therefore, in order to compute
the ciphertext ¢ such that Dec(sk,é) = 1, the adversary should evaluate the polynomial f,e € Z,[z] such that
fne(2) =1 <= 2z # 0. This polynomial can be obtained by interpolating the set of n points {(0,0), (1,1),...,(n—
1,1)}; nevertheless, since interpolating n points would be computationally unfeasible, the adversary can choose an
integer u << n such that interpolating the set of 2u — 1 points {(—u + 1,1),...,(0,0),...,(u — 1,1)} becomes
computationally feasible.



PLAINTEXT RECOVERY ATTACK AGAINST FHE

We remark that the usage of 2u — 1 points instead of n ones has a drawback: the polynomial f“(z) obtained by
the interpolation may evaluate to an arbitrary value in Z,, if abs(z) > w, where abs(z), for a generic z € Z,, =
{0,...,n — 1}, is defined as min(z,n — z). Indeed, for a polynomial f(z) obtained by interpolating 2u — 1 points
{(x0,90), -+, (X2u—2,Y2u—2)}, f(x;) = 43,0 < i < 2u — 1 holds, but the evaluation f(z) for an integer z ¢
{zo,...,x2,—_2} is not constrained by the interpolation method.

Finally, the polynomial obtained by the adversary is:

0 ifz=0
w(z) =41 if0<abs(z) <u (3)

1 otherwise

Here, L denotes that the evaluation of f(z), when abs(z) > u, may be an arbitrary value in Z,,. This polynomial

~ can be homomorphically evaluated by the adversary, since it has no constant term. Given a generic ciphertext c,
the adversary computes a ciphertext ¢, = Eval(evk, fi, c) and tests if m,_, is 1 by leveraging the m-distinguisher,
where m,_ is the plaintext corresponding to cpe.

In particular, the attacker computes, by the usual double-and-add method, the ciphertext c,,, whose corresponding
plaintext value is m x m,,,. Then, if the m-distinguisher determines that c,, is an encryption of m, the attacker
knows that mxm,, =m = m., =1." Therefore, the adversary knows that ¢y is ¢, the required encryption of 1.
Once the attacker obtains this encryption ¢, then it can compute all the encryptions of arbitrary known values needed
to perform the attack. With this method, any ciphertext ¢ whose corresponding plaintext value m,. is in the interval
{-u+1,...,-1,1,...,u — 1} would allow the adversary to compute ¢.

4 Two Case Study Cryptosystems

In this section, we evaluate our attack against two symmetric noise-free FHE schemes [26], OctoM and JordanM.
Although there is an efficient 1-distinguisher for these cryptosystems, they were proven to be secure against ciphertext-
only adversaries aiming to recover either the plaintext or the secret key [26].

4.1 Octonion and Jordan Algebrae

We now give an introduction about the two algebrae required to understand the FHE schemes evaluated in this work,
i.e., the octonion algebra and the Jordan algebra. For a more comprehensive description we refer the reader to [26] or
to [1].

Octonion Algebra. The support of the octonion algebra @ is an eight-dimensional vector space over a ring. The FHE
schemes we are going to describe instantiate them over the unitary ring (Z,,,+, x),n € N\ {0, 1}. From now on,
we denote the octonion algebra with support Z& as Q(Z2). An octonion can be represented as an eight dimensional
vector, with the first element being the real component and seven different imaginary components, each corresponding
to a different imaginary unit. Two addition operation for two octonions is performed by summing component-wise
the elements of the two vectors. The multiplication operation in the octonion algebra, denoted by x, is distributive
with respect to vector addition, compatible with the scalar multiplication, non commutative and non associative. The
multiplicative identity for octonions is the row vector 1 = [1,0,0,0,0, 0,0, 0], representing the real number 1. An
operative description of the octonion multiplication rule is obtained by encoding an octonion @ as an 8 X 8 matrix
containing the components of a with proper sign changes. Specifically, the multiplication between two octonions
a and b can be operatively performed by encoding a in its left 8 x 8 multiplicative matrix, denoted by A!, and
then computing, according to the classic vector-matrix multiplication rule, the product b - A%. Similarly to complex
numbers, an octonion a has a conjugate, denoted by @, which can be obtained by flipping the sign of all the imaginary

components. Therefore, as for complex numbers, the real part of an octonion a is R(a) = “‘55, while the imaginary

!'The solution of this equation is not necessarily m.,, = 1 if the integer m is not coprime with n; however, even in this case, the
probability that m.,, 7 1 is a solution is negligible.

10
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part is $(a) = “g—a The product a * @ is a real number defining the square of the norm of an octonion, denoted by
llal|?. An octonion a € Q(ZE) with ||a|| = 0 is called isotropic. A subspace of Z? is called totally isotropic if all the
octonions in it are isotropic. Given an algebra Q(Z$ ), an automorphism on this algebra is a linear, bijective mapping
¢ : O(Z8) — O(Z8) which preserves the product * of the algebra, that is ¢(a * b) = ¢(a) * ¢(b). The set of all
automorphisms of an algebra form a group, called the automorphism group. For octonion algebra, the automorphism
group is the the exceptional Lie group Gs.

Jordan Algebra. The elements of this non commutative and non associative algebra, denoted by h3(Q), are 3 x 3
hermitian matrices of octonions:

u W V
a=|W v U
V U w

with U, V, W being elements in O(Z8) and u,v,w € Z,. The compact representation of these matrices is a tuple
a = (u,v,w, U, V,W).

The internal composition law of b3 (@) is the Jordan product, which is defined as ax 3 = %, where «, 3 are two
matrices and - denotes the usual matrix multiplication. Finally, the determinant of « is det(a) = vvw — (ul|U||* +
V||V |2 +w||[W||?) + 2R(U % V « W), while the automorphism group for Jordan algebra is the exceptional Lie group

Fy.

4.2 The OctoM and JordanM cryptosystems
OctoM Cryptosystem. This is a FHE scheme based on the algebra O(Z), with n being a composite integer.

e Key Generation.
This algorithm selects the ring Z,, used as the plaintext space (with n being a composite integer), a totally
isotropic subspace V' which is closed under octonion multiplication, a generic automorphism ¢ in G5, and a
8 x 8 invertible matrix M with entries in Z,,. The secret key k is the tuple k = (V, ¢, M), while the evaluation
key is given by the tuple evk = (n,C_1), where C_; = Enc(k,n — 1).

e Encryption.
Given a plaintext value m € Z,, and a key k = (V,¢, M), this algorithm constructs an octonion
m’ = ¢(mi + z), where ¢ = [0,1,0,0,0,0,0,0] is the first imaginary unit and m is the scalar product
between the integer m and i (mi = [0,m,0,0,0,0,0,0]), while 2 € V is chosen to make A! , (the left
multiplication matrix of m’) non singular (det(A! ,) # 0).The ciphertext is a matrix C' € Z5*8 computed as

C =Enc(k,m)=M""Al .M.

e Decryption.
Given a ciphertext C, the corresponding plaintext value m € Z,, is computed as m = Dec(k,C) = ¢~ (1 -
(M -C-M~')) mod V. The subspace V modulo operation can be performed by sampling a random vector
v = [vg, 1,v2,v3,v4, V5, V6, v7] in VL, the orthogonal space of V, and computing the dot product between v
and the octonion mi + z, resulting from ¢~ 1(1 - (M - C - M~')). Indeed, since v € V+ and z € V, then

z - vT = 0, therefore the dot product (mi + z) - v = m(i - vT) = mi.

¢ Homomorphic Addition.
Given two ciphertexts C1,Cy € Z8*®, the homomorphic addition operation is a simple matrix addition:
Codd = Add(evk, Cy, CQ) =Ch + Cs.

o Homomorphic Multiplication.
Given two ciphertexts C7,Cy € Z8*®, the homomorphic multiplication is performed as follows: C,.; =

Mul(evk‘,C’l,C’g) = Cg . Cl . C_l.

