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Abstract. In this work we study the quantum security of public key
encryption schemes (PKE). Boneh and Zhandry (CRYPTO’13) initiated
this research area for PKE and symmetric key encryption (SKE), al-
beit restricted to a classical indistinguishability phase. Gagliardoni et al.
(CRYPTO’16) advanced the study of quantum security by giving, for
SKE, the first definition with a quantum indistinguishability phase. For
PKE, on the other hand, no notion of quantum security with a quantum
indistinguishability phase exists.
Our main result is a novel quantum security notion (qIND-qCPA) for
PKE with a quantum indistinguishability phase, which closes the afore-
mentioned gap. We show a distinguishing attack against code-based
schemes and against LWE-based schemes with certain parameters. We
also show that the canonical hybrid PKE-SKE encryption construction
is secure, even if the underlying PKE scheme by itself is not. Finally,
we classify quantum-resistant PKE schemes based on the applicability
of our security notion and discuss concurrent and independent work.
Our core idea follows the approach of Gagliardoni et al. by using so-called
type-2 operators for encrypting the challenge message. At first glance,
type-2 operators appear unnatural for PKE, as the canonical way of
building them requires both the secret and the public key. However, we
identify a class of PKE schemes - which we call recoverable - and show
that for this class type-2 operators require merely the public key. More-
over, recoverable schemes allow to realise type-2 operators even if they
suffer from decryption failures, which in general thwarts the reversibility
mandated by type-2 operators. Our work reveals that many real-world
quantum-resistant PKE schemes, including most NIST PQC candidates
and the canonical hybrid construction, are indeed recoverable.

1 Introduction

The discovery of Shor’s [42] and Grover’s [26] quantum algorithms had a signif-
icant impact on cryptographic research. Shor’s algorithm in particular has the
potential to completely break most of the public key cryptosystems used nowa-
days. This led to the development of quantum-resistant cryptography,3 that is,

3 This type of cryptography is often called “post-quantum cryptography” [11].



cryptography that can run on non-quantum computers but should withstand
attackers equipped with quantum computing power. In recent years the research
efforts on quantum-resistant cryptography accelerated significantly due to the
standardization process initiated by the NIST [38].

Modern cryptography is based on the paradigm of provable security, which
is itself given in terms of a security notion, an adversarial model, and a security
proof. A widely used framework for defining security notions is the so-called
game-based security, which is presented as a game between two or more parties.4

In the case of encryption schemes these parties are: a challenger, represent-
ing the user of the scheme, and an adversary, representing an attacker against
the scheme. Any meaningful model for quantum-resistant schemes should entail
that the adversary has quantum computing power. Based on this, we can dif-
ferentiate between different models depending on the computing power of the
challenger. In the literature there are mainly two of these models that are taken
into account. In the first, the challenger remains fully classical, implying that
any communication between adversary and challenger is also classical (including
oracles provided by the challenger to the adversary), while the adversary retains
local quantum computing power. This is the model most often considered in
quantum-resistant cryptography, and it is also called QS1 [23] or Q1 [29]. In the
second case, the challenger also has quantum computing power, which enables
quantum communication between challenger and adversary. This stronger model
is sometimes called “superposition-attack security” [21], QS2 [23], or Q2 [29].

Boneh and Zhandry [14] initiated the study of QS2 security for cryptographic
primitives. For signature schemes, they give a security definition that allows
the adversary to query the signing oracle on a superposition of messages. For
public and symmetric key encryption (PKE and SKE) schemes, on the other
hand, they prove that simply allowing the adversary to query a superposition of
messages as challenge in a “natural” way gives an unachievable security notion
(fqIND-CPA). This is due to entanglement between the plaintext register and the
ciphertext register. They show how to exploit this entanglement to break this
security notion irrespectively of the used encryption scheme. To resolve this,
they propose another security notion (IND-qCPA) which allows the adversary
superposition queries in the CPA phase while the challenge messages in the IND
phase are restricted to be classical. This notion coincides with the traditional
QS1 security notion for PKE (as the adversary can simulate the encryption in
superposition using his local computing power and the public key), while for
SKE, this yields a notion of QS2 security - although the restriction to a classical
challenge in this case is clearly a shortcoming.

Gagliardoni et al. [24] overcame this shortcoming in the symmetric key case
by showing how to model a quantum challenge query, while keeping the resulting
security notion (qIND-qCPA) still achievable, yet stronger than IND-qCPA. At
the heart of their idea lies the use of so-called type-2 operators5 rather than so-

4 Other frameworks exist, such as simulation-based, but as a first approximation game-
based security notions are very convenient for their intuitivity and simplicity.

5 Also called minimal oracles in [30].
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called type-1 operators when encrypting the challenge messages of the adversary.
Type-1 operators are the “canonical” way of implementing a classical function F
on a quantum superposition of input, by mapping the state |x, y〉 to |x, y ⊕F(x)〉,
thereby ensuring reversibility for any function F (reversibility being necessary
when defining non-measurement quantum operations). An important property of
type-1 operators is that they create entanglement between the input and output
registers. This is exactly the entanglement which Boneh and Zhandry exploit
to show that fqIND-CPA is unachievable. In contrast to these, type-2 operators
work directly on the input register, i.e., they map the state |x〉 to |F(x)〉. Only
reversible functions, for instance permutations, can be implemented as type-2
operators, while it is impossible to compute, say, an arbitrary one-way function
through a type-2 operator. Gagliardoni et al. observe that SKE schemes act as
permutations between the plaintext space and the ciphertext space, which allows
to implement the encryption algorithm as a type-2 operator. This, in turn, allows
to build a solid framework for QS2 security in the case of SKE.

In [24] the authors speculate that their techniques could be extended to
the public key case (PKE) as well. However, defining type-2 operators for PKE
schemes is much more involved than for SKE schemes. First, to achieve IND-CPA
security, PKE schemes are inherently randomised and the randomness is usually
erased in the process of decryption. Second, many constructions for quantum-
resistant PKE schemes, in particular lattice-based and code-based schemes, suf-
fer from a small probability of decryption failures, i.e., ciphertexts which do not
decrypt correctly. Given the above, at first glance it is unclear whether type-2
operators for PKE schemes are possible at all, as these two properties seem to
thwart the mandatory reversibility. Hence, QS2 security for the public key case
remained an open problem so far.

1.1 Our Contribution

We present a novel QS2 security notion6 for PKE, provide both achievability
results and separation to the QS1 security notion for many real-world schemes,
and give a general classification of PKE with respect to our security notion.

Our core focus is to extend the results from [24] to the public key scenario. We
first formalize the theory of type-2 encryption operators for PKE. For perfectly
correct schemes (i.e., schemes which do not suffer from the possibility of decryp-
tion failures) we define the type-2 operator to preserve a randomness register
in input and output. Even if such approach might look strange at first glance,
we show that this is the most natural way of defining type-2 operators for PKE
schemes. As a next step, we identify a class of PKE schemes (which we call recov-
erable) where decryption failures can always be avoided given knowledge of the
randomness used during encryption, regardless of the actual failure probability
of the decryption algorithm. We observe that most real-world partially correct
PKE schemes (including many quantum-resistant NIST candidates) are actually
of this type. Then, for schemes that are perfectly correct or recoverable, we show

6 See Appendix C for independent and concurrent work.
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how to efficiently construct the type-2 encryption operator. Moreover, we show
that for recoverable schemes, this can be done by knowledge of the public key
only! This implies, perhaps surprisingly, that the adversary can implement effi-
ciently this type-2 operator already in the QS1 model. Such observation marks
a substantial difference from the symmetric key case, where the need for type-2
operators is dictated by necessity in order to cover exotic attack models. Thus,
the type-2 operator for these schemes can be realised without the secret key.

Using the theory of type-2 operators developed so far, we give a novel QS2
security notion for PKE, that we call quantum ciphertext indistinguishability
under quantum chosen plaintext attack (qIND-qCPA). For a new security notion
to be meaningful, two properties are required. First, it has to be achievable, and,
second, it has to differ from existing security notions.

We analyse several real-world PKE schemes in respect to our new qIND-qCPA
security notion. We show that the canonical LWE-based PKE scheme [40] can be
attacked, at least for certain parameters. The attack is similar to the “Hadamard
distinguisher” given in [24]. Moving on to code-based schemes, we observe that
some constructions encrypt the message using a one-time pad operation, which
again allows to exploit the distinguishing attack. As an example we show that
the code-based scheme ROLLO-II [9] is not qIND-qCPA secure.

However, in practice most real-world PKE schemes (including the NIST sub-
missions) are used as Key Encapsulation Mechanisms (KEM) in combination
with a SKE scheme, yielding a hybrid PKE-SKE construction. Looking at such
canonical hybrid construction then, we show that its qIND-qCPA security mostly
depends on the underlying SKE scheme, while the PKE scheme only needs to be
secure in the QS1 sense. Hence, even the code-based PKE scheme ROLLO-II,
which as a stand-alone PKE scheme is not qIND-qCPA-secure, can be used to
achieve qIND-qCPA security if combined with a qIND-qCPA-secure SKE scheme
via the hybrid construction, which is the default way of using it in practice.

Finally, we discuss the difficulty of defining type-2 operators (and the related
QS2 security notion) for arbitrary schemes that are neither perfectly correct nor
recoverable. We study the problem of their general classification and we identify
a class of schemes, that we call isometric, that allow to overcome such difficulty,
and we provide constructions and separation results.

1.2 The Motivation for QS2 Security

Defining security against quantum adversaries with superposition access to cer-
tain oracles requires some motivation. Sometimes, the resulting security notion
is already implicitly captured by the corresponding QS1 scenario (for example
in the case of quantum random oracles [12]). In other cases, for instance those
considered in [6, 28,32], it might look like an artificial extension of the theory.

However, QS2 security extends quantum properties to types of attack scenar-
ios not covered in QS1, and at the same time “bridges” certain security notions
from the classical realm to schemes which are meant to run natively on a quan-
tum computer. Some of the reasons why QS2 notions are important to consider
are explained in detail in [23]. They basically boil down to five points.
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1. To ensure that quantum-resistant classical schemes retain their security even
if executed on a quantum computer, possibly in complex environments or
protocols where composition should be taken into account.

2. To fix security proofs, where the sole QS1 security of certain underlying
building blocks is not enough to ensure that the whole proof goes through.
An example is the need of QS2-secure pseudorandom functions (QPRF) in
order to simulate a quantum random oracle [45], which is a QS1 concept.

3. To ensure the security of quantum protocols (i.e., meant to run natively
on a quantum computer and protect quantum data) when using classical
algorithms as building blocks. For example, [23] shows how it is possible to
build a secure symmetric quantum encryption scheme (falling into the so-
called QS3 domain) by using a qIND-qCPA symmetric classical encryption
scheme (QS2), but not necessarily a simple quantum-resistant (QS1) one.

4. To consider cases of code obfuscation; for example creating a quantum-
resistant PKE scheme by hardcoding a symmetric key into an obfuscated
encryption program (a technique known as whiteboxing [19]), which is then
distributed as a public key.