JordanM Cryptosystem. This scheme is a FHE scheme based on the elements of the Jordan algebra h3(Q), with some
additional constraints introduced to achieve homomorphic properties.

11
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e Key Generation.
This algorithm selects the plaintext space Z,,, with n being a composite integer, a random automorphism
¢ € Fy, an invertible 3 x 3 matrix M with entries in Z,, and three isotropic octonions U,V and W fulfilling
VU =W and R(U * V x W) # 0. The secret key k is the tuple k = (¢, M, U, V, W), while evk = (n).

e Encryption.
Given a plaintext value m € Z,, and the secret key k = (¢, M,U,V, W), this algorithm constructs the
Jordan algebra element v, = (m, v, w, rg U, rv'V, row W), with ry, v, rw, v, w being five random values
in Z,, such that the matrix «, is nonsingular. Then, the ciphertext C € O(Z,)3*? is computed as C' =
Enc(k,m) =M1 ¢(am) M.

e Decryption.
A ciphertext C' € Q(Z,,)3*3 is decrypted as m = Dec(k,C) =1- ¢~ Y (M -C - M~1)-17.

¢ Homomorphic Addition.
Given two ciphertexts C1,C05 € O(Z,,)3*3, the homomorphic addition is a single matrix addition: C,4q =
Add(evk, Cy, CQ) =C1 + Cs.

¢ Homomorphic Multiplication.
Given two ciphertexts C7,Cy € O(Z,,)>*3, the homomorphic multiplication is a single Jordan product:

Cmul = Mul(evk, Ch CQ) = Cl * Cg.

H'M'Cmul'M_l) _1(]1'M'M_1'Ain’2'A'lm'1

¢! 0T =¢ AL MM T
= ¢ (- AL, ALy AL 0T =67 (my - AL, - ALY 0T

¢ B

¢

“H(my xmby) - ALy 0T = TN (G(—i 4 zo) ® (m) xmby)) 0T
“Hp(—i+2o1)) ko7 (M xmby) 0T
= (=i +2-1) * (¢~ (d(mai + 21) xmp)) - v"
= (=i +z-1) * ((mai + 21) * ¢~ H(P(mai + 22))) -0
(—i+ z_1) * ((myi + 21) * (mai + 2)) - 0T
(

“4)

—i(—mlmg) = mlmgi

I
|
.
—
—

E
~.
=
3
-~
2
=
I

4.3 Getting a Multiplicatively Homomorphic OctoM Scheme

To apply our attack to the target FHE schemes, we need to employ both their homomorphic operations. Neverthe-
less, although OctoM was presented in [26] as a Fully Homomorphic Encryption scheme, we find out that it is not
multiplicatively homomorphic: that is, given two ciphertexts Cy, Cy € Z5*8, there is no way to compute a ciphertext
Crul € Z8%8 such that Dec(k, Cye1) = Dec(k, C1) x Dec(k, Co) mod n.

In this section, first we show why OctoM is not multiplicatively homomorphic; then, we discuss some additional
constraints in the key generation algorithm which make OctoM multiplicatively homomorphic, and thus fully ho-
momorphic. According to [26], given two ciphertexts C;,Cy € Z8*® and their homomorphic product C,,,; =
Mul(evk, Cy, Cs), the decryption algorithm Dec(k, Cyuy) = ¢~ (1 - M - Crpyy - M) mod V retrieves the plaintext
value following the calculations shown in Equation 4. In particular, the erroneous derivation in this chain of equations
is highlighted in Equation 4. Denoting as a,,,; the octonion computed by ¢~ (1 - M - C,py - M 1), we can write it
as Ayl = M1M2l + Zmy; The erroneous derivation in Equation 4 is that the modulo V' operation performed as the
inner product @y, - T may not yield mjmeoi, as the octonion z,,,,,; is not necessarily in the isotropic subspace V.
The fact that z,,,,; does not necessarily belong to V' is proven as follows. Equation 5 shows the multiplication of the
three octonions in the last but one line of Equation 4:

12
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(=i + z_1) * ((mai + z1) * (mai + 22))) - 0"

= ((—i 4+ z—1) * (—mama + mi(i % z2) +
(z1 % 4)ma + 21 % 22)) - T

= (mimat —mq (i * (3 % 22)) — ma(i * (21 *17)) )
—i% (21 % 22) —mimoz_1 + mai(z—1 * (i % 22))
+ma(z—1 % (21 %4)) + z_1 * (21 * 22)) - o

= (mimai + Zmut) - V"

Equation 5 points out that z,,,,,; is equal to the sum of several octonion terms and some of them (the ones highlighted
by a light gray background in Equation 5) are not necessarily octonions belonging to V', making z,,,,,; not necessarily
belonging to V' too. Indeed, they contain the imaginary unit ¢ ¢ V, thus their sum z,,,; may be out of V. Obviously,
the presence of these additional terms makes the decryption erroneous, since these terms are added to the term mmasi.

We practically observed decryption failures due to this issue in our pilot implementation. We now describe how
to compensate for these additional terms, employing a monodimensional V' space. Such a choice does not affect
the security of the cryptosystem as reported in [26]. In case of a monodimensional subspace, all the vectors in V' are
obtained as 'z, where r is a random integer in Z,, and z is the isotropic octonion generating the subspace V. Moreover,
for a generic octonion a, it holds that a® = 2%(a)a — ||a||*1 (Theorem 2 in [26]), therefore for an isotropic octonion z,
2% = 2R(2)z—||2||*1 = 2R(z)=. This property allows to show that every monodimensional totally isotropic subspace
V' is closed under octonion multiplication, since, for every two generic octonions in V, namely z; = rz, 20 = sz,
their product is still in V, as 21 * 2o = rsz? = 2rsR(2)z.

Make OctoM Multiplicatively Homomorphic. In order to make OctoM multiplicatively homomorphic, we need
to somehow get rid of the additional octonions highlighted in Equation 5. The main idea is to append a vector v
orthogonal to all the additional octonions to the secret key provided by the key generation algorithm. However, this
solution is viable only if the additional octonions added to the result are of the same form regardless of the number of
homomorphic multiplications performed to compute the ciphertext to be decrypted.

Since all these additional terms involve a multiplication of an octonion with the first imaginary unit ¢, we thus analyze
the octonions ¢ * z and z *4. From now on, denote by z = [z1, 22, 23, 24, 25, 26, 27, Zs) the isotropic octonion generating
the totally isotropic subspace V. The following equalities show the computation of ¢ * z and 2 * i:

1x 2= [72272137'2472377267257287727} (6)

Z ¥ Z = [_227 21, R4, —R3,%6, —R5, X8, 27}
The product of an octonion with the imaginary unit is not commutative. However, octonion algebra is alternative,
therefore Artin’s theorem [23] can be applied:

Theorem 1 (Artin’s Theorem [23]). An algebra A is alternative if and only if, for any two elements a, b in the support
of the algebra, A, the three following equalities hold:

a*(axb)=(axa)*b
(axb)xa=ax(bxa)
(bxa)xa="bx*(axa)

Artin’s theorem equivalently states that the sub-algebra generated by two elements of an alternative algebra is asso-
ciative. By applying this theorem on the two octonions i, z, we can derive the following equalities, related to the

13
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additional terms appearing in Equation 5:
ix(zxi)=(i*xz2)x*i

z#(zx1) = (zx2)xi=2R(2)(z* 1) (7
(tx2)kxz=1x(z%2) =2R(2)(i x 2)
(zxi)xi=zx(ixi)=—z2

These equalities will be employed to verify the following statement:

Statement 1. Consider h > 0 octonions aj, 1 < j < h, of the form a; = mji+ z; = mji+r;z, where mj,r; € Zy,
and z is an isotropic octonion. For every h > 0, the product of these octonions is:
h
a1 * Qg %k ap :ihHmj—&—Rzz—FRiz(i*z)
]:1 . . . (8)
+ R.i(z %) + Rizi(i % 2 %17)
+ R.iz(zxix2)

where R, R;,, R.;, R;.i, R.;, are integers in Z,,.