5. To cover cases of exotic quantum attacks. These include, for instance, quan-
tum fault injection attacks, where a classical device is subject to controlled
and artificial physical conditions that induce full or partial quantum be-
haviour of its hardware (“tricking” a classical device into being quantum,
like in the “frozen smart-card attack” presented in [24]); or cases where a
quantum computer is used to run a classical algorithm, but an adversary
manages to intercept the intermediate result of the computation before the
final measurement meant to produce a classical outcome.

In our specific case, our results follow from the core use of type-2 operators. This
kind of quantum operations is poorly studied in the quantum computing realm,
and might therefore look artificial for cryptographic use. In the present work
we make an effort to expand in a detailed way the formalization of such opera-
tors which, we stress, are only given for functions that are inherently invertible.
It is a well-known fact (see for example [24]) that implementing these opera-
tors for encryption schemes usually requires knowledge of the secret key. We do
not consider this to be a limitation because in the quantum setting, an honest
challenger equipped with the secret key could be allowed to generate particu-
lar ciphertext-encoding states which would be hard to compute for an external
party: it is therefore necessary to cover this distinction in the preparation of
ciphertext states, and type-2 operators do just that. Moreover, as we show in
the present work, for many natural PKE schemes, type-2 encryption operators
can actually be efficiently implemented by knowledge of the public key only.

1.3 Related Work

The study of quantum security under adversarial queries in superposition can be
traced back to works such as [12, 21, 44], which explore different settings where
this additional adversarial power has an impact on security. However, for the
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case of signatures and encryption schemes, the first framework going beyond the
traditional QS1 paradigm was given in [14]. This paradigm was further extended
in [24] for symmetric key encryption schemes, and in [?] for MACs/signatures.

Regarding examples of exotic quantum attacks previously mentioned: it is
currently not known whether any of these are feasible at all, but as noted in [23]:
(1) if they are feasible, in some cases they do not even require a fully fledged quan-
tum computer (for example, in the attack from [24] it would be only necessary
to produce and detect a Hadamard superposition of messages); and (2) it is al-
ready known in the literature that these attacks can be devastating. For example,
related-key attacks [41], and superposition attacks against Even-Mansour [32],
Feistel networks [27,31], block ciphers [6, 8], and HMAC constructions [28].

Qualitatively different, but technically very connected to the QS2 setting is
the fully quantum setting, or QS3 in short. This security domain encompasses se-
curity notions and constructions for schemes which are natively run on quantum
hardware. In the case of QS3 encryption, these are schemes which are meant to
protect quantum, rather than classical data. It turns out that many of the chal-
lenges in this area are shared with the QS2 case. In the computational security
setting, the first security notions have been provided in [16] for the CPA case,
and in [3] for the CCA1 and semantic security case. These results have been
further extended to the CCA2 setting in [5] for the symmetric case, and in [4]
for the public key case.

In concurrent and independent work, Chevalier et al. [18] propose alternative
QS2 security notions for encryption schemes. Their and our notion are incom-
parable, as also claimed in a recent work by Carstens et al. [17]. We discuss the
differences in more detail in Appendix C.

1.4 Organization of the Paper

Section 2 gives the required background for this work. In Section 3 we study
type-2 operators for PKE schemes, define recoverable schemes, and give our new
quantum security notion for those. Positive and negative results for real-world
PKE schemes are presented in Section 4. Finally, we refine the classification of
PKE schemes in terms of QS2 security in Section 5 and conclude with open
questions in Section 6.

2 Preliminaries

In the following, we use “classical” as meaning “non-quantum”. By algorithm or
procedure (classical or quantum) we mean a uniform family of circuits (classical
or quantum) of depth and width polynomial in the index of the family. We call
such index a security parameter, and we denote it by λ (or 1λ if written in unary
notation). We implicitly assume that all algorithms take 1λ as a first input, so
we will often omit this. If a classical algorithm A is deterministic, we denote its
output y on input x as y := A(x), while if it is randomized we use y ← A(x); when
derandomizing an algorithm we look at the deterministic algorithm obtained
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when considering explicitly the internal randomness r as an additional auxiliary
input, and we write y := A(x; r). We will also use x ← D to denote that an
element x is sampled from a distribution D; or we will write x $←−X if x is sampled
uniformly at random from a set X. We will call negligible a function that grows
more slowly than any inverse polynomial, and overwhelming a function which is
1 minus a negligible function. Finally, a‖b denotes concatenation of a and b.

2.1 Quantum Notation

We assume familiarity with the topic of quantum computing, but recall here the
basic required notation. For an in-depth discussion we refer to [37].

A quantum system, identified by a letter A, is represented by a complex
Hilbert space, which we denote by HA. If A is clear from the context, we write
H rather than HA. Pure states in a Hilbert space H are representatives of equiv-
alence classes of elements of H of norm 1. Mixed states, on the other hand, are
a more general representation of quantum states that takes entanglement with
external systems into account; they are elements of the density matrix opera-
tor space over H, that is, Hermitian positive semi-definite linear operators of
trace 1, denoted as D(H). We use the ket notation for pure states, e.g., |ϕ〉,
while mixed states will be denoted by lowercase Greek letter, e.g., ρ. Opera-
tions on pure states from A to B are performed by applying a unitary operator
U : HA → HB to the state, while the more general case of operations on mixed
states is described by superoperators of the form U : D(HA)→ D(HB)

The canonical way to compute a classical function F : X → Y on a super-
position of possible inputs

∑
x∈X αx |x〉 is through the so-called type-1 operator

for F described by:

U
(1)
F :

∑
x,y

αx,y |x, y〉 7→
∑
x,y

αx,y |x, y ⊕F(x)〉 ,

This can always be implemented efficiently whenever F is efficient [37]. By lin-
earity, it is sufficient to specify just the behaviour on the basis elements, i.e.:

U
(1)
F : |x, y〉 7→ |x, y ⊕F(x)〉 .

If F is invertible, then there is another non-equivalent possible way to compute
F in superposition. This is done through the so-called type-2 operators, which
are defined as the unitary:

U
(2)
F : |x〉 7→ |F(x)〉 .

See Fig. 1 for an illustration of these different operators. Kashefi et al. [30] first
introduced type-2 operators using the term minimal oracles instead. They show
that these operators are strictly stronger by giving a problem which can be
solved exponentially faster with type-2 operators than with type-1 operators.
They also observe that the adjoint of the type-2 operator corresponds to the
type-2 operator of the inverse function F−1, which is (usually) not the case for
type-1 operators. Besides that, type-2 operators have been used by Gagliardoni
et al. [24] to define quantum security for secret key encryption schemes.
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U
(1)
F U

(2)
F

|x〉

|y〉

|x〉

|y ⊕F(x)〉
|x〉 |F(x)〉

Fig. 1: Type-1 operator (left) and type-2 operator (right) for a function F .

2.2 Public Key Encryption

In this section we give the formal definition for public key encryption schemes
and the correctness of such schemes.

Definition 1 A public key encryption (PKE) scheme is a tuple (KGen, Enc, Dec)
of three efficient algorithms such that:

– KGen : N×R → P×S is the key generation algorithm which takes a security
parameter λ and a randomness r as input, and returns a keypair consisting
of a public key pk and a secret key sk. If clear from the context, we will
denote it by (pk, sk)← KGen.

– Enc : P ×M×R → C is the encryption algorithm which takes a public key
pk, a message m, and a randomness r as input, and returns a ciphertext c.
It will be usually denoted by c ← Encpk(m) or c := Encpk(m; r).

– Dec : S × C → M is the (deterministic) decryption algorithm7 which takes
as input a secret key sk and a ciphertext c, and returns a message m. It will
be usually denoted by m := Decsk(c).

By P, S,M, C, and R, we denote the public key space, secret key space, message
space, ciphertext space, and randomness space, respectively.

We assume w.l.o.g. that the randomness space for key generation and encryption
are identical. Below we define two notions of correctness for PKE schemes.

Definition 2 (Perfectly Correct PKE) A PKE scheme Σ = (KGen, Enc, Dec)
is perfectly correct if for any (pk, sk)← KGen, m ∈M, and r ∈ R, it holds that

Decsk(Encpk(m; r)) = m .

Definition 3 ((1− α)-Correct PKE [22]) A (1−α)-correct PKE scheme, or
PKE with decryption error α, is a PKE scheme Σ = (KGen, Enc, Dec) such that,
for any m ∈M:

Pr
(pk,sk)←KGen

r←R

[Decsk(Encpk(m; r)) 6= m] ≤ α .

7 For simplicity here we only consider decryption with implicit rejection, that is, such
the output is a random value whenever the input is not a well-formed ciphertext
for the particular sk. The extension to explicit rejection decryption can be done for
example by adding a flag bit that marks the output as ⊥ whenever decryption fails.
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3 Quantum Indistinguishability for PKE Schemes

In this section we extend the QS2 security notion of qIND-qCPA introduced for
SKE schemes in [24] to the public key case. This is much more complex than
the symmetric case, for the following reasons:

1. PKE schemes are randomized to achieve cipertext indistinguishability;
2. when derandomizing the encryption procedure and considering the random-

ness as additional input, there might be collisions (different randomnesses
leading to the same ciphertext), hence ensuring reversibility of type-2 oper-
ators is not straightforward;

3. many existing schemes, such as lattice- or code-based NIST candidates, suffer
from a small decryption failure probability.

In particular, as we will see, there are two main consequences: (1) the inverse of
type-2 encryption operators is not generally a type-2 decryption operator; and
(2), most interestingly, many type-2 encryption operators can be built efficiently
by using only knowledge of the public key. The last point is crucial: it shows that
in the PKE case, type-2 encryption operators are much more natural than in the
SKE case, and for certain schemes they are actually covered in the usual notion
of QS1 “post-quantum” security already. We will also show that some of these
schemes are very relevant, such as the LWE-based scheme used as a blueprint
for many NIST submissions. In this section we will do the following:

1. First, we revisit and define formally type-1 operators for PKE, and we show
the difference between type-1 encryption and decryption (cf. Section 3.1).

2. We define type-2 encryption operators for perfectly correct PKE schemes,
and we show that they can be efficiently implemented with knowledge of
secret and public key (cf. Section 3.2).

3. We define what we call recoverable PKE schemes, i.e., schemes that admit
an efficient procedure to recover the message given randomness, ciphertext
and public key, without the secret key. We show that for such schemes the
‘canonical’ type-2 encryption operator can be built by only using the public
key, even if the scheme is not perfectly correct (cf. Section 3.3).

4. We define the qIND-qCPA security notion for any PKE scheme where one
can efficiently build the type-2 encryption operator. This includes in partic-
ular perfectly correct and recoverable schemes (cf. Section 3.4).

5. Finally, we discuss how to extend these results to the chosen ciphertext attack
(CCA) scenario (cf. Section 3.5).

3.1 Type-1 Operators for PKE

Recall that, for an arbitrary function f : X → Y, the corresponding type-1
operator is the “canonical” way of computing f on a superposition of input
through the unitary operator Uf : HX ⊗HY → HX ⊗HY defined by: Uf : |x, y〉 7→
|x, y ⊕ f(x)〉. Realising Uf is always efficient if f is efficiently computable.
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Traditionally, when looking at (deterministic) encryption schemes, the type-1
operator for encryption has been defined as:

UEnc : |m, y〉 7→ |m, y ⊕ Enc(m)〉 .

This is the approach used in, e.g., [14] and [24]. However, in our case of PKE
schemes (which are generally randomized), we have to consider that encryp-
tion can be performed locally by the quantum adversary, who therefore has full
control not only on the randomness used for encryption (i.e., it is necessary to
explicitly derandomize the encryption procedure8), but also on the public key
used (i.e., it is theoretically possible to compute encryption for a superposi-
tion of different public keys). Therefore, the most general definition of a type-1
encryption operator would look like:

UEnc : |pk, r ,m, y〉 7→ |pk, r ,m, y ⊕ Encpk(m; r)〉 .

We argue that this is the most general and correct way to model the local com-
putational power of a quantum adversary, even in the QS1 case. However, for
ease of exposition (and also because it would go beyond the traditional mean-
ing of ciphertext indistinguishability), in the present work we do not consider
superpositions of public keys, as we assume that the public key to be attacked
is given to the adversary at the beginning of the security game. This leads us to
the following definition.

Definition 4 (Type-1 Encryption for PKE) Let Σ = (KGen, Enc, Dec) be a
PKE scheme and let (pk, sk)← KGen. The type-1 encryption operator for pk is
the unitary defined by:

U
(1)
Encpk

: |r ,m, y〉 7→ |r ,m, y ⊕ Encpk(m; r)〉 .

Usually the public key is clear from the context, so we will omit that dependency

and just write U
(1)
Enc. As usual, when there is no ambiguity, we identify the corre-

sponding superoperator acting on mixed states rather than pure states with the

same symbol U
(1)
Enc : D(HR ⊗ HM ⊗ HC) → D(HR ⊗ HM ⊗ HC). By letting the

randomness be an input, Definition 4 allows to encrypt using a superposition
of randomnesses, which is fine in the case of the adversary generating cipher-
texts himself. Note also that the case of different randomnesses for each message
in superposition can be realised by using a single classical randomness and a
QS2-secure pseudorandom function [45], as shown by Boneh and Zhandry [14].

The type-1 decryption operator is defined analogously to Definition 4, but
with an important difference: the decryption algorithm does not take the ran-
domness used for encryption as input.

Definition 5 (Type-1 Decryption for PKE) Let Σ = (KGen, Enc, Dec) be a
PKE scheme and let (pk, sk) ← KGen. The type-1 decryption operator for sk is
the unitary defined by:

U
(1)
Decsk

: |c, z〉 7→ |c, z ⊕ Decsk(c)〉 .
8 This is implicitly considered in [14] and [24], but not explicitly formalized.
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As usual we denote it by U
(1)
Dec, leaving the secret key understood, and when there

is no ambiguity with the same symbol we denote the superoperator acting on

mixed states also by U
(1)
Dec : D(HC ⊗ HM)→ D(HC ⊗ HM).

Notice the difference in type-1 encryption and decryption acting on different
spaces: this is not surprising, as it is already known that the adjoint of a type-1
encryption operator is not, generally, a type-1 decryption operator. Notice also
how both operators are efficiently computable, because Enc and Dec are efficient

algorithms. The difference is that realising U
(1)
Dec requires knowledge of the secret

key sk, while for realising U
(1)
Enc it is sufficient to know the public key pk.

3.2 Type-2 Encryption for PKE

When defining type-2 encryption for PKE schemes, we have to remember that
defining these operators only makes sense for functions which are reversible. If a
PKE scheme is perfectly correct, then encryption is always reversible if seen as
a function of the plaintext, but not necessarily as a function of the randomness.
That is because it might be the case that for a given message different random-
nesses lead to the same ciphertext. In the context of security games, message
and randomness have very different roles anyway, as one is generally chosen by
the adversary, while the other is generally chosen by the challenger.

Ultimately, what we want is to define a type of unitary which generalizes
the case of arbitrary permutations from plaintext to ciphertext spaces (the same
approach as considered in [24]). In order to avoid the issue raised by random-
ness collisions, we will keep the auxiliary randomness register both in input and
output of the circuit. This ensures reversibility of the operator, because given a
certain ciphertext and a certain randomness, there is only one possible plaintext
which was mapped to that ciphertext (otherwise we would have a decryption
failure, and for now we are only considering perfectly correct schemes). So, if
the sizes of the plaintext space and the ciphertext space coincide, i.e., there is
no ciphertext expansion and thus dim(HM) = dim(HC), then we can define the
corresponding type-2 encryption operator as:

U
(2)
Enc : |r ,m〉 7→ |r , Encpk(m; r)〉 ,

where, as usual, the public key pk is implicit in the definition of U
(2)
Enc, i.e., it is

a parameter of the unitary operator in question.

In the more general case of message expansion, i.e., dim(HM) < dim(HC),
we use the same approach as in [24]: we introduce an auxiliary register in a
complementary space HC−M

9 that ensures reversibility of the operation, and

9 We denote by HC−M a Hilbert space such that HM ⊗ HC−M is isomorphic to HC.
Notice that the opposite case, i.e., dim(HM) > dim(HC), cannot happen because it
would lead to collisions on the ciphertexts and thus introduce decryption failures.
Also notice that, as in [24], the case of adversarially-controlled ancilla qubits is left
as an open problem.
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which is initialized to |0 . . . 0〉 during an honest execution to yield a correct
encryption. So we consider a family of unitary superoperators of the form:

U : D(HR ⊗ HM ⊗ HC−M)→ D(HR ⊗ HC), such that

U : |r ,m, y〉〈r ,m, y| 7→ ψ ,

and we define a type-2 encryption operator any arbitrary, efficiently computable
(purified) representative of the above family such that:

U
(2)
Enc : |r ,m, 0 . . . 0〉 7→ |r , Encpk(m; r)〉 . (1)

The choice of the particular representative is irrelevant in our exposition as long
as it respects (1) above and it is efficiently computable. However, as already dis-
cussed in [24], it might be the case that realising this operator requires knowledge
of the secret key, not only of the public key. This finally leads to the following.

Definition 6 (Type-2 Encryption for PKE) Let Σ = (KGen, Enc, Dec) be a
perfectly correct PKE scheme, and let (pk, sk) ← KGen. A type-2 encryption
operator for Σ is an efficiently computable unitary in the family defined by:

U
(2)
(Enc,pk,sk) : |r ,m, 0 . . . 0〉 7→ |r , Encpk(m; r)〉 .

It will be usually denoted by just U
(2)
Enc when there is no ambiguity.

It is always possible to find and efficiently sample and implement at least one

valid representative for U
(2)
Enc given the secret and public keys, by using a conver-

sion circuit of type-1 encryption and decryption operators in a similar way as
presented in [24]. We call this the canonical type-2 operator.

Theorem 7 (Efficient Realisation of Type-2 Encryption) Let Σ be a per-
fectly correct PKE scheme with Σ = (KGen, Enc, Dec), and let (pk, sk) ← KGen.
Then there exists an efficient procedure which takes pk and sk as input, and

outputs a polynomial-size quantum circuit realising U
(2)
Enc.

Proof. The explicit circuit of the procedure is shown in Fig. 2. It uses type-1
encryption and decryption operators as underlying components, which are both
efficient with knowledge of the respective keys. ut

Notice that realising this canonical type-2 operator requires knowledge of the
secret key, even if it is just an encryption operator, but that is fine because
as previously mentioned type-2 operators usually require this additional knowl-
edge. We have to make a distinction between the encryption unitary as defined
above (a quantum gate modelling local computation of encryption by a party
with knowledge of the relevant keys) and the encryption oracle (modelling the
interaction of the adversary with such party, usually the challenger). By letting
the randomness be an input, Definition 6 allows to encrypt using a superposition
of randomnesses, which is fine in the case of a party generating ciphertexts him-
self. In our security notion, however, the (honest) challenger will always produce

12



U
(1)
Enc

U
(1)
Dec

|r〉

|m〉

|0〉

|r〉

|c〉

|0〉

Fig. 2: Canonical type-2 encryption operator for perfectly correct PKE schemes.

ciphertexts using a (secret) classical randomness not controlled by the adversary.
In the security game, the challenger cannot send the randomness register back
to A, because knowledge of the randomness used would trivially break security,
even in a classical scenario. But at the same time if the challenger withholds the
randomness register, from A’s perspective this would be equivalent to tracing
it out, and if the type-2 encryption operator introduces entanglement between
ciphertext and randomness output registers, then tracing out the randomness
would disturb the ciphertext state.

Luckily, a simple observation solves this dilemma: as we have already dis-
cussed, in our oracle case the randomness is chosen by the (honest) challenger
during the challenge query, so we can safely model it as classical.10 Looking at
Definition 6, this means that the output state is always separable as |r〉〈r | ⊗ ψ.
Therefore, in our oracle definition the randomness register can be discarded af-
ter applying the type-2 encryption without disturbing the ciphertext state. This
leads to the following.

Definition 8 (Type-2 Encryption Oracle) Let Σ = (KGen, Enc, Dec) be a

PKE scheme and let (pk, sk)← KGen. The type-2 encryption oracle O
(2)
Enc for pk

is defined by the following procedure:

Oracle O
(2)
Enc(ϕ) on input ϕ ∈ D(HM)

1 : r $←−R

2 : |r〉〈r | ⊗ ψ := U
(2)
Enc (|r〉〈r | ⊗ ϕ⊗ |0 . . . 0〉〈0 . . . 0|)

3 : trace out |r〉〈r |
4 : return ψ

3.3 Recoverable PKE Schemes

Now we introduce a special case of PKE schemes where it is possible to decrypt
a ciphertext without knowledge of the secret key, but having access to the ran-
domness used for the encryption instead. These schemes might not be perfectly

10 Even if considering challengers that use superpositions of randomnesses, we show
in Appendix B that the difference is irrelevant, and that we can always restrict
ourselves to the case of a classical randomness register.
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correct, so the decryption procedure might fail on some ciphertext, yet still the
recovery procedure will ‘decrypt’ correctly if the right randomness is provided.
We will see in Section 4 that many PKE schemes are actually of this type.

Definition 9 (Recoverable PKE Scheme) Let Σ = (KGen, Enc, Dec) be a
(not necessarily perfectly correct) PKE scheme. We call Σ a recoverable PKE
scheme if there exists an efficient algorithm Rec : P × R × C → M such that,
for any pk ∈ P, r ∈ R,m ∈M, it holds that

Rec(pk, r , Encpk(m; r)) = m .