The calculations proving this statement are shown in A.1. Given h ciphertexts C, Cs, ... C}, their homomorphic
product C',,,; is computed as Cﬁfl -C1-Cy---Ch, where the C h Il factor is due to the fact that each homomorphic
multiplication requires a multiplication by C'_;. Then, the decryption procedure of C,,,; computes the octonion
Amul = ¢*1(]l M- Cryi - M *1), deriving the plaintext value as @y, - vT, where v € V= is the vector appended to
the secret key. Due to the homomorphic property, the octonion a,,,,; can also be written as the octonion product among
the octonions a; = ¢~ 1(1-M-Cj-M~1),j € {~1,1,2,...,h};ie, amu = a" 7 % (a1 * (ag* (... *ap)...)), where
a_1 = (—i+r_1z)and a; = mji+r;z,j € {1,2,..., h}, where m; is the plaintext of C; and r_1,71,...,7; € Zy,
are random values and z is the generator of the subspace V.

Applying Statement 1 to a,,,,;, we obtain:

h
Amul = iQh_l(_l)h_l H m; + R,z + Riz(i * Z)
j=1

+ Ri(z%1) + Rizi(ix2%1) + Ry (2 %1% 2) o)

h
= iHmj + R,z 4+ Ri(i*2) + R.i(2 %1)
j=1
FRii(txzxi)+ Ryn(zxix2)

Equation 9 shows that the octonion terms, which need to be removed to preserve decryption correctness, are equiv-
alent to the sum of five octonions of the form reported in Equation 7 regardless of the number of homomorphic
multiplications performed among the ciphertexts. Therefore, in the last step of decryption, we can perform a dot
product between a.,,; and a vector v € VL, which is orthogonal to these five octonions. To find this vector
v = [v1,1,v3,v4, V5, 06,07, 08), given n and z = |21, 22, 23, 24, 25, 26, 27, 28], the generator of the isotropic sub-
space V, we need to solve the following system of five equations in seven unknowns (the components of the vector v)
over Z,,:

Z-v =,0
(ix2)-v =,0
(z %) - 0T =,0 (10)
(ixzxi)-0T =,0
(zxixz)- 0l =,0
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By adding member-wise the first and third equalities in Equation 10, we obtain the following constraint on the elements
of v and z:

201 X (—22)+2v09x21=,0 = v1xX(—22)+21=,0

By subtracting member-wise the first and fourth equalities in Equation 10, we obtain a further constraint on the
elements of v and z:

201 X 21+ 202 X 29 =, 0 = v1 X 21+ 20 =, 0

Considering the reported constraints simultaneously, it is possible to find as a necessary condition on v; to solve the
simultaneous set of equalities in Equation 10, the following:

v X2+ 2=, 0 = 20 x (V2 4+1) =, 0.
There are three possible cases to be analyzed to solve this equation:

1. 22 = 0. In this case, any integer v; would satisfy this equation. Moreover, the first of the aforementioned
constraints allows to infer that also z; = 0, since z; =,, v1 X 29 =, 0.

2. zo is coprime with n, and thus it is invertible. Therefore, we have:
Zox (Vi +1)=,0=20]+1=,0=0]=, —1

This equation has a solution if and only if there is a square root of —1 in Z,, that is an integer ¢,, such that

2

s = —1 mod n.

L

3. 29 is not coprime with n. We denote a generic common divisor between n and z5 as g. Now, since zo X (v% +
1) =, 0, then 23 x (v? + 1) must be a multiple of n; since 23 is a multiple of g, then v? + 1 must be a multiple
of ™. Therefore, v + 1 ==n 0, which again has a solution if and only if there is a square root of —1 in Z%.
Obviously, if there are square roots of —1 in Z,,, v1 = ¢, is a solution also in this case.

The sets of constraints ensuring that it is always possible to find a vector v allowing a correct decryption are thus
summarized as follows.

Statement 2. The system in Equation 10 may have a solution in v = [v1, 1,v3, v4, U5, Vg, U7, Us] only if at least one of
these three set of constraints on the modulus n of the ring Z,, and on the generator z = [z1, 22, 23, 24, 25, 26, 27, 28] Of
the unidimensional isotropic space V are satisfied:

1. z1 =0and z =0,n € N\ {0,1}.

2. n is a composite integer for which square roots of —1 exist in Z,,, denoted by v,,. z, must be chosen as
21 =p nzo, while 23 € Zy,.

3. n is a composite integer such that, for at least one of its divisors g, square roots of —1 exist in Z%, and are
denoted by Ln. Zy must be a multiple of g and z1 =, Ln 2.

Willing to avoid introducing strong constraints in the choice of z, as it contains the randomness employed to hide the
plaintext, we pick the second set of constraints in our instantiation of OctoM. We therefore need to pick a composite n
as a modulus such that square roots of —1 exist in Z,,. The specific constraints on the composite integer n to satisfy
this requirement are detailed in the following theorem:

Theorem 2. Given a composite integer n = H?Zl py with h prime factors p;,1 € {1, ..., h}, square roots of —1 exist
in Z,, if and only if p; mod 4 = 1 for all prime factors p;,l € {1,...,h}.

Proof. Recall that, by Euler’s criterion, for a prime p and an integer a coprime with p, if the square root of a exists in

Z,, then T = 1, otherwise a” = —1. Consider the Chinese Remainder Theorem (CRT) decomposition of Z,,:
forn = H;l:l D1, Ly, and Zy,, X Zy, X -+ X Ly, are isomorphic. Therefore, an equation has a solution in Z,, if and
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only if it has a solution on each of the rings Z,,. Hence, the equation 2* =,, —1, whose solution is a square root of

—11in Zj, has a solution if and only if each equation 2% =, —1 has a solution. In particular, each of these equations

has a solution if and only there is a square root of —1 in Z,, , which can be determined with Euler’s criterion. For each
. —1 .

prime number p;, we compute a"7 ,witha = —1:

p -1 1 if 1”2_1 is even
—1 if 2 is odd

Therefore, there is a square root of —1 if and only if plel is even, which implies that p; mod 4 = 1. O

The integer n can be computed as the product of prime numbers p; such that p; mod 4=1.

Summing up, to make OctoM a multiplicatively homomorphic scheme, we extend the key generation algorithm com-
puting the key k = (M, ¢, V, v) with the following additional constraints:

1. Each prime factor of the composite integer n used to perform the modular operations must be chosen such
that it is congruent to one modulo four (i.e., n = H;L:l p, withp, mod4=1,l=1,... h).

2. The generator z = [z1, 22, 23, 24, 25, 26, 27, 28] Of the totally isotropic subspace V' must be chosen such that
21 = Ly, - 22, Where ¢, is a square root of —1 in Z,,.

3. The octonion v € V+ must be obtained by solving the simultaneous set of equalities in Equation 10.

5 Security Analysis of OctoM and JordanM

Since OctoM and JordanM are both linearly decryptable, known cryptanalytic results applicable to linearly decryptable
schemes can be employed against them. In particular, linearly decryptable schemes can be broken by Known Plaintext
Attacks (KPA): if the attacker knows the underlying plaintext value for a sufficient number of ciphertext pairs, then a
linear system of equations can be built to recover the key and decrypt any ciphertext. Moreover, in [26], authors show
that it is possible to efficiently compute a 1-distinguisher for linearly decryptable FHE schemes.