Notice how the recovery procedure will always allow to avoid decryption failures
even for schemes which do not have full correctness. We will sometimes write a
recoverable scheme Σ = (KGen, Enc, Dec) with recovery algorithm Rec directly
as Σ = (KGen, Enc, Dec, Rec). Given pk, it is of course possible to define a type-1
operator for Rec in the canonical way.

Definition 10 (Type-1 Recovery for PKE) Let Σ = (KGen, Enc, Dec, Rec)
be a recoverable PKE scheme, and let (pk, sk) ← KGen. The type-1 recovery
operator for pk is the unitary defined by:

U
(1)
Recpk

: |r , c, z〉 7→ |r , c, z ⊕ Recpk(r , c)〉 .

As usual we will denote this operator by U
(1)
Rec when there is no ambiguity in the

choice of pk, and with the same symbol we denote the superoperator acting on

mixed states, i.e., U
(1)
Rec : D(HR ⊗ HC ⊗ HM)→ (HR ⊗ HC ⊗ HM).

Now, the crucial observation is the following: for recoverable PKE schemes,
the canonical type-2 encryption operator can be efficiently implemented using
only the public key.

Theorem 11 (Type-2 Encryption Operator for Recoverable Schemes)
Let Σ = (KGen, Enc, Dec, Rec) be a recoverable PKE, and let (pk, sk) ← KGen.
Then there exists an efficient procedure which only takes pk as input, and out-

puts a polynomial-size quantum circuit realising the canonical operator U
(2)
Enc.

Proof. The explicit circuit of the procedure is shown in Fig. 3. It uses type-1
encryption and recovery operators as underlying components, which are both
efficient with knowledge of the public key only. Realisation of both these compo-
nents is independent of the fact whether the scheme has full correctness or not,
as the decryption algorithm itself is never used. ut

In particular, for recoverable PKE schemes the type-2 encryption operator can
be realised locally by a quantum adversary (or a reduction), without need of
additional oracle access. This, together with the fact that most real-world PKE
schemes are recoverable (as we will see in Section 4) shows that type-2 encryption
operators are very natural, and unlike in the symmetric key case considered
in [24] they also appear implicitly in QS1 security notions for such schemes.
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U
(1)
Enc U

(1)
Rec

|r〉

|m〉

|0〉

|r〉

|c〉

|0〉

Fig. 3: Canonical type-2 encryption operator for recoverable PKE schemes.

3.4 The qIND-qCPA Security Notion

We are now ready to define the notion of quantum ciphertext indistinguishability
under quantum chosen plaintext attack (qIND-qCPA) for PKE schemes which

admit an efficient construction of the canonical type-2 encryption operator U
(2)
Enc.

This includes in particular perfectly correct schemes and recoverable schemes.11

We follow the approach in [24] and we define a game where a polynomially
bounded quantum adversary plays against an external challenger. We have to
define the challenge phase and the learning (quantum CPA) phases (pre- and
post-challenge), using the theory of type-2 operators we have devised so far.

For the challenge query it is pretty straightforward: as in the original qIND
security definition for symmetric key encryption, we assume that the challenger
C generates a keypair and sends the public key pk to the adversary A. Then A
sends two plaintext quantum states (possibly mixed) ϕ0, ϕ1 to C, who will flip a
random bit b← {0, 1}, discard (trace out) ϕ1−b, and encrypt the other message

with the type-2 encryption oracle ψ ← O
(2)
Enc(ϕb). Finally, ψ is sent back to A,

who will have to guess b in order to win the game.
Justifying the use of a type-2 encryption during the challenge phase requires

arguments different from the symmetric key case. In the classical IND-CPA game
for PKE, the challenger does not even need to know the secret key, as it is not
needed for encryption, and we saw already that the secret key is sometimes
necessary to implement the canonical type-2 encryption operator. However, in
the QS2 case the challenger can produce ciphertext-encoding quantum states
with very different structure depending on whether he knows the secret key or
not, thereby leading to different attack models. Type-2 encryption operators in
particular are more general in this respect, and allow us to aim for a stronger
security notion. Moreover we also saw how certain schemes, like the recoverable
ones, allow to build the type-2 operator using only the public key. Thus it makes
sense for a QS2 security notion to include the use of type-2 operators during the
challenge phase.

The other question we have to address, which was left unspecified in [24], is
about the learning (qCPA) phase. Shall the adversary be able to perform only

11 As we will see, these cover all the interesting cases in practice, although there might
be other classes of schemes which allow an efficient construction of U

(2)
Enc ; we address

the general case in Section 5.
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type-1 encryption operations, or type-2 as well? In the QS1 case the answer is
obvious: it depends on the scheme, e.g., for recoverable schemes both type-1 and
type-2 operations are allowed, but in the general case only type-1 operations
should. Instead, in the QS2 case that we are considering, the answer is less
straightforward. For recoverable schemes again there is no difference, as the
adversary can implement both types of operators locally. But for general schemes
there might be a difference, and there might exist non-recoverable PKE schemes
which become insecure when giving oracle access to a type-2 encryption operator
during the learning phase.12

In our definition of qIND-qCPA we opt for giving to the adversary as much
power as possible, hence explicitly giving access to a type-2 encryption oracle
when dealing with non-recoverable schemes, both in the learning and challenge
phases. The reason for this choice is twofold. First, this allows us to aim for poten-
tially stronger security notions. Second, remember that, classically, CPA attacks
model not only the case where the adversary can compute ciphertexts himself
(as in the case of PKE), but also scenarios where the adversary can “trick” an
honest encryptor in providing certain ciphertexts (as in the case of IND-CPA
security for symmetric key encryption). In the quantum PKE setting, there is
a difference whether these ciphertexts are computed locally by the adversary
or obtained by the challenger through “trickery” (including scenarios already
considered in [24], such as quantum side-channel attacks, quantum obfuscation,
etc.), because the challenger has knowledge of the secret key, and is therefore
capable of generating type-2 ciphertexts even if the scheme is non-recoverable.
So, giving the adversary access to the type-2 encryption oracle seems to be the
“safe” choice.

These considerations finally lead to the following.

Experiment 12 The qIND-qCPA experiment qIND-qCPA(Σ,A, λ) for a PKE
scheme Σ = (KGen, Enc, Dec) is defined as follows:

1: C runs (pk, sk)← KGen and implements O
(2)
Enc

2: AO
(2)
Enc (pk)→ (ϕ0, ϕ1, σstate)

3: C receives ϕ0, ϕ1 and does the following:
- flips b $←−{0, 1}
- traces out ϕ1−b

- calls ψ ← O
(2)
Enc(ϕb)

- sends ψ to A
4: AO

(2)
Enc (σstate , ψ)→ b′ ∈ {0, 1}

5: if b = b′ then return win; else return rej .

Security is defined as negligible advantage over guessing.

12 For example, one could combine a suitable separating SKE scheme with the canonical
hybrid construction (cf. Section 4.3), so that the separation property is ‘inherited’
by the resulting PKE scheme. We are not aware of an explicit example of such SKE
scheme and we leave this as an open problem. We stress that such a counterexample
is not found in [17], as the authors there “excluded [...] notations that [...] combine
quantum learning queries with quantum challenge queries of different query models.”
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Definition 13 (qIND-qCPA Security) A public key encryption scheme Σ has
quantum ciphertext indistinguishability under quantum chosen plaintext attack,
or is qIND-qCPA-secure, iff for any QPT adversary A it holds:∣∣∣∣Pr [qIND-qCPA(Σ,A, λ)→ win]− 1

2

∣∣∣∣ ≤ negl(λ) .

It is easy to show that the above notion is at least as strong as the QS1 notion
of IND-qCPA for PKE introduced in [14]. Before we show this, let us first recall
some game-based notation [10,43]. Let G be a game (or experiment) instantiated
with a cryptographic schemeΣ andA be an adversary. We write AdvG

Σ(A) to de-

note the advantage of A in game G instantiated with Σ, e.g., AdvqIND-qCPA
Σ (A)

for the qIND-qCPA advantage against Σ. If the scheme is clear from the context,
we simply write AdvG(A). For games G1 and G2, we write Adv

(
GA1 ,G

A
2

)
for

the advantage of adversary A in distinguishing the games.

Theorem 14 (qIND-qCPA⇒ IND-qCPA) Let Σ = (KGen, Enc, Dec) be a PKE
scheme. For any adversary A, it holds that

AdvIND-qCPA(A) ≤ AdvqIND-qCPA(A) .

Proof. We show that any adversary A wins the qIND-qCPA game with at least
the same probability of winning the IND-qCPA game; the latter (Experiment 27)
is described in Appendix A. The differences with Experiment 12 are:

1. In the IND-qCPA game A does not get oracle access to O
(2)
Enc. Hence, when

switching to qIND-qCPA, the winning probability cannot decrease, because
the power of the adversary is augmented by the type-2 oracle.

2. In the IND-qCPA gameA is restricted to classical challenge messages m0,m1.
When switching to qIND-qCPA, the adversary will simply use quantum
states |m0〉 , |m1〉 as challenge plaintexts instead, and will measure the quan-
tum ciphertext received by the challenger.

Notice in fact that, since the randomness r in the qIND-qCPA challenge query

is classical, the type-2 operator U
(2)
Enc will produce a ciphertext state which is

just a classical ciphertext encoded as a basis state |c = Encpk(m; r)〉. In other
words, quantum plaintexts are more generic than classical plaintexts (or, to put
it differently, classical plaintexts are a very special case of quantum plaintexts),
and hence again the power of the adversary is not diminished when switching to
the qIND-qCPA game. ut

3.5 The CCA Case

We leave the case of extending our exposition to the quantum chosen ciphertext
attack case (with the relevant notions of qIND-qCCA1 and qIND-qCCA2) as
future work, but we want anyway to sketch here the general strategy.

The first task is to formalize a type-2 operator for decryption. Unlike in the
symmetric key setting considered in [24], this is not necessarily going to be the
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adjoint of the type-2 encryption operator, and in particular it might not require a
randomness register as input; this has to be expected given that there is already
an asymmetry in the definition of type-1 encryption and decryption operators
in the public key setting. Then, in the qIND-qCCA1 case, we just extend the
qIND-qCPA experiment by also providing the adversary with oracle access to
the type-1 and type-2 decryption operators.

Extending the framework to the qIND-qCCA2 case is not straightforward,
mainly due to no-cloning and the destructive nature of quantum measurement.
In fact, this case was left as an open problem already in [24] for the symmetric
key setting. Fortunately, the technique presented in [5] shows how to overcome
this difficulty, by using a real-VS-ideal approach which makes it possible to dif-
ferentiate the behaviour of the adversary when replaying the challenge ciphertext
to the decryption oracle, hence effectively detecting a challenge replay attack.
The approach in [5] (and its extension to the public key case presented in [4])
is given in the context of quantum encryption schemes (a scenario which falls
under the QS3 domain in [23]), but it is easy to generalize to the QS2 notions
we are considering here.

4 Security Analysis for Real-World PKE Schemes

We analyse the qIND-qCPA security of several real-world public key encryption
schemes. We start with the canonical LWE-based PKE scheme in Section 4.1,
followed by the code-based PKE scheme ROLLO-II in Section 4.2. The hybrid
encryption scheme is analysed in Section 4.3 while Section 4.4 concludes with a
discussion of these results.

4.1 Results for LWE-Based PKE

In this section we analyse the canonical LWE-based public key encryption scheme
due to Regev [40] with respect to our qIND-qCPA security notion.

LWE-Based Public Key Encryption Schemes. The canonical LWE-based
encryption scheme has been proposed by Regev [40]. It underpins most lattice-
based PKE schemes such as Kyber [15], LIMA [7], the LP scheme [33], and
the schemes underlying NewHope [39] and LAC [34]. The pseudocode (that we
give for simplicity in a generic form, i.e., not specifying concrete domains and
distributions for the parameters) is given in Fig. 4. Its security is based on the
computational hardness of the Learning With Errors (LWE) lattice problem.
The canonical LWE-based scheme works on n-dimensional vectors of elements
of Zq for q ≥ 2. The functions Encode and Decode are used for encoding and
decoding bit strings to and from elements of (Zq)n. The Decode function has
a certain error tolerance which, upon being exceeded, results in a decryption
failure.

The Encode function maps the bits of the message into the high-order bit
representation of group elements, which are then represented as a vector. For
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our purpose, it is not important here to have a precise definition of this encoding
function, nor to have a detailed discussion on the the sampling distribution of
the LWE vectors – which is generally crucial for proving the security of the
scheme. We leave these details to an appropriate reference, for example [36]. In
this section, we will only consider the following, simplified characterization of
the encoding function.

Lemma 15 (Canonical LWE-Based Message Encoding Representation)
Let Encode : m 7→ v as from Figure 4, and let Bit(v) the canonical bit string rep-
resentation in use for a vector element v over a finite group Zq. Then there exists
a public efficient invertible permutation π and an integer τ ≥ 0 such that

Bit(Encode(m)) = π

(
m‖

τ︷ ︸︸ ︷
0 . . . 0

)
.

In particular, for q = 2, it holds τ = 0 and Bit(Encode(m)) = π(m).

Notice that in practice the parameter τ denotes the expansion factor between
m and c1 in Fig. 4 and is upper bounded by n · dlog2(q)e minus the bit size of
the message. The larger τ , the less efficient the scheme is in terms of ciphertext
size but the lower the decryption failure rate.

KGen(λ; r)

a, s, e := r

b := as + e

pk := (a, b)

sk := s

return (sk, pk)

Enc(pk,m; r)

parse pk as (a, b)

e1, e2, d := r

c1 := bd + e1 + Encode(m)

c2 := ad + e2

return c := (c1, c2)

Fig. 4: Pseudocode of the canonical LWE-based public key encryption scheme
Σ = (KGen, Enc, Dec). For the randomness r used by KGen and Enc, let x := r
denote that x is deterministically derived from r . The decryption algorithm is
omitted, as it is irrelevant for this work.

Recall that qIND-qCPA security can only be defined for schemes which admit
an efficient realisation of a type-2 encryption operator. Showing this for the
canonical LWE scheme is hence our first goal.

Lemma 16 The canonical LWE-based PKE scheme Σ = (KGen, Enc, Dec), shown
in Fig. 4, is recoverable as from Definition 9.

Proof. To prove the statement, we have to specify the algorithm Rec that is
introduced in Definition 9. Its input is a public key pk = (a, b), a randomness
r , and a ciphertext c = (c1, c2) such that c corresponds to the encryption of
a message m, using the public key pk and randomness r . The algorithm Rec
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proceeds as follows. Given the randomness r , it obtains the same values e1, e2,
and d that have been derived from r during encryption and outputs

Decode(c1 − bd− e1) = Decode(bd + e1 + Encode(m)− bd− e1)

= Decode(Encode(m)) = m .

This concludes the proof. ut

QS2 Attack For LWE-Based PKE Schemes. Here we give an attack against
the canonical LWE-based scheme for the case q = 2. We leave the case of arbi-
trary q as an open problem, albeit we conjecture that the distinguishing attack
can be adapted to the general case.

Theorem 17 (Attack Against Canonical LWE Scheme for q = 2). Let Σ
be the canonical LWE-based PKE scheme shown in Fig. 4 defined over Zq with
q = 2. Then there exists an efficient distinguishing adversary A that wins the
experiment qIND-qCPA(Σ,A) with probability 1.

Proof. First of all recall that, because q = 2, group elements are just represented
as bits. This means that τ = 0 (there is no padding nor message expansion) and
Bit(Encode(m)) = π(m). Moreover, addition is performed by XORing elements
bitwise. The distinguishing adversary A performs a single quantum challenge
query using the Hadamard basis state H |0 . . . 0〉 (an uniform superposition of
all messages) as a first quantum plaintext ϕ0, and the state H |1 . . . 1〉 as a second
quantum plaintext.

ϕ0 = H |0 . . . 0〉 =
∑
m

1√
2|m|

|m〉 , ϕ1 = H |1 . . . 1〉 =
∑
m

1√
2|m|

(−1)parity(m) |m〉 .

Upon receiving back the ciphertext ψ, A does the following:

1. traces out the second part of the ciphertext, corresponding to c2 in Fig. 4;
2. applies to the resulting state (a type-2 operator of) π−1 (cf. Lemma 15);
3. measures the resulting state in the Hadamard basis;
4. if the outcome is 0 . . . 0 then output 0, otherwise output 1.

We now analyse the attack. If the challenge bit is 0, then the state ϕ0 = H |0 . . . 0〉
is encrypted. The resulting ψ is:

O
(2)
Enc

(∑
m

1√
2|m|

|m〉

)
=
∑
m

1√
2|m|

|Enc(m)〉 =
∑
m

1√
2|m|

|c(m)
1 〉 ⊗ |c2〉 ;

where c
(m)
1 is the c1 part of the ciphertext (cf. Fig. 4) related to superposition

element m, while the second part c2 is independent of the underlying plaintext.
The two corresponding registers are hence unentangled, and after tracing out
the second, A has the state∑

m

1√
2|m|

|c(m)
1 〉 =

∑
m

1√
2|m|

|u + Encode(m)〉 =
∑
m

1√
2|m|

|u + π(m)〉 ;
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for an unknown element u. Looking at the bit representation of u and writing
π−1(u) = w, from Lemma 15 the state above can be written as∑

m

1√
2|m|

|u⊕ π(m)〉 =
∑
m

1√
2|m|

|π(w ⊕m)〉 .

Undoing π finally yields:∑
m

1√
2|m|

|w ⊕m〉 = H |0 . . . 0〉 ;

which will give outcome 0 . . . 0 on a Hadamard measurement with probability 1.
On the other hand, if the challenge bit is 1, then the state ϕ1 = |1 . . . 1〉

is encrypted. A similar computation as before shows that the outcome of the
encryption is another Hadamard state orthogonal to H |0 . . . 0〉, so the outcome
of A’s final measurement will be different from 0 . . . 0 with probability 1. ut

4.2 Results for Code-based PKE

In this section we analyse the code-based PKE scheme ROLLO-II [9] with respect
to our qIND-qCPA security notion. It turns out that, due to the one-time pad
encryption, ROLLO-II is not qIND-qCPA-secure.

Code-Based Public Key Encryption ROLLO-II. The encryption scheme
ROLLO-II [9] is a code-based public key encryption scheme based on rank metric
codes. The scheme in a generic, simplified form is displayed in Fig. 5, where O
is a random oracle, Supp describes the support of vectors, and P is a polynomial
from the underlying code problem.

KGen(λ; r)

x,y := r

h := x−1y mod P

sk := (x,y)

pk := h

return (pk, sk)

Enc(pk,m; r)

e1, e1 := r

E := Supp(e1, e2)

c1 := m ⊕ O(E)

c2 := e1 + e2h mod P

return c := (c1, c2)

Fig. 5: Pseudocode of the code-based public key encryption scheme ROLLO-
II. For the randomness r used by KGen and Enc, let x := r denote that x is
deterministically derived from r . The decryption algorithm is omitted since it is
irrelevant for our work.

We first show that ROLLO-II is recoverable, and hence admits a qIND-qCPA
security definition.
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Lemma 18 The code-based PKE scheme ROLLO-II, shown in Fig. 5, is recov-
erable as from Definition 9.

Proof. To prove the statement, we have to specify the algorithm Rec that is
introduced in Definition 9. Its input is a public key pk = h, a randomness r , and
a ciphertext c = (c1, c2), such that c corresponds to the encryption of a message
m, using the public key pk and randomness r . The algorithm Rec proceeds as
follows. Given the randomness r , it obtains the same values e1 and e1 that have
been derived from r during encryption. It then computes O(Supp(e1, e1)) and
outputs c1 ⊕ O(Supp(e1, e1)). ut

At this point, we would like to point out that the code-based PKE schemes
which underlie the NIST proposals BigQuake [20], HQC [1], and RQC [2] are
recoverable as well.

QS2 Attack against ROLLO-II. We give an explicit attack against the
qIND-qCPA security of ROLLO-II. It is an Hadamard distinguisher that ex-
ploits the fact that the message is essentially encrypted using a one-time pad
(ciphertext part c1 in Fig. 5).

Theorem 19 Let Σ be the code-base PKE scheme ROLLO-II shown in Fig. 5.
Then there exists an efficient distinguishing adversary A that wins the experi-
ment qIND-qCPA(Σ,A) with probability 3

4 .

Proof. In the challenge phase, the adversary A prepares the two states ϕ0 =
|0 . . . 0〉 and ϕ1 =

∑
m

1√
2|m|
|m〉 and sends them to the challenger. Upon re-

ceiving the challenge ciphertext ψ, A traces out the register |c2〉 and measures
the resulting state in the Hadamard basis. If the measurement outcome is 0, A
outputs 1, otherwise, it outputs 0.

If the secret bit b is 1, the state ϕ1 is encrypted. Then the state ψ is

O
(2)
Enc

(∑
m

1√
2|m|

|m〉

)
=
∑
m

1√
2|m|

|Enc(m)〉 =
∑
m

1√
2|m|

|c(m)
1 〉 ⊗ |c2〉 ;

where c
(m)
1 is the c1 part of the ciphertext (cf. Fig. 5) related to superposition

element m, while the second part c2 is independent of the underlying plaintext.
Hence, the two corresponding registers are unentangled, and after tracing out
the second, A gets the state∑

m

1√
2|m|

|c(m)
1 〉 =

∑
m

1√
2|m|

|m ⊕ O(E)〉 =
∑
m

1√
2|m|

|m〉 = |+〉 ;

hence measuring in the Hadamard basis yields 0 with probability 1.
If the secret bit b is 0, the state ϕ0 is encrypted and the outcome of the

final Hadamard measurement will be a 0 or 1, each with probability 50%, which
concludes the proof. ut

We note that the attack also works against the code-based scheme BigQuake [20]
which uses the same one-time pad approach to encrypt the message.
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4.3 Results for Hybrid Encryption

In this section we analyse the canonical hybrid encryption scheme with respect
to our qIND-qCPA security notion. We show that its security mainly depends
on the underlying symmetric key encryption scheme.