‘We now describe the construction of such a distinguisher, which will be used in our attack. Suppose the attacker has
a ciphertext C, which can be represented as a d dimensional vector. The attacker can now compute d + 1 powers of
C through the homomorphic operations provided by the FHE scheme. Since the ciphertext space dimension is d, then
these d + 1 ciphertexts are bound to be linearly dependent. Therefore, by definition, there are non trivial solutions to
the system of d equations with d + 1 unknowns a; defined by Z?Ll a;C* = 0. Now, since the decryption function is
linear and the encryption scheme is multiplicatively homomorphic, it holds the same condition for the corresponding
plaintext employing the same coefficients a;: Zfill a;m® = 0. In case the plaintext m is equal to one, this equation
becomes Zf:ll a;lt =0 — Zf:ll a; = 0. Therefore, if we impose the additional constraint that Zfill a; #0,a
solution to the system of equations Zf:ll a;C; = 0 cannot be found if and only if m = 1. In conclusion, by testing
the existence of a solution a = [ay, . .., ag1] of this system of equations satisfying Z‘f:ll a; # 0, we can determine if
m = 1 or not. The computational complexity of this 1-distinguisher is O(d?), since solving a system of equations has
cubic complexity. We remark that the attacker can solve the system directly on ciphertexts, with no information about
the plaintexts or the key. Therefore, this distinguisher is a particular case of Definition 4, since it does not employ
kpup, the publicly available portion of the key. For the two target FHE schemes, the ciphertext space dimension d is 64
for OctoM, since a ciphertext is an 8 x 8 matrix, while d = 9-8 = 72 for JordanM, since a ciphertext is a 3 x 3 matrix
of octonions.

While the existence of the 1-distinguisher and of a KPA is acknowledged by designers of OctoM and JordanM too [26],
their security analysis claims (Theorem 7 of [26]) that, assuming the hardness of solving quadratic equation systems
in Z,, (with composite n), no information about plaintexts can be inferred from corresponding ciphertexts (a notion
formalized as weak-ciphertext only model). The proof of this claim is based on two reductions: first, the problem of
finding the secret key is reduced to the problem of solving a system of multivariate quadratic modular equations, then
the problem of recovering a plaintext is reduced to the problem of solving a univariate quadratic modular equation.
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These reductions state that if we can solve quadratic equations in Z,,, then we can break the cryptosystems, but they
do not state that the problems of recovering the secret key or a plaintext are as hard as solving quadratic equations in
Z,,. Thus, there is no logical contradiction between the existence of our attack and the hardness of solving multivariate
quadratic equations over Z,, (which is as hard as factoring n).

5.1 Attacking OctoM and JordanM

In order to apply our attack against JordanM, we need to cope with the fact that there may be a portion of the ciphertexts
on which the outcome of the 1-distinguisher is not correct. In the following paragraphs we analyze which ciphertexts
cause the outcome of the 1-distinguisher to be erroneous in JordanM, and then we show why these ciphertexts are
extremely likely to be computed by HGT; ; procedure. To solve this issue, we present a refreshing procedure which
allows to overcome the unreliability of the 1-distinguisher in our attack. Finally, since both OctoM and JordanM are
symmetric FHE schemes, the attacker needs to obtain a ciphertext C encrypting the plaintext value /m = 1 in order
to compute encryptions of arbitrary known values throughout the attac (see Section 3). To this extent, we will discuss
how such ciphertext can be obtained by the adversary for both the schemes.

mime + ry, W TWQW +ry, Vox rwv
2 JE— JR—
mamy + 1w, W xryy, W +ry, Vxry, V

Mmul =

rw, W x rw, W + vivg + 7, U % 1, U
Umul = 9

(1)

TWQW *ry, W+ vy + 1y, U * TUIU

_ 2 __
w (rv,V xry,V +rg, U« ry, U + wiws
mul —
2

v,V v,V +rg,U s rg, U + wawy
2

1-Distinguisher Unreliability. The structure of the encoding of a message, denoted by a.,,, in the JordanM scheme
is a Jordan algebra element where the 3 octonions are random isotropic octonions and the message is stored as the
top left corner of the matrix . In addition, we recall from Section 4.2 that a generic ciphertext C' for the JordanM
scheme is C = M~ - ¢(a,,,) - M: therefore, given two ciphertexts Cy, Cy € O(Z,,)3*3, their homomorphic product
Cru = Mul(evk,Cy,Cs) = C1 x Cy = M1 d(Qm, * Qm, ) - M, since the automorphism ¢ preserves the Jordan
product. By considering the Jordan product of these two matrices, namely Q1 = O, * Qiy,, We can see that the
elements on the diagonal are the product of the corresponding elements in the matrices «,,, and «,,. Indeed, the
three elements on the diagonal of the product matrix o, denoted by M40, Vi and w1, are computed as shown
in Equation 11. Now, recall that U,V, and W are isotropic octonions, hence the octonion product with their conjugate
is 0. Therefore, all the octonions products in Equation 11 are 0, which means that:

1

Mmul = 5(M1Mma +mamy) = mym?2
1

Umul = 5 (V102 + v201) = V102

1
Wt = 5 (W1ws + wowy) = wiw?2

In conclusion, the JordanM scheme is multiplicatively homomorphic not only with respect to the message m, but also
with respect to the random values v and w chosen during the encoding of a message. This peculiar property has a
relevant drawback on the 1-distinguisher: the equation Zf;l a;C" = 0 on the d + 1 powers of a ciphertext C' implies
not only that %" a;m’ = 0, but also Y% a;0* = 0 and %! a;w’ = 0. Therefore, if either one of the blinding
values v and w are equal to one the 1-distinguisher will erroneously output 1 independently from the value of the
message m. Nonetheless, this issue does not affect 1-distinguisher reliability, as the probability of these false positives
happening on a randomly selected ciphertext is negligible. Indeed there are n3 possible unconstrained assignments
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for m, v and w, and the portion of ciphertexts being affected by this issue is at most 27%2 < %, which is negligible in
the bit size of the modulus n. Finally, we note that the 1-distinguisher will also report an incorrect result on a slightly
more relaxed condition, i.e., if, for all the prime factors p of n, at least one among m, v, and w are equal to one mod p.
In A.2 we prove that the number of such occurrences is negligible in the modulus bit size.

1-Distinguisher Unreliability in our Attack. Since JordanM is multiplicatively homomorphic with respect to the
random values v and w, we have that ciphertexts C' € O(Z,,)3*® computed as C = HGT; 1(C, C,) will have v and
w with values in {0, 1}. As a consequence, invoking the 1-distinguisher on such ciphertexts, as done in our attack,
will be providing an incorrect result three times out of four, i.e., in all the cases where either v or w is equal to 1.

To overcome this issue, we devise a ciphertext refreshing procedure, which employs the available ciphertext C =
Enc(k,1) — we show in the next paragraph how the attacker can compute C-to compute a new ciphertext C' =
C+C-CxC, having the same plaintext m, but random values v’, w’ which are highly likely to be different from
1, since they depend on the random values sampled for C. Therefore, in our attack we employ a modified version
of the distinguisher, whose output is equal to A1 (C) - A1(C"). By using this improved distinguisher, we can perform
our attack on both the target FHE schemes to recover plaintexts. Then, after d plaintexts have been recovered, we can
perform the KPA and recover also the key k, which allows to efficiently decrypt any other ciphertext.

Applicability of the Attack. As already discussed in Section 3, to perform our attack the adversary needs to obtain
encryptions of arbitrary known values. In our case the HE schemes are symmetric, thus the attacker needs to obtain
the ciphertext C corresponding to the plaintext 1 in order to compute these encryptions. In case of Octol, this is
straightforward: indeed, a ciphertext C'_;, which is an encryption of n — 1, is embodied in the evaluation key, thus
the adversary computes C as Mul(evk,C_y,C_1). Conversely, for Jordan}, the adversary can rely on the method
described in Section 3. Note that, to this end, the adversary needs to obtain a ciphertext C for which the additional
constraints ¥ # 1, @ # 1 must hold. Such constraints on v, w are imposed by the aforementioned refreshing procedure
designed to improve the reliability of the 1-distinguisher. This procedure allows to obtain, from a generic ciphertext
C, a new ciphertext C’ with the same plaintext value of C, but new random values v, w’. Nevertheless, this procedure
requires a ciphertext C, with corresponding plaintext value /i = 1, but also random values © # 1,% # 1, because
otherwise the random values v’, w’ of the refreshed ciphertext C' will be equal to the ones of the original ciphertext
C. In the following, we show that, despite this additional requirement, the method described in Section 3 still allows
to obtain a ciphertext C fulfilling the requirement E=m=1A0 # 1 A # 1 with overwhelming probability (i.e,
close to 1).

In the method described in Section 3, the attacker homomorphically evaluates the polynomial f,, which is specified
in Equation 3. In particular, given a ciphertext C' with corresponding plaintext m, the homomorphic evaluation of

u_(m) yields a ciphertext C, whose corresponding plaintext is 7 = 1 if 0 < abs(mn) < u (see Section 3 for the
definition of abs). Then, the attacker can determine if m = 1 by hinging upon the 1-distinguisher. However, we
recall that JordanM is fully homomorphic with respect to the random values v, w too, thus the polynomial f, is
homomorphically evaluated on these random values too: hence, if 0 < abs(v) < w (resp. 0 < abs(w) < w), then
© = 1 (resp. w = 1). Therefore, in this case the attacker cannot rely on the 1-distinguisher to determine if m = 1,
since if ¥ = 1V w = 1, then the 1-distinguisher will always output 1 independently from the value m (thus even if
m # 1). Nevertheless, we now show that, if the 1-distinguisher outputs 1 on the ciphertext C, then the attacker can
assume that C' fulfills the requirement & = i = 1 A0 # 1 A # 1, since Pr(€ | A1(C) = 1), where 4,(C) = 1
denotes that the 1-distinguisher outputs 1 with ciphertext C as input, is overwhelming. We start by applying Bayes
formula and observing that if & holds, then necessarily A; (é) =1

Pr(é | m(C) = 1) = FEEAMO) = 1)
Pr(A:(C) =1)
_ Pr(€
CPr(a(C) =1)
We now introduce three probabilities. We denote by p,, the probability that 7 = 1 and by p,, p,, the probabilities
that, respectively, © = 1 and w0 = 1. We remark that 7 depends only on the plaintext value m of the original

ciphertext C'; similarly, the values ¢, @ depends only on the random values v, w of the ciphertext C. Obviously,

12)
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the values assigned to m, v, w in the original ciphertext C' are all independent among themselves: m is the plaintext
value, while v, w are independently sampled from Z,,. Therefore, the values assumed by 7, U, w are independent
among themselves too. This fact simplifies the estimation of the probabilities found in Equation 12. Indeed, Pr(é’ )
is equivalent to the probability that 7 = 1 A 0 # 1 Aw # 1; given the independence among these three conditions,
then Pr(€) = py,(1 — pu)(1 — p,). Concerning Pr(A;(C) = 1), we remark that the 1-distinguisher will output 1
with ciphertext C as inputif im = 1V 0 = 1V w = 1. Therefore, such probability can be estimated by leveraging the
independence of the three conditions as follows:

Pr(Ai(C)=1)=1—-Pr(m#1A0#1AwW#1)
=1- (1_pm)(1_pv)(1 _pw)
By plugging the estimated probabilities in Equation 12, we obtain a formula which depends only on the three proba-
bilities pr,, Do, Prw:
Pl —Pu)(1 — pu)
1= (1= pn)(1 =) (1 = pw)

Pr( | A (C)=1) = (13)

Thus, we can now estimate these three probabilities to show that Pr(€ | A,,(C)) = 1) ~ 1. For simplicity, we start
by estimating p, and p,,. As already mentioned, since the ciphertext C is obtained by homomorphic evaluation of
the polynomial fY,, then o = fY (v) and w = f¥ (w), which means that if 0 < abs(v) < u then ¢ = 1, and if
0 < abs(w) < u then w = 1. Since v and w are uniformly sampled from Z,,, then the probabilities that, respectively,
0 < abs(v) < wand 0 < abs(w) < u, are both approximately . We recall that u is necessarily extremely
smaller than the modulus n, since u must be chosen such that interpolating 2u — 1 points is computationally feasible,
while n is an integer sufficiently big to make its factorization computationally unfeasible. Therefore, we obtain that
Pv = Pw ~ = =~ 0. Concerning p;,, similarly to ¢ and @, if 0 < abs(m) < u then /. = 1, because 7 = f, (m).
However, the probability that 0 < abs(m) < w is much higher than . Indeed, we recall that the majority of the
input values are expected to be in the set Dy = {—s+ 1,...,s + 1} and s is generally extremely smaller than the
modulus n used in JordanM (see Section 2.2). In conclusion, we know that p;,, >> p, = p, =~ 0, which means that
P (1= Pp)(1 — o) = pry and (1 — pr ) (1 — py) (1 — po) & 1 — pjy,. If we plug these approximations in Equation 13,
we obtain:

. N Pm(1 = Py)(1 — pw)
Pr(5 | Am(C) - 1) - 1— (1 _p;n)(l —]ju)(l _pAw) (14)
~_ Pm
1—(1—pn)

Therefore, when the attacker computes a ciphertext C by employing the method proposed in Section 3, the probability
that this ciphertext does not fulfill the requirement Eis negligible; thus, once the attacker obtains C, it can be used
to perform our attack, since the adversary knows that the probability that C' cannot be employed to mount our attack
against JordanM is negligible.

6 Computational Complexity and Experimental Evaluation

In this section, we analyze the computational effort required by our attack for the target FHE schemes OctoM and
Jordanl, by estimating the constant factors (in particular, the time complexity of the 1-distinguisher T4;stinguisher)
in Equation 1. In addition, we show that the speed-up of our attack against the exhaustive search strategy described
in Section 3 is significant for the target FHE schemes. Then, we provide an experimental validation of the perfor-
mances of our attack, using a prototype implementation targeting OctoM and JordanM. The results confirm that the
computational complexity of our attack is linear with the plaintext value being recovered, and show that our attack
is more efficient than an exhaustive search strategy. Finally, we analyze the benefits of a parallel implementation of
Algorithm 1 (Section 3), showing that the latency decreases linearly with the number of cores.
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Figure 1: Execution times related to the recovered plaintext value for our attack against OctoM(a) and JordanM
(b). The red line plots the linear regression models for the datasets: y = 1.36-1073 2 + 51.32-10~3 for OctoM and
y=1.14-10"32 + 1.17-10~! for JordanM

6.1 Performances on Target FHE Schemes

To analyze the computational complexity of our attack against OctoM and JordanM (see Algorithm 1 in Section 3), it is
useful to quantify the constant terms in Equation 1, namely ¢ and T4;gtinguisher- The former characterizes the domain
{0,...,t — 1} of the comparison function GT ,,, homomorphically evaluated during the execution of our attack. As
observed in Section 3, a suitable value chosen by the attacker could be ¢t = 220 The latter parameter Taistinguisher
denotes the computational complexity of the m-distinguisher, which is specific to the FHE scheme at hand (either
OctoM or JordanM).