Hybrid Encryption Scheme. The canonical hybrid PKE-SKE encryption
scheme combines a public key encryption and a symmetric key encryption scheme
into a public key encryption scheme. That is, a message is encrypted using a fresh
one-time key of the symmetric encryption scheme. The one-time key is then
encrypted using the public key encryption scheme, whereupon the encrypted
one-time key is attached to the ciphertext. To decrypt, one first recovers the
symmetric one-time key, and then uses it to decrypt the ciphertext containing
the message. The canonical hybrid encryption scheme is shown in Fig. 6. For
additional background on symmetric key encryption schemes and the security
notion used in this section, see Appendix A.

KGen(λ)

(pk, sk)← KGen
P (λ)

return (pk, sk)

Encpk(m; r)

parse r as (r1, r2, r3)

k := KGen
S(λ; r1)

c1 := Enc
S
k (m; r2)

c2 := Enc
P
pk(k; r3)

return (c1, c2)

Decsk(c)

parse c as (c1, c2)

k := Dec
P
sk(c2)

m := Dec
S
k (c1)

return m

Fig. 6: Hybrid encryption scheme Σ = (KGen, Enc, Dec) built from a PKE scheme
ΣP = (KGenP , EncP , DecP ) and an SKE scheme ΣS = (KGenS , EncS , DecS).

Below we show that the canonical hybrid encryption scheme is recoverable.
Given the randomness, the used one-time key can be obtained, which allows to
decrypt the ciphertext part that contains the message. We emphasise that the
hybrid encryption scheme is recoverable even if the underlying PKE scheme is
not recoverable.

Lemma 20 The canonical hybrid encryption scheme Σ = (KGen, Enc, Dec),
shown in Fig. 6, is recoverable as from Definition 9.

Proof. To prove the statement, we have to specify the algorithm Rec that is
introduced in Definition 9. Its input is a public key pk, a randomness r , and a
ciphertext c = (c1, c2), such that c corresponds to the encryption of a message m,
using the public key pk and randomness r . The algorithm Rec proceeds as follows.
Given the randomness r , it obtains r1, r2, and r3, which have been derived from
r during encryption. It then computes k := KGenS(λ; r1) and outputs DecSk (c1).
This concludes the proof. ut
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qIND-qCPA Security of Hybrid Encryption. We now turn our attention
towards the QS2 security of the hybrid encryption scheme. It turns out that the
QS2 security depends on the underlying SKE scheme, while the underlying PKE
scheme merely requires QS1 security. This is formalised in the theorem below.

Theorem 21 (QS2 Security of Hybrid Encryption) Let Σ = (KGen, Enc,
Dec) be the hybrid encryption scheme built from an SKE scheme ΣS = (KGenS ,
EncS , DecS) and a PKE scheme ΣP = (KGenP , EncP , DecP ), as shown in Fig. 6.
For any adversary A against Σ, there exist adversaries B and C against ΣP and
ΣS, respectively, such that

AdvqIND-qCPA
Σ (A) ≤ AdvIND-qCPA

ΣP (B) + AdvqIND
ΣS (C) .

Proof. The proof uses two games G0 and G1, where G0 is the qIND-qCPA security
game instantiated with Σ, and G1 is the same except that the ciphertext part
c2 is replaced by encrypting a random key k′ rather than k. It holds that

AdvqIND-qCPA
Σ (A) = Adv

(
GA0 ,G

A
1

)
+ AdvG1(A) .

We construct the following adversary B which receives a public key pk as input.
It flips a bit b at random and runs A on the same public key pk. It answers every
learning query ϕ by A by generating a one-time key k, asking its own challenger
for an encryption of this key to obtain the ciphertext |c2〉, locally computes |c1〉
by applying the type-2 encryption operator U

(2)

EncS
to ϕ, and sends the ciphertext

back to A. For the challenge query ϕ0, ϕ1 by A, B picks two (classical) keys

k and k′, applies the type-2 encryption operator U
(2)

EncSk
, using key k, to ϕb to

obtain |c1〉, obtains |c2〉 by sending k and k′ to its own challenger, and sends the
ciphertext back to A. When A guesses the bit b correctly, B outputs 0, otherwise,
it outputs 1. It holds that B perfectly simulates G0 and G1, depending on its
own challenge, hence

Adv
(
GA0 ,G

A
1

)
≤ AdvIND-qCPA

ΣP (B) .

Next we transform an adversary A, playing G1, into an qIND adversary C against
ΣS . The adversary C generates a key pair (pk,sk) for the underlying PKE, which
allows to perform all operations related to the PKE scheme. It runs A on the
public key pk and answers any learning query by generating a key k which it uses
to encrypt the query by A and then encrypts this key using the PKE scheme.
The challenge query ϕ0, ϕ1 by A is forwarded by C as its own challenge to obtain
the ciphertext |c2〉, while the ciphertext |c1〉 is computed locally by encrypting
a randomly generated key k using the PKE scheme. When A outputs its guess,
C forwards it as its own output. It holds that C perfectly simulated game G1 for
A, with the same secret bit as its qIND security game, thus it holds that

AdvG1(A) ≤ AdvqIND
ΣS (C) .

Collecting the bounds above proves the statement. ut

24



Theorem 21 reveals that to achieve our qIND-qCPA security notion, we can
instantiate the hybrid encryption scheme with a PKE that merely achieves QS1
security. This allows the usage of ROLLO-II, which, used as a stand-alone PKE
scheme, is not qIND-qCPA-secure.

In the following we show that Theorem 21 is strict. If the underlying SKE
is not qIND-secure, then the resulting hybrid scheme is not qIND-qCPA-secure,
irrespectively of the underlying PKE scheme. This is shown in the theorem below.
Examples for SKE schemes which are not qIND-secure are given in [24].

Theorem 22 Let Σ = (KGen, Enc, Dec) be the hybrid encryption scheme built
from an SKE scheme ΣS = (KGenS , EncS , DecS) and a PKE scheme ΣP =
(KGenP , EncP , DecP ), as shown in Fig. 6. Assume that there exists an adversary
A which has some non-negligible advantage ε against the qIND security of ΣS.
Then there exists an adversary B against Σ such that

AdvqIND-qCPA
Σ (B) ≥ ε .

Proof. We construct the adversary B, which uses adversary A as subroutine, as
follows. When A outputs its challenge messages ϕ0 and ϕ1, B forwards these to
its own challenger. Upon receiving the challenge ciphertext ψ = |c1〉 ⊗ |c2〉, B
sends |c1〉 to A. When A outputs its guess b′, B outputs b′ as its own guess. It
holds that B perfectly simulates the qIND security experiment, with the same
challenge bit b, for A. By outputting the same bit as A, we have

AdvqIND-qCPA
Σ (B) ≥ AdvqIND

ΣS (A) = ε ,

which proves the claim. ut

4.4 Discussion

In this section, we gave both positive and negative examples regarding the QS2
security of real-world public key encryption schemes. We gave a concrete attack
against the canonical LWE-based scheme for the case q = 2 and an attack against
the code-based scheme ROLLO-II showing that these schemes are qIND-qCPA
insecure. These results, however, considered that the scheme are used as pub-
lic key encryption schemes to encrypt the actual message. On the other hand,
Theorem 21 reveals that both ROLLO-II and the canonical LWE-based scheme
are sufficient to achieve qIND-qCPA secure when used as a key encapsulation
mechanism, together with a QS2-secure SKE scheme.

The standardization effort by NIST focuses on the latter scenario, hence our
results show that for these standardized schemes it is sufficient to achieve QS1 se-
curity in order for the resulting KEM to achieve our stronger, more conservative
security notion. At the same time, our results also show that extra cautious-
ness is necessary when these standardized schemes are deployed directly as PKE
schemes in protocols that require security in the QS2 sense.
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5 Classifying Other Public Key Encryption Schemes

So far we have built a framework for QS2 security of PKE schemes which are
perfectly correct or recoverable (or both). But what about schemes which do
not fall in either of these two categories? Are there such examples at all? And
what can we learn from this? In this section, we initiate the classification of PKE
schemes in general, extend our results to other classes of PKE schemes where
possible, and point out the obstacles in other cases.

5.1 Dealing with Decryption Failures: The General Case

First, we discuss why arbitrary non-correct PKE schemes do not allow, in gen-
eral, to define a type-2 encryption operator and, consequently, we cannot always
define the qIND-qCPA game as from Experiment 12. However, we also discuss
a possible workaround.

First of all, recall that defining a type-2 operator is only possible for functions
that are inherently invertible. Then observe that a (1− α)-correct PKE scheme
(cf. Definition 3) could have arbitrary, even overwhelming decryption error α.
In the most extreme case, the scheme can be almost identical to a constant
function (for example, consider an artificial scheme where every public key pk
always encrypts to 0, except for one particular randomness r̄ where it produces a
correctly decryptable ciphertext instead). In the presence of decryption failures,
it is therefore impossible to find a general way to define type-2 operators for
encryption, and hence, to define a suitable qIND-qCPA security notion.13

We call non-isometric such schemes, where it is simply not possible to define
a unitary operator that behaves exactly as from Definition 6 for any keypair,
even if we drop the requirement of efficiency.

Definition 23 (Non-Isometric Schemes) Let Σ = (KGen, Enc, Dec) be a PKE
scheme. We say that Σ is non-isometric if, for any (pk, sk) ← KGen, there
exists at least a randomness rpk such that the function m 7→ Encpk(m; rpk) is
non-injective. In particular, for any unitary U acting on the appropriate Hilbert
spaces, there exists at least a pair (mpk, rpk) such that:

Pr [M(U |rpk,mpk, 0, . . . , 0〉)→ (rpk, Encpk(mpk; rpk))] < 1 ,

where M denotes measurement in the canonical computational base.

A possible workaround for these non-isometric schemes is to ‘enforce’ the re-
versibility of the encryption, obtaining a new type of encryption unitary. Con-
sider what happens if we want to use the type-1 encryption operator (cf. Defi-
nition 4) during the challenge query:

U
(1)
Encpk

: |r ,m, y〉 7→ |r ,m, y ⊕ Encpk(m; r)〉 .
13 Recoverable schemes are a special case: they might not be always reversible in the

message space only, but they are always reversible in the union of message space and
randomness space.
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As already observed, the randomness r can be understood as classical and dis-
carded by the challenger. However, the other two registers are generally going to
be entangled, and both would have to be sent to the adversary for a meaning-
ful quantum notion; but this would clearly break security because the message
would remain in clear.14 We could try to ‘fix’ this issue by (reversibly) masking
the message register sent to the adversary, for example by using a permutation
π on the message space drawn uniformly at random. The following unitary:

U
(π)
Encpk

: |r ,m, y〉 7→ |r , π(m), y ⊕ Encpk(m; r)〉

allows hence to define a new type of quantum challenge query, where the chal-
lenger still discards the randomness register after encryption, but sends back the
other two registers to the adversary. Notice how, from the adversary’s point of
view, π(m) is a completely random element, and therefore the presence of this ad-
ditional register does not offer any distinguishing advantage. Moreover, in actual
security reductions, the uniformly drawn π can be replaced by a quantum-secure
pseudorandom permutation [24], or QPRP in short.