For linearly decryptable schemes, Tgsstinguisner> the computational complexity of the 1-distinguisher, is O(d3), with
d = 64 for OctoM and d = 72 for JordanM, which means that T4; stinguisher = 0(219) for both schemes. However, the
distinguisher is always invoked twice in our attack, due to the refreshing procedure aimed at increasing its reliability,
hence the computational complexity we are going to use in place of T4;stinguisher» in the formulae derived in Section 3
to estimate the computational effort of our attack, is Tj; ov:nguisher = 2T aistinguisher = O(2%°). Given this estimation,
we can see that it is practical to recover plaintext values as big as 232, which is expected to be enough for a significant
number of ciphertexts in FHE applications. Indeed, the computational effort required to recover a plaintext value
m, = 2%, obtained by replacing Tasstinguisher With Tl inguioner = 2°° and setting ¢ = 2°° in Equation 1 (see
Section 3), amounts to:

32

. 2
7,(2%) < 2 o@) + | I

w 220 1og(220) < 2%,
Conversely, recovering a plaintext as big as m. = 232 via an exhaustive search strategy has a computational
cost of O(mcTyistinguisner) = 232-219 = 25! (note that with this strategy we do not need to invoke twice the

1-distinguisher, thus we can use Tyistinguisher inNstead of T Indeed, the speed-up of our attack is:
239

istinguisher)‘
tTdistinguisher >
log(t)(t + Tc;isting;uisher) 2522
ble: considering a computational effort fixed a-priori, the number of plaintexts recoverable by our attack is 2'3 times
bigger than the number of plaintexts recoverable by the exhaustive search strategy (when ¢ = 22°). For instance, with
a computational cost bounded by 238, our attack can recover plaintexts up to 232, while the exhaustive search can
recover plaintexts up to 219.
In practice, the security level of the target schemes affects the computational effort to perform the homomorphic opera-

= 213 This result shows that the improvement of our attack is not negligi-
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Figure 2: Execution times of the parallel implementation of our attack for JordanM when 8 and 16 cores are used.
The colored numbers on the y-axis denotes the maximum execution time of the correspondent implementation

tions as well as the modular arithmetic operations needed to evaluate a m-distinguisher. Therefore, such a dependency
from the security level and/or the parameter sizes of the cryptoscheme is included in the computational complexity
formulae of both our attack and the exhaustive search as the same multiplicative factor (which has been omitted in the
previous treatment). Independently from the security margin, when the plaintext values are bounded (e.g., less than
232) our method largely improves the practicality of their derivation employing only ciphertexts.

6.2 Experimental Evaluation

To provide an experimental validation of the effectiveness and performance of our attack, we developed a prototype
implementation of the two target FHE schemes, OctoM and JordanM, and of the described plaintext recovery attack.
We realized our implementation leveraging the a combination of the Sage computer algebra toolkit? and of the numpy
Python module®. Such an approach allows us to employ highly optimized multiple precision arithmetic primitives at
the relatively small cost imposed by the Python bindings. Our prototype implementation was run on a Linux Gentoo
server (Gentoo Base System Release 2.6 with kernel version 4.4.95) equipped with two Intel Xeon E5-2620 (8 physical
cores each) and 128 GB of DDR-4 DRAM. For all our experiments, we instantiated both OctoM and JordanM using a
small composite integer n = 137-149 = 20413 for the plaintext space Z,,. We chose to use a small value for n to be
able to perform an exhaustive test of the recoverability of all the plaintexts.

Empirical Performance of our Attack.

We start our experimental evaluation by analyzing how the time required to perform our attack scales with the plaintext
value being recovered. The results of this experiment are shown in Figure 1; specifically Figure 1a for OctoM and
Figure 1b for JordanM. Both plots confirm that the computational complexity of our attack is linear in the plaintext
value being recovered. Concerning the execution times, we observe a relevant difference between the two schemes:
while our attack allows to recover a plaintext value as big as 2-10% in about 30 seconds for an OctoM ciphertext, this
time is increased to more than 20 minutes to recover the same plaintext value for a JordanM ciphertext. The significant
difference in the plaintext recovery time is caused by the absence of native octonion arithmetics support in both Sage
and numpy, which was implemented in pure Python.

Performance of a Parallel Implementation. In this paragraph, we investigate the scalability of a parallel implemen-
tation of our attack. By looking at Algorithm 1 in Section 3, we observe that our attack performs a single loop where

*http://www.sagemath.org/index.html
Shttp://www.numpy . org/
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Table 1: Average speed-up for our implementations and portion of computation running in parallel estimated from
average speed-up using the Karp-Flatt metric

Implementation Average  Parallel
Speed-Up  Portion
OctoM 8 cores 5.77 0.94
OctoM 16 cores 8.45 0.94
JordanM 8§ cores 6.26 0.96
JordanM 16 cores 9.50 0.95
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Figure 3: Speed-up obtained by our attack with respect to an exhaustive search for both the OctoM and the JordanM
cryptosystems. The depicted speedups are obtained picking ¢ = 32 as a value for the width of the search intervals

there are no data dependencies among different iterations. It is thus possible to parallelize the computation of the
iterations themselves, stopping as soon as one has found the correct plaintext.

We split evenly the iterations of the algorithm across different processes, and we evaluated the obtained speedups. The
execution time of sequential and parallel implementations are reported in Figure 2 (Figure 2a for OctoM and Figure 2b
for JordanM, respectively). The execution time trends of both OctoM and JordanM show clearly that the position of
the sought plaintext within an iteration determines a variability in the execution time. This is expected as the running
time depends on the position of the said plaintext in the range swept by the process which will find it. Willing to
evaluate the overall speedup, we computed the ratio between the average execution time of the attack in the sequential
implementation and the average execution time of the attack in the parallel implementation.

To provide a quantitative evaluation of the amount of code running in parallel, we follow the approach by Karp and
Flatt [14], which propose a concrete metric to compute the portion of sequential code e in a parallel program starting
from the speedup and the number of parallel computing units. Table 1 reports the parallel code portion obtained as
1 — e, when considering the reported speedup and number of cores. We report that around 95% of the code of our
implementations runs in parallel, practically validating the parallelization of our approach.

Speed-up over Exhaustive Search Strategy. We conclude our experimental evaluation by showing that our attack
outperforms the exhaustive search strategy described in Section 3. The speed-up of our attack against this strategy is
depicted, for both OctoM and JordanM, in Figure 3. We recall that the speedup depends on the value of the parameter
t chosen during the attack, namely the attainable speedup is Toat t)t(figazf::::;ism) . The relatively small value for n in
our prototype implementation bounds us to pick a small value for ¢, namely ¢ = 32; however, such a small value is

sufficient to show a practical ten-fold speedup for our plaintext recovery strategy with respect to exhaustive search

strategy against both OctoM and JordanM.
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7 Mitigating Attacks against OctoM and JordanM

In this section, we propose a simple modification to the two target FHE schemes OctoM and JordanM which allows
to hinder our attack. The main idea is introducing a new non linear operation in the decryption algorithm, making the
schemes no longer linearly decryptable over Z,,. This operation is introduced by changing the plaintext space of the
two schemes. This plaintext space, for both OctoM and Jordanl, is the integer ring Z,,, with n being a composite
number whose factorization is computationally unfeasible. For simplicity, from now on we suppose, that n is the
product of two prime numbers p, ¢; however, the same modification can be trivially applied if the integer n has more
than two prime factors. As a corollary of the Chinese Remainder Theorem (CRT), the ring Z,, is isomorphic to Z;, X Z,.
Indeed, the CRT defines a bijection ¢ between these rings, which allows to map each pair of values in Z,, X Z, to an
integer in Z,,, and vice versa. Since these rings are isomorphic, this mapping is a homomorphism: each addition or
multiplication done in Z,, is done at the same time in the rings Z,, and Z,. We can hinge upon this isomorphism to
build two symmetric FHE schemes, called OctoPrime and JordanPrime, with plaintext space being the integer ring
Z,, based on, respectively, OctoM and JordanM schemes. In the following, we show how to construct OctoPrime
from OctoM; JordanPrime can be built from JordanM in the same way.

o Key Generation.
Key generation algorithm of OctoPrime enriches the secret key & of OctoM by including the prime factors
of n, namely p and q.

e Encryption.
Given a plaintext value m € Z, and the secret key k, the encryption algorithm of OctoPrime uniformly
samples an integer r, from Z, and computes the ciphertext C' as Enc(sk, ¢(m, 4)), where Enc denotes the
encryption algorithm of OctoM and ¢ denotes the bijection between Z,, x Z, and Z,, which can be computed
from the prime factors p, q.

e Decryption.
Given a ciphertext c and the secret key k, the decryption algorithm of OctoPrime computes the corresponding
plaintext m € Z,, as Dec(sk, ¢) mod p, where Dec denotes the decryption algorithm of OctoM.

e Evaluation.
OctoPrime employs the same evaluation algorithm of OctoM.

Despite their simplicity, these modifications are quite important, since OctoPrime and JordanPrime are not linearly
decryptable over Z,,: the last operation of their decryption algorithm is a modular reduction, with the modulus being
p, a prime factor of n, and this operation is not linear in Z,,. Indeed, differently from the original FHE schemes, we
cannot express the decryption function of OctoPrime and JordanPrime as a dot product between the ciphertext and
the key represented as vectors of a d dimensional vector space with support Z,,, which means that the 1-distinguisher
for OctoM and JordanM cannot be successfully employed for OctoPrime and JordanPrime schemes. Nevertheless,
these schemes are linearly decryptable over Z,, which implies that there exists a 1-distinguisher. This distinguisher
is similar to the one employed for OctoM and JordanM: it requires to solve the same system of equations, namely
Zjill a;C"%, but in this case such system must be solved over Z,, instead of Z,,. However, the attacker does not know
the prime factor p (otherwise the schemes would have already been broken) and so the adversary cannot hinge upon
such a 1-distinguisher.

Despite the unavailability of a 1-distinguisher for OctoPrime and JordanPrime, the attacker has another viable strat-
egy, which exploits how these schemes are built. In the following, we analyze this strategy on OctoPrime scheme;
the same one could be applied to JordanPrime too, since they are constructed in the same way. OctoPrime can be
seen as the composition of two layers: the first one maps the plaintext value m € Z,, to an integer x € Z,,, which is
a plaintext value for OctoM; then, the integer x is encrypted using OctoM scheme. Therefore, every ciphertext C' of
OctoPrime is a legitimate ciphertext of OctoM. Because of this construction, the attacker may try to attack separately
these two layers: first, it applies our comparison-based attack on the ciphertext C, retrieving the corresponding plain-
text value x € Z,, according to OctoM encryption; then, it tries to recover the plaintext value m = x mod p from the
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integer x. Luckily, we now show that the first step of this attack is computationally unfeasible. In particular, we recall
that our comparison-based attack works by testing if a candidate plaintext value is the corresponding plaintext of a
given ciphertext C' until a match is found, thus exhibiting a computational complexity which is linear in the number
of candidate plaintext values being tested. Since our attack sequentially tests candidate plaintext values in increasing
order, it can practically recover only plaintext values not too big (e.g., smaller than 232). This capability may be suffi-
cient in several FHE applications to recover the plaintext values of a large part of ciphertexts, since these values mostly
belong toaset Dy = {—s+1,...,s— 1} (see Section 2.2), with the integer s which is expected to be not much bigger
than the maximum plaintext value recoverable by our attack. However, in case of OctoPrime, our comparison-based
attack would not try to recover the actual plaintext value m € Z,, but the integer x = @(m,ry) € Z,,, where r, is
uniformly sampled from Z,. Even with plaintext values belonging mostly to D, our comparison-based attack would
need to test an enormous number of candidate values. In particular, for each plaintext value m, there are ¢ possible
values z mapped to it by the bijection ¢ (one for each value r,); since there are approximately O(s) candidate plaintext
values to be tested, the attack should find the integer x after testing O(g¢s) values, which is computationally unfeasible,
as ¢ is a prime factor of n and the prime factors need to be big enough (say, greater than 21°24) to make factoring n
computationally unfeasible.

In conclusion, our attack can no longer be applied against the modified schemes OctoPrime and JordanPrime.
Beyond hindering our attack, this feature may provide some additional benefits to the security of the schemes: indeed,
we recall that since OctoM and JordanM are linearly decryptable over Z,,, they are vulnerable to an efficient Known
Plaintext Attack, which allows to recover the secret key with a limited amount of known plaintext/ciphertext pairs;
therefore, the non linear decryption introduced in OctoPrime and JordanPrime may hinder this attack too. We
deem a deeper investigation of the security guarantees of OctoPrime and JordanPrime as an interesting further
development of this work. Lastly, we highlight that the encryption and decryption algorithms of these schemes are
enriched by simple and efficient operations with respect to the encryption and decryption algorithms of OctoM and
JordanM; therefore, we expect OctoPrime and JordanPrime to be as efficient as, respectively, OctoM and JordanM.

8 Conclusions

We present a new type of plaintext recovery attack based on the capability of homomorphically evaluating the com-
parison between two encrypted integers and assuming the existence of an efficient algorithm to determine if a generic
ciphertext is an encryption of a fixed plaintext value m. Although the computational cost of our attack is linear in the
value of the plaintext being recovered, it significantly improves the number of recoverable plaintexts with respect to
an exhaustive search strategy, which, in turn, might mean recovering a vast portion of ciphertexts in a FHE application
scenario. We validated our attack against two linearly decryptable FHE primitives, OctoM and JordanM, showing
its practicality on a prototype implementation. In implementing the two FHE primitives we discovered a flaw in the
homomorphic property of the multiplication in OctoM, for which we propose a fix, making OctoM a correct FHE
primitive. Finally, we propose mitigation measures against our attack for both OctoM and JordanM, which, together
with the correction to the homomorphic multiplication of OctoM may be of independent interest from the described
attack.
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A Appendix

A.1 Proof of Statement 1

(z#i)x2) k2= (2%1) % (2% 2) =2R(2)((z * 1) * 2)
(zx(i%2))xi=(z%i)*(z2%1) = (2% ) =2R(z*1)(z * )

5)

Before proving Statement 1, we present some additional equalities involving the imaginary unit ¢ and the isotropic
octonion z. These equalities, which will be employed in the proof, are shown in Equation 15. All these relationships
hinge upon the associative multiplication between ¢ and z; In addition, in the last step of the bottom relationships, we
exploit the fact that ¢ * z and z * ¢ are isotropic octonions: indeed, since octonions are a normed algebra, ||a * b|| =
lal|l - |b]], thus || * z|| = ||¢]| - ||2]] = 1 - 0 = 0, and similarly for the octonion z * i. Therefore, since for an isotropic
octonion z, 22 = 2R(z)z, then (i * z)? = 2R(i * 2)(i * z) and similarly for the octonion 2 x i.

Proof. The statement trivially holds for h = 1. Indeed, a; = mq% + r12, which is equivalent to Equation 8 where
R.=riand R,; = R.; = R;.; = R.;. = 0. Next, we consider h = 2 octonions a; = mai + 122, Gy = Mol + ro2.
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h
Umal * Qpe1 = | " H mj+ R,z + Rip(i%2) + Ryi(2 % 1) + Rini(i x 2 %40) + Roip (2% i % 2) | % (Mpyrt + 7h412)
j=1
h+1 h
_ htl A _ h : A ' '
=3 H mj + mjrp1 (1" % 2) + Rompy1 (2 % 0) + Rorpg1 (2 % 2) + Rizmp1 (0% 2) * 1)
j=1 j=1

+Ri.rhi1((i%2) % 2) +Rympi1((zx0)%4) + Roirpp1((2%0) % 2) +Rizimp1((i % 2 %7) % 0)

+ Riithi1((ixz%i)x2) + Ropompp1((z%i%2)%3) + Rorpi1((zxi%2)x2)

h+1 h
= ¢ht! H mj + H mrp1 (i % 2) + Rompy1 (2 %8) + Rorn 1 2R(2)2 + Riomp 1 (i % 2) % 4)
j=1 j=1

+R,~zrh+12§R(z)(i * Z) —Rzimhﬂz + Rzirh,_,_l((z * Z) * Z) —Rizimh+1(i * Z)

+ Rizimnt12R(i % 2)(i % 2) + Rypzmpt12R(z 1) (2 %4) + Raizrpt12R(2)(2 %0 % 2)
h+1
=" T my + Rlz+ Ri,(i % 2) + R (i % (2 %4)) + R, (2 (i % 2)) + R, (2 %)
j=1
(16)