We can hence use these type-π operators to define (for any PKE scheme,
including the non-isometric ones) a new indistinguishability game and a related
security notion with quantum challenge query. Motivating the use of such oper-
ators when modelling security is arguably non-trivial. In certain cases, one could
see π(m) as some sort of side-channel information given to the adversary, but
in general it looks like just an artificial way to enforce reversibility on schemes
which are not. We will therefore not study the resulting security notion in this
work, but we want nevertheless to make a few observations on it.

First of all, notice that such a new security notion cannot be stronger than
qIND-qCPA, at least when considering correct or recoverable schemes. As a
separating example, consider the distinguishing attack from Theorem 22: this
will not work any more because of the presence of the entangled π(m) register,
so that the hybrid scheme might be secure according to the new notion but still
qIND-qCPA insecure.

Second, notice how the challenge query resulting from the use of type-π
operators reminds of the one given in an alternative quantum indistinguisha-
bility notion for secret key encryption schemes proposed by Mossayebi and
Schack [35] - the difference is basically producing |m, Encpk(π(m))〉 instead of
|π(m), Encpk(m)〉 - which is itself not comparable to qIND-qCPA. This security
notion has been recently investigated and expanded by Chevalier et al. [18].

5.2 Refining the Classification

Now we know how to define qIND-qCPA security of PKE schemes which are
perfectly correct or recoverable (or both), and at the same time we know that it
is not possible for schemes that are non-isometric. But it turns out we can say
more. First of all we make a distinction for those schemes which are isometric:

14 This explanation appears in detail in [24].
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it means that it is possible to define a unitary operator that behaves exactly as
a type-2 encryption operator, but we distinguish whether finding and building
such operator is efficient or not.

Definition 24 ((Efficiently) Isometric Schemes) Let Σ be a PKE scheme
with Σ = (KGen, Enc, Dec). We say that Σ is isometric if, for any (pk, sk) ←
KGen and for any randomness r the function m 7→ Encpk(m; r) is injective. In
particular, there exists a unitary U acting on the appropriate Hilbert spaces, such
that for any (m, r):

Pr [M(U |r ,m, 0, . . . , 0〉)→ (r , Encpk(m; r))] = 1 ,

where M denotes measurement in the canonical computational base. Further-
more, we say that Σ is efficiently isometric if U can be efficiently realised.

Notice how, in general, an isometric scheme is not necessarily efficiently isomet-
ric. This is because, unlike for type-1 operators, the efficiency of the Enc proce-
dure is only enough to guarantee the existence of a unitary U with the above
property, but not its efficiency. Then, notice how a type-2 encryption operator
(as from Definition 6) satisfies the above definition of U , both by construction
and by efficiency. In other words, efficiently isometric schemes are exactly all and
only those schemes which, by definition, admit an efficient construction of the
type-2 encryption operator. Clearly, in particular this includes perfectly correct
schemes (by Theorem 7) and recoverable schemes (by Theorem 11).

Corollary 25 Let Σ be a PKE scheme. If Σ is perfectly correct or recoverable,
then it is efficiently isometric.

The situation is depicted in Fig. 7. This means that, as from Definition 13, we
can extend the qIND-qCPA security notion not only to recoverable or perfectly
correct schemes, but to all the efficiently isometric ones. For the non-efficient
case (arbitrary isometric schemes) the qIND-qCPA notion can still be defined,
but its usefulness would be less clear, as it might require unbounded challengers
in the security game (and therefore, difficulty in simulating them by efficient
reductions when proving the security of a particular scheme). Still, it would be
useful for impossibility results, i.e., proving that a particular isometric scheme is
not qIND-qCPA-secure.

Finally, can we find representative examples of schemes which fall in the cat-
egories that we have just defined? We have already mentioned an example of a
non-isometric scheme at the beginning of Section 5.1 (the almost-constant one).
Here we show a construction of an efficiently isometric scheme that is neither
perfectly correct nor recoverable. The construction is given in Fig. 8: it trans-
forms a recoverable, not perfectly correct encryption scheme by pre-processing
the message with a quantum-secure trapdoor permutation [23] before encrypt-
ing it, and inverts again the permutation after decryption (the public and secret
keys of the trapdoor permutation are embedded in the public and secret key,
respectively, of the resulting scheme). It works because the permutation ‘scram-
bles’ the resulting ciphertexts but not the randomness, thereby hindering an
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Fig. 7: Classification of PKE schemes. The qIND-qCPA security notion can be
defined for all schemes except those in the shaded area (non-isometric). For
efficiently isometric schemes (dark gray area) the type-2 operator can be realised
efficiently and we provide concrete circuits for the schemes that are perfectly
correct or recoverable. For isometric schemes (light gray area) the type-2 operator
can be realised but not efficiently.

adversary (or a challenger) who tries to build an efficient recovery algorithm Rec

for the transformed scheme. At the same time, we show how such construction
is efficiently isometric, by showing an efficient circuit for the canonical type-2

encryption operator U
(2)
Enc. This is formalised in the theorem below.

KGen(λ)

(pke, ske)← KGen
Σ(λ)

(pkf , skf )← KGen
F (λ)

pk := (pke, pkf )

sk := (ske, skf )

return (pk, sk)

Encpk(m; r)

parse pk as (pke, pkf )

y := F(pkf ,m)

c := Enc
Σ(pke, y; r)

return c

Decsk(c)

parse sk as (ske, skf )

y := Dec
Σ(ske, c)

m := F
−1(skf , y)

return m

Fig. 8: Transformed scheme Γ , where Σ = (KGenΣ , EncΣ , DecΣ) is a PKE scheme
and Π = (KGenF , F, F−1) is a deterministic trapdoor permutation.

Theorem 26 Let Π = (KGenF , F, F−1) be a deterministic trapdoor permutation
and Σ = (KGenΣ , EncΣ , DecΣ) be a PKE scheme. If Π is quantum-secure and Σ
is recoverable and (1−α)-correct, then the scheme Γ = (KGen, Enc, Dec) depicted
in Fig. 8 is (1− α)-correct, non-recoverable, and efficiently isometric PKE.

Proof. Partial correctness of the encryption scheme Γ follows immediately from
the partial correctness of Σ, as permuting the messages does not change the
overall decryption failure probability.
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Assume, for sake of contradiction, that Γ is recoverable. Then there exists
an efficient algorithm Rec that, on input pk, r , and Encpk(m; r), outputs m. We
construct the following adversary B against the trapdoor permutation Π. He
receives a public key pkf for the trapdoor permutation F along with y := Fpkf (x)

for a random x, and is asked to find x. B computes (pke, ske) ← KGenΣ(λ),
chooses r ← R, computes c := EncΣpke

(y; r), and uses pk = (pke, pkf ), r , c as

an input to Rec. By construction, we have c = EncΣpke
(Fpkf (x); r) = Encpk(x; r),

hence Rec outputs x. So B can find the correct preimage with probability 1,
hence breaking the security of the trapdoor permutation. This contradicts the
recoverability of Γ .

Finally, in Fig. 9 we show an efficient circuit for the realisation of U
(2)
Enc. This

uses subcircuits for computing the type-1 operator for the trapdoor permutation
and its inverse (given the trapdoor permutation’s public key and secret key), and
type-1 encryption and recovery for the underlying PKE scheme. ut

U
(1)
F U

(1)

F−1

U
(1)
Enc U

(1)
Rec

|r〉

|m〉

|0〉

|r〉

|c〉

|0〉|0〉 |0〉

Fig. 9: Efficient realisation of the canonical type-2 encryption operator for the
construction shown in Fig. 8.

Remark 1. Note that, albeit the above construction works at a theoretical level,
there are currently no known candidates for quantum-secure trapdoor permuta-
tions. Alternatively, a quantum-secure injective trapdoor function could be used
instead, for which candidates exist. In this case, because of the inherent expan-
sion factor, the message space for the transformed scheme will be smaller than
the one in the original PKE scheme.

6 Future Directions

In this work we have filled the existing gap between the symmetric key and
the public key case when defining security in the QS2 setting. We showed how
the existence of this gap was not due to a mere lack of interest, but because of
non-trivial definitional issues that we solved. We believe that our results provide
useful guidelines in the security analysis of quantum-resistant PKE, but many
research directions remain open to exploration.
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In Section 3.5 we sketch a general strategy for extending our results to the
chosen ciphertext case. Although we believe that such a strategy works, we
leave it as an open problem to formalize it correctly. We also leave it as an open
problem to improve our game-based definitions to different provable security
paradigms such as simulation-based.

We notice how our notions of qIND-qCPA for PKE can be also used to study
the security of cryptographic primitives that ‘extend’ PKE with extra functional-
ities. Such primitives include, for example, fully homomorphic encryption [16,25],
identity-based encryption [46], and functional encryption [13].

We did not found any natural example of a scheme that is isometric, yet not
efficiently so. A simple idea would be to modify the construction from Fig. 8 in
such a way that the circuit provided in Fig. 9 becomes non-efficient (for example
by using a hard to invert permutation instead of a trapdoor permutation). This
idea does not work for two reasons. First, it would only show that this particular
construction of the type-2 operator is inefficient, while we would need to show
that any construction is. Second, and more importantly, switching to a hard to
invert permutation would make the decryption algorithm inefficient. Hence the
resulting scheme would no longer be a PKE scheme according to Definition 1.

Also, notice the following: given that qIND-qCPA is a stronger notion than
IND-qCPA, having a PKE scheme where it is not even possible to define a
type-2 encryption operator can actually be desirable. For such a scheme in fact,
one should not worry about proving the (stricter) qIND-qCPA security notion,
because the related attack scenario is simply not enforceable, and hence the
scheme cannot be broken in a qIND-qCPA sense. So it would be interesting to
find schemes which are IND-qCPA secure but non-isometric. We conjecture that
a generic transformation to obtain such schemes is possible assuming the exis-
tence of quantum-secure indistinguishability obfuscation, but leave the problem
open to further study.

We have also left unstudied the possibility of extending QS2 security notions
to the use of type-π operators, and to models where the adversary can query
oracles on superpositions of public keys.
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A Additional Preliminaries

A.1 IND-qCPA Security of Public Key Encryption Schemes

The security game for IND-qCPA security [14] of public key encryption schemes
is defined as follows. We note that this notion is equivalent to the standard QS1
security notion for public key encryption schemes.