If we multiply these octonions, we obtain:

ay * ag = (M1t + r12) x (mai + r92)
= —myma +mra(i* z) + rima(z * 7)
+ 1oz = —mymg + myre(i* 2)

+ rima(z x i) + r1ra2R(2)2

Since a; * ag is equivalent to Equation 8 where R, = r1192%R(2), R;, = mira, R.; = mery and R;,; = R, = 0,
Statement 1 holds for h = 2 too. We are now ready for the induction step. Assume that the statement holds for an
octonion @,y obtained by multiplying h octonions a;, j = 1, ..., h. Equation 16 shows that, if we multiply another
octonion a1 = Mmp4+1% + rh412, the statement holds too. Here, we highlighted the derivations where we employ
relationships from either Equation 7 or Equation 15. Lastly, we remark that the octonion H?zl mjrp11(i" % 2), which
is part of the computation shown in Equation 16, in the last step is either grouped in the term R’z or in the term
RQZ (i * z), since if h is even, then " is a real number, while if h is odd, then 7" is an imaginary number. O

A.2 Error Rate Estimation for the 1-Distinguisher

As briefly mentioned in Section 5, in addition to the case where v = 1 V w = 1, there are other possible assignments
for integers m, v, w making the outcome of the 1-distinguisher erroneous. In this section, we are going to analyze
these additional assignments and we show that the portion of ciphertexts affected by the unreliability issue of the 1-
distinguisher is still negligible with respect to the whole ciphertext space of JordanM. We start by prove the following
statement, which specifies the set of all the assignments (including the cases already analyzed where v = 1 or w = 1)
making 1-distinguisher output 1:

Theorem 3. Consider an instance of JordanM scheme with plaintext space M = 7Z,, where n = H?:1 pj isa
composite integer with h prime factors. Then, the 1-distinguisher for JordanM outputs 1 if:

h
/\mzpjl\/vzpjl\/wzpjl a7
j=1

i.e, for each prime factor p;, there is at least one value among m, v, w which is equal to kp; + 1,k > 0
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Proof. This statement comes directly from the isomorphism between Z,, and Zj,, x Zy, X - -+ X Zp, . Because of this
isomorphism, an equation in Z,, can be solved separately in each of the integer rings of its prime factors, obtaining
k different solutions which can be mapped to the solution in Z,, by the isomorphism. In particular, this mapping is
provided by the Chinese Remainder Theorem (CRT) recombination formula. In the case of JordanM scheme, we
recall that, given a ciphertext C, the 1-distinguisher output is 1 if and only if, any possible solution of the equation
S a;C =, 0, with d + 1 unknowns a;, satisfies the equality >4 ! a; # 0 mod n. Now, consider the sum
of these d + 1 unknowns a; in the rings Z,, of the prime factors p;,j = 1...h of the composite integer n. Since
the isomorphism between Z,, and Z,, X Z,, X -+ X Zp, maps the null element in Z,, to the h null elements of
Zyp,;,j=1...h,then:

d+1 h d+1
Zaz =, 0e \D ai=,0 (18)
Jj=11:=1

We now focus on all these equations in the rings Z,,.,j = 1...h. In particular, we analyze when Zl 1 @i =p; 0,
for each prime factor p;. First of all, we recall that, because of the homomorphlc propertles of the scheme, from
the equation S 4,0t =, 0 we derive three other equations, namely Y0 a;m' =, 0, X% 40" =, 0 and

Z;Hll a;w* =, 0, for the same d + 1 values a;. Now, consider these three equations in the ring Z,,, and suppose,
without loss of generality, that m =, 1. Then, from equation Z 1 a;m’ =p, 0 we get:

d+1 d+1 d+1

dami=, 0= al'=, 0= a;=, 0 (19)
i=1 i=1 i=1

We remark that we would get to the same result of Equation 19 also if v =, 1 or w =, 1. Therefore, we conclude

thatm =, 1Vv =, 1Vw=, 1implies that Ef+11 a; =p, 0. Then, if this condition holds for each prime factor

Dj, then it means that Zd+1l a; =p; 0 for each prime factor p; too, and thus, due to Equation 18, Zd+11 a; =y, 0. This

implies that there is no set of integers a;,7 = 1,...,d + 1 satisfying both Z:Hll a; # 0 mod n and Z;Hll a;C; =, 0
therefore, the 1-distinguisher will output 1if m =,, 1V v =, 1V w =, 1 for each prime factor p;,j =1,...,h of

the composite integer n. O

We remark that Equation 17, which specifies the values of integers m, v, w making the the output of the 1-distinguisher
equal to 1, is satisfied also by all the assignments where m = 1 and v, w have arbitrary values, since in this case
m =, 1 for all the prime factors p;,j = 1...h. In this case, the outcome of the 1-distinguisher is correct, since
the input ciphertext C' is actually an encryption of 1. Summing up, the output of the 1-distinguisher is erroneous
when the condition of Equation 17 holds and m # 1. Now, we want to show that the output of the 1-distinguisher
is erroneous with a negligible probability. To this extent, we start by estimating the probability Pr(E) of the event &,
defined as the conditions outlined in Equation 17, being satisfied when m, v, w integers are randomly sampled in Z,,
showing that it is negligible. Then, as this probability is actually higher than the probability of an erroneous output of
the 1-distinguisher, since it takes into account also the case when m = 1, where the outcome of the 1-distinguisher
is correct, if Pr(€) is negligible, the probability that the outcome of the 1-distinguisher is erroneous is necessarily
negligible too. To compute Pr(&), we again employ the isomorphism between Z,, and Z,,, X Zp, X -+ X Zp, . 1
particular, we remark that, due to this isomorphism, uniformly sampling a number from Z,, is equivalent to unlformly
sample h integers from Z,., j = 1...h and then maps these integers in Z,, through the isomorphism. Thus, in order
to estimate Pr (&), first we compute, for each prime factor p;, the probability Pr(m; = 1V v; =1V w; = 1), where
m;,v;, w; are uniformly sampled in Zp]. ; then, we can obtain Pr(€) as:

Pr(E):Pr(/\mJ—:1\/1)]-:1ij:1)
h (20)
ZHPr(mjzl\/vjzl\/wj:l)
=1

where in the last step we take advantage that sampling operations among integer rings Z,,, j = 1... h are all indepen-
dent. We start with the first step, that is computing Pr(m,; = 1V v; = 1V w; = 1), where m, v;, w; are uniformly
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sampled from Z,,. From now on, we denote the event m; = 1V v; = 1 Vw; = 1 as £;. We compute Pr(&;) as

1 —Pr(&5) =1—Pr(m; # 1 Av; # 1 Aw; # 1). In particular, Pr(5) = (p;)ifl)B = (”23;31)3, since for each of the
J J
three integers, there are p; — 1 possible values different from 1 over p; possible assignments, and the sampled values

are all independent among themselves. Hence, we compute Pr(€;) =Pr(m; =1Vov; =1V w,; =1) as:

- _1)3

Pr(&;) =1-Pr(&f) =1~ (pjp?? )
J

-84l _ 4 4

3 - P b

Finally, we estimate Pr(€) from the probabilities Pr(€;) using Equation 20:

h
Pr(€) = HPr(mj =1Vy;=1Vw; =1)
Jj=1

h h h h

=IIeee) <]l = =7

j=1 j=1Pi Hj:l Dj "
Despite this probability grows exponentially in the number of prime factors i, we remark that h must be really small
(e.g., less than 10). Indeed, since the smallest prime factor of n is at most O(n% ), a big number i would imply that
n have prime factors which are small enough to efficiently factor n. With a small h, the probability of an erroneous
outcome of the 1-distinguisher is negligible: for instance, if we set h = 10, then Pr(£) = 4% %; since n should

be big enough to make its factorization hard (say an integer with at least 1024 bits), then Pr(€) < 271004,
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