Experiment 27 The IND-qCPA experiment IND-qCPA(Σ,A, λ) for a PKE
scheme Σ = (KGen, Enc, Dec) is defined as follows:

1: C runs (pk, sk)← KGen

2: A(pk)→ (m0,m1, σstate)
3: C receives m0,m1 and does the following:

- flips b $←−{0, 1}
- samples r $←−R
- computes Encpk(mb; r)→ c
- sends c to A

4: A(σstate , c)→ b′ ∈ {0, 1}
5: if b = b′ then return win; else return rej .

Security is defined as negligible advantage over guessing in winning the security
game.

Definition 28 (IND-qCPA, PKE) A PKE scheme Σ has ciphertext indistin-
guishability under quantum chosen plaintext attack, or it is IND-qCPA-secure,
iff for any QPT adversary A it holds:∣∣∣∣Pr [IND-qCPA(Σ,A, λ)→ win]− 1

2

∣∣∣∣ ≤ negl(λ) .

A.2 Symmetric Key Encryption

Below we define symmetric key encryption (SKE) schemes.

Definition 29 A symmetric key encryption (SKE) scheme Σ is a tuple of three
efficient algorithms (KGen, Enc, Dec) such that:

– KGen : N→ K is the (randomized) encryption algorithm which takes a secu-
rity parameter λ as input, and returns a key k.

– Enc : K ×M → C is the (randomized) encryption algorithm which takes a
key k and a message m as input, and returns a ciphertext c.

– Dec : K × C → M is the decryption algorithm which takes as input a key k
and a ciphertext c, and returns a message m.

By K, M, and C, we denote the key space, message space, and ciphertext space,
respectively.

Next, we define the security game for qIND security, following [24].
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Experiment 30 The qIND experiment qIND(Σ,A, λ) for a SKE scheme Σ =
(KGen, Enc, Dec) is defined as follows:

1: C runs k← KGen(λ) and implements O
(2)
Enc

2: A()→ (ϕ0, ϕ1, σstate)
3: C receives ϕ0, ϕ1 and does the following:

- flips b $←−{0, 1}
- traces out ϕ1−b

- calls ψ ← O
(2)
Enc(ϕb)

- sends ψ to A
4: A(σstate , ψ)→ b′ ∈ {0, 1}
5: if b = b′ then return win; else return rej .

Just as for our new security notion, security is defined as negligible advantage
over guessing in winning the game.

Definition 31 (qIND, SKE) A SKE scheme Σ has quantum ciphertext indis-
tinguishability, or it is qIND-secure, iff for any QPT adversary A it holds:∣∣∣∣Pr [qIND(Σ,A, λ)→ win]− 1

2

∣∣∣∣ ≤ negl(λ) .

B The Role of Randomness Superposition

In this section we discuss the possibility of having superposition of randomness
in the type-2 challenge query. So far, we have only considered the case of classical
randomness, as this is chosen by the (honest) challenger. But one could consider
scenarios where the adversary can somehow trick the challenger into using a
superposition of randomness in the challenge query. Here we discuss two possible
ways to deal with this issue, one of which turns out to be unachievable while the
other yields a notion equivalent to the one we propose in Section 3.

Assume that the challenger chooses a superposition of randomness to en-
crypt one of the messages chosen by the adversary. Following our security exper-
iment, the challenger would keep the randomness register and merely send the
ciphertext register to the adversary. The crucial observation is that the registers
containing the randomness and the ciphertext are now entangled. As observed
in [24], withholding the randomness register is equivalent to measuring it from
the point of view of the adversary. This means that this approach would in fact
be equivalent to our security notion using a classical randomness.

Alternatively, to prevent the aforementioned issue of entanglement between
the challenger and the adversary, we might let the challenger send the ran-
domness register to the adversary. However, the resulting security notion is un-
achievable as it would allow the adversary to always distinguish encryptions.
We illustrate this with the following attack. First, the adversary chooses two
distinct classical messages m0, m1, and executes the qIND challenge query with
these two. Upon receiving the ciphertext register and the randomness register,
the adversary evaluates (locally) the type-1 encryption operator initialising the
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input register with |m0〉, the randomness register with the randomness state re-
ceived from the challenger, and the ancilla register with the received ciphertext.
Finally, the adversary measures the ciphertext register output of the type-1 en-
cryption operator: if he measures 0, then he outputs b = 0, otherwise outputs
b = 1. The circuit is depicted in Fig. 10. The attack works because, if b = 0,
then the adversary will compute the same ciphertext as the challenger, hence
the output register of the type-1 encryption will be |0〉; on the other hand, if
b = 1, a random value will be observed instead. Clearly, this results in output
states that the adversary can distinguish with overwhelming probability.

U
(2)
Enc

U
(1)
Enc

|m0〉 , |m1〉

|r〉

|mb〉

|r〉

|c〉

|m0〉
|r〉
|m0〉
|c ⊕ Encpk(m0; r)〉

Challenger

Adversary

Fig. 10: Generic attack against superposition of randomness.

C Concurrent Work

In concurrent and independent work, Chevalier et al. [18] and Carstens et al. [17]
propose alternative QS2 security notions for public and symmetric key encryp-
tion schemes. There are important, conceptual differences between these works
and ours which we illustrate in this section.

Chevalier et al. start by resuming a game-based quantum indistinguishability
notion previously introduced by Mossayebi and Schack [35] which, we conjecture,
is not comparable to ours. This notion is based on a real-or-permuted approach:
in the security game, the adversary sends a single quantum plaintext of the form∑
x αx |x〉 and (depending on the value of the secret challenge bit b) receives

back either
∑
x αx |x, Enc(x)〉, or

∑
x αx |x, Enc(π(x))〉, where π is a random

permutation implemented by the challenger. To avoid confusion with our notion
(qIND-qCPA), we refer to their notion as π-qIND-qCPA. Consider the canonical
IND-CPA symmetric key encryption scheme that works by XOR-ing the message
with Fk(r), where F is a keyed pseudorandom function and r is a freshly sampled
randomness which is then attached to the resulting ciphertext. This scheme was
previously known to be secure according to Boneh and Zhandry’s IND-qCPA
notion; however, in [35], Mossayebi and Schack show that such scheme is not
π-qIND-qCPA secure,15 thereby yielding a separation result.

15 The proof of the attack is only sketched, whereas it is formally given by Chevalier
et al. in [18].
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Starting from this consideration, the authors of [18] develop a framework of
new QS2 security notions (both for the symmetric and public key case) where
the challenge query is quantum but implemented as a single message in the real-
or-permuted setting. This approach has advantages and disadvantages compared
with the one in [24] (for the symmetric key case) and the one we adopt in this
work (for the public key case):

– The notion of π-qIND-qCPA (and the related CCA and non-malleability
notions) only require the use of type-1 oracles, therefore greatly simplifying
the modelling of the security game. Another advantage is that it can be
defined for any encryption scheme, while we require isometric schemes (cf.
Section 5).

– On the other hand, the notion of Chevalier et al. (unlike ours) deviates from
the established framework for the classical case. In the traditional setting
of symmetric and public key security notions, in fact, it is well-known that
many different characterizations of IND-CPA (with two or more messages
chosen by the adversary, with one chosen and one random or fixed, etc.)
are all equivalent to an intuitive (but more cumbersome) notion of semantic
security. For π-qIND-qCPA, however, it is crucial that the adversary can only
send one single challenge message to the challenger.16 This is not the case
for our qIND-qCPA (and related) notions: although we do not write them
down explicitly here (we leave them for a future update in the appendix of
this manuscript), all these good ‘sanity checks’ can be easily inferred by:

• The lifting from a two-message qIND (QS2) challenge query to a two-
message QIND (QS3) challenge query as shown in [23];

• The equivalence between different types of QIND challenge query (two
messages, many messages, real-or-random, etc.) as shown in [16];

• The equivalence of such QIND notion to a sound notion of quantum
semantic security as from [3].

This means that our notions (in the public key case) and the ones in [24]
(for the symmetric key case) closely mirror the well-established framework
in the classical setting.

– Analogously, because of the presence of entanglement between plaintext and
ciphertext registers, the notions by Chevalier et al. do not mirror the ex-
isting solid framework for fully quantum notions (QS3 setting) in the lit-
erature. This is not a flaw by itself, but it has the drawback that many
useful tools cannot be straightforwardly ‘imported’ from the QS3 setting.
An example mentioned above is the difficulty of formalizing the equivalence
of π-qIND-qCPA to a natural notion of quantum semantic security, or the
possibility of easily lifting the QS2 security of a classical scheme Σ to the
QS3 security of a quantum scheme Π that uses Σ as a building block. An-
other example is the difficulty of defining quantum CCA2 security, which

16 Chevalier et al. prove the composability of their notions, but this refers to the fact
that one can formulate their security game using multiple challenge queries, where
each query is still restricted to a single message.
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can be done in a relatively easy way in the QS3 setting with the real-vs-
ideal approach by Alagic et al. from [5], while requiring the more involved
compressed oracle technique by Zhandry [47] for the results in [18].17

– Chevalier et al. expand substantially Mossayebi and Schack’s results, answer-
ing many questions left previously open (some of which also mentioned in
an early version of the present work) such as the security of the encrypt-
then-MAC construction. Moreover they introduce a technique (based on
Zhandry’s compressed oracles) to record queries and simulate answers to
inverse oracles which is of independent interest.

– It is important to notice that the separation result by Chevalier et al. and
Mossayeby and Schack rely on entanglement between message and cipher-
text register and not on a particular weakness in the scheme. In contrast,
our separation (and the one in [24]) relies solely on a property of the encryp-
tion scheme in question. One has to consider how the ability of a quantum
adversary of receiving back an entangled pair of message and ciphertext re-
ally mirrors the classical intuition, where an adversary would only receive a
ciphertext instead.

– Finally, and most importantly, in the present work we show that for many
real-world PKE schemes (including most of the NIST candidates) type-2
encryption operators can be implemented without knowledge of the secret
key. This invalidates Chevalier et al.’s argument that type-2 operators are
unreasonable in the public key setting, and actually makes the need for our
qIND-qCPA notion in the public key case stronger than ever.

Ultimately, we think that the contribution of Chevalier et al. is of great impor-
tance and their results are undoubtedly interesting. It is important to notice
that the canonical IND-CPA scheme used by Chevalier et al. and Mossayebi
and Schack as a separation from Boneh and Zhandry’s IND-qCPA is also shown
to be insecure according to the qIND-qCPA security notion in [24]. We can
hence see π-qIND-qCPA as a QS2 security notion which is incomparable to the
qIND-qCPA notion we present in this work, with advantages and disadvantages
as explained above.

In a recent work, Carstens et al. [17] study in detail the relationships be-
tween existing security notions for QS2 encryption. Their work is mainly fo-
cused on SKE, and they prove certain separations based on (reasonable) con-
jectures. In particular their work supports our conjecture that qIND-qCPA and
π-qIND-qCPA are incomparable also in the PKE case.

17 The authors of [18] also explain in their work why Alagic et al.’s approach would
not work in their case.
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